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Abstract. It is well known that when numerically simulating solutions to stochastic differential equations
(SDEs), achieving a strong convergence rate better than O(v/h) (where h is the step-size) usually
requires the use of certain iterated integrals of Brownian motion, commonly referred to as its “Lévy
areas,” However, these stochastic integrals are difficult to simulate due to their non-Gaussian nature.
and for a d-dimensional Brownian motion with d > 2, no fast almost-exact sampling algorithm is
known. In this paper, we propose LévyGAN, a deep-learning-based model for generating approx-
imate samples of Lévy area conditional on a Brownian increment. Due to our “bridge-flipping”
operation, the output samples match all joint and conditional odd moments exactly. Our generator
employs a tailored graph neural network (GNN)-inspired architecture, which enforces the correct
dependency structure between the output distribution and the conditioning variable. Furthermore,
we incorporate a mathematically principled characteristic-function-based discriminator. Lastly, we
introduce a novel training mechanism, termed “Chen-training,” which circumvents the need for
expensive-to-generate training data-sets. This new training procedure is underpinned by our two
main theoretical results. For four-dimensional Brownian motion, we show that LévyGAN exhibits
state-of-the-art performance across several metrics which measure both the joint and marginal dis-
tributions. We conclude with a numerical experiment on the log-Heston model, a popular SDE in
mathematical finance, demonstrating that a high-quality synthetic Lévy area can lead to high order
weak convergence and variance reduction when using multilevel Monte Carlo (MLMC).
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1. Introduction. The numerical simulation of stochastic differential equations (SDEs) is
a ubiquitous task encountered in a wide variety of fields, ranging from mathematical finance
[42] and systems biology [1] to molecular dynamics [26] and data science [29]. Real-world
phenomena arising in these areas are often described well by SDEs formulated through Ito
calculus and of the general form

d
(1.1) dXe=f(XDdt + Y gi(X0)aWw ", Xo=uo,
=1

where the solution X = {X;};co,m takes values in R®, W = (WM, ..., W) denotes a
standard d-dimensional Brownian motion, and f,g; : R® — R® are suitably regular vector
fields on R€. In practice, one is often concerned with estimating quantities of the form
¢ = Efp(X) | Xo=1z0], where the function ¢ may depend on the whole trajectory of X
or simply on the terminal value X7, such as the payoff of a European call-option. On occa-
sion, it may be possible to obtain ¢ by solving certain partial differential equations (PDEs),
e.g., through the backward Kolmogorov equation or the Feynman—Kac formula.

However, the standard approach is to use Monte Carlo simulation, where one uses a
discretization scheme to generate approximate sample paths {)?1}1]\;1 of X, which can be used
to approximate @ by taking the average of {cp()?z)}fil Given the importance of Monte Carlo
simulation in applications, there is a rich literature concerning numerical methods for SDEs
and their theoretical properties. A broad range of discretization schemes are available, such
as the classical Euler-Maruyama and Milstein schemes as well as the higher order Talay [44]
and Ninomiya—Victoir [38] schemes. For more details on the numerical simulation of SDEs,
we refer the reader to [24, 39].

There are two standard measures for the effectiveness of numerical schemes: strong error
(or mean squared error-MSE) and weak error. It is a well-known result of Clark and Cameron
[4] that numerical schemes using only increments of Brownian motion are limited in general
to a strong convergence rate of at most O(v/h ), where h denotes the step- size. Furthermore,
to the best of our knowledge, all numerical schemes achieving second order weak convergence
require the generation of random variables in addition to the Brownian increments. In par-
ticular, the Talay scheme [44] and the Ninomiya—Victoir scheme [38] require the generation
of Rademacher random variables. Further examples include the Ninomiya—Ninomiya scheme
[37] and a stochastic Runge-Kutta method due to Réfler [40]. In all of these cases, the ad-
ditional random variables are generated to replace certain second order iterated integrals of
Brownian motion, which are collectively referred to as its Lévy area; see Figure 1 for a visual
interpretation of Lévy area.

Definition 1.1. The Lévy area of a d-dimensional Brownian motion over [s,t] is a d x d
antisymmetric matriz whose (i,j)th entry is entries given by
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Figure 1. Each entry AT s the area between the independent Brownian motions W@ and W (diagram
adapted from [10]).
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When the vector fields of the SDE (1.1) do not satisfy the commutativity condition
9i,9;] = 0 (where [g;, g;](z) = g;j(z)gi(z) — gi(z)g;(x) denotes the standard Lie bracket of
vector fields), schemes that achieve high order Strong convergence, such as the Milstein and
log-ODE methods, require the simulation of Lévy area. Consequently, the approximation of
Lévy area has received much interest in recent decades, with the view towards both high order
weak and strong convergence.

Approximations to Lévy area have been well studied [6, 7, 14, 24, 25, 10, 12, 35, 47],
with the majority of approximations concerning strong estimation. Strong estimators aim to
approximate Lévy area by minimizing the mean-squared error so that the resulting estimator
may be incorporated into the strong analysis of the discretization scheme. Typically, such
estimators rely on truncated expansions of Brownian motion, such as the Fourier series ex-
pansion [24, 25, 20], the Karhunen—Loéve expansion [30], and, more recently, the polynomial
expansion [12, 13]. These estimators are often improved by estimating the tail sum of the
expansion in an appropriate manner; see, for example, [35, 47].

To the best of our knowledge, there is no known scheme which simulates Lévy area exactly,
with even the “rectangle-wedge-tail” algorithm of Gaines and Lyons [14] requiring numerical
integration. Moreover, this approach is only applicable in d = 2. On the other hand, the
main drawback of the truncated expansion methods is the cost of simulation. In practice,
one is often required to generate millions of Lévy area samples, and the aforementioned
methods often require a high truncation level to achieve good performance. Consequently,
in recent years, there has been a renewed focus on approximations of Lévy area that are
suitable for weak discretization schemes, where the estimator is less costly to generate. The
aim of a weak estimator is to match some moments of the Lévy area given a Brownian
increment. These estimators differ in complexity depending on their intended usage. Basic
estimators include the Rademacher random variables that appear in the Talay scheme [44] and
Davie’s approximation [6, 9] which uses a Gaussian random variable with the correct variance
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(this may be improved to have the correct conditional variance given the Brownian increment
[10]). Perhaps the most sophisticated weak approximation is the one due to Foster [10] that
matches the first five conditional moments of Lévy area given the Brownian increment when
d<3.

In this article, we provide a new approach to the construction of weak estimators of Lévy
area given a Brownian increment through the use of generative modeling techniques. To the
best of our knowledge, this is the first time that the powerful toolkits provided by modern
machine learning have been applied to the problem of Lévy area simulation. Arguably, the
main obstacle to this approach is the computational effort required to generate considerable
amounts of precise samples of Lévy area. We note this is, in principle, possible through the
use of a truncated Fourier series method [20], with other options also possible. However, in
the context of Lévy area generation, we present a novel training algorithm based on Chen’s
relation [2] that allows for the training of a generative model without access to a data-set of
Lévy area samples.

1.1. Our contributions. In this article we present LévyGAN, a deep-learning-based gen-
erative model that simulates the Lévy area of arbitrary dimensional Brownian motions. Deep-
learning- based generative models have been widely used for data synthesis, where a parametric
model is trained to learn the target distribution. Among the variety of generative models,
GAN-type models [34, 18] have been particularly noteworthy for their performances. GAN,
short for generative adversarial network, operates on the compelling principle of adversarial
training. This approach consists of two neural networks—a generator and a discriminator—
that are trained simultaneously. The generator’s task is to create synthetic data, while the
discriminator’s role is to distinguish between real and generated data.

With no exception, GAN-type models also possess drawbacks like other generative mod-
els. The necessity of real data as reference sets for training is one of them. Machine learning
models are often data-driven and sometimes data-greedy; normally, practitioners collect real-
world data and approximate its distribution using an empirical distribution outputted by the
generator. This is especially pertinent in the context of Lévy area generation, where a compet-
itive method needs to achieve very high accuracy, which incurs a high statistical complexity,
and thus requires large amounts of data. In contrast to standard GANSs, score-based diffusion
models, and variational autoencoders, LévyGAN is designed to learn the target distribution
without requiring any samples from it. We term this approach “Chen-training,”because it is
theoretically underpinned by the unique invariance of the joint law of Brownian motion and
Lévy area under Chen’s relation; see Theorem 4.5.

We have designed both the generator and discriminator by exploring the features of the
joint law of Brownian motion and its Lévy area [12, 13, 10]. In particular, for the generator,
we ensure that the joint distribution of our generator is permutation invariant and that each
component of the generated area depends only on the relevant components of the Brownian
increment. We also ensure that all odd cross moments of our generator are exact through
the multiplication by certain Rademacher random variables. For the discriminator, we have
chosen a characteristic-function-based discriminator, initially proposed in [8, 27]. Inspired
by this approach and the more general method of [31], we define the unitary characteristic
function of a random variable as a generalization of the characteristic function onto higher
degree Lie algebra.
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For our numerical results, we train the LévyGAN in d = 4. It is noteworthy that the
model is able to generate the Lévy area for arbitrary Brownian dimensions, with no loss in
performance guaranteed in d’ < d and empirically strong performance for d’ > d. Empirically,
we show that LévyGAN attained the best performance among other weak estimators, such
as those found in [6, 10], in terms of distributional metrics, and is comparable in genera-
tion speed to the method in [10]. Finally, we provide an application of weak approximations
to Lévy area to high order multilevel Monte Carlo numerical schemes. In this example, we
demonstrate that the inclusion of an approximate Lévy area term in the Strang splitting
method achieves higher order variance reduction and weak convergence. Moreover, we pro-
vide evidence that an estimator that only matches the variance of Lévy area (such as the
Rademacher random variables found in the Talay scheme) is not appropriate for this applica-
tion. The LévyGAN implementation, together with a trained model for d =4, can be found
at https://github.com/andyElking/LevyGAN.

1.2. Outline and common notation. This article is divided into five main sections. In
section 2 we recall the standard setup of generative adversarial networks and discuss why the
traditional approach to generative modeling is not easily applicable to our setting. In section
3 we outline the structure of our generator. This section focuses on the symmetries of the joint
law of Brownian motion and Lévy area that we hard code into our generator. This includes
so-called “bridge-flipping,” a precise multiplication by certain Rademacher random variables
to ensure all joint odd moments are correctly estimated and to help the generator train evenly
across all quadrants in space. In subsection 3.2 we introduce a network architecture dubbed
“pair-net” inspired by graph neural networks that ensures the correct dependence structure
between the coordinates of Brownian motion and the coordinates of Lévy area. The structure
of our discriminator is outlined in section 4. Here we discuss two alternatives for a loss
function based on the analytical form of the joint characteristic function of Lévy area and
Brownian motion and a generalization termed the “unitary characteristic function” proposed
in [31]. Our novel training approach, “Chen-training,” is covered in subsection 4.2 before
the whole training procedure is summarized in section 5. Finally, in section 6 we compare
the distributional performance of our generator to the state-of-the-art Foster method [10] and
demonstrate the applicability of weak estimators for Lévy area to multilevel Monte Carlo. To
conclude this introduction, we outline as follows some common notation to be used throughout
the article:

(1) Px|y—, stands for the conditional distribution of X given Y =y.

. . d .
(2) With abuse of notation, (X |Y =y)=(Z|Y =y) if Pxjy—, =Pzy—,.
(3) (Wi)ielo,1) stands for a d-dimensional Brownian motion, and the process (A¢)ico 1

with 4; = {A%i’] )}1 <icj<d @ 4d=1)_dimensional vector representing the flattened upper

-

triangle of the Lévy area matrix associated with the Brownian motion. Unless stated
. . . , . ~d(d—1)

otherwise, we denote by a the dimension of Lévy area, i.e., a = =%5—.

(4) For any process (X¢)ic[,1), X+ denotes the process evaluated at time t.
(5) Py, 4,) stands for the joint law of Brownian motion and Lévy area at time ¢.
(6) N4(u,0?) stands for a d-dimensional Gaussian distribution with independent coordi-

nates, each with mean p and variance o2.
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(7) Rad?(p) stands for a d-dimensional Rademacher random variable with independent
entries, each of which takes 1 and —1 with probability p and 1 — p, respectively.
(8) ®x stands for the characteristic function of a random variable X.
(9) Wi :=W; — W stands for the increments of a Brownian motion (W;);cjo,1], and we
use W; = Wy interchangeably.
(10) For any tensor, i.e., an element x € R*? we always denote by () € R the ith
coordinate of the second dimension.

2. The GAN architecture. The goal of this article is to build an efficient and accurate
estimator that approximates the conditional law P4, y,, and hence the joint law, Py, 4,), of
a Brownian increment and its Lévy area. Thanks to the scaling property of Brownian motion,
it is enough to consider the problem when ¢t = 1.

We adopt a conditional GAN (generative adversarial network) approach as proposed by
[34]. GAN-type models, initially proposed by [18], consist of a pair of competing neural
networks—the generator and the discriminator. The aim of the generator is to create “fake”
data X from some noise distribution, trying to mimic a target distribution, while the discrim-
inator will be given both x and data x from the true distribution and will try to distinguish
the ground truth between them. The dynamics between the generator and discriminator are
controlled by a min-max game acting on a loss function, which usually represents the distance
between two distributions. In a conditional GAN, the generator is given samples from not
only the noise distribution but also the conditioning variable—in our case that will be the
Brownian increment W or, later, the space-time Lévy area H (see subsection 3.1). Here we
provide the description of a classical conditional GAN adapted to our interest.

Definition 2.1 (classical conditional GAN for Lévy area generation). Let d > 2 be the Brownian
dimension, and le t a := @ be the dimension of the associated Lévy area vector. Assume
z 18 an n-dimensional noise vector distributed according to P,. The conditional generator Gy
and the discriminator D,, are maps

Go:RIxR" R xR* D,:R*xR* - R

that are parameterized by 6 and n, respectively. When restricted to the first d-coordinates of
the domain and codomain, Gy is enforced to be identity, i.e., Gg(w,z) = (w, A). Let Py, a,)
be the ground truth distribution of the coupled process. An example loss function might be
given by

L(0,n) == E(w,a)~Buy, a,) [Pn(w, A)] = Ewnpyy, znp. [Dy(Go(w, 2))],

where one restricts D, to be at most 1-Lipschitz. The models are trained using the min-maz
game ming max, L(6,n) until convergence. The generator obtained is then used to simulate
Lévy areas.

Since there are no known methods for exact simulation of Lévy areas in d > 2, the “true”
Lévy area samples A ~ P4, ;, must themselves be obtained through approximate simulation.
In particular, we might generate the “true” Lévy area samples using the Julia-language pack-
age created by Kastner and Rossler [20], which complements their research on approximate
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a=d(d-1)/2

g:i>‘ Fourier algorithm 1:> -
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Figure 2. A schematic of Lévy generation for classical conditional GAN. Throughout this article, bsz rep-
resents the training batch size.

strong simulation of Lévy area through truncated Fourier series methods. We also present the
flowchart of this methodology in Figure 2.

The main drawback of this methodology is the need for simulating approximate real sam-
ples of Lévy area. Using real data not only slows the training procedure but also introduces
simulation error (due to the truncation in the Fourier series) and finite sample error (leading
to overfitting). In order to address this problem, we propose a novel approach, LévyGAN,
which completely excludes real samples from the training process and is well justified by our
two main theoretical contributions, Theorem 4.5 in the main text and Theorem SM2.4 in the
supplementary material.

3. Generator. In order to improve the accuracy of the generated distribution, we can
consider the symmetries of the Lévy area distribution and hard code them into the generator
itself. This way, the generator will consist of both a neural net and additional operations
applied to the network’s output. One symmetry of Lévy area that is desirable to reflect is the
fact that its distribution is mean zero when conditioned on any increment Wy 1 =w. We do
this through two operations which we combine and term “bridge-flipping.”

3.1. Bridge-flipping. We would like to hard code the symmetry of Lévy area about zero
into the generator’s architecture. Even though each dimension of Lévy area A+ is symmetric
about zero, its joint distribution is not invariant to multiplying any individual dimension by
—1. The dimensions of the underlying Brownian motion, however, are independent and hence
can be mirrored separately without violating their joint law.

The goal is hence to find a symmetry of Lévy area corresponding to independently flipping
individual dimensions of the Brownian motion. Notice, however, that we are trying to generate
Lévy area conditional on a fixed input Wy 1 = w, and so we do not wish to flip the increment of
Brownian motion itself. We can circumvent this issue by considering the polynomial expansion
of Lévy area [12], which decomposes the Brownian motion into the components dependent on
w and components independent of w, the latter of which can then be flipped independently.
To this end, we first define the Brownian bridge and its accompanying “space-time” and
“space-space” Lévy areas.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Definition 3.1 (Brownian bridge). Let 0 < s <t < oco. Then the Brownian bridge of W on
[s,t] returning to zero at time t is defined as

u—S
Bsyi=Wsy — iWS’t for u € [s,t].
The “space-time” Lévy area Hy € R? and “space-space” Lévy area bst € R4 of B over [s, 1]
are

i e i
(3.1) HY) ::t_s/ ngdUZt_s/ W) — Ws(,t)du for1<i<d,
(3.2) bl ;_/ B, 0dBY) for1<i,j<d.

Whenever s =t, we define bsy = Hs 1 = 0. We write Hy and by for Hq; and bo ¢, respectively.

It turns out that (H,b) and Wy, are independent, the marginal distribution of H is
Gaussian, and the marginal of b is logistic.

Proposition 3.2 (distribution of Brownian bridge Lévy area [13, 10]). For fired 0 < s <t <
00, the process {(Hs.u, Su)}ue s,q) and the increment Wy, are independent. Furthermore, H
1s distributed as a d-dimensional Gaussian with independent coordinates, and the marginal
distribution of each Brownian bridge Lévy area is logistic:

1 i 1
~ N[0, = (t — @9 Logistic [ 0, — (t —
Hg ~N <O, 12(t s)) and bg;’ ~ Logistic <0, o (t 5)> .

This yields the first two terms of the polynomial expansion of Lévy area.

Proposition 3.3 (polynomial expansion of Lévy area [12]). The Lévy area of a d-dimensional
Brownian motion W has the following decomposition:

As,t = Hs,t & Ws,t - Ws,t ® Hs,t + bs,t7

where ® denotes the outer-product of vectors.

This decomposition reduces the conditional generative task to the estimation of the Brown-
ian bridge Lévy area conditional on the Brownian increment, where the target distribution and
conditioning variable are independent. This approach may be generalized to the estimation of
the tail sum of the polynomial expansion of Lévy area truncated at a higher level. Since B and
the increment Wy ; = w are independent, the conditional distribution (B; | Wy =w) is sym-
metric around 0. Furthermore, each dimension of B is its own independent process, so we can
flip each individually without affecting the distribution, as established in the following lemma.

Lemma 3.4. Let W be a d-dimensional Brownian motion on [0,1], and let B,H,b be the
corresponding derived processes from Definition 3.1. Fiz some & € {—1, l}d, and let H', and
b be the space-time and space-space Lévy area processes associated with the process € ® B =
{§ © Bi}iepo,y), where © denotes the Hadamard (coordinatewise) product. Then

{Bt}eepo, Lo Biticpo, H =60 H, V' =(E®&0b, and (H'V) L (H,0).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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We also include a multiplication of a final independent random variable & ~ Rad(%),
whose role is explained in Proposition SM3.3 of the supplementary material. Combining this
with Lemma 3.4, we obtain the “bridge-flipping” function.

Definition 3.5. Let w,h,& € RY, be R¥4, and & € R. Then the bridge-flipping function is
defined as

(3.3) BF(w, h,0,£0,£) =& ((EOR) Quw—-—w®(EOh)+(ERE OD).

For this function we have the following as a consequence of Proposition 3.3 and

Lemma 3.4.

Theorem 3.6 (bridge-flipping). Let &o,...,&; il Rad( ) be random variables so that W,

(H,b), and (&,...,&q) are independent. Write & = (&1,. ..,éd), and fix some w e RY. Let H,b
be as in Definition 3.1. Then for every t € [0,1],

d
(Aot | Wo1 =w) = (BF(Woz, Ho g, bot,60,6) | Wo1 =w).
For our purpose, we will utilize the result fort =1,
d
(Ao,l ‘ Wo,l = w) = BF(U}, H0,17 b0,17§0a£) .

Recall that Hy; ~ N%(0, (¢t — s)) and that b and H are correlated, but that (H,b) and
Wo,1 are independent. Hence, given a neural net NNy : R¥*" 5 R? we define the “Bridge-
flipping generation”:

This construction has the following desirable properties:

(1) Informally speaking, the use of £ effectively makes the generator behave identically on
all orthants of R%, and hence any learning done in one orthant transfers equally to
the other orthants. This speeds up training and significantly improves the generator’s
accuracy, as it now perfectly mimics the symmetric structure of Lévy area.

(2) The neural net can be trained directly on the distribution of (bo; | Ho,1 =h) and is
then used for generation of (Ag1|Wo 1 =w) using the BF (bridge-flipping) algorithm.

(3) The structure of BF allows for efficient implementation of back-propagation.

The use of the extra Rademacher random variable &y is to guarantee that all odd joint
and conditional moments are correctly matched. This is summarized in Proposition SM3.3 of
the supplementary material. Having A unbiased means that some of the usual error analysis
from stochastic numerics can be applied, such as in the proof of Theorem 4.5, where one of
the requirements is that A be unbiased. Recall that the Milstein scheme requlres a subroutine
which generates samples of Lévy area given a Brownian increment. Since A~ ]P’BF is unbiased,
one can establish theoretical guarantees on the convergence of Milstein’s method with the BF
generator as this subroutine. The following result can be proven by applying [33, Theorem
1.1] with p1 =32, po=1.

Proposition 3.7. Given a time horizon T > 0, and a step size h = % where N > 1 denotes
the number of steps, let {Xn}ne{o,...,N} be the output of Milstein’s scheme (see subsection
SM7.2.1 in the supplementary material for the definition) applied to the SDE

dXt = M(Xt,t)dt + O'(Xt,t)th,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/16/25 to 144.82.114.229 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1550 JELINCIC, TAO, TURNER, CASS, FOSTER, AND NI

Algorithm 3.1. Area generation using bridge-flipping.

Input: 0 - neural net parameters, d - Brownian dimension, w - Brownian increment,
n - dimension of noise vector
1: & <+ Rad(1/2); &+ Rad?(1/2)
20 h+ N0, 5(t—s)); 2+ N™(0,1)
3: b« NNy(h, 2) > we want NNy(h, z) < (bo1 | Hi=h)
4: return BF (w,h,g, 0,¢)

where the Lévy areas provided as input to Milstein’s scheme were generated by the BE gener-
ator. Then if p,o are continuous and globally Lipschitz, there exists a constant C' > 0 such
that for sufficiently small h,

- 2732 .
sup EUXH—XM ] <Ch-.

0<n<N

Remark 3.8. Although Theorem 3.6 and Algorithm 3.1 lead to the generation of (Ag |
Wo1 = w), we emphasize that they can be generalized to the generation of (Ag¢|Wo1 = w)
for any t € [0,1] by using the scaling property of Brownian motion and its Lévy area. In
particular, given w we can do the following:

(1) Sample w’ from the distribution of (W;|W1 =w), i.e., w' ~ N (tw, t(1 —t));

(2) rescale w” = w—; and sample a” ~ (Ag1 | W1 =w");

(3) finally, rescale again o’ =ta” which has the desired distribution a’ ~ (Ao | W1 = w).

3.2. The pair-net generator. It is clear that for any 1 < i,5 < d, both bgi’j) and Agi’j)
depend only on the paths of {Wt(Z)}te[O,l] and {Wt(j)}te[o,l} and not on {Wt(k)}te[o,l] for k ¢
{i,7}. This dependency structure can be well described using graphs, encouraging us to
employ model architectures reminiscent of graph neural networks (GNNs) [41].

Consider a clique on d nodes, where each node corresponds to one dimension of the Brown-
ian motion, and each edge (i, ) is associated to A7) (or b(+7)). Unlike GNNs, where it might
be desirable for information to propagate throughout the entire graph, we want edge (,5) to
never see information at node k ¢ {i,j}. Hence, our architecture should function like a 1-step
GNN with edgewise outputs.

So that A(%9) only depends on W# and W), we generate a separate noise vector for each
dimension of Brownian motion. We can interpret this as some embedding of the entire path
{Wt(Z)}te[O,l] — noisel”, but in practice we use Gaussian noise.

Definition 3.9 (pair-net). The pair-net is defined as the mapping
PairNNy : (R, Z) x (R, Z2) —»R; (H,Z)x (H',Z') b,

where Z is the space of latent noise. Consider Ho1 and by 1 from Definition 3.1. We approx-
imate Py, |1, ,=h via

b)) = PairNNg((h,29), (), 20))), 1<i<j<d,
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Algorithm 3.2. Area generation using pair-net generator and bridge-flipping.

Input: 0 - neural net parameters, d - dimension of Brownian motion, w - Brownian
increment, n - dimension of noise vector associated with each coordinate of Brownian
motion.

1: §0<—Rad(1/2) ¢+ Rad?(1/2)
2: 20« N™(0,1) for 1 <i<d; h+ N0, 5(t—s))
3: b(:9) «— PairNNy((h( ),z(”),(h(J),z(J))) for 1<i<j<d
4: return BF (w, h,b,&p, &)
1 2 3
~ ~7| Neural net ,:> - m
Ao (0g)]”
Nl
-/ UU |
= 1
' ‘ 2 )
H* %
9; = A \
2 = |
L E_ |
- Lh
noise
\ N3

Figure 3. A schematic of the pair-net architecture when d = 3.

for any z € Z%. In practice, we choose Z to be R" and let z") be an n-dimensional Gaussian
noise for 1 <i <d. Combining this with bridge-flipping, we describe the generation algorithm
and flowchart in Algorithm 3.2 and Figure 3.

Another benefit of the pair-net architecture is that the neural net PairNNy can now be
significantly smaller since it does not need to capture the relationship between all the dimen-
sions. This comes with the downside of requiring more passes through it. (As shown in Figure
3, we use a single net to generate all b’s; each dimension of b requires its own forward pass.)
However, suitable indexing and batching can make this efficient. Indeed, using pair-net results
in both a speed-up and greater accuracy (see section 6). Furthermore, we emphasize that the
pair-net structure allows us to generate Lévy area for any dimension d’, even though we train
the model in a lower dimension d < d’. From now on, we will take nsz to be the total noise
dimension for the complete Lévy area generation, namely, nsz = n x d where n is the latent
noise dimension and d denotes the Brownian dimension. In the framework of Definition 2.1,
our generator is now Gg: R? x R™* - R? x R® and the evaluation follows Algorithm 3.2.

4. Discriminator. One potential discriminator is the characteristic function GAN (CF-
GAN) approach introduced in [8, 27], which aims to learn the law of an underlying process
by approximating its characteristic function. We compare this to traditional GANSs list some
advantages of this approach below:
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(1) The characteristic function always exists and is uniformly bounded.
(2) The characteristic function fully describes the law of the random variable, hence of-
fering good theoretical support.
In this section, we introduce two different choices for the characteristic function. First,
we assess the distance between two distributions using the characteristic function distance.

Definition 4.1 (characteristic function distance [8]). Let Px and Py be the distributions of
two R%-valued random variables X and Y, respectively. The characteristic function distance
(CFD) between X and Y associated with an R%-valued random variable A ~ v is given by

CFDA(X,Y) =Eanw [[[x (A) — Dy (A)]]
where ®x (A) :=Ex.p,[expi(A, X)].

The characteristic function distance has the following properties:

(1) Definiteness: If the support of A is R%, then CFD,(X,Y) =0 iff Px = Py..

(2) The distance is bounded and differentiable almost everywhere.

(3) For certain v, CFD)(X,Y,) =0 = Y, 4 x (see [43] as well as Proposition SM1.2

of the supplementary material).

If we restrict v to be a member of the family of certain well-known distributions, for
example, Gaussian, we can parameterize the distribution v by learnable coefficients, and
it will play the role of discriminator in the GAN setting. The back-propagation on these
coefficients is well understood by techniques such as the reparameterization trick. In practice,
we approximate the characteristic function by an empirical measure: if A ~v, and x1,..., 2y
are samples from Px, then we estimate ®x(A) by

~

N
By (A) = % 2_; exp (i(A, 23)).

The use of the empirical characteristic function in place of the analytical characteristic
function is justified in Proposition SM1.1 of the supplementary material. However, if X =
(Wi, Ay), i.e., the joint process of d-dimensional Brownian motion and the corresponding
Lévy area at any time ¢, we may obtain @y, 4,) analytically; see Theorem SM3.1 in the
supplementary material.

4.1. Unitary characteristic function. In this subsection, we introduce an extension of
the classical characteristic function of a random variable, originally proposed in [3, 31]. We
denote by U, the set of unitary matrices of dimension n; then U, is a matrix Lie group with
the group operation of matrix multiplication. The Lie algebra of U,,, denoted by g, is the set
of anti-Hermitian matrices, i.e., g, := {4 € C"*": A* + A =0}. Next, we give a definition of
the unitary representation of a random variable and its unitary characteristic function.

Definition 4.2 (unitary characteristic function). Let X ~Px be an R%-valued random vari-
able. Let n>1 be an integer. Denote by U, and g, the unitary matriz Lie group of degree n
and its corresponding Lie algebra. Let M € L(R?,g,); the unitary representation function of
X is given by the mapping

(4.1) Un (X) :=exp(M (X)),
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where exp denotes the matriz exponential. The unitary characteristic function of X is defined
as a mapping from L(R?, g,) to GL(n) such that

(4.2) UCFn(X)(M) :=Ex~p [Un (X)].

In practice, UCF,(X)(M) is approzimated by Monte Carlo. Let X = {X;}I¥, be N samples
from Px . The empirical unitary characteristic function is given by

EUCF,(X)(M) := %ZUM(XI-).

Remark 4.3. If n =1, then gy is just the set of pure imaginary numbers, and M can be
identified with an element A € R? such that M (x) =i(\,x) for all z € R where (-,-) denotes
the standard inner product. Then, UCF;(X) recovers the standard characteristic function of
a d-dimensional random variable.

Similarly to Definition 4.1, for any n > 1, we can define the unitary characteristic function
distance (UCFD) for two random variables X and Y as

UCFDZ(X,Y) = Enrep,, [[UCF, (X)(M) — UCF(¥)(M)|[3s]

where P denotes the distribution of the linear mapping M, and ||-|| s denotes the Hilbert—
Schmidt norm. As in the case of the discriminator for the standard characteristic function,
here we parameterize the law of linear mappings P by an empirical measure

1 N
1=

where 0 denotes the Dirac measure, and each M; can be parameterized as learnable coefficients
and optimized using gradient-based methods. For computation and optimization details of
UCFED, we refer the reader to [31]. Let X = (Wi, A1); then the benefits of UCFD compared
to the standard characteristic function distance include the following:

(1) Standard uniqueness results hold as UCF;(X) recovers the standard characteristic
function.

(2) Since g; is a subspace of g, for any n > 2, Ups possesses a richer structure than C for
any linear mapping M into g,. Although using g; already encodes enough information
to determine the random variable, embedding the random variable into Lie algebra of
a higher degree appears to provide a more efficient way of representing the information
that characterizes the random variable. Empirically, using the unitary characteristic
function led to a more stable training procedure compared to the standard one.

4.2. Chen-training. While Brownian motion over different intervals can be concatenated
simply via addition, i.e., Wy ; = Wy s+ W4, concatenation of Lévy areas requires an additional
term, specified by Chen’s relation. In its general version within rough path theory, Chen’s
relation establishes the homomorphism property of path signatures under concatenation [32,
Theorem 2.9]. However, we will present just the special case relating to Lévy area.
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Proposition 4.4 (Chen’s relation [2]). For times 0 < s <,

Aéf;j) :A( )+ A(m) (W(%)W( 3 _ Wé,];)Ws(ft)> '
We now present the main theoretical contribution of this section, which can be viewed as
a partial converse of the above proposition.

Theorem 4.5 (distributional uniqueness of Lévy area under Chen's relation). Suppose u is a

mean zero probability distribution on R% x R where the first marginal has finite second

moment. Let (V;, Z;) i w fori=1,2; if it holds that

(4.3) V3= (V1 +Va), Z3—*21+ Zz—l— (V1®V2—V2®V1)

1
V2
is also distributed according to i, then p is the distribution of (Wy 1, Ao,1) where A is the Lévy
area process associated with a d-dimensional Brownian motion W .

Including a finite-variance assumption on the measure u, and a Gaussian assumption on
the first marginal, provides an alternative proof using Wasserstein distances (see Theorem
SM2.3 in the supplementary material). The preceding motivates the following procedure,
which takes samples 71, Z> from some distribution and concatenates them using Chen’s re-
lation to produce samples that are closer in distribution to Ag ;. With abuse of notation, if
X € R™*4 consists of m samples of a d-dimensional random variable, we denote by X(® ¢ R™
the ith coordinate of each sample. Adopting this notation, we describe the Chen-combine
operation in Algorithm 4.1.

We also note that the proof of Theorem SM2.3 shows that the repeated application of
Chen-combine gives convergence of order at least % in the 2-Wasserstein metric. Faster rates
can be proven assuming a suitable starting distribution, such as Davie’s approximation [6, 9].

Algorithm 4.1. Chen-combine.

Input: m - batch size, d - Brownian dimension, a- Lévy dimension, (W, A)girgs € RM*(dHa)
(W, A)second S Rmx(‘”“) Brownian increments and Lévy area samples.

1: W« 0cR™* A + 0ecRm*e

. . d
2: Wipgt \ﬁwﬁrst, Waecond ﬁwmnd, > Brownian scaling W, 1 = %WOJ
3: Afrst — %Aﬁrst, Agecond ¢+ %Asecond, > Brownian scaling AO,% 4 %Ao,l
4: forie{1,...,d} do
5: WO W() -I—W()
6
7
8
9

second
forje{i—l—l ,d} do
D « 3 <W1Eir)st Wéfe():ond - Wf(ir)st © Wie%:ond)
AlI) A( ’J) 4 A7) +D, > Chen’s relation

second

: return (W, A)
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Remark 4.6. Let A be the estimated Lévy area given a fixed Brownian increment W. Let
AChen be the resulting Lévy area process of Chen-combine(W, A) In Theorem SM2.4 of the
supplementary material we show that (informally speaking)

W2(;&7 Atrue) < (2 + \/§)W2(;&7 AChen)a

where W, denotes the 2—Wasserstein metric. So, in order to minimize WQ(A Atrye), we need
only minimize WQ(A AChen) which requires no “true” samples of Lévy area to compute.
This allows us to modify the training objective of the GAN so that it will learn the correct
distribution without any access to externally supplied data.

Assume (W, A) € R2mX(@+4) i g collection of 2m samples of a (d+a)-dimensional random
variable. By Chen-combine(W, A) we mean the following: evenly split (W, A) into two blocks
with equal size, denoted by (W, A)ﬁrst, (W, A)Second e R™*(d+a) and apply the operation
described in Algorithm 4.1. The output of Chen-combine will be an element in R™*(d+a),

5. LévyGAN. In this section, we incorporate the ideas presented in sections 3 and 4 into
our tailored model LévyGAN used to generate the associated Lévy area conditioned on the
Brownian increments. Similarly to Definition 2.1, we provide the definition of the proposed
model as follows.

Definition 5.1 (LévyGAN). Let PairNNy denote a pair-net generator as defined in Definition
3.9. Given a d-dimensional Brownian increment at t =1, W NJ\/d(O, 1), forall 1 <i<j<d,
we generate an estimated Lévy area associated to W as follows:

b(9) = PairNNp((H®, 2O, (HY | z)Y),
(5.2) AW — gOw6) — gy @ 4 pd)
Let w € RN*4 be N samples of Brownian increment, and let the associated A e RVxa pe

generated according to (5.1) and (5.2); then we construct new samples using Chen-combine
defined as in Algorithm 4.1:

(W Chens A Chen) := Chen-combine(w, A).

Form > 1, let g,, be the Lie algebra of the unitary matriz group Uy,,. Recall EUCF,, from
Definition 4.2, and let M = {M;}M,, M; € L(R¥ % g,,) be a collection of linear mappings
onto gm, where each is parameterized by an element in R(4Fa)xdimlan) = A will play the role
of the discriminator. Finally, the training is performed with respect to the min-max game

min max Loss(6, M; w),
o M

where Loss(, M;w) := EUCFD,,((w,A), (Wchen, Achen)). The training algorithm and flow-
chart are described in Algorithm 5.1 and Figure 4.

Remark 5.2. One can interpret Chen-training as a type of adaptive training, where the
“almost true” target data Acpen is always just sufficiently better than the generator’s output,
so that training can progress effectively. Thus, instead of requiring large data-sets of “true”
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Algorithm 5.1. Training algorithm for LévyGAN.

Input: d - Brownian dimension, a - Lévy area dimension, n - noise dimension, m - Lie
algebra degree, M - number of linear mappings onto g,,, PairNNy - generator,
M e RMx(d+a)xdim(gm) _ digcriminator, itery - number of discriminator updates per
generator update, bsz - batch size, 1y, 14 - generator and discriminator learning rates.
1: while 8, M not converge do
2:  forie(l,...,itery) do

3: Sample w ~ N4(0,1), (h,z) ~ N%(0, %) N0, 1) of size 2bsz.

4: b() < PairNNg((h( >,z<%>) (), 20)) for 1<i<j<d

5: & Rad(1/2), £ < Rad(1/2)

6: A<—BF(whb§0£)

7: W Chen, AChen < Chen-combine(w, A)

8: Loss(#, M;w) < EUCFD,,((w,A), (Wchens AChen))

9: M — M —nq-V pm(—Loss(6, M; W)) > Maximize the loss
10:  Sample w ~N?(0,1), (h,z) ~ N0, L) x N*"(0,1) of size 2bsz.

11: b9 «— PairNNy((h® z(’)) (W), 20)) for 1<i<j<d

12: & ¢+ Rad(1/2), £<—Radd(1/2)

13: A« BF (w, h, b, &, &)

14: W Chen s AChen + Chen-combine(w, A)

15:  Loss(0, M;w) < EUCFD,,((w,A), (Wchen, AcChen))

16: 6 < 0 —nq-VyLoss(6, M;w) > Minimize the loss
17: return PairNNy, M

W ]:>-
L-J \ -

llSL
——
Gaussian
2 xbsz 5
noise

Figure 4. A schematic of LévyGAN. Here bsz denotes the batch dimension, and we recall that nsz denotes
the total noise dimension, namely nsz=n X d.

samples, which are costly to generate and difficult to handle, we can now very efficiently
generate new “true” data on the fly, of any desired quantity and of just the right precision.
One could choose to iteratively apply Chen-combine several times, but we have observed that
training is slightly faster and more efficient when only a single application of Chen combined
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is used in Algorithm 5.1. This is because using two Chen-combines produces two fewer “true”
samples, and reducing the sample size leads to a poorer estimate of the empirical unitary
characteristic function distance (EUCFD).

6. Numerical experiments. We train the model in d =4. Note that by the architecture
of the generator, the model can be used to generate Brownian Lévy area for any d’ <d. The
model can be also used to generate Lévy area for any d’ > d; however, the performance might
be deteriorated as training is not done for higher dimensions.

We performed the training procedure as illustrated in Algorithm 5.1. On the generator
side, we used a feed-forward neural network. The activation function is chosen to be the
LeakyReLU function. On the discriminator side, we parameterize 128 linear maps onto the
Lie algebra of degree 3 to mimic the empirical distribution used to compute UCFD mentioned
in subsection 4.1. The total number of training iterations is set to be 2500, where we ob-
served the convergence on the marginal 2-Wasserstein metric on real data. We optimize both
the generator and discriminator using stochastic gradient descent and the Adam optimizer.
We set the batch size to 23 and the learning rate for generator/discriminator to 0.001,/0.01,
respectively. Both learning rates decay for each 500 iteration. Finally, we set itery to 3.

We conducted a hyperparameter grid-search (see section SM5 of the supplement ary mate-
rial), evaluating the model performance according to the marginal 2-Wasserstein metric, with
our optimal architecture as follows:

e Feed-forward neural network with 3 hidden layers and 16 hidden dimensions.
e LeakyReLU activation function with slope =0.01.
e Gaussian noise with n = 3.

Finally, we assess the performance of our model on the generation of the coupled process
for d=2, 3, 4, and 8. We consider the following test metrics:

(1) Marginal 2-Wasserstein metric.

(2) Cross moment metric.

(3) Characteristic function distance using maximum mean discrepancy with different ker-

nels.

(4) Empirical unitary characteristic function.

A detailed explanation of each test metric can be found in section SM4 of the supple-
mentary material. We make comparisons with two baselines, Foster’s and Davie’s moment
matching generator [10, 6], and we regard the truncated Fourier series [20] of Lévy area up to
an L? precision of 107* as “true” samples. A comparison of the computational time taken to
generate approximate samples of Lévy area using each method, together with a summary of
the marginal distributional performance is found in Table 1. The performance of each method
with respect to the joint distributional metrics is summarised in Table 2. Finally, we provide a
numerical SDE example for the log-Heston model using different estimators for fake Lévy area.

6.1. SDE example. In this section, we will demonstrate how “fake” Lévy area can be
used within SDE numerics to achieve both high order weak convergence as well as multilevel
Monte Carlo (MLMC) variance reduction. Although the synthetic Lévy area only needs to
exhibit the correct mean and covariance to give high order weak convergence, we show that the
bias introduced by the MLMC estimator is negligible in practice due to the small Chen error
inherent in our generative model. A secondary motivation is to compare the various Lévy area
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Table 1
Marginal distribution fitting and computational efficiency for the different generative models. The genera-
tion is done using NVIDIA Quadro RTX 8000. The marginal Wa error is calculated with respect to the joint
process generated by the Fourier series. Tests are performed with 2%° samples. The final column contains the
results of the Fourier algorithm with 19 terms in the expansion (far more terms were used to generate “true”
samples). This truncation has been chosen so that the performance is comparable to LévyGAN and Foster’s
method.

Test Metric LévyGAN Foster Davie Fourier series
Computational time (s) 0.019 0.0071 0.002 3.1
Marginal Ws (1072) .246 £+ .013 .254 4+ .010 2.03 +.013 .27 £ 0.008
Table 2

Fourth moment and MMD-based metrics across different models and Brownian dimensions.

Dim Test metrics LévyGAN Foster Davie

Fourth moment .004 £+ .002 .002 +.002 .042 4+ .001

5 Polynomial MMD (1075) .341+ .070 .654 4+ .131 .646 £+ .188
Gaussian MMD (1076) 1.474+.125 1.44+ 128 34.6 £+ .683
EUCFD (1072) 1.52+.213 1.924+.113 10.1 £+ .851

Fourth moment .004 4+ .002 .004 4+ .002 .043 4+ .001

3 Polynomial MMD (10’5) 2.18 +.568 2.30 £ .732 2.26 +.773
Gaussian MMD (1076) 1.87 +.002 1.84 +.001 16.3 +.001
EUCFD (10~?) 1.88 +.063 2.03 £.034 185+ 1.11

Fourth moment .004 + .000 .006 £ .002 .043 £.002

A Polynomial MMD (107°) 4.04 + .436 4.65+1.31 5.62 + .808
Gaussian MMD (1079) 1.90 +.001 1.90 +.001 263 +.003
EUCFD (10_2) 1.92 +.026 2.03 +.036 17.5 4+ .483

Fourth moment .006 + .001 .006 + .002 .044 4+ .000

g Polynomial MMD (10_2) 1.13+.019 1.154+.030 1.31 4+ .066

Gaussian MMD (10~%) 1.914+.001 1.914+.000  1.92+4.003
EUCFD (10~2) 1.994.002 1.994.001  2.054.003

generators and show that our GAN-based approach performs indistinguishably from previous
state-of-the-art methods—all while taking less time to generate samples.
Consider the Ité6 SDE from (1.1),

d
(1.1 revisited) dXy=f(X)dt+ > (X)W, Xo=uo,
i=1

where the solution X takes values in R¢. To estimate the solution to (1.1), one typically uses
a discretization scheme that generates approximate sample paths of the solution X. Often
the objective is to approximate quantities of the form

(6.1) Elp(X) [ Xo =],

where ¢ may depend on the whole sample path (Xt)te[O,T]a though commonly it is only a
function of the solution X7 at the terminal time 7. To measure the error of a particu-
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lar discretization scheme, there are two standard metrics: weak and strong error. We will
only evaluate the weak error for reasons discussed in subsection SM7.1 of the supplementary
material. To accurately determine the error of various numerical schemes, we seek a multidi-
mensional SDE and a quantity of the form (6.1) which is known semianalytically. Thankfully,
such an example exists: the price of a European call-option under the log-Heston model. The
stochastic volatility model is defined by the two-dimensional SDE

1
62) AU, = <7° - 2vt> dt +/ViawV, Uy€eR,

AV, = 5(0 — V)dt + o/ VidW,?, Vy >0,

for a pair of independent Brownian motions W) and W), To ensure the volatility term V
remains positive, we must enforce the Feller condition 2k6 — o2 > 0. The payoff of a European
call-option for a price process S with S :=exp(U) is given by

p(S):=eT (" — K) "

where r is the discount rate, K the strike price, and T" the maturity. For the derivation and
form of the semianalytic formula for the expected value of the above, we refer the reader to
[46, 5].

6.2. Numerical results. We compare four discretization schemes combined with multilevel
Monte Carlo (MLMC) [16]. We briefly recall that MLMC is based on the idea of a telescoping
sum of expectations. Indeed, assume we have L levels, and that Y; is an estimator for X,
based on a discretization scheme with step-size h;; then we may write

L
Elp(Y2)] = 3 E[p(Y) - p(¥i1)].,
=1

with Yy =0. The MLMC estimator is then defined by

L n
(6.3) Prvvis = Y Py where By, = ;Z (P07 = (7)),
=1 i=1
where Yli’l is the ith sample of the estimator Y; used on level [, and Yf;’a is the ith sample of
the estimator Y;_; that is used on level [. It is important to note that the pairs (Yf’l,Yf_’ll)
are coupled: the underlying Brownian path for each member of the pair is the same. In our
case, the path on the lower level will be coarse (i.e., a large step-size) and the higher level
will be fine (i.e., a small step-size). The standard condition used to ensure convergence of the
telescoping sum of expectations is given by

E [w(Yl"l)} =E [QO(Y?’H_l)} :

However, when incorporating a fake Lévy area term, our coupling at each level is defined as
follows.
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(1) The Brownian increments for the fine path Y are generated with step-size h;, with
the increments of fake Lévy area generated usmg some estimator AM.

(2) The Brownian increments on the coarse path Y};l are computed by pairwise summing
the increments of the fine path. The fake Lévy area used on the coarse path is com-
puted using one iteration of Chen’s identity applied to the increments and areas of the
fine path.

This scheme, however, introduces a bias; namely, the distribution of the fake Lévy area
used for the fine path at level [ will not be the same as the distribution of Lévy area used for
the coarse path at level [ + 1. We may write the effect of this by amending the telescoping
expectation to be

ZE[ (Yi(A") = o (Yima (Ae))| = iE[ Yi(AM)) = p(Yia (A7)

=1

desired telescoping expectation

+ZE[ (Vi1 (A7) = (Vi1 (A

Vv
bias term

where we have emphasized the dependence of the fine level on the fake area gv’“ and depen-
dence of the coarse level of one Chen iteration of this fake area, denoted by A]élc. The bias
introduced is exactly the second sum. We aim to show empirically that this sum is small in
comparison to the size of the weak error due to the SDE discretization. In order to minimize
this sum, the distribution of an estimator A must be as close as possible to the distribution
Chen-combine(A); this is exactly the criterion used to train our generator.

The four numerical schemes in the comparison are the no-area Milstein, antithetic Milstein
[17], the Strang splitting method, and a “Strang” log-ODE method. Only the final method
incorporates the fake Lévy area. For details on the schemes, see subsection SM7.2 in the
supplementary material. The first two schemes were included to demonstrate that the rate
of variance reduction is comparable to two popular schemes, while the weak error rate of the
Strang log-ODE method is (conjectured to be) O(h?), where the other methods achieve a
weak error rate of O(h). The numerical simulations were performed with a constant time-step
h; on each level satisfying h; = %hl,l. On the coarsest level we use the time-step hg = %
for the Milstein methods and hg = 1 for the Strang methods; this results in the variance on
this level being approximately equal across the three methods. The number of sample paths
on each level satisfies n; = %nl_l with ng = 227, so the computational effort on each level is
approximately constant. We repeat the experiment 40 times and report the average result.
We fix the log-Heston model parameters to be T=1, r=0.1, K =20, k=2, §=0.1, 0 =0.5,
Uy = log(20), and Vp = 0.4. The following plots report the multilevel variance defined by
Var[p(Y,") — gp(Yllll)], and the empirical error given by |@n,, .n, — Pirue|, Where Py is the
true price of the call-option under the log-Heston model.

In Figure 5a we see that the multilevelvariance of the Strang log-ODE method decreases
at an approximate rate of O(h?). The rate for the Milstein antithetic scheme appears slightly
higher, while the variance reduction rate for the standard Milstein method is clearly lower. As
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Figure 5. Plots of multilevel variance and empirical error. The top pair of plots compare the Milstein
scheme without area, Milstein antithetic, and Strang log-ODE scheme with fake Lévy area from our gener-
ator (labeled “Strang-Net”). The bottom pair compare the Strang log-ODE scheme using three different fake
Lévy areas. “Strang-T” indicates that the fake Lévy area is an independent Rademacher random variable with
the correct variance (the same random variable appearing in the Talay scheme), and “Strang-F” denotes Fos-
ter’s approximation. The “Strang-NA” line is the usual Strang splitting method, with “Strang-Anti” being the
antithetic version of this scheme.

expected, the weak convergence rate of both the Milstein and Milstein antithetic schemes is of
order O(h), while the weak rate for the Strang log-ODE with fake Lévy area is approximately
O(h?). Tt was conjectured in [11] that the Strang log-ODE method should attain this weak
convergence rate, and the experiments corroborate this hypothesis.

When using a fake Lévy area in MLMC, a key factor for the performance of the scheme
is how close the distribution of a Chen combined sample of Brownian motion and fake Lévy
area is to the distribution before performing the combine operation. Since we employed Chen-
training, our model succeeds in matching the distributions well enough to match and even
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Table 3
Approzimate bias introduced per level by the use of different fake Lévy areas. We use 22° sample paths on
each level.

Level 0 1 2 3
Strang-Net (107%)  —0.402  0.313  —0.133  —0.652
Strang-F (107%) 0.361 0.848  0.0714 1.31
Strang-T (10™%) -17.0 4.33 -1.79 —-1.10
Table 4

The average time taken across 25 runs for the Milstein and Strang log-ODE methods to attain a target
RMSE. We use the algorithm of [16, section 5] to determine the number of samples on each level and the
stopping condition on the number of levels used on each run. All random variables are generated in torch on
GPU, with the numerical schemes implemented in numpy on CPU.

RMSE 0.1 0.0441 0.0129 0.0086 0.0057 0.0038 0.0025
Milstein (s) 0.0097 0.0256 0.376 1.03 2.86 8.63 23.6
LévyGAN (s) 0.0102 0.0128 0.142 0.311 0.806 2.25 5.83

outperform Foster’s method. In Table 3, we record the bias introduced at each level, as in
(6.4), for each of the fake Lévy areas.

For LévyGAN and Foster’s method, the bias introduced on each level of the telescoping
sum is of order 2711; this is far smaller than the weak error seen in Figure 5d. However, it is
possible that the accumulated bias may then be of order 279 on the finest level, which may ac-
count in part for the slight deviation from the line at level 4. It is also clear that it is not enough
for the fake Lévy area simply to match the mean and variance of true Lévy area, as demon-
strated by the poor performance of the “Strang-T” method. However, we do note here that a
scheme matching the conditional variance of Lévy area given a Brownian increment performed
similarly to Foster’s method in previous experiments. We may also see from the performance of
the Strang splitting method that, without the fake Lévy area terms, one achieves only a weak
order convergence rate of O(h). It is interesting to note, however, that Figure 5¢ indicates
that the fake Lévy area need only match the mean and variance of true Lévy area to obtain
improved variance reduction at each level. Even the “Strang T” method has the same variance
reduction rate as the more sophisticated techniques despite having poor empirical error.

In practice, one usually wishes to obtain some target root mean-squared error (RMSE)
with minimal computational cost. In this setting, for two numerical schemes with variance
reduction O(h?) with 8 > 1, the scheme with higher order weak convergence is not necessarily
the preferred one. By the complexity theorem of Giles [16, Theorem 3.1], the optimal number
of sample paths on each level should be asymptotically proportional to O(hl('B +1/ 2). As such,
the computational effort should be expended mostly on the coarse levels in the regime 5 > 1,
driving one towards discretizations that are computationally cheap on the lower levels. Since it
is difficult to measure the computational complexity of the Strang log-ODE scheme with fake
Lévy area produced by a generative model, we use the following approach. We implement
the algorithm of Giles [16, section 5] for the Milstein scheme and Strang log-ODE scheme
and compare the average time taken to achieve a selection of target RMSEs between 0.1 and
0.0025; see Table 4 for the results.
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Remark 6.1. We see from Figure 5c that the Strang-antithetic scheme achieves the highest
order variance reduction with a first order weak error rate. As noted above, both factors
play a role in the overall time required to achieve a desired RMSE, and it is possible that
the higher order variance reduction of the Strang-antithetic scheme may outperform the high
order weak error of the LévyGAN- based approach. However, it was recently shown by Iguchi
et al. [19] that the antithetic method can be combined with weak estimators of Lévy area to
achieve high order variance reduction. We believe that combining their approach with ours
would result in a scheme with both high order variance reduction and weak error rate.

We conclude this section by reiterating that the use of extra random variables to attain
higher order weak convergence has become a popular technique; see, for example, [44, 38, 37].
But, to the best of our knowledge, it has not yet been observed that the use of fake Lévy area
combined with standard multilevel Monte Carlo can also achieve high order weak convergence
and variance reduction.

7. Generating other integrals of Brownian motion. To demonstrate the wider appli-
cability of the Chen-training paradigm, we turn our attention to generating the integral
Cst = fst Wf’T dr where W is a 1-dimensional Brownian motion. While a detailed discus-
sion of this integral is beyond the scope of this paper, we note that numerical methods for
scalar noise SDEs can achieve second order strong convergence if this integral is provided
alongside Brownian increments and space-time Lévy areas (see [13, 45] for further details).
Analogously to the procedure outlined in this article for the generation of space-space Lévy
area, we may attempt to train a network to sample from the distribution Pc, ,|w, ,=w, Ho,=h>
where H is the space-time Lévy area defined in Definition 3.1. Due to Brownian scaling, the
distribution of Cp 1 satisfies the following scale invariance and modified Chen’s relation.

Proposition 7.1 (scaling and Chen'’s relation for C'). Let W and C be defined as above, and
let0<s<t. Then

Woa
2

We note that since Cp; is 1-dimensional and nonnegative, neither pair-net nor bridge-
flipping is required. We can then train a feed-forward neural network with 2 hidden layers, 16
hidden dimensions, Gaussian noise of dimension 3 in addition to w and h, ReLLU activation
function, and the absolute value applied to the output to maintain positivity. We then train
using the Chen relation described in the preceding. To compare our output, we generated
“true samples” for fixed pairs (w, h) by taking fine discretization of fst Ws%r dr using the Diffrax
library [21].

Our method achieved a 2-Wasserstein error of 3.27 x 107°. Just as for space-space Lévy
area, we can generate a Gaussian variable with the correct conditional mean and variance (see
[13]). However, this achieved a 2-Wassertein error of 7.67 x 10~#, which is 20 times higher
than our error. This experiment demonstrates that the Chen-training approach is not limited
to only Lévy area but is applicable to other integrals of Brownian motion that have relevance
in the numerical solutions of SDEs.

05775 i (t - 8)20071 and 0071 = Coé + C%,l + WO,% ( + HéJ) .

8. Conclusion and open directions. While stochastic analysis techniques are often used
in generative deep learning, this article appears to be one of the first to show that deep-learning
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methodology provides meaningful results in an application to stochastic analysis. Indeed, we
have demonstrated a proof of concept that the techniques used in LévyGAN have a place in the
field of numerical solutions to SDEs. We remark here though, that careful consideration of the
domain-specific analytical properties was required. In particular, regardless of the network
size or architecture, LévyGAN in its initial form was an order of magnitude less accurate
without the inclusion of both bridge-flipping and pair-net.

One open direction for future research is a careful analysis of the conditions required on the
fake Lévy area in order to achieve optimal convergence rates for the MLMC scheme discussed
in subsection 6.2. More applications of fake Lévy area may be found in the field of stochastic
flows and accurate approximations to the level two rough path of Brownian motion.

An application of particular interest would be a GAN-based adaptive SDE solver, that is,
a method that first generates a coarsely discretized path, before checking whether the step-
size of the solver should be reduced. Such functionality is desirable for use in neural SDEs
[28, 22, 23] and Logsig-RNN generators [36], which are both powerful methods for modeling
noisy time series data. In the context of Lévy area generation, this would require the ability
to generate Lévy area and Brownian increments over two half intervals given the Lévy area
and Brownian increment over the larger interval. One approach would be to use the analytical
characteristic function given in [15] which provides the joint characteristic function evaluated
at multiple time points. However, we expect the training time to be rather long, since the
evaluation of the characteristic function involves solving a recursive system of matrix Ricatti
equations in addition to a system of independent linear matrix ODEs of order one.

Finally, it is possible to extend the Chen-training approach. This might take several forms:
one might derive a Chen-type relation for higher order terms in the polynomial expansion of
Brownian motion (e.g., for H and b) as in section 7; use the ordinary Chen’s relation for the
generation of higher order terms in the log-signature of Brownian motion; or generate Lévy
areas for certain Lévy processes.

For the third application, our approach may be applicable to the generation of Lévy areas
of a-stable Lévy processes, where moment matching approaches are not possible, since these
processes have unbounded variance for aw < 2. Indeed, the a-stable Lévy process X;* satisfies
the scaling property X = 1/ *X¢{ in addition to independent and stationary increments.
Combining these properties, the distribution of its Lévy area (defined using It6 integration
with jumps) should also be invariant under a suitably rescaled version of Chen’s relation. One
could then attempt to train a network under this Chen relation, analogously to our approach
for Brownian motion.
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