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CNRS, UPS, CNES, 14 Av. Edouard Belin, 31400 Toulouse, France
39Excellence Cluster Origins, Boltzmannstr. 2, 85748 Garching, Germany

40Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany
41Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München,

Scheinerstr. 1, 81679 München, Germany
42Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research

Laboratory, Casilla 603, La Serena, Chile
43Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, United Kingdom

44Laboratório Interinstitucional de e-Astronomia—LIneA,
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We present a simulation-based cosmological analysis using a combination of Gaussian and non-
Gaussian statistics of the weak lensing mass (convergence) maps from the first three years of the Dark
Energy Survey. We implement the following: (1) second and third moments; (2) wavelet phase harmonics;
(3) the scattering transform. Our analysis is fully based on simulations, spans a space of seven w Cold Dark
Matter (wCDM) cosmological parameters, and forward models the most relevant sources of systematics
inherent in the data: masks, noise variations, clustering of the sources, intrinsic alignments, and shear and
redshift calibration. We implement a neural network compression of the summary statistics, and we
estimate the parameter posteriors using a simulation-based inference approach. Including and combining
different non-Gaussian statistics is a powerful tool that strongly improves constraints over Gaussian
statistics (in our case, the second moments); in particular, the figure of merit ðS8;ΩmÞ is improved by 70%
(ΛCDM) and 90% (wCDM). When all the summary statistics are combined, we achieve a 2% constraint on
the amplitude of fluctuations parameter S8 ≡ σ8ðΩm=0.3Þ0.5, obtaining S8 ¼ 0.794� 0.017 (ΛCDM) and
S8 ¼ 0.817� 0.021 (wCDM), and a ∼10% constraint on Ωm, obtaining Ωm ¼ 0.259� 0.025 (ΛCDM)
and Ωm ¼ 0.273� 0.029 (wCDM). In the context of the wCDM scenario, these statistics also strengthen
the constraints on the parameter w, obtaining w < −0.72. The constraints from different statistics are shown
to be internally consistent (with a p-value>0.1 for all combinations of statistics examined). We compare our
results to other weak lensing results from the first three years of the Dark Energy Survey data, finding good
consistency; we also compare with results from external datasets, such as Planck constraints from the cosmic
microwave background, finding statistical agreement, with discrepancies no greater than <2.2σ.

DOI: 10.1103/PhysRevD.111.063504

I. INTRODUCTION

Weak gravitational lensing serves as an efficient tech-
nique for investigating the large-scale structure and matter
distribution throughout the Universe. This method enables
us to infer the distribution of matter lying in the foreground
by examining the minor distortions evident in the shapes of
background galaxies. Such effects of weak gravitational
lensing provide a window into the history of the Universe’s
expansion and its geometric properties, acting as tools for
understanding the underlying structure of the cosmos.
Conventional methods of cosmological analysis employ

Gaussian statistics, using tools such as two-point correlation
functions or power spectra to analyze the lensing signals. The
most up-to-date analyses of this type for stage-III surveys [1]
are from the Dark Energy Survey (Amon et al. [2], Secco
et al. [3]), the Kilo-Degree Survey (Asgari et al. [4], Li et al.
[5]), and Hyper Suprime-Cam (Dalal et al. [6], Li et al. [7]).
A growing number of studies, however, have investigated
and highlighted the role of non-Gaussian statistics in
improving cosmological constraints, as the lensing observ-
ables carry information beyond that probed by standard
Gaussian statistics. Examples of non-Gaussian statistics
investigated include higher-order moments [8–16], peak
counts [11,17–26], one-point probability distributions
[27–29], Minkowski functionals [12,30–32], Betti numbers
[33,34], persistent homology [35,36], scattering transform
coefficients [37–40], wavelet phase harmonicmoments [41],

K-nearest neighbor (kNN) and Cumulative Distribution
Functions (CDFs) [42,43], map-level inference [44,45],
and machine-learning methods [46–50].
This work uses a comprehensive simulation-based infer-

ence approach to analyze the weak lensing data from the first
three years of the Dark Energy Survey (DES Y3). Our
analysis concentrates on three distinct statistics: second-
and third-order moments, wavelet phase harmonic moments,
and the scattering transform. While the second and third
moments have been previously applied to DES Y3 data
[10], their implementation was based on a theoretical frame-
work for themodelingof themoments. In contrast, our current
approach is driven by simulations; i.e., we use simulations to
model our observables. Moreover, this research is the first
application of wavelet phase harmonic moments to weak
lensing data, and one of the first applications of scattering
transform (see [37]). These two statistics have become
prominent for their similarities to convolutional neural net-
works (CNNs), designed to extract information from fields in
a manner comparable to CNNs [51] but without the require-
ment for training. In [52] (hereafter paper I), we showed that
these non-Gaussian statistics provide additional information
beyond that of thirdmoments, indicating their potential utility.
We use theGower Street simulations (Jeffrey et al. [53]), a

suite of N-body simulations spanning a seven-dimensional
wCDM parameter space. We incorporate key sources of
systematic uncertainties in our forward model such as
photometric redshift uncertainties, shear calibration errors,
intrinsic alignments, and the effects of source clustering
[54].We implement an efficient neural network compression*Contact author: marcogatti29@gmail.com
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of our summary statistics, and we estimate the parameter
posteriors via neural density estimation of the likelihood
surface, using flexible neural networks that do not imposing
restrictive assumptions about the likelihood or data model.
This paper builds upon a companion work (paper I), in which
themethodologywas validated using simulations and a series
of systematic observational tests were conducted to verify the
robustness of the analysis. This work applies the validated
methodology to the DES Y3 data to yield cosmological
constraints; we also compare these findings with results from
other DES Y3 analyses and from external datasets.
A companion DES analysis (Jeffrey et al. [53]) uses the

same simulation-based inference pipeline as described in
this paper, but using convolutional neural networks (map-
level inference), peak counts, and power spectra to infer
cosmology. Their results are consistent with the results
presented in this work. All of these are analyses of DES Y3
data, pending the final full DES Year 6 data.
This paper is organized as follows: Sec. II summarizes

the survey data as well as the simulations used for our
model predictions and validation. Section III briefly
describes the summary statistics used in this paper and
the data compression. Section IV briefly describes our
simulation-based inference pipeline for parameter infer-
ence. Section V presents the preunblinding tests, and
Sec. VI discusses our main results, together with compar-
isons against other DES results and external probes.

II. DATA AND SIMULATIONS

A. DES Y3 weak lensing catalog and
weak lensing mass maps

We use the DES Y3 weak lensing catalog for our analysis
[55]. This extensive catalog comprises 100,204,026 galaxies,
offering a weighted effective galaxy number density of 5.59
galaxies per square arcminute across a 4139 square degree
area. The catalog is based on the METACALIBRATION algo-
rithm [56,57], which calculates self-calibrated shear mea-
surements from the multiband, noisy images of observed
objects. To correct for any residual calibration issues such as
multiplicative shear bias, we incorporate adjustments based
on sophisticated image simulations [58]. The catalog
includes a per-galaxy inverse variance weight, which enhan-
ces the signal-to-noise ratio of our measurements. The
galaxies are partitioned into four tomographic bins of
roughly equal number density, as described in [59].
The redshift distributions for these bins are derived using

the SOMPZ method [59], augmented by clustering-based
redshift information [60] and a correction for the redshift-
dependent influences of blending [58]. We produce weak
lensing mass maps for each tomographic bin using a full-
sky extension of the Kaiser and Squires algorithm [61,62].
The maps are pixelized using HEALPIX [63] at a resolution
of NSIDE ¼ 512; this yields a pixel size of approximately
6.9 arcmin.

B. Simulations

Here is a brief summary of the simulations used in this
work; see paper I for details.
The Gower Street simulation suite [53] is key to our

inference process. The mocks created from the Gower
Street suite serve two purposes: they are used both for
compressing the summary statistics and for performing the
cosmological inference. The suite consists of 791 gravity-
only full-sky N-body simulations, produced using the
PKDGRAV3 code [64].
The simulations span a seven-dimensional parameter

space in wCDM ðΩm; σ8; ns; h≡ h100;Ωb; w;mνÞ. Here,
Ωm is the total matter density parameter, σ8 is the root-
mean-square amplitude of matter density fluctuations
at 8h−1 Mpc, ns is the scalar spectral index, h≡ h100
is the dimensionless Hubble parameter (i.e., H0 ¼
100h km s−1 Mpc−1), Ωb is the baryon density parameter,
w is the (constant) dark energy equation-of-state parameter,
and mν represents the sum of the neutrino masses. See
Table I; this table uses the parameter S8 ≡ σ8ðΩm=0.3Þ0.5.
Each full-sky simulation can be divided into four non-

overlapping DES sky footprints, yielding 3164 independent
mock DES surveys. To generate additional pseudoinde-
pendent DES Y3 shear mock maps, we rotated the four
independent DES Y3 footprints by 45, 90, and 135 degrees
in galactic longitude, thereby covering different (but over-
lapping) regions of the full-sky map. For each map we
generated two distinct noise realizations, finally yielding a
total of 25,312 pseudoindependent noisy DES Y3 mock
maps. The maps from the first noise realization are used for
the compression step, while those from the second noise
realization are used for the cosmological inference step.
For this analysis, we augmented the Gower Street simu-

lation suitewithN-body simulations from theDarkGridV1 suite
[26,65]. This integration was done because, unlike paper I,
we include ΛCDM results in this work, and the DarkGridV1

simulations are exclusively ΛCDM simulations, in contrast
to those from Gower Street. We later discover, however, that
this addition has a negligible impact on our constraints (see
Appendix D), and the Gower Street simulations were
sufficient also for the ΛCDM case. The DarkGridV1 simula-
tions suite explores 58 different ΛCDM cosmologies, vary-
ing Ωm and σ8. Each cosmology is represented by five
independent full-sky simulations. For each full-sky simu-
lation, we applied the same procedure as used for the Gower
Street suite to generate multiple DES Y3 mock catalogs,
resulting in an additional 2320 mocks. These mocks are
added to those from the Gower Street suite and are used both
in the compression of the summary statistics and in the
cosmological inference.
In this analysis we only explicitly learn the likelihood

surface for the cosmological parameters Ωm, S8, w, and the
intrinsic alignment amplitude AIA; the dependence on other
parameters is not explicitly learned, but it is effectively
marginalized over according to the distribution followed by
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the simulations (Sec. IV). In contrast to the Gower Street
suite, the DarkGridV1 suite does not vary h100, ns, Ωb, or the
neutrino mass. This implies that the distribution of these
parameters when the two sets of simulations are combined
is narrower than that arising from the Gower Street suite
alone. We verified in Appendix D that this has a negligible
impact on our posteriors.
Last, for testing purposes only, we also use a subset of the

simulations from the CosmoGridV1 suite [66]. From this suite
we chose a set of 100 full-sky simulations at the fiducial
cosmology σ8 ¼ 0.84, Ωm ¼ 0.26, w ¼ −1, h ¼ 0.6736,
Ωb ¼ 0.0493, ns ¼ 0.9649. Each simulation has been post-
processed with a baryonification algorithm that mimics the
impact of baryons at small scales. These simulations have
been used only to produce the covariance matrices for the
signal-to-noise estimates and to serve as mock data mea-
surements for testing the full end-to-end pipeline. They have
not been used for the compression of the summary statistics,
nor during the cosmological inference.
The mock map making procedure is detailed in paper I.

In brief, for each simulation we generate noisy mock shear
maps following

γðpÞ ¼
P

s n̄ðsÞ½1þ bδðp;sÞ�ð1þmÞ½γðp;sÞ þ γIAðp;sÞ�P
s n̄ðsÞ½1þ bδðp;sÞ�

þ
� P

s n̄ðsÞP
s n̄ðsÞ½1þ bδðp; sÞ�

�
1=2

FðpÞ
P

gwgegP
gwg

: ð1Þ

Here p is a simulation pixel; s is a thin redshift shell;
γðp; sÞ is the noiseless shear from the shear simulation;
n̄ðsÞ is the galaxy count across the whole footprint [59];

m is the multiplicative shear bias that models shear
measurement uncertainties [58]; γIAðp; sÞ is the intrinsic
alignment contribution to each pixel; δðp; sÞ is the matter
overdensity in the shear simulation; b is the galaxy-matter
bias of the weak lensing sample (fixed to unity); wg and eg
are the DES Y3 galaxy weights and ellipticities for the
galaxies g in pixel p (ellipticities have been randomly
rotated to erase the cosmological signal of the catalog).
Note that in practice, we only sample the simulated shear
maps at the location p where a real DES Y3 galaxy exists.
For pixels p that do not have a corresponding DES Y3
galaxy, the noisy mock maps γðpÞ are set to zero. Since the
magnitude of the shape noise term [right-hand side of
Eq. (1)] depends on the number of real DES Y3 galaxies
(and their ellipticities) in a given pixel, these noisy mock
maps preserve the position-dependent, real-data modula-
tion in the number density caused by selection effects. Last,
the term FðpÞ is a near-unity scale factor introduced to
avoid double-counting source clustering effects (see paper I
for more details). The latter reads

FðpÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Bσ2eðpÞ

q
; ð2Þ

where A and B are constants with values A ¼ ½0.97;
0.985; 0.990; 0.995� and B¼ ½0.1;0.05;0.035;0.035� (one
for each tomographic bin), and σ2eðpÞ is the variance of the
pixel noise. The intrinsic alignment term γIAðp; sÞ is

γIAðp; sÞ ¼ AIA

�
1þ z
1þ z0

�
ηIA c1ρm;0

DðzÞ sðp; sÞ; ð3Þ

TABLE I. Model parameters (first column), their distribution in the Gower Street sims and in the mock catalogs
derived from these sims (second column), and the prior used in the cosmological analysis (third column, shown only
where different from the second column). The analysis prior can differ from the distribution of the samples as long as
these parameters have been explicitly used during the training of the NDEs when learning the likelihood surface; see
Sec. IV for more details.

Parameter Mocks parameters distribution Analysis prior

Ωm mixed active learning in Uð0.15; 0.52Þ Uð0.15; 0.52Þ
S8 Mixed active learning in Uð0.5; 1.0Þ Uð0.5; 1.0Þ
w N ð−1; 1

3
Þ for −1 < w < − 1

3
0 elsea Uð−1;− 1

3
Þ

ns N ð0.9649; 0.0063Þ
h N ð0.7022; 0.0245Þ
Ωbh2 N ð0.02237; 0.00015Þ
mν expðU½logð0.06Þ; logð0.14Þ�Þ
AIA U½−3; 3�
ηIA U½−5; 5�
m1 N ð−0.0063; 0.0091Þ
m2 N ð−0.0198; 0.0078Þ
m3 N ð−0.0241; 0.0076Þ
m4 N ð−0.0369; 0.0076Þ
n̄iðzÞ pHYPERRANKðn̄iðzÞjxphotÞ

aIn our simulation runs we usually excluded values of w less than −1, but 64 simulations were run without this
constraint. These were still used to train our NDEs, although we applied a strict prior of w > −1 for the analysis.
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with z0 ¼ 0.62, c1ρm;0 ¼ 0.0134 (Bridle and King [67]),
DðzÞ the linear growth factor, and sðp; sÞ the shear tidal
field. We obtain sðp; sÞ directly from the density field
δðp; sÞ by applying the (inverse) Kaiser-Squires algorithm.
This procedure is repeated for each of the four tomo-

graphic bins of the DES Y3 source catalog. The noisy shear
maps are then converted to noisy weak lensing mass maps
using the same algorithm as for the data. The mock-making
procedure has several free parameters: four multiplicative
shear biases mi (one for each tomographic bin), four
redshift distributions niðzÞ (one for each tomographic
bin), and parameters AIA and ηIA controlling the amplitude
and the redshift evolution of intrinsic alignment. For each
DES Y3 mock catalog we draw at random one of these
parameters from their prior (see Table I); for the redshift
distributions, we draw from one of the multiple realizations
provided by [59], which encompass the uncertainties in the
redshift calibration of the DES Y3 nðzÞ.

III. SUMMARY STATISTICS

The summary statistics considered in this work are
(1) second and third moments, (2) wavelet phase harmon-
ics, and (3) the scattering transform. The summary statistics
are applied to “smoothed” variants of the weak lensing
maps, with the choice of smoothing varying according to
the specific statistic employed: moments use top hat filters,
while wavelet phase harmonics and the scattering transform
use wavelet filters [68–70]. We provide below a brief
description of these statistics; for more details see paper I.

A. Second and third moments

Second moments of weak lensing mass maps are a
Gaussian statistic, while third moments reflect the skew-
ness of the field [8–12,14–16]. Briefly, we first smooth the
maps using top-hat filters, and we consider eight smoothing
scales θ0 equally (logarithmically) spaced from 8.2 to
221 arcmin. The second and third moments estimators are

hκ̂2θ0iði; jÞ ¼ Avgpðκiθ0;pκ
j
θ0;p

Þ; ð4Þ

hκ̂3θ0iði; j; kÞ ¼ Avgpðκiθ0;pκ
j
θ0;p

κkθ0;pÞ; ð5Þ

where κiθ0;p is the smoothed lensing mass map of tomo-
graphic bin i (i, j, k refer to different tomographic bins),
and the average is over all pixels p on the full sky. In the
case of third moments, we subtracted noise-signal third
moments of the form hκ̂θ0;obsκ̂2θ0;Ni; this approach was
chosen because it improved the compression process and
minimized the influence of source clustering on our
summary statistics.

B. Wavelet phase harmonics

Wavelet phase harmonics (WPH) correspond to the
second moments of smoothed weak lensing mass maps
that have undergone a nonlinear transformation [41,68–70].
A directional, multiscale wavelet transform is used to
smooth the maps. Let us consider a smoothed map
κin;lðθ⃗Þ, where n specifies the size of the filter (roughly
equivalent to 2nþ1 pixels), and l the orientation. The
nonlinear operation on the smoothed map, which enables
us to capture interscale interactions and access the non-
Gaussian characteristics of the field through second
moments, is defined as

PHðreiθ; qÞ≡ reiqθ; ð6Þ

where r is the modulus of the field and θ its phase. We
consider only q ¼ 0 or q ¼ 1 in this work, corresponding
to taking the modulus or leaving the field unaltered,
respectively. The WPH statistics used in this work are

S00ði; j; nÞ ¼ AvgpAvglðjκin;ljjκjn;ljÞ; ð7Þ

S11ði; j; nÞ≡WPHGði; j; nÞ ¼ AvgpAvglðκin;lκjn;lÞ; ð8Þ

S01ði; j; nÞ ¼ AvgpAvglðjκin;ljκjn;lÞ; ð9Þ

C01δl0ði;j;n1;n2Þ¼AvgpAvglðjκin1;ljκ
j
n2;l

Þ for n1 <n2;

ð10Þ

C01δl1ði;j;n1;n2Þ¼AvgpAvglðjκin1;lþ1jκjn2;lÞ forn1<n2:

ð11Þ

We average over all pixels p and we also average over the
three values 0,1,2 of the rotation index l (corresponding to
three possible orientations of the directional wavelet). The
number n varies from 0 to 5. The above summary statistics
probe both Gaussian and non-Gaussian features of the field
(with the exception of WPHG, which is equivalent to the
power spectrum of κ). To reduce the impact of source
clustering, for WPH S01, C01δl0, andC01δl1we subtract
a term involving one noise-only map and the observed
noisy convergence map.

C. Scattering transform

The scattering transform [38–40,71,72] conceptually
resembles the WPH previously introduced. It involves
smoothing the field using a directional, multiscale wavelet
transform (same as implemented in WPH), but then
followed by a modulus operation. This transform-then-
modulus operation is iteratively applied m times, after
which we take an overall field average; the result is the
scattering transform coefficient STm. This study considers
scattering coefficients of ordersm ¼ 1, 2. We chose to limit
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our analysis to m ¼ 1, 2 because most of the literature
applying Scattering transform (ST) to cosmological fields
stops at second order (which includes the power spectrum
case, m ¼ 1 and some higher-order contributions, m ¼ 2).
Including higher orders would cause the number of
coefficients to skyrocket, necessitating extensive compres-
sion, which could be inefficient and may negate any
benefits in constraining power. Given a directional multi-
scale wavelet ψn;l and the convergence map κi of tomo-
graphic bin i, we obtain

ST1ði; nÞ ¼ AvgpAvglðjκi � ψn;ljÞ; ð12Þ

ST2ði; n1; n2;l0Þ ¼ AvgpAvglðjjκi � ψn1;lj � ψn2;l0−ljÞ
for n1 ≤ n2; ð13Þ

where the average runs over all the pixels p and over all
values of the rotation index l (similar to the WPH case).

D. Measurement in data and signal-to-noise ratio

We present various statistics in Fig. 1, both as measured
in the data and as measured in a set of simulations that
we did not use for our cosmological inference pipeline
(CosmoGridV1 simulations [66]). The simulated data vector is
used solely to guide the eye, as the simulations are not
expected to provide the best fit to the measurements in the
data. The figure also shows the 68% contour spanned by the
noisy measurements from the Gower Street simulations;
these encompass the measurements in data very effectively.
When calculating this region, we limited the analysis to an
intrinsic alignment (IA) interval smaller than the Gower
Street prior (jAIAj < 1 and jηIAj < 1) to simplify visuali-
zation. Without this restriction, the gray region in the first
bin would be significantly larger, as it can be highly
impacted by large IA values. We also report the measured
signal-to-noise ratio in Table II; these ratios are very similar
to the ones reported in paper I for simulated measurements.

E. Data compression

Data compression increases the efficiency of density
estimation by reducing the data vector’s dimensionality. In
this work we use neural compression and we match the
dimension of the compressed summary statistics to that of
the parameters of interest θ. Specifically, for a summary
statistic d, we compress it as t ¼ FϕðdÞ, modeling the
compression function Fϕ with a neural network. We
optimize ϕ by minimizing a mean squared error loss using
the first half of our pseudoindependent mocks. The
architecture used for the network and the number of
parameters are summarized in Table 3 in paper I.
Given that we are principally focused on constraining the

parameters Ωm, S8, w, and AIA, we target these parameters
exclusively for individual compression and refrain from
compressing the data vectors for any other parameters.

FIG. 1. Some of the Gaussian and non-Gaussian statistics
considered in this work, for the first (left column) and fourth
(right column) tomographic bins. Red points are the statistic as
measured in data, using the noisy convergence map; error bars
have been estimated using 400 measurements at a fixed cosmol-
ogy from the CosmoGridV1 simulations [66]. Blue lines show the
measurements in the CosmoGridV1 simulations, averaged over the
multiple simulations available at the fiducial cosmology. The blue
lines only serve to guide the eye, as they are not a best fit to our
data. However, the cosmological parameters of the CosmoGridV1
simulations are not too dissimilar from our best-fit parameters, so
the blue lines provide a reasonable fit. For statistics involving
filters with different sizes j1, j2, we considered j1 ¼ j2. The gray
region shows for comparison the 68% contour of the noisy
measurements from the Gower Street simulations with jAIAj < 1
and jηIAj < 1 (which correspond to ∼500 mock measurements).
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We note that, while this paper was being finalized, in a
companion effort [73] we found that including components
in the compressed data vector that may not directly target
the key parameters (i.e., targeting for compression all the
parameters varied in the analysis) can still enhance the
constraints on the main parameters of interests due to cross-
correlations. Of course, the longer the data vector, the more
one must be cautious when testing the convergence of the
neural density estimators (NDEs) used to learn the like-
lihood surface, as more simulations may be required to
achieve proper convergence. For this reason, and to avoid
postunblinding changes that could invalidate some of the
preunblinding tests (e.g., the scale cut tests due to baryonic
feedback effects) we decided not to modify the current
work. Instead, we will apply improved compression tech-
niques in the next round of the weak lensing simulation-
based inference analysis with DES Y6 data.
We compress each summary statistic separately and then

amalgamate their compressed forms during the likelihood
inference stage. Specifically, we compress the second
moments, third moments, WPHG, WPH S00, ST1, and
ST2 on an individual basis, whereas for optimization
purposes we compress WPH S01 and WPH C01 jointly.

IV. SIMULATION-BASED INFERENCE AND
POSTERIOR ESTIMATION

This work relies on simulation-based inference (also
known as likelihood-free inference) to ensure a reliable
inference of the cosmological parameters. More details are
given in paper I; in brief, in simulation-based inference the
likelihood is not assumed to have a closed form, but rather
is estimated from mock noisy realizations of the summary
statistics. We use an ensemble of NDEs—Gaussian mixture
density networks (MDNs [74]) and masked autoregressive
flows (MAF [75])—to estimate the conditional distribution
pðdjθÞ. NDEs approximate this distribution with estimates
qðdjθ;ϕ0Þ where the network parameters ϕ0 are optimized
by minimizing a loss function.
We use the package pyDELFI [76] both for density

estimation and for neural network training. For the training

phase, we input the compressed statistics from half of our
simulations, specifically those not used in the compression
step. Density estimation is performed using the parameter
set θ ¼ ½Ωm; S8; w; AIA� and the corresponding compressed
data vectors. This approach implies that the remaining
parameters, which vary in the mock productions, are
effectively marginalized over [77]. The process of margin-
alization respects the prior distributions that were applied to
sample these parameters during the mock generations, as
detailed in Table I.
The final density estimation combines the different

ensemble estimates (MDNs and MAFs) weighted by
training-derived losses. With the estimated target distribu-
tion pðdjθÞ, we compute the likelihood at observed data
d ¼ dobs. The final posteriors are derived via Markov chain
Monte Carlo (MCMC) sampling of the likelihood, while
considering the priors mentioned in Table I for the
parameters θ ¼ ½Ωm; S8; w; AIA�. For the ΛCDM analysis,
we simply run the MCMC sampling fixing w ¼ −1. This
MCMC sampling is carried out using the publicly available
software package EMCEE [78], an ensemble sampler with
affine-invariant properties designed for MCMC sampling.

V. PREUNBLINDING TESTS

Blinding procedures are commonly used in weak lensing
analyses to prevent observer biases. Researchers intention-
ally conceal from themselves specific details of the data or
analysis pipeline until late in the analysis; this promotes
objectivity and reduces the influence of expectations on the
results. The main DES Y3 weak lensing analysis [2,3] uses
a two-stage blinding scheme. First, the weak lensing
sample was blinded by means of a multiplicative factor
[55]; second, the summary statistics under study were
manipulated according to a transformation introduced
by [79]. This transformation was specifically designed to
induce a shift in the posterior distributions, while ensuring
that the measured data vectors could still be subjected to
systematic tests and analysis. At the time of writing, the
shape catalog was already published and unblinded; there-
fore the first level of blinding was not applied in this paper.

TABLE II. Salient properties of the summary statistics. The second column denotes whether it carries Gaussian
(G) or non-Gaussian (NG) information. The third column refers to the order of the field κ. The fourth column is the
number of components of the data vector across scales and tomographic bins. The further columns show the signal-
to-noise ratio (SN) of the measurements in data.

G/NG Order Data vector length SN(Bin 1) SN(Bin 2) SN(Bin 3) SN(Bin 4)

2nd moments G 2 160 3.9 7.8 16.6 13.7
3rd moments NG 3 512 0.7 1.3 2.5 1.9
WPH S11 (WPHG) G 2 120 3.4 7.1 15.9 13.1
WPH S00 NG 2 96 3.2 6.7 15.2 12.3
WPH S01 NG 2 480 0.5 2.5 2.1 3.2
ST1 NG 1 60 3.4 7.6 16.3 14.4
ST2 NG 1 630 3.3 7.3 15.9 13.7
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Furthermore, our pipeline does not accommodate the
second blinding stage, as that stage relies on a param-
eter-based model of noise-free summary statistics, which
we lack. Given that the main DES Y3 cosmological
findings are already public, we opted not to blind our
catalog or data vectors. Instead, we refrained from exam-
ining the data posteriors until after our pipeline validation
and null tests on the data vectors were successfully
completed. In addition to the tests conducted at the catalog
and map level, as described in [55,61], we performed the
following tests, detailed in paper I:
(1) Validation of the Gower Street simulations: We

tested that the power spectra of the noiseless, full-
sky convergence of the Gower Street simulations
were in an approximately 1% agreement with theory
predictions; moreover, we tested that the noise
properties of our mocks (i.e. second, third, and
fourth moments of the noise, as well as its cumulant
distribution function) were able to describe the noise
properties of our data.

(2) Validation of the posteriors: We checked, using an
empirical coverage test, that the size of the posteriors
estimated by our NDEs was not misestimated.

(3) End-to-end validation of the pipeline on simulations:
We tested, using an independent set of simulations,
that the pipeline was able to recover true cosmology
for the summary statistics considered in this work.

(4) Tests on baryonic contamination: We conducted
tests using a subset of simulations that have been
postprocessed to incorporate baryonic feedback via
the baryonic correction model [80,81]. Our objective
was to verify that our statistics and the scales utilized
in this study were not significantly impacted by
potential baryonic contamination, which the simu-
lations in our pipeline do not model. Specifically,
we confirmed that the peak of the marginalized
two-dimensional posterior distribution ofΩm and S8,
when analyzing baryon-contaminated data, falls
within 0.3σ of the peak obtained from clean data.

(5) Tests on additive biases due to PSF modeling errors:
We checked that additive biases due to PSF model-
ing errors were negligible at the data vector level, i.e.
that if neglected they would not bias our cosmo-
logical analysis. This test is similar to that performed
in the DES Y3 cosmic shear analysis [2].

(6) Tests on possible modeling errors of the source
clustering effect: We checked that potential errors in
our model for the source clustering effects were
negligible, i.e. that they would not bias our cosmo-
logical analysis.

These tests were performed in paper I for a wCDM
analysis. Appendix A repeats some of these for a ΛCDM
analysis, and also adds two sets of tests:
(1) Test on the impact of redshift uncertainties and shear

biases: We show that we can recover the true
cosmology of the simulations even if the parameters

describing redshift uncertainties and shear bias
calibrations were 2σ off their mean values.

(2) Sensitivity to the details of the N-body simulations:
We show that our posteriors are not sensitive to the
details of the simulations used (box size, number of
particles, redshift resolution).

Finally, before examining the posteriors we performed
three additional tests:
(1) B-mode “null-test”: Weak lensing does not produce

B-modes at first order, making such modes useful
for identifying systematics. For masked data, how-
ever, the map-making procedure can cause small B-
modes due to E-modes leakage at large scales. We
perform in Appendix B a comparison between data
and simulated B-modes; this suggests no anomaly in
our data measurements.

(2) Goodness of fit: We assess the goodness-of-fit
p-value for the compressed data vectors, ensuring
they do exceed 1% (p-value > 0.01, see Sec. VI,
Tables III, IV). We used the following procedure to
measure p-values. Let LðxÞ denote the likelihood of
a data vector x. For each summary statistic (or
combination of statistics), we trained the neural
density estimators on all (compressed) simulated
data vectors except one, denoted xi, selected at
random. We then estimated the minimum log like-
lihood1 from the learned likelihood surface for the
simulated data vector excluded from the training; we
denote this minimum log likelihood by

minLLi ≡min logLðxiÞ: ð14Þ

This process was repeated for a thousand data
vectors. Next, we estimated the minimum log like-
lihood for our data:

minLLdata ¼ min logLðdÞ: ð15Þ

Subsequently, we computed the probability to ex-
ceed p by counting the fraction of simulated data
vectors that had a minimum log likelihood greater
than that of the observed data:

p ¼ 1

N

XN
i¼1

1ðminLLi > minLLdataÞ; ð16Þ

where 1 is the indicator function, which is 1 if its
argument is true and 0 otherwise. We note that this
goodness-of-fit test is valid only for compressed data
vectors; a satisfactory p-value for compressed sta-
tistics does not necessarily imply a similar outcome
for uncompressed statistics. Unfortunately, we are

1The routine scipy.optimize.differentialevo-
lution was used.
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unable to test the uncompressed statistics, as learn-
ing the likelihood of the uncompressed measure-
ments is not feasible with the limited simulations
available to us. However, we note that the uncom-
pressed data are effectively encompassed by the
uncompressed mock measurements from the Gower
Street simulations, as depicted in Fig. 1. This
provides evidence that the uncompressed data vector
does not exhibit features that are unaccounted for in
our mock simulations.

(3) Stability of the posterior: We visually checked that
the four NDEs were delivering consistent posteriors
when considered individually (Appendix C). This
was done by blinding the cosmological parameter
axes.

(4) Internal consistency of summary statistics: We
assess the internal consistency of the various sum-
mary statistics employed. To do this, we use the
posterior predictive distribution (PPD) methodology,
developed by [82] and implemented in the main
DES Y3 analysis. This methodology is designed to

calculate a calibrated probability-to-exceed p-value.
For consistency tests between two types of summary
statistics, we generate realizations of one type of
summary statistic (e.g. second moments) under the
assumption that the other type (e.g. third moments) is
the one measured in data. These realizations are
obtained using parameters drawn from the posterior
combining both types of statistics. In our case, we
easily obtained these realizations from the joint like-
lihood, which we learned using the noisy (com-
pressed) measurements from the Gower Street
simulations. These realizations are then compared
to actual observations using a distance metric (in our
case, the log likelihood) in the compressed data space;
thismetric is then used to determine thep-value.More
details on the exact implementation are given in [82].
We report in Table V the PPD p-values obtained
comparing second moments against third moments,
ST, and WPH (and vice versa); all the values are well
above the p ¼ 0.01 threshold. Note that the PPD
calculation is not symmetric in its two arguments.

TABLE III. Constraints on various parameters for different summary statistics and their combinations, for the
ΛCDM model. For each parameter we report the mean and 68% credible interval. The last two columns report the
FOM and the p-values.

ΛCDM summary statistic(s) S8 σ8 Ωm AIA FOMðS8;ΩmÞ p-value

2nd moments 0.796þ0.021
−0.020 0.849þ0.055

−0.056 0.267þ0.033
−0.033 0.45þ0.48

−0.42 1303 0.39

2nd + 3rd moments 0.801þ0.021
−0.021 0.847þ0.044

−0.044 0.270þ0.028
−0.029 0.51þ0.53

−0.50 1398 0.79

2nd moments + ST 0.791þ0.019
−0.018 0.846þ0.044

−0.044 0.264þ0.027
−0.028 0.34þ0.35

−0.33 1770 0.41

2nd moments + WPH 0.801þ0.020
−0.020 0.866þ0.044

−0.045 0.259þ0.027
−0.026 0.44þ0.45

−0.43 1817 0.75

2nd moments + ST + WPH 0.791þ0.018
−0.018 0.855þ0.043

−0.044 0.259þ0.027
−0.027 0.36þ0.37

−0.36 2069 0.60

2nd + 3rd moments + ST + WPH 0.794þ0.017
−0.017 0.857þ0.042

−0.042 0.259þ0.025
−0.025 0.32þ0.33

−0.31 2234 0.71

DES Y3 cosmic shear 0.788þ0.016
−0.019 0.810þ0.061

−0.071 0.289þ0.044
−0.039 0.33þ0.28

−0.27 1402

DES Y3 2nd + 3rd moments (G22) 0.787þ0.021
−0.016 0.819þ0.038

−0.028 0.279þ0.033
−0.029 0.40þ0.61

−0.38 1747

DES Y3 Cl + Peaks (Z22) 0.797þ0.014
−0.014 0.849þ0.100

−0.117 0.276þ0.077
−0.064 −0.04þ0.19

−0.19 1031

TABLE IV. Constraints on various parameters for different summary statistics and their combinations, for the wCDMmodel. For each
parameter we report the mean and the 68% credible interval (except that for w we report the mean and 68% upper limit). The last two
columns report the FOM and the p-values.

wCDM summary statistic(s) S8 σ8 Ωm w AIA FOMðS8;ΩmÞ p-value

2nd moments 0.826þ0.028
−0.028 0.870þ0.056

−0.057 0.274þ0.037
−0.037 < − 0.62 0.31þ0.37

−0.29 899 0.66

2nd + 3rd moments 0.825þ0.026
−0.027 0.858þ0.047

−0.047 0.280þ0.033
−0.033 < − 0.69 0.58þ0.39

−0.39 1121 0.73

2nd moments + ST 0.814þ0.024
−0.024 0.847þ0.046

−0.046 0.279þ0.032
−0.033 < − 0.68 0.38þ0.30

−0.29 1274 0.30

2nd moments + WPH 0.830þ0.024
−0.024 0.862þ0.043

−0.043 0.281þ0.032
−0.032 < − 0.65 0.35þ0.31

−0.30 1435 0.90

2nd moments + ST + WPH 0.819þ0.021
−0.021 0.855þ0.045

−0.045 0.277þ0.032
−0.032 < − 0.70 0.28þ0.25

−0.25 1605 0.58

2nd + 3rd moments + ST + WPH 0.817þ0.021
−0.021 0.861þ0.041

−0.041 0.273þ0.029
−0.029 < − 0.72 0.37þ0.30

−0.29 1725 0.67

DES Y3 cosmic shear 0.813þ0.032
−0.022 0.816þ0.082

−0.077 0.303þ0.040
−0.051 < − 0.77 0.34þ0.28

−0.25 901
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Only once all these tests were passed did we look at the
unblinded posteriors of our analysis.

VI. RESULTS

We present the cosmological constraints obtained from
our analysis of theDESY3data, assuming in turn theΛCDM
andwCDMmodels.We focus on the parameters used to learn
the likelihood, which are the most constrained ones:Ωm, S8,
AIA, and (for thewCDMscenario)w. The other cosmological

parameters andnuisance parameters variedwhen creating the
mocks are automaticallymarginalized over in our formalism.
When reporting constraints, we also report the figure ofmerit
(FOM) associated with S8 and Ωm, defined by

FOMðS8;ΩmÞ ¼ ðdetðCS8;Ωm
ÞÞ−0.5: ð17Þ

where CS8;Ωm
is the covariance matrix of the parameters

(estimated from their posterior).

A. ΛCDM results

This subsection presents the ΛCDM results. The left plot
in Fig. 2 displays the posterior distributions for S8, Ωm, and
σ8 from a combination of different summary statistics;
the constraints are also detailed in Table III, together with
p-values and the FOMs. Constraints for the individual
statistics are shown in Appendix E, whereas constraints
obtained removing on redshift bin at a time are shown in
Appendix F. As confirmed by our PPD consistency tests
(Table V), all the posteriors appear to be consistent with
each other, with their constraints largely overlapping. The
marginalized mean values of S8, Ωm, and σ8 for the
combination of all the summary statistics (gray line in
plot), along with the 68% credible intervals, are

S8 ¼ 0.794� 0.017;

Ωm ¼ 0.259� 0.025;

σ8 ¼ 0.857� 0.042:

TABLE V. Summary of internal consistency test p-values. All
internal consistency tests pass the predefined (arbitrary) threshold
of 0.01.

ΛCDM data splits p-values

2nd moments vs 3rd moments 0.50
3rd moments vs 2nd moments 0.20
2nd moments vs ST 0.58
ST vs 2nd moments 0.28
2nd moments vs WPH 0.16
WPH vs 2nd moments 0.11

wCDM data splits p-values

2nd moments vs 3rd moments 0.47
3rd moments vs 2nd moments 0.36
2nd moments vs ST 0.45
ST vs 2nd moments 0.33
2nd moments vs WPH 0.14
WPH vs 2nd moments 0.13

FIG. 2. Posterior distributions of the cosmological parameters Ωm, S8, and σ8, for different summary statistics and their combinations
(“All”), as measured in our data (ΛCDM on the left, wCDM on the right). The two-dimensional marginalized contours in these figures
show the 68% and 95% credible regions.
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The constraints obtained by combining all the summary
statistics are significantly tighter than the constraints from
second moments only: by ∼15% for S8, ∼25% for σ8
and Ωm, and ∼70% for the FOM. Importantly, constraints
significantly improve not only S8 but also Ωm. When
combining non-Gaussian statistics with second moments,
WPH provides the largest gain, followed by ST and third
moments; the combination of all the summary statistics
provide a further enhancement in the constraints, con-
firming the findings of paper I. The gain in constraining
power comes both from the additional information probed
by non-Gaussian statistics and from the degeneracy
breaking in the Ωm-σ8 plane (as non-Gaussian statistics
are characterized by a slightly different tilt in that plane
compared to second moments).
Figure 3 shows the constraints on the intrinsic alignment

parameter AIA, for second moments, and the combination
of all summary statistics. The constraints improve by up to
approximately 35% when non-Gaussian statistics are
included, underscoring the ability of beyond-Gaussian
statistics to enhance noncosmological parameters as well.
Our measurements indicate a preference for a small positive
(i.e. nonzero) intrinsic alignment amplitude.

B. wCDM results

This subsection analyzes the wCDM results. The right
plot in Fig. 2 displays the posterior distributions for S8,Ωm,
and σ8 for a combination of summary statistics (the same as
shown for the ΛCDM case); constraints are also detailed

in Table IV, along with p-values and the FOMs. Figure 4
shows the posterior forS8 andw. The results are in spirit very
similar to what we obtained for the ΛCDM case; posteriors
derived from different summary statistics largely overlap,
and the combination of these statistics significantly improves
constraints compared to those from second moments only.
The marginalized mean values of S8, Ωm, and σ8 for the
combination of all the summary statistics (gray line in plot),
along with the 68% credible intervals, are

S8 ¼ 0.817� 0.021;

Ωm ¼ 0.273� 0.029;

σ8 ¼ 0.861� 0.041:

We observe an improvement in the constraints over
second moments of approximately 25% for S8 and σ8,
approximately 20% for Ωm, and about 90% for the FOM
when all the statistics are considered. Interestingly, we
obtain slightly higher values for S8 in the wCDM scenario
compared to the ΛCDM case. This is a consequence of
opening the parameter space along w in a nonsymmetric
way (w > −1); since the S8 and w posteriors show a slight
degeneracy (see Fig. 4), this pushes S8 upwards compared
to the case when w is fixed at −1. Concerning the
constraints on the parameter w, all the probes are consistent
with each other. The constraints get smaller as we include
more summary statistics, and they push towards our prior
boundary at w ¼ −1, consistent with a ΛCDM scenario.

FIG. 3. Posterior distributions of the cosmological parameters
S8 and AIA, for second moments and for the combination of all the
summary statistics (“All”), to better highlight the contribution of
non-Gaussian statistics to the overall constraints. The two-
dimensional marginalized contours in these figures show the
68% and 95% credible regions.

FIG. 4. Posterior distributions of the cosmological parameters
S8 and w, for second moments and for the combination of all the
summary statistics (“All”), to better highlight the contribution of
non-Gaussian statistics to the overall constraints. The two-
dimensional marginalized contours in these figures show the
68% and 95% credible regions.
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Last, the constraints on the intrinsic alignment amplitude
AIA are completely consistent with the ones obtained in the
ΛCDM case, as shown in Fig. 3.

C. Comparison with other DES analyses

We discuss how the parameter constraints obtained from
this work compare to those obtained by other cosmological
analyses using DES Y3 weak lensing data. Several analyses
incorporating Gaussian and non-Gaussian statistics have
been conducted with DES Y3 data. Although these studies
use identical data and calibration, direct comparison of their
outcomes is complex. This complexity arises from varying
analysis and modeling choices adopted in each study, as
these can significantly impact the results. To facilitate a
more accurate comparison, we attempted to replicate the
analyses using similar analysis and modeling choices as in
our study, wherever feasible. Below, we provide an
overview of each study we are comparing. Figure 5 offers
a visual comparison of the constraints on S8, σ8, and Ωm
for both the ΛCDM and wCDM models, and the corre-
sponding constraint values and FOMs are detailed in
Tables III and IV.

1. DES Y3 cosmic shear

The first study to which we compare our results are the
DES Y3 cosmic shear analyses [2,3] for both ΛCDM and
wCDMmodels. We repeated these analyses trying to match
the same analysis choices used in our study. Notably, we
excluded the shear ratio likelihood [83], since it is not
included in our pipeline. Shear ratios, which are galaxy-
galaxy lensing measurements at small scales, primarily

constrain IA and redshift parameters. Since IA amplitude is
correlated with S8, incorporating shear ratios significantly
enhances S8 constraints. We also adopted the same priors
for parameters ns, Ωb, h100, and neutrino mass used in this
work. For redshift uncertainties, we used the HyperRank

method [84], which was not the standard method in
[2,3], but which is employed in our current analysis. We
also used as intrinsic alignment model the nonlinear
alignment (NLA) model, augmented with a clustering term
with a fixed galaxy-matter bias of one. We note, however,
that the clustering term included in the IA model of the
cosmic shear analysis is estimated using tree-level pertur-
bation theory, whereas our implementation directly uses the
clustering of the simulation, which should be more accu-
rate. Another difference with our pipeline is that it
automatically excludes information on large multipoles
by imposing a hard cut during the map making process (we
set to zero the harmonic coefficients of the maps with
l > 1000, such that to remove small scales that might be
affected by baryonic feedback effects). This restriction is
not present in the cosmic shear analysis, which can
theoretically probe smaller scales. Both analyses, however,
have undergone the same process of scale cuts, where small
scales were excluded if they were potentially affected by
unmodeled baryonic effects. Last, the full impact of source
clustering is not accounted for in the cosmic shear analysis,
although its impact should be negligible [54].
Figure 5 and Tables III and IV show the remarkable

agreement between the DES cosmic shear analysis and our
work. The cosmic shear FOM is very similar to that from
our second moments; this is expected, as they are both
Gaussian statistics applied to the same dataset with similar

FIG. 5. Posterior distributions of the cosmological parametersΩm, S8, and σ8, as measured in data. We compare the results of this work
to other analyses using DES data. The two-dimensional marginalized contours in these figures show the 68% and 95% credible regions.
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analysis choices. The FOM from our work, when all
summary statistics are combined, greatly improves over
the cosmic shear one, as expected. The constraints on
intrinsic alignment and w are also compatible. Interestingly,
despite the FOM from the combination of all statistics
being almost double that of the cosmic shear analysis, we
note that not all parameter constraints are necessarily
improved (e.g. AIA in the wCDM case or S8 in the
ΛCDM case). This might be due to the limited access to
small-scale information at l > 1000 not probed by our
work, a nonoptimal compression of our statistics along the
S8 and AIA directions, or simply due to a slightly different
degeneracy direction in the σ8-Ωm plane, a consequence of
different constraining power. Despite this, the significant
gain in the FOM over the fiducial DES cosmic shear
analysis, and the compatibility of the constraints obtained
using a completely different and independent pipeline,
strongly highlight the importance of a simulation-based
analysis using non-Gaussian statistics.

2. DES Y3 second and third moments

The second study to which we compare our results is the
ΛCDM analysis of second and third moments from Gatti
et al. [10]. This analysis uses the third moments as non-
Gaussian statistics, measured in the same way as we did in
this work. However, the modeling approach was analytical,
in contrast to our pipeline. Additionally, a MOPED
compression [85] was used, in contrast to the neural
network compression used in the current study. As with
the case of cosmic shear, we endeavored to align the
analysis choices with our pipeline. In contrast to the
fiducial analysis choices in [10], we reran the second
and third moments analysis without including shear ratios;
furthermore, we matched the priors on the parameters ns,
Ωb, and h100. However, the [10] analysis did not vary the
neutrino mass, as neutrinos were not modeled; this was an
analysis choice we could not alter. Additionally, source
clustering effects were not modeled, although their impact
on third moments was mitigated using the method
explained in [54]. For the intrinsic alignment model, we
employed the NLA model, but we were unable to include a
galaxy-matter bias term. Lastly, as in the cosmic shear
analysis, no explicit cut on multipoles l > 1000 was made,
though a scale cut intended to minimize the impact of
unmodeled baryonic effects was implemented.
Results from this revised analysis of the second and third

moments also overlap with the constraints from our work
(see Fig. 5, and Tables III and IV). The FOM is larger than
that of our second moments, but smaller than the one from
the combination of all summary statistics. The constraints
are also compatible with those obtained from our imple-
mentation of the second and third moments analysis. Given
the subtle differences between the two pipelines, we did not
expect a perfect match; however, the match is notably good.
This serves as further validation of the work done here and

the analytical modeling in [10], considering that the two
pipelines are completely independent and follow very
different approaches.

3. DES Y3 peak counts

The third study to which we compare our results are the
ΛCDM constraints from the power spectrum plus peak
counts analysis presented in Zuercher et al. [65]. This
analysis includes peak counts as a non-Gaussian statistic
and is entirely simulation based, though it differs from our
work in several aspects.
First, the analysis relied solely on the DarkGridV1 simu-

lation suite, primarily exploring two cosmological param-
eters (S8 and Ωm). The dependence on other cosmological
parameters (ns, Ωb, and h100) was modeled through a
Taylor expansion of the data vector, calibrated against a
limited set of N-body simulations. Neutrinos were not
varied in this analysis. To model the data vector, a three-
parameter emulator was constructed for S8, Ωm, and AIA;
other nuisance parameters were modeled by Taylor-
expanding the data vector, an approach different from
ours. A NLA IA model was used, without the clustering
term, and source clustering effects were not included. As in
our work, no shear ratio likelihood was incorporated in the
original analysis. No explicit cut on multipoles l > 1000
was made, although a scale cut was implemented to reduce
the impact of unmodeled baryonic effects. A MOPED
compression was used to compress the data vector, and a
Gaussian likelihood was assumed. In our comparison with
the peaks analysis, we retained all the fiducial choices made
by [65]. We refrained from imposing the Gower Street
prior on ns, Ωb, and h100, as this would have tightened the
constraints and invalidated the original scale cut. For the
cosmic shear and second and third moments analyses, such
an adjustment was feasible as we chose to not include shear
ratios, which counterbalanced the gain in constraining
power from having a tight prior on ns, Ωb, and h100.
The results of the peak counts analysis, as displayed in

Fig. 5, are in alignment with our findings, with the posterior
largely overlapping ours. Notably, this analysis delivers
tighter constraints onS8 but ismuch less restrictive regarding
Ωm and the overall figure ofmerit. The noticeable differences
in constraining power, given the significant differences in
analysis choices, are somewhat expected. This underscores
the challenges in comparing results from the same dataset
when different analysis methods are employed.

VII. COMPARISON WITH EXTERNAL DATA

We compare our cosmological constraints with results
from various external datasets. Although different choices
could be made regarding which data to compare, we have
adhered to the comparisons used in the fiducial DES
cosmic shear analysis [3]. In particular we consider the
following:
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(1) eBOSS: we use spectroscopic baryon acoustic os-
cillation (BAO) measurements from eBOSS [86].
The BAO likelihood is assumed to be independent of
DES. See [87] for a detailed description of the
likelihoods included (but note that unlike [87], we
do not include RSD constraints from eBOSS; this is
in line with the analysis choices adopted for the DES
Y3 cosmic shear analysis in [3]).

(2) Pantheon supernovae: we consider the luminosity
distances from type Ia supernovae from the Pan-
theon sample [88]; this data set includes 279 type Ia
supernovae from the PanSTARRS Medium Deep
Survey ð0.03 < z < 0.68Þ and samples from SDSS,
SNLS, and HST. The final Pantheon catalog in-
cludes 1048 SNe, out to z ¼ 2.26.

(3) Planck 2018 CMB: we use the final data release of the
Planck cosmic microwave background (CMB) survey
[89] including measurements of both temperature
and polarization anisotropies, in the same way it is
implemented in [3].

To perform a meaningful comparison, we recomputed the
posteriors using the priors on cosmological parameters
used in this work (Table I) for eBOSS and supernovae data.
We did not do this for the Planck data as the priors on ns, h,
and Ωb are partially determined by Planck constraints.
Note, though, that we are mostly interested in testing the
compatibility for the parameters S8, Ωm, and w; our
analysis does not constrain the other cosmological param-
eters, which are completely prior dominated.

A. Quantifying tension

To estimate the agreement or disagreement between dif-
ferent datasets, we use the normalizing flow Monte Carlo
estimate of the probability of a parameter difference as
discussed in [90]. We use the implementation of this
algorithm in TENSIOMETER [90,91]. In the case of uncorre-
lated datasets, the probability of the parameter difference is

PðΔθÞ ¼
Z
Vp

PAðθÞPBðθ − ΔθÞdθ; ð18Þ

where Vp is the prior support and PA and PB are the two
posterior distributions of the parameters. The probability of
an actual shift in parameter space is obtained from the density
of parameter shifts:

Δ ¼
Z
PðΔθÞ>Pð0Þ

PðΔθÞdΔθ; ð19Þ

which is the posterior mass above the contour of constant
probability for no shift,Δθ ¼ 0. Due to the discrete nature of
our posterior samples, the convolution integral in Eq. (18) is
performed with a Monte Carlo algorithm. To compute
Eq. (19) we first train a normalizing flow within
TENSIOMETER to model the probability density of parameter

shifts and then we perform a Monte Carlo integral with the
trained normalizing flow. For further details, we refer the
reader to [90].
In the following, our results are always reported in terms

of effective number of standard deviations. When consid-
ering an event with probability P, this is determined by

nσ ≡
ffiffiffi
2

p
Erf−1ðPÞ; ð20Þ

where Erf−1 is the inverse error function. It represents the
number of standard deviations that an event with the same
probability would have if it were drawn from a Gaussian
distribution. This definition does not assume a Gaussian
distribution of the underlying statistics and should be
interpreted as a logarithmic scale for probabilities.

1. Compatibility between this analysis and external data

In Table VI we show the estimate of the tension between
the different DES observables we consider, the Planck 2018
CMB data, and the joint BAO + SNe dataset. As we can see
DES measurements are broadly in agreement with these
measurements. In particular, we find that no pairwise
comparison exceeds 2.2σ. This tells us that different
DES data combinations agree with geometric probes on
the determination of Ωm and w and with the CMB on all
three parameters.
In Table VII we show the results of estimating the

discrepancy between DES probes and all other joint data-
sets, assuming both the ΛCDM and wCDM models. This
reassures us that all DES data combinations can be
combined with all external probes. Note that (in more
than one dimension) having A and B in agreement, and
having both separately in agreement with C, does not
guarantee that the combination of A and B will be in

TABLE VI. Compatibility of different DES observables with
Planck and BAOþ SNe results, assuming the ΛCDM and wCDM
models.

ΛCDM summary statistic(s) Planck 2018 BAO + SNe

2nd moments 1.4σ 0.7σ
2nd + 3rd moments 1.4σ 0.8σ
2nd moments + ST 1.7σ 0.9σ
2nd moments + WPH 1.2σ 0.8σ
2nd moments + ST + WPH 2.0σ 1.3σ
2nd + 3rd moments + ST + WPH 1.8σ 1.1σ

wCDM summary statistic(s) Planck 2018 BAO + SNe

2nd moments 1.8σ 0.9σ
2nd + 3rd moments 1.6σ 0.7σ
2nd moments + ST 2.0σ 0.8σ
2nd moments + WPH 1.8σ 1.0σ
2nd moments + ST + WPH 1.6σ 1.0σ
2nd + 3rd moments + ST + WPH 2.2σ 1.0σ
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agreement with C. For this reason, we explicitly check for
the compatibility of all DES data combinations and joint
external data.

2. Compatibility between early and late times Universe

We now investigate the agreement between probes of the
early and late time Universe. We select the DES probe
combining “2nd + 3rd moments + ST + WPH” since it is
the most constraining among the DES summary statistics.
Table VIII shows broad agreement between these two
probes for both the ΛCDM and wCDM models.

3. Joint constraints

Having found a good level of agreement between the
posterior probability distributions from this analysis and
those from external probes, we can be confident that they
can be combined.

TABLE VIII. Compatibility of probes of the early and late time
Universe within the ΛCDM and wCDM models. For the early
Universe, we consider CMB measurements from Planck 2018. For
the late-time Universe we use the 2nd + 3rd moments + ST +
WPH combination of DES probes joined with SNe and BAO
measurements.

Late (DES + SNe + BAO) vs early (Planck 2018)

ΛCDM 1.7σ
wCDM 2.1σ

TABLE VII. Compatibility of different DES observables with
Planck + BAO + SNe results, assuming the ΛCDM and wCDM
models.

ΛCDM summary statistic(s) Planck 2018 + BAO + SNe

2nd moments 1.1σ
2nd + 3rd moments 1.1σ
2nd moments + ST 1.4σ
2nd moments + WPH 1.1σ
2nd moments + ST + WPH 1.7σ
2nd + 3rd moments + ST + WPH 1.6σ

wCDM summary statistic(s) Planck 2018 + BAO + SNe

2nd moments 1.4σ
2nd + 3rd moments 1.2σ
2nd moments + ST 1.6σ
2nd moments + WPH 1.5σ
2nd moments + ST + WPH 1.6σ
2nd + 3rd moments + ST + WPH 1.7σ

TABLE IX. Cosmological constraints on parameters of interest
in the ΛCDM and wCDM models. For each parameter we report
the mean and 68% credible interval.

ΛCDM DES + SNe + BAO Planck 2018 Joint

S8 0.800� 0.017 0.831� 0.016 0.810� 0.011
Ωm 0.290þ0.010

−0.012 0.3206� 0.0096 0.3070� 0.0067

wCDM DES + SNe + BAO Planck 2018 Joint

S8 0.807� 0.020 0.840� 0.016 0.813� 0.010
Ωm 0.285� 0.013 0.346þ0.017

−0.024 0.3106� 0.0085
w < − 0.905 < − 0.891 < − 0.97

FIG. 6. DES Y3 and external data constraints from low and high redshift probes. The two-dimensional marginalized contours in these
figures show the 68% and 95% credible regions. We find no evidence for statistical inconsistency between the results of this work and
external dataset.
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As the external data and our DES Y3 observations are
independent, we can simply use the posterior probability
distributions from the external data as the prior probability
for our analysis.
We have already used the Planck external data to justify

the prior probability distributions for the so-called nuisance
parameters in the Gower Street simulations (e.g. for Ωb).
Avoiding double counting of information, we simply use a
new prior distribution only on the parameters of interest
(i.e. S8, Ωm, and w), which is given by the posterior
distribution from the external analyses. As our original
priors on the parameters of interest are flat, this requires a
simple reweighting of the existing posterior distribution.
We do this in twoways: (i) relearning the posterior density

of the parameters of interest from both our new DES Y3
MCMC chains and the MCMC chains from the external
probes—we then multiply the learned densities; (ii) learning
the posterior density of the parameters of interest for the
external probes, and rerunning the MCMC chains using our
learned DES Y3 simulation-based likelihood using the
learned density as a prior. In both cases we use normalizing
flows implemented in the package TENSIOMETER to learn the
densities from the existing posterior samples.
Both these methods give consistent results; we use

method (i) in all quoted results.
As we can see from Table IX the constraining power

from late-time Universe probes is comparable with that of
CMB measurements. In ΛCDM this roughly amounts to a
2% constraint on S8 and a 3% constraint on Ωm. Since the
two probes are independent the constraints add in quad-
rature almost perfectly, resulting in a 1% level joint
constraint. The joint constraints are also shown in Fig. 6.

VIII. SUMMARY

We presented a cosmological analysis using a combi-
nation of Gaussian and non-Gaussian statistics applied to
the weak lensing mass (convergence) maps from the
DES Y3. Specifically, we considered the following: (1) sec-
ond and third moments, (2) WPH, and (3) the ST. The
second moments are Gaussian statistics, while the third
moments probe additional non-Gaussian information of
the fields. The WPH moments are the second moments of
smoothed weak lensing mass maps that have undergone a
nonlinear transformation, enabling the exploration of the
non-Gaussian features of the field. The ST coefficients are
generated through a series of smoothing and modulus
operations applied to the input field, followed by averaging.
Both the WPH and ST are often linked to CNNs because
their statistical definitions bear similarities to the architec-
ture of CNNs. However, unlike CNNs, they do not require
training data.
Our analysis is entirely based on simulations, spanning a

space of seven wCDM cosmological parameters. It forward
models the most relevant sources of systematic errors in the
data, including masks, noise variations, clustering of the

sources, intrinsic alignments, and shear and redshift cali-
bration. We have implemented a neural network to com-
press the summary statistics, and estimated the parameter
posteriors using a simulation-based inference approach.
Our analysis setup has been extensively validated in paper
I, which includes the validation of the mocks used in the
analysis, empirical coverage tests of the posteriors obtained
via simulation-based inference, tests on the impact of
physical effects not included in the simulations (e.g.
baryonic feedback effect), and an end-to-end validation
of the pipeline using an independent set of simulations. We
complemented the tests from paper I with additional ones,
particularly focusing on our data measurements. These
include tests on the internal consistency of the different
summary statistics measured in the data, assessments of
goodness of fit, and B-mode null tests.
We demonstrated that incorporating and integrating vari-

ous non-Gaussian statistics significantly enhances con-
straints compared to relying solely on Gaussian statistics
(specifically, secondmoments). Notably, we achieved a 70%
(90%) improvement in the FOMðS8;ΩmÞ for the ΛCDM
(wCDM) model. The improvement in the FOMðS8;ΩmÞ is a
result of significant enhancements in both S8 and Ωm.
By combining all summary statistics, we measured the
amplitude of fluctuation parameter S8 ≡ σ8ðΩm=0.3Þ0.5 ¼
0.794� 0.017 with 2% precision, under the assumption
of a ΛCDM cosmology. In the case of a wCDM cosmology,
the measurement was S8 ¼ 0.817� 0.021. The inclusion
of non-Gaussian statistics significantly tightened the con-
straints on AIA, the amplitude of intrinsic alignment.
Additionally, in the context of the wCDM scenario, these
statistics also strengthened the constraints on the parameter
w, obtaining w < −0.72, consistent with a ΛCDM scenario.
We compared our results with other weak lensing results

from the DES Y3 data, finding good consistency. Our
constraints outperform the results from the fiducial DES
cosmic shear analysis (as expected) due to the extra
information probed by the non-Gaussian statistics. We also
find statistical agreement (< 2.2σ) when comparing with
results from external datasets: Planck constraints from the
cosmic microwave background, constraints from spectro-
scopic BAO measurements, and constraints from type Ia
supernovae.
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Medioambientales y Tecnológicas-Madrid, the University
of Chicago, University College London, the DES-Brazil
Consortium, the University of Edinburgh, the
Eidgenössische Technische Hochschule (ETH) Zürich,
Fermi National Accelerator Laboratory, the University of
Illinois at Urbana-Champaign, the Institut de Ciències de
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APPENDIX A: ΛCDM VALIDATION

In this appendix we perform a number of validation tests
for the ΛCDM analysis, similar to what was done in paper I
for the wCDM analysis. In particular, we do the following:
(1) conduct a baryonic contamination test, i.e. we verify

that the scales used in the ΛCDM analysis are not
affected by potential unmodeled baryonic feedback
processes;

(2) test that additive biases due to PSF modeling errors
were negligible at the data vector level;

(3) check that potential errors in our model for the
source clustering effects were negligible;

(4) perform a coverage test to ensure that the size of the
posteriors we recover is accurate;

(5) carry out an end-to-end ΛCDM analysis on an
independent set of simulations (CosmoGridV1 sims),
demonstrating that we recover the true cosmology of
the simulations.

Beyond these tests, we also add two sets of tests where
we do the following:
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(1) We show we can recover the true cosmology of the
simulations even if the parameters describing red-
shift uncertainties and shear bias calibrations were
2σ off their mean values.

(2) We show that our posteriors are not sensitive to the
details of the simulations used (box size, number of
particles, redshift resolution).

The initial test we conducted was the baryonic contami-
nation test. This followed the same methodology as
presented in paper I, albeit tailored for a ΛCDM analysis.
Our analysis does not include a model for the effects of
baryons at small scales. Consequently, we need to ensure
that the scales used are not compromised by baryonic
effects. To this end, we employed a suite of simulations
(CosmoGridV1) that have been postprocessed to include
baryonic feedback using the baryonic correction model
[80,81]. Each simulation is available in two versions: one
with baryonification and one without. We generate multiple
instances of the DES maps using both versions to calculate
our summary statistics. We then test whether the posteriors
of cosmological parameters derived from data vectors
including baryonic feedback do not exhibit significant bias
when compared to those from data vectors without bar-
yonic effects. We follow the criterion adopted by the DES
Y3 cosmological analysis (Amon et al. [2]; Secco and
Samuroff et al. [3]; Abbott et al. [87]), which requires that
the peak of the marginalized two-dimensional posterior of
Ωm and S8 from the analysis of baryon-contaminated data
must fall within 0.3σ of that from clean data. Table X
reports the contamination levels obtained using all available
scales of our analyses, for all the individual summary
statistics and certain combinations of them. Notably, all the

summary statistics stayed within our preestablished limits
for contamination, thereby showing the robustness of our
analysis against potential baryonic feedback effects.
For the tests addressing potential PSF contamination, we

emulated the methodology from paper I and analyzed two
sets of mock data from the CosmoGridV1 suite, i.e. with and
without added contributions from PSF modeling errors as
estimated in [55]. We confirmed that, even when focusing
on a ΛCDM analysis, none of our summary statistic
combinations showed a bias in the S8-Ωm plane larger
than 0.10σ. This indicates that PSF modeling errors are
insignificant for the scale range considered in our study.
Regarding the tests for potential errors in modeling

source clustering, we analyzed two sets of maps with
assumed galaxy-matter biases of b ¼ 0.5 and b ¼ 1.5,
diverging from the standard value of unity used in our
analysis. We found that for all our summary statistics
combinations, the bias in the S8-Ωm plane was under 0.10σ.
Thus, the influence on cosmological parameters is minimal,
confirming that our source clustering model is accurate
enough for our analysis.
The next test aimed at ensuring that the confidence levels

from simulation-based inference were correctly estimated.
This involved carrying out an empirical coverage test. In
such tests, the inference process is repeated multiple times
to confirm that the estimated posteriors accurately reflect

TABLE X. Bias in the parameter posteriors assessed by
contrasting the results from an analysis that simulated mocks
with baryonic feedback against one using mocks with no such
feedback. The impact on various summary statistics are quanti-
fied by measuring the separation between the peaks of the
posterior distributions in the S8-Ωm plane. We found that all
biases are well below the 0.3σ threshold (the upper limit of bias
tolerated in our analysis).

Summary statistic(s) Contamination S8 − Ωm

2nd moments 0.06σ
WPHG 0.05σ
3rd moments 0.05σ
WPH S00 0.01σ
WPH S01 + C01 0.05σ
WPH S00 + S01 + C01 0.11σ
ST1 0.05σ
ST2 0.03σ
ST1 + ST2 0.04σ
2nd + 3rd moments 0.10σ
2nd moments + WPH 0.05σ
2nd moments + ST1 0.08σ
2nd + 3rd moments + ST + WPH 0.15σ

FIG. 7. Expected coverage probability of posteriors derived
from the simulation-based inference pipeline, using various
summary statistics, with respect to the credibility level. The gray
shaded areas represent the precision of the test, constrained by the
finite number of posteriors used in this analysis.
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the true parameter probabilities. For our purposes, we ran
the inference multiple (100) times, each time omitting one
mock data vector (chosen at random) from the neural
likelihood estimation. We specifically omitted mocks with
w ¼ −1, corresponding to the ΛCDM scenario, from the
DarkGridV1 simulation set. The likelihood for the excluded
data vector was then calculated, the posterior determined,
and its accuracy verified against the known parameter
values. We assessed coverage probabilities within the three-
dimensional parameter space of Ωm, S8, AIA using the TARP

package, which applies the “tests of accuracy with random
points” method for estimating the coverage probabilities of
generative posterior estimators. The outcomes, illustrated
in Fig. 7, reveal that the expected coverage corresponds
with the credibility levels at 5%, signifying that our
posterior estimates are properly calibrated.
We then confirm our pipeline’s ability to accurately

recover the actual cosmology from a set of simulations not
previously used in its construction. For this purpose, we use
400 independent DES Y3 mock catalogs, generated by the
CosmoGridV1 simulations, identical to those employed for
the wCDM analysis validation in paper I. None of these
CosmoGridV1 simulations are used during the training of our
inference pipeline (i.e. during the compression or when
training the NDEs), but they are rather used as a “target”
data vector. Each mock has the same cosmology; we further
assume no intrinsic alignment, while for the other nuisance

parameters (shear calibration and redshift uncertainties) we
assume values at the center of the priors. By measuring all
summary statistics across the mocks and taking their
average, we mitigate the influence of noise. The resulting
posterior distributions for the cosmological parameters Ωm
and S8, derived from the second moments and the combi-
nation of all summary statistics, are depicted in Fig. 8. The
simulated analysis recovers the true cosmological param-
eters of the simulations, underscoring the reliability of our
analytical framework.
In the final series of tests, we evaluate our ability to

accurately recover the cosmological parameters of simu-
lations under various conditions. Specifically, we assess
whether the correct cosmology can be identified when
(1) the simulation includes shear biases that deviate by 2σ
from the average values of their prior distributions; (2) the
redshift mean values diverge by 2σ from their prior
averages; (3) the simulations use double the number of
particles; (4) the simulations have been produced with

FIG. 8. Posterior distributions of the cosmological parameters
Ωm and S8 for different second moments and for the combina-
tions of all the summary statistics considered in this work, as
measured in CosmoGridV1 simulations. The dotted black lines
indicate the values of the cosmological parameters in the
simulations. The two-dimensional marginalized contours in these
figures show the 68% and 95% credible regions.

FIG. 9. Comparison of the measured summary statistics of
B-mode convergence maps in our data with those obtained from
the CosmoGridV1 simulations. We did not include measurements
for second moments and WPHG in this comparison, as these
statistics are already incorporated into the data vectors used for
the cosmological analysis.
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double the box size; and (5) the simulations feature twice
the redshift resolution. For these latter three scenarios, we
used benchmark simulations from the CosmoGridV1 suite.
The results, depicted in Fig. 10, confirm that in every
instance we successfully retrieved the true cosmological
values of the simulations.

APPENDIX B: B-MODES TEST

At first order, weak lensing is not expected to produce
B-modes. Consequently, B-modes serve as a null test for
identifying potential systematic effects not accounted for in
the analysis. However, due to our map-making procedure
using the Kaiser-Squires algorithm, B-modes can emerge
as a result of masking effects, as noted [10]. This occurs
because a small fraction of the E-mode power leaks into the
B-mode map, predominantly at large scales. In our data
vector, we included the second moments and WHPG of the
B-mode maps, although their contribution to the cosmo-
logical constraints is small. We opted not to include other
summary statistics for B-modes, as this would double the
length of the data vector, complicating the data compres-
sion without significantly improving our constraints.
Nevertheless, we conducted a comparison of B-modes in
our data against those measured in simulations for the
summary statistics beyond second moments and WHPG.
Such a comparison is illustrated in Fig. 9. Specifically, we
compared against measurements from the CosmoGridV1

simulations, which were performed at a fixed cosmology.

The measurements from our data and the simulations show
good agreement. We did not make a significant detection of
B-modes for third moments and WHP S01. These results
on third moments corroborate the findings of [10]. For
other statistics (ST1, ST2, and WPH S00), both data and
simulations indicate a slight, non-null B-mode signal at
large scales, likely attributable to E-mode leakage caused
by masking effects. Given the strong correspondence
between simulations and data, we conclude that our
B-mode analysis reveals no evidence of unaccounted
systematics in our simulations.

APPENDIX C: NDEs AND PARAMETERS
POSTERIOR

In this work we used four different NDEs to estimate the
posteriors. In particular, we used two different MDNs and
two different masked autoencoders for distribution estima-
tion. Whenever we showed a posterior or reported the
constraints on some parameters in this work, we always
obtained these by stacking the four different NDEs.
Assuming all the NDEs are flexible enough to describe
our likelihood surface, they should all agree in the limit in
which the number of simulations used for training becomes
large. Figure 11 shows the posteriors obtained by each
individual NDE for our most constraining case (i.e. the
combination of all summary statistics); the posteriors are
very similar, indicating that our posteriors estimates are
robust and stable.

APPENDIX D: IMPACT OF THE DarkGridV1

SIMULATION SUITE

Our analysis uses simulations in two distinct ways: for
training the compression algorithm and for learning the
likelihood surface with the NDEs. In this work, we have
expanded the simulation suite used in our validation study
(paper I), by including simulations from the DarkGridV1

suite. These additional simulations are specific to the
ΛCDM model, meaning they do not vary the parameter
w. Furthermore, they do not vary other parameters such as
h100, nsm, Ωb, or the neutrino mass (unlike those in the
Gower Street suite). Our NDEs do not explicitly learn the
dependence on these latter parameters; instead, these
parameters are effectively marginalized over according to
the distribution followed by the simulations. Incorporating
the DarkGridV1 suite simulations thus modifies the distribu-
tion of mocks, which could impact the posterior. Figure 12
shows a comparison of our posterior on the data for the
ΛCDM case, with and without including the DarkGridV1

suite in learning the likelihood surface. The posteriors are
very similar, indicating that the impact of the differing
parameter distribution is negligible.

FIG. 10. Posterior distributions of the cosmological parameters
Ωm and S8 for different combinations of all the summary statistics
considered in this work, as measured in a number of different
CosmoGridV1 simulations.
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APPENDIX E: COSMOLOGICAL CONSTRAINTS
OF INDIVIDUAL STATISTICS

We show in this appendix the posteriors for Ωm and S8
obtained from individual statistics, i.e. second moments,
third moments, Wavelet Phase Harmonics Gaussian
(WPHG), WPH S01, WPH S00, ST1, and ST2, and their
combination. The posteriors are shown in Fig. 13, for both
wCDM (left) and ΛCDM (right). Constraints from indi-
vidual probes are largely overlapping and consistent with
each other. Third moments and WPH S01 are the less
constraining statistic among all those explored here; this is
partially because all the other non-Gaussian statistics (ST1,
ST2, and WPH S00) also probe part of the Gaussian
information of the field, and hence are more constraining.

APPENDIX F: REDSHIFT BIN IMPACT ON
COSMOLOGICAL CONSTRAINTS

We show in Fig. 14 the results obtained removing one
redshift bin at a time from the analysis. This test is meant to
highlight potential biases that might preferentially impact
the low or high redshift end of our sample. We only
considered the case where all the summary statistics are
combined. We do not see any significant deviation from the
fiducial case.

FIG. 11. Posterior distributions of the cosmological parametersΩm and σ8 for the combination of all the summary statistics considered
in this work, as measured in data, for the ΛCDM (right) and wCDM (left) analyses. We show the different posteriors as estimated by the
different NDEs used in this work; we also show their stacked combination (the fiducial setup used in the other figures of this paper). The
dotted black lines indicate the values of the cosmological parameters in the simulations. The two-dimensional marginalized contours in
these figures show the 68% and 95% credible regions.

FIG. 12. Posterior distributions of the cosmological parameters
Ωm and S8 obtained including or not DarkGridV1 simulations into
our analysis setup. The posteriors are shown for the ΛCDM
scenario, and for the case where all the summary statistics are
combined together.
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FIG. 13. Posterior distributions of the cosmological parameters Ωm and S8 from individual statistics and their combination, for both
wCDM (right) and ΛCDM (left).
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