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ARTICLE INFO ABSTRACT

Keywords: Understanding optic nerve structure and monitoring changes within it can provide insights into neurodegener-
MRI ative diseases like multiple sclerosis, in which optic nerves are often damaged by inflammatory episodes of optic
Optic nerve neuritis. Over the past decades, interest in the optic nerve has increased, particularly with advances in magnetic
Segmentation L resonance technology and the advent of deep learning solutions. These advances have significantly improved the
Neurodegenerative disease . o . . . L. . . . .
Deep learning visualisation and analysis of optic nerves, making it possible to detect subtle changes that aid the early diagnosis
and treatment of optic nerve-related diseases, and for planning radiotherapy interventions. Effective segmen-
tation techniques, therefore, are crucial for enhancing the accuracy of predictive models, planning interventions
and treatment strategies. This comprehensive review, which includes 27 peer-reviewed articles published be-
tween 2007 and 2024, examines and highlights the evolution of optic nerve magnetic resonance imaging seg-
mentation over the past decade, tracing the development from intensity-based methods to the latest deep

learning algorithms, including multi-atlas solutions using single or multiple image modalities.

1. Introduction

The optic nerve (ON) connects the eye to the brain (see Fig. 1).
Morphologically, ONs are thin, tortuous structures that extend from the
globe of the eye to the optic chiasm, exhibiting significant anatomical
variability in size, shape and curvature, as well as variable amounts of
surrounding cerebrospinal fluid (CSF) along their length (van Elst et al.,
2023). The ONs transmit all visual information from the retina through
to the hemidecussation at the optic chiasm. Thereafter, visual informa-
tion travels along the optic tracts to synapse in the lateral geniculate
nucleus (see Fig. 1). From there, visual information is conveyed in the
optic radiation which synapses in the primary visual cortex. The ON is a
bundle of axons (the healthy ON has between 693,000 to 1685,000 fi-
bres), the number of which declines substantially as we age (with an
estimated annual loss of 4000 to 5426 nerve fibres), and there is no
significant difference between males and females, or between the left
and right optic nerves (Chow and Paley, 2021).

ON structural features can be very useful to understand disease in-

vivo. Associations of structural changes in the ON with objective mea-
sures of function such as vision and visual evoked potential (VEP), can
be studied. The ON is often the earliest site affected in multiple sclerosis
(MS), with optic neuritis presenting as visual impairment associated
with focal damage of the nerve. In addition, the ON is a critical structure
in radiotherapy planning and neuro-oncology, as it is one of the organs
at risk because of its sensitivity to radiation. Excessive radiation expo-
sure can lead to optic neuropathy, resulting in vision impairment or even
blindness. Therefore, precise delineation of the ON is essential for
effectively treating tumors located near the optic pathways.

The growing interest in the ON is linked to technological improve-
ments in magnetic resonance imaging (MRI). In 2007, (Hickman, 2007)
reviewed major advances in ON segmentation in MS over the previous
10 years. These advances started with the demonstration of ON atrophy
after optic neuritis particularly in MS, thanks to the development of fat-
and CSF-suppressed imaging sequences (Yiannakas et al., 2010).
Another milestone in ON research, beyond segmentation, was the ability
to measure magnetization transfer ratio (MTR) over the entire ON,
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providing an indication of the degree of demyelination/remyelination
within the lesion (Hickman, 2007). Additionally, the ability to measure
microstructural properties in the orbital ON was made possible by the
emergence of quantitative diffusion-weighted imaging (DWI) tech-
niques using diffusion tensor imaging (DTI) measurements
(Wheeler-Kingshott et al., 2002; Wheeler-Kingshott et al., 2006). These
acquisitions introduced the possibility to perform nerve-tracking anal-
ysis using zonal oblique multislice echo planar imaging (ZOOM-EPI),
which has a shortened echo train length that increases resolution and
decreases distortions, thereby visualising axonal integrity in structures
as small as the ON (Dowell et al., 2009). In this manner, MRI advances
have helped to increase resolution, sensitivity and contrast to noise
ratio, thereby improving visualisation and easy detection of small
structures like the ON (Chow and Paley, 2021). MRI ON segmentation
allows direct visualisation of pathology in the ON for a wide range of
neurodegenerative diseases. It also has an important role in planning
radiotherapy interventions. Although there are published reviews on
segmentation of “organs-at-risk” using computed tomography (CT)
mainly for planning radiotherapy treatments (Cardenas et al., 2019;
Vrtovec et al., 2020; Liu et al., 2023), none are dedicated specifically to
MRI ON segmentation.

In this review, we will discuss the evolution of MRI ON segmentation
over the past decade, from intensity based methods or multi-atlas so-
lutions to the latest deep learning algorithms using single or multiple
image modalities. In this era of the artificial intelligence (AI) solutions
for precision medicine, effective segmentation techniques that allow
precise measurement of nerve atrophy and lesion load in neurodegen-
erative diseases are key indicators of progression and severity. These
techniques could also improve the accuracy of predictive models,
leading to better patient management and personalised treatment
strategies.

2. Material and methods

Our aim is to bridge the 15-year gap from 2007 to the present and so
we only included works published from 2007 (when Hickman et al.
published their comprehensive review (Hickman, 2007)) up to the 30th
of August 2024. This review used the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) methodology (Page
et al., 2021). It includes peer-reviewed journal articles ON automated
segmentation using MRI techniques. We conducted a PubMed search to
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identify pertinent articles. PubMed was chosen as the primary source of
this review due to its comprehensive coverage of peer-reviewed
biomedical literature, ensuring the inclusion of high-quality and rele-
vant studies on the topic. The search criteria included the following
search terms: "optic nerve", "magnetic resonance" and “automatic” or
“automated”, alongside "segmentation” or "detection” keywords. Addi-
tionally, the bibliographic references cited in the identified papers were
scrutinised to find potential missing articles. Non-peer-reviewed arti-
cles, such as those found on preprint online repositories and conference
proceedings were not included.

When available in their respective articles, we have also provided
metrics to quantify the algorithms’ performance in segmenting the ON.
As an evaluation score, the reviewed articles have included the Dice
Similarity Coefficient (DSC), which is a measure of the spatial overlap
between two masks. Higher values are better, and its range goes from
0 to 1 (Dice, 1945). The DSC is calculated as follows:

2 x |GT N PM|

DSC(GT,PM) = TP

DSC is a function of the predicted mask (PM) and the manual binary
segmentation masks, which are considered the ground truth (GT)
(Prados et al., 2017).

The Hausdorff Distance (HD) has been used in order to evaluate the
accuracy of shape and boundary predictions since it is an effective in-
dicator to assess contour similarity, and is occasionally employed as
Hausdorff distance 95th percentile (HD95) to eliminate outliers.

D(X-Y) =max(d""), i=1. Nx
HD(GT,PM) = max(D(GT—-PM), D(PM—GT))

where d is the Euclidean distance between voxel x and y (van Elst et al.,
2023; Prados et al., 2017).
The Hausdorff distance 95th percentile (HD95) is defined as:

HD95(GT,PM) = maxosy,(HD(GT,PM))

Another common measure to assess the performance is using the
Symmetric Mean Absolute Surface Distance (MSD), which captures the
average Euclidean distance between the predicted and ground truth
values (Prados et al., 2017).
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Fig. 1. A. Schematic overview of the visual pathway; B. Optic nerve anatomy; and C. Retinal anatomy. The optic nerve connects the retina to the brain and is
surrounded by cerebrospinal fluid from the globe of the eye to the optic chiasm. It can be divided into intraocular, intraorbital, intracanalicular and intracranial
segments. The retina is composed of optic nerve axons, ganglion cells (cell bodies of axons that form the optic nerve), bipolar cells, rods, cones, and pigment

epithelium, amongst others. Abbreviations: lateral geniculate nucleus (LGN).
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_ 1 Ner | GT—PM New | spM—GT
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where Ngr and Npy, are the total number of voxels in the contour for GT
and PM respectively.

3. Results

Fig. 2 summarises the identification of publications included in this
review. From the initial 44 articles identified in the previously defined
PubMed searches, in a first screening one was excluded as it had been
published before 2007, another was Hickman’s review itself and another
was a recent review about MRI radiotherapy methods (Liu et al., 2023).
Afterwards, the remaining articles were assessed and 22 of those were
discarded: 12 because the ON was not segmented, 5 did not use MRI, 2
were clinical applications of other methods, one was a conference paper,
another featured manual segmentation and the last one was a review of
ensemble methods. Additionally, 20 more articles were identified from
the bibliographic references of the previously selected papers. Of those,
6 were discarded for being conference papers, 6 for not segmenting the
ON, 2 for not using MRI and 1 for performing a manual segmentation of
the ON. Therefore, 19 papers found via the PubMed search and 8 via
citation searching were included in this review, resulting in a final set of
27 papers.

We categorised the 27 articles from this review into two main groups
based on the methodology that they employed. The first group com-
prises classic or traditional techniques, most of which predate the
appearance of deep learning. This group, which includes 15 papers (see
Table 1), encompasses intensity based methods, single and multi-atlas
template techniques, and other non deep learning based approaches.
The second group comprises 12 papers (see Table 2) that use deep
learning segmentation techniques to delineate the ON. Each of these two
main groups have been further divided into two subgroups based on the
number of images involved. Within these two categories, we distinguish
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between single image modality, which benefits from a single MRI
acquisition protocol for delineating the ON, and multi-modality
approach, which includes more than one image type, sometimes from
different sources (i.e. CT scans), to leverage different contrast to opti-
mally delineate the ON boundaries.

3.1. Classical approaches

ON segmentation, similar to other tissue or organ segmentation,
initially used techniques that were intensity based, single or multi atlas/
template propagation or shape models which are recognized in this
paper as classical approaches. Within this group, we categorise the
techniques into single modality or multi-modality, depending on the
number of input images they used.

3.1.1. Single image modality

The included publications in this section use only MRI as input which
typically is T1-weighted (T1w), T2-weighted (T2w), T1 with Gadolin-
ium (Gad), proton density (PD) or even DWI.

3.1.1.1. Single atlas or intensity based methods. In 2008, (Isambert et al.,
2008). presented a single atlas-based segmentation approach on
T1l-weighted MRI to segment the ONs. This method was named
atlas-based automatic segmentation (ABAS). The ABAS is composed of
an synthetic MRI or atlas of the brain on which each cerebral structure of
interest was manually delineated by an expert using a pair of rigid
registered CT/MR images. Using ABAS, the labels from the atlas were
automatically propagated to the input image.

Yiannakas et al. (2010, 2013), and then later (Nguyen et al., 2018),
both used an Active Shape Model (ASM) segmentation to
semi-automatically delineate the ON. This model captures both the
shape of deformation of structures and the intensity variations. Firstly,
the ASM is constructed. Manual segmentations of the lens and ON were
performed and then used to define a volume of interest (VOI) in the eye
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Fig. 2. PRISMA 2020 flow diagram for new systematic reviews. The process of identification of eligible articles is illustrated.
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Table 1
Summary of published articles that have used classic methods for optic nerve segmentation. From left to right; number of imaging modalities used, the year of
publication, reference, short description of each study, imaging modalities used, summary of results, and specific disease or application. The highlighted results only
apply to the optic nerve, which if not available, the whole visual pathway was considered. Results are derived from different datasets as reported by the respective
studies.

Modality ~ Year Author Short description Imaging modalities Results Disease /
Application
Single 2008  Isambert et al. Atlas-based automatic segmentation software (ABAS) Tlw DSC = 0.38 (range, Radiotherapy
(2008) 0.40-0.53)
2010  Yiannakas Active Shape Model (ASM) FSE - Atrophy
et al. (2010)
2011  Hernowo et al. Segmentation based on voxel-based morphometry (VBM) using ~ Tlw - Glaucoma
(2011) a study-specific tissue probability map (TPM).
2013  Yiannakas Active Shape Model (ASM) T2w - Atrophy
et al. (2013)
2014  Ramli et al. ON segmentation using the NeuRoi Software followed by Tlw - Glaucoma
(2014) manual outline refinement.
2014  Panda et al. Several multi-atlas label fusion algorithms are assessed. T2w DSC = 0.81, HD = MS and mimics
(2014) 2.18 mm and MSD =
0.41 mm
2016  Harrigan et al. Multi-atlas segmentation T2w - MS and mimics
(2016)
2018  Nguyen et al. Active Shape Model (ASM) T1w contrast-enhanced DSC=0.82and HD =  Uveal melanoma
(2018) and non-contrast- 1.86 mm
enhanced
2021 Heetal Four different tractography methods dMRI - Optic nerve
(2021) related diseases
2022  Crouzen et al. Automated atlas-based segmentation Tlw Internal cohort Radiotherapy
(2022) DSCp, = 0.83 £+ 0.04
DSCg = 0.84 £+ 0.05
External cohort
DSC;, = 0.84 + 0.10
DSCg = 0.85 £+ 0.10
2022  Tanetal. Three segmentation methods: Adaptively Regularized Kernel- Tlw or T2w - Optic neuritis

(2022) based Fuzzy-C Mean (AFCM), Level Set Method (LSM) and
Multiplicative Intrinsic Component Optimization (MICO); and
three interpolation methods: Reverse Diffusion (RD), Iterative
Curvature Based Interpolation (ICBI) and Contrast-Guided (CG)
2023  Fengetal. Gradient-based edge detection with skeletonization (GES) with ~ Tlw

DSC = 0.81 + 0.04 Optic nerve

(2023) bicubic interpolation related diseases

2024 Chow et al. Three segmentation methods: spatial-FCM (sFCM); modified- PD or T2w DSCpp = 0.92 + 0.01 Optic nerve
(2024) FCM (mFCM); and LSM; and three interpolation methods: DSCraw = 0.88 £ 0.01 related diseases

Lanczos; iterative curvature-based interpolation (ICBI); and CG
Multi 2011  Noble and Tubular structure localization algorithm T1w contrast-enhanced DSC =~ 0.80 Radiotherapy
Dawant (2011) and non-contrast-
enhanced and CT
2019  Miller et al. Semi-automated diffusion magnetic resonance imaging (AMRI) ~ dMRI and T1w - Glaucoma

(2019) tractography method

from specific MRI acquisitions or from a structural T1-weighted image.
Nguyen et al. (2018). used T1-weighted images with and without
contrast and obtained a DSC value of 0.82 and a HD of 1.86 mm for the
ON segmentation.

In 2011, (Hernowo et al.,, 2011). introduced a voxel-based
morphometry (VBM) approach over T1-weighted images to determine
the volume of the ONs. To do so, a study-specific tissue probability map
(TPM) is first computed by registering a set of brains to a common space,
followed by skull-stripping using the Brain Extraction Tool (BET). The
brains images are then divided into six tissue classes by applying the
FMRIB Automated Segmentation Tool (FAST) and an average tissue
class volume is created from all the segmentations in common space and
the average image from all the processed images, this average image is
going to be used as template reference (i.e. atlas) for the posterior seg-
mentations. Finally, any individual ON segmentation can be computed.
The source input T1-weighted image to process is segmented following
the VBM approach that is part of the Statistical Parametric Mapping
(SPM) software. In short, using the previously created TPM, the input
source image is registered and modulated in order to detect the different
tissue classes, including the ON.

Subsequently in 2014 and also using single modality, (Ramli et al.,
2014). measured the ON’s volume on T1-weighted MRI using the Neu-
Roi Software. The ON was identified on an axial MRI slice as an

isointense signal in the optic tract similar to brain white matter and
separated from the hypointense signal of the dural sheath. Finally, the
wall of the ON was manually outlined by drawing the region of interest
(ROI). The ON was outlined from the most anterior part of the visible ON
(posterior to the eye globe) to the anterior optic chiasm.

In 2022, (Tan et al., 2022). suggested a novel image processing mode
to address the limitations in MRI by studying three segmentation
methods and three interpolation methods on T1 and T2-weighted im-
ages. The methods were: Adaptively Regularized Kernel-based Fuzzy-C
Mean (AFCM), Level Set Method (LSM) and Multiplicative Intrinsic
Component Optimization (MICO); and the interpolation methods:
Reverse Diffusion (RD), Iterative Curvature Based Interpolation (ICBI)
and Contrast-Guided (CG). The MRIs were processed in two stages:
segmentation and interpolation to obtain an improved spatial resolution
to integrate the image processing of ONs as the diagnosis of optic
neuritis. The measurements of six datasets were compared with the
mean cross-sectional area of the normal ONs. The combination LSM-ICBI
over T1 images obtained the closest value (26.52 mm?) of mean
cross-sectional area to the reference value (27.51 + 0.83) mm?. In
T2-weighted images, the pair RD-LSM obtained the closest value (22.43
mm?) of area measurement to the reference value of (22.26 + 1.29)

IIlIIlZ.
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Table 2

Summary of published articles that have used deep learning methods for optic nerve segmentation. From left to right; number of imaging modalities used, the year of
publication, reference, short description of each study, imaging modalities used, summary of results, and specific disease or application. The highlighted results only
apply to the optic nerve, which if not available, the whole visual pathway was considered. Results are derived from different datasets as reported by the respective

studies.

Modality Year  Author Short description Imaging Results Disease /
modalities Application
s 2019 Chen et al. Recursive ensemble organ segmentation (REOS) framework Tlw DSC, =0.78 = 0.11 Brain cancer
(2019) HD;, = 3.20 £+ 2.20
mm
DSCg = 0.82 + 0.59
HDg = 1.80 £ 0.70
mm
2020 Mlynarski et al. Modified version of 2D U-Net CNN Tlw Gad DSCraw = 0.67 Brain cancer
(2020) DSCro = 0.87
HD = 6.30 mm
2020  Aietal. (2020) Spatial probabilistic distribution map (SPDM)-based two channel = Tlw or CT DSC = 0.86 + 0.01 Preoperative
3D U-Net HD = 3.56 + 1.89 planning
mm
2022 Dai et al. (2022)) Mask scoring R-CNN Tlw DSCp, = 0.67 + 0.11 Head and neck
HD95;, = 3.25 + 2.11 cancer
mm
MSD;, = 0.91 + 0.38
mm
DSCg = 0.68 + 0.11
HD95g = 2.96 + 1.32
mm
MSDg = 0.87 + 0.29
mm
2022  Marti-Juan et al. Specific image processing followed by an automated pipeline to T2w - MS and mimics
(2022) extract the optic nerve and a 3D CNN to detect ON lesions
2023  van Elst et al. 3D U-Net T2w DSC = 0.84 + 0.03 Retinoblastoma
(2023) DSCro = 0.91 + 0.04
HD95 = 0.60 [range
0.42 - 1.02] mm
Multi 2016  Mansoor et al. PAScAL (PArtitioned Shape and Appearance Learning) Tlw Gad, T2w DSC = 0.79 + 0.07 Several, tumors
(2016) and FLAIR
2019  Tongetal. Generative adversarial network (GAN) with shape constraint (SC-  Low-field MRI DSCp, = 0.72 + 0.05 Radiotherapy
(2019) GAN) and CT DSCg = 0.69 + 0.07
2020 Liu et al. (2020) Dual pyramid networks (DPN) Tlw and CT DSC;, = 0.72 + 0.12 Head and neck
HD95, = 3.15 + 5.14 cancer
mm
MSD;, = 0.94 £ 1.32
mm
DSCg = 0.72 + 0.20
HD95g = 3.14 + 5.11
mm
MSDg = 1.10 + 2.01
mm
2021  Dai et al. (2021) Dual pyramid networks (DPN) Tlw and CBCTs DSCp, = 0.78 + 0.05 Head and neck
HD95;, = 1.86 + 1.73 cancer
mm
MSD;, = 0.55 £ 0.18
mm
DSCr = 0.77 £+ 0.04
HD95g = 2.06 + 2.69
mm
MSDg = 0.58 + 0.32
mm
2023 Xie et al. (2023) CNTSeg T1w and dMRI DSC = 0.82 None in particular
2023  Alzahrani et al. Combination of atlas and 3D U-Net (Cicek et al., 2016) Tlw Gad and CT DSC. = 0.65 + 0.09 Radiotherapy

(2023)

MSDy;, = 0.09 £ 0.03
mm
DSCr = 0.68 + 0.08
MSDg = 0.09 + 0.03
mm

3.1.1.2. Label fusion or multi-atlas based methods. Rather than relying
on a single atlas label template or TPM, the label fusion or multi-atlas
based strategy is based on registering separately each single template
image from a database with multiple templates to the input subject
image. These pairwise warps are then used to transfer the template la-
bels into the input subject space. Then, a label fusion algorithm com-
bines the anatomical variability from all the registered templates to
generate the final segmentation, this process is accounting for individual

differences and improving the reliability of segmentation results.

Label fusion methods offer two main advantages: first across-subject
anatomical variability is better captured than in a single atlas, which can
be viewed as a parametric model that typically uses single mode dis-
tributions (e.g., Gaussian) to encode anatomical appearance, and, sec-
ond, the fusion of results coming from multiple registrations improve
robustness against occasional registration failures. The main drawback
is the computational burden introduced by the multiple registrations



C. Xena-Bosch et al.

and information fusion from the entire training data (Sabuncu et al.,
2010). Empirical results in these studies suggest that errors in the
manual labelling and registration procedures are reduced during label
fusion, resulting in more accurate segmentation.

On the ON, in 2014 (Panda et al., 2014). used a multi-atlas label
fusion algorithm on T2-weighted images. In this work, the template
database manual segmentation was built using the Medical Image
Analysis Processing and Visualization software package v7 (MIPAD) for
the full length of the left and the right ONs and the optic chiasm on all
the subjects. Once the template database was built, seven statistical and
multi-atlas label fusion algorithms to segment the ONs were assessed.
This included majority vote, simultaneous truth and performance level
estimation (STAPLE), spatial STAPLE, local weighted vote, non-local
STAPLE, non-local spatial STAPLE and joint label fusion. From these,
the most consistent segmentations were obtained by non-local spatial
STAPLE, which achieved a median DSC of 0.81, MSD 0.41 mm, and HD
2.18 mm for the ONs. Joint label fusion achieved a slightly superior
median performance for the ONs (DSC = 0.82, MSD = 0.39 mm, and HD
= 2.15 mm), but ultimately non-local spatial STAPLE was selected given
its slight advantage in the outlier reduction and lower surface distance
measures (Panda et al., 2014).

Some time later, in 2016 (Harrigan et al., 2016). also used a
multi-atlas segmentation approach to localise the ON and sheath on
T2-weighted MRI followed by a slice-wise Gaussian mixture approach
for fine tuning the obtained segmentations and constructing a model of
two concentric tubes. The combined approach from Harrigan et al. was
characterised by noisy results due to the slice-wise approach and with
difficulties to manage bended ONs.

Crouzen et al. (2022). developed in 2022 a multi-atlas-based seg-
mentation method using T1-weighted MR scans and rigid image regis-
tration to propagate the labels. The method performance is compared to
manual delineation by two specialists. The DSC of the left ON respec-
tively in the internal and external evaluation cohort was of 0.83 + 0.04
and of 0.84 + 0.10; and for the right ON, it was of 0.84 + 0.05 in the
internal evaluation cohort and of 0.85 + 0.10 in the external one.

3.1.1.3. Tractography-based and other methods. DWI has allowed the
opportunity to track white matter projections within the brain. These
tractography methods can delineate anterior and posterior visual path-
ways. They are characterised by the detection of the brain regions like
the ON using an automatic selection of strategic ROIs for seeding and
afterwards clustering a high definition of fibres that identifies the
structure.

He et al. (2021). investigated in 2021 the performance of multiple
tractography methods for reconstruction of the complete reti-
nogeniculate visual pathway (RGVP) including the four anatomical
subdivisions, using diffusion MRI (dMRI). The four different methods
included two methods based on the constrained spherical deconvolution
(CSD) model, the deterministic (SD-Stream) and the probabilistic
(iFOD1); and two that used the unscented Kalman filter (UKF) tractog-
raphy framework, the one-tensor (UKF-1T) and the two-tensor
(UKF-2T). For each RGVP subdivision, three ROIs were used,
including one of the ON ROIs (left or right), one of the optic tract ROIs
(left or right), and the optic chiasm ROL. Finally, the performance of
each tractography method across subjects was evaluated using the
normalised overlap score (NOS) method and a comparison to anatomical
T1-weighted-based RGVP segmentation. The UKF-2T method obtained
the highest score (NOS = 0.718), indicating the highest overlap of
tractography across subjects. The next highest scores were obtained by
iFOD1 (NOS = 0.605) and UKF-1T (NOS = 0.508). SD-Stream obtained
the lowest score (NOS = 0.398).

Two years after, in 2023, Feng et al. (Feng et al., 2023). proposed a
segmentation method called gradient-based edge detection with skel-
etonization (GES) for the cross-sectional on magnetic resonance (MR)
images acquired with T1-weighted fast spoiled gradient-echo without
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fat saturation. Firstly, the images were pre-processed with bicubic
interpolation to improve the spatial resolution. Secondly, the proposed
GES segmentation was applied to produce a distinct ON image. It was a
semi-automated method using prior knowledge of the location of the
ON. The edges of the ON were identified by finding the largest gradient
changes in signal intensity between the ON region and its surrounding
CSF. Particle swarm optimization (PSO) and level set method (LSM)
segmentations were applied for comparison. Manual segmentation
performed by a certified radiologist was used as the ground truth. The
bicubic-GES processed ON images were used for the quantitative mea-
surement on ten datasets. The DSC indexes were calculated for every
slice in each portion of the ON. The proposed GES segmentation
demonstrated superior results compared to PSO and LSM, obtaining a
mean and standard deviation DSC of 0.81 + 0.04.

Most recently, in 2024, (Chow et al., 2024). strived to find an opti-
mum and automated interpolation and segmentation method, in order
to improve the spatial resolution of the ONs on fat-saturated MRI, which
produced two types of images: PD and T2-weighted. They compared
three interpolation methods: Lanczos; iterative curvature-based inter-
polation (ICBI); and CG along with three segmentation methods:
spatial-FCM (sFCM); modified-FCM (mFCM); and LSM. Nine methods
were investigated by combining different interpolation and segmenta-
tion methods in a different order. Lanczos-mFCM was identified as the
best model in this study to process the ON images based on four factors:
image quality; DSC value; the percentage difference in the area; the
signal-to-noise ratio; and contrast-to-noise ratio. The best-identified
interpolation and segmentation combination was then applied to mea-
sure the ON mean area from 10 datasets. The Lanczos-mFCM method
produced ONs with DSC values of 0.92 + 0.01 from the PD images and
0.88 + 0.01 from the T2-weighted images measured on 10 datasets and
all slices. In addition, the Student’s t-test at 99 % confidence level
showed that there is no significant difference in the ON areas measured
using manually segmented and Lanczos-mFCM processed images.
Therefore, the manual and Lanczos-mFCM methods are equivalent.

3.1.2. Multi-modality images

Multimodal methods typically combine MRI and CT. A necessary
preprocessing step for these methods is a body registration between the
input MR and CT images. This group of approaches starts with (Noble
and Dawant, 2011). in 2011, who used both contrast-enhanced and
non-contrast enhanced T1-weighted MR, and CT images to segment the
ONs and chiasm. In this case, Noble et al. used a tubular structure
localization algorithm in which a statistical model and image registra-
tion were used to incorporate a priori local intensity and shape infor-
mation from an atlas. The structures of interest were segmented
manually in each of these MR/CT pairs, and the centerline of these
structures was extracted using a thinning method. Finally, a corre-
spondence between points along the centerlines was established. It is
relevant to mention that Noble et al. extended the ONs past the chiasm
and considered the ON and the contra-lateral optic tract as a single
structure. In addition, the optic chiasm was not explicitly segmented,
instead the chiasm is found as the intersection of the two ONs, which is
as its anatomical definition. The method resulted in a mean DSC of
approximately 0.80 for both ONs.

Subsequently, in 2019, (Miller et al., 2019). developed an advanced,
semi-automated dMRI tractography based method to identify and
analyse the ONs and using the T1-weighted MRI to place the ROIs. Using
a pair of diffusion scans, a low-noise field-corrected volume could be
created, allowing the ONs to be isolated using probabilistic tractog-
raphy. To improve the quality of the tractography, the two
reverse-encoded diffusion scans were combined into a single corrected
volume using the FMRIB Software Library (FSL) software (University of
Oxford, Oxford, England). Three ROIs along the brain’s visual pathway
were manually identified. The T1-weighted image was used to place the
left and right ONs and the optic chiasm by gross anatomy. Visual
pathways were derived through probabilistic diffusion-weighted
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tractography using MRtrix2 (Brain Research Institute, Melbourne,
Australia) and fiber groups were cleaned using the Automated Fiber
Quantification toolkit (Stanford University). Fibers were overlaid on the
anatomical T1-weighted volume and any fibers that were found to be
anatomically implausible were manually removed.

3.2. Deep learning approaches

An explosive growth in image processing power has helped the
development of Al solutions in many fields including ON segmentation.
This second group comprises articles which use deep learning solutions
to automatically delineate the ON; they are also split in two subgroups
depending on the number of input modalities.

3.2.1. Single image modality

In 2019, (Chen et al., 2019) used a recursive ensemble organ seg-
mentation (REOS) framework on T1-weighted MRI to segment six brain
regions, including the ON. Eighty images were retrospectively collected
with the gold-standard manual contours. Among these, sixty were
assigned for model training and five-fold cross-validation, and the other
twenty for testing. In these recursive frameworks, each brain region is
grouped into different levels according to key factors that determine
auto-segmentation accuracy. Large-volume and high-contrast brain re-
gions are assigned to low-level groups and small-volume and
low-contrast brain regions are assigned to high-level groups. Low-level
brain regions are segmented first and the segmented low-level organs
are used as constraints to guide the high-level brain regions segmenta-
tion. In each level, an ensemble of two 3D U-Nets, namely an EnUNet, is
present. The EnUNet architecture contains three modules each one of
them based on a 3D convolutional neural network (CNN) that localise
the brain region, then detect the contour and finally ensemble the results
obtained from the previous steps. The three modules are trained
sequentially. The proposed REOS method achieved a segmentation with
mean DSCs of 0.78 &+ 0.105, 0.822 + 0.59 % for the left and right ON,
respectively. The HD was 3.20 + 2.20 mm for the left ON and 1.80 +
0.70 mm for the right one.

At the start of the decade, in 2020, (Mlynarski et al., 2020). instead
used a modified version of the 2D U-Net CNN, on Gad-enhanced
T1-weighted images as well, addressing problems related to computa-
tional costs and missing ground truth segmentations for a subset of
classes. Feature maps of the encoding part as concatenated in the
decoding part in order to combine low-level and high-level features and
to ease the flow of gradients during the optimization process. The final
convolutional layer (the segmentation layer) of the standard U-Net had
two feature maps, representing pixel-wise classification scores of the
class 0 (“background”) and the class 1 (“segmented area”). The mean
raw DSC (fivefold cross-validation) of the ONs, obtained on a set of 44
MRIs after majority voting and postprocessing, was of 0.67, and the HD
was of 6.30 mm. To take into account the uncertain borders of the
ground truth, DSC ignoring mismatches on the border of the ground
truth, were also reported. As most mismatches between the outputs and
the ground truth were on noisy borders of organs, there was a consid-
erable difference between the two values. The DSC (five-fold
cross-validation) with tolerance to one voxel of the ONs, after majority
voting and postprocessing, was of 0.87.

In the same year, 2020, (Ai et al., 2020). proposed an automated
segmentation method for T1-weighted and CT scans which used a spatial
probabilistic distribution map (SPDM)-based two channel 3D U-Net to
make shape and position prior information available for deep learning.
First, an atlas was calculated by group-wise registration, and then it was
used to non-rigidly register each training volume image getting a
deformation field. Second, the deformation field was used to transform
the label of the corresponding training image to the template space, and
then all the warped labels were summed up to create an SPDM. Third,
the region of interest of the image and SPDM were sent to the network as
two channels, namely, SPDMfuse, to predict the final segmentation. The
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proposed method was evaluated and compared against a conventional
3D U-Net on two datasets, T1-weighted MRI and CT. The proposed
two-channel 3D U-Net (SPDMfuse) achieved a DSC of 0.86 + 0.01 and a
HD of 3.56 + 1.89 mm for the segmentation of the visual pathway as a
whole.

Dai et al. (2022). implemented later in 2022 a regional CNN (R-CNN)
on T1-weighted MRI for multi-organ auto-delineation, which was a
variation of mask R-CNN. This architecture predicts organ positions via
bounding boxes, outputting vectors for both the bounding box index and
the organ class. First, a backbone network extracted a coarse feature
map from the MRI patch, followed by a regional proposal network to
compute ROI candidates. These were used to crop the coarse feature
map (ROI alignment), and an attention gate highlighted informative
areas. Next, R-CNN refined the feature map and extracted the ROI for
each organ. The mask network then applied initial segmentations to the
refined feature map cropped by the ROI. Finally, the segmentation was
achieved through weighted averaging, fusing the initial segmentations
based on mask scores from the mask scoring network. Trained with
paired MRI and ground truth contours using four types of loss functions
the model could derive contours of the ON and other brain parts from an
input MRI. Five-fold cross-validation was performed for the assessment
of the method. The DSC of the left and right ON were 0.67 + 0.11 and
0.68 + 0.11 respectively. The HD95 of the left ON was 3.25 + 2.11 mm
and 2.96 + 1.32 mm for the right one. The MSD was 0.91 + 0.38 mm
and 0.87 £ 0.29 mm for the left and right ONs, respectively.

Marti-Juan et al. (2022) presented also in 2022 an automated pipe-
line to extract the ON from T2-weighted fat-saturated scans and devel-
oped a 3D CNN model that learned to detect ON lesions in them. Prior to
training, scans were processed to remove irrelevant parts of the image
and reduce its dimensionality, leaving only the ON and surrounding
area. Afterwards, a 3D CNN was implemented for the classification task.
It received as input the previously mentioned 3D crops of the ON and
was composed of two 3D convolutional layers, each one having a
rectifying linear unit non-linearity layer, a max pooling layer to reduce
dimensionality, and a dropout layer. A final dense, fully connected layer
led to a softmax layer that produced probabilities for the two possible
outputs: presence of lesion or not. Additionally, two simpler classifica-
tion models were implemented to compare the performance of the CNN
model and assess its robustness. The first model used a Support Vector
Machine (SVM) and the second one, a Random Forest (RF). Both models
had as input all the voxels of the 3D crop of the ON. The three models
were then evaluated. The only output of the network was a probability
value informing if the model detected a lesion in an image or not. The
results showed balanced accuracies of around 68 % for validation, with
similar sensitivity and specificity, so classification results were not
affected by the uneven proportion of positive and negative labels. Re-
sults of the model were consistently better than the two other classifi-
cation methods, obtaining results around mid 50 %, meaning that those
simpler models were not able to distinguish the presence/absence of ON
lesions.

van Elst et al. (2023). proposed in the following year, 2023, a 3D
pipeline for automatic segmentation and quantification of the on 3D
T2-weighted MRI, while accurately differentiating it from CSF along the
entire length of the nerve. Multicenter data were obtained and perfor-
mance was assessed in a tenfold cross-validation (n = 32) and on a
separate test-set (n = 8). The segmentation network architecture was
based on the U-Net and manual ON segmentations were performed by an
experienced reader using 3D Slicer for generating the training dataset.
The pipeline consisted of two main steps. Firstly, a 3D U-Net was
employed to automatically segment the ON from high-resolution
T2-weighted MRI. The dataset of each site was randomly split into two
subsets for training and testing with a partition rate of 0.8 and 0.2,
respectively. Secondly, they implemented a quantification method that
used the resulting 3D segmentations to extract ON diameter and
cross-sectional area along the centerline of the nerve. This automatic
approach addressed the limitations of other quantification methods by
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enabling quantitative measurements independent of image intensity
values or ON orientation. The segmentation network achieved a mean
DSC score of 0.84 and a median HD of 0.64 mm.The average spatial
agreement achieved by the model was a DSC 0.84 + 0.03 on the test-set.
By allowing a margin of one voxel tolerance to account for uncertainty at
the borders of the manual segmentation, the DSC was increased to 0.91
+ 0.04. The HD95 was 0.60 [0.42 to 1.02] mm on the test set.

3.2.2. Multi-modality images

The first deep learning based method that we found that uses
multimodal data was (Mansoor et al., 2016). which developed in 2016
the PAScAL (PArtitioned Shape and Appearance Learning) framework,
which automatically segmented the anterior visual pathway. To that
end, it used joint partitioned shape models steered by an appearance
model that was created using a combination of Gad-enhanced T1,
T2-weighted, and Fluid-attenuated inversion recovery (FLAIR) MRI
scans along with deep-learning features. PAScAL consisted in a shape
localization method using conditional space deep learning, a volumetric
multiscale curvelet transform-based intensity normalisation method for
robust statistical model, and optimally partitioned statistical shape and
appearance models based on regional shape variations for greater local
flexibility. A mean DSC of 0.78 + 0.12 was obtained for the segmenta-
tion of the entire AVP, and a DSC of 0.79 =+ 0.07 for the ON only using a
leave-one-out validation strategy.

Tong et al. (2019). developed later in 2019 a method based on a
generative adversarial network (GAN) with shape constraint (SC-GAN)
for fully automated head and neck (H&N) organs segmentation on CT
and low-field 0.35 T MRI. A deep supervised fully convolutional Den-
seNet was employed as the segmentation network for voxel-wise pre-
diction. Afterwards, a CNN-based discriminator network was utilised to
correct predicted errors and image-level inconsistencies between the
prediction and ground truth. The proposed segmentation method was
first benchmarked on a public CT dataset, and then on MR images. The
performance of the proposed SC-GAN was compared with GAN alone
and GAN with the shape constraint (SC) but without the DenseNet
(SC-GAN-ResNet). The DSC for the segmentation of the left ON using
SC-GAN was 0.72 £ 0.05 and 0.69 + 0.07 for the right ON.

In 2020, (Liu et al., 2020). developed a dual pyramid networks (DPN)
method combining both CT and synthetic MR (sMR), since the first
provides bony structure information and the latter superior soft tissue
information. Firstly, the sMR images were obtained by feeding CT im-
ages into the cycle-consistent adversarial networks (CycleGAN) model.
This model was trained using pre-aligned CT and MRI pairs to generate
sMR images based on CT input images. Then, independent features were
then extracted from CT and sMR separately: the first pyramid network
was used to extract semantic features from CT that represent bony
structures, and the second pyramid network was used to explore se-
mantic features from sMR that represent the soft tissues. These inde-
pendent features were then combined and refined via the DPN network
to segment several organs including the ON. Both the first and second
pyramid networks had a U-Net like architecture. Deep-supervision was
used to force the intermediate feature maps to be semantically
discriminative at each image scale. Fivefold cross-validation was used to
train and validate the proposed segmentation algorithm data. The ob-
tained mean DSC for the segmentation of the left ON was 0.72 + 0.12
and 0.72 + 0.20 for the right ON. The mean HD95 of the left ON was
3.15 £ 5.14 mm and 3.14 + 5.11 mm for the right one; while the mean
MSD was 0.94 4+ 1.32 mm and 1.10 + 2.01 mm for the left and right ON,
respectively.

One year later, in 2021, (Dai et al., 2021). adopted a similar
sMR-aided strategy from their previous work in (Liu et al., 2020). and
further improved the network architecture using DPNs. The obtained
DSC for the segmentation of the left ON using cone-beam CT (CBCT)+
sMRI was 0.78 + 0.05 and 0.77 + 0.04 for the right ON. The HD95 and
MSD for the left ON were 1.86 + 1.73 mm and 0.55 + 0.18 mm
respectively; and 2.06 + 2.69 mm and 0.58 + 0.32 mm for the right one.
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Xie et al. (2023). proposed in 2023 a novel multimodal deep-learning
based multi-class network for automated cranial nerves (CNs) tract
segmentation without using tractography, ROI placement or clustering,
called CNTSeg. To that end, they introduced T1-weighted MRIs, frac-
tional anisotropy (FA) images, and fiber orientation distribution func-
tion (fODF) peaks into the training data set. TCNTSeg consisted of two
parts: the segmentation network, to generate a cranial nerves tract
segmentation binary mask by entering data from different modalities,
and the data fusion module, to fuse the CNs features of different modal
data. The segmentation network was composed of a 2D enco-
der-decoder structure built upon the U-Net architecture. The CNs seg-
mentation was responsible for the prediction of the CNs structure on
T1-weighted, FA, and fODF images. The multimodal data fusion mod-
ule used a back-end fusion method to extract the CNs features of
different modal data (i.e., T1-weighted, FA, and fODF). The three mo-
dalities had three identical but independent U-Net networks, whose
outputs were then used to obtain the final CNs prediction. CNTSeg
achieved an average DSC for the ON of 0.82.

Finally, later in 2023, Alzahrani et al. (2023). trained and evaluated
separate CT and MRI deep learning segmentation models in RayStation
(RaySearch AB, Stockholm). Sixty brain CT scans and T1-weighted
Gad-enhanced brain MRI available were used. Firstly a brain with
OAR atlas was developed as a gold standard, with the OAR being
manually delineated using CT and MRI scans in combination. After-
wards, a commercially available 3D U-Net (Cicek et al., 2016) was used
to train all the autosegmentation models (RayStation 11 A, RaySearch
Laboratories AB, Stockholm, Sweden). Three MRI models were trained
(i) using the original clinical contours based on planning CT and rigidly
registered T1-weighted Gad-enhanced MRI (MRIu), (ii) as (i), further
edited based on CT anatomy, to meet international consensus guidelines
(MRIeCT), and (iii) as (i), further edited based on MRI anatomy
(MRIeMRI). Also, two additional CT models were trained using: (iv)
original clinical contours (CTu) and (v) clinical contours edited based on
CT anatomy (CTeCT). After training, all the models were used to
generate automatic contours on the independent validation dataset. The
evaluation was done by comparing the generated contour to the gold
standard contours in each modality. The obtained DSC values of the
segmentation using the MRIeMRI model were of 0.65 + 0.09 for the left
ON, and of 0.68 + 0.08 for the right one. The achieved MSD values were
0.09 £ 0.03 mm for both the left and right ONs.

4. Discussion

We found that ON segmentation has evolved from classical
(including pre-deep learning methods and semi-automated strategies) to
deep learning approaches, and concurrently both improved DSC and HD
scores, with more automated processing.

Fifteen papers employing traditional methods were reviewed: the
methods included intensity-based techniques, single and multi-atlas
methods. These methods, from the pre-deep learning era, played a
crucial role in the early stages of ON segmentation. They relied heavily
on techniques such as atlas-based segmentation, ASM, or VBM. For
example, (Isambert et al., 2008; Nguyen et al., 2018). utilised an
atlas-based segmentation approach, while (Yiannakas et al., 2010;
Yiannakas et al., 2013) and (Nguyen et al., 2018). employed ASM to
capture the ON’s shape and intensity variations. These early methods,
despite being effective and accurate, often required manual intervention
to capture the complex anatomy of the ON. It is also important to
highlight that single-modality methods, (e.g., T1l-weighted or
T2-weighted images), were prevalent in early studies. However, these
methods had potential limitations in fully depicting ON structure,
particularly when image contrast was suboptimal.

The emergence of deep learning has significantly transformed ON
segmentation, reflected in the 12 studies reviewed above. These
methods, particularly those using CNNs and U-Net architectures,
demonstrated good performance in fully automatic ON delineation. For
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instance, (Chen et al., 2019). used an REOS framework that incorporated
multiple levels of segmentation based ON size and contrast with sur-
rounding tissues. Additionally, studies by (Ai et al., 2020) and (Dai et al.,
2022; Dai et al., 2021) developed advanced 3D CNN-based methods that
combined intensity data with spatial probabilistic distribution maps,
enhancing segmentation accuracy by incorporating anatomical priors.
These approaches not only reduced the need for manual intervention,
becoming fully automated, but also improved the robustness and reli-
ability of ON segmentation across different imaging datasets. Overall
deep learning approaches, particularly those leveraging multi-modality
data, offer promising improvements in accuracy and automation, mak-
ing them more suitable for clinical applications.

Due to its complex morphology and proximity to surrounding
structures (see Fig. 1), there are many challenges in the image acquisi-
tion of the ON (Chow and Paley, 2021) (see Fig. 3). Its mobility, small
size, and the signal interaction between CSF and the orbital soft tissue
can affect MR image quality. Accordingly, across the included papers we
did not appreciate consensus for the most optimal MRI protocol for ON
segmentation. We included multi-modal sequences ranging from highly
dedicated and optimised ones for ON (Yiannakas et al., 2010) to more
clinical scans such as T1-weighted, T2-weighted and FLAIR, or others
that include the use of contrast agents like Gadolinium, and even DWI
for delineating the ON through tractography. Faster sequences are being
developed, to reduce motion artefacts, without compromising
signal-to-noise ratio and/or spatial resolution. With a standard voxel
size of 1 x 1 x 1 mm at 3T MR, there are still significant partial volume
effects when delineating ON cross-sectional areas, which range from
about 10 to 20 mm?. The current voxel size makes cross-sectional area
measurement difficult due to partial volume effects. In addition, longi-
tudinal atrophy measurement as indirect change (Prados and Barkhof,
2018), can introduce a systematic error through independent delinea-
tion of two separate acquisitions. As for the spinal cord, ON longitudinal
atrophy measurements could benefit from registration-based algorithms
for changes in its boundary (Prados et al., 2020; Valsasina et al., 2022;
Luchetti et al., 2024).

A further consideration is that multimodal MR acquisition is ad-
vantageous for capturing the entire ON length, which traverses distinct
environments, such as orbital fat, bone from the canalicular segment,
and brain tissue in the intracranial region (see Fig. 1). These varying
environments pose unique challenges for segmentation. Multimodal
imaging allows for the visualisation of different parts of the ON at
distinct contrasts, with each modality highlighting specific tissues along
its path, providing a more comprehensive view and potentially
improving the accuracy of segmentation. However, the challenge of eye
movement between acquisitions can introduce misalignments, compli-
cating the integration of data from multiple modalities. Although com-
mon space registration techniques can mitigate some of these issues by
aligning sequences accurately, these solutions remain complex since
they are a combination of rigid registrations for the canicular and cranial
area, and non-rigid registrations for the orbital area that might affect the
segmentation results. Also, the clinical translation of such multimodal
approaches remains difficult due to some singularities of ON MRI
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acquisition and the benefits of multimodality, such as enhanced tissue
differentiation, must be balanced against practical issues of imple-
menting these techniques into routine clinical practice.

Over time, we have observed a transition from single-atlas methods
to multi-atlas methods, accompanied by ongoing debates regarding the
advantages of single versus multiple modality approaches. More
recently, DL techniques have demonstrated significant improvements in
segmentation accuracy, underscoring the impact of these methods in
overcoming the limitations associated with traditional approaches.
However, progress in ON segmentation development is hindered by the
absence of a public MRI dataset with their corresponding labels that can
serve as a benchmark for comparing various algorithms. Consequently,
while reported Dice coefficients provide useful insights, they are insuf-
ficient to determine the best methodology. This challenge may be partly
due to a lack of consensus in the research context on the optimal MRI
sequences or segmentation methods. Moreover, the lack of comparative
studies of different methodologies, especially in MS patients, remains a
significant gap.

Nonetheless, there is a pressing need for greater efforts to address the
challenge in ON segmentation or MS lesion segmentation within the ON.
This would involve curating and making available a comprehensive and
diverse dataset with manual annotations to train and benchmark newly
developed algorithms effectively. But this public dataset needs to come
with an agreement in the measures for reporting and benchmarking the
output quality of the ON segmentations. Currently, a wide variety of
approaches are used; in the papers we reviewed the three most
commonly used measures were (in order) DSC, HD and MSD. These
three measures have been proven useful for understanding the goodness
of an ON segmentation showing the amount of overlapping (DSC), the
size of the miss-segmentations or absolute error (HD) or the precision of
the overall shape or mean error (MSD). However, due to the charac-
teristics of the ON shape, the field will benefit from using the skele-
tonized version of HD and MSD. The skeletonized HD will help us to
understand if a method has local errors in a specific area of the ON (i.e.
orbital area), values close to 0 will mean that overall shape follows the
ground truth or expected result. Whereas that global errors will be
assessed by the skeletonized version of MSD, which will show up miss-
alignments or important deviations between the obtained and the ex-
pected results and values close to 0 will mean follow the same path.

Although optimized MR protocols may enhance image quality for
clinical evaluation, a modality-agnostic approach remains more gener-
alizable for segmentation algorithms, due to the variability in MRI
protocols across centers. In the upcoming years, we anticipate a sub-
stantial growth in research on the ON, driven by a recognition of its
clinical relevance and the availability of increasingly robust automated
segmentation methods. The inclusion of the ON in the diagnostic criteria
for MS (Foster et al., 2024) will create a demand for improved methods
to visualise this region of the central nervous system, accurately delin-
eate it, and detect MS lesions.

3D FLAIR

Fig. 3. From left to right, 3D T1, 3D FLAIR and 3D T2 axial MRIs of the brain showing healthy optic nerves and chiasms. These conventional MRI sequences are

routinely used for assessing the optic nerve.
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5. Conclusions

In conclusion, the segmentation of the ON has evolved significantly
over the past decades, driven by advances in MRI techniques and the
emergence of deep learning algorithms. This review highlights the
transition from traditional methods to modern deep learning ap-
proaches. The integration of single and multi-modality imaging has
further enhanced a precise and reliable ON segmentation. As MRI
technology continues to progress, and the inclusion of the ON in the
diagnostic criteria of some neurodegenerative diseases, the field of ON
segmentation is poised to make substantial contributions in medical
diagnostics and treatment planning, offering deeper insights into the
mechanisms underlying ON conditions. Additionally, improving visu-
alisation of the ON will help develop markers specific to myelination and
neurodegeneration which will help future trials of emerging neuro-
protective, remyelinating therapies.
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