
PHYSICAL REVIEW E 111, 045405 (2025)

Three-dimensional model for surface accumulation of chiral and nonchiral microswimmers
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Persistent motion of microswimmers near boundaries is known to result in surface accumulation. A way
to control surface accumulation is by reducing the contact surface area between swimmers and surface by
modifying its topography, typically through the application of microscale structures. In this work, we introduce
a three-dimensional (3D) phenomenological model of a microswimmer navigating a volume bounded by a top
and bottom surface. We describe the swimmer-surface interaction with an effective near-surface alignment force,
and study numerically the effect of surface textures, modeled by convex obstacles, on the surface accumulation
of chiral and nonchiral microswimmers. We find that, depending on the angular velocity of the swimmer, and
the alignment force, convex obstacles can either hinder or enhance surface accumulation. We discuss potential
applications to sorting of microswimmers by their angular velocity.
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I. INTRODUCTION

In the last two decades, active matter has become an in-
creasingly important focus of research [1,2]. On small length
scales, active matter describes micron-sized biological en-
tities, such as bacteria, algi, and sperm cells, as well as
artificial microswimmers including self-propelled Janus par-
ticles and active droplets [3]. Microswimmers are known
to perform persistent directed motion when swimming in a
volume (free from boundaries) [1,4,5]. When boundaries are
present, they tend to accumulate at surfaces [3,6–9]. Steric
effects and persistence in the swimming direction are known
to be generic contributing factors leading to surface accu-
mulation (or “trapping”) in addition to hydrodynamic effects
that depend on the specifics of the swimmer and the sur-
face [10–12]. Driven by hydrodynamic interactions, various
microswimmers have been observed to move in chiral tra-
jectories typically along circles, when swimming near a flat
interface. Examples include E. coli [13,14] and sperm cells
[15] or artificial swimmers [10].

Bacterial surface dynamics are central in various industrial,
biomedical, and environmental processes [16–18]. On the one
hand, the adhesion of bacteria to surfaces frequently results
in the formation of persistent biofilms that are difficult to
remove, causing challenges in various fields, including foul-
ing of water purification systems [19], corrosion of structures
used to transport and store chemicals [20], and adhesion to
medical implants, where bacterial infection can result in in-
flammation that can even lead to death [21]. On the other
hand, the industrial potential of biofilms is becoming increas-
ingly developed, including biorefineries [22], bioremediation
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to remove contaminants from freshwater and wastewater [23],
and as templates for new materials with applications in con-
struction and industry [24].

A quantitative understanding of surface entrapment and
subsequent adhesion could further the development of en-
gineered materials to control and prevent bacterial adhesion
to surfaces [25–28]. In recent years, the effects of surface
topography and roughness on bacterial surface dynamics
and adhesion have received increasing attention [6,8]. Ex-
perimental observations show that the topography of the
environment can strongly influence the dynamics of mi-
croswimmers on a surface, in nonintuitive ways. Experimental
evidence indicates that the presence of porous microstructures
generally hinders the diffusive transport of microswimmers
[29,30]. Interestingly, for chiral microswimmers, contrasting
phenomenology has also been observed. For example, a sig-
nificantly enhanced propagation on surfaces, due to randomly
placed obstacles, has been reported in theoretical studies
[31–33] and in experiments with E. coli [5]. Furthermore,
experiments tracking E. coli navigating a colloidal crystal re-
vealed that the colloids rectify the trajectories of the bacteria,
resulting in enhanced transport [34–37].

Experiments on E. coli approaching a surface have shown
that the average reorientation of the cells in a direction par-
allel to the surface is driven by steric forces at contact and
short-ranged hydrodynamics, dominating any long-ranged hy-
drodynamics [6,38–40]. Similar results were obtained for
sperm cells on a surface [41], for E. coli interacting with
micron-sized pillars [12], and for synthetic microswimmers
navigating an environment of passive colloidal beads [10]. Af-
ter the reorientation event, a swimmer was observed to move
along a boundary (surface, pillar, or bead) until Brownian
diffusion rotates its axis away.

From a numerical perspective, detailed simulations of the
swimmer dynamics, which explicitly include the coupling
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between the swimmer and surrounding fluid along with hydro-
dynamic effects, are extremely demanding. Instead, to reach
the relevant timescales of the dynamics, effective models are
used, where the details of the interactions are coarse grained
into mechanistic descriptions [3,5,30–33,42–45]. Many nu-
merical models consider 2D systems, but some have also
considered 3D [46]. For example, in [47], the authors in-
troduced a 3D model describing the behavior of chemical
microswimmers designed to model chemically active colloids.
In [37] a bacterial cell was modeled in 3D by simulating the
Brownian dynamics of a stiff polymer described as a bead-
spring model.

In this article, we introduce a phenomenological 3D model
to investigate the surface accumulation of microswimmers.
The model accounts for the self-propagation of a swimmer
and its tendency to swim in chiral (circular) trajectories when
moving close to a surface. Approximating the motion of rod-
like cells, the swimmer’s motion is limited to moving along its
direction of self-propagation. To represent the reorientation
along boundaries, an effective short-ranged hydrodynamic
force is introduced that aligns the propagation direction with
the nearest boundary. E. coli and bull sperm cells are used
as example microswimmers, navigating a volume bounded by
a top surface plane and a bottom one, akin to a microfluidic
channel. We study the effect of placing convex obstacles,
which are three times the size of the swimmers, randomly
on both surfaces, and examine how the surface accumulation
is impacted by the strength of the alignment force and the
angular velocity of the motion. The surface accumulation is
quantified by measuring the fraction of swimmers near the
surfaces. Our results show that the presence of obstacles al-
ways reduces the accumulation of nonchiral microswimmers
on these surfaces, as, by aligning along the boundary of the
obstacles, the swimmers are directed away from the surface.
As the obstacle density is increased, the surface accumulation
is reduced. For chiral microswimmers, the accumulation can
be reduced or enhanced. As previously observed in [10–12],
our model confirms that a chiral swimmer may get trapped
orbiting an obstacle. This orbital trapping results from the
interplay between the angular velocity and the alignment force
along the boundary of the obstacle, and occurs only if the
obstacles are at least equal to the size of the swimming orbit.
We discuss how obstacles can be used to control the accumu-
lation of chiral swimmers near surfaces by carefully tuning
their size and, in addition, how obstacles can be employed to
sort swimmers based on their angular velocity.

II. MODEL

We consider a spherical microswimmer of diameter σ

(typically 1–5 µm for natural and synthetic microswimmers)
moving with velocity �v and corresponding momentum �p. The
swimmer navigates a volume of thickness 100σ bounded by
a top and bottom square surface plane with edge size L and
periodic boundary conditions along the directions parallel to
the surfaces. Each surface plane is covered with No = 100
nonoverlapping obstacles of diameter σo = 6σ , uniformly and
randomly placed on the surface so that their centers are on
the surface plane. The obstacles are quantified by their sur-
face coverage defined as ρ = Noπσo

2

4L2 (×100%). Motion of the

swimmer is determined by the deterministic force acting on
it and by a stochastic term �ξ representing fluctuations in the
direction of motion.

The phenomenological model separately accounts for three
distinct observations of microswimmers near surfaces: the
swimmer’s self-propagation or “activity,” alignment of the
direction of self-propagation along boundaries, and the ten-
dency to move in circular trajectories when close to a surface.
The motion of a swimmer, resulting from self-propagation and
viscous drag is determined by

�Factive = − 1

τ
( �p − p0 p̂), (1)

which describes its tendency to move with a momentum of
magnitude p0 along the direction of �p, given by the unit
vector p̂ = �p

| �p| . Corrections to possible deviations from the
self-propagation occur in a timescale set by τ . Notice that,
for t > τ , the dynamics of the microswimmer is overdamped.

The tendency to align with the substrate is described by

�Falignment = −α( p̂ · μ̂⊥)μ̂⊥, (2)

representing an effective reorientation observed for mi-
croswimmers approaching a boundary. The strength of the
alignment is determined by α. For α > 0, the force will tend
to align the swimmer along the obstacle boundary or surface
plane, with μ̂⊥ the unit vector perpendicular to the obstacle
boundary or surface plane closest to the swimmer.

The tendency to perform a chiral motion near a surface is
described by

�Fchiral = β( p̂ × μ̂⊥), (3)

where β sets the angular velocity. For β > 0, the swimmer
will follow circular trajectories when moving close to the sur-
face. The orbital radius of the trajectories Rorbit is determined
by β and defined as Rorbit = v

β
. We introduce 	 = σo

2Rorbit
as a

measure of the angular velocity, by normalizing the size of
the obstacles with the size of the swimming orbit. For larger
values of β, swimmers trace smaller orbits corresponding to
larger values of 	. A schematic illustration of a nonchiral
swimmer (β = 0) is shown in Fig. 1(a)(I), and an illustration
of a chiral swimmer in Fig. 1(b)(I). To represent the short-
ranged nature of the interactions with boundaries, a cut-off
distance rc = 3σ

2 is introduced so that, when the distance r
between swimmer and the obstacle boundary or surface plane
is r > rc, α and β are set to 0.

The steric interaction has two components. A truncated
Weeks-Chandler-Anderson potential is used to represent the
steric interaction with the obstacles �Fobstacle = −∇ V ,

V (ri) =
{

4
[(

σ
ri

)6 − (
σ
ri

)12] + 1 for: ri < 2
1
6 σ ,

0 for: ri � 2
1
6 σ ,

(4)

where ri is the distance between the swimmer and
obstacle i. The WCA potential is a well tried method for in-
cluding obstacle-swimmer interactions [5,33]. For the surface
we use an exponential repulsion of magnitude

�Fsurface = 1

rs
exp (−rs), (5)
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FIG. 1. [(a),(b)] Schematic depiction of a swimmer (red dots) moving at velocity �v in the volume (blue) near the surface (light gray): (a) a
nonchiral swimmer (I) approaching the surface, and (II) guided away from the surface after interacting with an obstacle (dark blue hemisphere);
(b) a chiral swimmer (	 �= 0) (I) approaching the surface, where it moves in orbits of radius Rorbit, (II) guided away from the surface after
interacting with the obstacle, and (III) trapped in an orbit around the boundary of the obstacle. The dark gray arrows indicate the direction
of motion of the swimmer, while the blue arrows indicate the vector perpendicular to the closest surface plane or the boundary of the closest
obstacle.

with rs the distance between swimmer and surface. The inter-
action becomes effective when rs < σ

2 .
If we group terms that result from the swimmer-boundary

interaction under �Fboundary,

�Fboundary = −α( p̂ · μ̂⊥)μ̂⊥ + β( p̂ × μ̂⊥) + �Fsteric, (6)

the trajectory of the swimmer can be obtained by integrating
the following equation:

�̇p = �Factive + �Fboundary + �ξ . (7)

The fluctuations in the direction of motion �ξ are implemented
by rotating the swimmer perpendicular to its direction of self-
propagation p̂. There is no translational diffusion (DT = 0). A
rotation is generated by assigning to p̂ a new direction uni-
formly and randomly drawn from the spherical cap centered
around p̂ with unit radius. The amplitude of the fluctuations
can be tuned by changing the (polar) angle of the cap to
obtain the proper rotational diffusion constant. The effective
diffusion constant DR is extracted through a linear regression
of the mean squared displacement (MSD) at long times

MSD(t ) ∼ 6DRt . (8)

In our case, we performed the linear regression in the interval
3000τ < t < 3600τ .

The time evolution of the system is obtained by integrating
its equation of motion with the velocity Verlet method. In the
following we will express distances in terms of the dimension-
less swimmer radius σ/2 and time in terms of τ which sets
the characteristic time of the motile force [Eq. (1)]. Finally,
the step size in the simulation is 
t = 10−4, and a simulation
lasts for t = 3600 τ .

III. RESULTS

At the beginning of the simulation, swimmers are posi-
tioned randomly and uniformly within the simulation volume.
During the simulation, depending on the parameters, the
swimmers will accumulate at the surfaces (or not) which will
determine the steady state distribution. To characterize the sur-
face accumulation, we count the number of microswimmers

Nsurface that are at a distance shorter than 3σ (one obstacle
radius) from the bottom or top surfaces in the steady state
of the system. We define the fraction φ of microswimmers
accumulated at the surfaces as

φ =
〈

Nsurface

N

〉
. (9)

The brackets 〈.〉 indicate an ensemble average over N swim-
mers (the swimmers do not interact). For smooth surfaces
(ρ = 0), the surface planes contain no obstacles and results
given for this case are obtained from averaging N = 25 000
swimmers. For surfaces with obstacles, results are obtained by
averaging over the same number of swimmers for each value
of obstacle density. In particular, we simulate 100 different
obstacle configurations with 250 swimmers per configuration.
We consider two different values of the rotational diffusion
coefficient: DR = 0.1 rad2/s (Péclet number Pe = 120) corre-
sponding to the rotational diffusion measured for E. coli [40],
and DR = 10−4 rad2/s (Pe = 1.2 105) corresponding to the
value for bull sperm cells [41].

A. Smooth surface

To set the stage we first consider the simplest case of
nonchiral (	 = 0) swimmers navigating a volume bounded
by smooth surfaces, where the surface accumulation φ in-
creases with the dimensionless alignment force strength τα.
Figures 2(a) and 2(b) (blue diamonds) show how the sur-
face accumulation φ increases with τα ranging from τα = 0,
where the rotational diffusion governs the dynamics, to τα =
60, where the alignment force dominates. This range of τα

covers the phenomenology of the model, for τα > 60 no new
phenomenology was observed.

In the absence of alignment force (τα = 0), about 15%
[DR = 10−4 rad2/s, Fig. 2(a)] and 12% [DR = 0.1 rad2/s
Fig. 2(b)] of the swimmers accumulate near the surface. This
accumulation is a result of their persistent motion. A swimmer
explores the volume until it collides with one of the surfaces,
where it will stay until rotational diffusion directs it away from
it so that it can escape.
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FIG. 2. [(a),(b)] Fraction of swimmers accumulated on the surface φ against the alignment force τα for different angular velocities 	 with
an obstacle surface coverage ρ = 20%: (a) for swimmers with DR = 10−4 rad2/s and (b) for swimmers with DR = 0.1 rad2/s. The colored
lines denote the different angular velocities of the microswimmers on such surfaces. The green lines (	 = 0) and blue diamonds (	 = 1)
denote surfaces without obstacles (ρ = 0) instead. [(c),(d)] Fraction φ

φ0
of swimmers accumulated on a surface with convex obstacles relative

to the fraction accumulated at a smooth surface φ0, as a function of 	 and τα, (c) for DR = 10−4 rad2/s and (d) for DR = 0.1 rad2/s. For weak
alignment forces, the obstacles reduce the surface accumulation. The swimmer aligns with the obstacle boundary and is directed away from
the surface. With increasing alignment forces, the surface accumulation increases. As the tendency of the swimmer to align along a surface is
increased, detachments (due to Brownian diffusion) become rarer resulting in an increased accumulation. With increasing angular velocity, the
surface exploration decreases, limiting the effect of the obstacles. The difference between the green line (surface without obstacles) and the
other curves is reduced in (a) and (b). For sufficiently large alignment force and angular velocity, swimmers tend to align along the boundary of
an obstacle and become trapped in orbits along its boundary, resulting in obstacles enhancing the surface accumulation. For DR = 10−4 rad2/s
in (a), this occurs for τα � 20, where the curves 	 � 1 cross above the green line and in (c) where φ

φ0
> 1. For DR = 0.1 rad2/s in (b) obstacles

enhance the accumulation for τα � 20, when the curve 	 � 2 crosses above the green line and in (d) when φ

φ0
> 1.

As the alignment force increases, the fraction of swimmers
accumulated near the surfaces increases. This behavior can be
explained by considering that the alignment force competes
with the rotational diffusion, as a stronger tendency to align
prevents the swimmer from orienting away from the surface
and escape. The marked increase in accumulation for 0 <

τα < 10 results from a shift in the balance of this competition.
For DR = 10−4 rad2/s [Fig. 2(a)] when τα � 10, the align-
ment force becomes strong enough to trap the swimmer at the
surface. The trapping results in an enhanced accumulation,
which increases with the alignment force, reaching 95% for
τα � 10. When DR = 0.1 rad2/s [Fig. 2(b)], the tendency of
the swimmers to diffuse away from the surface is stronger, re-
ducing the accumulation. The accumulation reaches 76% for
τα = 10 continuing to increase slowly to 82% for τα = 60.

When chiral swimmers are considered (	 �= 0), the ac-
cumulation behavior is unchanged for smooth surfaces. We
consider various values of angular velocity between 	 = 0.4
(corresponding to a swimming orbit Rorbit = 7.5σ ) and 	 = 2
(Rorbit = 1.5σ ) which are consistent with values in the litera-
ture [13–15]. For much larger 	, when Rorbit < σ , a swimmer

effectively rotates around its axis, our model is no longer
expected to capture the dynamics. In Figs. 2(a) and 2(b), the
green line shows the accumulation for 	 = 1, which coincides
with the blue diamonds for nonchiral swimmers (	 = 0). The
chirality causes the swimmers to trace circular trajectories
along the surface, but does not affect their overall surface
accumulation.

B. Surface structured with convex obstacles

A very different behavior is observed, for both values of
DR, when randomly placed obstacles are added to the surface.
We begin by considering swimmers with DR = 10−4 rad2/s.

For nonchiral and chiral swimmers in a volume bounded
by surfaces with obstacle density ρ = 20%, the accumulation
near the surfaces [lines with circles in Fig. 2(a)] is reduced
for all τα for 	 < 1, and for τα � 10 for 	 � 1. Figure 2(c)
shows the fraction φ

φ0
of swimmers that accumulate near a

surface with obstacles (φ) with respect to a smooth surface
(φ0) as a function of the alignment force τα and angular
velocity 	.
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For nonchiral swimmers and chiral swimmers with 0 �
	 � 1, the reduction of the surface accumulation by the ob-
stacles [ φ

φ0
< 1 in Fig. 2(c)] is a result of the modified surface

structure. In the absence of an alignment force (τα = 0),
about 8% of the swimmers accumulate at the surface. This
accumulation is a result of their persistent motion, and the
decrease in accumulation relative to the smooth surface can
be attributed to the reduction of the flat surface area available
to the swimmers because of the presence of the obstacles. For
τα > 0, when approaching an obstacle, a swimmer aligns its
direction of motion along its convex boundary instead of the
surface plane, so that its orientation is directed away from
the surface. As τα is increased, the tendency to align along
the surface or boundary of an obstacle becomes stronger, in-
creasing the surface accumulation. A schematic trajectory that
leaves the surface after aligning along an obstacle is shown
for a nonchiral swimmer in Fig. 1(a)(II) and a chiral swimmer
in Fig. 1(b)(II). For 0 � 	 < 1, the accumulation increases
with the angular velocity [Fig. 2(a). This can be explained
by the chiral swimmers exploring the surface less extensively,
thereby encountering fewer obstacles when compared to less
chiral swimmers. As the angular velocity increases, the swim-
ming orbits become smaller, decreasing the efficiency with
which the surface is explored. This limits the ability of the
obstacles to reduce the accumulation at the surface and leads
to an increase of φ

φ0
with the angular velocity in Fig. 2(c).

For chiral swimmers with a larger angular velocity (	 � 1)
a different behavior is observed, where swimmers move in
persistent orbits along the boundary of an obstacle, until the
rotational diffusion directs them away from it and they can
escape. A schematic example trajectory of a swimmer that
orbits an obstacle is displayed in Fig. 1(b)(III). For DR =
10−4 rad2/s, the rotational diffusion is relatively weak and
the swimmers can become effectively trapped at the obstacles
for a sufficiently strong alignment force τα � 20, increasing
the surface accumulation in Fig. 2(a). We note that due to
this “orbital trapping,” the ability of the obstacles to direct
swimmers away from the surface is mitigated for τα � 20,
whereby obstacles will rather enhance surface accumulation
[ φ

φ0
> 1 in Fig. 2(c)].

The trapping of a swimmer in an orbit around an obstacle is
a result of the interplay between the angular velocity and the
alignment force. When a swimmer approaches an obstacle, the
alignment force will guide the swimmer around its boundary.
For a swimming orbit that is of the size or smaller than
the size of the obstacle (	 � 1.0), the angular velocity will
continuously direct the swimmer toward its center with the
alignment force directing the swimmer back along the bound-
ary. A larger angular velocity will result in a stronger tendency
to align along the boundary, enhancing the entrapment effect.
Detachment of a swimmer from an orbit can occur when the
Brownian diffusion is effective in reorienting the swimmer to
escape from its orbit.

For DR = 0.1 rad2/s, the larger rotational diffusion ran-
domizes the motion, increasing the boundary detachment
and reducing surface accumulation [Fig. 2(b)]. By perturbing
the circular trajectories, the diffusion increases the surface
exploration of chiral swimmers, reducing the difference be-
tween different angular velocities 	. Due to enhanced surface

exploration, obstacles become more effective in reducing near
surface accumulation of chiral swimmers, decreasing φ

φ0
in

Fig. 2(d) [when compared to DR = 10−4 rad2/s in Fig. 2(c)]
for all but τα < 10 when the alignment force is weak and
diffusion dominates.

The effect of orbital trapping on surface accumulation is
reduced significantly for most values of 	. The diffusion
breaks the orbits reducing the surface accumulation promoted
by the obstacles [ φ

φ0
< 1 in Fig. 2(d)] with the exception of

	 = 2, where the angular velocity is strong enough to keep
the swimmer aligned along the boundary of an obstacle, ef-
fectively trapping it for τα > 20 [ φ

φ0
> 1 in Fig. 2(d)].

C. Effect of the obstacle density on accumulation

Now we proceed to examine the effect of the obstacle den-
sity ρ. In Figs. 3(a) and 3(b) φ

φ0
, the fraction of accumulated

swimmers is presented for alignment force strengths τα = 10
(triangles) and τα = 60 (circles).

An increase in the density enhances the effect of the obsta-
cles on the surface accumulation. The accumulation declines
with increasing density for τα and 	 where obstacles repel
swimmers from the surface [ φ

φ0
< 1 in Figs. 2(c) and 2(d)]

and increases where orbital trapping dominates the dynamics
[ φ

φ0
> 1 in Figs. 2(c) and 2(d)].

As the angular velocity 	 increases, φ

φ0
varies more weakly

with the density in Figs. 3(a) and 3(b). For swimmers with
small angular velocities, the accumulation declines rapidly for
small densities before continuing to slowly decline. Due to the
more efficient space exploration of swimmers with a small
angular velocity, a lower density of obstacles is sufficient
to affect the accumulation. This suggest that obstacles are
effective in detaching swimmers with small angular velocities
from the surface even at low densities. For swimmers with
larger angular velocity, space exploration is less efficient, as
increasing the density gradually increases the effect of the
obstacles, and larger densities are required to affect the surface
accumulation.

When we compare DR = 10−4 rad2/s [Fig. 3(a)] and DR =
0.1 rad2/s [Fig. 3(b)], we note that for DR = 0.1 rad2/s in-
creasing the obstacle density has a larger effect on φ

φ0
for most

values of the angular velocity 	, suggesting that the density
dominates the accumulation behavior.

D. Sorting swimmers by angular velocity

By controlling the accumulation of microswimmers, ob-
stacles may be used to sort swimmers of different angular
velocity [42,48–50]. Depending on the angular velocities, the
swimmers will tend to accumulate near a surface or remain
in the volume with a different probability. For simplicity we
will assume that the swimmers in the mixture are identical in
all aspects but their angular velocity, and study the efficiency
of the separation as a function of the alignment force and the
different angular velocities of the mixture.

A way to sort swimmers of different angular velocities
would be to consider obstacle sizes such that 	 < 1 for one
fraction (A) of swimmers and 	 > 1 for the other (B). We
define δ = 	A − 	B the resolution of the sorter and φA

φB
its
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FIG. 3. Fraction φ of swimmers accumulated near the surface for a given angular velocity 	 normalized to φ0, the accumulation near
a smooth surface for the same angular velocity, against the obstacles density ρ. The rotational diffusion is (a) DR = 10−4 rad2/s and (b)
DR = 0.1 rad2/s with alignment force strengths τα = 10 (triangles) and τα = 60 (circles). As the density is increased the effect of the obstacles
increases. For most cases the obstacles decrease the surface accumulation ( φ

φ0
< 1). For DR = 10−4 rad2/s, τα = 60, and 	 � 1, swimmers

get trapped in orbits along the boundary of an obstacle, resulting in obstacles enhancing the accumulation ( φ

φ0
> 1). For DR = 0.1 rad2/s this

occurs at τα = 60 and 	 = 2.

efficiency, where 	A (	B) and φA (φB) are, respectively, the
angular velocity and surface accumulation fraction of swim-
mers A (B). In Figs. 4(a) and 4(b) the efficiency is displayed
for swimmers with DR = 10−4 rad2/s and DR = 0.1 rad2/s
for different values of the resolution δ and the alignment force
strength τα.

We observe that, as the rotational diffusion increases, the
ability to sort the swimmers by angular velocity is reduced.
For DR = 10−4 rad2/s [Fig. 4(a)] the more chiral fraction
accumulates up to 11 times as much as the less chiral one,
whereas for DR = 0.1 rad2/s [Fig. 4(b)] the more chiral frac-
tion accumulates by up to 2.5 times than the less chiral one.

For DR = 10−4 rad2/s and τα ≈ 10 the fraction with
a higher angular velocity accumulates significantly more
than the other fraction and the mixture can be sorted,
while, for other τα values, the sorter becomes less effi-
cient as τα increases. For DR = 0.1 rad2/s the alignment
force strength needs to be above 20 for the two fractions to

accumulate at different rates, and the sorter does not work
efficiently.

IV. CONCLUSION

We have introduced a 3D model to study the surface
accumulation of microswimmers, induced by steric forces
and an effective short-ranged hydrodynamic force that aligns
the propagation direction of the swimmer along the nearest
boundary (surface or obstacle). Chiral and nonchiral mi-
croswimmers were considered, navigating a volume bounded
by a bottom and a top surface plane. We introduced obstacles
on the surfaces and studied their effect on the surface accumu-
lation.

For smooth surfaces (without obstacles) and structured
surfaces (with obstacles), the surface accumulation is en-
hanced by increasing the alignment force. The alignment force
competes with diffusion to prevent the swimmer (chiral and

FIG. 4. Sorting efficiency φA
φB

of a mixture consisting of swimmers with angular velocities 	A and 	B with accumulations φA and φB

for two values of the rotational diffusion: (a) DR = 10−4 rad2/s and (b) DR = 0.1 rad2/s. The sorting efficiency is displayed as a function
of the alignment force τα, and the resolution of the sorter δ = 	A − 	B. For DR = 10−4 rad2/s the sorter achieves an efficiency of ten,
indicating that the fraction with the higher angular velocity accumulates ten times as much as the fraction with the lower angular velocity. For
DR = 10−4 rad2/s the sorter is much less effective, reaching a maximum efficiency of two.
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nonchiral) from orienting away from the surface and escaping.
When obstacles are added to the surface, the angular velocity
of the swimmer is found to strongly affect their accumulation.
For a nonchiral swimmer, the obstacles significantly reduce
the accumulation when compared to a smooth surface, even
when a small fraction of the surface is covered by obsta-
cles. The obstacles prevent a swimmer from aligning with
the surface, by guiding it away into the volume, consistent
with recent experimental results [5]. For a chiral swimmer,
the ability of obstacles to mitigate the accumulation is reduced
with increasing angular velocity. Swimmers with a large angu-
lar velocity explore the surface less efficiently, encountering
fewer obstacles, which reduces their effect. Moreover, for a
chiral swimmer we find that for sufficiently strong alignment
forces, the swimmer may be trapped in a trajectory along the
boundary of the obstacle [11,12,51], resulting in enhanced ac-
cumulation. We find that the relevant length scale for trapping
is set by the obstacle size, so that, when the swimming orbit is
of the size of the obstacle or smaller, trapping can occur. We
further note that, for swimmers that experience a stronger ro-
tational diffusion, the motion becomes more randomized, re-
ducing the effect of the angular velocity on the accumulation.

The ability of obstacles to impact the accumulation of
microswimmers at a surface may be used to guide the de-
velopment of materials that selectively hinder or promote the
adhesion of microswimmers, e.g., to control the establishment
of biofilms in the case of bacteria. Our findings indicate that,
by adding obstacles for nonchiral swimmers, a surface can
become more resistant to accumulation, which is in line with
studies of bacterial accumulation [6]. For chiral swimmers,
the way obstacles impact surface accumulation of microswim-
mers is more complex. Our findings suggest that, by selecting
the size of the obstacles, we can control the accumulation near
the surface. Covering a surface with obstacles could make it
more resistant to the accumulation of microswimmers that are
only weakly chiral (that swim in orbits larger than the size of
the obstacles), but less resistant to strongly chiral swimmers
(that swim in orbits with the size of the obstacles or smaller).

Additionally, the surface accumulation of swimmers of dif-
ferent chiralities, or the tendency of swimmers to accumulate
at obstacles that are larger than the radius of their swimming
orbit, could be used to design a sorter of microswim-
mers based on their angular velocity. By selecting from a
mixture of microswimmers the most appropriate swimming

properties, the efficiency of microswimmers for a specific
task, e.g., drug-delivery or bioremediation, might be improved
[42,49]. Alternatively, chirality-based spermatozoa selection
may be employed to select cells with specific swimming traits
desirable for artificial fertilization techniques [50,52]. Our
results suggest that, for chiral swimmers with a rotational
diffusion similar to that of bull sperm, effective sorting by
angular velocity could be achieved. Future work might include
differently shaped obstacles that are known to trap swimmers
well to further explore this idea.

In recent studies, for a microswimmer following a convex
boundary, the angle between swimmer and boundary was
found to depend on the radius of curvature of the boundary
[11,12]. By making the alignment force dependent on the
radius of curvature we could explicitly include this in our
model. An interesting extension of this work would be to
investigate the effect of varying the distance between the sur-
faces or thickness of the channel. Preliminary results indicate
that when the thickness is varied this especially affects the
accumulation of swimmers that do not get trapped on the sur-
face but instead attach/detach intermittently. As the distance
is increased, these swimmers tend to spend more time in the
volume between the surfaces, reducing surface accumulation.
For parameters that result in trapping, this effect is not ob-
served. Alternatively, in [44] the swimming behavior of an
active particle between obstacles, resulting in optimal space
exploration, was found to be different for convex and concave
obstacles. In the future, the effect of cavities (or concave
obstacles) on surface accumulation of microswimmers could
also be explored in combination with convex obstacles. In [44]
the active particles were confined to a surface, while with the
model proposed here, it would be possible to extend this study
to 3D domains.
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