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Understanding how ecosystems are responding to climate change is probably the biggest challenge 1 
in biosphere science. This challenge is particularly acute for tropical forests because of their high 2 
biodiversity, importance for global biogeochemical cycles, poorly understood ecophysiological 3 
function and chronic undersampling in field studies. Here we examine how the functional 4 
composition of the Neotropical forest biome, the most biodiverse and extensive of the tropical forest 5 
regions, has shifted in recent decades compared to climate change expectations. We combine long-6 
term forest inventory data from more than 400 permanent forest plots with a functional traits dataset 7 
and Earth Observation to track and map functional change expected from observed changes in 8 
species composition. We found remarkable differences in trait-climate relationships for some traits 9 
between lowland and montane forest types across the Neotropics. Most of the observed change in 10 
trait composition over time is consistent with adaptation to a changing climate: a general increase in 11 
the abundance of deciduous species, decreases in leaf size, increases in photosynthetic capacity in 12 
lowland forests, and increases in leaf phosphorus in montane forests. Lowland forests show shifts 13 
for more community traits in comparison to montane forests. However, such functional shifts 14 
associated with changes in community composition do not appear sufficient to keep track with what 15 
would be expected given observed climate change, typically shifting around 10% of the required 16 
amount. It is unlikely that within-species variability and plasticity can make up the deficit, and hence 17 
Neotropical forests, and probably all tropical forests, are likely to be increasingly out of equilibrium 18 
with local climate, and hence increasingly vulnerable to climate change. 19 
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How forests respond to human-driven changes, and in particular climate change, will have a major 20 
bearing on the diversity and function of the biosphere throughout this century and beyond. Here we 21 
focus on Neotropical forests, which host the highest number of tree species in the world 1, including 22 
six key biodiversity hotspots 2 and half of Earth's most intact tropical forests 3. At the same time, they 23 
are highly threatened by climate change having experienced some of the strongest climate and 24 
largest forest area changes over the last decade 3, as well as other anthropogenic drivers 4, 5.  25 

One frequent and fundamental assumption in ecology is that plant species are adapted to 26 
the environmental conditions they inhabit by means of sets of functional strategies or syndromes 6, 27 
7. Functional  traits are defined as morphological, structural, chemical or phenological characteristics 28 
that affect plant performance 6, and therefore their distribution along environmental gradients. 29 
Because functional traits underpin plant ecological strategies along the fundamental axes of growth, 30 
survival and reproduction 7, species distributed across different environmental conditions tend to 31 
have a different set of functional traits 8. Moreover, it has been suggested that such plant functional 32 
traits show consistent relationships with climate across environmental gradients 9. Therefore, plant 33 
functional traits provide a robust framework for predicting the impacts of climate change and 34 
resilience across forest ecosystems 7, 10. Across the Neotropics, climate change is already affecting 35 
plant communities. For example, in the Amazon, changes in precipitation patterns and the 36 
occurrence of more frequent droughts have led to an increase in the recruitment of dry-affiliated 37 
species (xerophilization) 11. In the Andes, increases in temperature have led to a higher abundance 38 
of heat-tolerant species (thermophilization) 12. Across Mesoamerican forests, it is expected that 39 
climate change will cause the decline of temperate forest by 13% and the shift of tropical dry forests 40 
to higher elevations (over 200 m above current average elevation) 13.   41 

Changes in Neotropical climate are expected to become stronger, with some scenarios 42 
projecting temperature increases of up to ~4°C and precipitation reductions of close to 20% 14-16. 43 
Such changes would expose current species assemblages to climates they never experienced 44 
before 17. Community responses to climate change will thus likely depend on underlying mechanisms 45 
and geographical context. For example, if species track climate change via migration, we would 46 
expect montane communities to track climate change better than those in the lowland forests 18 given 47 
the much sharper climate gradients across shorter distances in mountains 19. Given past exposure 48 
to a drying and warming climate, we expect that species with more conservative trait syndromes, 49 
such as smaller, thicker leaves with higher wood density and lower photosynthetic capacity, increase 50 
in abundance, and that different forest types (i.e. lowland and montane) diverge in responses given 51 
their differences in climate change exposure 12, 20. Other drought-tolerance syndromes, notably 52 
deciduousness (often associated with more acquisitive leaves), could also become more prominent 53 
in the future as an adaptation to increasing drought conditions 21, 22. Fruit and seed traits play a 54 
pivotal role in the reproduction and dispersal capacity of species, and under a warming and drying 55 
climate we might expect them to decrease in size as has been observed in deep time studies 23, 56 
although other factors such as defaunation of frugivorous seed-dispersing large mammals and birds 57 
may more strongly drive their shifts at short time scales 24.  58 

It is yet unclear how shifts in species composition translate into changes in functional 59 
composition and what functional changes have occurred through the last half a century as a 60 
response to the onset of a warmer, drier and more variable climate across the Neotropics. Moreover, 61 
it is unclear if the functional trait composition of such plant communities is tracking the observed 62 
changes in climate or lagging behind.  63 

Here, we address these knowledge gaps by analysing a set of 415 long-term forest plot sites 64 
covering the last 40 years, encompassing >250,000 individual trees across 11 countries in the 65 
Neotropics where tree biodiversity, structure and function are being observed, spanning  structurally 66 
intact forests from the lowland tropical core (<650m elevation) to pre-montane and montane forests 67 
(>650m elevation; here onwards referred to as montane) in the high Andes and subtropical fringes 68 
(Fig. 1; Supplementary Table 1). By combining this unprecedented monitoring and analysis of 69 
changes in plant community composition with measurements and detailed assessment of 13 plant 70 
traits involved in plant response to a changing climate (Supplementary Table 2), we investigate 71 
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current plant trait-environment relationships and whether there are any climatic thresholds that 72 
underpin differences in responses between lowland and montane forests. We also examine how and 73 
where these ecosystems have shifted in their functional trait composition because of changes in the 74 
plant community taxonomic composition, and how well the tree communities have been able to track 75 
climate change to date. We hypothesise that for most traits there will be a consistent trait-climate 76 
relationship but this would vary per functional trait and per forest type, and that lowland and montane 77 
forests will differ in their functional responses to climate change given their different exposure to 78 
climatic conditions. We expect that, given their slow dynamics, Neotropical forests will demonstrate 79 
ecological inertia so that changes in functional composition lag changes in climate. 80 

 81 
Figure 1. Study area showing the distribution and number of vegetation plots (top panel) and changes in climate 82 
conditions over the past 30 years (1980-1990 vs 2010-2020) that occurred across the sampled vegetation plots 83 
(bottom panel). In the bottom panel the vertical dotted lines indicate zero change. Brown colours depict increases in 84 
temperature, drier conditions (for MCWD and VPD) or increased drought intensity  (for SPEI). Blue colours depict an 85 
increase in water availability. MCWD: maximum climatic water deficit here with larger positive values indicating higher 86 
water stress, VPD: vapour pressure deficit, SPEI: standardised precipitation-evapotranspiration index. The climate data 87 
was derived from the TerraClimate project 25. 88 
 89 
Current Trait-Environment relationships 90 
To evaluate current trait-climate relationships across Neotropical forests, we used data from 398 out 91 
of the total 415 forest plots for the current climatic conditions (i.e. 2000-2021), excluding those which 92 
did not have census data between 2000-2021 (mean plot size 0.97 ha). As the most dominant 93 
species are expected to drive ecosystem processes 26, for each plot, we calculated the community-94 
weighted mean of each plant functional trait (Supplementary Table 2; Methods) based on the relative 95 
basal area of the species and their trait value (hereafter “community functional traits”). We then 96 
modelled, in multivariate linear models, each community functional trait as a function of the additive 97 
effects of relevant and largely independent (Extended Data Fig. 1) climatic drivers of species 98 
distributions, i.e., the mean annual values (between 2000-2021) of temperature (Tmean), vapour 99 
pressure deficit (VPDmean) 27, and the maximum climatic water deficit (MCWDmean)28 and standardised 100 
precipitation-evapotranspiration index (SPEI12) 29, each one of these interacting with forest type 101 
(lowland or montane) (Methods). 102 

 103 
Most community functional traits show consistent relationships with climate gradients  (Table 104 

2; Figure 2; Extended Data Fig. 2). For both lowland and montane forest types, an increase in 105 
temperature (Tmean) along a spatial gradient is associated with an increase in leaf area (Area), 106 
maximum species tree height (Hmax), wood density (WD), fruit length (FL) and seed mass (SM) and 107 
a decrease in leaf thickness (Thickness) and the proportion of deciduous species (DE). An increase 108 
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in MCWDmean is associated with an increase in photosynthetic capacity (Asat), DE, WD, and FL and 109 
a decrease in leaf area, fresh mass (FM), and leaf phosphorus (P) (Supplementary Table 3). The 110 
increase in these leaf traits in drier forests could be associated to the high photosynthetic rates 111 
generally attained by deciduous species over the growing season 30, 31 and the fact that higher WD 112 
tends to relate to higher resistance to lethal water potential 32. Across forests, atmospheric water 113 
stress (VPDmean) reduces  WD, FL, and SM across forest types. Thickness, Hmax, and SM tend to be 114 
higher in areas that experience stronger and more prolonged droughts (SPEI12), but the opposite 115 
occurs for WD. However, consistent climatic relationships across both forest types are not apparent 116 
for leaf nitrogen (N), leaf carbon (C) and specific leaf area (SLA)  (Supplementary Table 3). 117 

 118 

119 
Figure 2. The relationship between canopy traits and climate. Trait-environment relationships for temperature (Tmean) 120 
across the vegetation plots with graphs for the other climatic variables used in the multivariate models shown in Extended 121 
Data Fig. 2 (also including the break point results). Filled dots represent vegetation plots for lowland (<650 m elevation, 122 
blue) and montane (>650 m elevation, yellow) forests across the Neotropics. Thick blue and yellow lines show the average 123 
trait response to the climatic variable for lowland and montane forests, respectively, and grey-shaded lines show 700 124 
random draws from the model posterior distribution representing the variability of the expected model fit. For full statistical 125 
multivariate model results see Supplementary Table 3 and Supplementary Table 4. Asat: photosynthetic capacity at light-126 
saturation, C: leaf carbon content, N: leaf nitrogen content, P: leaf phosphorus content, Area: leaf area, Fresh mass: leaf 127 
fresh mass, SLA: Specific leaf area,  Thickness: leaf thickness, DE: deciduousness, Hmax: adult maximum height, WD: 128 
wood density, Fruit length: length of the fruit, Seed mass: mass of the seed. 129 

Climatic thresholds of trait-environment relationships  130 
Because lowland and montane forests might have different trait-environment relationships and given 131 
the expected strong effect of climate change on community functional traits across altitudinal 132 
gradients, we conducted a breakpoint analysis (Methods). This analysis detects, across the climatic 133 
gradient, the point at which the functional communities differ the most. We found that  for several 134 
traits, lowland and montane forests have divergent relationships with climate (Supplementary Table 135 
4; Extended Data Fig. 2).The point where we detected more differences in the average Trait-Tmean 136 
relationship varies between 16.1°C to 27.2°C depending on the trait, with an average of ~21°C (mean 137 
std. error = 1.18°C) (Extended Data Fig. 2; Supplementary Table 4). For the MCWDmean this is on 138 
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average 343 mm (min= 36.1, max=722.5, mean std. error = 81.8), for VPDmean the average threshold 139 
is 0.7 kPa (0.3, 1.1, 0.1) and for SPEI12 this is -0.59 (-1.41, 0.08, 0.3).  140 
 141 
Changes in trait composition across time 142 
We next analysed if and to what extent the functional trait composition of Neotropical forests has 143 
shifted given observed changes in climate over the past 40 years (Methods). To this end, we used 144 
the full dataset containing 415 vegetation plots (mean plot size 0.88ha) which contained at least two 145 
censuses (mean 5.8 censuses) (Supplementary Table 1). We first calculated the community-146 
weighted mean (CWM) and variance (CWV) of each plant functional trait for each vegetation census 147 
available and calculated its yearly rate of change across time (Methods). Using a Bayesian 148 
estimation approach, we tested if the changes in trait CWM and CWV were significantly different 149 
from zero when using all vegetation plots together and when divided into lowland and montane 150 
forests. We then investigated whether the observed shifts in trait CWM and CWV significantly 151 
differed between lowland and montane forests (Methods). For shorthand and readability, all mention 152 
of mean trait properties and shifts below refer to CWM trait values. 153 

When including all plots together, we found that, out of the 13 traits analysed, nine underwent 154 
significant changes in their CWM traits (HDI: 90% highest density interval does not overlap zero). 155 
Only leaf FM, SLA, SM, and WD did not show significant shifts across time (Supplementary Table 156 
5). Of the traits with significant changes across time, all leaf chemistry (N, P, C) and photosynthetic 157 
capacity-related traits (Asat), tree structure (Hmax, WD), deciduousness, and fruit length showed 158 
increases in trait values, while leaf area and thickness tended to show substantial declines (insets 159 
in Fig. 3).  160 

In the lowland forests, we detected significant trait changes for nine (increasing: Asat, N, C, 161 
DE, Hmax and FL; decreasing: Area, FM, Thickness) out of the 13 traits analysed, spanning leaf 162 
chemistry, morphology, structure, and dispersal traits (Supplementary Table 5; insets in Fig. 3).  163 
Montane forests only showed significant increases in leaf C, P, Area, and DE (Supplementary Table 164 
5 and Supplementary Table 6; Fig. 3 insets). Moreover, we found that the variance in community 165 
traits also increased for Asat, SLA, Hmax and FL in lowland forests, while in the case of montane 166 
forests only Area variance increased significantly (Supplementary Table 7 and Supplementary Table 167 
8; Extended Data Fig. 3).  168 

To help identify the underlying climatic drivers of forest functional change, we also modelled, 169 
using multivariate linear models, the full-term (∆FT; i.e. from first to last census) change in the trait 170 
values as a function of the full-term changes in temperature (∆TFT), maximum climatic water deficit 171 
(∆MCWDFT), standardised precipitation-evapotranspiration index (∆SPEIFT), and vapour pressure 172 
deficit (∆VPDFT), each one of these interacting with forest type under a Bayesian modelling approach 173 
(Methods). We then used this ∆FT trait CWM model to spatially predict the temporal changes in trait 174 
composition across Neotropical forests over the past 40 years (Fig. 3). 175 

Our results depict the role of climate, specifically temperature and water availability, as a 176 
determinant of trait shifts across Neotropical forests, and the differences in response between 177 
lowland and montane forests (Supplementary Table 9). We found that climate changes can partially 178 
explain the changes in traits across time and that lowland and montane forests have responded in 179 
different ways to climate changes (Extended Data Fig. 4). By building spatial predictions from our 180 
models of observed trait changes across time, we show that some forests are predicted to have 181 
increased in Asat (up to 0.015 μmol m-2 s-1 decade-1), C (0.01% decade-1), SLA (0.8 cm2 g-1 decade-182 
1), WD (0.0003 g cm3 decade-1), DE (0.11 % decade-1), Hmax (0.035 m decade-1), FL (0.03 cm decade-183 
1) and SM (8 mg decade-1), especially around the Caribbean and Amazonia (maps in Fig. 3). 184 
However, other forests are predicted to have experienced slight to large declines in most of these 185 
traits, especially across Mexico and the Andes (Fig. 3). FM and Thickness are predicted to have 186 
declined by up to -0.043 g decade-1 and -0.07 decade-1 mm respectively per decade over the last 40 187 
years in some in central and southern Amazonian forests.  188 
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189 
Figure 3. Observed changes in the mean community functional trait values over the past 40 years across 190 
Neotropical forests. A) Changes in trait community-weighted mean (CWM) traits of vegetation plots for leaf photosynthetic 191 
capacity and leaf chemistry traits, B) for leaf morphology and structural traits, C) for tree phenology and structural traits, 192 
and D) for dispersal traits. The insets in the left-hand side of each map show the observed yearly rate of change, obtained 193 
from sampled vegetation plots, from the statistical models in Supplementary Table 5 and Supplementary Table 6 for all 194 
forests together and only for lowland or montane forests. In the A-D insets significant differences from zero are shown as 195 
filled circles and non-significant differences as empty circles. The vertical lines depict the Highest Density Intervals (90% 196 
HDI), and the horizontal grey dotted line indicates zero change. Maps show the observed changes in trait CWM as a result 197 
of the statistical models (shown in Supplementary Table 9) for the community trait changes across the full time period, 198 
expressed as changes per decade (∆D) and predicted across the Neotropics. In the maps, warmer colours represent 199 
decreases in the trait CWM, and cooler colours increase in the trait CWM, with yellow-white colours representing slight or 200 
no changes. The grey mask represents all predominately non-forested areas (e.g. crop fields, swamps, savannas, open 201 
forests, areas with small patches of forest) and was derived from the European Space Agency Land Cover CCI Product 202 
33. The inset table at the bottom summarises the observed trait changes across lowland and montane forests, with arrows 203 
either describing trait increases (up) or decreases (down) and dashes (—) showing no significant changes. Asat: 204 
photosynthetic capacity at light saturation, C: leaf carbon content, N: leaf nitrogen content, P: leaf phosphorus content, 205 
Area: leaf area, Fresh mass: leaf fresh mass, SLA: Specific leaf area,  Thickness: leaf thickness, DE: deciduousness, Hmax: 206 
adult maximum height, WD: wood density, Fruit length: length of the fruit, Seed mass: weight of the seed. 207 
 208 
Changes in functional syndromes across time 209 
Species exhibit functional traits that together shape functional syndromes or strategies, which allows 210 
species to respond to their environment 34. A principal component analysis (PCA) of the spatial 211 
predictions of changes (as mapped in Fig. 3) in trait values across time reveals that the first three 212 
axes explained 80% of the variation in trait changes among plots (Supplementary Table 10). PC1 213 
(explaining 41% of the variation) integrates changes related to resource acquisition, depicting 214 
predicted overall increases in leaf photosynthetic capacity (Amax) across lowland Amazonian forests 215 
accompanied by slight decreases in leaf N (possibly because much of the N is not used for Rubisco 216 
but for instance for defence) and P, and generally large increases in N and P at higher elevations 217 
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ranging from Mexico to the tropical Andes (Fig. 4). PC2 (explaining 27% of the variation) depicts 218 
changes in syndromes related to water loss avoidance (phenology) and leaf economics (carbon, 219 
fresh mass), with large increases in the abundance of deciduous species (DE) and declines in leaf 220 
carbon (C; perhaps because of less lignin in deciduous leaves) across most forests but increases in 221 
northern Mexico and southeastern Brazil (Fig. 4). PC3 (explaining 12% of the variation) summarises 222 
changes in dispersal and resource acquisition (fruit length, seed mass and leaf area), with overall 223 
increases in the contribution of leaf area but decreases in fruit length (FL) and seed mass (SM) 224 
across Mesoamerican and Andean mountain ranges and central and eastern Amazonia, but 225 
increases in fruit and seed size in western Amazonia (Extended Data Fig. 5).  226 
 227 

 228 
Figure 4. Maps of predicted changes in plant functional syndromes based on principal component analysis (PCA) 229 
of the observed trait changes across Neotropical forests. The maps depict the changes in functional syndromes across 230 
time (see full statistical results in Supplementary Table 10). The first two axes, shown as the two maps, explain 68% of the 231 
variation in trait CWM changes. Principal component 1 (PC1) explains 41% of the variation in trait changes, integrating 232 
syndromes related to resource acquisition such as leaf photosynthetic capacity (Amax), leaf N and P. PC2 explains 27% of 233 
the variation showing changes in syndromes related to water loss avoidance (DE: deciduousness) and leaf economics (C: 234 
carbon, and FM: fresh mass). The grey mask represents all predominately non-forested areas (e.g. crop fields, swamps, 235 
savannas, open forests, areas with small patches of forest) and was derived from the European Space Agency Land Cover 236 
CCI Product 33.  237 
 238 
Has Neotropical forest functional composition shifted enough to track climate change? 239 
We next examine whether the observed changes in traits are sufficient to maintain expected trait-240 
environment relationships, the latter derived from the spatial trait-environmental relationships 241 
reported above. There is some potential for entanglement in using the same data for spatial and 242 
temporal analysis (temporal changes might already be affecting our spatial relationships), but the 243 
spatial environmental gradients are much greater than the temporal changes over 40 years, so this 244 
entanglement is likely to be small. Here, we took the current observed trait-climate models 245 
(Supplementary Table 3) and predicted the expected change in mean trait values per unit increase 246 
in Tmean. In the same way, we used the full-term trait change models (Supplementary Table 5) and 247 
obtained the observed traits change per unit change in temperature (Methods). This allowed us to 248 
understand the expected shift in mean trait values based on the current trait-climate relationship 249 
(Fig. 5 insets). We then mapped the observed (across time) and expected (current trait-climate 250 
relationships) trait changes across the Neotropics and calculated their ratio (observed/expected) 251 
expressed as a percentage (Methods; Fig. 5).   252 

 253 
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Figure 5. Relation between the expected changes in the traits (based on spatial traits-climate relationships) and 254 
observed changes across time for A) leaf photosynthetic capacity and leaf chemistry traits, B) leaf morphology 255 
and leaf structural traits, C) tree phenology and structural traits and D) for dispersal traits. The insets in the left-256 
hand side of each map show the observed and expected change, obtained from sampled vegetation plots, for lowland and 257 
montane forests given a unit increase in temperature (see full statistical details in Supplementary Table 11 and 258 
Supplementary Table 12), relative to zero change (horizontal grey line). The vertical lines depict the Highest Density 259 
Intervals (90% HDI), while circles and stars show the mean expected and observed values respectively. Maps show the 260 
extent to which community traits are tracking the expected trait values as a percentage (% tracking). Cooler colours 261 
represent positive trait tracking, white represents slight or no trait shifts and warmer colours show predicted trait shifts in 262 
opposite direction than expected. Values above 100% or below -100% are classified as 100% or -100% respectively for 263 
clarity purposes, the original values are shown in the Extended Data Fig. 6. The grey mask represents all predominately 264 
non-forested areas (e.g. crop fields, swamps, savannas, open forests, areas with small patches of forest) and was derived 265 
from the European Space Agency Land Cover CCI Product 33. Asat: photosynthetic capacity at light saturation, C: leaf 266 
carbon content, N: leaf nitrogen content, P: leaf phosphorus content, Area: leaf area, Fresh mass: leaf fresh mass, SLA: 267 
Specific leaf area,  Thickness: leaf thickness, DE: deciduousness, Hmax: adult maximum height, WD: wood density, Fruit 268 
length: length of the fruit, Seed mass: weight of the seed. 269 

Our results show strong mismatches between the observed and expected changes in 270 
lowland and montane forests for most traits (Fig. 5 insets; Supplementary Table 11 and 271 
Supplementary Table 12). Overall, there is a larger lag between observed and expected changes in 272 
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montane forests in comparison to lowland forests for leaf morphology and structure traits such as 273 
leaf area (mean change observed over the last 40 years: 1.3 cm2; expected: 16.5 cm2), FM (0.01 g; 274 
0.61 g), SLA (-0.1 cm2 g-1; 4.7 cm2 g-1), Hmax (0.07 m; 1.3 m), but also for leaf N (0.009 %; 0.06 %), 275 
and dispersal traits such as FL (0.09 cm; 0.92 cm) and SM (28 mg; 330 mg). For the lowlands 276 
differences between observed and expected changes are stronger than for montane forest for Asat 277 
where there are on average smaller declines than expected (0.03 μmol m-2 s-1; -0.26 μmol m-2 s-1),  278 
P (-0.5e-05 %; -0.008 %), N (-0.01 %; -0.04 %), leaf thickness (-0.006 mm; -0.45 mm), deciduous 279 
species abundance (-0.2 %; -3 %), and smaller increases than expected for Hmax (-0.01 m; 1.03 m), 280 
WD (0.001 g cm3; 0.01 g cm3) and SM (15.8 mg; 220.4 mg).  281 

The spatial predictions show that most forest communities across the Neotropics are lagging 282 
behind the changes in trait composition required for tree communities to keep pace with climate 283 
change (maps in Fig. 5). The spatial predictions show that many areas around central-southern 284 
Amazonia are either not tracking (i.e. values close to zero) or shifting in the opposite direction than 285 
expected for leaf photosynthetic capacity and chemistry (e.g. Amax up to -50%, N up to -30%, leaf 286 
C up to -35% and P up to -15% of required rates of change). Some traits show large trends in 287 
directions opposite from those expected: for leaf morphology, these include  leaf fresh mass (up to 288 
-70%) and thickness (up to -400%), and for tree phenology and structure, abundance of deciduous 289 
species (-300%). All other traits show weak positive or negative shifts in community traits for most 290 
of the extent of Neotropical forests, with especially little tracking for the montane forests regarding 291 
leaf P, SLA, deciduousness, fruit length and seed mass (Fig. 5). 292 

Overall, we find that 1) trait-environment relationships are consistent for most but not all traits 293 
across lowland and montane Neotropical forests; 2) more traits show significant changes in lowland 294 
(nine out of 13) than montane forests (only four); 3) the  abundance of deciduous species is 295 
increasing across forest types, with accompanying decreases in leaf mass and leaf thickness, 296 
especially in lowland forests; and 4) most of these traits are changing at only a fraction (typically 297 
10%) of the rate required to maintain equilibrium with the climate.  298 

Lowland and montane forests show different trait-climate relationships for some traits. One 299 
possibility is that this reflects their different position along the  climatic gradient (i.e. temperature and 300 
precipitation), with lowlands occupying areas with more homogeneous climate across large spatial 301 
extent in comparison to montane forests which span a large range of climates across smaller spatial 302 
extents. We detected that such shifts in responses occur on average at mean annual temperatures 303 
~21 °C. This temperature threshold may indicate a Neotropics-wide fundamental community 304 
functional phase shift in climate regime and also underline differential responses to a changing 305 
climate. Alternatively, such differences between lowland and montane forests are potentially due to 306 
additional variables, such as cloud immersion effects in upper montane, which could shift the nature 307 
of trait-environment relationships given the lower radiation and temperature, and the high water 308 
availability  across the year 35, 36. In an extensively studied transect in the Peruvian Andes, 21 °C 309 
corresponds closely to mean cloud base height and abrupt changes in many ecosystem functions 310 
and functional traits 36. 311 

More traits are shifting in lowland than montane forests. There has been a larger increase in 312 
atmospheric dryness (VPD) in lowland than in montane forests, caused by increases in temperature 313 
over the last 40 years, which could partially explain the shift of a larger number of community 314 
functional traits in lowland than montane forests. Recently it has been suggested that increases in 315 
VPD do not necessarily have to negatively impact photosynthesis and biomass, showing how some 316 
of the wettest parts of Amazonia increase photosynthesis with increases in VPD despite reductions 317 
in canopy conductance to CO2 37. Larger increases in droughts and VPD appear to have modified 318 
the community composition of lowland forests more strongly than that of montane forest, towards a 319 
set of species better adapted to drier and hotter conditions, for instance by means of mortality of 320 
more vulnerable species 27. We suggest the increase in photosynthetic capacity and other chemistry 321 
(such as N) and structural traits through time in lowland forests is more likely driven by a shift in the 322 
community composition towards a higher abundance of deciduous species. Increases in the 323 
abundance of deciduous species was also detected for montane forests. Overall, deciduous species 324 
tend to have acquisitive leaf syndromes with higher leaf nitrogen and phosphorus, photosynthetic 325 
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capacity and photosynthetic nitrogen-use efficiency, especially under hydric stress 38. The pattern 326 
observed across Neotropical forests could be due to leguminous species being nitrogen fixers, often 327 
deciduous and with higher photosynthetic nitrogen-use efficiency, that dominate in dry forests 39. As 328 
the forests have become more deciduous over the last 40 years their community-level leaf thickness 329 
and fresh mass has also declined, especially across lowland forest in the Neotropics. The increase 330 
in deciduousness across Neotropical forests is remarkable, with only few regions in central Mexico 331 
and southeast Brazil showing opposite trends. The increase in deciduousness is accompanied by 332 
decreases in fresh mass and leaf thickness, as leaves from deciduous species tend to be thinner 333 
and lighter than those of evergreen species 40, 41. This is consistent with what has been reported for 334 
West African tropical forests where increasing drought stress increased the abundance of deciduous 335 
species, and these changes in deciduousness explained changes in other morphological, structural 336 
and leaf chemistry traits 31. Thus, increases in deciduousness is expected to be one process 337 
undertaken by forest communities as they track a drying environment, though it may be limited in 338 
infertile contexts, such as southeastern Amazonia, where new leaf construction is costly.  339 

Leaf size is potentially important for the resilience of forests given their role in light capture 340 
but also for water loss and gas exchange 42, 43. Given the current trait-environment relationship we 341 
expected a decline in individual leaf area with increases in water stress. We find an overall decrease 342 
in individual leaf area across lowland and montane forests over the last 40 years with concomitant 343 
increases in water stress. Thus, it is likely that forest communities across the Neotropics are 344 
experiencing increases in species with smaller leaves as an adaptive response to increasing 345 
temperature and atmospheric and soil hydric stress. Moreover, our analyses show significant 346 
increases in fruit length in lowland forests associated with climate change and slight decreases for 347 
montane forests, the latter as might be expected under a warming and drying climate 23. Some wetter 348 
regions (e.g. western Amazonia) do show better tracking of climate, but other regions (e.g southern 349 
and eastern fringes of Amazonia) show a decline in fruit length, which may be an indicator of heavy 350 
defaunation pressure 44 instead of a direct climate effect. More widely, such defaunation effects may 351 
be exacerbating climate change effects. Our predictions of decreases in fruit length and seed mass 352 
broadly match spatial predictions of high defaunation 45, especially in those more accessible areas 353 
of Mesoamerica, the Andes and eastern Brazil, which could thus be important drivers of the observed 354 
dispersal trait changes across time.  355 

In some cases the changes in single traits do not behave as expected from theory, for 356 
instance it would mechanistically be expected that increasing drought would cause plant 357 
communities to shift to lower Hmax, higher WD and thicker leaves. However, such coordinated 358 
changes may not readily happen in the community as what is changing in abundance are whole 359 
phenotypes, particular combinations of traits, rather than  isolated traits. Moreover, not all trait 360 
combinations may be present in any given regional species pool, even in this mega-rich biome, 361 
which may limit the shifts in community traits that can occur at any given time, for instance as a 362 
response to environmental change. 363 

We find that taxonomic community composition changes in Neotropical forests are driving 364 
shifts in the community traits composition, but not quickly enough to keep in equilibrium with climate, 365 
with most traits only changing at a low percentage (e.g. ~10%) of the expected change. Trees are 366 
long-lived organisms with slow turnover rates compared to the rate of climate change and this may 367 
partly explain the slow changes observed. Such lags in response to climate changes are especially 368 
important in forests, such as the Maya forest in Mesoamerica 46, the Atlantic and the southern 369 
Amazon forests in Brazil 47, which have become increasingly fragmented and which may be already 370 
facing strong edge effects affecting the capacity of communities to adapt to the new climate 371 
conditions. These forests face a double challenge from fragmentation and climate change as they 372 
try to track their suitable climate across forests with diminished landscape connectivity 48. 373 
Furthermore, there are other factors besides climate that may further explain trait shifts or a lack of 374 
shifts across forest communities, such as soil conditions 49, biotic interactions (e.g. animal-plant 375 
interactions; 50 and wind disturbance 51. An important point to consider is that our analysis assumes 376 
traits are fixed at species-level, and traits may be showing intra-specific plasticity that we are unable 377 
to assess here given the scale and multidecadal nature of the study. Some traits may show more or 378 
less plasticity than others and species intraspecific variation may play an important role for 379 
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adaptation to a changing climate 52, 53. Our analysis clearly demonstrates that community changes 380 
are insufficient to track climate change, and the overwhelming onus would be on within-species 381 
variability and traits plasticity to track climate change. Given the scale of the tracking deficit we 382 
observe, it is very unlikely that such traits plasticity is sufficient to track climate change, and hence 383 
it is likely that tree species composition and functional properties of Neotropical forests, and all other 384 
tropical forests, are increasingly out of equilibrium with local climate. Such disequilibrium almost 385 
certainly increases vulnerability to climate change.    386 

METHODS 387 
Plot data 388 
Our study focuses on Neotropical forests. We gathered tree-by-tree vegetation census data for 389 
254,307 individual trees from 415 vegetation old-growth forest plots across 11 countries across the 390 
Neotropics, spanning a wide range of environmental conditions and elevations from sea level to 391 
>3000m elevation, with at least two census recorded (on average 5.7 census per plot) between the 392 
years of 1980 and 2021 and with at least ten years interval between the first and the last census with 393 
exception of the DUK plots which had only six years available (Supplementary Table 1). The plot 394 
modal size was 1 ha (mean 0.88 ha); all plots are located in structurally intact forests with no signs 395 
of direct anthropogenic impacts. Data were obtained through the ForestPlots network 396 
(www.ForestPlots.net) 54, 55. We classified vegetation plots as either lowland (<650 metres above 397 
sea level (masl)) and montane forests (>650 masl) following other recent studies 56, which also 398 
included premontane forests. 399 
 400 
Trait data 401 
Tree functional trait data were obtained for several plots from local field collections carried out by 402 
collaborators from where plots are located (e.g. 57-59), from the Global Ecosystems Monitoring 403 
network (GEM; gem.tropicalforests.ox.ac.uk)60, and the ForestPlots network (www.ForestPlots.net)54 404 
and also from the BIEN (bien.nceas.ucsb.edu), TRY (www.try-db.org)61 networks and Diaz et al. 62. 405 
The plant traits are related to the leaf chemistry, photosynthetic capacity, leaf morphology, maximum 406 
plant height, phenology, seed mass, and seed length (Supplementary Table 2). When species trait 407 
data was unavailable from the GEM and ForestPlots we also used the TRY plant trait database 408 
(www.try-db.org) and BIEN (bien.nceas.ucsb.edu) network data. We aimed to cover at least 70% of 409 
the basal area of each plot with trait data, often covering more than that (Extended Data Fig. 7). 410 
When species-level trait data were unavailable, we used the mean genus-level data. When achieving 411 
at least 70% coverage was not possible for a given trait, such a plot was left out of the analysis for 412 
the specific trait. All species names were standardised following the Taxonomic Name Resolution 413 
Service (TNRS; https://tnrs.biendata.org). 414 
 415 
Climate data 416 
We investigate the role that long-term climate and its changes play on determining the trait 417 
community composition across Neotropical forests by gathering climatic data on the mean annual 418 
temperature (Tmean), mean maximum climatic water deficit (MCWD) 28, vapour pressure deficit 419 
(VPDmean) 27, standardised precipitation-evapotranspiration index for a 12 month window (SPEI12) 29 420 
and dry season length. We calculated the long-term climate conditions as the mean annual values 421 
for the metrics described above between the years 1980 to 2021. All climatic variables were derived 422 
from the TerraClimate dataset 25 and had an original spatial resolution of ~4 × 4 km at the Equator. 423 
The dry season length was calculated as the average annual number of consecutive months with 424 
rainfall below 100 mm 63. The MCWD was included as it is a metric for drought intensity and severity 425 
that has been shown to impact vegetation growth and survival  31. MCWD is thus defined as the most 426 
negative value of the climatological water deficit (CWD) each year. We converted the MCWD so that 427 
positive values indicate increases in water stress. Equally, the SPEI reflects drought severity, but its 428 
multi-scalar nature enables the identification of different drought types and severities 64. VPD is an 429 
indicator of atmospheric aridity, acts as a key environmental driver of plant transpiration and reduces 430 
plant water use efficiency 65. We then tested the correlation between all pairs of climatic variables 431 
(full-term and their changes) and all had Pearson’s correlation coefficients |<0.70| apart from dry 432 
season length which was highly correlated to MCWD (Extended Data Fig. 1), and we thus dropped 433 
dry season length and its change to avoid distorting model coefficients 66. We also calculated the 434 
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change in the climatic variables (ΔTFT, ΔMCWDFT, ΔVPDFT, and ΔSPEIFT) between a first period 435 
corresponding to a climatology of 30 years encompassing 1958–1987 and a second period 436 
encompassing the years 1988–2017 and which represents the climatic conditions across the period 437 
under analysis and for which vegetation data is available. Furthermore, we calculated the yearly rate 438 
of change of the climatic variables to standardise for a different time between censuses for different 439 
plots and avoid the bias due to inter-annual short term variability that occurs in addition to the long-440 
term change. To this end, we fitted a linear model predicting the climate variable value as a function 441 
of time (year) and used the slope as the predicted annual rate of change (Δr).  442 

The study area in the Neotropics used to extract the climatic data and to make spatial 443 
predictions was delineated using the European Space Agency Land Cover CCI Product 33 using all 444 
land use classes defined as tree or shrub cover classification.  445 

Soil variables are relevant predictors of vegetation distribution and are related to the 446 
functional trait composition 67. Variation in soil properties could modify the rate of change in response 447 
to environmental change 68. However, in our models, we did not include soil characteristics such as 448 
texture (clay percentage) and chemistry (cation exchange capacity, CEC) given that for the time 449 
frame analysed they are not expected to change and because our focus is on the climate change 450 
effect on vegetation.  451 
 452 
Trait CWM calculation 453 
The most dominant species are expected to drive ecosystem processes using their traits as 454 
described by the mass ratio hypothesis 26. Therefore, for each of the plant functional traits t and plots 455 
p per census time we calculated their community-level weighted mean (CWM) using the species 456 
basal area as the weighting factor: 𝐶𝑊𝑀!" =	∑ 	#

$%1 𝐵𝐴$" ×	𝑥$ . Here BAxp is the basal area of 457 
species i in plot p , with xi representing the average trait value of species i. Before calculating the 458 
trait CWM, we averaged the trait values at the species level; when the species had no trait values, 459 
we averaged the trait values at the genus level. We calculated in the same way the weighted 460 
variance (CWV). Although species show some degree of intraspecific trait variation, work suggests 461 
it is relatively small compared to the trait variation found across forest tree species 69. Moreover, given 462 
the vast majority of functional trait data has only been collected in the last decade, it is not yet possible 463 
to evaluate the magnitude of intraspecific trait shifts across the spatial extent of Latin America. The trait 464 
CWM is an indicator of mean canopy properties as basal area and crown area are highly related, 465 
and the latter indicates the amount of canopy area occupied by a specific trait 70. In the case of 466 
phenological strategy, as it was obtained as a categorical variable (deciduous or not deciduous), we 467 
calculated the percentage of basal area that is deciduous.  468 
 469 
Understanding trait CWM-Climate relationships and the effects of climate change for driving 470 
trait CWM changes  471 
To understand the current trait-climate relationships across Neotropical forests, for each plant trait 472 
we modelled the trait CWM as a function of the Tmean, VPDmean, MCWDmean and the SPEI12, each one 473 
of these interacting with forest type (lowland or montane) (here onwards referred to these models as 474 
M1).  475 

We observed that across the Tmean gradient, there was often a breakpoint where the slopes 476 
of the lowland and montane forests crossed, so we decided to investigate the specific Tmean at which 477 
this breakpoint occurred. To this end, we carried out a multivariate breakpoint regression analysis 478 
with the trait CWM values as a function of the four climatic variables, Tmean, MCWDmean, VPDmean and 479 
the SPEI12, without separating by forest type. For the break point models we used a starting value 480 
centred at a temperature of 18 °C, 250 mm for MCWDmean, 0.5 kPa for VPDmean and -0.5 for the 481 
SPEI12, which were often the values at which the lowland and mountain forests crossed. For the 482 
breakpoint analysis we used the ‘segmented’ package for R 71.  483 

We next analysed the climatic drivers of shifts in each functional trait given observed changes 484 
in climate over the past 40 years. To this end we modelled the full term (∆FT; i.e. from first to last 485 
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census) change in the trait CWM as a function of ∆TFT, ∆MCWDFT, ∆SPEIFT and ∆VPDFT each one 486 
of these interacting with forest type (hereafter referred to these models as M2). We used the M2 487 
models to predict and spatialise the changes in trait composition across Neotropical forests over the 488 
past half-century. 489 

All linear models were fitted under a Bayesian modelling framework with the ‘rstanarm’ R 490 
package. All numeric explanatory variables were centred before analysis. All models were run with 491 
normal diffuse priors with mean 0 and 2.5 standard deviations (sd) to adjust the scale of coefficients 492 
and ten sd to adjust the scale of the intercept. The models were run with three chains and 2,000 493 
iterations. We computed the HDI (highest density interval), resulting in the range containing the 90% 494 
most probable effect values, and calculated the region of practical equivalence (ROPE) values using 495 
such HDI as in Makowski et al. 72. The 95% HDI was not used as this range is unstable with effective 496 
sample size <10,000 73. If the score of a climatic variable at 90% HDI did not overlap 0, we considered 497 
it had an important (significant) effect on the response variable. Because the studied functional trait 498 
values are always positive and often have a long-tailed distribution, the current Trait-Climate 499 
relationship statistical models used a Gamma distribution and log link function, using a weighting 500 
given plot size 74. The trait CWM change models (a separated model per trait) used a Gaussian 501 
distribution, weighting the observations by the time between the first and last census and by the size 502 
of the plots, this is we weighted by the cubic root of census interval length plus the fourth root of 503 
sampled area minus one 74. 504 
 505 
Understanding shifts in trait CWM 506 
We calculated the temporal changes in trait CWM at the plot level as the annual rate of change (Δr 507 
of the trait CWM) to standardise for a different time between censuses for different plots. To this end, 508 
we fitted a linear model predicting the trait value as a function of time (year)  and used the slope as 509 
the predicted annual rate of change (Δr). To investigate if the rate of trait changes for the overall 510 
forests (lowland and montane together), for the lowland forests alone and the highland forest alone, 511 
was significantly different from 0, and also if there were important differences between the rate of 512 
change between lowland and highland forests we carried out a Bayesian version of a typical T-test 513 
analysis using Bayesian estimation 73, 75, 76. The Bayesian estimation was done using the ‘BEST’ 514 
package for R, with normal priors with mean for µ (the mean of rate of change) of 0 and a standard 515 
deviation for µ of 10. We used broad uniform priors for σ (standard deviation), and a shifted-516 
exponential prior for the parameter ν which describes the normality of the data within the group. As 517 
above, here we calculated the HDI rendering the range containing the 90% most probable effect 518 
values. 519 

Principal component analysis of trait changes to understand shifts in functional strategies 520 
We carried out a PCA of the trait CWM changes mapped predictions from the full term changes 521 
specified above (i.e. those from M2 and shown in maps of Fig. 3) to investigate the changes in 522 
functional strategies that have occurred across Neotropical forests and time. To this end we took the 523 
maps of mean changes in each CWM trait (M2 models) and used the ‘rasterPCA’ function from the 524 
RStoolbox package in R to create a Neotropics wide PCA prediction. The PCA results describe how 525 
much of such changes in strategies can be explained by the changes in each functional trait. The 526 
PCA analysis was carried out with centred and scaled trait CWM change values (mapped predictions 527 
from Fig. 3). 528 

Understanding if forest community traits are tracking climate changes.  529 
We used the statistical models constructed above for the current trait-climate relationships (M1) and 530 
for the observed change in trait CWM across time (M2). We took the current observed Trait-Climate 531 
(2000-2021) models (M1) and predicted the expected change in mean trait values per unit increase 532 
in Tmean. In the same way, we used the full-term trait change models (M2) and predicted the expected 533 
change per unit change in Temperature. We applied the same protocol mentioned above for each 534 
of the covariates in the models, for which we assumed a change in MCWD of 10mm, 1kPa for VPD 535 
and -1 unit for SPEI. While making the predictions for each covariate we kept all others constant. 536 
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This allowed us to understand the expected shift in mean trait values based on the current trait-537 
climate relationship and that based on the observed trait changes across time (i.e., from 1980-2021). 538 
This is, the current trait-climate relationship shows how much the tree communities would need to 539 
change to keep up with climate changes, and the observed trait changes across time show how 540 
much they have actually changed.  541 

Then, we predicted (mapped) the current trait-climate model across the Neotropics by 542 
increasing the climate values by the amount observed across the last 40 years, spatialised this model 543 
(made a map) and subtracted the original predictions (those without changes in climate conditions) 544 
as to obtain the expected changes at the pixel level (in the map) for across the Neotropics based on 545 
current trait-climate relationships. Then we calculated the ratio of the observed, i.e. spatial 546 
predictions of the trait changes observed across time, versus expected (described above) and 547 
converted to percentage to understand if and to what extent the observed trait changes are tracking 548 
(values above zero) or not (values of zero) the expected changes given the observed changes in 549 
climate or even shifting in opposite direction than expected (values below zero). All statistical 550 
analyses were carried out in R.  551 
 552 
Creating the spatial predictions (maps) 553 
All maps were generated by predicting the focus model to the study area. The study area in the 554 
Neotropics was delineated using the European Space Agency Land Cover CCI Product 33 using all 555 
classes having tree cover classification and numbered from class 50 to class 100 as suggested here: 556 
http://maps.elie.ucl.ac.be/CCI/viewer/index.php. To avoid extreme values in the maps, given some 557 
extreme climate values inherent to the climate data, we allowed the map predictions to contain the 558 
90 percentile predicted value as the maximum instead of the 100% which allowed us to eliminate 559 
the outlier values. The maps were created in the R platform using the packages raster, sf, tidyverse, 560 
rgdal, rnaturalearth, rasterVis and RStoolbox. 561 
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