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Matter-wave interferometry is susceptible to noninertial noise sources, which can induce dephasing and
a resulting loss of interferometric visibility. Here, we focus on inertial torsion noise (ITN), which arises
from the rotational motion of the experimental apparatus suspended by a thin wire and subject to random
external torques. We provide analytical expressions for the ITN noise starting from generalized Langevin
equations describing the experimental box, which can then be used together with the transfer function to
obtain the dephasing factor. We verify the theoretical modeling and the validity of the approximations using
Monte Carlo simulations, obtaining good agreement between theory and numerics. As an application, we
estimate the size of the effects for the next generation of interferometry experiments with femtogram
particles, which could be used as the building block for entanglement-based tests of the quantum nature of
gravity. We find that the ambient gas is a weak source of ITN, posing mild restrictions on the ambient
pressure and temperature. We discuss the general ITN constraints by assuming a Langevin equation
parametrized by three phenomenological parameters.
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I. INTRODUCTION

Matter-wave interferometry has many salient applica-
tions for gravitational physics with devices spanning
gravimeters [1], gradiometers [2,3], accelerometers [4],
and gyroscopes [5]. They can also be used for fundamental
physics, such as testing the equivalence principle [6–8] and
the quantum gravity induced entangled of masses (QGEM)
to test the quantum nature of gravity in a lab [9,10]; see also
[11–14]. The paper [14] provided the protocol to test the
spin-2 nature of the graviton in an analogue of the light-
bending experiment; see also [13]. One can also probe the
nature of massive gravitons [15] and nonlocal gravitational
interactions [16] motivated by string theory. Furthermore,
some groups even considered building gravitational-wave
observatories based on matter-wave interferometry, such
as the matter-wave laser interferometer gravitation antenna
[17,18], the matter-wave atomic gradiometer interferomet-
ric sensor [19,20], and the mesoscopic interference for
metric and curvature scheme [21].
Future matter-wave interferometry aims to exploit the

regime of large masses, large superposition sizes, and long
coherence times, allowing for probes of exquisitely small

experimental signals. For example, the QGEM experiment
would ideally require a test mass of ∼10−15 kg, a super-
position size of ∼100 μm, and a coherence time of ∼1 s
[8,9,22–24]. One of the most promising setups towards this
kind of experiments is the adaptation of the Stern-Gerlach
interferometer (SGI) to nanoparticles [25]. SGIs based on
atom chips [26] have already achieved a superposition size
and coherence time of 3.93 μm and 21.45 ms for the
half-loop configuration, respectively [26], and 0.38 μm and
7 ms for the full-loop configuration, respectively [27]. The
next generation of SGIs is currently under theoretical and
numerical investigation [28–32].
An essential challenge of matter-wave interferometry is

to tame the numerous noise sources, which can cause
random phase fluctuations, resulting in dephasing and the
loss of interferometric visibility. Vibrations of the exper-
imental apparatus can result in residual acceleration noise
[33,34], external sources of gravity can induce gradient
noise [18,20,34,35], and charged or dipolar environmental
particles can induce several electromagnetic channels of
dephasing [36,37], besides gravitational decoherence [38]
of the QGEM.
This paper studies the dephasing caused by the residual

rotational or inertial torsion noise (ITN) for an asymmetric
nanoparticle matter-wave interferometer, which is sensitive
to gravity gradients [21,34,35]. ITN arises naturally in any
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setup whenever the experimental apparatus is subject to
random torques, placing it in noninertial rotational motion.
As we will see, ITN can induce relative random phases in
an interferometric experiment, resulting in a loss of inter-
ferometric contrast. Here, we are primarily interested in
understanding ITN and focus on a simple single-stage
suspension forming a torsion pendulum, i.e., matter-wave
interferometry performed inside a hanging box. Analogous
configurations of the experimental apparatus were inves-
tigated previously in gravitational-wave observatories like
LIGO [39] and Virgo [40]. More advanced setups could
employ additional structures like the inverted pendulum
[41] and the Roberts linkage [42].
In Sec. II, we first introduce the concept of ITN,

illustrating it for matter-wave interferometry that can be
modeled using qubits. In Sec. III, we generalize the analysis
using linear response theory, providing the transfer function
and its relation to the dephasing factor. In Sec. IV, we
investigate ITN caused by ambient gas collisions on the
experimental box starting from a generalized classical
Langevin equation. We compute the power spectrum density
(PSD) of the ITN using the convolution theorem and verify
the validity of the approximations using Monte Carlo simu-
lations. In Sec. V, we obtain the resulting constraints on the
ambient pressure and temperature and general constraints
on ITN by parametrizing a generic Langevin equation
modeling the experimental box with three phenomenological

parameters in the dynamical equation of the experimental
box. In Sec. VI, we concludewith a summary of the obtained
results. In Appendix A, we construct the ITN Lagrangian
starting from Fermi normal coordinates and transforming to
a rotating reference frame. In Appendix B, we provide for
completeness the complete derivation of the ITN PSD using
complex analysis. In Appendix C, we analyze the ITN
caused by ambient thermal gas collisions.

II. CONCEPT OF INERTIAL TORSION
NOISE AND DEPHASING

Suppose the interferometer is set up in a suspended
experimental apparatus, as shown in Fig. 1(a). A natural
reference frame is the comoving frame of the experimental
apparatus. For instance, consider a Stern-Gerlach interfer-
ometer controlled by a static magnetic field Bðx; y; zÞ,
which holds for the comoving frame of the experimental
apparatus. If the SGI is studied under another reference
frame that moves relative to the comoving reference, then
the Lorentzian transformation of the magnetic field BðtÞ
has to be taken into account, and even the induced electric
field also needs to be studied. The comoving reference
frame of the experimental apparatus is thus preferred as it
simplifies the analysis.
However, the experimental apparatus itself can also be

shaken by various environmental disturbances, such as

(a) (b)

FIG. 1. (a) Experimental scheme and illustration of ITN. The matter-wave particle (filled circles) is placed inside the experimental box
(square box), which is suspended by a thin wire (vertical bold line). The box can rotate around the z axis, while the interferometric
protocol is performed along the horizontal x axis. ITN generates random torques on the experimental box (square box), placing it in
noninertial rotational motion. The random noninertial rotational motion induces random relative phases, which can lead to dephasing
and the loss of interferometric contrast. (b) The structure of a Stern-Gerlach interferometer with spin-1 [25]. The left path keeps the same
position, while the right path accelerates and decelerates at a constant rate, resulting in a superposition size Δx. Such motion is achieved
using a constant magnetic field gradient, i.e., BðxÞ ¼ B0 þ ηx, where the gradient η is positive during 0 ∼ ta and 3ta þ te ∼ 4ta þ te, while
it is negative during ta ∼ 2ta and 2ta þ te ∼ 3ta þ te. During the intermediate free flight of duration te, the magnetic field is uniform and
the right path does not accelerate. Such an asymmetrically shaped interferometer can be used to detect gravity gradients [21,34,35].
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vibrations of mechanical supports and jitter caused by
collisions of air molecules. These vibrations of the exper-
imental apparatus are applied to the interferometer as non-
inertial forces, resulting in acceleration and rotation noises,
affecting the interferometer’s final phase, i.e., residual
acceleration noise [34,35] and inertial rotation noise,
which we investigate in this paper. Such noises can induce
dephasing, which can be mitigated only by carefully
controlling the experimental setup and its environment.
In this paper, we focus on the Stern-Gerlach inter-

ferometer with the configuration shown in Fig. 1(b), which
can be achieved by a system with a spin-1 state and spin-0
state (embedded in an object) in a magnetic field with a
constant gradient; see [21]. In particular, the system is
prepared in a spin superposition of jS ¼ 0i and jS ¼ 1i,
say, jψi ¼ 1=

ffiffiffi
2

p ðjS ¼ 0i þ jS ¼ 1iÞ. At the same time,
the external magnetic field has a linear spatial distribution
on the x axis, i.e., BðxÞ ¼ B0 þ ηx, where the magnetic
gradient η will flip several times to accelerate and decel-
erate the state jS ¼ 1i.
Therefore, the acceleration of the jS ¼ 1i state is a

constant am ¼ gμBη during 0 ∼ ta and 3ta þ te ∼ 4ta þ te,
and am ¼ −gμBη during ta ∼ 2ta and 2ta þ te ∼ 3ta þ te,
where g ¼ 2 is the Lande factor and μB ¼ 9.27 ×
10−24 J=T is the Bohr magneton.
In an ideal experiment (without any dephasing and

decoherence), the final state of the system is

jψi ¼ 1ffiffiffi
2

p eiϕglobalðjS ¼ 0; Li þ eiϕdiff jS ¼ 1; RiÞ; ð1Þ

where ϕglobal is the global phase of the quantum state and
ϕdiff is the differential phase between two paths denoted as
“L” and “R.” The global phase does not have observable
effects, while the differential phase ϕdiff usually encodes
the signal we want to extract. For example, ϕdiff is related to
the gravitation acceleration g for a gravimeter [43]. Another
example is the QGEM experiment, which encodes infor-
mation about the nature of gravity.
However, some classical noises like residual acceleration

noise and ITN always exist. They will contribute some
random phase δϕ on ϕdiff . Although eiδϕ itself is a pure
phase, the ensemble average of such a random phase can
lead to a damping factor, known as a dephasing effect. For
convenience, δϕ is supposed to follow a Gaussian distri-
bution with a mean value of zero and a variance of
Γ≡ E½ðδϕÞ2�=2, and then the expectation value of the
phase can be computed as

E½eiδϕ� ¼ e−E½ðδϕÞ2� ≡ e−Γ; ð2Þ

where E½·� is the ensemble average of random variables.
Note that for a more general probability distribution of δϕ,
one can also define a similar Γ to describe the dephasing
effect [44]. Such a decay factor e−Γ will cause the loss of

visibility of the interferometer. In particular, consider the
ensemble average of the density matrix ρ̂ ¼ jψihψ j:

E½ρ̂� ¼ 1

2
ðjLihLj þ jRihRj þ E½eiδϕ�e2iϕdiff jRihLj

þ E½e−iδϕ�e−2iϕdiff jLihRjÞ: ð3Þ

The off-diagonal terms decay exponentially with the
damping given by the variance Γ. Consequently, the
expectation value TrðŴ ρ̂Þ of any witness operator Ŵ will
also decay with respect to the factor e−Γ.
For example, one can consider two applications of

matter-wave interferometers for gravity experiments.
(1) The first application is the gravimeter based on a

Nitrogen-vacancy center [43,45]. The gravitational
acceleration g is proportional to the differential
phase as ϕdiff ¼ 16πmgΔz=ðℏω0Þ, where Δz is
the superposition size along the z axis and ω0 ∼
100 kHz is the trapping frequency. Then, the phase
fluctuation can cause a sensitivity loss on the
measurement result of g, and one can obtain a con-
straint for Γ by the variance σg of δg as

ffiffiffi
Γ

p ¼
16πmσgΔz=ðℏω0Þ, as long as δϕdiff and δg follow
Gaussian distributions. Choosing the values as m ∼
10−16 kg and Δz ∼ 10−8 m [46], one may obtain a
threshold as

ffiffiffi
Γ

p
< σg10

7 s2=m. A common perfor-
mance of gravimeters is σg ¼ 10−9 ∼ 10−10g [46],
and one can choose the threshold of Γ as 10−6.

(2) Another example is the QGEM experiment [34,37],
which uses two interferometers coupled by gravity
to investigate gravity-induced quantum entangle-
ment. The witness Ŵ is proposed as the positive
partial transpose witness, which, in the case of
two qubits, provides a sufficient and necessary
condition for entanglement based on the Peres-
Horodecki criterion [47–49], which requires that
the expectation value of the witness satisfies
hŴi < 0. As calculated in [37], the expectation
value of the witness under the dephasing effect is
hŴi ¼ ð1 − e−2ΓÞ=4 − e−Γ=2 sinϕg, and then the
constraint on Γ is that Γ=2 < e−Γ=2 sinϕg ≈ ϕg.
The value of ϕg was estimated as ϕg ≈ 0.015
[34,50], and we choose a threshold Γ ¼ 0.01 for
further discussions on the values of parameters in
this paper.

Dephasing, together with all other types of decoherence,
can be also characterized by computing the purity:

TrðE½ρ̂�2Þ ¼ 1

2
ð1þ e−2ΓÞ ≈ 1 − Γ: ð4Þ

Note that the dephasing comes from the ensemble average
of the density matrix. In particular, Trðρ̂2Þ without the
ensemble average still equals 1. We refer to Γ as the
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dephasing factor in the following text. In the next section,
we analyze the dephasing factor Γ caused by the ITN.

III. DEPHASING AS LINEAR RESPONSE
TO INERTIAL TORSION NOISE

As is derived in Appendix A, the Lagrangian of the
inertial torsion noise is given by

LITN ¼ 1

2
mΘ̇2x2; ð5Þ

where m and x are the interferometer’s mass and position
and ΘðtÞ is the torsion angle of the suspended apparatus,
i.e., the angle between the apparatus reference frame and
the inertial reference frame.
The angle ΘðtÞ is assumed to be a stochastic Gaussian

process, satisfying the following two properties:

E½ΘðtÞ� ¼ 0;

E½Θðt1ÞΘðt2Þ� ¼
Z

SΘΘðωÞe−iωðt2−t1Þdω; ð6Þ

where SΘΘðωÞ is the power spectrum density of ΘðtÞ and
the second identity is known as the Wiener-Khinchin
theorem. The PSD of Θ can be measured in the experiment.
In this paper, we consider a specific source of fluctuation
of Θ (e.g., the collision by gas molecules, which will be
discussed in the next section).
As is proved in [51,52], the phase fluctuations due to

noises are determined by the path integral of the corre-
sponding Lagrangian of the noise along the unperturbed
classical trajectories. Thus, the phase fluctuation is

δϕ ¼ 1

ℏ

Z
LITN½xRðtÞ� − LITN½xLðtÞ�dt

¼ m
2ℏ

Z
Θ̇2ðtÞ�x2RðtÞ − x2LðtÞ

�
dt; ð7Þ

where xRðtÞ and xLðtÞ are the trajectories of the interfer-
ometer’s two arms. Assuming the expectation value of δϕ
vanishes, the variance Γ≡ E½ðδϕÞ2� of the random phase
can be regarded as the linear response of the interferometer
to the torsion noise [34]:

Γ ¼ m2

4ℏ2

Z
SΘ̇2Θ̇2ðωÞFðωÞdω; ð8Þ

where SΘ̇2Θ̇2ðωÞ is the PSD of the ITN. According to
the Wiener-Khinchin theorem, the PSD is the Fourier
transform of the autocorrelation function of the torsion
noise,

SΘ̇2Θ̇2ðωÞ ¼
Z

E½Θ̇2ðt0ÞΘ̇2ðt0 þ τÞ�eiωτdτ: ð9Þ

Note that SΘ̇2Θ̇2ðωÞ has units Hz4=Hz, where Hz4 comes
from the square of Θ̇2 and the denominator Hz describes the
density of frequency space. The FðωÞ in Eq. (8) has units
m4 s2 and is given by

FðωÞ ¼
����
Z

ðx2RðtÞ − x2LðtÞÞeiωtdt
����2: ð10Þ

Equation (8) describes the input-output relation of the
interferometer and only depends on the trajectories of
the two arms, so it can be called the transfer function
of the interferometer [35]. For the interferometer in
Fig. 1(b), the left arm is static, xLðtÞ≡ 0, and the right
arm xRðtÞ is described by a piecewise function consisting of
several quadratic functions of t because the acceleration is
�am for the different time range. Then, the transfer func-
tion can be computed as

FðωÞ ¼ 16
a4m
ω10

�
6ωta cos

�
ω

�
ta þ

te
2

��

þ ðω2t2a þ 3Þ sinωte
2

− 3 sin

�
ω

�
2ta þ

te
2

��

− ω2t2a sin

�
ω

�
ta þ

te
2

��	
2

: ð11Þ

Figure 2 shows the transfer function with the para-
meters chosen as ta ¼ 0.25 s, te ¼ 0 s, and am ¼
1.8 × 10−4 m=s2, where am ¼ gμBη=m0 with the magnetic
field gradient η ¼ 104 T=m and the mass of the interfer-
ometer m0 ¼ 10−15 kg.
As is shown in Fig. 2, FðωÞ tends to a constant C ∼

ðΔxÞ4T2 ∼ 10−20 m4 s2 in the low-frequency limit, where
Δx ¼ amt2a ¼ 11.2 μm and T ¼ 4ta þ te are the super-
position size and total experiment time. Because the factor
eiωt → 1 in the low-frequency limit ω → 0 and the super-
position size Δx is an upper bound for xRðtÞ when
xLðtÞ≡ 0, FðωÞ in (10) can be approximated in the low-
frequency region as

FðωÞ ∼
����
Z

ðΔxÞ2dt
����2 ¼ ðΔxÞ4T2: ð12Þ

In the high-frequency limit, FðωÞ decreases as ω−6. In
particular, the trajectory xRðtÞ can be generally expanded as
a Taylor series of t with the leading order xRðtÞ ∼ t, so
x2RðtÞ ∼ t2; then, the leading order of FðωÞ can be estimated
according to (10) as

FðωÞ ∼
����
Z

t2eiωtdt

����2 ∼ ðω−3Þ2 ¼ ω−6: ð13Þ

Combining the low-frequency and high-frequency
behaviors of FðωÞ, one can use the Heaviside step function
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θð·Þ to approximately describe FðωÞ as

FðωÞ ≈ ðΔxÞ4T2

�
θ

�
2π

T
− ω

�
þ
�
2π

Tω

�
6

θ

�
ω −

2π

T

��
:

ð14Þ

IV. POWER SPECTRUM DENSITY
OF INERTIAL TORSION NOISE

In this section, we analyze the inertial torsion noise
caused by the thermal motion of gas molecules surrounding
the experimental box.
According to the convolution theorem, the PSD of ITN is

the self-convolution of the PSD of the random motion of
the suspended apparatus,

SΘ̇2Θ̇2ðωÞ ¼ SΘ̇ Θ̇ðωÞ � SΘ̇ Θ̇ðωÞ; ð15Þ

where SΘ̇ Θ̇ðωÞ is the PSD of Θ̇. In frequency space, there is
a correspondence that Θ̇ ∼ iωΘ, so the PSD of Θ̇ðtÞ is

SΘ̇ Θ̇ðωÞ ¼ ω2SΘΘðωÞ: ð16Þ

As is shown in Fig. 1(a), the rotational motion of the
experimental box can be modeled as a torsion pendulum,
which follows a generalized Langevin equation

Θ̈ ¼ −Ω2
rotΘ − γΘ̇þ

ffiffiffiffi
A

p
ΘinðtÞ: ð17Þ

The input random noise termΘinðtÞ is a unit delta-correlated
stationary Gaussian process with zero mean, satisfying
E½ΘinðtÞ� ¼ 0 at any time t, and E½Θinðt1ÞΘinðt2Þ� ¼
δðt1 − t2Þ. The amplitude of the external noise

ffiffiffiffi
A

p 1 and
the dissipation rate γ are determined by the experiment. The
intrinsic torsion frequency is given by [53]

Ωrot ¼
ffiffiffi
κ

I

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
πGd4

32lI

r
; ð18Þ

where I is the moment of inertia of the experiment box and
κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πGd4=32l

p
is the torsion constant. G is the shear

modulus of the material of the suspension wire, and d and l
are the diameter and length of the wire. The size and mass
of the experiment box can be built up as 10−1 ∼ 100 m and
101 ∼ 102 kg, so the moment of inertia I can be estimated
as 100 ∼ 102 kg · m2. The parameters of the suspension
wire are around d ¼ 10−3 ∼ 10−2 m, l ¼ 100 ∼ 101 m, and
G ∼ 1010 Pa, and thus the intrinsic frequency Ωrot of the
torsion pendulum is around 10−2 ∼ 101 Hz.
For example, if the experiment box is built with a size

L ¼ 0.6 m and mass M ¼ 30 kg, then the moment of
inertia is I ¼ ML2=6 ¼ 1.8 kg · m2. If the suspension wire
is set as d ¼ 5 × 10−3 m and l ¼ 5 m, and the shear
modulus is chosen as G ¼ 7.93 × 1010 Pa for steel [54],
then the intrinsic torsion frequency is Ωrot ≈ 0.735 Hz
according to Eq. (18).
Based on the dynamical equation (17) of the experiment

box, the power spectrum for Θ is2

SΘΘðωÞ ¼
A

ðΩ2
rot − ω2Þ2 þ γ2ω2

: ð19Þ

One may do a Monte Carlo simulation of the Langevin
equation given in Eq. (17), shown as the upper figure
of Fig. 3, and calculate the corresponding PSD by fast
Fourier transform (FFT), where a Hanning window is
added to avoid the spectral leakage, shown as the lower

FIG. 2. Transfer function of the interferometer illustrated in
Fig. 1(b) as a function of the frequency f ¼ ω=ð2πÞ. The time
parameters are ta ¼ 0.25 s and te ¼ 0 s. The magnetic field
gradient η is chosen as 104 T=m and the mass of the interfer-
ometer is chosen as 10−15 kg. The resulting acceleration am ¼
1.8 × 10−4 m=s2 produces the maximum superposition size
Δx ¼ amt2a ¼ 11.2 μm. As is shown, the transfer function tends
to a constant C ∼ ðΔxÞ4T2 ∼ 10−20 m4 s2 at low frequencies and
decreases as ω−6 at high frequencies. The approximate transfer
function from Eq. (14) (dashed blue line) captures the behavior of
the transfer function from Eq. (11) (orange line).

1Note that A has units Hz4=Hz. This is because the termffiffiffiffi
A

p
ΘinðtÞ has dimensions ½T−2�, where ΘinðtÞ has dimen-

sions ½T−1=2�.
2Here we used the result SinðωÞ≡ jΘinðωÞj2=T tot ¼ 1,

which can be obtained through the autocorrection condition
E½Θinðt1ÞΘinðt2Þ� ¼ δðt1 − t2Þ and the Wiener-Khinchin theorem
that

jΘinðωÞj2
T tot

¼
Z

E½ΘinðtÞΘinðtþ τÞ�eiωτdτ

¼
Z

δðτÞeiωτdτ ¼ 1:
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figure of Fig. 3. We find that the analytic result (19)
matches well with the numerical result.
Since the PSD of ITN is the self-convolution of SΘ̇ Θ̇ðωÞ

according to Eq. (15), one can compute the PSD of the
ITN driven by the external noise with the PSD given by
Eq. (19) as

SΘ̇2Θ̇2ðωÞ ¼ A2
4ω4 þ 4ðγ2 − 3Ω2

rotÞω2 þ 16Ω4
rot

γðω2 þ γ2Þð4γ2ω2 þ ðω2 − 4Ω2
rotÞ2Þ

: ð20Þ

The detailed mathematical steps are summarized in
Appendix B. Figure 4 shows the analytical result and
numerical simulation of both SΘΘðωÞ and SΘ̇2Θ̇2ðωÞ.
The asymptotic behavior of the PSD of ITN is different

from the SΘΘðωÞ. In the low-frequency limit, SΘ̇2Θ̇2ðωÞ
behaves like 1=ðω2 þ γ2rotÞ and tends to a constant A2=γ. In
the high-frequency region, SΘ̇2Θ̇2ðωÞ decreases as ω−2

according to the analytic result (20).
There is also a peak of the PSD of ITN, of which the

resonance frequency translates from Ωrot to 2Ωrot, which
is a common property for a squared noise.3 In a small-
damping limit γrot ≪ Ωrot, the peak value of SΘ̇2Θ̇2ðωÞ is

SΘ̇2Θ̇2ð2ΩrotÞ ≈
A2

2γ3
: ð21Þ

It is notable that

SΘ̇2Θ̇2ð2Ωrot � γÞ ≈ A2

4γ3
: ð22Þ

So, the frequencies at which the PSD is equal to the half-
peak value are ω ¼ 2Ωrot � γ and the corresponding
FWHM is 2γ. The ratio between the bandwidth and peak
value is known as the quality factor (Q-factor) of the PSD,
which characterizes the sharpness of the peak. Then, the
Q-factor of SΘ̇2Θ̇2ðωÞ is

QITN ¼ 2Ωrot

2γ
¼ Ωrot

γ
; ð23Þ

which is exactly the same as the Q-factor of SΘΘðωÞ.

V. DEPHASING FACTOR AND EXPERIMENTAL
PARAMETER CONSTRAINTS

Based on the result of the transfer function in Eq. (11) or
Eq. (14), and the PSD (20) of the inertial torsion noise, the
dephasing factor Γ can be computed through the integral

FIG. 4. PSD of ITN SΘ̇2Θ̇2ðωÞ and angular motion PSD SΘΘðωÞ.
The parameters are chosen as Ωrot ¼ 2π × 1 Hz, γ ¼ 10−10 Hz,
I ¼ 10 kg · m2, and

ffiffiffiffi
A

p ¼ 10−3 Hz2=
ffiffiffiffiffiffi
Hz

p
. The peak frequency

of SΘ̇2Θ̇2ðωÞ is doubled compared to SΘΘðωÞ, as expected when
computing the square of the noise. The dashed green and purple
lines show that the theoretical expressions in Eqs. (19) and (20) fit
well the simulated PSDs.

FIG. 3. Monte Carlo simulation for the motion of the box.
(a) Simulated time trace of Eq. (C1). (b) The PSD SΘΘðωÞ in the
lower plot is computed by FFT. Theoretically, the PSD is a
Lorentzian distribution, which fits the simulation result well. The
intrinsic frequency Ωrot is chosen as 2π × 1 Hz, the damping rate
γ is chosen as 10−10 Hz, and the noise amplitude

ffiffiffiffi
A

p
is chosen

as 10−3 Hz2=Hz.

3This property can be understood as follows. Since SΘ̇ Θ̇ has a
peak at Ωrot, it can be written as a δ function plus some small
function oðωÞ,

SΘ̇ Θ̇ðωÞ ¼ S0δðω − ΩrotÞ þ oðωÞ;

where S0 is the amplitude of the peak. Then, the self-convolution
of SΘ̇ Θ̇ gives

SΘ̇2Θ̇2ðωÞ ¼ S20

Z
δðω0 − ΩrotÞδðω − ω0 − ΩrotÞdω0 þ o0ðωÞ

¼ S20δðω − 2ΩrotÞ þ o0ðωÞ;

which means that the peak position is located at 2Ωrot. In
Appendix B, we offer another method to understand this property
in the time domain.
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in Eq. (8). Note that the analytic solution to the integral is
very complicated, so we compute it numerically. It is
noteworthy that a resolution of ωmin ¼ 2π=Ttot exists as
a cutoff in frequency space for the numerical calculation.
Physically, this cutoff indicates that a low-frequency signal
or noise will not be measurable by the experiment if the
total experiment time is shorter than a single period of such
signal or noise.
Figure 5 shows the dependence of Γ on the intrinsic

torsion frequencyΩrot of the experimental apparatus, where
the parameters of FðωÞ are chosen as m0 ¼ 10−15 kg,
ta ¼ 0.25 s, and te ¼ 0 s, and the parameters of SΘ̇2Θ̇2ðωÞ
are A ¼ 10−10 Hz4=Hz and γ ¼ 10−10 Hz. As is shown,
there is a resonance between the ITN and the transfer
function near Ωrot ∼ 2π=T tot ¼ 2π × 1 Hz and some har-
monic resonances. Note that, near the resonance peak,
the precision of the numerical calculation is limited because
the value is highly related to the sample points in fre-
quency space.
When Ωrot is much larger than 2π × 100 Hz, Γ becomes

approximately independent of Ωrot. On the other hand,
whenΩrot is much smaller than 2π × 10−1 Hz, the peak will
be below the frequency cutoff ωmin, so the dephasing factor
will be tiny. For an actual experiment, the low intrinsic
frequency limit is expected, so the parameters d, l, G, and I
in (18) have to be carefully designed to ensure that Ωrot is
much smaller than the resonance frequency 2π=T of the
interferometer.

Figure 6 shows the dependence of Γ on the damping
rate γ. As is shown, when the damping rate is very low,
i.e., γ ≪ Ωrot, the dephasing parameter Γ is approximately
proportional to γ−1 due to the γ−1 factor in (20).
However, when γ increases after a critical point γ ∼Ωrot,

the dephasing Γ is approximately γ−3. This is because the
PSD of ITN in the high damping rate limit γ ≫ Ωrot is
approximately

SΘ̇2Θ̇2ðωÞ ≈ A2
4ω4 þ 4γ2rotω

2

γðω2 þ γ2Þðω4 þ 4γ2ω2Þ ∼
A2

γ3
: ð24Þ

Physically, this can be interpreted as an overdamped
oscillator. In particular, the apparatus’ dynamical equation
in Eq. (17) describes a damped oscillator under a randomly
driven force. When the damping rate is larger than a critical
value γ > Ωrot=2, the system decays with no oscillation,
known as overdamped. In the overdamped region, as the
damping rate increases, the system decays to the equilib-
rium faster, so the random force term affects the system
less. Finally, the dephasing parameter Γ decreases as the
damping rate γ increases.
Figure 7 shows the dependence of the dephasing

parameter Γ concerning different damping rates γ and
torsion noise amplitude A, where the parameters are chosen
as ta ¼ 0.25 s, te ¼ 0 s, and Ωrot ¼ 2π × 1 Hz. As is
shown, Γ increases as A increases or γ decreases. As
discussed in Sec. II, the gravimeter and QGEM experi-
ments require an upper bound on Γ of 10−6 and 0.01; then,
A and γ should be chosen in the region on the left side of the
dotted and dashed critical line, respectively, in the figure.

FIG. 5. Dephasing factor Γ as a function of the intrinsic torsion
frequency Ωrot. The parameters are chosen as m0 ¼ 10−15 kg,
η ¼ 104 T=m, ta ¼ 0.25 s, and te ¼ 0 s for the interferometer,
and γ ¼ 10−10 Hz, I ¼ 10 kg · m2, and A ¼ 10−10 Hz4=Hz for
the PSD of ITN. There is a resonance between the ITN and the
transfer function with the first dominant peak at Ωrot ∼ 2π=T tot ∼
2π × 1 Hz, and additional smaller peaks visible in the range up to
10. In the low-frequency and high-frequency limits, the dephas-
ing factor Γ is approximately independent of the intrinsic
frequency Ωrot.

FIG. 6. Relationship between Γ and the damping factor γ for a
fixed amplitude A ¼ 10−10 Hz3. The transfer function is given in
Eq. (11) with parameters ta ¼ 0.25 s and te ¼ 0 s. Three differ-
ent Ωrot are chosen as the low rotation frequency limit, the high
rotation frequency limit, and the resonance frequency condition
Ωrot ∼ 2π=T ¼ 2π Hz. Γ is proportional to γ−1 when γ ≪ Ωrot,
while it decreases at a speed of γ−3 in the overdamped region.
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Figure 8 shows the upper bound of the torsion noise
amplitude A to obtain a dephasing parameter Γ smaller than
0.01, where the parameters are also chosen as ta ¼ 0.25 s
and te ¼ 0 s. Since Γ is proportional to A2, one can also
use Fig. 8 to analyze other thresholds of Γ by multiplying
by a factor of A. For example, one can analyze the case

Γ < 10−6 for gravimeters by multiplying 10−2 to the upper
bound of A.
As is shown, the restriction on the upper bound of A is

very stringent near the resonance region Ωrot ∼ 2π=T tot ¼
2π × 1 Hz and its harmonic resonance Ωrot ∼ 2nπ=T tot
(with n a positive integer). In particular, A has to be
smaller than 10−10 Hz3 for γ ¼ 10−10 Hz, and it has to be
smaller than 10−8Hz3 for γ ¼ 10−2 Hz. On the other hand,
the value of A is less severely constrained outside the
resonance region. For a damping rate larger than 10−4 Hz,
A can be larger than 10−5 Hz3.
In a recent simulation work [55], a relationship between

the torsion noise amplitude A and the superposition size Δx
was obtained as ΔxA ∼ 10−11 m · Hz3. Since the super-
position size discussed in this paper is Δx ¼ amt2a ¼
11.2 μm, the noise amplitude is A ∼ 10−6 Hz3, which is
smaller than the restricted bound Abound ∼ 10−5 Hz3. In
conclusion, as long as the damping rate is designed to be
larger than 10−4 Hz and the intrinsic frequency Ωrot is
designed outside the resonance region, the dephasing
parameter Γ of the interferometer will be smaller than 0.01.

VI. SUMMARY

In this paper, we investigated ITN in the context of
matter-wave interferometry, and some of our highlights and
conclusions are summarized below.
In Sec. II, we explained the physical interpretation of the

ITN and briefly reviewed the dephasing effect of generic
noises on matter-wave interferometers. The key point is
that the ensemble average of a random phase implies a
decay factor E½eiδϕ� ¼ e−Γ on the off-diagonal terms of the
density matrix, where the dephasing parameter is exactly
the variance of the noise Γ ¼ E½ðδϕÞ2�.
In Sec. III, we pointed out that the decay factor Γ can be

regarded as a linear response of the interferometer to the ITN.
In particular, Γ can be formulated as the PSD of the noise
SΘ̇2Θ̇2ðωÞ multiplying a transfer function FðωÞ in frequency
space. Remarkably, FðωÞ only relies on the trajectories of the
two arms of the interferometer and is independent of the
noise. In the rest of Sec. III, some asymptotic features of
FðωÞ were discussed, and the exact and approximate results
for a certain interferometer are shown in Fig. 2.
In Sec. IV, we modeled the torsion noise by a generalized

Langevin equation (17), which implies the PSD SΘΘðωÞ
in (19). Then, the PSD of the ITN SΘ̇2Θ̇2ðωÞ is the self-
convolution of SΘ̇ Θ̇ðωÞ according to the convolution
theorem, where the mathematical details are summarized
in Appendix B. It is remarkable that the peak position
of SΘ̇2Θ̇2ðωÞ is doubled compared to SΘ̇ Θ̇ðωÞ because of
properties of self-convolution, while the Q-factor of
SΘ̇2Θ̇2ðωÞ remains the same as SΘ̇ Θ̇ðωÞ.
In Sec. V, we scanned parameters theoretically and

found the following major features. First, Γ increases
significantly near the resonance region Ωrot ¼ 2nπ=Ttot.

FIG. 7. Dephasing parameter Γ with respect to different damp-
ing rates γ and torsion noise amplitudes A. The transfer function
is given by Eq. (11) with parameters ta ¼ 0.25 s and te ¼ 0 s,
and the intrinsic frequency is chosen as Ωrot ¼ 2π × 1 Hz. Γ is
required to be smaller than some thresholds in different situa-
tions; then, the parameters should be chosen on the left side of the
critical lines in the figure, where the dotted and dashed lines
represent Γ ¼ 10−6 and Γ ¼ 0.01 for gravimeter and QGEM
experiments, respectively.

FIG. 8. Upper bound of the amplitude A assuming the value of
the dephasing to be Γ ¼ 0.01. The transfer function is given by
Eq. (11) with parameters ta ¼ 0.25 s and te ¼ 0 s. Near the
resonance region Ωrot ∼ 2π=T tot ¼ 2π × 1 Hz and its harmonic
resonance Ωrot ∼ 2nπ=T tot (with n a positive integer), the upper
bound of A becomes more constrained. On the other hand, the
requirements on A relax outside the resonance region.
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Next, Γ decreases proportionally to the damping rate γ−1 in
the underdamped region, while it decreases with γ−3 in the
overdamped region. Finally, if Γ is required to be smaller
than 0.01, then the constraints on the parameters A, γ, and
Ωrot are as shown in Fig. 8, and A is tolerant up to 10−5 Hz3

if γ > 10−4 Hz and Ωrot is outside the resonance region.
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APPENDIX A: LAGRANGIAN OF INERTIAL
TORSION NOISE

In this appendix, we derive the Lagrangian in Eq. (5)
that gives rise to ITN. The basic idea is first to construct
the metric in the comoving reference frame of the exper-
imental apparatus (Appendix A 1), and then to compute the
Lagrangian of the test mass in the nonrelativistic limit
(Appendix A 2).

1. Rotating Fermi normal coordinates

To construct the coordinate system near the experiment,
one can choose the worldline of the center of the exper-
imental box as a fiducial time-like curve in the spacetime

manifold. Based on this worldline, one can construct the
Fermi normal coordinates of the spacetime using the
method of the Fermi-Walker transport. Under these coor-
dinates, the metric can be generally written as [56]

ds2 ¼ −
��

1þ abx0b
c2

�
2

þ R0c0dx0cx0d
	
c2dt02

−
2

3
R0cbdx0cx0dcdt0dxb

þ
�
δbc −

1

3
Rbdcex0dx0e

�
dx0bdx0c; ðA1Þ

where the indices a, b, c, d ¼ 1, 2, 3 represent the spacial
coordinates. In the following, we neglect the linear accel-
eration terms ∼ab and the Riemann tensor terms ∼Rabcd
such that the metric in Eq. (A1) reduces to the Minkowski
spacetime metric in Cartesian coordinates.
To obtain the metric in a rotating reference frame, we

have to make an additional transformation. Rotations along
the z axis can be described by the time-dependent angle
θðtÞ, such that the coordinates in the rotating frame are
described by

8>>><
>>>:

t ¼ t0;

x ¼ x0 cos θðtÞ þ y0 sin θðtÞ;
y ¼ −x0 sin θðtÞ þ y0 cos θðtÞ;
z ¼ z0;

ðA2Þ

where we recall that the primed symbols represent the
coordinates in the inertial (nonrotating) frame (see Fig. 9).
To compute the metric in the rotating coordinates, one

can proceed in several ways. For example, one way to
simplify the calculation is to write the transformation
between ðx; yÞ and ðx0; y0Þ, as well as between ðdx; dyÞ

FIG. 9. Illustration of the inertial reference frame (labeled as x0 and y0) and the rotating reference frame (labeled as x and y), which is
comoving with the experimental equipment. For simplicity, we assume that the interferometric axis (line segment connecting the filled
circles) is aligned with the x0 axis of the inertial frame. (a) General case when the interferometric particle is placed at an angle ϕþ θwith
respect to the inertial reference frame. ϕ denotes its polar coordinate in the rotating reference frame and θ is the angle between the inertial
and rotating reference frames. (b) Special case when the interferometric axis coincides with the x0 axis of the inertial reference frame.
In this case, the two angles ϕ and θ defined in (a) have the simple relationship ϕ ¼ −θ.
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and ðdx0; dy0Þ, in matrix form. However, here we offer an
alternative method by exploiting the complex notation. The
basic idea is to introduce a complex coordinate w ¼ xþ iy,
and then the complex conjugate is w̄ ¼ x − iy and the
differentials are

dw ¼ dxþ idy; dw̄ ¼ dx − idy; ðA3Þ

with analogous expressions for the primed variables. This is
a common trick to deal with 2D problems, because one can
always construct a complex structure on a 2D surface
through its metric to become a Riemann surface. For
pedagogical material, see Chapter 7 of [57].
The rotation transformation from Eq. (A2), as well as its

inverse, can be simply written as

w ¼ w0eiθðtÞ; w0 ¼ we−iθðtÞ; ðA4Þ

where we have omitted the t and z coordinate trans-
formation for brevity. We find that the differential forms are

dw0 ¼ e−iθdw0 − iθ̇w0e−iθdt;

dw̄0 ¼ eiθdw̄0 þ iθ̇w̄0eiθdt: ðA5Þ

The considered terms dx02 þ dy02 ¼ dw0dw̄0 in the original
Fermi normal coordinates from Eq. (A1) transform to

dw0dw̄0 ¼ ðe−iθdw − iθ̇we−iθdtÞðeiθdw̄þ iθ̇ w̄ eiθdtÞ
¼ dwdw̄ − iθ̇ðwdw̄ − w̄dwÞdtþ θ̇2ww̄dt2

¼ dx2 þ dy2 þ 2θ̇ð−xdyþ ydxÞdt
þ θ̇2ðx2 þ y2Þdt2; ðA6Þ

which then immediately give the transformed metric in the
rotating reference frame,

ds2 ¼ −ðc2 − θ̇2ðx2 þ y2ÞÞdt2 þ 2θ̇ð−xdyþ ydxÞdt
þ dx2 þ dy2: ðA7Þ

2. Lagrangian of inertial torsion noise

The Lagrangian of a point-like massive object is given by
L ¼ −mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ds2=ðc2dt2Þ

p
. Using the metric in Eq. (A7)

and taking the nonrelativistic limit vx; vy ≪ c (with
vx ≡ dx=dt; vy ≡ dy=dt), we find that the Lagrangian is

L ¼ −
1

2
mθ̇2ðx2 þ y2Þ þmθ̇ð−xvy þ vxyÞ; ðA8Þ

wherewe have omitted the constant termmc2 and the kinetic
energy term 1=2mðv2x þ v2yÞ. The term − 1

2
mθ̇2ðx2 þ y2Þ

describes the centrifugal force. In particular, according to the
Euler-Lagrange equation d

dt ð∂L∂ẋjÞ − ∂L
∂xj

¼ 0, this term gives

the centrifugal force F⃗cent ¼ mθ̇2r⃗. The term mθ̇ð−xvy þ
vxyÞ will give two forces, −2mr⃗ × ˙

θ⃗ and mr⃗ × ̈
θ⃗, known

as the Coriolis force and Euler force, respectively.
Equation (A8) is well known in the literature and gives
rise, among other things, to the Sagnac effect [58–61].
The Lagrangian term mθ̇ð−xvy þ vxyÞ can be written in

polar coordinates with x ¼ r cosϕ and y ¼ r sinϕ [see
Fig. 9(a)]. If r is assumed constant, then vx ¼ −rϕ̇ sinϕ
and vy ¼ rϕ̇ cosϕ, so this term becomes −mr2θ̇ ϕ̇. In the
special case shown in Fig. 9(b) when the test mass is set on
the x axis of the inertial (nonrotating) reference frame,
one may directly obtain ϕ ¼ −θ. Then, the Lagrangian of
the Coriolis and Euler forces becomes mθ̇2r2. Therefore,
the total Lagrangian of the centrifugal, Coriolis, and Euler
forces reduces to

LITN ¼ 1

2
mθ̇2r2: ðA9Þ

Finally, if the angle θ is assumed to be small, then the y
component is much smaller than the x component in the
Lagrangian. Hence, making the approximation r ≈ x, we
finally obtain the ITN Lagrangian in Eq. (5).

APPENDIX B: CALCULATION OF THE POWER
SPECTRUM DENSITY OF INERTIAL

TORSION NOISE

In this appendix, we calculate the PSD of the ITN arising
from a thermal environment modeled by Eq. (C1). As
discussed in the main text, the PSD of ITN SΘ̇2Θ̇2ðωÞ is
the self-convolution of the PSD of the torsion angle
SΘ̇ Θ̇ðωÞ ¼ ω2SΘΘðωÞ, that is,

SΘ̇2Θ̇2ðωÞ ¼ ðSΘ̇ Θ̇ � SΘ̇ Θ̇ÞðωÞ

¼
Z

∞

−∞
ð2γrotkBT=IÞ2

u2

ðu2 −Ω2
rotÞ2 þ γ2rotu2

×
ðω − uÞ2

ððω − uÞ2 −Ω2
rotÞ2 þ γ2rotðω − uÞ2 du: ðB1Þ

We use the residue theorem to calculate this integral [62].
First, the poles of SΘΘðωÞ are

ω1;2;3;4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
q

� iγrot=2: ðB2Þ

The positiveness of the discriminant Ω2
rot − γ2rot=4 will

affect the positions of poles of the integrand in Eq. (B1),
shown in Fig. 10, of which the discriminants in Figs. 10(a)
and 10(b) are positive and negative, respectively. Note that
the relations ω3 ¼ −ω2 and ω4 ¼ −ω1 are used to simplify
the notation in both panels. However, since the integral is
real valued, both cases should have the same result. Thus, it
is enough to consider the case Ω2

rot − γ2rot=4 > 0.
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Then, according to the residue theorem, the integral
value in Eq. (B1) equals the residue value of the integrand
at the poles in the path shown in Fig. 10. In particular, this
integral equals the summation of the residues at ω1, −ω2,
ωþ ω1, and ω − ω2 when ω ≠ ω1 þ ω2. In this case, every
pole is a first-order pole. For the special case ω ¼ ω1 þ ω2,

there are only two second-order poles ω1 and ω2, so the
integral in Eq. (B1) is given by these two poles. Since our
purpose is to calculate the pure real-valued integral (B1)
and different cases of poles have to give the same result, we
may focus on the case ω ≠ ω1 þ ω2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p

.
Then, the integrand can be written as

Fðu;ωÞ ¼ A2
u2ðω − uÞ2

ðu − ω1Þðu − ω2Þðuþ ω1Þðuþ ω2Þ
×

1

ðu − ðω − ω1ÞÞðu − ðω − ω2ÞÞðu − ðωþ ω1ÞÞðu − ðωþ ω2ÞÞ
; ðB3Þ

where we denote A ¼ 2γrotkBT=I for ease of notation. Then, the residue values are given by

2πiRes
u¼ω1

FðuÞ ¼ A2
πω1ðω − ω1Þ2

2γrot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p ×

1

ωðω − iγrotÞðω − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p

Þðω − 2ω1Þ
;

2πi Res
u¼−ω2

FðuÞ ¼ A2
πω2ðωþ ω2Þ2

2γrot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p ×

1

ωðω − iγrotÞðωþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p

Þðωþ 2ω2Þ
;

2πi Res
u¼ωþω1

FðuÞ ¼ A2
ðωþ ω1Þ2ω2

1

ωðωþ iγrotÞðωþ 2ω1Þðωþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p

Þ
×

π

2ω1γrot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p ;

2πi Res
u¼ω−ω2

FðuÞ ¼ A2
ðω − ω2Þ2ω2

2

ωðω − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p

Þðω − 2ω2Þðωþ iγrotÞ
×

π

2ω2γrot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p : ðB4Þ

Finally, the PSD of ITN defined as the integral (B1) is

SΘ̇2Θ̇2ðωÞ ¼ 2πiðRes
u¼ω1

FðuÞ þ Res
u¼−ω2

FðuÞ þ Res
u¼ωþω1

FðuÞ þ Res
u¼ω−ω2

FðuÞÞ

¼ A2
π

γrot

4ω4 þ 4ðγ2rot − 3Ω2
rotÞω2 þ 16Ω4

rot

ðω2 þ γ2rotÞð4γ2rotω2 þ ðω2 − 4Ω2
rotÞ2Þ

: ðB5Þ

APPENDIX C: GAS COLLISION NOISE

In this appendix, we consider a certain source of the ITN,
that is, collisions due to the thermal motion of gas mole-
cules. According to the fluctuation-dissipation theorem,

the amplitude of the random force due to gas collisions isffiffiffiffi
A

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γrotkBT=I

p
, where kB is the Boltzmann constant

and T ¼ 300 K is the gas temperature outside the exper-
imental box. Then, the dynamical equation (17) of the

FIG. 10. Poles and integral path of the integral in Eq. (B1). The poles of SΘΘ and SΘ̇2Θ̇2ðωÞ are given by Eq. (B2). Panels (a) and
(b) show two cases where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rot − γ2rot=4
p

is a real number and an imaginary number. Note that the relations ω3 ¼ −ω2 and ω4 ¼ −ω1

are used to simplify the notation in both panels.

INERTIAL TORSION NOISE IN MATTER-WAVE … PHYS. REV. D 111, 064004 (2025)

064004-11



torsion motion of the experimental box becomes the
Langevin equation [63],

Θ̈ ¼ −Ω2
rotΘ − γrotΘ̇þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γrotkBT=I

p
Θin: ðC1Þ

In this case, the power spectra for Θ and Θ̇2 are

SΘΘðωÞ ¼
2γrotkBT=I

ðΩ2
rot −ω2Þ2 þ γ2rotω

2
;

SΘ̇2Θ̇2ðωÞ ¼ 4πγrotðkBTÞ2
I2

×
4ω4 þ 4ðγ2rot − 3Ω2

rotÞω2 þ 16Ω4
rot

ðω2 þ γ2rotÞð4γ2rotω2 þ ðω2 − 4Ω2
rotÞ2Þ

: ðC2Þ

It is notable that SΘ̇2Θ̇2ðωÞ has an additional γ2 dependence
in comparison with the general case in Eq. (20). This
difference arises because the amplitude A ¼ 2γrotkBT=I of
the external force for the thermal noise in Eq. (C1) is
proportional to the damping rate γrot, which does not hold
for the general case considered in this appendix.
Note that, in this case, the damping rate γrot describes

both the dissipation effect and the random force caused by
collisions from the ambient thermal gas molecules, which
is given by [64,65]

γrot ¼
L4

I

�
1þ π

12

�
Pgas

ffiffiffiffiffiffiffiffiffiffiffi
2mgas

πkBT

s
; ðC3Þ

where Pgas is the pressure of gas andmgas is the mass of the
gas molecules. Since γrot is proportional to Pgas, it can vary
depending on the gas pressure outside the box. Apart from
Pgas, all other factors contribute a factor of around
10−4–10−3 Hz=Pa, so the value of the damping rate γrot
can be estimated as

γrot=½Hz� ∼ 10−4Pgas=½Pa�: ðC4Þ

For instance, in the atmosphere, Pgas ¼ 105 Pa and the
damping rate is γrot ∼ 101 Hz.When the gas pressure outside
the experimental box is pumped as 102 Pa or 10−6 Pa by a
rough-vacuum pump or a series of ultra-high-vacuum
pumps, respectively, the corresponding damping rates γrot

are 10−2 and 10−10 Hz, respectively. Note that a value γrot ∼
10−9 Hz was already experimentally measured [64].
As for the dephasing factor, Fig. 11 shows the depend-

ence of Γ on the damping factor γrot caused by the thermal
gas molecules. As is shown, for the thermal case, Γ is
proportional to γrot and γ−1rot in the underdamped region and
the overdamped region, respectively, which has an addi-
tional γ2 dependence in comparison with the general case
because the thermal amplitude A2 is proportional to γ2rot.
A final remark on Fig. 11 is that the dephasing factor Γ

caused by the torsion noise from gas molecule collisions is
negligibly tiny. Two main reasons cause this. First, the
thermal motion of gas molecules is proportional to a small
thermal factor kBT ∼ 10−21 J. Besides, ITN is a second-
order effect, so every little factor in the PSD SΘΘðωÞ of the
experimental apparatus will be squared for the dephasing
factor Γ. Combining both effects, the dephasing factor Γ is
suppressed by a very tiny factor ðkBTÞ2 ∼ 10−42 J2, such
that Γ does not exceed 10−30.
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