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A B S T R A C T

Understanding optic nerve structure and monitoring changes within it can provide insights into neurodegener
ative diseases like multiple sclerosis, in which optic nerves are often damaged by inflammatory episodes of optic 
neuritis. Over the past decades, interest in the optic nerve has increased, particularly with advances in magnetic 
resonance technology and the advent of deep learning solutions. These advances have significantly improved the 
visualisation and analysis of optic nerves, making it possible to detect subtle changes that aid the early diagnosis 
and treatment of optic nerve-related diseases, and for planning radiotherapy interventions. Effective segmen
tation techniques, therefore, are crucial for enhancing the accuracy of predictive models, planning interventions 
and treatment strategies. This comprehensive review, which includes 27 peer-reviewed articles published be
tween 2007 and 2024, examines and highlights the evolution of optic nerve magnetic resonance imaging seg
mentation over the past decade, tracing the development from intensity-based methods to the latest deep 
learning algorithms, including multi-atlas solutions using single or multiple image modalities.

1. Introduction

The optic nerve (ON) connects the eye to the brain (see Fig. 1). 
Morphologically, ONs are thin, tortuous structures that extend from the 
globe of the eye to the optic chiasm, exhibiting significant anatomical 
variability in size, shape and curvature, as well as variable amounts of 
surrounding cerebrospinal fluid (CSF) along their length (van Elst et al., 
2023). The ONs transmit all visual information from the retina through 
to the hemidecussation at the optic chiasm. Thereafter, visual informa
tion travels along the optic tracts to synapse in the lateral geniculate 
nucleus (see Fig. 1). From there, visual information is conveyed in the 
optic radiation which synapses in the primary visual cortex. The ON is a 
bundle of axons (the healthy ON has between 693,000 to 1685,000 fi
bres), the number of which declines substantially as we age (with an 
estimated annual loss of 4000 to 5426 nerve fibres), and there is no 
significant difference between males and females, or between the left 
and right optic nerves (Chow and Paley, 2021).

ON structural features can be very useful to understand disease in- 

vivo. Associations of structural changes in the ON with objective mea
sures of function such as vision and visual evoked potential (VEP), can 
be studied. The ON is often the earliest site affected in multiple sclerosis 
(MS), with optic neuritis presenting as visual impairment associated 
with focal damage of the nerve. In addition, the ON is a critical structure 
in radiotherapy planning and neuro-oncology, as it is one of the organs 
at risk because of its sensitivity to radiation. Excessive radiation expo
sure can lead to optic neuropathy, resulting in vision impairment or even 
blindness. Therefore, precise delineation of the ON is essential for 
effectively treating tumors located near the optic pathways.

The growing interest in the ON is linked to technological improve
ments in magnetic resonance imaging (MRI). In 2007, (Hickman, 2007) 
reviewed major advances in ON segmentation in MS over the previous 
10 years. These advances started with the demonstration of ON atrophy 
after optic neuritis particularly in MS, thanks to the development of fat- 
and CSF-suppressed imaging sequences (Yiannakas et al., 2010). 
Another milestone in ON research, beyond segmentation, was the ability 
to measure magnetization transfer ratio (MTR) over the entire ON, 
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providing an indication of the degree of demyelination/remyelination 
within the lesion (Hickman, 2007). Additionally, the ability to measure 
microstructural properties in the orbital ON was made possible by the 
emergence of quantitative diffusion-weighted imaging (DWI) tech
niques using diffusion tensor imaging (DTI) measurements 
(Wheeler-Kingshott et al., 2002; Wheeler-Kingshott et al., 2006). These 
acquisitions introduced the possibility to perform nerve-tracking anal
ysis using zonal oblique multislice echo planar imaging (ZOOM-EPI), 
which has a shortened echo train length that increases resolution and 
decreases distortions, thereby visualising axonal integrity in structures 
as small as the ON (Dowell et al., 2009). In this manner, MRI advances 
have helped to increase resolution, sensitivity and contrast to noise 
ratio, thereby improving visualisation and easy detection of small 
structures like the ON (Chow and Paley, 2021). MRI ON segmentation 
allows direct visualisation of pathology in the ON for a wide range of 
neurodegenerative diseases. It also has an important role in planning 
radiotherapy interventions. Although there are published reviews on 
segmentation of “organs-at-risk” using computed tomography (CT) 
mainly for planning radiotherapy treatments (Cardenas et al., 2019; 
Vrtovec et al., 2020; Liu et al., 2023), none are dedicated specifically to 
MRI ON segmentation.

In this review, we will discuss the evolution of MRI ON segmentation 
over the past decade, from intensity based methods or multi-atlas so
lutions to the latest deep learning algorithms using single or multiple 
image modalities. In this era of the artificial intelligence (AI) solutions 
for precision medicine, effective segmentation techniques that allow 
precise measurement of nerve atrophy and lesion load in neurodegen
erative diseases are key indicators of progression and severity. These 
techniques could also improve the accuracy of predictive models, 
leading to better patient management and personalised treatment 
strategies.

2. Material and methods

Our aim is to bridge the 15-year gap from 2007 to the present and so 
we only included works published from 2007 (when Hickman et al. 
published their comprehensive review (Hickman, 2007)) up to the 30th 
of August 2024. This review used the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) methodology (Page 
et al., 2021). It includes peer-reviewed journal articles ON automated 
segmentation using MRI techniques. We conducted a PubMed search to 

identify pertinent articles. PubMed was chosen as the primary source of 
this review due to its comprehensive coverage of peer-reviewed 
biomedical literature, ensuring the inclusion of high-quality and rele
vant studies on the topic. The search criteria included the following 
search terms: "optic nerve", "magnetic resonance" and “automatic” or 
“automated”, alongside "segmentation" or "detection” keywords. Addi
tionally, the bibliographic references cited in the identified papers were 
scrutinised to find potential missing articles. Non-peer-reviewed arti
cles, such as those found on preprint online repositories and conference 
proceedings were not included.

When available in their respective articles, we have also provided 
metrics to quantify the algorithms’ performance in segmenting the ON. 
As an evaluation score, the reviewed articles have included the Dice 
Similarity Coefficient (DSC), which is a measure of the spatial overlap 
between two masks. Higher values are better, and its range goes from 
0 to 1 (Dice, 1945). The DSC is calculated as follows: 

DSC(GT, PM) =
2 × |GT ∩ PM|

|GT| + |PM|

DSC is a function of the predicted mask (PM) and the manual binary 
segmentation masks, which are considered the ground truth (GT) 
(Prados et al., 2017).

The Hausdorff Distance (HD) has been used in order to evaluate the 
accuracy of shape and boundary predictions since it is an effective in
dicator to assess contour similarity, and is occasionally employed as 
Hausdorff distance 95th percentile (HD95) to eliminate outliers. 

D(X→Y) = max
(
dX→Y

i
)
, i = 1 .. NX 

HD(GT,PM) = max(D(GT→PM), D(PM→GT))

where d is the Euclidean distance between voxel x and y (van Elst et al., 
2023; Prados et al., 2017).

The Hausdorff distance 95th percentile (HD95) is defined as: 

HD95(GT,PM) = max95%(HD(GT,PM))

Another common measure to assess the performance is using the 
Symmetric Mean Absolute Surface Distance (MSD), which captures the 
average Euclidean distance between the predicted and ground truth 
values (Prados et al., 2017). 

Fig. 1. A. Schematic overview of the visual pathway; B. Optic nerve anatomy; and C. Retinal anatomy. The optic nerve connects the retina to the brain and is 
surrounded by cerebrospinal fluid from the globe of the eye to the optic chiasm. It can be divided into intraocular, intraorbital, intracanalicular and intracranial 
segments. The retina is composed of optic nerve axons, ganglion cells (cell bodies of axons that form the optic nerve), bipolar cells, rods, cones, and pigment 
epithelium, amongst others. Abbreviations: lateral geniculate nucleus (LGN).
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MSD(GT, PM) =
1

NGT + NPM

(
∑NGT

i=1

⃒
⃒dGT→PM

i

⃒
⃒+
∑NPM

i=1

⃒
⃒dPM→GT

i

⃒
⃒

)

where NGT and NPM are the total number of voxels in the contour for GT 
and PM respectively.

3. Results

Fig. 2 summarises the identification of publications included in this 
review. From the initial 44 articles identified in the previously defined 
PubMed searches, in a first screening one was excluded as it had been 
published before 2007, another was Hickman’s review itself and another 
was a recent review about MRI radiotherapy methods (Liu et al., 2023). 
Afterwards, the remaining articles were assessed and 22 of those were 
discarded: 12 because the ON was not segmented, 5 did not use MRI, 2 
were clinical applications of other methods, one was a conference paper, 
another featured manual segmentation and the last one was a review of 
ensemble methods. Additionally, 20 more articles were identified from 
the bibliographic references of the previously selected papers. Of those, 
6 were discarded for being conference papers, 6 for not segmenting the 
ON, 2 for not using MRI and 1 for performing a manual segmentation of 
the ON. Therefore, 19 papers found via the PubMed search and 8 via 
citation searching were included in this review, resulting in a final set of 
27 papers.

We categorised the 27 articles from this review into two main groups 
based on the methodology that they employed. The first group com
prises classic or traditional techniques, most of which predate the 
appearance of deep learning. This group, which includes 15 papers (see 
Table 1), encompasses intensity based methods, single and multi-atlas 
template techniques, and other non deep learning based approaches. 
The second group comprises 12 papers (see Table 2) that use deep 
learning segmentation techniques to delineate the ON. Each of these two 
main groups have been further divided into two subgroups based on the 
number of images involved. Within these two categories, we distinguish 

between single image modality, which benefits from a single MRI 
acquisition protocol for delineating the ON, and multi-modality 
approach, which includes more than one image type, sometimes from 
different sources (i.e. CT scans), to leverage different contrast to opti
mally delineate the ON boundaries.

3.1. Classical approaches

ON segmentation, similar to other tissue or organ segmentation, 
initially used techniques that were intensity based, single or multi atlas/ 
template propagation or shape models which are recognized in this 
paper as classical approaches. Within this group, we categorise the 
techniques into single modality or multi-modality, depending on the 
number of input images they used.

3.1.1. Single image modality
The included publications in this section use only MRI as input which 

typically is T1-weighted (T1w), T2-weighted (T2w), T1 with Gadolin
ium (Gad), proton density (PD) or even DWI.

3.1.1.1. Single atlas or intensity based methods. In 2008, (Isambert et al., 
2008). presented a single atlas-based segmentation approach on 
T1-weighted MRI to segment the ONs. This method was named 
atlas-based automatic segmentation (ABAS). The ABAS is composed of 
an synthetic MRI or atlas of the brain on which each cerebral structure of 
interest was manually delineated by an expert using a pair of rigid 
registered CT/MR images. Using ABAS, the labels from the atlas were 
automatically propagated to the input image.

Yiannakas et al. (2010, 2013), and then later (Nguyen et al., 2018), 
both used an Active Shape Model (ASM) segmentation to 
semi-automatically delineate the ON. This model captures both the 
shape of deformation of structures and the intensity variations. Firstly, 
the ASM is constructed. Manual segmentations of the lens and ON were 
performed and then used to define a volume of interest (VOI) in the eye 

Fig. 2. PRISMA 2020 flow diagram for new systematic reviews. The process of identification of eligible articles is illustrated.
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from specific MRI acquisitions or from a structural T1-weighted image. 
Nguyen et al. (2018). used T1-weighted images with and without 
contrast and obtained a DSC value of 0.82 and a HD of 1.86 mm for the 
ON segmentation.

In 2011, (Hernowo et al., 2011). introduced a voxel-based 
morphometry (VBM) approach over T1-weighted images to determine 
the volume of the ONs. To do so, a study-specific tissue probability map 
(TPM) is first computed by registering a set of brains to a common space, 
followed by skull-stripping using the Brain Extraction Tool (BET). The 
brains images are then divided into six tissue classes by applying the 
FMRIB Automated Segmentation Tool (FAST) and an average tissue 
class volume is created from all the segmentations in common space and 
the average image from all the processed images, this average image is 
going to be used as template reference (i.e. atlas) for the posterior seg
mentations. Finally, any individual ON segmentation can be computed. 
The source input T1-weighted image to process is segmented following 
the VBM approach that is part of the Statistical Parametric Mapping 
(SPM) software. In short, using the previously created TPM, the input 
source image is registered and modulated in order to detect the different 
tissue classes, including the ON.

Subsequently in 2014 and also using single modality, (Ramli et al., 
2014). measured the ON’s volume on T1-weighted MRI using the Neu
Roi Software. The ON was identified on an axial MRI slice as an 

isointense signal in the optic tract similar to brain white matter and 
separated from the hypointense signal of the dural sheath. Finally, the 
wall of the ON was manually outlined by drawing the region of interest 
(ROI). The ON was outlined from the most anterior part of the visible ON 
(posterior to the eye globe) to the anterior optic chiasm.

In 2022, (Tan et al., 2022). suggested a novel image processing mode 
to address the limitations in MRI by studying three segmentation 
methods and three interpolation methods on T1 and T2-weighted im
ages. The methods were: Adaptively Regularized Kernel-based Fuzzy-C 
Mean (AFCM), Level Set Method (LSM) and Multiplicative Intrinsic 
Component Optimization (MICO); and the interpolation methods: 
Reverse Diffusion (RD), Iterative Curvature Based Interpolation (ICBI) 
and Contrast-Guided (CG). The MRIs were processed in two stages: 
segmentation and interpolation to obtain an improved spatial resolution 
to integrate the image processing of ONs as the diagnosis of optic 
neuritis. The measurements of six datasets were compared with the 
mean cross-sectional area of the normal ONs. The combination LSM-ICBI 
over T1 images obtained the closest value (26.52 mm2) of mean 
cross-sectional area to the reference value (27.51 ± 0.83) mm2. In 
T2-weighted images, the pair RD-LSM obtained the closest value (22.43 
mm2) of area measurement to the reference value of (22.26 ± 1.29) 
mm2.

Table 1 
Summary of published articles that have used classic methods for optic nerve segmentation. From left to right; number of imaging modalities used, the year of 
publication, reference, short description of each study, imaging modalities used, summary of results, and specific disease or application. The highlighted results only 
apply to the optic nerve, which if not available, the whole visual pathway was considered. Results are derived from different datasets as reported by the respective 
studies.

Modality Year Author Short description Imaging modalities Results Disease / 
Application

Single 2008 Isambert et al. 
(2008)

Atlas-based automatic segmentation software (ABAS) T1w DSC = 0.38 (range, 
0.40–0.53)

Radiotherapy

​ 2010 Yiannakas 
et al. (2010)

Active Shape Model (ASM) FSE – Atrophy

​ 2011 Hernowo et al. 
(2011)

Segmentation based on voxel-based morphometry (VBM) using 
a study-specific tissue probability map (TPM).

T1w – Glaucoma

​ 2013 Yiannakas 
et al. (2013)

Active Shape Model (ASM) T2w – Atrophy

​ 2014 Ramli et al. 
(2014)

ON segmentation using the NeuRoi Software followed by 
manual outline refinement.

T1w – Glaucoma

​ 2014 Panda et al. 
(2014)

Several multi-atlas label fusion algorithms are assessed. T2w DSC = 0.81, HD =
2.18 mm and MSD =
0.41 mm

MS and mimics

​ 2016 Harrigan et al. 
(2016)

Multi-atlas segmentation T2w – MS and mimics

​ 2018 Nguyen et al. 
(2018)

Active Shape Model (ASM) T1w contrast-enhanced 
and non-contrast- 
enhanced

DSC = 0.82 and HD =
1.86 mm

Uveal melanoma

​ 2021 He et al. 
(2021)

Four different tractography methods dMRI – Optic nerve 
related diseases

​ 2022 Crouzen et al. 
(2022)

Automated atlas-based segmentation T1w Internal cohort 
DSCL = 0.83 ± 0.04 
DSCR = 0.84 ± 0.05 
External cohort 
DSCL = 0.84 ± 0.10 
DSCR = 0.85 ± 0.10

Radiotherapy

​ 2022 Tan et al. 
(2022)

Three segmentation methods: Adaptively Regularized Kernel- 
based Fuzzy-C Mean (AFCM), Level Set Method (LSM) and 
Multiplicative Intrinsic Component Optimization (MICO); and 
three interpolation methods: Reverse Diffusion (RD), Iterative 
Curvature Based Interpolation (ICBI) and Contrast-Guided (CG)

T1w or T2w – Optic neuritis

​ 2023 Feng et al. 
(2023)

Gradient-based edge detection with skeletonization (GES) with 
bicubic interpolation

T1w DSC = 0.81 ± 0.04 Optic nerve 
related diseases

​ 2024 Chow et al. 
(2024)

Three segmentation methods: spatial-FCM (sFCM); modified- 
FCM (mFCM); and LSM; and three interpolation methods: 
Lanczos; iterative curvature-based interpolation (ICBI); and CG

PD or T2w DSCPD = 0.92 ± 0.01 
DSCT2w = 0.88 ± 0.01

Optic nerve 
related diseases

Multi 2011 Noble and 
Dawant (2011)

Tubular structure localization algorithm T1w contrast-enhanced 
and non-contrast- 
enhanced and CT

DSC ≈ 0.80 Radiotherapy

​ 2019 Miller et al. 
(2019)

Semi-automated diffusion magnetic resonance imaging (dMRI) 
tractography method

dMRI and T1w – Glaucoma
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3.1.1.2. Label fusion or multi-atlas based methods. Rather than relying 
on a single atlas label template or TPM, the label fusion or multi-atlas 
based strategy is based on registering separately each single template 
image from a database with multiple templates to the input subject 
image. These pairwise warps are then used to transfer the template la
bels into the input subject space. Then, a label fusion algorithm com
bines the anatomical variability from all the registered templates to 
generate the final segmentation, this process is accounting for individual 

differences and improving the reliability of segmentation results.
Label fusion methods offer two main advantages: first across-subject 

anatomical variability is better captured than in a single atlas, which can 
be viewed as a parametric model that typically uses single mode dis
tributions (e.g., Gaussian) to encode anatomical appearance, and, sec
ond, the fusion of results coming from multiple registrations improve 
robustness against occasional registration failures. The main drawback 
is the computational burden introduced by the multiple registrations 

Table 2 
Summary of published articles that have used deep learning methods for optic nerve segmentation. From left to right; number of imaging modalities used, the year of 
publication, reference, short description of each study, imaging modalities used, summary of results, and specific disease or application. The highlighted results only 
apply to the optic nerve, which if not available, the whole visual pathway was considered. Results are derived from different datasets as reported by the respective 
studies.

Modality Year Author Short description Imaging 
modalities

Results Disease / 
Application

s 2019 Chen et al. 
(2019)

Recursive ensemble organ segmentation (REOS) framework T1w DSCL = 0.78 ± 0.11 
HDL = 3.20 ± 2.20 
mm 
DSCR = 0.82 ± 0.59 
HDR = 1.80 ± 0.70 
mm

Brain cancer

2020 Mlynarski et al. 
(2020)

Modified version of 2D U-Net CNN T1w Gad DSCRaw = 0.67 
DSCTol = 0.87 
HD = 6.30 mm

Brain cancer

2020 Ai et al. (2020) Spatial probabilistic distribution map (SPDM)-based two channel 
3D U-Net

T1w or CT DSC = 0.86 ± 0.01 
HD = 3.56 ± 1.89 
mm

Preoperative 
planning

2022 Dai et al. (2022)) Mask scoring R-CNN T1w DSCL = 0.67 ± 0.11 
HD95L = 3.25 ± 2.11 
mm 
MSDL = 0.91 ± 0.38 
mm 
DSCR = 0.68 ± 0.11 
HD95R = 2.96 ± 1.32 
mm 
MSDR = 0.87 ± 0.29 
mm

Head and neck 
cancer

2022 Martí-Juan et al. 
(2022)

Specific image processing followed by an automated pipeline to 
extract the optic nerve and a 3D CNN to detect ON lesions

T2w – MS and mimics

2023 van Elst et al. 
(2023)

3D U-Net T2w DSC = 0.84 ± 0.03 
DSCTol = 0.91 ± 0.04 
HD95 = 0.60 [range 
0.42 - 1.02] mm

Retinoblastoma

Multi 2016 Mansoor et al. 
(2016)

PAScAL (PArtitioned Shape and Appearance Learning) T1w Gad, T2w 
and FLAIR

DSC = 0.79 ± 0.07 Several, tumors

2019 Tong et al. 
(2019)

Generative adversarial network (GAN) with shape constraint (SC- 
GAN)

Low-field MRI 
and CT

DSCL = 0.72 ± 0.05 
DSCR = 0.69 ± 0.07

Radiotherapy

2020 Liu et al. (2020) Dual pyramid networks (DPN) T1w and CT DSCL = 0.72 ± 0.12 
HD95L = 3.15 ± 5.14 
mm 
MSDL = 0.94 ± 1.32 
mm 
DSCR = 0.72 ± 0.20 
HD95R = 3.14 ± 5.11 
mm 
MSDR = 1.10 ± 2.01 
mm

Head and neck 
cancer

2021 Dai et al. (2021) Dual pyramid networks (DPN) T1w and CBCTs DSCL = 0.78 ± 0.05 
HD95L = 1.86 ± 1.73 
mm 
MSDL = 0.55 ± 0.18 
mm 
DSCR = 0.77 ± 0.04 
HD95R = 2.06 ± 2.69 
mm 
MSDR = 0.58 ± 0.32 
mm

Head and neck 
cancer

2023 Xie et al. (2023) CNTSeg T1w and dMRI DSC = 0.82 None in particular
2023 Alzahrani et al. 

(2023)
Combination of atlas and 3D U-Net (Çiçek et al., 2016) T1w Gad and CT DSCL = 0.65 ± 0.09 

MSDL = 0.09 ± 0.03 
mm 
DSCR = 0.68 ± 0.08 
MSDR = 0.09 ± 0.03 
mm

Radiotherapy
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and information fusion from the entire training data (Sabuncu et al., 
2010). Empirical results in these studies suggest that errors in the 
manual labelling and registration procedures are reduced during label 
fusion, resulting in more accurate segmentation.

On the ON, in 2014 (Panda et al., 2014). used a multi-atlas label 
fusion algorithm on T2-weighted images. In this work, the template 
database manual segmentation was built using the Medical Image 
Analysis Processing and Visualization software package v7 (MIPAD) for 
the full length of the left and the right ONs and the optic chiasm on all 
the subjects. Once the template database was built, seven statistical and 
multi-atlas label fusion algorithms to segment the ONs were assessed. 
This included majority vote, simultaneous truth and performance level 
estimation (STAPLE), spatial STAPLE, local weighted vote, non-local 
STAPLE, non-local spatial STAPLE and joint label fusion. From these, 
the most consistent segmentations were obtained by non-local spatial 
STAPLE, which achieved a median DSC of 0.81, MSD 0.41 mm, and HD 
2.18 mm for the ONs. Joint label fusion achieved a slightly superior 
median performance for the ONs (DSC = 0.82, MSD = 0.39 mm, and HD 
= 2.15 mm), but ultimately non-local spatial STAPLE was selected given 
its slight advantage in the outlier reduction and lower surface distance 
measures (Panda et al., 2014).

Some time later, in 2016 (Harrigan et al., 2016). also used a 
multi-atlas segmentation approach to localise the ON and sheath on 
T2-weighted MRI followed by a slice-wise Gaussian mixture approach 
for fine tuning the obtained segmentations and constructing a model of 
two concentric tubes. The combined approach from Harrigan et al. was 
characterised by noisy results due to the slice-wise approach and with 
difficulties to manage bended ONs.

Crouzen et al. (2022). developed in 2022 a multi-atlas-based seg
mentation method using T1-weighted MR scans and rigid image regis
tration to propagate the labels. The method performance is compared to 
manual delineation by two specialists. The DSC of the left ON respec
tively in the internal and external evaluation cohort was of 0.83 ± 0.04 
and of 0.84 ± 0.10; and for the right ON, it was of 0.84 ± 0.05 in the 
internal evaluation cohort and of 0.85 ± 0.10 in the external one.

3.1.1.3. Tractography-based and other methods. DWI has allowed the 
opportunity to track white matter projections within the brain. These 
tractography methods can delineate anterior and posterior visual path
ways. They are characterised by the detection of the brain regions like 
the ON using an automatic selection of strategic ROIs for seeding and 
afterwards clustering a high definition of fibres that identifies the 
structure.

He et al. (2021). investigated in 2021 the performance of multiple 
tractography methods for reconstruction of the complete reti
nogeniculate visual pathway (RGVP) including the four anatomical 
subdivisions, using diffusion MRI (dMRI). The four different methods 
included two methods based on the constrained spherical deconvolution 
(CSD) model, the deterministic (SD-Stream) and the probabilistic 
(iFOD1); and two that used the unscented Kalman filter (UKF) tractog
raphy framework, the one-tensor (UKF-1T) and the two-tensor 
(UKF-2T). For each RGVP subdivision, three ROIs were used, 
including one of the ON ROIs (left or right), one of the optic tract ROIs 
(left or right), and the optic chiasm ROI. Finally, the performance of 
each tractography method across subjects was evaluated using the 
normalised overlap score (NOS) method and a comparison to anatomical 
T1-weighted-based RGVP segmentation. The UKF-2T method obtained 
the highest score (NOS = 0.718), indicating the highest overlap of 
tractography across subjects. The next highest scores were obtained by 
iFOD1 (NOS = 0.605) and UKF-1T (NOS = 0.508). SD-Stream obtained 
the lowest score (NOS = 0.398).

Two years after, in 2023, Feng et al. (Feng et al., 2023). proposed a 
segmentation method called gradient-based edge detection with skel
etonization (GES) for the cross-sectional on magnetic resonance (MR) 
images acquired with T1-weighted fast spoiled gradient-echo without 

fat saturation. Firstly, the images were pre-processed with bicubic 
interpolation to improve the spatial resolution. Secondly, the proposed 
GES segmentation was applied to produce a distinct ON image. It was a 
semi-automated method using prior knowledge of the location of the 
ON. The edges of the ON were identified by finding the largest gradient 
changes in signal intensity between the ON region and its surrounding 
CSF. Particle swarm optimization (PSO) and level set method (LSM) 
segmentations were applied for comparison. Manual segmentation 
performed by a certified radiologist was used as the ground truth. The 
bicubic-GES processed ON images were used for the quantitative mea
surement on ten datasets. The DSC indexes were calculated for every 
slice in each portion of the ON. The proposed GES segmentation 
demonstrated superior results compared to PSO and LSM, obtaining a 
mean and standard deviation DSC of 0.81 ± 0.04.

Most recently, in 2024, (Chow et al., 2024). strived to find an opti
mum and automated interpolation and segmentation method, in order 
to improve the spatial resolution of the ONs on fat-saturated MRI, which 
produced two types of images: PD and T2-weighted. They compared 
three interpolation methods: Lanczos; iterative curvature-based inter
polation (ICBI); and CG along with three segmentation methods: 
spatial-FCM (sFCM); modified-FCM (mFCM); and LSM. Nine methods 
were investigated by combining different interpolation and segmenta
tion methods in a different order. Lanczos-mFCM was identified as the 
best model in this study to process the ON images based on four factors: 
image quality; DSC value; the percentage difference in the area; the 
signal-to-noise ratio; and contrast-to-noise ratio. The best-identified 
interpolation and segmentation combination was then applied to mea
sure the ON mean area from 10 datasets. The Lanczos-mFCM method 
produced ONs with DSC values of 0.92 ± 0.01 from the PD images and 
0.88 ± 0.01 from the T2-weighted images measured on 10 datasets and 
all slices. In addition, the Student’s t-test at 99 % confidence level 
showed that there is no significant difference in the ON areas measured 
using manually segmented and Lanczos-mFCM processed images. 
Therefore, the manual and Lanczos-mFCM methods are equivalent.

3.1.2. Multi-modality images
Multimodal methods typically combine MRI and CT. A necessary 

preprocessing step for these methods is a body registration between the 
input MR and CT images. This group of approaches starts with (Noble 
and Dawant, 2011). in 2011, who used both contrast-enhanced and 
non-contrast enhanced T1-weighted MR, and CT images to segment the 
ONs and chiasm. In this case, Noble et al. used a tubular structure 
localization algorithm in which a statistical model and image registra
tion were used to incorporate a priori local intensity and shape infor
mation from an atlas. The structures of interest were segmented 
manually in each of these MR/CT pairs, and the centerline of these 
structures was extracted using a thinning method. Finally, a corre
spondence between points along the centerlines was established. It is 
relevant to mention that Noble et al. extended the ONs past the chiasm 
and considered the ON and the contra-lateral optic tract as a single 
structure. In addition, the optic chiasm was not explicitly segmented, 
instead the chiasm is found as the intersection of the two ONs, which is 
as its anatomical definition. The method resulted in a mean DSC of 
approximately 0.80 for both ONs.

Subsequently, in 2019, (Miller et al., 2019). developed an advanced, 
semi-automated dMRI tractography based method to identify and 
analyse the ONs and using the T1-weighted MRI to place the ROIs. Using 
a pair of diffusion scans, a low-noise field-corrected volume could be 
created, allowing the ONs to be isolated using probabilistic tractog
raphy. To improve the quality of the tractography, the two 
reverse-encoded diffusion scans were combined into a single corrected 
volume using the FMRIB Software Library (FSL) software (University of 
Oxford, Oxford, England). Three ROIs along the brain’s visual pathway 
were manually identified. The T1-weighted image was used to place the 
left and right ONs and the optic chiasm by gross anatomy. Visual 
pathways were derived through probabilistic diffusion-weighted 
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tractography using MRtrix2 (Brain Research Institute, Melbourne, 
Australia) and fiber groups were cleaned using the Automated Fiber 
Quantification toolkit (Stanford University). Fibers were overlaid on the 
anatomical T1-weighted volume and any fibers that were found to be 
anatomically implausible were manually removed.

3.2. Deep learning approaches

An explosive growth in image processing power has helped the 
development of AI solutions in many fields including ON segmentation. 
This second group comprises articles which use deep learning solutions 
to automatically delineate the ON; they are also split in two subgroups 
depending on the number of input modalities.

3.2.1. Single image modality
In 2019, (Chen et al., 2019) used a recursive ensemble organ seg

mentation (REOS) framework on T1-weighted MRI to segment six brain 
regions, including the ON. Eighty images were retrospectively collected 
with the gold-standard manual contours. Among these, sixty were 
assigned for model training and five-fold cross-validation, and the other 
twenty for testing. In these recursive frameworks, each brain region is 
grouped into different levels according to key factors that determine 
auto-segmentation accuracy. Large-volume and high-contrast brain re
gions are assigned to low-level groups and small-volume and 
low-contrast brain regions are assigned to high-level groups. Low-level 
brain regions are segmented first and the segmented low-level organs 
are used as constraints to guide the high-level brain regions segmenta
tion. In each level, an ensemble of two 3D U-Nets, namely an EnUNet, is 
present. The EnUNet architecture contains three modules each one of 
them based on a 3D convolutional neural network (CNN) that localise 
the brain region, then detect the contour and finally ensemble the results 
obtained from the previous steps. The three modules are trained 
sequentially. The proposed REOS method achieved a segmentation with 
mean DSCs of 0.78 ± 0.105, 0.822 ± 0.59 % for the left and right ON, 
respectively. The HD was 3.20 ± 2.20 mm for the left ON and 1.80 ±
0.70 mm for the right one.

At the start of the decade, in 2020, (Mlynarski et al., 2020). instead 
used a modified version of the 2D U-Net CNN, on Gad-enhanced 
T1-weighted images as well, addressing problems related to computa
tional costs and missing ground truth segmentations for a subset of 
classes. Feature maps of the encoding part as concatenated in the 
decoding part in order to combine low-level and high-level features and 
to ease the flow of gradients during the optimization process. The final 
convolutional layer (the segmentation layer) of the standard U-Net had 
two feature maps, representing pixel-wise classification scores of the 
class 0 (“background”) and the class 1 (“segmented area”). The mean 
raw DSC (fivefold cross-validation) of the ONs, obtained on a set of 44 
MRIs after majority voting and postprocessing, was of 0.67, and the HD 
was of 6.30 mm. To take into account the uncertain borders of the 
ground truth, DSC ignoring mismatches on the border of the ground 
truth, were also reported. As most mismatches between the outputs and 
the ground truth were on noisy borders of organs, there was a consid
erable difference between the two values. The DSC (five-fold 
cross-validation) with tolerance to one voxel of the ONs, after majority 
voting and postprocessing, was of 0.87.

In the same year, 2020, (Ai et al., 2020). proposed an automated 
segmentation method for T1-weighted and CT scans which used a spatial 
probabilistic distribution map (SPDM)-based two channel 3D U-Net to 
make shape and position prior information available for deep learning. 
First, an atlas was calculated by group-wise registration, and then it was 
used to non-rigidly register each training volume image getting a 
deformation field. Second, the deformation field was used to transform 
the label of the corresponding training image to the template space, and 
then all the warped labels were summed up to create an SPDM. Third, 
the region of interest of the image and SPDM were sent to the network as 
two channels, namely, SPDMfuse, to predict the final segmentation. The 

proposed method was evaluated and compared against a conventional 
3D U-Net on two datasets, T1-weighted MRI and CT. The proposed 
two-channel 3D U-Net (SPDMfuse) achieved a DSC of 0.86 ± 0.01 and a 
HD of 3.56 ± 1.89 mm for the segmentation of the visual pathway as a 
whole.

Dai et al. (2022). implemented later in 2022 a regional CNN (R-CNN) 
on T1-weighted MRI for multi-organ auto-delineation, which was a 
variation of mask R-CNN. This architecture predicts organ positions via 
bounding boxes, outputting vectors for both the bounding box index and 
the organ class. First, a backbone network extracted a coarse feature 
map from the MRI patch, followed by a regional proposal network to 
compute ROI candidates. These were used to crop the coarse feature 
map (ROI alignment), and an attention gate highlighted informative 
areas. Next, R-CNN refined the feature map and extracted the ROI for 
each organ. The mask network then applied initial segmentations to the 
refined feature map cropped by the ROI. Finally, the segmentation was 
achieved through weighted averaging, fusing the initial segmentations 
based on mask scores from the mask scoring network. Trained with 
paired MRI and ground truth contours using four types of loss functions 
the model could derive contours of the ON and other brain parts from an 
input MRI. Five-fold cross-validation was performed for the assessment 
of the method. The DSC of the left and right ON were 0.67 ± 0.11 and 
0.68 ± 0.11 respectively. The HD95 of the left ON was 3.25 ± 2.11 mm 
and 2.96 ± 1.32 mm for the right one. The MSD was 0.91 ± 0.38 mm 
and 0.87 ± 0.29 mm for the left and right ONs, respectively.

Martí-Juan et al. (2022) presented also in 2022 an automated pipe
line to extract the ON from T2-weighted fat-saturated scans and devel
oped a 3D CNN model that learned to detect ON lesions in them. Prior to 
training, scans were processed to remove irrelevant parts of the image 
and reduce its dimensionality, leaving only the ON and surrounding 
area. Afterwards, a 3D CNN was implemented for the classification task. 
It received as input the previously mentioned 3D crops of the ON and 
was composed of two 3D convolutional layers, each one having a 
rectifying linear unit non-linearity layer, a max pooling layer to reduce 
dimensionality, and a dropout layer. A final dense, fully connected layer 
led to a softmax layer that produced probabilities for the two possible 
outputs: presence of lesion or not. Additionally, two simpler classifica
tion models were implemented to compare the performance of the CNN 
model and assess its robustness. The first model used a Support Vector 
Machine (SVM) and the second one, a Random Forest (RF). Both models 
had as input all the voxels of the 3D crop of the ON. The three models 
were then evaluated. The only output of the network was a probability 
value informing if the model detected a lesion in an image or not. The 
results showed balanced accuracies of around 68 % for validation, with 
similar sensitivity and specificity, so classification results were not 
affected by the uneven proportion of positive and negative labels. Re
sults of the model were consistently better than the two other classifi
cation methods, obtaining results around mid 50 %, meaning that those 
simpler models were not able to distinguish the presence/absence of ON 
lesions.

van Elst et al. (2023). proposed in the following year, 2023, a 3D 
pipeline for automatic segmentation and quantification of the on 3D 
T2-weighted MRI, while accurately differentiating it from CSF along the 
entire length of the nerve. Multicenter data were obtained and perfor
mance was assessed in a tenfold cross-validation (n = 32) and on a 
separate test-set (n = 8). The segmentation network architecture was 
based on the U-Net and manual ON segmentations were performed by an 
experienced reader using 3D Slicer for generating the training dataset. 
The pipeline consisted of two main steps. Firstly, a 3D U-Net was 
employed to automatically segment the ON from high-resolution 
T2-weighted MRI. The dataset of each site was randomly split into two 
subsets for training and testing with a partition rate of 0.8 and 0.2, 
respectively. Secondly, they implemented a quantification method that 
used the resulting 3D segmentations to extract ON diameter and 
cross-sectional area along the centerline of the nerve. This automatic 
approach addressed the limitations of other quantification methods by 
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enabling quantitative measurements independent of image intensity 
values or ON orientation. The segmentation network achieved a mean 
DSC score of 0.84 and a median HD of 0.64 mm.The average spatial 
agreement achieved by the model was a DSC 0.84 ± 0.03 on the test-set. 
By allowing a margin of one voxel tolerance to account for uncertainty at 
the borders of the manual segmentation, the DSC was increased to 0.91 
± 0.04. The HD95 was 0.60 [0.42 to 1.02] mm on the test set.

3.2.2. Multi-modality images
The first deep learning based method that we found that uses 

multimodal data was (Mansoor et al., 2016). which developed in 2016 
the PAScAL (PArtitioned Shape and Appearance Learning) framework, 
which automatically segmented the anterior visual pathway. To that 
end, it used joint partitioned shape models steered by an appearance 
model that was created using a combination of Gad-enhanced T1, 
T2-weighted, and Fluid-attenuated inversion recovery (FLAIR) MRI 
scans along with deep-learning features. PAScAL consisted in a shape 
localization method using conditional space deep learning, a volumetric 
multiscale curvelet transform-based intensity normalisation method for 
robust statistical model, and optimally partitioned statistical shape and 
appearance models based on regional shape variations for greater local 
flexibility. A mean DSC of 0.78 ± 0.12 was obtained for the segmenta
tion of the entire AVP, and a DSC of 0.79 ± 0.07 for the ON only using a 
leave-one-out validation strategy.

Tong et al. (2019). developed later in 2019 a method based on a 
generative adversarial network (GAN) with shape constraint (SC-GAN) 
for fully automated head and neck (H&N) organs segmentation on CT 
and low-field 0.35 T MRI. A deep supervised fully convolutional Den
seNet was employed as the segmentation network for voxel-wise pre
diction. Afterwards, a CNN-based discriminator network was utilised to 
correct predicted errors and image-level inconsistencies between the 
prediction and ground truth. The proposed segmentation method was 
first benchmarked on a public CT dataset, and then on MR images. The 
performance of the proposed SC-GAN was compared with GAN alone 
and GAN with the shape constraint (SC) but without the DenseNet 
(SC-GAN-ResNet). The DSC for the segmentation of the left ON using 
SC-GAN was 0.72 ± 0.05 and 0.69 ± 0.07 for the right ON.

In 2020, (Liu et al., 2020). developed a dual pyramid networks (DPN) 
method combining both CT and synthetic MR (sMR), since the first 
provides bony structure information and the latter superior soft tissue 
information. Firstly, the sMR images were obtained by feeding CT im
ages into the cycle-consistent adversarial networks (CycleGAN) model. 
This model was trained using pre-aligned CT and MRI pairs to generate 
sMR images based on CT input images. Then, independent features were 
then extracted from CT and sMR separately: the first pyramid network 
was used to extract semantic features from CT that represent bony 
structures, and the second pyramid network was used to explore se
mantic features from sMR that represent the soft tissues. These inde
pendent features were then combined and refined via the DPN network 
to segment several organs including the ON. Both the first and second 
pyramid networks had a U-Net like architecture. Deep-supervision was 
used to force the intermediate feature maps to be semantically 
discriminative at each image scale. Fivefold cross-validation was used to 
train and validate the proposed segmentation algorithm data. The ob
tained mean DSC for the segmentation of the left ON was 0.72 ± 0.12 
and 0.72 ± 0.20 for the right ON. The mean HD95 of the left ON was 
3.15 ± 5.14 mm and 3.14 ± 5.11 mm for the right one; while the mean 
MSD was 0.94 ± 1.32 mm and 1.10 ± 2.01 mm for the left and right ON, 
respectively.

One year later, in 2021, (Dai et al., 2021). adopted a similar 
sMR-aided strategy from their previous work in (Liu et al., 2020). and 
further improved the network architecture using DPNs. The obtained 
DSC for the segmentation of the left ON using cone-beam CT (CBCT)+
sMRI was 0.78 ± 0.05 and 0.77 ± 0.04 for the right ON. The HD95 and 
MSD for the left ON were 1.86 ± 1.73 mm and 0.55 ± 0.18 mm 
respectively; and 2.06 ± 2.69 mm and 0.58 ± 0.32 mm for the right one.

Xie et al. (2023). proposed in 2023 a novel multimodal deep-learning 
based multi-class network for automated cranial nerves (CNs) tract 
segmentation without using tractography, ROI placement or clustering, 
called CNTSeg. To that end, they introduced T1-weighted MRIs, frac
tional anisotropy (FA) images, and fiber orientation distribution func
tion (fODF) peaks into the training data set. TCNTSeg consisted of two 
parts: the segmentation network, to generate a cranial nerves tract 
segmentation binary mask by entering data from different modalities, 
and the data fusion module, to fuse the CNs features of different modal 
data. The segmentation network was composed of a 2D enco
der–decoder structure built upon the U-Net architecture. The CNs seg
mentation was responsible for the prediction of the CNs structure on 
T1-weighted, FA, and fODF images. The multimodal data fusion mod
ule used a back-end fusion method to extract the CNs features of 
different modal data (i.e., T1-weighted, FA, and fODF). The three mo
dalities had three identical but independent U-Net networks, whose 
outputs were then used to obtain the final CNs prediction. CNTSeg 
achieved an average DSC for the ON of 0.82.

Finally, later in 2023, Alzahrani et al. (2023). trained and evaluated 
separate CT and MRI deep learning segmentation models in RayStation 
(RaySearch AB, Stockholm). Sixty brain CT scans and T1-weighted 
Gad-enhanced brain MRI available were used. Firstly a brain with 
OAR atlas was developed as a gold standard, with the OAR being 
manually delineated using CT and MRI scans in combination. After
wards, a commercially available 3D U-Net (Çiçek et al., 2016) was used 
to train all the autosegmentation models (RayStation 11 A, RaySearch 
Laboratories AB, Stockholm, Sweden). Three MRI models were trained 
(i) using the original clinical contours based on planning CT and rigidly 
registered T1-weighted Gad-enhanced MRI (MRIu), (ii) as (i), further 
edited based on CT anatomy, to meet international consensus guidelines 
(MRIeCT), and (iii) as (i), further edited based on MRI anatomy 
(MRIeMRI). Also, two additional CT models were trained using: (iv) 
original clinical contours (CTu) and (v) clinical contours edited based on 
CT anatomy (CTeCT). After training, all the models were used to 
generate automatic contours on the independent validation dataset. The 
evaluation was done by comparing the generated contour to the gold 
standard contours in each modality. The obtained DSC values of the 
segmentation using the MRIeMRI model were of 0.65 ± 0.09 for the left 
ON, and of 0.68 ± 0.08 for the right one. The achieved MSD values were 
0.09 ± 0.03 mm for both the left and right ONs.

4. Discussion

We found that ON segmentation has evolved from classical 
(including pre-deep learning methods and semi-automated strategies) to 
deep learning approaches, and concurrently both improved DSC and HD 
scores, with more automated processing.

Fifteen papers employing traditional methods were reviewed: the 
methods included intensity-based techniques, single and multi-atlas 
methods. These methods, from the pre-deep learning era, played a 
crucial role in the early stages of ON segmentation. They relied heavily 
on techniques such as atlas-based segmentation, ASM, or VBM. For 
example, (Isambert et al., 2008; Nguyen et al., 2018). utilised an 
atlas-based segmentation approach, while (Yiannakas et al., 2010; 
Yiannakas et al., 2013) and (Nguyen et al., 2018). employed ASM to 
capture the ON’s shape and intensity variations. These early methods, 
despite being effective and accurate, often required manual intervention 
to capture the complex anatomy of the ON. It is also important to 
highlight that single-modality methods, (e.g., T1-weighted or 
T2-weighted images), were prevalent in early studies. However, these 
methods had potential limitations in fully depicting ON structure, 
particularly when image contrast was suboptimal.

The emergence of deep learning has significantly transformed ON 
segmentation, reflected in the 12 studies reviewed above. These 
methods, particularly those using CNNs and U-Net architectures, 
demonstrated good performance in fully automatic ON delineation. For 
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instance, (Chen et al., 2019). used an REOS framework that incorporated 
multiple levels of segmentation based ON size and contrast with sur
rounding tissues. Additionally, studies by (Ai et al., 2020) and (Dai et al., 
2022; Dai et al., 2021) developed advanced 3D CNN-based methods that 
combined intensity data with spatial probabilistic distribution maps, 
enhancing segmentation accuracy by incorporating anatomical priors. 
These approaches not only reduced the need for manual intervention, 
becoming fully automated, but also improved the robustness and reli
ability of ON segmentation across different imaging datasets. Overall 
deep learning approaches, particularly those leveraging multi-modality 
data, offer promising improvements in accuracy and automation, mak
ing them more suitable for clinical applications.

Due to its complex morphology and proximity to surrounding 
structures (see Fig. 1), there are many challenges in the image acquisi
tion of the ON (Chow and Paley, 2021) (see Fig. 3). Its mobility, small 
size, and the signal interaction between CSF and the orbital soft tissue 
can affect MR image quality. Accordingly, across the included papers we 
did not appreciate consensus for the most optimal MRI protocol for ON 
segmentation. We included multi-modal sequences ranging from highly 
dedicated and optimised ones for ON (Yiannakas et al., 2010) to more 
clinical scans such as T1-weighted, T2-weighted and FLAIR, or others 
that include the use of contrast agents like Gadolinium, and even DWI 
for delineating the ON through tractography. Faster sequences are being 
developed, to reduce motion artefacts, without compromising 
signal-to-noise ratio and/or spatial resolution. With a standard voxel 
size of 1 × 1 × 1 mm at 3T MRI, there are still significant partial volume 
effects when delineating ON cross-sectional areas, which range from 
about 10 to 20 mm2. The current voxel size makes cross-sectional area 
measurement difficult due to partial volume effects. In addition, longi
tudinal atrophy measurement as indirect change (Prados and Barkhof, 
2018), can introduce a systematic error through independent delinea
tion of two separate acquisitions. As for the spinal cord, ON longitudinal 
atrophy measurements could benefit from registration-based algorithms 
for changes in its boundary (Prados et al., 2020; Valsasina et al., 2022; 
Luchetti et al., 2024).

A further consideration is that multimodal MR acquisition is ad
vantageous for capturing the entire ON length, which traverses distinct 
environments, such as orbital fat, bone from the canalicular segment, 
and brain tissue in the intracranial region (see Fig. 1). These varying 
environments pose unique challenges for segmentation. Multimodal 
imaging allows for the visualisation of different parts of the ON at 
distinct contrasts, with each modality highlighting specific tissues along 
its path, providing a more comprehensive view and potentially 
improving the accuracy of segmentation. However, the challenge of eye 
movement between acquisitions can introduce misalignments, compli
cating the integration of data from multiple modalities. Although com
mon space registration techniques can mitigate some of these issues by 
aligning sequences accurately, these solutions remain complex since 
they are a combination of rigid registrations for the canicular and cranial 
area, and non-rigid registrations for the orbital area that might affect the 
segmentation results. Also, the clinical translation of such multimodal 
approaches remains difficult due to some singularities of ON MRI 

acquisition and the benefits of multimodality, such as enhanced tissue 
differentiation, must be balanced against practical issues of imple
menting these techniques into routine clinical practice.

Over time, we have observed a transition from single-atlas methods 
to multi-atlas methods, accompanied by ongoing debates regarding the 
advantages of single versus multiple modality approaches. More 
recently, DL techniques have demonstrated significant improvements in 
segmentation accuracy, underscoring the impact of these methods in 
overcoming the limitations associated with traditional approaches. 
However, progress in ON segmentation development is hindered by the 
absence of a public MRI dataset with their corresponding labels that can 
serve as a benchmark for comparing various algorithms. Consequently, 
while reported Dice coefficients provide useful insights, they are insuf
ficient to determine the best methodology. This challenge may be partly 
due to a lack of consensus in the research context on the optimal MRI 
sequences or segmentation methods. Moreover, the lack of comparative 
studies of different methodologies, especially in MS patients, remains a 
significant gap.

Nonetheless, there is a pressing need for greater efforts to address the 
challenge in ON segmentation or MS lesion segmentation within the ON. 
This would involve curating and making available a comprehensive and 
diverse dataset with manual annotations to train and benchmark newly 
developed algorithms effectively. But this public dataset needs to come 
with an agreement in the measures for reporting and benchmarking the 
output quality of the ON segmentations. Currently, a wide variety of 
approaches are used; in the papers we reviewed the three most 
commonly used measures were (in order) DSC, HD and MSD. These 
three measures have been proven useful for understanding the goodness 
of an ON segmentation showing the amount of overlapping (DSC), the 
size of the miss-segmentations or absolute error (HD) or the precision of 
the overall shape or mean error (MSD). However, due to the charac
teristics of the ON shape, the field will benefit from using the skele
tonized version of HD and MSD. The skeletonized HD will help us to 
understand if a method has local errors in a specific area of the ON (i.e. 
orbital area), values close to 0 will mean that overall shape follows the 
ground truth or expected result. Whereas that global errors will be 
assessed by the skeletonized version of MSD, which will show up miss- 
alignments or important deviations between the obtained and the ex
pected results and values close to 0 will mean follow the same path.

Although optimized MR protocols may enhance image quality for 
clinical evaluation, a modality-agnostic approach remains more gener
alizable for segmentation algorithms, due to the variability in MRI 
protocols across centers. In the upcoming years, we anticipate a sub
stantial growth in research on the ON, driven by a recognition of its 
clinical relevance and the availability of increasingly robust automated 
segmentation methods. The inclusion of the ON in the diagnostic criteria 
for MS (Foster et al., 2024) will create a demand for improved methods 
to visualise this region of the central nervous system, accurately delin
eate it, and detect MS lesions.

Fig. 3. From left to right, 3D T1, 3D FLAIR and 3D T2 axial MRIs of the brain showing healthy optic nerves and chiasms. These conventional MRI sequences are 
routinely used for assessing the optic nerve.
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5. Conclusions

In conclusion, the segmentation of the ON has evolved significantly 
over the past decades, driven by advances in MRI techniques and the 
emergence of deep learning algorithms. This review highlights the 
transition from traditional methods to modern deep learning ap
proaches. The integration of single and multi-modality imaging has 
further enhanced a precise and reliable ON segmentation. As MRI 
technology continues to progress, and the inclusion of the ON in the 
diagnostic criteria of some neurodegenerative diseases, the field of ON 
segmentation is poised to make substantial contributions in medical 
diagnostics and treatment planning, offering deeper insights into the 
mechanisms underlying ON conditions. Additionally, improving visu
alisation of the ON will help develop markers specific to myelination and 
neurodegeneration which will help future trials of emerging neuro
protective, remyelinating therapies.
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