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Ballistic entanglement cloud after a boundary quench

Bedoor Alkurtass®,'-" Abolfazl Bayat®,>*" Pasquale Sodano,* Sougato Bose,” and Henrik Johannesson

6

' Department of Physics, College of Science, Sabah Al Salem University City, Kuwait University, P.O. Box 2544, Safat 1320, Kuwait
2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
3Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education,

University of Electronic Science and Technology of China, Chengdu 611731, China
4I.N.EN., Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
3Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
®Department of Physics, University of Gothenburg, SE 412 96 Gothenburg, Sweden

® (Received 22 July 2024; accepted 10 February 2025; published 13 March 2025)

Entanglement has been extensively used to characterize the structure of strongly correlated many-body
systems. Most of these analyses focus on either spatial properties of entanglement or its temporal behavior.
Negativity, as an entanglement measure, quantifies entanglement between different noncomplementary blocks
of a many-body system. Here, we consider a combined spatial-temporal analysis of entanglement negativity in a
strongly correlated many-body system to characterize complex formation of correlations through nonequilibrium
dynamics of such systems. A bond defect is introduced through a local quench at one of the boundaries of a
uniform Heisenberg spin chain. Using negativity and entanglement entropy, computed by the time-dependent
density-matrix renormalization group, we analyze the extension of entanglement in the model as a function of
time. We find that an entanglement cloud is formed, detached from the boundary spin and composed of spins
with which it is highly entangled. The cloud travels ballistically in the chain until it reaches the other end where
it reflects back and the cycle repeats. The revival dynamics exhibits an intriguing contraction (expansion) of the

cloud as it moves away from (towards) the boundary spin.

DOI: 10.1103/PhysRevResearch.7.013268

I. INTRODUCTION

Quantum entanglement, as one the most striking features of
quantum mechanics, has been identified as a resource which
allows for outperforming classical systems in communica-
tion [1,2], computation [3], and sensing [4]. In the last two
decades, a lot of efforts have been dedicated to quantification
of entanglement [5,6], its generation [7-10], detection [11],
and application [12]. Strongly correlated many-body systems
naturally support a significant amount of entanglement in their
structure [13,14]. Entanglement in such systems have been
mainly investigated in two different directions, namely char-
acterizing its (i) spatial properties or (ii) temporal features.
In (i), entanglement between different blocks of a many-
body system is investigated in terms of the block sizes and
their spatial distance [15-23]. Such studies reveal that while
the eigenstates at the edge of the spectrum, i.e., low- and
high-energy eigenstates, support area-law entanglement, the
midspectrum eigenstates provide volume-law entanglement
[24]. In (ii), temporal behavior of entanglement is typically
studied in the nonequilibrium dynamics of a many-body sys-
tem induced by a quantum quench [25-28]. It has been shown
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that entanglement may indeed be generated through the dy-
namics and can linearly grow from zero to area law and then
eventually saturate to a volume-law value [28-33]. Despite
all these studies, the combined spatial and temporal behavior
of entanglement negativity in a many-body system has not
received much attention.

In this article, we try to make up for this by presenting
an analysis of the spatial-temporal structure of entanglement
propagation after a quantum quench in a bounded many-
particle system. The more general problem of entanglement
spreading following a quantum quench has attracted consid-
erable interest in recent years, much spurred by the desire
to understand equilibration of isolated many-body systems
[29,34-38]. The underlying motivation is experimental, where
advances in quantum technologies have enabled the observa-
tion of unitary time evolution in various physical platforms,
including ultracold atoms [39,40], ion traps [41-43], and su-
perconducting quantum simulators [44-50]. The case of a
local quench—where the Hamiltonian that governs the evo-
lution is suddenly changed in a local region of space—has
mainly been studied in one dimension (1D) employing the
“cut-and-glue” protocol suggested by Calabrese and Cardy
[51]. In that work, a uniform system is cut in two pieces, each
prepared in its respective ground state. The two pieces are
then glued together by a local quench and the time evolution
of the entanglement for a chosen bipartition of the system is
being studied. The early results from conformal field theory
(CFT) suggested that the spreading of entanglement originates
from pairs of freely propagating entangled quasiparticles pro-
duced by the quench at the gluing point [51]. This picture,
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as well as specifics of the CFT results—Ilater generalized to
finite systems [52] and disjoint partitions [53,54]—has been
supported by several analytical and numerical studies of 1D
lattice models [55-64].

Here, using a different type of protocol, we explore
the spatial-temporal behavior of entanglement after a local
quench on a uniform and finite 1D lattice system, with the
quench creating a bond defect at one of the boundaries of the
lattice. By this, the interaction of a boundary degree of free-
dom with the bulk gets modified and becomes different from
the uniform interaction in the bulk. With an eye towards a
proposal to use spin chains as quantum communication chan-
nels, with entanglement spreading being a key feature [65],
we take the system to be a spin-1/2 Heisenberg chain with
open boundary conditions. With this, the boundary degree of
freedom is simply a spin at one of the endpoints of the chain.

Employing negativity [66,67] as a measure of entangle-
ment and using the time-dependent renormalization group
(tDMRG) [68] allows us to track the entanglement of the
boundary spin with the rest of the system in time as well
as in space. The numerical results reveal that, just after the
quench, a group of spins are strongly entangled with the
boundary site, in the immediate vicinity of it. We call those
spins an “entanglement cloud.” As the system evolves unitar-
ily, the neighboring spins are significantly unentangled from
the boundary, while more distant spins are progressively en-
tangled. This result can be interpreted as the cloud traveling
ballistically in the chain and being detached from the bound-
ary spin. The ballistic propagation of the cloud before its
first reflection at the other end of the lattice may heuristi-
cally be understood from a quasiparticle picture analogous
to that of the cut-and-glue scenario. More intriguing is the
long-time recurrent dynamics of the detached cloud. While
still ballistic, the cloud now contracts (expands) as it moves
away from (towards) the boundary spin. To substantiate this
striking behavior we run an independent check by defin-
ing a boundary-entanglement entropy and show, again using
tDMRG, that its space-time pattern is in agreement with the
results extracted from the negativity measure.

The layout of the paper is as follows: In Sec. II, we in-
troduce the model and define an entanglement cloud, using
negativity as entanglement measure. In Sec. III, we describe
a local quench in a Heisenberg Hamiltonian which results in
a complex entanglement structure in the system. Through a
comprehensive analysis of spatial and temporal behavior of
entanglement negativity, we provide a heuristic picture of a
ballistically traveling entanglement cloud which moves along
the chain and gets reflected after hitting the boundaries. In
Sec. IV, the block entanglement entropy is studied and the
contribution of the boundary spin to the entropy is analyzed.
Finally we conclude with a summary in Sec. V in which we
also provide an outlook for further studies.

II. MODEL AND ENTANGLEMENT LENGTH

We consider an antiferromagnetic spin-1/2 Heisen-
berg chain with open boundary conditions, and write its
Hamiltonian as

N-1
HU) =TS -S3+ > 8-S, (1)
1=2
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L

FIG. 1. (a) Evaluation of the entanglement length &: L spins
in the region A are traced out and the entanglement between the
boundary spin and region B, as measured by the negativity E| g, is
evaluated. (b) E p decreases exponentially with L for the uniform
chain with J'= 1. In the presence of a bond defect, here with magni-
tudes J'= 0.1, 0.3, 0.5, 0.7, the decay of E, 3 is slower, still roughly
exponential but with a smaller decay constant. In all cases & can be
extracted by setting a threshold, here chosen as 10~2. The system size
is taken to be N = 50.

where N is the length of the chain and where S; = a;/2 are
spin-1/2 operators acting on site [, with o; = (o}, 0, 07)
the vector of Pauli matrices. We have here singled out the
coupling J' >0 between the leftmost boundary spin and its
nearest neighbor—to be used as a quench parameter—with
the rest of the chain supporting a nearest-neighbor coupling
of unit magnitude.

For any given quantum state |W), we define an entangle-
ment length £ as the number of spins that are significantly
entangled with the boundary spin. To evaluate & we first
divide the chain into three regions, shown in Fig. 1(a), such
that the boundary spin is the leftmost spin at site £ = 1, and
where regions A and B are made up of L and the remaining
N —L—1 spins, respectively. For the purpose of computing
the entanglement between the boundary spin and region B,
we define the reduced density matrix p; p = Tra|W)(¥| by
tracing out the spins in region A. As entanglement quantifier
we use negativity [66,67], defined by

Eg=)_lal -1, 0))

where a; are the eigenvalues of the partially transposed den-
sity matrix pITBB. In Fig. 1(b) we display E| g in a semilog
plot, computed by DMRG for a few different values of J’,
for the case that |¥) is the normalized ground state of the
corresponding Hamiltonian in Eq. (1) with N = 50. As seen
in the figure, the entanglement for the uniform chain (J'=1)
shows an exponential decay as L increases, with the decay
in the presence of a bond defect (J' < 1) still being roughly
exponential but with a smaller decay constant.
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By setting an entanglement threshold, we can identify the
entanglement length L = & beyond which the entanglement
between the boundary spin and region B is below the chosen
threshold value. This implies that the boundary spin is nearly
maximally entangled with region A of size L = £. In Fig. 1(b)
we have marked 1072 as threshold value and this is also the
value we use throughout this paper. As we show below, the
choice of threshold 1072 is sufficiently small not to signifi-
cantly impact our results. The DMRG results are obtained for
chains of length N = 50, implying a truncation error ~10~".

III. BOUNDARY QUENCH
DYNAMICS: NEGATIVITY PROBE

We now prepare the system in the normalized ground
state |Wp) of the uniform Heisenberg chain, i.e., with J'= 1
in eq. (1). In this state the boundary spin (i.e., site /=1)
is most entangled with its nearest neighbor [69,70] and the
entanglement length £ is small; cf. Fig. 1(b). At time ¢ =
0 the coupling to the boundary spin is suddenly quenched
to J/< 1 and the system starts to evolve as |¥(t)) =
e MU, (J'=1)), with H(J') the quenched Hamiltonian
in Eq. (1). We use a small value of J’ such that the ground
state |Wo(J')) of H(J') supports a large entanglement length,
comparable with the system size N. The overlap, call it F,
between the quenched state |W(¢)) and the ground state of the
quenched Hamiltonian |W((J’)) is time independent, and, by
unitarity, is given by

(Wo(J) W () ?
(Wo(I)le VY 1wy =1))|?
(Wo(J)[Wo(J'=1))%. 3)

F =

Since the quench is local and only affects the coupling
between two single spins, F approaches unity for sufficiently
large N. Unlike F, the entanglement length &(¢) defined as
above, and computed for the state |W(¢)), is time dependent
and may grow to large values.

To map out £(¢), we compute the negativity E; p(L,t)
between the boundary spin and region B at different instants
of time ¢, with B separated from the boundary spin by a
distance L. While E; p decreases roughly exponentially with
L in the ground state |W((J')), see Fig. 1(b), a distinct behav-
ior emerges in the nonequilibrium postquench states |W(z)).
As an illustration, in Fig. 2(a) we plot E; g as a function
of L at two different times t = 8 and ¢t = 16 with J' = 0.1.
The semilog plot exhibits two different regions for each of
the two times: In the first region, characterized by a weakly
tilted plateau in the figure, E| p decays very slowly with an
increase of L up to L = Ly(¢). This implies that the boundary
spin is weakly entangled with the spins in the region with
L < Ly(t). In the second region, L > Ly(t), E| p exhibits a
fast decay, similar to that in the ground state, and most of the
entanglement of the boundary spin is with the spins in this
region. Given this observation, one may think of the spins in
the second region as forming a cloud of strong entanglement
with the boundary spin. Although the two distinct regions are
clearly noticed from Fig. 2(a), they are not sharply separated.
To find the value of Ly(¢) that separates the two regions,

FIG. 2. (a) Entanglement E, 5 as a function of L for N = 50 at
two instants of time after a quenchJ'=1— J'=0.1l atr =0. E;
decreases very slowly up to L = Ly, then starts decreasing faster. The
vertical line separates the two regions. (b) The difference 8E, 5 as a
function of L is used to extract Lj. (c) Schematic snapshot of the
system after the quench.

the difference
O0E p(L) = E p(L) — E p(L — 1) 4)

is evaluated for each instant of time. Then Ly(¢) is defined
as the value of L at which §E; p is at a minimum, as shown
in Fig. 2(b).

Since the transition between the two regions is gradual,
sometimes it is difficult to extract a precise value of Ly as
the minimum of 6E; p extends over a few neighboring sites.
Nonetheless, we expect that in such a case the maximum
sharpens into a peak as the system size is increased, and the
estimate of Ly(#) becomes more precise. For any given instant
t, the entanglement length £(¢) is found by computing the
length L at which E; (L, t) reaches the chosen entanglement
threshold 10~2. The instantaneous range of the entanglement
cloud, call it r(z), is then given by r(t) = &(t) — Lo(?); cf.
Fig. 2(c). Referring to Fig. 2(a), note that the choice of the
entanglement threshold does not matter much since it inter-
sects with the curve of E} p at L > Ly, where the entanglement
decays exponentially by a further increase of L.

Figures 3(a) and 3(b), respectively, display the behavior of
Ly(?) (cloud distance from the boundary spin) and r(¢) (cloud
range). It is seen that Ly(¢) oscillates with time which implies
that the entanglement cloud is traveling back and forth in the
chain. Interestingly, r(¢) remains almost constant initially (up
to small fluctuations) until the entanglement cloud approaches
the other end of the chain when it tapers off to eventually cover
only a few sites at a time ¢ ~ 30. In other words, the leftmost
boundary spin now effectively gets entangled only with the
last few spins close to the right endpoint. At this instant, the
extent of the plateau reaches its largest value, Ly ~ N — 1, cf.
the first peak of Ly in Fig. 3(a). After that, Ly(z) decreases
while r(¢) increases, indicating that the cloud expands as
it moves back towards the boundary spin after having been
reflected at the right endpoint of the chain. Eventually, at its
maximal extension, the cloud hits the boundary spin at site
[=1 at a time t &~ 65, gets reflected, and shrinks again. The
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FIG. 3. (a) Time evolution of the distance L, between boundary
spin and entanglement cloud. (b) Range r of the entanglement cloud
after a quench J'=1—J" =0.1 at t =0 for a chain of length
N = 50. (¢) Schematic snapshots of the time-evolved entanglement
cloud after the quench.

cycle of propagation and reflection of the entanglement cloud
then repeats, with the maximal size of the cloud growing
slowly with each revival; cf. Fig. 3(b). The amount of entan-
glement between the boundary spin and the cloud, read off
at the endpoint of a plateau as in Fig. 2(a), varies with time.
During the first cycle, it varies between 0.99 (given the entan-
glement threshold of 0.01) and 0.6 & 0.05. For later cycles,
the uncertainties in the numerical values of Ly(¢) (that locates
the instantaneous endpoint of a plateau), become somewhat
larger, implying a slightly less precise estimate of the lower
bound 0.6 £ 0.05. The values of Ly(¢) during the first cycle
is estimated up to +1 site, while for later cycles the error
becomes +£3 sites. The late-time larger uncertainties in Ly ()
are expected to be due to small instabilities that build up with
time in this type of tDMRG computation, showing up also in
the scatter plots for Ly(¢) and r(¢) in Fig. 3.

The magnitude of the slope of the red Ly graph, Fig. 3(a),
is constant throughout the cycles and show that the speed of
propagation of the entanglement cloud is ballistic. Its value
~1.51 (in units where the lattice spacing is fixed to unity
and with & = 1), is close to the Lieb-Robinson bound [71],
equal to 7 /2 when applied to a spin-1/2 antiferromagnetic
Heisenberg chain with unit bulk coupling [72,73]. In Fig. 3(c)
we have schematically illustrated a few snapshots of the first
cloud cycle.

The initial formation and propagation of the entanglement
cloud invites an interpretation somewhat similar to that of the

quasiparticle picture drawn from the cut-and-glue scenario
[51]: The boundary spin gets entangled with a propagating
quasiparticle induced by the local quench, here tentatively
taken as a wave packet built out of the spinons in the ex-
citation spectrum of the Heisenberg chain [74]. The width
of the wave packet may be envisaged to roughly correlate
with the range of the propagating entanglement cloud, being
approximately constant right after the quench; cf. Fig. 3(b).
As the quasiparticle moves away from the bond defect it leaks
some entanglement into its surrounding, leaving behind a
dilute trail of entanglement with the boundary spin—signaled
by the weak tilt of the plateau; cf. Fig. 2(a). Different from
generic applications of the cut-and-glue protocol, the initial
prequench ground state has a lower energy (E}’,:1 = —22.0)
than the ground state of the quenched Hamiltonian (E0_, , =
—21.5) (with numbers obtained from DMRG with N = 50).
It follows that the conjectured quasiparticle should not be
thought of as an excitation drawn from a pre-existing energy
reservoir; instead its energy is supplied by the quench and
thus lives on top of the prequench ground state. Moreover,
the nonconservation of momentum in the quench process is
also different from the standard cut-and-glue scenario [51] as
the quench in our case takes place in the presence of open
boundaries. Since spinons are produced in pairs [74], our
conjectured quasiparticle picture presupposes that half of the
spinons get trapped at the bond of the local quench, effectively
manifested as an excitation of the boundary spin. Let us stress
that a confirmation of our conjecture must await further ad-
vances in theory; there are as yet no exact or rigorous results
on spinon states bound to an open boundary with a defect.

While only provisory in character, the scenario just out-
lined checks with the propagation speed of the entanglement
cloud, being close to the Lieb-Robinson bound as set by the
maximal spinon velocity v = /2 in a spin-1/2 Heisenberg
chain [72]. It is also worth emphasizing that as a result of
the nonequilibrium dynamics, the quantum state of the system
becomes very complex. In such complex state, entanglement
between the boundary spin and the bulk becomes multipar-
tite, which may not be reflected in entanglement between the
boundary and other individual spins in the bulk. In particular,
the bipartite entanglement between the boundary spin and all
other spins is found to be short-ranged and does not capture
the cloud.

Finally, we would like to mention that one may think of
considering the mutual information as a probe of the correla-
tions as it quantifies both classical and quantum correlations,
in contrast to the negativity which only captures quantum
correlations. However, we found that using the mutual in-
formation to define a highly correlated cloud gave the same
physical picture of a ballistically moving cloud. It would be
interesting to classify the correlations into classical and quan-
tum [75,76], however, such analysis can be NP-hard [77,78]
and beyond the scope of the current work.

IV. BOUNDARY QUENCH
DYNAMICS: ENTANGLEMENT ENTROPY

The revival dynamics of the entanglement cloud—with
repeating cycles of reflection, expansion, and contraction, cf.
Fig. 3(c)—is difficult to conceptualize already at a heuristic
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FIG. 4. (a) Schematic figure of the block used to compute the
entanglement entropy S, (¢). (b) The entanglement entropy S,(¢) be-
fore (blue) and at time t =4 after (red) the quench /=1 — J'=0.1
at t=0 for a chain of length N=50. Uniform [oscillating] parts
are represented by solid [dashed] lines. (c) Time evolution of the
boundary spin contribution S, after the quench.

level. Independent results are therefore critical so as to support
and complement the picture drawn from the negativity probe.
For this reason we have performed an independent numerical
analysis, looking for imprints of the entanglement cloud on
the block entanglement entropy.

To study this, we construct the reduced density matrix
ox(t) = T, |W(r))(W(r)] of a block of length x [including
the boundary spin, / = 1, cf. Fig. 4(a)], tracing out all spins
outside the block as indicated by x, and with |W(¢)) being
the postquench state at time ¢. The von Neumann entropy
Sy(t) = —Trlpx(t)log, px(¢)] quantifies the instantaneous en-
tanglement between the block and the rest of the system [79].
With the block starting at one end of the chain, the bound-
ary is known to cause an additional oscillating term in the
entanglement entropy that decays with the distance from the
boundary [19,80], in our case—off equilibrium—depicted by
the dashed lines in Fig. 4(b). The uniform part of the entan-
glement entropy, call it Sy ;/, can be extracted numerically by
the same procedure as for the ground state [19], with the result
represented by the solid lines in Fig. 4(b).

The contribution to the uniform entanglement entropy from
the boundary spin in the presence of the bond defect intro-
duced by the quench at time =0 can be defined as

Sbs = SX,U(I) - Sx,U(Of), > O, (5)

where S, y(0-) [Sy.p(¢)] is the uniform part of the block en-
tropy before (after) the quench. Pictorially, S, represents the
difference between the two solid lines in Fig. 4(b).

Again using tDMRG on a chain of length N =50, now
for computing Sj;, we obtain the data displayed in Fig. 4(c).
To understand the oscillations of S, with time as seen in
the figure, let us focus on a block of length x = 25, i.e., the
postquench entanglement entropy of the first half of the chain
including the boundary spin. Initially, right after the quench,
Sps 1s small, consistent with the expected short range r of
the entanglement cloud, as seen from the negativity probe in
Fig. 3(b). Around time t =~ 20, Sp; exhibits a rapid increase.
This can be understood from Fig. 3(a): around the same time,

t ~ 20, the entanglement cloud crosses the block boundary
(Lo &~ 25) after which the boundary spin quickly becomes en-
tangled with spins outside the block. Going back to Fig. 4(c),
when 1 ~ 48, Sj, is seen to suffer a fast drop. This is also in
agreement with Figs. 3(a) and 3(b) which show that around
this time the entanglement cloud again crosses the block
boundary but in the opposite direction, having been reflected
at the other end of the chain. As a result, the boundary spin
gets entangled primarily with spins within the block, causing
the fast drop of Sj;. By similarly following the oscillations in
Fig. 4(c) for later times and for any choice of block length x,
one finds a good match with the negativity results in Figs. 3(a)
and 3(b).

V. SUMMARY AND OUTLOOK

Summing up our results: Through a comprehensive spatial-
temporal characterization of entanglement, we have shown
that in a spin-1/2 antiferromagnetic Heisenberg chain, a local
quantum quench that weakens a single boundary bond pro-
duces a ballistic entanglement cloud comprised of spins in the
bulk that are highly entangled with the spin at the boundary.
After the rapid formation of the cloud right after the quench,
it contracts when approaching the other end of the chain,
then gets reflected and expands as it moves back towards the
boundary spin and again gets reflected. This cycle repeats,
with a small increase of the maximal size of the cloud with
each cycle.

In parallel with searching for an explanation of the in-
triguing cloud revivals, it should be interesting to investigate
analogies with nonequilibrium Kondo physics [81-99]. As
is well known, in equilibrium and at low temperatures, a
localized impurity in a fermionic host gets entangled with, and
thereby screened by, the spins of the fermions [19,100,101].
At zero temperature the entanglement becomes maximal,
leading to perfect screening of the impurity spin [102]. The
buildup of the screening cloud after a local quench has been
studied for a special value of the impurity coupling that al-
lows for a free-particle representation (Toulose limit) [88].
A complementary approach is suggested by our work, using
that a spin-chain version of the Kondo model can be obtained
by adding a fine-tuned next-nearest-neighbor coupling to the
Hamiltonian in Eq. (1) [19,20,22,103,104]. A negativity probe
of this model after a boundary quench may yield information
not only about the buildup of the screening cloud, but also
about its revival dynamics when confined to a finite geometry.

Another line of future exploration is to find practical ap-
plications for the oscillating entanglement cloud. The bond
quench indeed results in entanglement distribution between
the boundary spin at the quenched side and a few spins on
the other side of the chain. This long-distance entanglement
becomes very pronounced when the cloud shrinks to the op-
posite site of the quenched bond, see the panel II in Fig. 3(c).
Generating such long-distance entanglement has been very
appealing [27,105-109]. For instance, such entanglement
can potentially be used for quantum teleportation [1] and
entanglement distillation [79].
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