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Abstract

To address the critical challenge of biodiversity loss, it is essential to upscale monit-

oring efforts to help inform conservation actions. The growing application of AI for

automated species detection and classification in audio streams offers a promising

solution. However, the current application of AI in bioacoustics is limited in scope,

often constrained by the lack of gold standard data, technical resource disparities,

and a lack of accessible tools. In this thesis, I investigate techniques to facilitate

accessible AI development and deployment in bioacoustics. Chapter 2 examines data

annotation, the first stage of bioacoustic AI development, and whether current tools

support collaborative and iterative improvement of AI models and datasets. I find

that current bioacoustic annotation tools are insufficient for modern AI development

and, in response, I develop whombat, an open-source tool designed for iterative data

and model improvement. Chapter 3 investigates the type and quantity of annotations

needed for effective bioacoustic classification. With an extensively annotated bat

call dataset, I show that annotating spatio-temporal locations of calls substantially

improves classification performance, especially in low-data scenarios. Chapter 4

investigates if standard AI techniques from computer vision are efficient for bioacous-

tic analysis. I show that models tailored to the temporal nature of bioacoustic data

outperform previous approaches and adapt to small-scale bat call datasets from

diverse regions. Chapter 5 examines deploying AI models on edge devices for

bioacoustic monitoring, finding that while minimising maintenance and reliance on

extensive data infrastructure, tailoring solutions to specific monitoring goals can

require advanced coding skills. To address this challenge, I develop acoupi, an
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open-source framework that simplifies the creation and deployment of such tailored

solutions, with its effectiveness demonstrated through a month-long field deployment

of a novel bat detection model. This research helps overcome challenges limiting

AI-powered bioacoustics, paving the way for its broader use in conservation.



Impact Statement

This thesis advances AI-powered bioacoustic monitoring by providing practical

guidance and developing accessible tools to facilitate its application in research and

conservation. Tools presented are packaged into user-friendly open-source tools,

helping democratise bioacoustic AI development and deployment.

In Chapter 2, I develop whombat, an open-source audio annotation tool designed

to address a critical bottleneck in bioacoustic AI development: creating high-quality

datasets for model training and evaluation. whombat’s user-friendly interface facilit-

ates collaborative annotation and supports iterative improvement of AI models and

datasets. Its impact is demonstrated through adoption by diverse research groups and

conservation organisations, including supporting ongoing research on avian monit-

oring, gibbon detection, and bat social calls. Notably, the Bat Conservation Trust

(BCT) is using it to improve models for national-scale monitoring, and Mexico’s

National Commission for Biodiversity (CONABIO) employs it for creating a Mex-

ican bat call library. This work is published in Methods in Ecology and Evolution

and has been presented at the International Bioacoustics Congress 2023 and Cornell

University’s BioacousTalks seminar series.

Chapter 3 provides practical guidance on annotating bioacoustic data for AI model

development, specifically for bat call classification. This research demonstrates that

annotating the timing and frequency ranges of individual vocalisations significantly

improves model performance, especially when data is limited. This insight is valuable

as bioacoustic data is often scarce, making investment in detailed annotation, when

coupled with tools like whombat, a cost-effective strategy for enhancing model
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accuracy.

In Chapter 4, I develop BatDetect2, a novel, deep learning model for bat call

detection and classification. Trained on whombat-generated annotations, BatDe-

tect2 outperforms previous approaches on diverse datasets. Its user-friendly code-

base simplifies running the model on new data and is being trialled by BCT for

their National Bat Monitoring Surveys (https://www.bats.org.uk/our-work/

national-bat-monitoring-programme) and incorporated into the ecoSound-

web platform (https://ecosound-web.de/ecosound_web/). Furthermore, the

codebase facilitates training new models on different datasets, attracting significant

interest for developing a European-specific model. BatDetect2 shows that incor-

porating fundamental bioacoustic principles into model architecture significantly

enhances performance, a concept applicable to other taxa and bioacoustic tasks.

In Chapter 5, I develop acoupi, an open-source Python framework designed to

simplify deploying AI models on edge devices for bioacoustic monitoring. acoupi

empowers users to create smart bioacoustic devices that perform on-device data

processing and analysis, transmitting only essential information, solving the problem

of needing to transfer, store, and process large volumes of raw audio data. By

enabling on-device processing and providing simplified mechanisms for deploy-

ing custom AI models and monitoring workflows, acoupi significantly lowers the

barrier to entry for teams lacking specialised infrastructure or advanced coding

skills. Furthermore, it supports near-real-time monitoring, which is crucial for

time-sensitive applications such as the early detection of invasive species. acoupi

is particularly well-suited for permanent monitoring stations and promises to be

a key enabler for the broader adoption of AI-powered passive acoustic monitor-

ing (PAM) systems across research, conservation, and commercial sectors. Early

interest in acoupi, including potential collaborations with the University of Ed-

inburgh’s Soprano program (https://information-services.ed.ac.uk/iot/

soprano-project), demonstrates its potential to significantly impact the field of

bioacoustic monitoring.

https://www.bats.org.uk/our-work/national-bat-monitoring-programme
https://www.bats.org.uk/our-work/national-bat-monitoring-programme
https://ecosound-web.de/ecosound_web/
https://information-services.ed.ac.uk/iot/soprano-project
https://information-services.ed.ac.uk/iot/soprano-project
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Glossary

Artificial Intelligence The broad field of computer science dedicated to creating

systems that can perform tasks typically requiring human intelligence. These

tasks encompass learning, reasoning, problem-solving, perception, and natural

language understanding. In this thesis, AI primarily refers to the automation

of data analysis to extract meaningful information from raw data.. 26

Deep Learning A subfield of Machine Learning that utilises artificial neural net-

works with multiple layers (hence "deep") to learn complex patterns from

data. These networks are loosely inspired by the structure and function of

biological neural networks in the brain. Deep learning models often involve a

significantly larger number of parameters compared to traditional statistical

learning methods, enabling them to learn intricate representations of data. . 38

Machine Learning A subfield of Artificial Intelligence that focuses on the develop-

ment of algorithms that enable computer systems to learn from data without

being explicitly programmed. These algorithms improve their performance

on a specific task through experience, typically in the form of data. Machine

learning is inherently data-driven.. 26
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Chapter 1

Introduction

1.1 Biodiversity monitoring with passive acoustics
Biodiversity is essential to the stability and functioning of Earth’s ecosystems (Tilman

et al., 2014). However, evidence indicates a widespread decline in biodiversity

and the crucial benefits it provides (Díaz et al., 2019; IPBES, 2019). The Living

Planet Index indicates a 73% average decline in the relative abundance of monitored

wildlife populations across terrestrial, freshwater, and marine systems (WWF, 2024).

Human-induced pressures like land use change, over-exploitation, invasive species,

and climate change are the primary drivers of biodiversity loss, and their impact is

expected to continue (Tilman et al., 2017; Newbold, 2018). This crisis has spurred

global initiatives, such as the Kunming-Montreal Global Biodiversity Framework

(KM GBF), aimed at halting and reversing biodiversity loss while ensuring the

sustainable use and management of nature’s contributions to people (CBD, 2022).

Achieving these goals requires a detailed understanding of biodiversity across all

scales, its contributions to people, and how human activities are impacting both (Xu

et al., 2021; Nicholson et al., 2021; Williams et al., 2020).

Effective monitoring provides the essential data needed to assess the state of

biodiversity, track changes in species populations and ecosystems, and evaluate

the effectiveness of conservation interventions (Gonzalez et al., 2023; Stephenson

et al., 2022). This need for effective monitoring is underscored by emerging national
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regulatory frameworks, including the UK’s Environment Act 2021, which reflects

England’s legally binding commitment to the KM GBF with ambitious goals to

protect and recover biodiversity (zu Ermgassen et al., 2021). Such policies require

robust monitoring to assess biodiversity levels before, during, and after development

to ensure compliance (Bull et al., 2019). However, designing effective monitoring

programs can be challenging due to the diverse needs and applications of biodiversity

data (Sparrow et al., 2020). For instance, long-term, large-scale monitoring is cru-

cial for understanding baseline ecosystem structure and function and for detecting

deviations from healthy or desired states (Likens & Lindenmayer, 2018). Rapid

monitoring is key to enabling swift intervention for mitigating the negative outcomes

of increasing human-wildlife interactions (Nyhus, 2016), such as the intrusion of in-

vasive species (Martinez et al., 2020) and poaching of protected species (Kamminga

et al., 2018). Furthermore, monitoring efforts require transparency and reprodu-

cibility to be effectively tracked, audited, and aligned with best practices (Bull

et al., 2019). To achieve a comprehensive understanding of biodiversity across all

scales, monitoring data must be integrable, highlighting the need for standardised

and shared practices that enable effective analysis and comparison (Schmeller et al.,

2015). These diverse and demanding requirements underscore the importance of

innovative monitoring approaches that can provide reliable, scalable, and timely

data to support effective conservation action (Besson et al., 2022; Stephenson et al.,

2022).

Passive Acoustic Monitoring (PAM) offers a promising approach to large-scale

biodiversity monitoring (Gibb et al., 2018). By deploying networks of acoustic

sensors to record soundscapes, PAM enables non-invasive monitoring of a diverse

range of taxa, including elusive species that are difficult to detect visually, such

as those inhabiting dense vegetation or exhibiting nocturnal behaviour. Acoustic

signals provide information on a wide range of taxa, encompassing terrestrial fauna

such as bats (Milchram et al., 2020; Reichert et al., 2021), birds (Sethi et al., 2024),

insects (Riede & Balakrishnan, 2024; Ganchev et al., 2007), anurans (Melo et al.,

2021; Lapp et al., 2021), elephants (Wrege et al., 2017), primates (Kalan et al.,
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2015), as well as aquatic organisms, including marine mammals (Cauchy et al.,

2020; Kowarski & Moors-Murphy, 2020) and freshwater insects (Desjonquères et al.,

2024). Furthermore, PAM can capture anthropogenic sounds such as gunshots (Hill

et al., 2018; Wijers et al., 2019) and chainsaws (Somwong et al., 2023) providing

insights into human-wildlife interactions and a measure of human pressure on the

environment (Fairbrass et al., 2019). These rich acoustic data can be used to generate

or complement biodiversity assessments (Gasc et al., 2013; Zwerts et al., 2021;

Hoefer et al., 2023), study soundscape patterns linked to ecosystem diversity and

complexity (Alcocer et al., 2022), track ecological recovery and disturbance (Zn-

idersic & Watson, 2022) in various ecosystems including reefs (Lamont et al., 2021)

and forest soil (Robinson, Breed et al., 2023), and advance fundamental ecological

research (Ross et al., 2023). PAM deployments operate autonomously over extens-

ive areas and extended periods, facilitating continuous and widespread monitoring

without constant supervision. Recent technological advancements have reduced the

costs of acoustic sensors (Hill et al., 2019; Sethi et al., 2018; Lamont et al., 2022),

facilitating large-scale deployments even under constrained budgets (Williams et al.,

2018). Recorded audio can be stored for later analysis, allowing for data validation

and re-analysis. As a result, PAM is increasingly employed for biodiversity assess-

ments and fundamental research in ecology and conservation science (Sugai et al.,

2018).

1.2 Bioacoustic detection using artificial intelligence
Efficiently identifying animal vocalisations within PAM recordings is essential for

understanding soundscapes. While broader soundscape analyses can estimate faunal

diversity or predict species presence indirectly (Sethi et al., 2022; Bradfer-Lawrence

et al., 2019; Bradfer-Lawrence et al., 2024), they are susceptible to confounding

factors, such as sounds from human activity or climatic events like rain and wind,

leading to inconsistent assessments of acoustic diversity (Ross et al., 2021; Alcocer

et al., 2022; Fairbrass et al., 2017). In contrast, the ability to detect sounds from target

species provides a clearer and more interpretable understanding of the soundscape.
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However, PAM deployments often result in vast audio datasets, sometimes reaching

tens of millions of hours (Roe et al., 2021), with key vocalisations hidden amongst

the background ambient noise. Manual identification is constrained by the limited

availability of qualified experts and is impractical for large-scale PAM efforts (Fraser,

2018). Artificial Intelligence offers a powerful solution by automating this task,

enabling scalable and efficient analysis of PAM datasets (Tuia et al., 2022; Besson

et al., 2022; Farley et al., 2018; Christin et al., 2023; Pichler & Hartig, 2023). AI

systems for bioacoustics are primarily implemented using Machine Learning, a data-

driven approach where models, guided by expert-annotated training data, learn to

detect and classify acoustic events directly from audio recordings (Pichler & Hartig,

2023). This approach can automatically identify and utilise discriminative features

that may be difficult to articulate algorithmically (Borowiec et al., 2022) or that

may have been overlooked due to human perceptual biases (Kershenbaum et al.,

2014). AI-driven systems, when aligned with open science principles (Hampton et

al., 2015), promote reproducible analysis and ensure consistent processing, reducing

inter-observer variability (Farmer et al., 2012), and enabling re-assessment under

novel conditions (Wood & Kahl, 2024). Furthermore, AI algorithms can be deployed

across diverse computing environments, from centralised cloud infrastructure (Sethi

et al., 2020), to local machines like laptops and workstations (Kahl et al., 2021)

and, increasingly, resource-constrained edge devices (Sheng et al., 2019; Höchst

et al., 2022), enabling diverse workflows and allowing for near-real-time detection.

By automating the detection of bioacoustic signals, AI is rapidly becoming an

indispensable tool for PAM-based biodiversity monitoring (Sharma et al., 2022).

Despite the increasing use of AI in bioacoustics, the field has yet to fully capitalise

on its potential for comprehensive and accessible monitoring. Existing AI models

cover only a small fraction of vocalising species and are confined to regions with

abundant, readily available data (Gibb et al., 2018; Nieto-Mora et al., 2023). For

example, BirdNET (Kahl et al., 2021), a leading AI model for bioacoustic identific-

ation, can nominally identify approximately 6,000 bird species (∼56% of known

species), but its performance has been rigorously assessed for only around 1,000
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species (<10%), mostly from Europe and North America (Pérez-Granados, 2023).

Bats, with approximately 1,100 echolocating species, represent another highly di-

verse group readily detectable through acoustic monitoring (Jones & Teeling, 2006;

Jakobsen et al., 2013). However, despite the development of AI-powered bat call

detecting algorithms (Mac Aodha et al., 2018; Kobayashi et al., 2021; Paumen et al.,

2021; Zualkernan et al., 2020; Chen et al., 2020; Zhang et al., 2021; Khalighifar

et al., 2022; Vogelbacher et al., 2023; Yoh et al., 2022; Fundel et al., 2023; Alipek

et al., 2023), these tools currently cover around 120 species with most lacking public

accessibility and code for use (only 4 out of 11 studies provide this, also see Baker

& Vincent, 2019). Ironically, such bioacoustic AI models are most lacking in the

world’s most biodiverse areas, including tropical regions facing increasing human

pressures (Newbold et al., 2020) and severe data deficiency (Frick et al., 2019;

Collen et al., 2008). The gap limits the establishment of comprehensive and unbiased

monitoring programs, potentially leading to severe consequences for conservation

efforts in these critical areas. However, developing AI for bioacoustics presents sig-

nificant challenges, from data collection and curation to model training, evaluation,

and real-world deployment. Fully harnessing the potential of AI for biodiversity

monitoring and conservation requires prioritising research and development focused

on efficient model creation and adaptation for broader applicability.

1.3 Bioacoustic AI through expert annotation
High-quality data is the foundation for developing AI models for acoustic species de-

tection in bioacoustics (Chasmai et al., 2024). These data comprise recordings, each

labelled to indicate the species vocalising, providing the AI models with examples

of the species’ sounds for training. By learning from diverse examples of both

target and non-target sounds, the model discerns discriminative patterns in the target

vocalisations, enabling it to identify the species in novel recordings (Borowiec et al.,

2022). To evaluate model performance, these recordings are also used to compare

model predictions with known vocalisations (Mesaros et al., 2021; van Merriënboer

et al., 2024). Ideally, these recordings should encompass diverse acoustic condi-
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tions, reflecting the variety of environments where the model will be deployed (van

Merriënboer et al., 2024). However, acquiring such comprehensive data presents

a significant challenge (Pichler & Hartig, 2023). Bioacoustic fieldwork typically

involves complex logistics, extended observation periods, and can necessitate the

capture of individuals to confirm species identification (Zamora-Gutierrez et al.,

2020). Self-supervised learning, where AI models learn patterns within the data

itself, offers a promising approach to reduce reliance on labelled data (Liu et al.,

2022). However, these methods underperform when distinguishing between subtle

classes (Cole et al., 2022), a common challenge in bioacoustics (Chasmai et al.,

2024). This situation underscores the critical importance of fully leveraging existing

labelled bioacoustic datasets.

The utility of existing bioacoustic data can be significantly enhanced through

careful manual expert-review and annotation of audio recordings. Bioacoustic

datasets often comprise lengthy focal recordings targeting individual species, but

also capturing extraneous sounds like background noise and vocalisations from other

animals (Hamer et al., 2023). Knowing that a species vocalises within a recording

but not the precise timing of their vocalisations results in “weak labels,” making

AI model training more difficult. To train acoustic identification models, shorter

clips are commonly extracted from longer recordings to provide examples of the

recorded species (Stowell, 2022). However, weak labelling makes it difficult to

ensure these clips contain only the target sound, potentially introducing irrelevant

noise that confuses the AI model (Shah et al., 2018). Therefore, a crucial step is

to manually review and annotate the audio material, precisely marking the timing

of all relevant sounds to generate “strong labels.” Although AI models can be

trained with weak labels (Kong et al., 2019; Kumar & Raj, 2016), Hershey et al.,

2021 found that even simple “strong labels” specifying only event onset and offset

times improved model performance, suggesting that more detailed annotation could

yield further gains. Additionally, annotations enable detailed analysis of model

errors, such as missed detections of non-focal species or misclassifications, aiding

in diagnosing performance issues (van Merriënboer et al., 2024). Despite these
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benefits, comprehensive annotation of acoustic datasets remains rare (Chasmai et al.,

2024), representing a significant untapped opportunity to enhance AI performance in

bioacoustics.

1.4 Bioacoustic annotation for AI development
Annotating bioacoustic datasets is a complex process demanding meticulous effort

and considerable time (Cartwright et al., 2019; Fraser, 2018). Accurately identifying

and labelling target sounds within a recording requires careful aural and visual inspec-

tion (Fraser, 2018), typically utilising spectrograms or other visual representations

tailored to the specific acoustic characteristics of the target species or sounds (Odom

et al., 2021). This includes discerning faint or masked vocalisations, which pose

significant challenges for AI models (Stowell, 2022) and necessitate thorough exam-

ination to ensure comprehensive annotation. While species identification is common,

capturing additional information like vocalisation structure, function (e.g., alarm

calls, territorial defence), and biological context (e.g., life stage, sex, individual) can

significantly benefit both model training and downstream analysis, as intra-species

vocalisations can vary widely (Teixeira et al., 2019; Odom et al., 2021). Ideally, a

standardised taxonomy or ontology of labels should be used to capture all possible

information and facilitate data sharing and collaboration, though this presents chal-

lenges for consistent label management (Roch et al., 2016). Annotators may want to

label non-target sounds as well, as these can provide valuable context for understand-

ing model performance or address other research questions. Because annotation

results can vary between individuals, multiple experts should ideally review the same

recordings to ensure the quality and validity of the annotations (Nguyen Hong Duc

et al., 2021). Consequently, annotation projects, particularly those requiring multiple

annotators, varied target sounds, and rich metadata, face significant logistical and

methodological challenges that must be managed carefully to ensure data quality

and consistency.

Specialised software tools play a key role in streamlining the annotation process.

Popular choices include versatile audio analysis tools like Raven and Audacity (Con-
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servation Bioacoustics, 2023; Audacity, 2017), and dedicated software with a focus

on specific regional fauna, such as Marsland et al. (2019) with a particular focus

on New Zealand bird species. However, these tools fall short in supporting the

iterative nature of AI model development. Building successful models requires

continuous refinement of both the data and the model itself (Zha et al., 2023; Jarrahi

et al., 2022). For example, addressing annotation quality issues can yield signi-

ficant improvements in model performance (Budach et al., 2022), while analysing

performance gaps can guide targeted data annotation or collection efforts (Roscher

et al., 2024). Furthermore, real-world deployments typically encounter evolving data

distributions, such as when models are applied to new locations or when seasonal

shifts alter the acoustic environment (Bidarouni & Abeßer, 2024). These dynamic

conditions necessitate ongoing data annotation and curation to maintain and improve

model accuracy (Rabanser et al., 2019). Unfortunately, the current generation of

software tools for audio annotation fails to facilitate this iterative process and may

not adequately support the specific needs of AI development for bioacoustics.

1.5 Detailed annotations and their application in

bioacoustic AI
Even with the best tools, annotating data is not a straightforward or standardised

process. Due to the time and expense involved, efforts are often made to reduce

or optimise the amount of annotation required (McEwen et al., 2024; Tejero et al.,

2023). One common approach is to segment the recordings in the dataset into shorter

clips and manually identify those containing target sounds (Hershey et al., 2021;

Khalighifar et al., 2022). This method can be quick, as it only requires identifying

the presence of the target sound within a clip. However, the resulting annotations

can be coarse, presenting similar challenges to weak labels, such as the inclusion

of extraneous sounds and noise, particularly when clips are much longer than the

target sounds. Other approaches, such as precisely marking the start and end times

of each target sound or delineating its frequency range, are more time-consuming

but offer greater resolution and accuracy (Morfi et al., 2019; Cañas et al., 2023;
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Lostanlen et al., 2018). While large-scale datasets may necessitate faster annotation

approaches, bioacoustics often involves limited recordings per species (Nolasco,

Singh et al., 2023; Nolasco et al., 2022). In these cases, optimising annotation

procedures becomes essential, as improving existing data may be more feasible than

collecting new examples. However, it remains unclear which annotation approach

is most effective and how to best balance time, effort, annotation quality, and the

resulting impact on model performance.

Annotated bioacoustic data offers a rich source of information beyond simple

identification of target vocalisations. The precise timing, frequency, and structure

information embedded within annotations can be leveraged to enhance AI train-

ing, moving beyond simply identifying which clips contain sounds. This granular

information is critical because models trained on limited bioacoustic datasets are sus-

ceptible to overfitting (Wei et al., 2020), whereby they leverage spurious correlations

(e.g., background noise) rather than learning genuine vocalisation features (Ying,

2019), hindering generalisation to novel soundscapes. Strategies such as multi-task

learning (Zhang & Yang, 2022; Martin et al., 2022; Morfi & Stowell, 2018), where

a model is trained to concurrently perform multiple distinct tasks, have been ex-

plored to mitigate overfitting and promote robust learning. This encourages the

model to learn features relevant to all tasks, thereby improving generalisation and

leading to improved performance (Standley et al., 2020). Applying this strategy

to bioacoustics could involve training a model to both classify and locate sound

events within spectrograms, thereby leveraging the detailed information available in

annotations. Another promising avenue involves shifting from simply identifying

the presence of vocalisations within an audio clip to directly predicting the precise

location of each sound event using annotations as training targets (Venkatesh et al.,

2022), analogous to object detection methods in computer vision (Beery et al., 2019;

Zou et al., 2023). This strategy not only has the potential to improve model perform-

ance but also facilitates more granular analyses of animal communication, enabling

investigations into call sequences or variations in finer call structure. Despite the

potential of these approaches, their application and efficacy in bioacoustics remain
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largely underexplored (Stowell, 2022).

1.6 Overcoming data scarcity in bioacoustic AI

training
Another key challenge in bioacoustics is identifying AI models and architectures that

effectively leverage the distinctive characteristics of bioacoustic signals to maximise

performance. This is particularly important because they are commonly developed

with limited data (Nolasco, Singh et al., 2023), even when meticulous annotation is

employed. Bioacoustic signals can be remarkably subtle, as species vocalisations may

only be distinguishable by small variations in frequency or temporal patterns (Odom

et al., 2021). For example, identifying bat species often requires analysing entire

call sequences (Russ, 2021), whereas subtle variations in syllable repetition can

distinguish birdsong between species (Dalziell et al., 2014). Currently, most AI

development for bioacoustics adapts techniques from computer vision (Stowell,

2022), relying on the assumption that visual patterns in spectrograms, or other image-

based representations of audio, are sufficient for distinguishing between species.

While successful with large and diverse datasets (Kahl et al., 2021; Ghani et al.,

2023; Kong et al., 2020), these methods typically require significant modification for

effective application with limited training examples (Nolasco et al., 2022; Nolasco,

Singh et al., 2023; Nolasco, Ghani et al., 2023). This raises the question of whether

this approach is truly efficient, or if alternative methods, specifically designed for

audio, could encode bioacoustic patterns more effectively and require less training

data. While some studies have explored recurrent neural networks (Madhusudhana

et al., 2021; Gupta et al., 2021) and transformers (Fundel et al., 2023) to address the

temporal structure of audio, these approaches still rely on visual models. Directly

processing raw audio with models like SincNet (Bravo Sanchez et al., 2021), a 1-

dimensional convolutional neural network, has shown comparable performance with

fewer parameters, but has not yet surpassed visual approaches. Given the promising

results of initial explorations with raw audio processing, further investigation into

audio-specific models is crucial for maximising the efficiency of limited data.
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Leveraging existing data, even if not directly relevant to the specific task, can

help alleviate the challenges posed by scarce training data. Transfer learning is a

common technique that allows models to leverage knowledge from a source task

to improve performance on a target task (Kong et al., 2020; Zhuang et al., 2021;

Tsalera et al., 2021). For instance, pre-training large models on existing data from

other taxonomic groups and then fine-tuning them for a specific task has proven

effective in bioacoustics (Ghani et al., 2023; Dufourq et al., 2022; Williams et al.,

2024). Other approaches utilise multi-modal data, such as text or images, to create

models capable of learning from multiple sources of information, with the aim of

improving audio understanding (Robinson, Robinson et al., 2023; Miao et al., 2023).

These techniques hold promise for accelerating the development of AI bioacoustic

models, especially in areas or tasks where data is scarce. However, most transfer

learning efforts in bioacoustics focus on transferring knowledge between distinct

taxonomic groups. While sufficient data may exist for common sound types within

a specific taxonomic group like bats (Roemer et al., 2021), significant species and

regional gaps often persist (Frick et al., 2019). For example, despite existing datasets

for certain regions (Görföl et al., 2022; Khalighifar et al., 2022; Vellinga & Planque,

2015; Zamora-Gutierrez et al., 2020), transferring knowledge to understudied areas

with potentially different acoustic characteristics presents a challenge. Even if

existing data encompasses all call types (Roemer et al., 2021), regional variations in

vocalisations and background noise can hinder the effectiveness of models trained

on data from different locations (Russo et al., 2018). This highlights the need

for research into effective transfer learning strategies within taxonomic groups,

particularly for species with limited data and geographically diverse vocalisations.

1.7 On-device bioacoustic analysis
Moving from AI model development to real-world acoustic monitoring introduces a

distinct set of challenges beyond those encountered in the initial development phase.

The large quantities of data generated by large-scale monitoring efforts, especially

in remote areas, pose significant challenges for data management, processing, and
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transfer (Browning et al., 2017). Regular manual intervention for data retrieval is

commonplace in current monitoring efforts (Roe et al., 2021), and data storage can

quickly become problematic for large, long-term deployments (Kowarski & Moors-

Murphy, 2020). Furthermore, analysing this data with AI models demands significant

computational resources, and processing large datasets often requires specialised

infrastructure (Sethi et al., 2018). Consequently, while bioacoustic methods hold

significant appeal, their practical application is often limited by these challenges.

Edge computing offers a compelling solution to data management and post-

processing challenges. In edge computing, data processing occurs directly on devices

in the field, enabling them to run AI models locally and transmit only the results,

thereby significantly reducing data transfer and storage needs (Shi et al., 2016).

Recent technological advancements have enabled the development of affordable

devices capable of recording, processing, and transmitting data via cellular or low-

power Long-Range Wide-Area Network (LoRaWAN), facilitating near real-time

analysis (Sethi et al., 2018; Gallacher et al., 2021; Baucas & Spachos, 2020).

While requiring additional computational and power resources, these devices are

particularly well-suited for monitoring stations with access to reliable power sources,

such as solar panels, and consistent network connectivity. Ongoing research into

computationally efficient models (Höchst et al., 2022; Surianarayanan et al., 2023)

and power-saving strategies (Millar et al., 2024) for edge devices further enhances

the appeal of this approach.

Networks of smart devices have been successfully deployed for various mon-

itoring applications, such as monitoring bird populations across Norway (Bick et

al., 2024) and identifying wolves to manage increasing human-wolf conflict in

the Alps (Stähli et al., 2022). The popular BirdNET model, adapted for the Rasp-

berry Pi—a popular platform for edge computing (Jolles, 2021)—feed citizen-based

networks that provide real-time bird detections worldwide through platforms like

BirdWeather (Clark et al., 2023). However, significant challenges remain in bringing

AI to the edge. Firstly, developing devices robust enough for reliable field operation

presents a complex engineering challenge. Secondly, existing edge systems, often
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designed for specific applications, lack the flexibility to readily adapt to new AI mod-

els or data collection strategies. Consequently, the limited adaptability of existing

edge systems restricts the immediate application of bioacoustic AI models across the

varied landscape of acoustic monitoring.

1.8 Thesis overview
In this thesis, I explore and develop novel methodologies to accelerate and adapt the

development and application of bioacoustic AI models for biodiversity monitoring.

While these methods are taxon-independent, I focus on bats as a case study due to the

unique challenges they present for acoustic identification. The methodologies here

explored encompass key stages of the AI-assisted bioacoustic monitoring pipeline,

including data annotation, model development, and model deployment.

In Chapter 2, I investigate current annotation practices in bioacoustics and ad-

vocate for a data-centric approach to AI model development. A review of existing

annotation tools reveals that none fully support the iterative workflow required

for effective AI development. To address this gap, I develop whombat, a novel,

open-source software tool specifically designed to streamline bioacoustic annotation

workflows. This user-friendly tool aims to empower researchers to curate, grow, and

maintain the data necessary for robust AI model development.

In Chapter 3, I investigate diverse approaches to annotating the presence of

relevant sound events within long audio recordings. Using a richly annotated dataset

of bat echolocation calls, I simulate the training of AI detectors and classifiers using

various annotation approaches and evaluate their performance on a challenging, held-

out test set. When detailed annotations are available, I augment the training regime

to include a time-frequency localisation task in a multi-task learning framework,

thereby exploiting the richer information provided. This training is conducted across

scenarios with varying amounts of training data to analyse how performance is

impacted by annotation approach and training dataset size.

In Chapter 4, I introduce a novel architecture for bat detection and classification.
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This architecture incorporates modifications that enable the model to reason explicitly

across longer timescales and integrate frequency information from the spectrogram,

diverging from traditional visual models. Leveraging detailed annotations, the model

is trained to jointly locate each call within the spectrogram using a bounding box

and predict its species. To assess its adaptability, I train the model on datasets from

diverse geographic regions and conduct experiments to evaluate its transferability

between these regions. This model and the associated training approach are made

available as an open-source tool to facilitate broader adoption.

In Chapter 5, I address the challenges of edge processing and adapting existing

systems to utilise novel AI bioacoustic models. Recognising that current systems

lack adaptability, I develop and present an open-source framework designed to

facilitate the development and deployment of edge devices for bioacoustics. This

framework aims to empower researchers and hobbyists to customise and deploy

acoustic monitoring stations tailored to their specific monitoring requirements.

Finally, Chapter 6 discusses limitations of the proposed methods and significant

challenges in the field, whilst outlining future research avenues for achieving scalable

passive acoustic monitoring in practice.



Chapter 2

Whombat: An Open-Source

Annotation Tool for Machine

Learning Development in Bioacoustics

2.1 Abstract
Automated analysis of bioacoustic recordings using Deep Learning (DL) methods

has the potential to greatly scale biodiversity monitoring efforts. The use of DL for

high-stakes applications, such as conservation and scientific research, demands a

data-centric approach with a focus on selecting and utilising carefully annotated and

curated evaluation and training data that is relevant and representative. Creating

annotated bioacoustic datasets presents a number of challenges, such as managing

large collections of recordings with associated metadata, developing flexible an-

notation tools that can accommodate the diverse range of vocalisation profiles of

different organisms, and addressing the scarcity of expert annotators. Here I develop

whombat, a user-friendly, browser-based interface for managing audio recordings and

annotation projects, with several visualisation, exploration, and annotation tools. It

enables users to quickly annotate, review, and share annotations, as well as visualise

and evaluate a set of DL predictions on a dataset. The tool facilitates an iterative

workflow where user annotations and DL predictions feed back to enhance model
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performance and annotation quality. I demonstrate the flexibility of whombat by

showcasing two distinct use cases: (1) a project aimed at enhancing automated UK

bat call identification at the Bat Conservation Trust (BCT), and (2) a collaborative

effort among the USDA Forest Service and Oregon State University researchers

exploring bioacoustic applications and extending automated avian classification

models in the Pacific Northwest, USA. whombat is a flexible tool that can effectively

address the challenges of annotation for bioacoustic research. It can be used for

individual and collaborative work, hosted on a shared server or accessed remotely, or

run on a personal computer without the need for coding skills.

2.2 Introduction
Recent advancements in Deep Learning are revolutionising our ability to analyse

large datasets generated by passive acoustic recorders for ecologically relevant sig-

nals (Kitzes et al., 2021; Tuia et al., 2022). Open-source Deep Learning models,

such as BirdNET (Kahl et al., 2021) and NABat ML (Khalighifar et al., 2022), can

be used to monitor birds and bats at scale across large regions. While considerable

attention has been directed towards developing sophisticated DL systems, it is crucial

to acknowledge the pivotal role of data and the various tasks encompassed within

data work in establishing reliable DL implementations (Sambasivan et al., 2021).

These tasks include Discovery, Capture, Curation, Design, and Creation of data

which collectively contribute to the quality and effectiveness of DL models (Muller

et al., 2019). In line with this, the data-centric approach has gained increasing

relevance (Jarrahi et al., 2022), emphasising the collection, curation, and manage-

ment of high-quality training and evaluation data to comprehensively assess model

performance and ensure reliability, particularly in high-stakes applications such as

conservation. Data work is inherently complex, and audio annotation, encompassing

the identification of the location of relevant sound events in audio recordings and the

assignment of appropriate labels, represents a time-consuming and labour-intensive

process (Cartwright et al., 2019). Often, the creation of DL-ready datasets relies

on software tools and technical infrastructure to ease management and enhance
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efficiency (Reichert et al., 2021; Roe et al., 2021). However, while the broader DL

community has recognised the importance of providing accessible, efficient and

open-source tools for dataset curation and annotation (Sager et al., 2021; Neves &

Seva, 2020), the bioacoustics community has lagged behind (Stowell, 2022; Tuia

et al., 2022).

The annotation process is an integral part of an iterative workflow aimed at

continually improving and monitoring the performance of DL models and data qual-

ity (Hohman et al., 2020). The evaluation of DL models can help identify errors and

areas for potential improvement, such as annotation or data gaps, thereby increasing

confidence in the performance of the model (Nahar et al., 2022). Continual annota-

tion of novel data is crucial to monitor the performance of DL models, particularly

when exposed to unknown environments, as these can pose a risk to model accuracy

and reliability (Saria & Subbaswamy, 2019). However, existing annotation tools

often lack appropriate design for effective annotation and DL development, hindering

the seamless execution of this valuable feedback loop (Table 2.1).

Table 2.1: Comparison of seven popular software used for acoustic annotation. Dashes
indicate that the corresponding feature is not supported by the software (to the best of the
authors’ knowledge), while a checkmark indicates its availability (see Appendix A.1 for
further details).

whombat Arbimon1 AvianZ2 Kaleidoscope3
Label

Studio4 Raven5
Sonic

Visualiser6

Open-source ✓ – ✓ – ✓ – ✓
Self-Host ✓ – ✓ ✓ ✓ ✓ ✓
Collaborative ✓ ✓ – – ✓ – –
Large Datasets ✓ ✓ ✓ – ✓ – –
Rich Metadata ✓ ✓ – ✓ – – –
Search Capabilities ✓ ✓ – – – – –
Annotation Exploration ✓ ✓ – – – – –
Flexible Spectrogram ✓ – ✓ ✓ – ✓ ✓
Flexible Annotations ✓ ✓ ✓ – – – –
Quality Assurance ✓ ✓ – – – – –
Training Tools ✓ – – – – – –
Prediction Evaluation ✓ ✓ ✓ – – – –
Export Annotations ✓ – – – ✓ ✓ ✓
Integrated Detectors – ✓ ✓ ✓ – – –

Creating DL-ready datasets for bioacoustic research is a collaborative ef-

fort (Zhang et al., 2020) that requires a combination of modelling, analysis, annota-

tion work, and quality assurance (Jarrahi et al., 2022; Muller et al., 2019). Annotation
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can be accelerated if tackled by teams working simultaneously and distributing the

workload among members with specialised and expert knowledge (Muller et al.,

2021; Cartwright et al., 2019). However, managing large collections of audio re-

cordings in bioacoustic research can be overwhelming (Kvsn et al., 2020), as they

often contain hundreds or thousands of recordings (Zhang et al., 2013), each with its

own set of metadata such as location, date, and time of recording, as well as other

relevant contextual information. Storing the associated metadata is desired as it can

influence modelling decisions and provide contextual cues for acoustic identifica-

tion (Kshirsagar et al., 2021; Paullada et al., 2021). Being able to locate specific

recordings or annotations within these collections is crucial for effective analysis

and research but can be time-consuming and difficult without proper tools (Kandel

et al., 2012). Providing a platform for collaborative annotation requires finding a

balance between accessibility, simplicity, and the ability to manage complex and

diverse workflows (Simpson et al., 2014).

Bioacoustic annotation is a challenging task due to the wide variety of organisms

and vocalisation profiles that are studied in bioacoustic research (Stowell, 2022;

Odom et al., 2021). Some animals produce long duration and broad-band sounds,

while others produce vocalisations that can be clearly localised both in time and

frequency. Substantial expertise in the acoustic identification of the target animal

is often required and acquiring this knowledge can be a challenging process, often

requiring extensive field experience. The pool of bioacoustic experts per taxon is,

therefore, typically small and their expert annotation time is valuable (Nahar et al.,

2022). While existing annotated data can serve as valuable reference material for

training, the process of upskilling annotators often requires structured guidance

and a systematic presentation of diverse target sounds. Existing annotation tools,

though possessing many components suitable for training, lack features specifically

tailored for this purpose. Additionally, in order to effectively accommodate the

varying characteristics of different types of biological sounds, annotation tools must

be flexible in terms of their visualisation and annotation capabilities (Stowell, 2022).

Furthermore, generic audio annotation tools are primarily focused on the analysis of
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human speech or music and lack the necessary visual representation of audio and

consideration of recording context. Conversely, specialised bioacoustic software has

often focused on specific taxonomic groups (Szewczak, 2010; Marsland et al., 2019),

making it difficult to use these tools for the analysis of other groups. Despite the

availability of a variety of annotation tools, none have been able to fully address the

complexity of challenges that are inherent to bioacoustic research (Table 2.1; see

Appendix A.1 for a thorough evaluation of existing audio annotation tools).

Here I develop whombat, a flexible tool specifically designed to accelerate

bioacoustic DL research by facilitating the curation of annotated acoustic datasets.

whombat offers a user-friendly browser-based interface that enables efficient manage-

ment of acoustic datasets and annotation projects. It provides various visualisation,

exploration, and annotation tools that allow users to annotate, review, and share an-

notations with ease. Moreover, these exploration tools can be employed to visualise,

evaluate, and explore DL predictions on annotated datasets. whombat supports an iter-

ative workflow (Figure 2.1), where user annotations and DL predictions continuously

enhance both model performance and annotation quality. Additionally, whombat

is designed to support both individual and collaborative work, enabling hosting on

shared servers, cloud platforms, or private premises with remote accessibility. Not-

ably, it can also run on personal computers without internet access. The application

code is open-source and available at https://github.com/mbsantiago/whombat.

To ensure accessibility for all users, I have bundled the tool into executable files for

Windows, macOS, and Ubuntu, eliminating the need for dependency installation

or coding skills. By making whombat open-source and easily accessible, I aim to

empower researchers in bioacoustic DL research and foster advancements in the

field.

2.3 Software Features
In this section I provide a brief description of the features and interface of whombat,

following the order of the intended annotation workflow (Fig. 2.1). This includes the

initial setup and loading of data, visualisation and navigation tools, annotation cap-

https://github.com/mbsantiago/whombat
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Whombat

Import
Load recordings and their associated
metadata. Import existing annotations.

Manage
Organize into collections. Add and edit
relevant metadata.

Annotate
Visualize and annotate data with
spectrograms.

Learn
Train and evaluate acoustic identification
skills using existing annotations.

Review
Explore the data with interactive
visualizations. Flag metadata and
annotation issues.

Export
Save collections in a variety of formats
to share or integrate with other tools.

Model Development

Train
Train a detector/classifier with annotated
data

Inference
Create predictions on new data with
trained models

Evaluate
Compare predictions to ground truth and
compute performance metrics

Figure 2.1: Iterative workflow of the whombat annotation tool. The iterative workflow
of the whombat annotation tool. The application enables a feedback loop between user
annotations and machine learning predictions, enhancing both model performance and
annotation quality. The capabilities of the tool are represented by the green boxes on the
left, while the red boxes on the right illustrate the steps in the model development workflow.
The arrows indicate the typical direction of the workflow, but the tool provides flexibility for
users to navigate between steps. Dashed arrows indicate potential crossover between model
and data development. whombat allows users to export annotations for training machine
learning models and then import predictions for comparison with existing annotations. This
two-way flow of information empowers users to explore and integrate both components for
their analysis.
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abilities, quality control features, and DL model evaluation. Through this overview,

I demonstrate how whombat can enhance the efficiency and accuracy of bioacoustic

annotation.

2.3.1 Dataset management

The workflow begins by creating a acoustic dataset (Fig. 2.1). A dataset can be

created by selecting all recordings within a folder or by importing a pre-existing

dataset. The tool supports various audio file formats, including popular lossless

formats in Bioacoustics such as WAV and FLAC, as well as the lossy MP3 format

and others. Multiple datasets can be managed simultaneously.

Basic media information is scanned and stored for each recording, including

its duration, number of channels, and sample rate (Fig. 2.2). whombat also allows

the retrieval of metadata from commonly used autonomous recording units, e.g.

Wildife Acoustics and AudioMoth (Hill et al., 2019). Users can edit the location

and date-time of recordings on a per-recording basis or import this information from

CSV files. Additionally, recordings can be tagged with multiple key-value pairs,

providing contextual information relevant to the annotation process. For example,

a recording can be tagged with key-value pairs like species:Myotis lucifugus,

sex:Male, age:Adult, and habitat:Forest, to describe the recording target and

context. In essence, a key-value pair is a simple way to store data where one piece of

information acts as a label (key) and another piece holds the corresponding value.

Here, ‘species’ is the key, and Myotis lucifugus is the value associated with that key.

This approach allows for flexible, organised, and extensible metadata management.

To explore datasets, users can listen to recordings and visualise their spectrograms.

whombat uses spectrograms as the main visualisation tool, as they facilitate the quick

identification of sound events (Cartwright et al., 2019). Spectrogram parameters and

other visual settings are configurable to best suit target sounds. whombat dynamically

generates spectrogram sections on the fly, optimising computational efficiency and

preventing excessive memory usage for long recordings. This allows for easy navig-

ation using scroll bars, eliminating the need to compute and store large spectrograms
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Figure 2.2: Overview of the key features of whombat. A presents dataset management
capabilities, including editing, searching, and filtering recording metadata. B showcases
the main annotation interface, offering spectrograms of recordings and various annotation
tools. C demonstrates annotation exploration features, enabling users to browse existing
annotations through filtering and visualisations, such as scatter plots. Finally, D highlights
the training component of whombat, where users learn to identify a collection of sound
events while receiving guidance on sound event identification. The panels shown are a design
mock-up of the user interface, with some elements removed for clarity.

in their entirety. Users can zoom in to relevant parts of the spectrogram or zoom

out to scan for interesting sounds. whombat also provides searching, filtering, and

sorting tools to quickly browse the recordings of interest.

2.3.2 Annotation

Annotation projects can be created by selecting any number of audio clips from

recordings of interest. Audio clips are continuous sections extracted from recordings.

They can vary in duration and are not constrained to match the length of the original

recording. The use of audio clips as the basis of annotation tasks allows cutting the

recordings into clips of standardised duration and possibly annotating only a subset

of all audio clips. The included clips can be selected within the tool or imported
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from a CSV file. To create an annotation project, a name, description, and annotation

instructions for the annotators should be provided.

Once an annotation project is created, each audio clip can then be visualised and

annotated. A configurable spectrogram of the clip is displayed, along with recording

metadata to provide context to the annotator (Fig. 2.3). Annotation can proceed

in different ways depending on the project targets and strategy. Users can add any

number of key-value tags to the recording clip, for example to specify which species

are present within the clip. Relevant sound events can be annotated by locating them

within the spectrogram by drawing a vertical line, a temporal interval or a bounding

box. Each annotation can be tagged with any amount of key-value pairs, potentially

capturing multiple and independent attributes of the sound event, such as species,

sound type, sex, or the identity of the individual. Although tags can be created freely,

whombat offers a quick search feature to avoid duplication and to ensure consistency.

As annotations progresses, audio clips can be marked as “ready” once they have

been fully annotated according to the project instructions. Annotation progress is

tracked by displaying the percentage of audio clips that have been marked as ready,

along with the counts of annotated clips and annotations with a given tag. With

the aid of filtering and sorting tools, users can focus and prioritise their annotation

efforts on specific subsets of the annotation project.

2.3.3 Review and exploration

Quality of metadata and annotations can be reviewed and managed through various

tools within whombat. Users can add notes to recordings and annotations to provide

additional context and note issues that require fixing. Incomplete annotations can

also be flagged, and the issues can be searched to address them efficiently.

In addition, whombat provides tools for exploring and comparing groups of

annotations. The gallery option displays a panel of annotated sound events from

different user-selected groups, allowing for easy comparison. For groups of bounding

box annotations, the tool can compute statistics on attributes such as the duration,

bandwidth, and frequency range, and display them in histograms. whombat also
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Figure 2.3: The whombat audio annotation interface. The interface presents a spectrogram
visualisation of the audio clip (center) along with tools for task navigation (top bar), clip-level
tagging and notes (right sidebar), and detailed sound event annotation creation and editing
(within the spectrogram).

provides an interactive 2D or 3D scatter plot of any combination of the previously

mentioned attributes (Figure 2.2). These visualisation tools enable users to become

familiar with the variety of sound events and identify potential issues such as outliers

and overlaps between categories.

2.3.4 User training

Novice users can be incorporated into the workflow by training with existing verified

data, which is critical as access to experts in bioacoustics is a recurrent bottleneck for

annotation. Our tool addresses this issue by allowing users to learn and improve their

annotation skills. The registered annotations can be used to train and evaluate human

annotation skills. Users can create training sets by selecting specific annotations,

such as those with a particular set of tags. The training sets can be used to conduct

training sessions (Figure 2.2), in which users are shown a series of spectrograms

centred at annotated sound events and asked to identify them correctly. After each

session, the identification performance is evaluated and displayed, enabling users to

track their learning progress and identify areas that need improvement.

2.3.5 Data export

whombat allows users to export their acoustic datasets and annotation projects to

multiple file formats. The recommended format is a custom JSON format inspired by
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the COCO dataset format (Lin et al., 2014), although a CSV format is also available.

This makes it possible to use the annotations for training DL identification models,

other bioacoustic analysis, or to share with the wider community.

In addition, the exported dataset and annotation project files can be imported

back into the tool. This functionality allows for offline distributed collaborative

work where multiple people work on disjointed datasets and share the resulting

annotations. This is particularly useful because it bypasses the need for centralised

server infrastructure.

2.3.6 Closing the loop

To improve DL model performance, the tool provides a way to import model pre-

dictions and compare them with user-made annotations. whombat accepts model

predictions in a specific JSON or CSV format, with no restriction on the type of

DL model used. Once imported, the set of predictions for a group of recordings is

registered as a model run. Users can provide a name and description for the run to

help track and organise different model experiments.

whombat then allows users to evaluate the model run by comparing it with

annotations, if available. Several measures of predictive capacity, such as precision

and recall, are displayed to help users assess the performance of the model. Users

can also explore the predictions using search, sort, and filter tools, based on the

predicted tag probabilities. This facilitates browsing both success and failure cases,

helping to identify potential model improvement opportunities.

In addition to evaluating the DL model, the tool can also be used to diagnose

potential data and annotation gaps. By comparing the model predictions with user-

made annotations, users can identify cases where the model fails to detect sound

events correctly. These cases can then be reviewed to see if there are annotation or

data gaps that need to be addressed to improve model performance.
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2.4 Use Cases
whombat is designed specifically for audio data in the field of bioacoustics, and its

flexibility makes it adaptable to a range of use cases. In this section, I highlight

two examples of how the tool can be used: annotation of bat calls from the UK and

bird vocalisation detection in the Pacific Northwest of the USA. These examples

showcase the versatility and potential of the tool for annotating different types of

target species and vocalisations.

2.4.1 Bat call classification pipeline

The Bat Conservation Trust (BCT) uses whombat to improve bat detection and classi-

fication in the UK. The BCT collects and annotates recordings of bat calls across the

UK to enhance the BatDetect tool (Mac Aodha et al., 2018) and advance from bat

call detection to a multi-class object detection and classification pipeline (Chapter 4).

Bats play a crucial role in the UK ecosystems (Barlow et al., 2015), and as small,

nocturnal, volant mammals that use ultrasonic echolocation for navigation they are

routinely monitored using passive acoustic methods (Banner et al., 2018; Barlow et

al., 2015; Kerbiriou et al., 2015; Newson et al., 2015; Yoh et al., 2023). Furthermore,

interspecific differences in bat echolocation call characteristics enables species or

genus level identification from acoustic data. Automating the classification of bat

echolocation calls enables monitoring to be carried out at the scales necessary for

identifying national conservation management strategies. Improving the detection

and classification performance of automated tools, such as BatDetect (Mac Aodha

et al., 2018), is therefore crucial for the success of conservation efforts.

whombat has enabled the BCT to generate precise bat call annotations while

offering flexibility in the types of annotations captured. Bat calls are short and

high-frequency, making them well-suited for annotation with bounding boxes tightly

placed around the main harmonic. Annotators use tags in the form species: <spe-

cies> to indicate the bat species, and event: <call type> to specify the call type

(e.g., echolocation, social call, feeding buzz). In cases of uncertainty, a generic tag

like order: Chiroptera can be employed. Additionally, potential false positives



2.4. Use Cases 49

can be annotated with an event: Noise tag to reduce confusion. While bats are the

main focus at the BCT, and it is important to be able to capture their different types

of calls, it is also crucial to identify confounding noises and register co-occurring

sounds that can be important for downstream analysis.

The tool has enabled the BCT to centralise annotation work, eliminating the

complexities of harmonising previously independent efforts. Furthermore, whombat

has allowed to streamline the review process by allowing to assess the annotator’s

work. This collaborative approach has proven valuable, leading to the identification

and correction of mislabelled annotations due to confusion in the annotation instruc-

tions. This has allowed the BCT to improve both the quality and quantity of their

annotations The collaborative nature of the tool also allows for efficient data sharing

and analysis, making it an essential tool for BCT and their bat conservation work.

A total of 29 independent datasets of bat recordings, comprising over 70,000

annotated calls, have been processed at the BCT using whombat. It has been used

by more than 15 independent annotators from the BCT and partner institutions.

The annotations generated using whombat directly inform the training of DL al-

gorithms (Chapter 4), demonstrating improved performance compared to other

existing bat detection tools. These annotations and the refined models they enable

extend the BCT’s capability to understand bat population responses to anthropogenic

environmental change and inform conservation efforts.

2.4.2 Bird song annotation

In 1994, the Northwest Forest Plan was introduced in the United States Pacific North-

west to shift federal land management policies from prioritising timber harvesting

to a more holistic approach that includes protecting and restoring the habitat of

old-forest species and biodiversity (Espy & Babbitt, 1994). One of the components

of this plan is the long-term monitoring of federally threatened northern spotted

owl (Strix occidentalis caurina) populations through a two-phase approach (Lint,

1999). The first phase involved estimating vital rates and demographic perform-

ance using mark-resight methods on historical territories (Franklin et al., 2021). The
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second phase began in 2020 and focused on estimating occupancy and habitat models

through passive acoustic monitoring (Lesmeister & Jenkins, 2022).

The transition to phase two monitoring is a crucial moment in conserving and

managing forested lands in the Pacific Northwest. Not only are spotted owl conserva-

tion and management objectives being met (Lesmeister & Jenkins, 2022; Weldy et al.,

2023), but the multispecies acoustic monitoring data can also be used to address

other conservation, research, or management objectives. To this end, researchers

from Oregon State University and the USDA Forest Service are using whombat to

annotate avian sounds (> 30,000 annotations) and validate model predictions for

various wildlife monitoring programs targeting federally threatened species like the

northern spotted owl and the marbled murrelet (Brachyramphus marmoratus), as well

as sensitive species such as the white-headed woodpecker (Dryobates albolarvatus),

and supporting broader biodiversity monitoring efforts (> 80 species).

The dynamic acoustic and spectrogram adjustments provided by the tool have

improved the quality of target species annotation, increased efficiency in reviewing

model predictions, and aided in tracking acoustic review and labelling efforts. In

addition, the annotation formatting of whombat is flexible and dynamic, allowing

annotators to pursue multiple annotation objectives simultaneously. They can oppor-

tunistically collect biophonic examples for non-target species and create hierarchical

label structures where sound types are nested within broader categories. These

hierarchical labels cascade across increasingly fine-scale taxonomic determinations.

Additionally, annotators can label acoustic metadata such as approximate distances

or overlapping sound types, which serves to improve model training and enhance the

understanding of model performance. The adoption of passive acoustic monitoring

represents an important step forward in conserving and managing forested lands

in the Pacific Northwest. Using innovative tools such as whombat enhances these

efforts.
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2.5 Discussion
The modularity and extensibility of whombat enables many opportunities for future

development (see the Appendix A.2 for more details on the software design). I invite

the community to contribute to its growth and suggest potential areas of improvement,

such as the ability to group annotations into sequences, model comparison and data

iteration visualisations, and dashboards for ecological insights and quick exploration.

One possibility for expanding the user base of the tool is to incorporate a citizen

science approach by evaluating the reliability of user annotations. I believe these and

other potential directions will help make whombat an even more powerful tool for

bioacoustic research and conservation efforts.

Unlike other annotation solutions (e.g. Marsland et al., 2019), this tool does not

include embedded Deep Learning detectors. I made this decision to simplify the

software and decouple the annotation process from the development and maintenance

of DL models. Instead, our focus is on providing a user-friendly interface for

efficient and accurate annotation. I also provide an interface for importing and

exporting model predictions, allowing users to incorporate their own DL models into

their annotation projects. Additionally, the tool allows exporting annotations in a

format that is compatible with training frameworks for bioacoustic detection models

(Chapter 4).

By providing an accessible, open-source tool for bioacoustic annotation, I hope to

empower research teams to generate high-quality acoustic datasets for their projects,

including those without extensive coding experience. The modular and extensible

design of the software allows for customisation to meet individual project needs

and encourages community involvement in the development of new features. By

lowering the barrier to entry for annotation projects, I aim to foster the creation of

diverse and shareable datasets that can advance research in bioacoustics.



Chapter 3

Detailed Annotations Boost

Classification Performance in

Automated Acoustic Identification of

Bats

3.1 Abstract
Acquiring training data for Deep Learning (DL) models in automated species detec-

tion is challenging, requiring efficient use of existing bioacoustic data. While manual

annotation can enhance training data and improve model performance, there is no

consensus on the most effective annotation method. Utilising a dataset of bat call

recordings with expert-derived annotations, I investigated how detail of call location

within the recordings affected the performance of DL models in bat call detection

and classification calls from 17 species from Mexico across a range of dataset sizes

(from 5 to 25 calls). I first established a baseline by training a Convolutional Neural

Network (CNN) model using clip annotations, which simply indicate whether a call

is present within an audio clip. Then, I trained models to additionally predict call

location in time and frequency with varying levels of detail—using (1) only onset;

(2) onset and offset; (3) onset, offset, and frequency bounds (defining a bounding
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box in the spectrogram); and (4) the full time-frequency trajectory (a line-string

representation of the call’s frequency modulation)—evaluating their performance

on a test set of unseen recordings. I found that employing detailed annotations

consistently improved classification performance across all dataset sizes. The most

significant gains were observed for datasets containing 10–20 recordings per species,

ranging from 5% to 10% improvement. These performance gains from detailed

annotations were comparable to, or exceeded, those obtained from increasing the

dataset size by 5 recordings per species. I found no consistent and statistically

significant differences in classification performance between the different levels of

detail. This study demonstrates that annotating call location in time and frequency

is a valuable strategy for enhancing the performance of deep learning models in

bat call detection and classification, particularly given the substantial difficulties

associated with collecting new reference recordings. I recommend using bounding

boxes to annotate call location, as they offer a practical balance between annotation

effort and model performance. This detailed annotation approach has the potential to

significantly improve the efficiency of bioacoustic data utilisation for training DL

models, highlighting the value of investing in thorough annotation.

3.2 Introduction
The field of acoustic biodiversity monitoring is increasingly leveraging Deep Learn-

ing (DL) for various tasks, including automated species detection and classifica-

tion (Stowell, 2022; Tuia et al., 2022). Emerging technologies for automated acoustic

identification of birds (Kahl et al., 2021), bats (Mac Aodha et al., 2018), and other

soniferous taxa (Allen et al., 2021; LeBien et al., 2020) allow the study of the activity

patterns of these species at large scales (Sethi et al., 2024). Training DL models

for acoustic detection typically relies on the availability of sufficient reference re-

cordings of the target vocalisations (Kaplan et al., 2020; Kahl et al., 2021), and

alternative approaches that could reduce this reliance tend to be less effective when

discriminating between classes with subtle distinctions (Cole et al., 2022), as is often

the case in bioacoustics. However, acquiring new reference recordings, especially
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in natural environments, can be expensive and logistically challenging (Pichler &

Hartig, 2023). This inherent limitation in data collection creates a gap in the ability to

train effective DL models for data-scarce regions. Therefore, investigating methods

that improve the utility of existing but scarce bioacoustic data for training DL models

is crucial for expanding the application of these models to a wider range of species

and regions, ultimately enabling their automated monitoring at scale.

Training and evaluating DL models for acoustic identification requires providing

the model with numerous examples of audio clips containing the target species (Stow-

ell, 2022). These examples typically come from longer recordings where the target

species has been confirmed, often requiring expert analysis, field observation, or even

capturing the specimen to ensure accurate identification (Oswald et al., 2022; Gibb

et al., 2018). Because many common DL classification and detection models operate

on short, fixed-length audio clips (Kahl et al., 2021; Hershey et al., 2017), these

longer recordings must be divided into smaller clips suitable for model training. Each

clip needs to be accurately labelled as either containing the target vocalisation or not;

however, without explicit manual labelling, this can prove challenging (Kong et al.,

2019). Some studies address this by assuming all clips from a recording contain the

target species or by using simple methods to detect prominent sounds (Chen et al.,

2020; Kobayashi et al., 2021; Kahl et al., 2021; Bermant et al., 2019), which are

then assumed to be the target species. However, these approaches can be inaccurate

in environments with background noise, overlapping vocalisations from multiple

species, and long silent periods between calls.

Manual annotation, pinpointing the time and/or frequency location of each target

sound event within a recording, can provide DL models with more focused train-

ing data. This involves expert identification and localisation of each sound event,

enabling more accurate selection of audio clips that contain (or do not contain)

the target sounds. Various methods exist for annotating the location of a sound

event, each with a different level of detail in capturing its location within record-

ings (Figure 3.1). The simplest approach, ‘clip annotation’, involves confirming

the presence or absence of the target sound events within a fixed-duration audio
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clip (Khalighifar et al., 2022; see Figure 3.1B). More detailed temporal annotation

of each sound event is most commonly done by marking both the onset and dura-

tion (Morfi et al., 2019; Cañas et al., 2023), although sometimes only the onset time

is marked for short, transient sounds (Lostanlen et al., 2018; see Figure 3.1C-D).

If the target sound event covers a clear and bounded frequency range, the lowest

and highest frequencies are also annotated, creating a ‘bounding box’around the

sound event in the spectrogram ((Hagiwara et al., 2023); see Figure 3.1E). When

animal vocalisations have a distinct peak-frequency, that peak can be tracked through

time using a ‘line-string’annotation (Figure 3.1F) that follows the vocalisation’s

changing frequency. This approach, though not yet widely explored, could provide

a highly detailed and informative form of annotation. While manual annotation is

time-consuming, with the effort required varying by the level of detail, Hershey et al.

(2021) found that using annotations solely to determine the presence or absence of

target sound events in clips improved model performance. However, their study

utilised a subset of AudioSet (Gemmeke et al., 2017), a large-scale dataset of diverse

audio events not specific to bioacoustics, and did not leverage any additional details

of the annotations, which may be crucial for discriminating between acoustically

similar species.

Detailed annotations offer more than just indications of which clips contain target

sound events. While the traditional approach uses only the clip label (i.e., whether

the target species vocalises within the clip), this disregards valuable information

about the vocalisation’s location within the clip. In computer vision, tasks like object

detection rely heavily on annotated location information (Lin et al., 2014). For

example, bounding box annotations are used to train models that directly predict

the location of objects within images (Zou et al., 2023), and a similar approach

has been proposed for general audio tasks (Pham et al., 2018). Alternatively, the

location information can be used in a multi-task learning approach (Stowell, 2022;

Martin et al., 2022), where models are trained not only to identify the presence of

the target sound event within a clip but also to predict its location within it. This

approach, where a single model performs several tasks concurrently, has been shown
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Figure 3.1: Common bioacoustic annotation types. (A) Spectrogram of a reference
recording containing Lasionycteris noctivagans echolocation calls. These recordings are
often lengthy and contain multiple vocalizations from the same individual, interspersed
with silence and other non-target sounds. When developing deep learning (DL) models
for the detection and classification of animal vocalizations, smaller clips of fixed duration
(red segment) are used as training examples. However, without manual review, it can be
difficult to determine if a target sound is present within a clip. (B–E) Examples of manual
annotations of the target sound with increasing location detail (red highlights): (B) Clip
annotation confirms presence within a shorter clip. (C) Onset annotation marks the start of
the target sound event. (D) Onset-offset annotations mark the start and end time of the target
sound event. (E) Bounding box annotation marks the lower and upper frequency bounds, as
well as the onset and offset. (F) Line-string annotations trace the preak frequency throughout
the target sound’s duration.

to improve performance in various domains (Amyar et al., 2020), likely because

learning characteristics useful for multiple tasks helps to avoid over-fitting (Zhang

& Yang, 2022), a common issue when training with limited data. Therefore, given

the variety of annotation methods and their potential uses, it is crucial to study the

benefits of each method on model performance and understand how they depend on

the amount of training data available, ultimately enabling the selection of the best

approach for datasets with limited data.

The limitations of collecting new bioacoustic data are particularly evident when

studying bats. Bats, which perform essential ecosystem services like pollination, seed

dispersal, and insect population control (Jones et al., 2009), are readily detectable

acoustically using well-established manual and semi-automated approaches (Zamora-

Gutierrez et al., 2021). As one of the most studied taxonomic groups using terrestrial
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passive acoustic monitoring techniques (Sugai et al., 2018), numerous efforts have

focused on automating their detection and classification in passive recording (Mac

Aodha et al., 2018; Kobayashi et al., 2021; Chen et al., 2020; Khalighifar et al.,

2022; Yoh et al., 2022; Vogelbacher et al., 2023; Tabak et al., 2022). However,

despite their significance, assessing bat population species trends for most species

remains challenging, especially in the data-deficient regions like the tropics (Frick

et al., 2019). This difficulty partly stems from the challenge of acquiring reference

recordings. Unlike birds, which are often identifiable visually or by their distinctive

songs, reliable ways to identify the recorded species often involves capture and

release, a time-consuming and potentially stressful process for the animals (Zamora-

Gutierrez et al., 2020). This underscores the importance of maximising the value of

existing data through detailed annotation, which is facilitated by the clear temporal

and spectral patterns of bat echolocation calls. With a growing number of public

reference libraries (Görföl et al., 2022; Zamora-Gutierrez et al., 2020; Vellinga

& Planque, 2015) and the expectation of more reference recordings being shared,

consideration of how best to annotate these resources is pressing.

Here, I investigate how the different manual data annotation methods influence

the performance of DL models, using bat detection and classification as a case study.

To this end, I compile and annotate a dataset of Mexican bat call recordings and

use it to develop a common detection and classification pipeline for 17 species

incorporating a Convolutional Neural Network (CNN). I train several CNN variants

using various annotation schemes (clip, onset, onset-offset, bounding box, and

line-string, Figure 3.1) and across different training data sizes to assess the impact

of annotation strategies on model performance. To leverage the information in

the detailed annotations, I employ a multi-task learning approach where models

simultaneously perform detection, classification, and location prediction of bat

calls within audio clips. I hypothesise that by requiring the model to perform this

additional location prediction task during training, the model will learn to prioritise

features extracted from time-frequency regions of the spectrogram that contain bat

calls. This, in turn, should improve learning efficiency and boost performance,
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especially when training data is scarce and when using more precise annotations.

3.3 Materials and Methods

3.3.1 Acoustic data

I utilise bat call recordings from two primary sources. Firstly, recordings origin-

ated from the Sonozotz project (Zamora-Gutierrez et al., 2020), which employed

a rigorous capture and release protocol. This protocol ensured coverage of diverse

recording and release methods and utilised consistent high-quality recording equip-

ment (Avisoft UltraSoundGate 116H@; Avisoft Bioacoustics). Captured individuals

were identified by experienced Mexican bat researchers using a combination of

morphometric measurements and visual inspection. The second source consists of

bat call recordings donated to the Mexican Comission for the Knowledge and Use

of Biodiversity (CONABIO). These recordings were all of known species, either

captured individuals or recordings from known species roosts. Unlike the Sonozotz

data, this donated collection exhibits greater heterogeneity in recording devices,

settings, and processing methods, with 65% time expanded recordings. While pre-

dominantly captured in Mexico (79%), the remaining 21% originated from other

countries. From these sources, I selected a total of 2,457 recordings (1,156 from

Sonozotz and 1,301 from donated recordings) focusing on species confirmed to be

present in Mexico. While the dataset encompasses reference recordings for the 101

bat species, it exhibits a significant class imbalance. Forty-seven species have fewer

than 10 recordings each, while the most frequently recorded species, Antrozous

pallidus, has 192 recordings. These recordings have an average duration of 2.2

seconds, with some lasting up to 11 seconds.

Bat experts reviewed and annotated each discernible bat echolocation call within

the recordings. The location of the main harmonic of each call—the harmonic

component containing the peak amplitude—was annotated using a line-string (Fig-

ure 3.1F). The main harmonic is commonly used for species identification and call

characterisation (Szewczak, 2004), and using a line-string provided the highest

level of detail possible, from which all other types of annotations (clip, onset,
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onset-offset, bounding-box, see Figure 3.1B-E) could be derived. Species identi-

fication was attempted for each call, and since most calls likely originated from

the recorded individual, species assignment was usually straightforward. When

vocalisations from other species were present, annotators identified the species only

if they were completely certain based on the visual characteristics of the call. Calls

where acoustic identification remained uncertain were assigned the class Chirop-

tera. The resulting annotated dataset contains 51,461 annotated echolocation calls.

A custom user interface developed at CONABIO was used in early stages of the

annotation process, but review and finalisation of the annotations were performed

using whombat (Chapter 2).

To develop and evaluate bat detection and classification models, I split the re-

cordings into a test set and a development set used for both training and validation.

To assess whether models generalise to novel recording conditions, I employed a

geographic location-based split strategy across sampling locations in Mexico (see

Appendix B.1 for details on the split). This split resulted in 740 recordings from 58

different locations being allocated to the test set, while the remaining 1717 recordings

from 156 locations comprised the development set. From the initial 101 species, I

selected a subset of 17 as the focus for the classification models, grouping all other

species into the generic Chiroptera class. This selection criterion was necessary to

ensure sufficient representation in the test set, as having fewer than 5 recordings

per species could lead to unreliable performance evaluations. While each recording

could have many echolocation calls, these calls are not truly independent because

they likely originate from the same individual. To more accurately represent the

number of independent observations, I used the number of recordings instead of the

total number of calls. See the appendix for a detailed breakdown of the resulting

dataset (Appendix B.1; Table B.1).

3.3.2 Detection and classification pipeline

I adopted a two-stage pipeline commonly used for developing automated bioacoustic

detectors and classifiers to detect and classify bat calls within recordings. The first
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stage involves preprocessing the audio by computing the spectrogram and segmenting

it into fixed-duration clips. The second stage employs a Deep Learning (DL) model

to detect the presence of target sounds within each clip and, if present, predict the

species. This approach has been successfully applied to various bioacoustic tasks,

including the analysis of both general bioacoustic signals (Kahl et al., 2021; Allen

et al., 2021; LeBien et al., 2020; Ghani et al., 2023) and bat echolocation calls

(Mac Aodha et al., 2018; Chen et al., 2020; Schwab et al., 2022).

For preprocessing, I followed procedures similar to those in previous bioacoustic

work (Mac Aodha et al., 2018). I first resampled all recordings to 441 kHz, the

most frequent sampling rate in the dataset, to standardise the sampling rates. Then,

I applied a Short Time Fourier Transform (STFT) using a window length of 512

samples, 75% overlap, and a Hann window. Although most recordings targeted

individual bats with high-quality recording equipment, they were primarily collected

in the field. To reduce environmental noise and highlight bat calls, I employed the

Per-Channel Energy Normalisation (PCEN) transformation (Wang et al., 2017). I

segmented the spectrograms into 50ms clips with a 25ms overlap using a sliding

window. This clip duration ensures that the echolocation calls of all target bat species,

including those with longer calls (e.g., 35ms calls by Pteronotus parnellii), are not

segmented. Finally, each spectrogram segment was resized to a 128x128 array and

normalised.

For the second stage, I used a Convolutional Neural Network (CNN) for bat

call detection and classification within each 50 ms clip. The model employs an

encoder architecture comprising several convolutional layers followed by max-

pooling operations. These layers reduce the clip’s spectrogram into a compact

set of features, which are then fed into two separate heads: a detection head and

a classification head (Figure 3.2A). The detection head predicts whether the clip

contains a bat echolocation call, regardless of the species, including both target

and non-target species. The classification head classifies the clip as one of the

target species or the generic Chiroptera class. This dual-head approach, similar to

the method described by Schwab et al. (2022), allows the model to perform both
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Figure 3.2: Detector and classifier architecture and training targets. (A) Model architec-
ture for bat call detection and classification. The spectrogram of a fixed-duration audio clip
is fed into a CNN encoder that extracts relevant features. These features are then passed to a
detector head and a classifier head. The detector head identifies whether a bat call is present
in the input spectrogram, while the classifier head predicts the species. Optionally, the
features can be fed to a decoder CNN (blue) that predicts the locations of bat calls within the
spectrogram. (B) Generation of training targets from manual annotations. The recording’s
spectrogram is segmented into fixed-duration clips using a sliding window; the black box
represents a single clip, and the dotted black box represents the next clip in the sequence.
The detailed line-string annotations (red) are used to generate clip labels (clip), indicating the
presence and species of a bat call within each clip. Additionally, the annotations can be used
to generate binary masks (onset, onset-offset, bounding box, line-string) that provide the
location of the calls within the spectrogram with varying levels of detail. The CNN models
are trained using the clip labels as targets for detection and classification tasks, or with an
additional localization task using one of the binary masks.

detection and classification tasks within a single forward pass. I trained this CNN

model using various strategies to incorporate different levels of annotation detail, as

described in the following section.

For model training, I used consistent settings across all model variants. Specific-

ally, I used a batch size of 32 and trained for a maximum of 100 epochs with early

stopping to prevent overfitting. I monitored the classification balanced accuracy

(ACC) on the validation set after each epoch and stopped training if this metric did

not improve for more than 3 consecutive epochs. I used the Adam optimizer with a

learning rate of 0.0001 and cosine annealing. To maintain consistency with estab-

lished approaches, I adopted the hyperparameters used by Mac Aodha et al., 2018.

All models were trained using PyTorch (Paszke et al., 2019) and PyTorch-Lightning

(Falcon & The PyTorch Lightning team, 2019) in a “p3.2xlarge” instance at Amazon

Web Services with a single Tesla V100 GPU. Training runs took between 10 and 40
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minutes, with the duration depending on both dataset size (5 or 25 recordings per

species) and model variant. Detailed model variants required approximately twice

the training time of the clip variant. See the Appendix B.2 for further details on the

model architecture.

3.3.3 Evaluating the impact of location detail on model

performance

As a baseline, I trained a CNN model (CNNclip model) using only clip-level labels

to simulate a scenario where detailed annotations are unavailable. This approach

mirrors Hershey et al. (2021), where annotations were used solely to determine the

presence or absence of target sound events. I labelled a clip as positive for a bat

echolocation call if it overlapped with any line-string annotation. If the overlapping

annotation included a species label, that label was assigned to the clip; otherwise, a

generic “Chiroptera” label was used. For clips containing multiple annotated calls, I

prioritised the species label of the first call. All other clips were labelled as “empty,”

indicating the absence of a detectable call. These clip-level labels served as targets

for both the detection and classification heads of the CNN model (Figure 3.2B).

To investigate whether incorporating detailed time-frequency location information

could improve model performance, I trained model variants with an additional local-

isation task. These variants, referred to as CNNonset, CNNonset-offset, CNNbounding-box,

and CNNline-string, simulate scenarios where annotations of the corresponding type

are available during training. These models were trained to perform three tasks

simultaneously: detecting bat calls, classifying their species, and predicting their

location within the input spectrogram. To enable localisation, I augmented the CNN

architecture with a decoder component. This decoder uses the features extracted

by the encoder to predict a “location mask” highlighting the pixels in the input

spectrogram where bat calls occur. Specifically, the decoder uses a series of trans-

posed convolutional layers to upsample the encoder features, followed by a final

classification layer that predicts, for each pixel in the upsampled mask, whether it

belongs to a bat call. During training, the input spectrogram is passed through the
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encoder to generate features used for detection, classification, and localisation (Fig-

ure 3.2A). The model is trained to minimise the combined loss from the detection,

classification, and localisation tasks. However, during testing, only the detection

and classification outputs are used to ensure a fair comparison with models trained

without location information. This multi-task training encourages the encoder to

learn a feature representation that is sensitive to both the acoustic characteristics of

different bat species and the precise location of calls within the spectrogram.

To generate the localisation training targets for these variants, I first converted the

original line-string annotations to the other annotation types, as needed. For instance,

to create the onset-offset annotation, I determined the bounding box of the line-string

and retained only the onset and offset points. Each annotation was then rasterised to

create a binary mask with the same dimensions as the input spectrogram. During

this rasterisation process, I incorporated a small buffer around each annotation to

account for potential inaccuracies. Specifically, a pixel was considered to belong to a

bat call if it fell within 2ms and 2kHz of the corresponding annotation. For example,

a pixel at time 1s and 60kHz would be considered part of an onset-offset annotation

starting at 0.9s and ending at 1.1s, but not part of a bounding box annotation with

the same temporal bounds but with frequency bounds of 10-20kHz. Each pixel in

the mask was assigned a value of 1 if it belonged to a bat call (regardless of species)

and 0 otherwise. During training, each input spectrogram clip was paired with its

corresponding annotation mask, which served as the target for the localisation task.

The labels for the detection and classification tasks were generated in the same way

as for the clip model variant. Full details on the specific loss functions used for each

model variant can be found in the Appendix B.3.

3.3.4 Model evaluation

To evaluate the performance of the CNN models, I used two metrics that capture

both detection and classification accuracy. Each trained model was applied to the

entire test dataset using the sliding window approach. Notably, this includes clips

that contain no bat calls, which are essential for evaluating detection performance.
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For each clip, I recorded the confidence score of the model for detection and the

scores for each target species and the generic Chiroptera class. Ground truth labels

were derived in the same way as the training labels, by identifying annotations that

overlapped with the clip. I used average precision (AP) for detection, as it provides a

unified measure of performance across different confidence score thresholds. For

classification, I used balanced accuracy (ACC) to account for the varying number of

examples per species in the test set. Balanced accuracy was evaluated only on clips

containing a bat call.

To evaluate the influence of training data size on model performance, I trained

each model variant on nested datasets of increasing sizes (5, 10, 15, 20, and 25

recordings per species). For each of the 17 target species, I randomly selected 5

recordings for validation, using the remaining recordings to create nested training sets.

To control for variability arising from data partitioning, I performed five independent

training runs per dataset size, each using a different random split into training and

validation sets. Each run utilised a different random split of the corresponding data

into training and validation sets. Within each run, all model variants were trained

on the same data with identical encoder initialisation, enabling a fair comparison of

their performance across data partitions and dataset sizes.

To assess whether differences in performance between model variants were

statistically significant, I performed paired t-tests on variants trained on the same

datasets (Raschka, 2020). I considered differences to be significant at a p-value

threshold of 0.05.

3.4 Results

3.4.1 Impact of annotation detail on classification

The CNN model variants trained with detailed annotations (CNNonset, CNNonset-offset,

CNNbounding-box and CNNline-string) significantly improved classification performance

across most dataset sizes compared to the CNNclip baseline (Figure 3.3). This

improvement was particularly pronounced with 10 and 15 recordings per species,
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Figure 3.3: Comparison of the classification performance against the CNNclip baseline.
Boxes show the distribution of the difference in classification performance measured by
balanced accuracy between the detailed variants and the CNNclip variant. The red dashed
line represents no change in performance. Models variants were trained 5 times for each
dataset size and evaluated in a held-out test set.

where classification accuracy increased by 5-10%. Even with 25 recordings per

species, a significant 2-5% gain in accuracy was observed. However, with only 5

recordings per species, the impact of detailed annotations was less consistent and

less pronounced.

Increasing the dataset size improved classification performance, regardless of the

annotation type (Table 3.1). However, performance gains were more pronounced

for smaller datasets with detailed annotations. Notably, using detailed annotations

with a smaller dataset could achieve similar performance improvements to increasing

the dataset size by 5 recordings per species (Table 3.1). Classification performance

showed diminishing returns with 25 or more recordings per species, but the absence

of a clear plateau in the performance curve suggests that larger training datasets

might yield further improvements.

Despite differences in mean classification accuracy, there was no consistent and

statistically significant differences in classification performance between the detailed

annotation variants (CNNonset, CNNonset-offset, CNNbounding-box, and CNNline-string)

across various training scenarios. However, I observed some trends when examining
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Table 3.1: Classification performance of model variants. Balanced accuracy (ACC) scores
are shown for each model variant trained using its corresponding annotation type, across
different training dataset sizes (number of recordings per species). Results are averaged over
5 training runs, with each run using identical training data, hyperparameters, and initialization
weights for all model variants. Within each dataset size, the model variant with the highest
average ACC is shown in bold. The superscript denotes the number of times (0 if absent)
that the variant achieved the highest ACC for that dataset size.

Balanced accuracy (%)

Recs/species CNNclip CNNonset CNNonset-offset CNNbounding-box CNNline-string

5 30.3 32.9 31.6 36.32 36.43

10 39.1 44.3 46.7 45.51 48.44

15 43.1 50.91 52.01 50.2 52.83

20 51.5 55.91 57.33 53.8 56.71

25 55.7 57.1 60.12 59.22 58.31

the frequency of top-performing models (Table 3.1). The CNNline-string variant, which

provides the most detailed annotation, produced the most top-performing classifiers

(12 out of 25 training configurations). This trend diminished with larger datasets,

where CNNbounding-box and CNNonset-offset variants also yielded top-performing mod-

els.

3.4.2 Impact of annotation detail on detection

In contrast to the classification results, detection performance showed little variation

across dataset sizes and annotation variants (Table 3.1). Average precision remained

consistently high (∼ 95%), with no notable differences observed between models

trained on different dataset sizes or with different annotation types. The baseline

model, trained with clip annotations and only 5 recordings per species, achieved an

average detection performance of 94.5% in average precision.

3.5 Discussion
In this study, I show that providing detailed annotations of the time-frequency

location of calls within the spectrogram can improve the performance of Deep

Learning (DL) models for bat echolocation call detection and classification. The

results show a consistent increase in classification performance across all dataset

sizes when using detailed annotations, with the most significant gains observed for
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Table 3.2: Detection performance of model variants. Average precision (AP) scores
are shown for each model variant trained using its corresponding annotation type, across
different training dataset sizes (number of recordings per species). Results are averaged over
5 runs. Within each dataset size, the model variant with the highest AP is shown in bold.

Average precision

Recs/species CNNclip CNNonset CNNonset-offset CNNbounding-box CNNline-string

5 94.5% 94.3% 94.5% 94.2% 94.3%
10 94.6% 94.8% 94.5% 94.8% 95.3%
15 94.9% 94.0% 94.9% 93.9% 94.2%
20 94.8% 94.3% 94.4% 93.6% 94.4%
25 94.5% 94.5% 93.8% 93.6% 94.8%

smaller datasets (10–20 recordings per species). Although acquiring more data is

generally recommended when possible, this finding suggests that detailed annotations

are particularly valuable when training data is limited and collecting additional data

is challenging. However, creating detailed annotations can be time-consuming. I

measured annotation speed for a set of 20 one-second recordings. Clip annotations,

which involve only a single action of assigning the appropriate species label (if any)

to each clip, took approximately 3 minutes to complete. In contrast, onset, onset-

offset, and bounding box annotations, requiring one or two interactions per call, took

around 20 minutes, while line-string annotations, requiring multiple interactions per

call, took roughly 40 minutes. These measurements provide a general approximation,

as actual annotation time is highly dependent on event density, the specific user

interface employed, and operator proficiency. A more robust evaluation involving

multiple annotators and diverse target events would be valuable.

Based on the findings of this study (Fig. 3.3), we recommend that future an-

notation efforts, especially when working with limited data (e.g., fewer than 25

recordings per species), prioritise detailed annotation methods over simple clip-level

annotations. Bounding box annotations offer a particularly effective balance between

annotation effort and performance gains. While no single detailed annotation method

consistently outperformed the others, bounding box annotations yielded statistically

significant accuracy gains over the baseline clip-level model across all dataset sizes.

This approach offers a practical balance between improved performance and annota-
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tion effort, providing a high level of detail surpassed only by the substantially more

time-consuming line-string annotations, which did not yield further performance

gains.

My study revealed that the primary performance gain from incorporating detailed

location information was observed in the classification system. This finding is likely

related to the nature of bat echolocation calls, which can exhibit subtle inter-species

variations in frequency ranges and call structures. Even though this study focused on

only 17 bat species, the complete dataset encompasses a wider set of species with

diverse call types, including some groups that are challenging to discriminate acous-

tically (Zamora-Gutierrez et al., 2016). The additional localisation task benefited

model training and classification performance by providing more precise information

about the relevant acoustic features within each call, enabling the model to learn

finer-grained distinctions between species. Furthermore, since the recordings used

were captured in the open environment, they contain background noise that could

confound the models and contribute to overfitting. While preprocessing techniques

like PCEN are widely used for noise reduction, they may not eliminate all non-target

sounds. Guiding the training process by explicitly highlighting the location of the

relevant signal through the localisation task could further mitigate the impact of

noise and improve generalisation. These challenges are common in bioacoustic tasks,

suggesting that this findings may extend to other datasets and taxa. However, further

validation is needed to confirm the generalisability of these results.

In this study, I adopted a widely used classification and detection pipeline that re-

lies on training a DL model to analyse fixed-duration audio clips. I chose a common

CNN architecture to facilitate direct comparison with prior studies. However, the

specific architecture can influence performance, and the field is constantly experi-

menting with alternative and innovative architectures. For example, the larger ResNet

architecture used in BirdNet (Kahl et al., 2021) and the EfficientNet backbone em-

ployed in Perch (Ghani et al., 2023). Recently, transformer-based architectures have

shown promising results in bat detection and classification (Vogelbacher et al., 2023).

These alternative architectures tend to have a larger number of parameters, typically
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requiring more data for effective training. Similarly, I adopted Mac Aodha et al.,

2018 training hyperparameters for consistency, however, a dedicated hyperparameter

optimisation process could potentially yield further performance improvements. Still,

while architectural and hyperparameter refinements may lead to performance gains,

I focused on investigating whether improvements in annotation effort could also en-

hance performance. My findings suggest that such improvements can indeed lead to

better results, and I believe these results are likely transferable to other architectures,

though further validation is needed.

It is important to note that the clip-based approach has inherent limitations in

temporal resolution. With clip-level predictions, increasing temporal resolution

requires processing more overlapping clips, thus increasing computational costs, or

reducing clip duration, which limits the temporal context available for inference.

Alternative approaches, such as the object detection method employed in Chapter 4,

directly predict call locations, bypassing clip classification entirely and potentially

offering higher temporal resolution. This fine-grained detection capability is valuable

for downstream tasks like identifying feeding buzzes. These considerations raise

important questions regarding the suitability of the clip-based approach for all

bioacoustic tasks and motivate the exploration of alternative detection methods.

Another interesting finding is the consistently high detection performance across

all model variants and training dataset sizes. This result demonstrates the feasibility

of achieving effective, nationwide bat echolocation detection using a relatively small

dataset. While the effectiveness of deep learning methods for bat call detection

has been established (Mac Aodha et al., 2018), their performance in highly diverse

settings with limited data remained an open question. In this work, models trained

with only 5 recordings per species for 17 species achieved good detection perform-

ance (95% average precision) on a challenging test set encompassing recordings

from across Mexico and containing 69 distinct species. Given that many bioacoustic

datasets contain similarly low numbers of recordings per species (Nolasco, Singh

et al., 2023; Chasmai et al., 2024), these results are encouraging, demonstrating the

potential for effective detection of coherent taxonomic groups, like bats, even with
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limited training data per species. It is important to acknowledge that test dataset

used comprises focal recordings designed to capture echolocation calls from target

individuals, which may differ substantially from those obtained through passive

monitoring (van Merriënboer et al., 2024). While confirming species identification

in echolocation calls from passive recordings can be challenging, creating synthetic

test datasets (Salamon et al., 2017) that combine recordings of known species with

passive recordings could help gain insights into detector performance under such

conditions. Additionally, since the test set recordings targeted bats, they likely lack

sounds often confused with bat calls, like those from small mammals (Coffey et al.,

2019) or insects (Hall & Robinson, 2021). Further evaluation with real-world passive

monitoring data and including potentially confounding sounds is necessary to obtain

a more robust assessment of detection performance in ecologically relevant settings.

My work contributes to the exploration of strategies for addressing data scarcity in

bioacoustic research. This work thus contributes to the broader field of learning from

limited data, often called few-shot learning (Nolasco, Singh et al., 2023; Nolasco,

Ghani et al., 2023; Song et al., 2023). While much of this research emphasises model

improvements, I offer a complementary data-centric approach (Zha et al., 2023),

focusing on enhancing the quality of the training data through detailed annotation.

My results demonstrate that investing in detailed audio annotation can be a highly

effective alternative to extensive data collection, particularly when field recording

is challenging or cost-prohibitive. However, annotation itself can be a demanding

process, highlighting the need for tools and methods that facilitate efficient and

accurate annotation. The emergence of annotation tools specifically designed for ma-

chine learning development is a promising step towards bridging this gap (Chapter 2,

Marsland et al., 2019). Additionally, active learning strategies can help optimise the

annotation process by identifying the most informative data points for annotation,

thereby reducing the overall annotation effort (Martinsson et al., 2024; McEwen

et al., 2024; Wang et al., 2022). The growing availability of data platforms for

sharing bioacoustic recordings presents another opportunity (Vellinga & Planque,

2015; Görföl et al., 2022; Matheson, 2014). By promoting the sharing of annotations
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alongside recordings, these platforms can facilitate collaborative research and accel-

erate the development of robust machine learning models. However, standardised

annotation formats are crucial to ensure transparency and interoperability. By devel-

oping methods to streamline the annotation process and promoting standardised data

sharing, the potential within existing and future acoustic collections can be unlocked,

ultimately accelerating bioacoustic research and conservation efforts.



Chapter 4

Enhancing Deep Learning for Bat

Call Identification through

Acoustically-Informed Architectures

4.1 Abstract
Acoustic monitoring is an effective and scalable way to assess the health of important

bioindicators like bats. Deep Learning (DL) is increasingly used to automate bat

echolocation call detection and classification, but developing these solutions for

novel geographic regions is hindered by limited data and the lack of accessible tools.

While current DL methods adapt techniques from computer vision, the fundamental

differences between audio and visual data raise questions about their optimality,

especially when data is scarce. Here, I develop BatDetect2, a novel, open-source

DL pipeline for jointly detecting and classifying bat species from acoustic data.

BatDetect2 adapts a Convolutional Neural Network (CNN), commonly used in

image analysis, to detect bat echolocation calls within input spectrograms, with

two key modifications for audio data. First, a self-attention layer is incorporated to

capture long-range temporal dependencies within the echolocation call sequences.

Second, the standard convolutional operation is modified to include the spectrogram’s

frequency coordinates, allowing the model to directly incorporate frequency position
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into its calculations. The impact on performance of these modifications is evaluated

on a UK dataset of 17 bat species, and the full BatDetect2 pipeline is further validated

on five diverse datasets from the UK, Mexico, Australia, and Brazil. I found that

adding the temporal modification increased the mean average precision (mAP)

from 0.72 to 0.81, while the frequency modification had no notable impact. All

tested DL models significantly outperformed a traditional call parameter extraction

method, which achieved an mAP of 0.59. Overall, BatDetect2 showed strong

performance across all datasets. This study demonstrates that the same pipeline

can be applied, without modification, to acoustic data from diverse regions with

varying species compositions. To the best of our knowledge, BatDetect2 is the first

pipeline featuring a 2D convolutional architecture with a single, strategically placed

temporal self-attention layer, designed to detect and classify all bat calls present in

input spectrograms. The trained UK model and the full training pipeline are available

through the open-source Python package, batdetect2. The model training and

evaluation tools proposed will provide practitioners with an accessible means to

develop models using their own data.

4.2 Introduction
Bats are vital bioindicators for assessing the impacts of climate change and habitat

loss (Jones et al., 2009), yet significant knowledge gaps exist regarding the status

of their populations (Frick et al., 2019). Acoustic monitoring, leveraging the use of

echolocation by bats for navigation (Jones & Siemers, 2011; Prat et al., 2016), offers

a scalable, non-invasive and cost-effective solution for studying their activity (Gibb

et al., 2018). Considerable research effort has been dedicated to automating the

detection and classification of bat echolocation calls in audio recordings (Zamora-

Gutierrez et al., 2021), with methods evolving from the use hand-crafted acoustic

features (Obrist & Boesch, 2018; Parsons & Jones, 2000) to recent Deep Learning

(DL) approaches (Mac Aodha et al., 2018; Vogelbacher et al., 2023; Khalighifar et al.,

2022). However, the practical scope of existing tools remains limited, restricted to

specific species or regions, and frequently inhibited by proprietary restrictions that im-
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pede transparency and accessibility. Furthermore, development is often constrained

by the need for extensive datasets and specialised technical expertise (Stowell, 2022).

Therefore, creating and understanding efficient methodologies for developing accur-

ate bat detection and classification tools adequate for smaller datasets is crucial to

facilitate broader bat monitoring and research (Russo et al., 2021).

Achieving accurate detection and classification of bat echolocation calls is chal-

lenging because bat calls are complex and varied. This variability stems from

species-specific, regional, and habitat-dependent call characteristics (Walters et al.,

2013; Montauban et al., 2021; Russo et al., 2018), which is further complicated

by background noise and overlapping vocalisations from other species (e.g. small

mammals and insects) (Stowell, 2022). The use of hand-crafted acoustic features,

commonly referred to as call parameters in the bat literature, with traditional machine

learning methods like Discriminant Function Analysis (Parsons & Jones, 2000) or

Random Forest (RF) (Zamora-Gutierrez et al., 2021; Bas et al., 2017; Roemer et al.,

2021) often struggle to adapt to this variability and to discriminate between similar-

sounding species (Russo et al., 2018). In contrast, DL models can leverage more

detailed inputs like spectrograms, potentially capturing overlooked but informative

acoustic features. However, the numerous parameters that allow DL models to learn

complex patterns also heighten the risk of overfitting, particularly with limited train-

ing data (Pichler & Hartig, 2023). Despite this potential for overfitting, DL models

have achieved considerable success even with modest training datasets in broader

ecological monitoring (Christin et al., 2019) and bioacoustics (Stowell, 2022). Nev-

ertheless, the limited availability of data for most species and regions calls for careful

consideration of how to balance model complexity with generalisation performance,

and which DL architectures are best suited to address the unique characteristics of

bat echolocation calls.

To date, all DL architectures applied to bat call detection and classification are

adapted from the field of computer vision (Mac Aodha et al., 2018; Chen et al., 2020;

Kobayashi et al., 2021; Zualkernan et al., 2020; Paumen et al., 2021; Dierckx et al.,

2022; Schwab et al., 2022; Tabak et al., 2022; Yılmaz et al., 2022; Alipek et al., 2023;
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Brinkløv et al., 2023; Fundel et al., 2023; Vogelbacher et al., 2023). Specifically,

2D Convolutional Neural Networks (CNNs) have been widely employed to analyse

spectrograms or Mel-frequency cepstral coefficients (MFCCs) derived from audio

recordings. The ability of CNNs to exploit the inherent properties of images, namely

locality and translation invariance, through the convolutional operation allows for a

more efficient architecture with significantly fewer parameters than fully-connected

networks, leading to improved performance in image classification tasks (LeCun

et al., 2015; Menghani, 2023). In the context of images, locality implies that in-

formation needed for object identification is spatially concentrated, while translation

invariance means that an object’s identity remains consistent regardless of its posi-

tion within the image. However, these core assumptions in computer vision do not

necessarily translate well to the analysis of audio data.

Bat echolocation calls exhibit unique spectro-temporal characteristics that chal-

lenge the direct application of standard CNN architectures. For instance, the distinct

frequency ranges of calls emitted by different bat species, which reflect adaptations to

their foraging environments and prey types (Denzinger & Schnitzler, 2013; Walters

et al., 2013), imply that translation invariance may not hold in the frequency dimen-

sion for bat calls. Furthermore, as bats typically emit sequences of echolocation calls,

where the inter-pulse interval and the overall temporal structure are often crucial

for accurate species identification, the assumption of locality might not be entirely

appropriate in the temporal dimension. While analysing short audio clips, typically

shorter than 50 milliseconds, reduces the impact of this issue (Mac Aodha et al.,

2018; Chen et al., 2020; Kobayashi et al., 2021; Khalighifar et al., 2022), it leaves out

the potentially discriminative information encoded in the longer temporal structure

of call sequences. Using CNNs to analyse longer audio clips, as done by Paumen

et al. (2021), Zualkernan et al. (2020) and Tabak et al. (2022), typically requires

increasing model depth and size to capture longer temporal relationships (Simonyan

& Zisserman, 2015; He et al., 2016), thereby demanding substantially more train-

ing data for robust results. This naturally raises the question of how to design a

model that can effectively capture both the spectral and temporal structure of bat
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echolocation calls while remaining compact and efficient.

Despite the recent progress in DL-based solutions for bat detection, a gap persists

between the latest research advancements and the open-source tools available to

practitioners. Of the DL models developed for automated bat detection, only Mac

Aodha et al. (2018), Alipek et al. (2023) and Fundel et al. (2023) offer open-source

implementations, but require substantial programming expertise to use. Further-

more, training and using custom DL models presents several additional challenges.

First, even with the availability of open-source tools for developing bioacoustic

models (Lapp et al., 2023), training models typically requires proficiency in program-

ming and machine learning, presenting a barrier for many practitioners. Secondly,

training DL models requires substantial amounts of labelled data, which are often

scarce for many bat species and regions. Although transfer learning, where a model

pre-trained on a large dataset is fine-tuned on a smaller, more specific dataset, can

help to mitigate data scarcity (Ghani et al., 2023; Dufourq et al., 2021), it does not

eliminate the need for expertise in model training. Finally, the “black box” nature

of many DL models makes it difficult to interpret their decision-making processes.

This lack of transparency is particularly problematic when a model generates a

single prediction from a long audio clip containing multiple calls from different

species (Dierckx et al., 2022). Moreover, processing audio at the clip level, rather

than analysing individual calls, prevents the use of fine-grained call information that

might improve performance (Chapter 3). Given these challenges, there is a clear

need for user-friendly tools that empower practitioners to develop and deploy robust

DL models for bat monitoring, without requiring extensive programming or machine

learning expertise.

Here, I develop BatDetect2, a novel model for bat echolocation call detection

and species classification from acoustic data. BatDetect2 incorporates two key

modifications to the standard CNN architecture, specifically designed to enhance the

model’s ability to better capture spectral and temporal characteristics. Furthermore,

the model also provides interpretable predictions that illustrate where in the input

spectrogram, in terms of frequency and time, the model has detected a call. Using
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a UK dataset of 17 bat species, I evaluate the impact of these modifications on

the model’s overall performance, as well as on its performance for each individual

species. I train and evaluate the model using five challenging datasets from four

different geographical regions (UK, Mexico, Australia, Brazil), and compare its

performance to existing call parameter-based methods. Using the model trained on

UK data I evaluate its potential for transfer learning to other regions. Finally, to

facilitate adoption and further development by practitioners, the complete pipeline,

including code and trained models, is made publicly available as an open-source

Python package: batdetect2. This package enables users to train new models from

scratch, fine-tune pre-trained models, and deploy them for automated analysis of

their own datasets.

4.3 Materials and Methods

4.3.1 Acoustic event detection and classification

Distinct acoustic vocalisation events (e.g. a bat echolocation call or a bird song)

created by a species of interest can be characterised by the start time of the event,

the duration of the event, and the minimum and maximum frequency bands that the

event spans. The goal of this work is to develop a model, denoted by g(·), that takes

an ultrasonic audio recording as input, represented as a spectrogram x, and outputs a

set of predictions related to the events of interest in the input audio file, O = g(x). In

this specific context, the events of interest are bat echolocation calls. Each prediction

from the model, o ∈ O, represents a distinct event and provides information about

its temporal and spectral characteristics, as well as its predicted species. Specifically,

each predicted event, o = [tstart, tend, fmin, fmax,pspecies], represents the start time, end

time, minimum frequency, maximum frequency of the event, along with probability

vector indicating which species the model thinks is present. Here, pspecies is a C+1

dimensional vector that sums to one, and represents the probability of the species the

model thinks emitted the call, for each one of C different species of interest plus one

additional background class (i.e. ‘Not bat’). Note, that this representation is distinct

from conventional acoustic classification models that only attempt to determine the
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Figure 4.1: Overview of BatDetect2 architecture. The model consists of a convolutional
neural network-based encoder and decoder with skip connections that share extracted features
from the encoder to decoder. The encoder and decoder consists of modified convolutional
layers that incorporate coordinate information. It utilises a self-attention layer in the middle
of the model so that it can reason over a longer temporal scale. In contrast to most existing
deep learning-based bat call classifiers, BatDetect2 directly predicts the time in file of each
event of interest, along with the duration of the event, the frequency range, and the species.

species present in a short duration input spectrogram (Stowell, 2022), i.e. y = g(x),

where y ∈ {1, ...,C+1} is an integer denoting the predicted species label.

4.3.2 Model architecture

I implement the joint classification and detection model g(·) as a deep neural network,

which I refer to as BatDetect2. Inspired by computationally efficient one-stage object

detection methods from computer vision, e.g. Zhou et al. (2019), this model directly

predicts the location and size of each event (i.e., echolocation call) in the input.

BatDetect2 model makes use of a U-Net-style architecture (Ronneberger et al.,

2015), with an encoder that extracts features from the input spectrogram, followed

by a decoder that generates the predicted size and location of each echolocation call

along with the corresponding species’ probabilities (Figure 4.1). The model also

incorporates skip connections, which facilitate the propagation of higher-resolution

feature information (in terms of frequency and time) from the encoder to the decoder

(see Appendix C.1 Table C.1 for full details). Crucially, while BatDetect2 is based

on the U-Net architecture, which typically employs 2D convolutional layers, it

incorporates two key modifications to better capture the distinctive spectral and

temporal characteristics of audio signals described below.

In order to allow the model to capture the temporal structure of the echolocation

calls, I incorporate a self-attention layer into the middle of the network (Figure 4.1).

Transformer-based self-attention architectures (Vaswani, 2017) are among the current
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best performing models in natural language processing owning to their ability to

capture long-range dependencies that occur in the input data. The introduction of

this layer allows the model to ‘attend’ to information from different points in time in

the input audio file in order to increase or decrease its estimated likelihood that a

given species is present at the current time step. BatDetect2 processes a spectrogram

input with a temporal resolution of approximately 1ms per time bin (1024 Hz).

The encoder component transforms this input into a sequence of feature vectors at

a reduced temporal resolution of approximately 8ms per bin (128 Hz). For each

time step in this coarser representation, the self-attention layer uses transformations

of the encoded feature vector to determine its relationship to all other time steps.

These relationships generate attention weights, which are then used to compute a

weighted average of transformed feature representations. This weighted average

provides a context-aware representation for that time step. Finally, the decoder

component processes these context-aware representations to generate an output with

the same temporal resolution as the original spectrogram, including the model’s

predictions for the locations of bat calls. Note that, unlike vision transformers such as

ViT (Dosovitskiy et al., 2021) used by Fundel et al. (2023), which employ multiple

self-attention layers across both time and frequency, our model uses a single self-

attention layer operating solely on the temporal dimension, resulting in significantly

reduced computational burden.

To enhance the ability of BatDetect2 to process frequency information and mit-

igate the undesirable translation invariance along the frequency axis, I utilise two

specialised building blocks: CoordConvDown and CoordConvUp. At a high level,

the CoordConvDown layer takes a tensor as input and returns a spatially downsized

version of it as an output. Unlike standard convolutional layers, which exhibit trans-

lation invariance, CoordConvDown appends non-learnable, normalised coordinates

along the frequency (vertical) axis of the input tensor. This modification is crucial

because the absolute frequency of an echolocation call provides valuable discriminat-

ive information for bat species identification. In contrast to the original CoordConv

approach (Liu et al., 2018), coordinate information is not added along the temporal
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axis. This design choice preserves the model’s desired time-translation invariance,

allowing it to recognise calls regardless of their precise position within the record-

ing. The CoordConvUp layer performs the inverse operation of CoordConvDown,

upsampling the feature maps while retaining the encoded frequency information.

For each input spectrogram, the model initially generates an intermediate “feature”

map, an array with the same height and width as the input. Each pixel in the

feature map encodes a 32-dimensional feature vector, representing learned acoustic

characteristics at the corresponding time-frequency location. This feature map is

then used to produce two primary outputs: a “class” map (Ŷ ) and a “size” map (Ŝ).

Both of these outputs have the same height and width as the input spectrogram.

The class map Ŷ indicates where the model predicts echolocation calls are located

within the spectrogram and what species they belong to. Each pixel in Ŷ contains a

vector with a length equal to the number of bat species in the dataset plus one. This

additional element represents a “background” class, indicating the absence of a call.

Each value in the vector represents the model’s confidence that a call of a particular

species is present at that pixel’s corresponding time and frequency. Ideally, only the

pixel corresponding to the bottom-left corner of a call’s bounding box should have

a high confidence value for the correct species, and all other pixels should indicate

“background.” The size map, Ŝ, provides information about the estimated size of the

detected echolocation calls. Each pixel in Ŝ contains two values: an estimated height

and width of the bounding box around any echolocation call detected at that pixel’s

location. If the model does not detect a call at a particular location, the corresponding

values in Ŝ should ideally be zero.

As a final step, this output is pass through a non-maximal suppression layer,

implemented via max pooling, in order to extract the local peak detections (Zhou

et al., 2019). This step prevents the model from predicting multiple calls very close

to each other (i.e. within a few milliseconds).
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4.3.3 Audio preprocessing

To prepare the raw audio for model processing, the input audio is transformed into

spectrograms as follows. Firstly, the input audio is resampled to 256 kHz using the

polyphase method from librosa (McFee et al., 2015). I selected librosa’s poly-

phase resampling method for its comparatively lower computational cost, making

it well-suited for processing large audio datasets. I then compute the magnitude

spectrogram using a Short Time Fourier Transform (STFT) with a window size of

512 samples and a window overlap of 75%. As the bat echolocation calls recorded

for this study are found only within a specific frequency range, I retain only the bands

between 10 kHz and 120 kHz. For robustness to volume variations, the spectrogram

is normalised using Per-Channel Energy Normalisation (PCEN) (Wang et al., 2017),

which Lostanlen et al., 2019 showed to be more effective than traditional logarithmic-

based normalisation. Following Aide et al. (2013) and Mac Aodha et al. (2018), I

also subtract the mean value from each frequency band to mitigate the impact of any

constant background noise. Finally, I use bilinear interpolation to resize the temporal

dimension down by a factor of two and resample the frequency bands into 128 bins.

Consequently, a one-second input audio file results in a spectrogram of size 128 ×

1024.

4.3.4 Model training

The model is trained using a supervised learning approach, where it is provided

with input spectrograms and corresponding target outputs. These target outputs are

derived from the bounding box annotations of bat echolocation calls. The target for

the “class” map Ŷ is constructed by creating a series of “heatmaps,” one for each

species. Each species-specific heatmap is initially set to zero everywhere except in

the vicinity of the bottom-left corner of each call annotated for that species. At these

locations, a Gaussian kernel with a standard deviation of 2.0 is applied, creating a

localized peak with smoothly decaying values, a method consistent with prior work

in object detection (Zhou et al., 2019). Unlike Zhou et al. (2019), who parameterises

bounding boxes using their centre point, I instead use the point corresponding to the

start time and minimum frequency of each echolocation call. I chose the minimum
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frequency point because it exhibited less inter-species variability compared to the

center frequency across the training data, with the notable exception of the two UK

Rhinolophus species. Once the individual species-specific heatmaps are generated,

they are stacked together to form the final target map for Ŷ . To create the target for

the “size” map Ŝ, the height and width of the bounding box of each annotated call

are calculated in pixel units. These values are then assigned to the pixel location

corresponding to the bottom-left corner of the bounding box. All other pixel locations,

which correspond to areas without annotated calls, are assigned values of zero for

both height and width.

The model is trained end-to-end using a three component loss function which

includes a detection loss, a classification loss, and an event size loss. The detection

loss is computed by comparing the predicted class map (Ŷ ) to the ground truth

class map (Y ), considering only the complement of the background class (i.e., the

sum of species-specific heatmaps). In contrast, the classification loss compares all

individual species-specific heatmaps. Both losses are implemented using a focal loss,

as described by Lin et al. (2017). This loss function is particularly well-suited to this

scenario as most spectrogram pixels do not contain calls, resulting in a substantial

class imbalance between “background” and “call”’ pixels. The event size loss is

calculated using an L1 loss that penalises the absolute difference between predicted

and actual dimensions, thus encouraging accurate size estimations. This loss is

computed only for pixels corresponding to true calls (see Appendix C.2 for a detailed

description of the training losses).

To increase the variation in the input audio, I perform a series of augmentations at

training time. These augmentations include: random linear combination of two input

audio files (Zhang et al., 2018), simulated echo, random volume scaling, temporal

stretching, and time and frequency masking (Park et al., 2019). The probability that

any one augmentation is applied is 0.2, and multiple augmentations can be applied

simultaneously.

The model and training code are implemented in PyTorch (Paszke et al., 2019). I
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train the model end-to-end using the Adam optimizer (Kingma & Ba, 2017), starting

with an initial learning rate of 0.001, a cosine annealing learning rate schedule, and a

batch size of 8. Training is done for 200 epochs.

4.3.5 Audio datasets

I train and evaluate the model on five different full spectrum ultrasonic acoustic

datasets. In preparation for training, these datasets require annotations in the form of

bounding boxes that encompass each individual echolocation call within an audio file.

To generate these annotations, an early version of whombat, the audio annotation tool

described in Chapter 2, was employed. Unless otherwise specified, the annotated

audio files had information at the file-level related to which species were present in

the recording. The annotations were created by a team of bat experts and myself.

Annotators were instructed to draw boxes around each individual echolocation

call, irrespective of how faint the call was. They then assigned the recording-level

species class label to an annotation unless it differed from a prototypical echolocation

call for that species. Harmonics were not annotated as part of the main call. In cases

where it was not possible to assign the correct class label, or when multiple species

were present in a file, annotators marked unknown calls as being from a generic ‘Bat’

class. Additional details for each dataset, including per-species counts, are available

in the Appendix C.3.

4.3.5.1 UK datasets

The primary dataset used in this study comprises recordings of 17 bat species known

to breed in the UK. This dataset was collated from six distinct sources, including

the Bat Conservation Trust and individual contributors, ensuring a wide variety

of recording devices and acoustic environments. This diversity is important as it

maximises the variation in the training set, with the ultimate aim of having better

generalisation performance at test time. The vast majority of the recordings were

made in the UK, but there were also some additional files included from the species

of interest that were recorded elsewhere (e.g. Europe). In total, the dataset contains

2,809 distinct audio files with a mean duration of 1.04 seconds, encompassing 34,635
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annotated echolocation calls.

To increase the robustness to background noise, I supplement this data with 4,225

additional 0.384-second duration files adapted from Mac Aodha et al. (2018) and

collected in the iBats Program (Jones et al., 2013). This adds an additional 6,842

annotated bat calls that do not have a confirmed species label. Finally, I also add 345,

one second duration, empty files (i.e. no bats present) from London, UK, collected

using the recording devices described in Gallacher et al. (2021). These “empty” files

enable the model to learn to better distinguish between bat calls and background

noise.

I split the UK data into two different train and test sets, UKsame and UKdiff. For

UKsame I randomly assign files to the test set, ensuring a maximum of four files per

species, per data source. The remaining files are kept for the training set. This results

in 7,010 train files and 369 test files, containing 36,955 and 4,522 calls respectively.

UKdiff is a more challenging split. Here I hold-out the largest single data source for

testing. This leaves 5,911 training and 1,468 test files, containing 24,315 and 17,162

echolocation calls. This second split represents a more challenging test-case where

the data is guaranteed to be very different from the training set. This also results in

a reduction in the overall amount of training data, both in terms of sheer quantity

but also diversity. Both the UKsame and UKdiff training sets include the 4,570 files

without species labels. The average echolocation calls for each species in this dataset

are visualised in Appendix C.1.

4.3.5.2 Yucatan data

The second dataset consists of 1,193 one second audio clips extracted from 285

passive acoustic recordings from the Yucatan peninsula in Mexico. The data was

collected as part of a study by MacSwiney G. et al. (2008). It is smaller in size than

the UK dataset, but is representative of the type of data that would be feasible to

collect and annotate as part of a smaller-scale monitoring project. The annotations

from the original study were used and then expanded to ensure that all audible

echolocation events were annotated. The final annotated dataset contains 10,020
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echolocation calls from 17 different species. I divided the data into 911 training

and 282 test clips, making sure to separate at the original recording-level, and not

the clip-level, to ensure that clips from the same recording were not in both sets.

The average echolocation calls for each species in this dataset are visualised in

Appendix C.2.

4.3.5.3 Australia data

This next dataset consists of a set of 14 bat species which can be found in the major

cotton growing region on the north west plains of New South Wales and adjacent

areas in central southern Queensland. Bat calls were recorded in the field from

individuals released after capture, following positive species identification. This

dataset features species with similar call characteristics which makes it particularly

challenging. The data was randomly split at the file level, with 80% of the recordings

for a species staying the train set, and the rest in the test. This resulted in 4,569 and

1,327 individual calls in the train and test sets respectively. The average echolocation

calls for each species in this dataset are visualised in Appendix C.3.

4.3.5.4 Brazil data

The final dataset presents a distinct challenge as it lacks confirmed species labels.

It contains 320 recordings of ten second duration each collected between January

and March 2019 in south-eastern Brazil using AudioMoth recorders (Hill et al.,

2019). As the identity of recorded bat species could not be independently verified,

calls could not be assigned species labels during annotation. Instead, I created three

’sonotypes’ based on the dominant frequency component of each call and labeled

individual calls accordingly. Like the other datasets, the annotation was performed

manually, where the protocol again stipulated that all echolocation call instances in

each recording should be annotated. I split the data into 256 train files and 64 test

files, which resulted in 7,989 and 2,010 calls respectively. The average echolocation

calls for each sonotype in this dataset are visualised in Appendix C.4.
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4.3.6 Evaluation metrics

In order to evaluate model performance, I use four different evaluation metrics. The

first, detection average precision (‘AP Det’), evaluates the ability of the model to

correctly identify all valid echolocation calls in the test data. This metric calculates

the precision and recall resulting from varying a threshold on the model output

predictions for the ‘Bat’ versus ‘Not bat’ task. I then average over these different

thresholds to quantify the area under the precision-recall curve, using the interpol-

ation method used in Everingham et al. (2009). A prediction is counted as a true

positive if its estimated start time overlaps with a ground truth echolocation call by

at most ten milliseconds. This is the same evaluation criteria used in Mac Aodha

et al. (2018).

‘AP Det’ does not evaluate the ability of the model to accurately assign the

correct species label to a prediction. To address this, I also report the mean average

precision across the classes (‘mAP Class’). This involves taking the per-class average

precision and then averaging this value over each class. This also has the added

effect of weighting each class equally, irrespective of the number of calls for each

class in the test set. Here, I exclude calls for which there are no ground truth species

labels available.

‘mAP Class’ suffers from one major limitation. As the classes are evaluated

independently, it does not highlight cases where the underlying model may be poorly

calibrated and thus require different output thresholds for each class. Calibration

issues like this can result from class-level data imbalances in the training data. To

overcome this limitation, I also report a third precision based metric which I refer

to as ‘Top Class’. Here I simply take the top predicted class label, along with

its corresponding probability, for each detected call and then evaluate the average

precision as above. Unlike ‘mAP Class’, this metric can be biased if there is a large

imbalance in the classes in the test set.

The final metric, ‘File Acc’, evaluates the file-level classification accuracy. For

this metric only, test files manually annotated as containing multiple species are
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excluded. To obtain a single file-level class label from the multiple individual call

predictions within a given file, each detection is thresholded, and those below the

threshold are removed. Multiple thresholds are evaluated, and the single threshold

that yields the best overall performance across all files for a given model is selected.

I then sum the per-class probabilities of the remaining detections and choose the

class with the highest sum as the file-level prediction. Finally, I report the file-level

accuracy corresponding to the single best threshold across all files. The best possible

score for each of these four metrics is 1.0, and the worst is 0.0.

4.3.7 Experiments

4.3.7.1 Architecture modifications experiments

To assess the impact of the proposed architectural modifications on model perform-

ance, I conducted an ablation study. In addition to the full BatDetect2 model, I trained

and evaluated two model variants: (1) NoSelfAttn, a variant without the self-attention

layer, and (2) NoCoordConv, a variant where the CoordConvUp and CoordConvDown

layers are replaced with standard convolutional layers. All three models are trained

and evaluated on the challenging UKdiff dataset split using identical training and

evaluation protocols.

To analyse performance differences at the species level, I compute per-class

average precision (AP) each species in the UKdiff dataset, in addition to the standard

global evaluation metrics. This allows for a more granular analysis of how each archi-

tectural modification affects the detection and classification accuracy for individual

bat species.

4.3.7.2 Comparison with call parameter baseline

To evaluate the model’s effectiveness across diverse settings, I compare it to a

baseline traditional bat call parameter extraction method. Both the BatDetect2 model

and the baseline are trained on all five datasets (UKsame, UKdiff, Yucatan, Brazil and

Australia) using identical training and testing data and are evaluated using the same

metrics. The BatDetect2 model is trained three times on each dataset to account for

stochastic fluctuations in the training process, and the final results are averaged.
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To train the baseline, I use the Tadarida-D model from Bas et al. (2017), which

consists of two main components: (i) a bat echolocation call detector and (ii) a

echolocation call feature extractor. For a given training dataset, I run Tadarida-D on

each recording producing detected calls with extracted call features. These features

are a set of 268 numerical values that encode information about the shape and

frequency content of each detected call (see Bas et al., 2017 for further details). Then

for each detected event, I compute the overlap between the event (using the reported

time in file, duration, and frequency range from Tadarida-D) and the ground truth

annotations. The detection with the highest overlap to a given ground truth annotation

is assigned the corresponding species label. If a detected event does not match to

a ground truth annotation it is assigned to the ‘Not bat’ class. Each ground truth

annotation can only be assigned to one predicted detection. Finally I train a Random

Forest (Breiman, 2001) classifier on the extracted calls using the implementation

from scikit-learn (Pedregosa et al., 2011) with default parameters. I employed a

Random Forest classifier to maintain consistency with the methodology of Bas et al.

(2017), facilitating comparison of results.

This baseline allows for a controlled comparison with a traditional call parameter-

based method by using the same audio data and ground truth annotations for both

training and evaluation. However, it is important to emphasise that while I am using

Tadarida-D, the baseline is not directly equivalent to the full Tadarida method as I do

not make use of their pre-trained models, labeling interface, classification code, or

post-processing steps.

4.3.7.3 Transfer learning evaluation

To evaluate the transfer learning potential of BatDetect2, I assessed its performance

on three datasets (Yucatan, Brazil, and Australia) using three different model variants:

BatDetect2zero, BatDetect2tuned and BatDetect2full. BatDetect2zero refers to the base

model pre-trained on the UKsame dataset and applied directly to the target datasets

without any further training or modification. BatDetect2tuned represents a fine-tuned

model where a Logistic Regression classifier is trained on features extracted by

the pre-trained BatDetect2. Finally, BatDetect2full is the BatDetect2 model trained
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from scratch on each individual target dataset and is included for comparison with

the transfer learning approaches. The UKsame dataset was selected as the source

for pre-training due to its larger size and greater diversity compared to the other

datasets, providing a robust foundation for a generalisable model. This evaluation

focuses on two key aspects: (1) the off-the-shelf bat call detection performance of

BatDetect2zero in novel regions with unseen species and (2) the effectiveness of the

learned feature embeddings for species classification in these new contexts, using a

model trained with these features, BatDetecttuned.

The evaluation procedure closely follows the methodology used in the RF +

Tadarida-D baseline comparison. The pre-trained BatDetect2 model was applied to

each of the three target datasets (Yucatan, Brazil, and Australia). For each dataset, I

registered all detected calls and extracted the corresponding 32-dimensional feature

embeddings from the “feature” map. The “feature” map represents the output of

the decoder before the final classification and size prediction layers, thus capturing

the model’s learned representation of bat calls. Similar to the RF + Tadarida-D

baseline, detected calls were matched to ground truth annotations using a simple

overlap criterion, specifically, a 10 ms overlap between the predicted start time and

the ground truth start time. To assess the generality of the bat detector, I computed

the detection average precision (AP Det) using the generated detections and their

associated confidence scores on the corresponding test set.

To evaluate the transferability of the learned feature embeddings, I trained a

logistic regression classifier, denoted as BatDetect2tuned on the extracted features.

This approach is conceptually similar to that used by Ghani et al. (2023), but with a

key distinction. Ghani et al. (2023) focused on embeddings representing the entire

input spectrograms, whereas BatDetect2 produces potentially multiple detections

per input spectrogram, each with its own corresponding localised feature embedding.

Therefore, the logistic regression is trained to classify individual detected calls based

on their localised features, rather than classifying entire audio clips. The classifier

was implemented using the ‘LogisticRegression‘ class from the ‘scikit-learn‘ library

(Pedregosa et al., 2011) with default parameters, The model was trained using
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features extracted from the training set recordings of each target dataset and then

evaluated on the corresponding test set recordings. The classification performance

was quantified using the mean average precision across all classes (mAP Class).

4.4 Results

4.4.1 Impact of architectural modifications

I found that including the self-attention mechanism in the model resulted in a sub-

stantial improvement in performance (Table 4.1). Specifically, while call detection

(measured by AP Det) remained unaffected, classification accuracy improved con-

siderably. The mAP Class and Top Class metrics increased markedly from 0.725

to 0.810 and from 0.614 to 0.690, respectively, upon inclusion of the self-attention

layer. On the contrary, the inclusion of coordinate convolutional layers yielded no

discernible impact on performance.

Table 4.1: Performance of BatDetect2 variants on the UKdiff test set. Metrics are the average
precision for detection (AP Det), the mean average precision for classification (mAP Class),
the top class accuracy (Top Class), and the file accuracy (File Acc). The ‘NoSelfAttn‘
variant is identical to the full BatDetect2 model but omits the self-attention layer. The
‘NoCoordConv‘ variant is identical to the full model but does not incorporate frequency
coordinate information into the convolutional layers. Each model was trained three times on
the UKdiff training split; the mean performance on the corresponding test split is reported.

Model AP Det mAP Class Top Class File Acc

Full model 0.964 0.810 0.690 0.780
NoSelfAttn 0.962 0.725 0.614 0.790
NoCoordConv 0.960 0.811 0.681 0.774

Analysing the impact of self-attention on a per-species level reveals a consistent

positive effect of the inclusion of self-attention across all species (Figure 4.2A). The

improvement in average precision is particularly noticeable for species that exhibited

lower performance without the self-attention. For instance, the model’s ability to

classify the Myotis genus, which encompasses several challenging and previously

poorly-performing species, was significantly improved. In contrast, removing the

CoordConv layers resulted in a negligible impact on overall performance across all

species, although a slight improvement was observed for the two lowest-performing

Myotis species (Figure 4.2B). Notably, the performance disparities between indi-
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vidual species do not correlate with the amount of training data available for each

(Figure 4.2C). This suggests that the self-attention mechanism’s contribution lies

in its ability to enhance discrimination between species with similar call character-

istics, rather than improving the model’s capacity to learn from larger datasets (see

Appendix C.5 Figure C.6 for an illustrative example).
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Figure 4.2: Impact of BatDetect2 modifications on per-species average precision. (A)
Average precision (AP) for each species in the UKdiff dataset for the full BatDetect2 model
and the NoSelfAttn variant (without self-attention). Points above the diagonal line indicate
superior performance of the full model. (B) AP for each species in the UKdiff dataset for the
full BatDetect2 model and the NoCoordConv variant (without frequency information added
to the convolutional layers). (C) Difference in AP between the full BatDetect2 model and the
NoSelfAttn variant (y-axis) versus the number of echolocation calls in the UKdiff training
dataset (x-axis) for each species. All models were trained three times on the UKdiff training
split, and the mean AP on the corresponding test split is reported.

4.4.2 Detection and classification performance

The full BatDetect2 shows a substantial improvement over the Random Forest (RF)

baseline across all datasets and evaluation metrics (Table 4.2). The performance

difference, measured by mean average precision (mAP Class), ranges from 0.05 to

0.37 across the datasets. While the RF baseline achieves reasonable performance

on the comparatively less complex Brazil dataset, it exhibits significantly lower

performance on the remaining datasets.



4.4. Results 92

Table 4.2: Performance of BatDetect2 model compared to the Random Forest baseline with
traditional bat echolocation call features. Both models are evaluated using the same five test
datasets. For each of the metrics, higher numbers are better, and the results are averaged over
three runs.

BatDetect2 Random Forest Baseline

Dataset AP Det mAP Class Top Class File Acc AP Det mAP Class Top Class File Acc

UKsame 0.971 0.884 0.843 0.866 0.890 0.706 0.638 0.800
UKdiff 0.964 0.810 0.690 0.780 0.903 0.587 0.47 0.687
Yucatan 0.923 0.803 0.818 0.861 0.649 0.430 0.467 0.682
Australia 0.973 0.700 0.640 0.795 0.928 0.603 0.507 0.719
Brazil 0.926 0.962 0.940 1.000 0.883 0.912 0.910 1.000

The detection performance of the full BatDetect2 model, as indicated by the

AP Det metric, reveals consistent results above 0.92 in all cases (Table 4.2). This

suggests that the model successfully detects the majority of bat calls present in the

data. BatDetect2 appears to be robust to background noise, as even in the presence

of repetitive high-frequency noise, or sudden broad band clicks, the model does not

produce false positives (Figure 4.3).

On the contrary, the call-level classification performance, measured by mean

average precision (mAP) and top class average precision (Top Class), showed con-

siderable variability across datasets, ranging from 0.70 (mAP) and 0.64 (Top Class)

for the Australia dataset to 0.96 (mAP) and 0.94 (Top Class) for the Brazil dataset.

The performance discrepancy between the UKdiff and UKsame datasets likely reflects

the more rigorous train-test split employed in the former, coupled with the associated

reduction in training data size. This split results in a test set that is less similar to the

training data, despite covering the same species, thus posing a greater challenge for

generalisation. The comparatively lower performance on the Yucatan and Australia

datasets can partially be explained by the challenging set of species contained within

each, as well as the smaller number of distinct training files available.

Examining the performance of the full BatDetect2 model on the challenging

UKdiff dataset split at the species level shows challenges in accurately classifying

certain Myotis species (Figure 4.4A). Notably, the precision for Myotis bechsteinii

and Myotis mystacinus remains below 0.7 across all threshold levels. While Nyctalus
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Figure 4.3: Predictions from the BatDetect2 model. Each row represents a different audio
file selected from the test sets of the UKsame, UKdiff, Yucatan, Australia, and Brazil datasets,
ordered from top to bottom. The intensity of an individual predicted bounding box indicates
the model’s confidence, with a brighter white value indicating more confident. The text
above each box corresponds to the highest probability class label.

leisleri and Nyctalus noctula exhibit precision above 0.8 at a recall of 0.6, their

performance declines at higher recall values. In contrast, all other species achieve

a precision of at least 0.8 at a recall of 0.8. Analysis at the file level indicates

considerable inter-species confusion within the Myotis genus (Figure 4.4B). Further-

more, when excluding the poorly-performing Myotis species, no correlation between

the number of training examples and average precision is apparent (Figure 4.4C).

This suggests that factors beyond training data size may contribute to the observed

performance variations.

It takes BatDetect2 just under four minutes to process and save the results for

424, ten second duration, 384kHz AudioMoth recordings using a GPU, i.e. 70.6
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Figure 4.4: Per-species performance of BatDetect2 on the UKdiff dataset. (A) Precision-
recall curves for each species in the UKdiff dataset. (B) File-level confusion matrix for the
UKdiff dataset. The confusion matrix is computed by assigning each file to the species with
the highest predicted probability and comparing this assignment to the ground truth species
label. Rows are normalized to sum to 1. (C) Average precision (AP) for each species in the
UKdiff dataset plotted against the number of echolocation calls in the training set.

minutes of ultrasonic data in total. Tadarida-D, which does not utilise a GPU, takes

2.5 minutes for detection and feature extraction for the same data. Note that this

processing time does not include the evaluation of the RF. This benchmarking was

performed on a workstation which contained an Intel i7-6850K CPU and an Nvidia

TITAN Xp GPU.

4.4.3 Transfer learning performance

I found that BatDetect2zero, the model trained solely on the UKsame dataset and

applied directly to the target datasets, exhibited varied detection performance. While

it achieved a high detection average precision (AP Det) of 0.921 on the Australia

dataset, its performance was significantly lower on the Brazil dataset (AP Det = 0.650;

see Table 4.3). In contrast, BatDetect2tuned, which incorporates a Logistic Regression

classifier trained on features extracted by the pre-trained BatDetect2, demonstrated
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consistently improved detection performance across all datasets, with AP Det values

exceeding 0.830. In general, both BatDetect2zero and BatDetect2tuned outperformed

the Random Forest baseline in terms of AP Det, with the exception of the Brazil

dataset where Tadarida-D achieved a higher AP Det of 0.883. BatDetect2full, the

model trained from scratch on each target dataset, consistently achieved the highest

AP Det scores across all datasets.

Table 4.3: Evaluation of BatDetect2 transfer learning performance to three target
regions. Models are evaluated using Average Precision (AP Det) for detection and mean
Average Precision (mAP Class) for classification. BatDetect2zero, trained solely on UKsame,
is applied without further training to the target datasets; classification is not evaluated due
to species differences. BatDetect2tuned uses the pre-trained BatDetect2 for detection and
feature extraction, with a Logistic Regression classifier trained on these features for species
prediction. BatDetect2full is trained from scratch on each target dataset. The performance
metrics presented here for this model and the Random Forest (RF) baseline are identical to
those reported in Table 4.2 and are included here for ease of comparison

Yucatan Brazil Australia

Model AP Det mAP Class AP Det mAP Class AP Det mAP Class

BatDetect2zero 0.811 — 0.659 — 0.921 —
BatDetect2tuned 0.835 0.407 0.830 0.839 0.940 0.526
BatDetect2full 0.923 0.803 0.926 0.962 0.973 0.70
Random Forest 0.649 0.430 0.883 0.912 0.928 0.603

The classification performance, measured by mAP Class, was considerably lower

than the detection performance. BatDetect2tuned generally underperformed compared

to the Random Forest baseline. The mAP Class for BatDetecttuned was 3-7 percentage

points lower than the Random Forest across all datasets. On the Brazil dataset, which

has only three sonotypes, BatDetect2tuned achieved an mAP Class of 0.830, while on

the Yucatan dataset, performance was considerably low at 0.407.

4.5 Discussion
Here, I have shown that by modifying the base CNN architecture with the addition

of a self-attention layer considerably improves classification performance. This

improvement is particularly pronounced for species within the Myotis genus, sug-

gesting that leveraging the temporal structure of call sequences may be crucial for
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accurate classification within this group. Through its self-attention layer, BatDetect2

efficiently utilizes information from longer input timescales without significantly

increasing computational cost, resulting in a model that can perform inference

approximately 17 times faster than real-time on a GPU. However, modifications

aimed at enhancing the use of frequency data did not yield notable performance

improvements. Although the proposed modification was relatively simple, and other

approaches might enhance performance, it is also possible that a fully CNN model

already effectively captures this frequency information. This aligns with findings

that CNNs, while translation invariant in theory, often exhibit subtle violations of this

property in practice (Zhang, 2019). Overall, these findings highlight the importance

of incorporating longer audio context and long-range temporal patterns into the

design of deep learning models for bat call classification, and potentially for other

bioacoustic tasks. Further exploration of audio-specific architectures, particularly

those utilizing raw audio directly instead of 2D image representations (Ravanelli &

Bengio, 2018; Hagiwara, 2023), holds significant potential for further performance

improvements (Stowell, 2022).

I showed that the full BatDetect2 model is able to learn to detect and classify

echolocation calls from bats across five different datasets. BatDetect2 significantly

outperforms the traditional call parameter-based baseline, providing a strong argu-

ment in favour of Deep Learning (DL) models over traditional methods for this

task. Despite the growing trend towards DL methods, direct comparisons with

call parameter-based methods remain scarce, for example only in Mac Aodha et al.

(2018) for detection and Fundel et al. (2023) for classification. For the majority of

species in the challenging UKdiff dataset split, BatDetect2 results in high precision

at high recall rates (Figure 4.4). This is important as it enables practitioners to

trade-off recall for precision to ensure that they obtain reliable, high confidence,

predictions from the model. The file-level accuracy is 78% and 86.6% for the UKdiff

and UKsame datasets, where a large percentage of the mistakes can be attributed to

known challenging species, i.e. the Myotis species. Although no clear relationship

between the number of training examples and performance was observed for the
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UKdiff dataset, the higher performance of the model trained on UKsame suggests

that larger and more representative training datasets can improve model robustness.

However, it is difficult to disentangle the effect of increased training data size from

the more rigorous, independent train-test split used for UKdiff, where recordings

from the same source were not shared between training and testing sets. Further

investigation is warranted to clarify these effects.

Using a pre-trained BatDetect2 model as a basis for transfer learning yielded

inconsistent performance across different regions and species. The model’s ability to

detect bat calls, even in diverse environments, was promising, as demonstrated by

the high detection metrics (AP Det) in the Yucatan and Australia datasets. However,

performance on the Brazil dataset was significantly lower, potentially due to the

prevalence of low-frequency calls in that region (Figure C.4). Fine-tuning the model

on the target datasets did improve detection performance, suggesting an ability to

adapt to new species. In general, the off-the-shelf and fine-tuned BatDetect2 models

outperformed the call-parameter baseline in detection, though not on the Brazil

dataset. In contrast, the classification performance (mAP Class) of the fine-tuned

model (BatDetect2tuned) was notably weak across all datasets and was surpassed by

the Random Forest baseline in the Yucatan and Australia datasets. This is likely

because BatDetect2 extracts only 32 features, compared to 268 used in the Random

Forest baseline. Therefore, increasing the number of features used to represent calls

might improve transfer learning performance. Potentially, a larger model with more

data for pre-training could lead to a model that performs better when transferred to

new regions.

BatDetect2 performs well across the five datasets tested, however it still relies on

the availability of diverse, and exhaustively annotated, training data. Collecting such

data can be challenging, in addition to being time-consuming to annotate, as explored

in Chapter 2. While methods for semi-supervised and self-supervised training offer

the potential to learn effective models with limited to no training supervision (Heggan

et al., 2024; Hagiwara et al., 2023), diverse labelled data is still needed to evaluate

the performance of the developed models. Bat calls can exhibit plasticity depending
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on the population sampled (Montauban et al., 2021), the presence of other species,

and the composition of the local environment. As a result, care needs to be taken

to ensure that the collected training datasets are representative of the downstream

deployment situations as much as possible (van Merriënboer et al., 2024). Finally,

our training datasets currently only contain annotated echolocation calls, and thus the

model cannot make predictions for other types of calls, e.g. social calls or feeding

buzzes. This limitation could be addressed with appropriate training data.

Unlike typical deep learning-based classifiers, BatDetect2 returns a list of inter-

pretable detections for a given input recording, each represented by a time-frequency

bounding box around the detected call and associated species probabilities (see

Figure 4.3). This is valuable as it enables easier inspection of the model’s predictions,

facilitating a better understanding of potential failure cases. However, it is left up

to the user to decide how to best merge the individual detections into a set of ‘bat

passes’, where a pass constitutes a sequence of individual calls. This aggregation

step is often crucial, as downstream analysis are typically derived from the number

of detected individuals or their activity levels (e.g., Ferreira et al. (2022) and Hoggatt

et al. (2024)), rather than the number of detected calls. One approach is to use a

grouping-based heuristic based on the time between detected calls as in Mac Aodha

et al. (2018). The high recall rates of BatDetect2 means that this type approach is

less likely to separate individual bat passes into multiple different ones. In contrast,

methods that produce high numbers of false negatives run the risk of over-counting

the number of passes as they can miss faint calls in a sequence, and thus incorrectly

break them up into a number of shorter passes. Still, a better understanding of how to

best merge these detections into passes is needed, particularly for distinguishing calls

from individual bats. This would allow for more accurate estimates of the number of

individuals present, improving the reliability of population monitoring.

In this study I demonstrate that the proposed training pipeline can be applied to

audio data from distinct regions without requiring modifications to the underlying

code. This pipeline is packaged in the open-source Python package batdetect2,

available on GitHub. In conjunction with accessible annotation tools like whombat
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(Chapter 2), batdetect2 enables the training and deployment of models on custom

annotated datasets, even beyond bat species. However, while no coding is required

to train a model, some technical expertise is still needed to set up the training

environment and to understand the model’s output. Integrating the training pipeline

into user-friendly, graphical interface tools could offer a more accessible solution

for practitioners. Ultimately, this work helps to democratises the development of

specialised bioacoustic models by removing significant technical barriers, thereby

enabling practitioners to focus on collecting and annotating datasets for their species

of interest.



Chapter 5

acoupi: An Open-Source Python

Framework for Deploying Bioacoustic

AI Models on Edge Devices

5.1 Abstract
Passive Acoustic Monitoring (PAM) coupled with Artificial Intelligence (AI) is

becoming an essential tool for long-term biodiversity monitoring across vast land-

scapes. Traditional PAM systems often require frequent manual data offloading and

impose substantial demands on data storage and computing infrastructure. Deploying

smart bioacoustic devices that can process and analyse data on-device, transmitting

only relevant information, can significantly reduce manual data offloading and the

volume of data requiring storage and processing. However, programming these

devices for robust operation is challenging, requiring specialised knowledge in em-

bedded systems and software engineering. Despite the growing development of AI

models for bioacoustic monitoring, their full potential remains unrealized without

accessible tools for deploying them on customised hardware and adapting device be-

haviour to specific monitoring goals. To address this challenge, I develop acoupi, an

open-source Python framework that simplifies the creation and deployment of smart

bioacoustic devices. acoupi integrates audio recording, AI-based data processing,
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data management, and real-time wireless messaging into a unified and configurable

framework. By modularising key elements of the bioacoustic monitoring workflow,

acoupi allows users to easily customise, extend, or select specific components to fit

their unique monitoring needs. The flexibility of acoupi is demonstrated by the in-

tegration of two bioacoustic classifiers: BatDetect2, developed in Chapter 4, for UK

bat species classification, and BirdNET for bird species classification. I also present

a month-long field deployment of two acoupi-powered devices in a UK urban park,

demonstrating the framework’s reliability. acoupi can be readily deployed on low-

cost, low-power hardware, such as the Raspberry Pi, and its customisable design

supports a wide range of monitoring applications. By providing a standardised

framework and simplified tools for creating and deploying smart bioacoustic devices,

acoupi lowers the barrier to entry for researchers and conservationists, facilitating

the broader adoption of AI-powered PAM systems.

5.2 Introduction
With the growing need for biodiversity conservation, recovery, and manage-

ment (IPBES, 2019), it is essential to consider and develop techniques for scaling

such efforts efficiently (Besson et al., 2022). Governments worldwide are increas-

ingly committing to biodiversity conservation goals under the Kunming-Montreal

Global Biodiversity Framework (CBD, 2022), thereby creating incentives and ob-

ligations for the generation of accurate, comprehensive and transparent data on the

state of biodiversity (Stephenson et al., 2022). Within this context, Passive Acoustic

Monitoring (PAM) has emerged as a key approach for conducting biodiversity as-

sessments and generating broader ecosystem analyses (Browning et al., 2017; Gibb

et al., 2018; Ross et al., 2023). The decreasing cost and miniaturisation of acoustic

devices, such as the open-source AudioMoth (Hill et al., 2019), have significantly

expanded the capacity for deploying extensive monitoring networks of acoustic

devices (Sethi et al., 2020). Moreover, the development of Artificial Intelligence

(AI) tools for automating the detection of key acoustic signals within the collected

data (Kahl et al., 2021; Stowell, 2022; Chapter 4) enables researchers to obtain
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evidence of faunal activity from all deployed devices within the network (Sethi

et al., 2024). This has facilitated long-term acoustic studies across various scales,

from local to continental (Roe et al., 2021), and across diverse environments, from

urban (Fairbrass et al., 2019) to remote and challenging locations (Ross et al., 2023),

encompassing both terrestrial (Sugai et al., 2018) and marine species (Mooney et al.,

2020).

Deploying PAM systems, however, typically requires frequent visits for mainten-

ance tasks on individual devices, including data retrieval, storage media replacement,

and battery changes (Browning et al., 2017). While devices like AudioMoth (Hill

et al., 2019) or Solo (Whytock & Christie, 2016) offer configurable recording

schedules to adjust sampling effort and resource consumption, monthly visits are

common (Karlsson et al., 2021), posing logistical challenges for deployments in

extensive, fragmented, or remote locations. Furthermore, data must be physic-

ally retrieved from SD cards in the field and transported to a central location for

analysis (Roe et al., 2021; Karlsson et al., 2021) introducing risks of data loss or

corruption (Fig 5.1a). The inherent physical separation between data collection and

processing introduces significant delays in inferring ecological insights and hampers

the timely detection of time-sensitive events, such as illegal hunting activity.

Modern networking technologies offer the potential to significantly accelerate

data transfer from field deployments. The combination of cellular, Wi-Fi, or Long-

Range Wide-Area Network (LoRaWAN) communication with continuous power

sources such as solar panels enables significantly longer deployments without in-

tervention (Li et al., 2015). Examples include large-scale wildlife monitoring with

cellular networks in Borneo (Sethi et al., 2020) and Norway (Bick et al., 2024), and

Wi-Fi networks for monitoring dolphins in the Mediterranean (Brunoldi et al., 2016).

However, transferring large audio files, particularly high-sample-rate recordings

needed to capture ultrasonic vocalisations like bat echolocation calls (Jones & Hold-

eried, 2007) or rat social communication (Coffey et al., 2019), can be challenging due

to fluctuating cellular data speeds in areas with suboptimal coverage or the inherent

bandwidth limitations of LoRaWAN (Adelantado et al., 2017). Critically, storing and
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Figure 5.1: Overview of acoupi (A) Traditional passive acoustic monitoring workflows
consists of fragmented steps requiring frequent intervention, limiting scalability. These
steps include device deployment, data retrieval and transfer to a central location, data
management, processing with AI models to extract acoustic events, and finally, ecological
inference. (B) acoupi integrates this workflow into a single device that supports on-board
AI classification and wireless data transfer, reducing interventions and accelerating data
turnaround. (C) acoupi offers a plug-and-play approach that allows users to configure the
workflow to their monitoring needs. Users can specify configuration parameters, select a
classifier from the AI models pool, and set up wireless network endpoints for integration with
third-party applications. acoupi coordinates essential tasks (orange) like data collection
and management, as well as modules for data processing, transfer and reporting, which are
optional (dotted) for added flexibility.

processing the transferred audio data is challenging, as large-scale deployments gen-

erate vast quantities of recordings (e.g., tens of millions of hours for the Australian

Acoustic Observatory), resulting in significant storage and management costs (Sethi

et al., 2018; Roe et al., 2021). Post-deployment processing with AI models requires

specialised infrastructure and substantial computing power (Sethi et al., 2020; Stow-

ell, 2022), potentially hindering the adoption of acoustic monitoring by research

teams lacking the necessary resources or expertise.

Edge computing (Hua et al., 2023), which involves executing AI models directly

on devices deployed in the field, offers a compelling solution to the challenges

of post-deployment processing. This approach is increasingly adopted across re-

search and industrial applications to reduce computational burden on centralised

infrastructure and enhance system responsiveness (Baucas & Spachos, 2020). Early

examples of edge computing applications for biodiversity monitoring include monit-

oring bats (Zualkernan et al., 2021; Gallacher et al., 2021), birds (McGuire, 2024;

Disabato et al., 2021), wolves (Stähli et al., 2022), as well as monitoring urban noise
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levels (Baucas & Spachos, 2020; Baucas & Spachos, 2024) and assessing bee-hive

health (Chen et al., 2024). The hardware used in these projects fall broadly into

two categories: microcontroller units (MCUs) and single-board computers (SBCs).

MCUs are power-efficient but have limited computational capacity, which restricts

the complexity of implementable AI models and requires proficiency in low-level

programming languages for customisation (Disabato et al., 2021). Conversely, SBCs,

such as the popular Raspberry Pi (RPi), are versatile and beginner-friendly (Jolles,

2021), integrate with various peripherals and sensors, and support the use of high-

level programming languages like Python, a tool increasingly common in ecological

research (Lapp et al., 2021; Ulloa et al., 2021; Chapter 2). The BirdNET-Pi pro-

ject (McGuire, 2024), a popular example, demonstrates the application of RPi-type

boards in creating real-time bird monitoring stations, powered by the accessible

BirdNET AI model (Kahl et al., 2021). However, existing solutions for edge pro-

cessing for biodiversity monitoring use a rigid software architecture that is tightly

coupled to the specific hardware and AI model, hindering adaptation to evolving

hardware and AI models. Furthermore, developing software for edge devices cap-

able of simultaneously coordinating recording, processing, and data communication

within a single device presents a significant engineering challenge. While AI models

for the detection of bioacoustic signals are rapidly advancing (Höchst et al., 2022),

their potential for biodiversity monitoring remains underutilised without accessible

mechanisms for integrating these models within configurable edge devices that can

adapt to specific project needs.

To fill the gap in accessible tools for bioacoustic edge processing, I developed

acoupi, an open-source Python framework that simplifies the development and de-

ployment of networked devices for edge processing for bioacoustic. This framework

enables the creation of custom programmes for managing the entire bioacoustic

workflow, from audio capture and on-device AI-powered processing to data man-

agement and wireless transmission (Fig. 5.1b). Key features of acoupi include

simplified integration of custom AI models, easy fine-tuning of device behaviour

through configuration settings, and robust deployment on a range of compatible SBC-
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based devices (Fig 5.1c). To demonstrate its capabilities, I integrate two pre-trained

bioacoustic classifiers, BatDetect2 (Chapter 4) and BirdNET (Kahl et al., 2021), and

evaluate their performance within the acoupi framework following a month-long

deployment. Finally, I discuss the limitations of acoupi and offer key considerations

for its effective use

5.3 Software Overview
The acoupi software is structured in two main parts: a framework that provides

tools for building programmes and an application that manages the configuration

and execution of these programmes on edge devices. Central to acoupi is the

concept of a “programme,” defined as a collection of tasks or routines executed by

the device (Figure 5.2). Each task represents an independent unit of work, often

running in parallel with other tasks. Tasks can be scheduled, such as periodic

recording, or triggered by other tasks, for instance, processing a recording with an

AI model upon its completion. The acoupi framework provides a structured and

standardised approach for defining programmes, promoting flexibility of programme

design to meet diverse user needs. The acoupi application ensures the harmonious

and fault-tolerant execution of a programme. Moreover, it allows users to customise

programme parameters via a simple command-line interface (CLI), facilitating a

“no-code” approach. In the subsequent sections, we provide a detailed overview of

the acoupi framework, followed by a set of requirements to use and run the acoupi

application.

5.3.1 acoupi Framework

The acoupi framework is designed to simplify the creation of customised pro-

grammes. While customisability remains the main objective, a key secondary goal is

programme standardisation, ensuring all programmes adhere to a consistent structure

for defining inputs, behaviours, and outputs. This standardisation offers several key

advantages. First, user customisations are guaranteed to function correctly within

the acoupi framework. Standardised programme structures promote easy sharing

and collaboration among users. Consistent inputs and outputs facilitate integra-
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Figure 5.2: Example of a simplified acoupi program. This program (mauve) implements
five tasks: (1) recording, (2) detection, (3) messaging, (4) management, and (5) summary.
Each task (orange) follows a standardised workflow of individual steps (dark purple), in-
volving actions (rectangles) and decisions (rhombuses). These steps are carried out by
modular software components. Users can exchange these components to modify device
behaviour, customising how actions are performed and decisions are made without altering
the overall workflow. Component behaviour can be fine-tuned through user-provided config-
uration parameters. Standardised data objects (light grey) are passed between components,
ensuring consistency across the workflow.

tion with other devices and third-party services. Finally, standardisation within

acoupi establishes a common language for easily understanding and discussing

programme design. This section presents a brief overview of the tools for programme

customisation provided by the acoupi framework.

Initially, acoupi provides programme templates that require minimal modifica-

tion to create fully functional programmes. Each template offers a set of pre-defined

tasks that can be readily extended or adapted for more complex applications. For

instance, the DetectionTemplate includes tasks for recording audio according to a

user-specified schedule, processing recordings using an AI model to detect acoustic

events of interest, and transmitting detection results to a remote server. To create a

programme with this template, the user needs only to provide the specific AI model to

be used (Figure 5.1c). To ensure compatibility, acoupi defines a standardised input

and output format for bioacoustic AI models, and any model adapted to this format

can be seamlessly integrated into acoupi programmes. acoupi offers several such

basic templates as starting points for programme creation, enabling users to quickly

develop functional programmes for common bioacoustic monitoring scenarios.
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For more specialised applications, users can augment the pre-defined templates

with custom tasks. While tasks in acoupi can be any user-defined Python function,

providing developers full control, the framework offers task templates to facilitate

standardisation and streamline development. These task templates cover common

operations, including: (1) recording, (2) detection, and (3) messaging, as mentioned

previously, as well as (4) management tasks for data storage and file handling, (5)

summary tasks to generate periodic analytical reports, and (6) heartbeat tasks to

monitor system health. Each task template utilises a set of user-provided components

to execute a predefined workflow (Figure 5.2). For example, a recording task

requires a Recorder component (responsible for interacting with the microphone)

and a storage component to manage the metadata of captured recordings. Similar to

its approach with AI models, acoupi defines a clear interface for components like

Recorder, allowing users to integrate diverse recording mechanisms.

acoupi provides a collection of modular components that serve as building

blocks for constructing tasks. Unlike tasks, which represent complete units of work,

components encapsulate specific functionalities within a task (Figure 5.2), such

as audio recording (Recorder), species detection (pre-adapted AI models), data

transmission, or structured data storage. For example, the Recorder component

simply captures audio for a specified duration, while a recording task might check

recording conditions, capture audio, and store associated metadata. This modularity

allows components to be reused across different tasks, promoting consistency. All

components in acoupi adhere to a set of definitions or interfaces, called component

types, which clearly define the requirements for building a component of that type,

including its functionality, inputs, and outputs. To ensure reliable data exchange

between components, acoupi utilises standardised data objects. These objects

represent the various data types generated and used during programme execution,

such as Recording, Detection, and Message. This standardisation ensures data

consistency and compatibility throughout the programme. While acoupi provides a

range of predefined components for immediate use, it also allows users to expand

the set of components while ensuring correct integration with the rest of the system.
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Programmes in acoupi can be configurable, allowing users of the programme

to adjust its parameters without modifying the underlying code. This enables a

“no-code” adaptation to specific deployment needs, such as modifying the recording

schedule and duration to adjust sampling effort, or specifying the address and

authentication credentials when transmitting detections to a remote server. acoupi

requires that all the adjustable parameters of a programme be specified upfront in a

configuration schema—a structured blueprint that defines the allowed parameters

and their expected format. The configuration schema serves to inform the users

about which parameters are adjustable and can be used to validate the provided

configuration before deployment. By designing the tasks and configuration schema

of a programme, acoupi empowers developers to easily create reusable programmes

readily adaptable to diverse needs without further coding.

A comprehensive overview of pre-built components, tasks, and programmes is

available in the online documentation (https://acoupi.github.io/acoupi/),

along with detailed guidance on creating custom programmes at (https://acoupi.

github.io/acoupi/howtoguide/programs/).

5.3.2 acoupi Application

The acoupi application enables the execution of a pre-built programme on a chosen

edge device (Figure 5.3). The application provides a command-line interface (CLI)

with simple commands to manage and deploy programmes. The command “acoupi

setup” guides users through a configuration wizard, allowing them to select a pro-

gramme and configure its parameters. The validity of configurations can be checked

and modified at all times using the command “acoupi config ”. Once a programme

is configured, users can initiate deployment with the command “acoupi deploy-

ment start”. The application performs pre-deployment health checks to verify the

programme configuration and system setup, identifying potential issues such as

connectivity problems or microphone malfunctions. Finally, the command “acoupi

deployment stop” shuts down the system and records the start and end times of a

deployment to track monitoring effort.

https://acoupi.github.io/acoupi/
https://acoupi.github.io/acoupi/howtoguide/programs/
https://acoupi.github.io/acoupi/howtoguide/programs/
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Figure 5.3: Overview of an acoupi application deployment process. (1) Download and
install the acoupi software from the PyPI repository onto the target device. (2) Use the
command line interface (CLI) to configure the program. The CLI prompts the user for
parameters to configure recording, processing, data management, and messaging tasks. (3)
Initiate deployment through the CLI. This triggers health checks to ensure the system is
configured correctly and upon completion begins executing tasks according to the defined
schedule.

The acoupi application ensures the timely execution of programme tasks, even

in challenging conditions. Maintaining reliable operation on edge devices can be

difficult due to computational resource limitations, network instability, and power

fluctuations. To address this, acoupi leverages Celery (Solem & Saif Uddin, 2024), a

robust and widely-used task management tool. Celery helps coordinate and schedule

tasks, automatically retry them if they fail, and run multiple tasks simultaneously

whenever possible. Furthermore, acoupi incorporates mechanisms for automatic

recovery after power failures. A comprehensive log of device activities is maintained,

aiding in identifying failures and preventing data loss.

To optimise storage usage during long deployments, acoupi does not store re-

cordings by default. Instead, recordings are held temporarily in the working memory

for processing. Depending on the programme’s logic and configuration, recordings

may be selectively saved to disk, such as when an AI model identifies vocalisa-

tions of target species. However, both the chosen programme and its configurations

are stored, facilitating the reproducibility of deployments by sharing configuration

files. Additionally, acoupi stores lightweight SQLite databases containing essential

recording metadata and automated detections. This design helps mitigate the risk

of premature deployment termination due to storage depletion while maintaining
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crucial metadata for subsequent analysis and reproducibility.

Documentation for programme deployment is detailed at https://acoupi.

github.io/acoupi/tutorials/configuration/.

5.3.3 Requirements

To run acoupi, a single-board computer (SBC) running a Linux Operating System

(OS) is required. acoupi has been extensively tested on a Raspberry Pi 4 Model B

running the 64-bit Raspberry Pi OS; however, devices with similar specifications

should also be compatible. Raspberry Pi systems are especially recommended for

new users due to their ease of use and extensive documentation (Jolles, 2021).

In addition to the computing board, a microphone and a microSD card are

required. Microphone selection should consider the desired sampling rate, which

depends on the target species’ vocalisation frequencies. To ensure adequate capture,

the sampling rate should be greater than twice the highest frequency of the target

species. A microSD card with a minimum capacity of 32 GB is recommended. Users

should select a larger capacity microSD card or consider using an external hard

drive, according to the volume of audio files they wish to archive for offline analysis

post-deployment.

The acoupi software is freely available through the Operating System (PyPI)

or by downloading it from the GitHub repository https://github.com/acoupi/

acoupi. A detailed step-by-step installation guide can be found at acoupi.github.

io/acoupi/#installation.

5.4 Pre-Built Bioacoustic Programs
In addition to the acoupi framework and application, I have developed two ready-

to-use programmes: acoupi_birdnet and acoupi_batdetect2. These programmes

offer out-of-the-box functionality that can be customised through configuration

adjustments, without requiring any coding. Both programmes are built upon the

DetectionTemplate described in the previous section and thus inherit a common

structure while incorporating distinct AI models and default configurations.

https://acoupi.github.io/acoupi/tutorials/configuration/
https://acoupi.github.io/acoupi/tutorials/configuration/
https://github.com/acoupi/acoupi
https://github.com/acoupi/acoupi
acoupi.github.io/acoupi/#installation
acoupi.github.io/acoupi/#installation
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These programmes leverage two established AI models for the acoustic detection

of birds and bats. acoupi_birdnet employs the BirdNET model version 2.4 (Kahl et

al., 2021), capable of detecting approximately 6,400 bird species globally, along with

other relevant acoustic events such as frog calls, insect sounds, domestic animals, fire-

works, and engine noise. acoupi_batdetect2 utilises the BatDetect2 model developed

in Chapter 4, designed to detect echolocation calls from 17 bat species commonly

found in the UK. BirdNET and BatDetect2 models were trained using recordings

made at 48kHz and 256kHz respectively, thus using the same or similar sampling

rate when using this models is recommended for better performance. These models

have shown good performance within the scope of their original evaluations, but it is

essential to acknowledge their potential limitations in broader applications (Pérez-

Granados, 2023). As with all AI models, there is potential for misidentification

or missed detections, particularly in environments that diverge significantly from

the training data (van Merriënboer et al., 2024). Thorough evaluation of model

performance within the specific deployment context is strongly recommended (Wood

& Kahl, 2024).

Both acoupi_batdetect2 and acoupi_birdnet feature automated and scheduled re-

cording, processing with their respective AI models, and transmission of detections to

a remote server. acoupi_batdetect2 records three seconds of audio every ten seconds

between 19:00 and 07:00, while acoupi_birdnet captures nine second at the same

frequency between 03:00 and 23:00. Detections exceeding a predefined confidence

threshold are transmitted to a remote server every 30 seconds. A heartbeat signal

is transmitted every 30 minutes to monitor device health, regardless of recording

activity or detection events. The programmes allow for optional storage of record-

ings with confident detections, facilitating post-deployment validation. Crucially, all

operational parameters, including recording schedules, durations, frequencies, and

messaging intervals, are fully configurable. It is essential to carefully consider the

monitoring goals and adjust these settings accordingly (Teixeira et al., 2024).
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5.5 Software Testing
To test the reliability of acoupi, I configured and deployed both the acoupi_batdetect2

and acoupi_birdnet programmes on two separate Raspberry Pi 4 Model B (RPi)

devices. The RPis were deployed at the People and Nature Garden Lab in One

Pool Street within the Queen Elizabeth Olympic Park in London, UK (Fig 5.4).

This location was selected for initial software testing due to the convenient access

to power and a Wi-Fi network, acknowledging that such conditions may not fully

represent the challenges of field deployments. Most of the configuration parameters

for the acoupi_batdetect2 and acoupi_birdnet programmes followed the default

configuration (see Table D.1 for full settings). The devices were deployed for 30

days between October and November 2024.

To evaluate the reliability of the software, I examined key metrics, including

recording consistency, processing success, and message delivery (Table 5.1). Both

programmes successfully recorded at every scheduled interval; however, minor impre-

cisions in the scheduler resulted in an average recording frequency of approximately

10.005 seconds. The acoupi_birdnet programme successfully processed all but four

recordings made shortly after deployment. The acoupi_batdetect2 programme exhib-

ited a similar success rate, processing 98.2% of recordings. On average, acoupi_bird-

net took 1.2 seconds to process each 9-second audio clip, while acoupi_batdetect2

took 5.8 seconds to process each 3-second clip. Both programmes successfully de-

livered all generated messages, demonstrating reliable message delivery under good

network conditions. Despite these positive results, both deployments encountered

premature termination. The device running the acoupi_birdnet programme was

likely dislodged by strong winds, resulting in power loss. The acoupi_batdetect2

programme encountered a software issue that prevented the processing of 1.8% of

the recordings, but this issue has since been resolved.

While not the primary focus of this study, the detections made by the two bioacous-

tic classifiers were consistent with the expected soundscape of the deployment loca-

tion and the seasonality of the test. The roof garden is urban, close to a busy traffic
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A. Sensing Unit Components

B. Protective Enclosure

C. Field Deployment

Figure 5.4: Deployment of acoupi devices at the People and Nature Lab Garden
(A) Sensing Unit Components: single-board computer (Raspberry Pi 4B) and ultrasonic
microphone (Dodotronic Ultramic 250k). (B) Protective Enclosure: housing two SBCs,
one running acoupi_batdetect2 and the other acoupi_birdnet. (C) Field Deployment:
enclosure mounted alongside other environmental sensors at the UCL East campus, Stratford,
London.

road, a railway track, but in the proximity of the Waterworks River, where common

water birds are found. Common UK bird species identified with high confidence

(score > 0.85) included the Eurasian magpie (n=308), Eurasian wren (n=61), Red-

wing (n=50), European robin (n=38), White wagtail (n=31), Broad-winged hawk

(n=25) and European herring gull (n=18). As expected, anthropogenic sounds were

prevalent, with engine noise (n=73) and sirens (n=273) being the most frequently

detected, followed by fireworks (n=175), likely associated with festivities during

the deployment period. The acoupi_batdetect2 programme did not detect any bat

echolocation calls with high confidence (scores > 0.85), and the 174 pulses detected

with moderate confidence (scores > 0.4) are likely false positives. This low number

of bat detections is consistent with the deployment period (November), when most
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Table 5.1: Reliability metrics for deployment of acoupi_birdnet and acoupi_batdetect2
programmes. The metrics presented comprise the total audio recordings captured, the
number and percentage of recordings not processed by the AI models, and the number and
percentage of messages successfully delivered to the remote server.

Processing Failures Messages Sent

Programme Recordings Count % Total Count % Success

acoupi_birdnet 129,939 4 0.003% 8716 100%

acoupi_batdetect2 65,711 1,203 1.83% 868 100%

bats in the UK are hibernating. Detections were not validated post deployment(see

Appendix D.2 for a detailed summary of the detections made by the two bioacous-

tic classifiers). Importantly, the absence of bat detections reflects external factors

influencing detectability, such as seasonality and the specific AI model used, rather

than acoupi’s performance. The main goal of this test deployment was to assess the

ability of acoupi to reliably execute all scheduled tasks, and testing the ability to

detect the target species was outside the scope of this test.

5.6 Discussion
Here I have shown how acoupi can be used to embed two bioacoustic AI models,

BirdNET and BatDetect2 (developed in Chapter 4), on edge devices. While BirdNET

covers a wide range of avian species (Kahl et al., 2021) and BatDetect2 targets all

bat species found in the UK, integrating additional bioacoustic AI models will be

necessary to accommodate a greater diversity of species and applications. Although

most current AI models, including BirdNET and BatDetect2, are based on Deep

Learning (DL), a specific subclass of AI, acoupi can theoretically integrate any

AI model. This even includes non-Machine Learning models like the toolbox for

animal detection Tadarida (Bas et al., 2017) and the frog detector RIBBIT (Lapp

et al., 2021). However, model integration requires considering their size and com-

plexity, as these factors directly impact processing speed and power consumption

on edge devices (Desislavov et al., 2023). If processing times exceed the record-

ing interval, audio backlogs and potential system overloads can occur. Among AI
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models, DL-based models are often computationally demanding, but techniques

like quantisation (Rokh et al., 2023), pruning (Cheng et al., 2024), and knowledge

distillation (Gou et al., 2021) can reduce their size and complexity. A trade-off exists

between model size and detection performance, making it essential to evaluate the

impact of optimisation techniques on detection accuracy (Desislavov et al., 2023).

Future work should focus on optimising bioacoustic models, such as BatDetect2, for

edge deployments, investigating which techniques enable optimal compression while

retaining good performance on common bioacoustic tasks. As models designed

for edge processing in bioacoustics emerge (for example see Höchst et al. (2022),

Disabato et al. (2021), Zualkernan et al. (2021) and Ghani et al. (2023)), acoupi

will serve as a platform for integrating these models and making them accessible to

the community.

In its month-long deployment at the People and Nature Lab in London, UK,

acoupi successfully coordinated audio recording, processing, and transmission,

capturing all scheduled recordings, sending all detection messages, and processing

the vast majority of recordings with the AI models. Nonetheless, premature termin-

ation in both deployments underscores the need for more extensive field-testing,

particularly in less favourable conditions, to assess acoupi’s real-world robustness.

While acoupi leverages widely used software tools for ensuring reliable operation,

empirical evaluation of its robustness in an experimental setting with varying net-

work connectivity and power availability is crucial. Furthermore, although acoupi

is designed to run on any Linux-compatible single-board computer (SBC) further

testing across a variety of SBCs could provide valuable insights into the software’s

compatibility and performance across different hardware platforms. Addressing

these challenges will be a focus of future acoupi development, with iterative im-

provements informed by further field-testing. The codebase includes automated

testing to facilitate modifications and a system for distributing updates, which can be

applied remotely, supporting the system’s maintenance and long-term adaptability.

In its current state acoupi is limited to audio recording as the main data collection

method, and Wi-Fi as the main communication channel. However, SBCs like the
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Raspberry Pi offer versatile options for integrating additional sensors, extending

data storage, and enabling alternative connectivity methods like cellular and LoR-

aWAN (Jolles, 2021). One promising extension is the integration of multichannel

audio recorders (Heath et al., 2024), enabling on-board localisation algorithms to

estimate the position of vocalising animals, a crucial step towards more accurate

population density estimations (Rhinehart et al., 2020). Integrating additional sensors

to capture abiotic data, such as rainfall, wind speed, humidity, and temperature, could

provide crucial context for ecological analyses, as these factors directly affect sound

transmission and can mask relevant target sounds affecting detectability (Metcalf

et al., 2023; Ross et al., 2021). Moreover, an acoupi deployment could be expanded

with low-cost camera modules to create smart camera trap systems (Darras et al.,

2024), utilising the existing hardware infrastructure and acoupi’s capabilities for

data integration and processing. While not yet available in acoupi, the modularity

of the framework and its open-source nature provide a foundation for the community

to integrate these extensions and contribute to its ongoing development.

This work demonstrates that acoupi can serve as a flexible framework for deploy-

ing bioacoustic AI models on edge devices. However, it is important to acknowledge

that acoupi’s requirements may limit its applicability to certain monitoring scen-

arios. Firstly, acoupi is designed for SBCs, which typically have higher power

consumption than microcontroller units (MCUs) such as the AudioMoth (Hill et al.,

2018). Consequently, acoupi requires a continuous power source, such as a solar

panel with a battery or a direct connection to the mains power, as in the deploy-

ments presented here, to ensure uninterrupted operation. Additionally, a complete

setup requires a microphone, an enclosure, and any additional sensors, increasing

the cost and complexity of the deployment. Although adding a solar panel, bat-

tery, and a high-end microphone might increase the cost for budget-constrained

projects, the base cost of an acoupi-compatible SBC without these additions is

comparable to that of an AudioMoth (for a detailed cost breakdown of an analog-

ous complete system see Sethi et al., 2018). For resource-constrained monitoring

scenarios low-power or even battery-free devices (Lostanlen et al., 2021) may be
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more suitable. In contrast, acoupi is ideal for long-term deployments requiring

continuous monitoring on key sites, where access to power and network connectiv-

ity allows for minimal intervention. Future iterations, however, could incorporate

power-management mechanisms (Balle et al., 2024), including intelligent scheduling

to selectively power the device, optimising detection probability while minimising

power consumption (Millar et al., 2024). Fundamentally, acoupi is a software

solution and does not mandate a specific hardware setup, thus providing flexibility

in the choice of hardware components. Further research into specific hardware

recommendations for bioacoustic monitoring, tailored to different project needs,

would be a valuable (see for example Darras et al., 2021; Lapp et al., 2023; Metcalf

et al., 2023).

Ultimately, acoupi aims to provide a flexible and user-friendly tool for bioacous-

tic monitoring, adaptable to a wide range of monitoring scenarios. For example,

acoupi deployments can generate detections that could be integrated into live dash-

boards for near-real-time monitoring of time-sensitive events. This could include

mitigating human-wildlife conflicts (Richardson et al., 2020), managing the spread

of vocalising invasive species (Wood et al., 2024), or enabling better coexistence

between humans and wildlife in urban areas, such as by dimming city lights in

response to migratory bird movements (Horton et al., 2019). Detections can also

inform ecological research through methods like occupancy modelling (Rhinehart

et al., 2022) or call density analysis (Navine et al., 2024). However, validating

detections is crucial when using AI models in novel environments (Pérez-Granados,

2023; van Merriënboer et al., 2024), and acoupi can facilitate this by storing re-

cordings selected according to specific criteria for later validation. While simple

criteria for saving recordings, such as exceeding a detection score threshold, are

currently implemented, more sophisticated criteria aligned with specific modelling

requirements can be added (Navine et al., 2024; Knight et al., 2020). Moreover, by

establishing a common set of standardised concepts, each with specified metadata,

acoupi facilitates the planning of monitoring surveys in a way that promotes integ-

ration and comparability of results across research projects (Besson et al., 2022).
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acoupi aims to provide greater accessibility to bioacoustic monitoring, empower-

ing interested parties to use passive acoustic monitoring technologies to address

ecological questions and contribute to conservation efforts.



Chapter 6

Discussion

Despite past coordinated efforts like the Aichi Biodiversity Targets falling short of

their goals (Xu et al., 2021), there is renewed optimism fuelled by increased interna-

tional commitments under the Kunming-Montreal Global Biodiversity Framework

(KM GBF). This framework has brought acoustic monitoring to the forefront as a

key component for tracking progress, due to its potential for Scalable, Accessible,

Granular, Evidenceable, and Direct (SAGED) metrics (Ford et al., 2024). However,

the field faces challenges related to data scarcity and the limited availability of readily

usable or customisable tools, leading to a restriction in the effective use of AI-driven

acoustic monitoring to specific geographic regions and well-resourced organisations.

Without concerted efforts to expand its scope and provide wider access, there is a risk

of hampering conservation efforts in critical areas while exacerbating existing biases

in data collection and practice, potentially replicating historical injustices driven by

unequal access to resources and decision-making power in conservation (Pritchard et

al., 2022). In this Thesis, I contributed to overcoming these challenges by presenting

novel tools and methodologies designed to accelerate the development and applica-

tion of AI models for bioacoustic monitoring at scale, ultimately aiming to make this

technology a globally accessible tool for biodiversity conservation. The remainder

of this chapter outlines the specific contributions of this thesis to the field of AI for

bioacoustics, followed by a discussion of key takeaways, limitations, and remaining

gaps in the research.
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6.1 Summary of contributions
Chapter 2 addresses the need for improved tools to support the annotation of bioacous-

tic data for AI model development. Acknowledging that, in practice, data preparation

and refinement constitute a significant portion of AI development efforts and that

data quality can significantly impact model performance (Sambasivan et al., 2021;

Roscher et al., 2024), this chapter identifies a key gap: the lack of software tools

specifically designed to support the iterative process of annotating audio data for

training AI models. Through a review of bioacoustic software tools, I established that

existing annotation software does not adequately address the unique requirements

of bioacoustic data annotation for AI, particularly in facilitating the feedback loop

between annotation, model training, and model evaluation. To address this limitation,

I developed whombat, a novel, open-source software tool designed to streamline

the bioacoustic data annotation process for AI applications. whombat offers a user-

friendly interface and a suite of features designed to support the annotation workflow,

including project management and tracking capabilities, support for flexible annota-

tion with customisable tags, functionality to export annotations in AI-ready formats,

and the capability to import model predictions for iterative refinement. I demonstrate

the utility and flexibility of whombat through two distinct case studies: facilitating

the annotation of bat echolocation calls for the Bat Conservation Trust (BCT) in the

UK and supporting the annotation of bird vocalisations for researchers in the Pacific

Northwest. These case studies provide evidence that whombat enables efficient

and effective data annotation, and that the resulting annotations contribute to the

development of robust and accurate AI models for bioacoustic monitoring such as

the one presented in Chapter 4. Ultimately, I contribute a valuable tool that enables

researchers and practitioners to create higher-quality annotated datasets.

Building upon the foundation of improved data annotation in Chapter 2, I delve

into the question of how to annotate for improving AI model performance in Chapter

3. Expanding upon the findings of (Hershey et al., 2021), which highlighted the

benefits of strong annotations, I investigate deeper by quantifying the impact of

both the level of detail in spectro-temporal annotations and the amount of training
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data on model accuracy. Using a diverse dataset of bat echolocation calls, I trained

detection and classification models under various data availability scenarios and

annotation approaches. Similar to Morfi & Stowell (2018), I demonstrate that

augmenting model training with a localisation task, informed by detailed annotations,

enhances classification performance significantly. Notably, in low-data scenarios

with only 10 recordings per species, this approach yielded up to a 10% increase

in classification accuracy — a gain surpassing that achieved by collecting five

additional recordings per species. This finding provides a valuable alternative

for enhancing model performance when further data collection is challenging or

resource-intensive. While various methods for generating detailed annotations were

explored, the research concludes that the mere presence of detailed spectro-temporal

information is more critical than the specific creation method. Therefore, I argue for

the adoption of bounding boxes as an effective and practical means of incorporating

such detailed information into the annotation process. This approach offers a readily

implementable strategy to develop more robust and accurate bioacoustic models,

even when faced with limited data.

In Chapter 4, I shift the focus to model architecture design as a means of improving

performance, introducing a novel architecture that leverages detailed box annotations

for joint detection and classification of bat echolocation calls. Instead of relying on

existing models, I introduce a modified neural network architecture incorporating

fundamental yet simple acoustic principles relevant to bat echolocation. This design,

validated on four diverse bat call datasets, yields significant performance gains

in both detection and classification tasks compared to traditional parameter-based

methods. Furthermore, aligning with the findings of Chapter 3, the model leverages

bounding-box annotations to produce more interpretable and ecologically relevant

predictions, particularly valuable in real-world scenarios where multiple species co-

occur (van Merriënboer et al., 2024). A key innovation of this architecture is its use

of a self-attention module (Vaswani, 2017), enabling efficient long-range temporal

reasoning. This allows the model to effectively incorporate important discriminative

features like inter-pulse intervals, which are important features for distinguishing bat
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species (Szewczak, 2004) but are challenging for traditional convolutional networks

to capture without increased model complexity. The reduced complexity of the

model architecture, combined with the strong supervision provided by the detailed

annotations, facilitates model training even with limited data. In this chapter, I

not only demonstrate the performance gains of this approach, but it also suggests

its broad applicability across diverse geographical regions, offering an adaptable

pipeline for automated analysis of bats. While not tested on other taxa, the principles

and methods employed are generic, suggesting potential for broader bioacoustic

applications. To foster wider adoption, I incorporate these methods into batdetect2,

an open-source software package that provides access to both the trained model and

the training process.

While previous chapters focused on model development, in Chapter 5, I address

the need for practical deployment of these models in real-world bioacoustic mon-

itoring. Recognising that traditional post-processing approaches often lead to data

management challenges and delayed insights, in this chapter I develop acoupi, an

open-source software framework designed for acoustic analysis on edge devices.

acoupi enables researchers and practitioners to create monitoring programmes that

integrate audio data collection, AI processing with their model of choice, and data

transfer. By supporting near real-time detection of target acoustic events, and offer-

ing the ability to tailor programmes with custom schedules and hardware, acoupi

provides a flexible solution adaptable to diverse monitoring needs. Importantly,

although creating a program with acoupi requires some initial Python programming,

these programmes can be readily shared and deployed by others without any further

coding, potentially lowering the barrier to entry for using AI in bioacoustics. This

accessibility is demonstrated through two readily deployable example programmes—

incorporating the BatDetect2 model from Chapter 4 and the widely-used BirdNet

model—which I validated during a month-long field deployment in an urban setting

in London, UK. Ultimately, in Chapter 5, I contribute an open-source and standard-

ised framework that supports collaboration and further development of customised

acoustic monitoring systems, and provides the wider community with a tool to build
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upon, refine, and share programmes and components.

6.2 Key takeaways
In this thesis I have explored various aspects of applying AI to bioacoustic monit-

oring, from data annotation to model deployment. Several key takeaways emerge

from this work, highlighting the importance of data quality, domain expertise, and

accessible technology in realising the full potential of AI for biodiversity research

and conservation.

6.2.1 The critical role of detailed data annotation in bioacoustic

AI

A recurring theme throughout my research in the thesis is the critical role of data

annotation in successful AI applications. I emphasise in Chapter 2, that data pre-

paration and refinement are not merely preliminary steps but constitute a significant

portion of the AI development process, a finding echoed in existing literature (Sam-

basivan et al., 2021; Roscher et al., 2024). The quality of the data directly impacts

model performance (Zha, Bhat, Lai, Yang & Hu, 2023), underscoring the need for

tools and strategies that facilitate rigorous and effective data handling. Given the

challenges inherent in acquiring large-scale datasets of bat echolocation calls or other

key bioacoustic signals, I underscore the importance of prioritising high-quality,

detailed annotation as a key strategy for advancing research in this field.

Iterative data annotation plays a critical role in developing accurate and reliable

models for bat echolocation analysis, as demonstrated throughout this research. In

Chapter 2, I establish the importance of iterative workflows in AI-driven projects,

highlighting that they are the norm rather than the exception, and introduces a

collaborative annotation platform designed to facilitate this process. In Chapters

3 and 4, I further exemplify the benefits of iterative data annotation in bat call

analysis. The datasets used in these chapters involved multiple rounds of annotation,

integrating contributions from multiple annotators and several iterations of reviewing

and refining the annotations to improve consistency. These chapters also demonstrate
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that model performance improves with increased dataset size, highlighting the

ongoing need for high-quality annotated data, especially for underrepresented species.

The iterative cycle of model improvement and data annotation is recognised by

organisations like the Bat Conservation Trust and aligns with the experiences of

other researchers (Roscher et al., 2024), reinforcing the broader understanding that

iterative workflows are essential for advancing bioacoustics research.

Additionally, my research demonstrates that using detailed spectro-temporal

annotations can significantly improve bat echolocation call detection and classi-

fication, particularly in data-limited contexts. Chapter 3 provides evidence that

such detailed annotations significantly improve performance compared to coarser

ones when training data is scarce. The use detailed annotations enables models

to learn more efficiently from limited data, as demonstrated by the robust results

achieved with smaller datasets in Chapter 4. These findings align with other works

in bioacoustics (Hershey et al., 2021; Chasmai et al., 2024), which emphasise the

value of detailed annotation for model performance.

Beyond performance gains, detailed annotations also enhance the interpretability

of model outputs. Specifically, in Chapter 4, I demonstrate how training models

on detailed annotations enables them to precisely localise detected calls within

a spectrogram by generating bounding boxes. This capability provides a more

granular understanding of call structure and temporal patterns compared to models

employing sliding-window analysis. The fine-grained outputs, coupled with the

visualisation and analysis tools like whombat presented in Chapter 2, facilitate a

more thorough review of model predictions. The ability to compare the predicted

bounding box with the corresponding annotations within the spectrogram, both

visually and quantitatively, allows for more precise assessment of detection and

classification performance (Mesaros et al., 2021; van Merriënboer et al., 2024).

For example, a tight alignment between a predicted bounding box and the true

acoustic event provides compelling evidence that the model is learning the relevant

acoustic features rather than relying on incidental correlations of background noise—

a claim harder to defend with less precise detections. This improved interpretability
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fosters greater confidence in model predictions and can facilitate a more detailed

understanding of bat echolocation.

6.2.2 Integrating bioacoustic knowledge enhances AI model

performance

This thesis demonstrates that incorporating bioacoustic principles and expertise

into the design and development of AI models can enhance their performance and

applicability in bioacoustic monitoring. This is evidenced by the gains achieved by

the bioacoustically-inspired model architecture introduced in Chapter 4.

In the broader context of AI, improvements in model performance have primarily

been driven primarily by increases in model capacity and the accompanying need

for increasingly large datasets (Kaplan et al., 2020). However, such data-intensive

approaches do not always align with the realities of bioacoustic research, where large,

comprehensively annotated datasets are often scarce (Nolasco, Singh et al., 2023).

As an alternative, this research demonstrates that incorporating bioacoustic principles

into model design can yield significant performance gains even with limited training

data. Chapter 4 exemplifies this approach, showcasing how a model architecture

informed by bioacoustic principles can effectively learn temporal relationships

relevant to bat echolocation classification. Similarly, in Chapter 3, I demonstrate

that modifying the training procedure to explicitly encourage the model to learn the

spectro-temporal location of each call, a fundamental aspect of bioacoustic signal

analysis, can provide performance gains. These examples highlight the benefit

of incorporating domain-specific knowledge into both model architecture and the

training process.

The development of high-quality datasets for bioacoustic analysis is fundament-

ally dependent on the expertise of bioacousticians, particularly for the meticulous

task of data annotation. While it is sometimes argued that automation reduces

the need for expert input, I contend that AI models, on the contrary, amplify the

value and reach of expert knowledge. Chapter 2 details the intricacies of annota-

tion, demonstrating how the process relies on the domain expertise of annotators



6.2. Key takeaways 126

to accurately identify and classify nuanced acoustic events through the visualisa-

tion, interpretation, and aural analysis of audio signals (Fraser, 2018). Expert field

bat ecologists, whose nuanced understanding of bat echolocation calls was crucial

for creating the high-quality datasets used in this research, generated the detailed

spectro-temporal annotations used in Chapters 3 and 4. Without this expertise, the

trustworthiness of model outputs would be significantly diminished. To make expert

acoustic identification more accessible and facilitate its broader dissemination, I

developed user-friendly training workflows for novice bioacousticians within the

whombat annotation tool.

6.2.3 Democratising access to AI for bioacoustic monitoring

A key contribution of my research in this thesis is the push towards democratisation

of access to AI technology for the wider bioacoustic community. Recognising that

the development and application of AI tools for acoustic monitoring involve multiple

steps, and that interest in using these tools extends beyond those with specialised

technical skills, I emphasise the importance of enhancing accessibility at each stage

of the process. By providing tools and resources that cater to users with varying levels

of technical proficiency, I aim to promote broader adoption of AI methodologies and

allow the bioacoustic community to take ownership of these technologies.

To maximise accessibility, all steps within the AI workflow should be supported by

software tools designed for users with diverse technical backgrounds. For example, in

Chapter 2, I developed whombat, a user-friendly annotation platform that empowers

individuals with basic computer literacy to contribute to the creation of high-quality

datasets. Beyond basic annotation, whombat caters to technically advanced users by

providing tools for data preparation and preprocessing for model training. Building

on the work in Chapter 4, I developed batdetect2, a software tool for automated

bat call analysis and custom model training. batdetect2 offers both an intuitive

interface for basic inference and a flexible architecture for advanced customisation by

users with greater programming expertise. To facilitate edge computing applications,

in Chapter 5 I developed acoupi, a software tool enabling users with basic Python



6.3. Limitations and future work 127

knowledge to design and implement custom programs for edge devices. Importantly,

acoupi features a code-free deployment mechanism, further democratising the

implementation of custom solutions by lowering the barrier to entry.

Beyond mere access, empowering users of AI tools involves enabling custom-

isation for specific needs and facilitating integration with other tools and work-

flows. Given the diverse applications and inherent variability within acoustic mon-

itoring (Teixeira et al., 2024), adaptable software tools are essential. whombat

exemplifies this by allowing flexible annotation and tagging, enabling teams to

tailor their efforts to specific project needs and evolving methodologies. Simil-

arly, acoupi (Chapter 5) allows users to customise data collection and processing

regimes, including model selection, recording schedules, and hardware configura-

tions. However, this flexibility is carefully balanced with mechanisms that promote

standardisation, such as the adoption of standardised data structures and support

for common ontologies where applicable in both tools. This approach ensures that

while users can adapt tools to their specific needs, data remains comparable and

interoperable across different projects.

6.3 Limitations and future work
A key constraint encountered in this research is the scarcity of comprehensively

annotated datasets for bioacoustics (Stowell, 2022). This limitation directly con-

strained the scope of the studies presented in this thesis. For instance, in Chapter 3,

despite analysing the most extensive dataset available for Mexican bat echolocation

calls with 101 species (Zamora-Gutierrez et al., 2020), the study was limited to 17

species to meet the experimental design requirement of at least 30 recordings per

species. Similarly, in Chapter 4, while all 17 breeding UK bat species were included,

limited sample sizes likely impacted the performance of the classification models for

some species. The applicability of the findings presented in those chapters is thus

largely restricted to the species and recording conditions represented in the datasets

used. This highlights the need for more diverse datasets to test the generalisability of

results in future bioacoustic research, particularly for model development. Although
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recent initiatives have led to the emergence of more diverse bioacoustic datasets de-

signed for model development and benchmarking (Rauch et al., 2024; Chasmai et al.,

2024; Hagiwara et al., 2023; Hamer et al., 2023), often derived from citizen science

platforms like xeno-canto (Vellinga & Planque, 2015) and iNaturalist (Matheson,

2014), the majority of these data remain unannotated and exhibit a strong taxonomic

bias towards avian species. Addressing these gaps, particularly for underrepresen-

ted taxa like bats, will require substantial resources for both data collection and

annotation (Chasmai et al., 2024). The wider scientific community likely holds a

significant volume of potentially valuable recordings for bioacoustic model devel-

opment, but the perceived lack of direct benefits for data contributors, along with

concerns about inadequate attribution or data misuse, discourages data deposition

and sharing (Baker & Vincent, 2019; Gomes et al., 2022). This issue is further

exacerbated by the fragmentation of existing datasets across multiple repositories,

often stored in heterogeneous formats incompatible with modern AI development

pipelines. However, the increasing adoption of open data principles in scientific re-

search (Tenopir et al., 2020), and initiatives like Findable, Accessible, Interoperable,

Reusable (FAIR) data (Wilkinson et al., 2016) may gradually mitigate these concerns

in the future. Still, there is a pressing need to promote discussions and adoption of

data standards (e.g., Roch et al., 2016; Wieczorek et al., 2012; TDWG, 2023; Akhtar

et al., 2024), fostering greater harmonisation of existing data and encouraging a

more open and collaborative approach to data sharing within the bioacoustic research

community. Beyond data sharing, another crucial aspect is improving the efficiency

of the annotation process itself. To reduce the time and effort required for annotation,

future work should focus on improving the efficiency of identifying and annotating

relevant sound events within large audio datasets. Active learning and other agile

development methodologies offer considerable promise for improving annotation

efficiency (Martinsson et al., 2024; Stretcu et al., 2023; Wang et al., 2022; Kath

et al., 2024). Tools like whombat, developed as part of this thesis, could help to

crowdsource the annotation effort, and future work could focus on incorporating

more sophisticated annotation workflows.
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A significant challenge faced by current bioacoustic models, including those de-

veloped in this thesis, is their limited or unknown transferability to real-world passive

acoustic monitoring scenarios. Bioacoustic recordings used for model training are

often collected using a targeted or focal approach to facilitate the accurate identi-

fication of individual subjects. This approach typically involves using specialised

audio equipment to obtain isolated, high-quality recordings of the target species, as is

common for avian recordings (Kahl et al., 2021), or employing capture-and-release

methods, as frequently seen in bat research (Zamora-Gutierrez et al., 2021). For

example, the bat classifiers and detectors presented in Chapters 3 were developed

using data predominantly acquired through a capture-and-release approach. How-

ever, these controlled recording conditions typically differ substantially from those

encountered in passive acoustic monitoring settings, where target sounds may be

faint or obscured by co-occurring sounds (van Merriënboer et al., 2024). In such real-

world settings, model performance drops across all tested cases due to the mismatch

between training and deployment conditions (Hamer et al., 2023; Sharma et al.,

2022); the specific transferability of BatDetect2, developed in this thesis, however,

remains unknown. Because target sounds in passive acoustic monitoring settings are

typically embedded within a complex mixture of background sounds, influenced by

the broader environmental conditions of the recording site (Pijanowski et al., 2011),

it is crucial to re-evaluate model performance whenever these environmental condi-

tions change to ensure continued applicability (Pérez-Granados, 2023). Nevertheless,

further research is needed to develop a more comprehensive understanding of how

model performance is affected by these variable environmental conditions, coupled

with efficient methods for performance re-evaluation under novel scenarios (Knight

et al., 2020).

Improving model robustness and transferability through novel training or pro-

cessing techniques is therefore a promising and impactful avenue in bioacoustic

research. Current approaches include denoising techniques (Denton et al., 2022;

Juodakis & Marsland, 2022; Xie et al., 2021), transfer learning with robust models

pre-trained on large datasets (Ghani et al., 2023; Hamer et al., 2023), and data aug-
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mentation to enhance model robustness against background variability (MacIsaac et

al., 2024; Park et al., 2019). Still, significant performance gaps persist in real-world

scenarios (Boudiaf et al., 2023; Kahl et al., 2021; Goëau et al., 2018). Future re-

search should prioritise a deeper understanding of the efficacy of these techniques in

realistic monitoring scenarios, particularly by incorporating a broader representation

of taxa and environmental contexts. Another promising avenue for improving model

transferability involves integrating contextual information directly into the inference

process. For instance, incorporating environmental covariates—such as habitat type,

time of day, season, and geographic location—could enable models to dynamically

adapt to varying environmental conditions during inference. Initial research has

explored the use of geographic priors in this context (Mac Aodha et al., 2019) or

day/night and site covariates (Leseberg et al., 2020); however, the full potential of

incorporating a broader range of environmental covariates remains largely untapped.

Ultimately, the question of how to effectively adapt bioacoustic models to real-world

scenarios will be crucial.

While the ultimate goal of bioacoustic monitoring is to inform ecological under-

standing and conservation action, this thesis focuses exclusively on the development

of models for the detection and classification of individual sound events, as exempli-

fied in Chapters 3 and 4. Acoustic detections provide the foundation for deriving

essential metrics in ecological research and conservation management (Gibb et al.,

2018), including population density estimates (Pérez-Granados & Traba, 2021),

occupancy rates (Wood & Peery, 2022), and species distribution models (Desjon-

quères et al., 2022). However, employing automated methods for generating these

detections introduces additional complexities that must be carefully addressed. Each

detection is accompanied by a confidence score which does not directly represent

the probability of a correct detection (Dussert et al., 2024) and is influenced by a

multitude of factors, including the distance (Knight & Bayne, 2018) and bearing of

the vocalisation, variable environmental conditions and noise levels (Leseberg et al.,

2020), as well as the inherent characteristics of the model itself (Knight et al., 2017).

Consequently, selecting an appropriate confidence score threshold for classifying
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detections requires careful manual validation (Wood & Kahl, 2024; Knight et al.,

2020) while also considering the specific goals of the study, resulting in a threshold

that is often not readily transferable across different species or locations (Navine

et al., 2024). Practitioners should be aware of these nuances when interpreting

model outputs and recognise that the performance metrics reported during model

development may not directly translate to performance in the field.

There is a growing interest in integrating the uncertainties associated with AI

model outputs into statistical frameworks used for ecological inference. Examples

of this include methods for estimating acoustic activity that directly incorporate

model uncertainty (Navine et al., 2024) and occupancy models adapted for AI-

derived data (Rhinehart et al., 2022). However, given the numerous decisions

involved in developing AI models, it remains unclear how these choices impact

the results of such statistical inferences and what implications they have for model

development. For instance, Pantazis et al. (2024) found that the choice of model

architecture had minimal impact on occupancy estimates derived from automated

camera trap detections, while also providing insights into the amount of training data

required for reliable estimates. Studies that integrate bioacoustic model development

with ecological inference are needed to determine the data requirements for robust

performance in specific applications and to guide the development of models that

are better aligned with ecological research needs. Furthermore, improving and

streamlining validation workflows, potentially through annotation tools like whombat

and data collection platforms like acoupi, will remain crucial for ensuring the

reliability of these models in ecological applications.

To further refine ecological metrics like abundance estimates, another important

consideration is identifying which vocalisations originate from the same individual.

This typically involves using spatial information from multi-sensor arrays, partic-

ularly through triangulation of sound source locations, to group vocalisations ori-

ginating from the same point (Rhinehart et al., 2020; Mesaros et al., 2019; Nguyen

et al., 2021). This spatially explicit information can be incorporated into spatial

capture-recapture (Wang et al., 2024) or random encounter models (Milchram et
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al., 2020) to derive more robust density estimates. Deploying multi-sensor arrays

can be challenging, but open-source devices (Heath et al., 2024) are facilitating

the collection of data required for localisations and will help the adoption of such

approaches. Furthermore, incorporating this device, or a similar one, within the

acoupi framework could eliminate the often complex post-deployment analysis

process needed to obtain these localisations. Alternatively, even with single-sensor

recordings, chaining detections into sequences belonging to the same individual

could improve the accuracy of abundance estimates. For example, the BatDetect2

model generates detections that are rich in information, including precise timing, call

duration, frequency ranges, and a feature vector representing automatically learned

acoustic features. This detailed information could be leveraged to identify patterns

and consistencies in the acoustic characteristics, timing, and frequency of calls,

allowing for the grouping of detections into sequences likely produced by the same

individual. However, the development and refinement of these post-processing meth-

odologies are currently limited by the availability of validation data. Incorporating

the ability to annotate sequences of sound events in tools such as whombat could

help address this limitation.

6.4 Conclusions
Acoustic biodiversity monitoring, enhanced by the application of AI, offers the

potential to yield rich and detailed insights into species distribution and behaviour,

while also enabling monitoring at previously unattainable scales and resolutions. To

realise this potential, it is crucial to make AI technology accessible and effective

for a broader community of researchers and practitioners. This thesis contributes to

this effort by developing and providing user-friendly, open-source tools, including

whombat, batdetect2 and acoupi, that support the development, validation, and

deployment of AI models for bioacoustic monitoring. Fundamental to this process

is an understanding of the quantity, quality, and annotation requirements for data,

which guides the creation of high-quality datasets and informs the development of

effective detection and classification models. Moreover, employing models that
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learn more effectively from data can lessen the need for extensive training datasets,

and by providing more interpretable results, enhance trust in the model’s outputs.

Ultimately, the aim of this research is to advance the development and application

of AI tools within the toolkit of ecologists and conservationists, thereby supporting

biodiversity monitoring across a wide range of contexts.
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Appendix A

Appendix for Chapter 2

A.1 Annotation tool comparison
To obtain a comprehensive list of potential alternative tools to compare with whombat,

I conducted a thorough search using multiple sources. Our search strategy included

three main categories of sources. First, I conducted searches in academic databases,

specifically the Web of Science Core Collection and the IEEE Xplore Digital Lib-

rary, for publications related to bioacoustic and audio annotation tools. Second, I

used search engines such as Google and GitHub to broaden our search. Specific-

ally, I conducted a Google search for “audio annotation tool” and “bioacoustic

software” and searched on GitHub for public repositories with the tags “audio”

and “annotation.” Finally, I consulted compiled lists of bioacoustic and annota-

tion software. Specifically, I referred to a GitHub repository maintained by rhine3

(https://github.com/rhine3/bioacoustics-software), which provides an

up-to-date list of bioacoustic software (Rhinehart, 2023), a Wikipedia article that

lists bioacoustic software, and a compilation of bioacoustic software by the Evergreen

State College. Additionally, I explored several lists of annotation software on GitHub,

including heartexlabs/awesome-data-labeling, taivop/awesome-data-annotation, and

jsbroks/awesome-dataset-tools.

To narrow down the list of potential alternative tools, I established specific criteria

that each tool had to meet. Firstly, the tool had to be available for installation or

https://github.com/rhine3/bioacoustics-software
https://github.com/rhine3/bioacoustics-software
https://en.wikipedia.org/wiki/List_of_bioacoustics_software
https://helpwiki.evergreen.edu/wiki/index.php/List_of_Bioacoustics_Software
https://github.com/heartexlabs/awesome-data-labeling
https://github.com/taivop/awesome-data-annotation
https://github.com/jsbroks/awesome-dataset-tools
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use through a web service. I excluded any tool that require complex installation

procedures or have outdated dependencies. Secondly, the tool had to be user-friendly,

which meant that it had to have a Graphical User Interface (GUI) and require no

coding skills, as our goal was to identify tools that could be used by researchers

with minimal technical expertise. Thirdly, the tool had to be capable of visualising

audio files, either as a waveform or a spectrogram-like representation, as this is a

fundamental aspect of bioacoustic annotation. Fourthly, the tool had to provide a

means for manual annotation, and therefore I only considered tools that were capable

of generating annotations themselves. Several bioacoustic tools provide automatic

annotation capabilities, such as SonoBat (Szewczak, 2010), but do not provide a

means for manual annotation and therefore were excluded from our analysis. Finally,

I excluded any services that involved hiring external annotators, such as Amazon

Mechanical Turk. By applying these criteria, I was able to filter out tools that did

not meet our requirements and narrow down our list of potential alternative tools to

compare with whombat. In total, I evaluated 45 audio annotation tools.

The tools were then evaluated based on the following criteria:

Open source Whether the annotation tool is open source or not. Open-source tools

allow users to access and modify the source code, which can be beneficial for

researchers who need to customise the tool to fit their specific research needs.

Self-hosted Whether the tool can be self-hosted, meaning it can be installed on a

local server or personal computer and used without an internet connection.

This is important for researchers who need to work with sensitive data that

cannot be uploaded to a cloud-based platform, or are working under limited

connectivity conditions.

Collaborative Whether multiple users can use the tool at the same time. This is

important for collaborative research projects where multiple annotators need

to work on the same dataset simultaneously.

Large Datasets This criterion evaluates the ability of the tool to efficiently manage
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large datasets, enabling users to work with collections of recordings within

a single workspace. Specifically, it assesses whether the tool enables users

to browse quickly through multiple recordings without the need to manually

load and unload each recording. While some tools, such as Raven (Conser-

vation Bioacoustics, 2023) and Sonic Visualiser (Cannam et al., 2010), have

the capability to load multiple recordings simultaneously, they may not be

optimised for analysing large datasets.

Rich Metadata Whether the tool can store and display rich metadata about the

recordings. Many audio workstation tools, like Audacity (Audacity, 2017), do

not display metadata about the recordings aside from the file name. Others,

like Raven (Conservation Bioacoustics, 2023), can display metadata about the

recordings but do not allow the user to edit the metadata.

Search Capabilities Whether the tool has search capabilities, allowing users to

find specific annotations or recordings based on associated metadata. Search

functionality is essential for efficient navigation and exploration of large

datasets. It enables users to reference specific recordings or annotations

quickly, improving the overall ease of use of the tool. Additionally, search

capabilities enable users to filter recordings or annotations based on specific

criteria, making it easier to identify unannotated files that should be included.

Annotation Exploration Whether the tool has annotation exploration capabilities.

This means that the tool can display multiple annotations in a way that allows

the user to visualise and compare several annotations simultaneously. In

particular, I am interested in the ability to visualise annotations stemming from

different recordings in the same workspace.

Flexible Spectrogram Whether the tool has a flexible spectrogram generation sys-

tem. This means that the tool can generate spectrograms with different para-

meters, such as the window size, the window type, the overlap, the colour

scale, etc.
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Flexible Annotation Whether the tool has a flexible annotation system. This means

that the tool can generate annotations of different types, such as point annota-

tions, interval annotations, and bounding box annotations. Also, I require the

ability to define custom tags, not restricted to species names or taxonomic

terms.

Quality Assurance Whether the tool includes integrated tools to help with quality

control. These are any tools that help the user to check the quality of the

annotations and flag potential errors.

Training tools Whether the tool includes interactive components designed to assist

in the training of novice annotators tailored to the current annotation object-

ives. Such components may include features that enable easy comparison of

sounds to identify similarities and differences, or mechanisms to test the aural

identification skills of an annotator. Providing training tools can be especially

useful for inexperienced annotators, allowing them to develop and refine their

skills more quickly.

Prediction Evaluation Whether the tool provides a mechanism for evaluating pre-

dictions against a set of ground truth annotations. Ground truth evaluation is

essential for assessing the accuracy and reliability of automated annotation

algorithms. By comparing the results of automated annotation against a known

ground truth, it is possible to identify areas where improvements are needed.

Export Annotations Whether the tool allows exporting the annotations into a share-

able format with a clear schema. This is important for researchers who need

to use the annotations in other software or for training Deep Learning (DL)

models.

Integrated Detectors This criterion evaluates whether the tool integrates automated

detector capabilities. This means that the tool can use ML or otherwise to

automatically generate annotations.

The evaluation of each tool was conducted by reading the documentation and
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Table A.1: Evaluation of current annotation tools against established criteria. The
total number and percentage of evaluated annotation tools that meet each of the established
criteria.

Total Percentage

Open Source 28 62.2%
Self Hosted 41 91.1%
Collaborative Use 13 28.9%
Handling Large Datasets 23 51.1%
Rich Metadata Display 11 24.4%
Search Capabilities 9 20.0%
Annotation Exploration 7 15.6%
Flexible Spectrogram 26 57.8%
Flexible Annotation 4 8.9%
Quality Control 5 11.1%
Annotator Training 0 0.0%
Prediction Evaluation 1 2.2%
Integrated Detectors 14 31.1%

user guides provided by the tool developers, or by using the tool itself when possible.

I acknowledge that this evaluation is not entirely objective and that the results may

be biased by the experience of the authors.

Out of the 45 tools evaluated, none met all the established criteria. Notably, no

tool included a component specifically designed to assist with annotator training, with

the possible exception of tools that provided annotation instructions, such as Simpson

et al., 2014. Only a small proportion of tools (less than 16%) included features for

quality control, annotation exploration, and prediction evaluation (Table A.1). These

findings suggest that the majority of previously developed audio annotation tools did

not prioritise the creation of annotated datasets suitable for DL development. To see

the full list of tools evaluated consult the annotation_tool_comparison.csv file

in the supplementary material.

A.2 Annotation software design
whombat was designed with usability, scalability, and extensibility as priorities. Here

I outline the key design decisions I made and the rationale behind them.

I believe that open source software fosters collaboration, innovation, and trans-
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parency. Therefore, I decided to release our audio annotation tool as an open source

project on a public repository. This allows other researchers, developers, and users

to access, use, modify, and contribute to our codebase. I also provide documentation,

examples, and tutorials to facilitate the adoption of our tool by the community.

I opted for a server-client configuration for our audio annotation tool as it affords

the flexibility to host both backend and frontend on either separate machines or

one machine, depending on resource availability and utilisation. This approach

also facilitates exploiting web-based interface advantages such as portability and

accessibility. In particular, I created the backend with a RESTful API that manages

communications between client-server requests/responses while executing audio

processing pipelines and saving outputs in a database. On the other hand, the

frontend is responsible for displaying meaningful data to users as well as handling

their interactions with it.

I chose Python (Van Rossum & Drake Jr, 1995) as the main language for the

backend of our audio annotation tool because of its rich ecosystem of packages for

scientific computing, data analysis, and web development. Our preference towards

utilising Python also enables seamless integration with multiple Deep Learning

(DL) tools and pipelines available for Python. Furthermore, I observed that using

Python facilitates code sharing and collaboration due to its ease of learning and

readability. Python has a large and active community of developers, researchers,

and enthusiasts, which can provide support and feedback.

To implement our RESTful API, I employed the FastAPI (Ramirez, 2024) frame-

work for its lightweight and flexible characteristics. For audio processing tasks, I

utilised the scipy (Virtanen et al., 2020) and numpy (Harris et al., 2020) packages,

which provide a wide array of functions for scientific computing and data analysis.

All data produced and used by our audio annotation tool is saved in a relational

database. SQLite was our default choice of database management system due to its

lightness and efficiency in managing small to medium-sized datasets. Nonetheless, I

acknowledge that certain users may require other database systems, such as MySQL or
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PostgreSQL, contingent on their specific needs and constraints. Thus, I offer a con-

figuration option to enable switching to a different database backend according to the

preference of the user. Communication between the database and the backend was

facilitated by the SQLAlchemy (Mike Bayer, 2023) package, providing a high-level

interface for managing database systems. Moreover, I provide a Python API that

enables direct interaction with the stored data, allowing users to create customised

analysis pipelines or integrate data into DL pipelines. This feature provides flexibility

and extensibility beyond the default functionality.

In selecting a language for the user-facing components of our audio annotation

tool, I opted for TypeScript (Bierman et al., 2014), a superset of JavaScript that

includes optional static typing to enhance code quality. For constructing the interface

itself, I turned to React (Walke, 2023), a widely used and effective library that

employs a declarative and component-based approach to building interfaces. This

approach affords us greater consistency in design and allows us to reuse UI elements.

I wrote the audio annotation tool with the aim of making it easy to understand

and extend. To that end, I added comprehensive documentation in all the main

modules and functions, including detailed explanations of the inputs, outputs, and

behaviour of each component (available at ). I also provided examples of how to

use the tool in practice, as well as clear instructions for setting up and configuring

the tool. Additionally, I implemented unit and integration tests in the most critical

parts of the software, to ensure correct behaviour and facilitate future development.

These tests cover a wide range of scenarios and edge cases, and are automatically

run whenever changes are made to the codebase. By providing clear documentation

and robust testing, I hope to make it easier for users to understand and extend our

tool, as well as contribute to the broader bioacoustics community.

https://mbsantiago.github.io/whombat/
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Appendix for Chapter 3

B.1 Data split
To assess model performance in novel geographic locations, I used a location-based

split strategy, assigning recordings to the development or test datasets based on their

recording location. Having no overlapping recording sites between the development

and test dataset means that background environments and recorded individuals are all

different. Recordings that lacked location data or originated outside of Mexico were

automatically assigned to the development set. All other recording locations were

split using multi-label stratified splitting (Sechidis et al., 2011). This method treats

the list of recorded species at each location as a set of labels and assigns locations

to the development (75%) and testing sets (25%) while maintaining proportional

species distribution. To ensure the test set reflects the acoustic diversity across

Mexico, I generated multiple multi-label stratified split proposals and selected the

one that maximised both the number of covered ecoregions (INEGI CONABIO,

2008) and the number of species in the test set (Figure B.1). This strategy aimed to

capture a wide range of acoustic variation and species representation in the test set,

providing a robust evaluation of the models’ generalisation ability.

To ensure accurate and up-to-date taxonomic information, I standardised spe-

cies names using the GBIF Backbone Taxonomy (Secretariat, 2023), updating any

outdated names to the currently accepted versions. After splitting the data into test
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Figure B.1: Location-based dataset split. This map displays the distribution of recording
sites across Mexico. Training sites are marked in blue circles, and testing sites are in red
crosses. The underlying regions represent the ecoregions defined by INEGI CONABIO,
2008.

and development sets, some species occurred exclusively in one set or the other.

The final test dataset contained 69 distinct species, while the development dataset

contained 97. To conduct experiments with varying dataset sizes (ranging from 5

to 25 recordings per species) and ensure sufficient data for validation and testing,

I selected a subset of 17 species. These species were selected based on having at

least 30 recordings in the development set and at least 5 recordings in the test set.

Table B.1 provides a detailed breakdown of the number of recordings per species in

both the development and test sets.
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Table B.1: Summary of the dataset used for bat call classification. For each species, the
‘Recordings’columns show the total number of unique recordings and their breakdown into
development and test datasets. The ‘Calls’columns provide the total number of individual
echolocation pulses annotated and their distribution across the development and test datasets.

Recordings Calls

Species Total Development Test Total Development Test

Antrozous pallidus 192 158 34 3556 2920 636
Myotis velifer 150 113 37 2611 1938 673
Eptesicus fuscus 146 76 70 2615 1730 885
Balantiopteryx plicata 127 117 10 2567 2379 188
Artibeus jamaicensis 88 65 23 1176 710 466
Aeorestes cinereus 77 32 45 1266 698 568
Macrotus californicus 68 36 32 1621 1137 484
Leptonycteris yerbabuenae 63 34 29 2491 1560 931
Saccopteryx bilineata 53 39 14 1057 768 289
Pteronotus parnellii 51 34 17 1293 981 312
Molossus rufus 50 44 6 1005 869 136
Myotis californicus 49 39 10 884 736 148
Myotis yumanensis 43 35 8 1001 878 123
Tadarida brasiliensis 41 31 10 657 498 159
Corynorhinus townsendii 39 30 9 933 788 145
Natalus mexicanus 36 31 5 460 422 38
Peropteryx macrotis 36 31 5 608 500 108

B.2 Model architecture
This appendix details the architecture of the Convolutional Neural Network (CNN)

models used for bat call detection and classification. I first describe the base CNN

model, which performs detection and classification. Then, I detail the decoder

component incorporated into the model to enable the localization of bat calls within

spectrograms.

All model variants use the same 10-layer CNN encoder to extract features from

the input spectrogram. This encoder computes a 1024-dimensional feature vector

used for both detection and classification. The encoder architecture consists of four

blocks, each comprising two convolutional layers with ReLU activation functions,

followed by a 2x2 max-pooling layer. Batch normalization is applied after each

ReLU activation for improved training stability (Ioffe & Szegedy, 2015). The number

of filters in each convolutional layer increases progressively: 64, 64, 128, 128, 256,

256, 512, 512, 1024 and 1024. I chose this model architecture due to its simplicity
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and common use for acoustic classification (Mac Aodha et al., 2018).

The outputs of the encoder are then used for detection and classification. The

encoder takes a 128×128×1 spectrogram clip, S, as input and produces a 8×8×

1024 representation, which I refer to as the feature spectrogram. A max-pooling

operation is applied to the feature spectrogram to obtain a 1024-dimensional feature

vector, f. This feature vector is then passed to two separate heads for detection

and classification (Figure B.2a). These heads consist of fully connected layers

with 1 and n+ 1 output neurons, respectively, where n is the number of target

species. The outputs of these heads are a detection value, b̂, representing the

confidence score that S contains a bat call, and a classification vector, ĉ, whose

elements represent the confidence scores for each species being present in S. More

precisely, σ(b̂) = P(bat | S), φ(ĉ)0 = P(no bat or other species | S) and φ(ĉ)i =

P(speciesi | S), where σ and φ are the sigmoid and softmax functions, respectively.

This scheme allows the network to detect bat calls from non-target species when

σ(b) = 1 and φ(ĉ)0 = 1. While this encoding of unknown classes is relatively

simple, exploring more sophisticated open-set recognition techniques is left for

future work. However, it is important to note that deep learning model confidence

scores are often poorly calibrated, meaning they do not accurately reflect the true

probability of a correct prediction (Guo et al., 2017; Dussert et al., 2024). Therefore,

further calibration techniques may be needed to improve the reliability of these

scores (Wood & Kahl, 2024).

To enable the prediction of sound event locations within the clip, I incorporated a

CNN decoder component. This component uses the feature spectrogram to predict a

mask with the same dimensions as the input spectrogram, indicating which pixels

belong to a target sound event. The decoder consists of four blocks, each with

two convolutional layers with ReLU activation functions, followed by a transposed

convolutional layer. Batch normalization is applied after each ReLU activation. The

transposed convolutional layers progressively upsample the feature spectrogram to

the original input spectrogram size. The number of filters in each convolutional layer

decreases progressively: 128, 128, 64, 64, 32, 32, 16, and 16. This configuration
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(a) Detector and classifier architecture. (b) Reconstruction of the location labels.

Figure B.2: Overview of the detector and classifier model architecture. Firstly, the input
spectrogram is encoded into a 8×8×1024 tensor. Then a 1024 feature vector is computed
by applying a max pool operation. This feature vector is used to predict the presence and
species class of calls within the input spectrogram. A spectrogram clip is fed into the encoder
and converted into a feature spectrogram with reduced dimensions. The feature spectrogram
is then upsampled to the original size by the decoder network. The reconstructed spectrogram
is then used to predict the location labels associated to the detailed annotations.

was determined through a hyperparameter sweep conducted after fixing the encoder

architecture, using classification performance on the validation set as the selection

criterion. Finally, a 1x1 convolutional layer combines the 16 output channels into a

single channel representing the logits of the probability score that each pixel contains

a bat call.

B.3 Model training
To train the models, I used a combined loss function incorporating both detection

and classification objectives. The detection loss was calculated as the binary cross-

entropy between the model’s prediction of bat presence in the input spectrogram

and the ground truth label. The classification loss was calculated as the multi-

class cross-entropy between the model’s confidence scores for each species and

the corresponding ground truth label. For all variants the annotations were used

to determine the presence and species of a bat call in the input spectrogram. The

training loss for the recording and clip variants was the sum of the detection and

classification losses. However, the classification loss was set to 0 for examples where

no bat was present in the input spectrogram.

To incorporate the localisation task, I added a localisation loss component to the

overall loss function. I used the focal loss between the predicted mask generated by
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the decoder and the binary masks derived from the annotations. Focal loss is well-

suited for dense prediction tasks like this, as it addresses potential class imbalance

issues in the mask (Lin et al., 2017). I used the default focal loss parameters, as pre-

liminary experiments showed no significant improvement with alternative parameter

values. The binary masks used as training targets differed depending on the model

variant. These were generated from the annotations, potentially after converting the

line-string annotations to a simpler type, as described in the Methods section. The

total loss for the onset, onset-offset, bounding-box, and line-string models

was the sum of the detection, classification, and localisation losses.

To mitigate overfitting, particularly crucial with small training datasets, I em-

ployed data augmentation techniques commonly used in bioacoustic tasks (Lauha

et al., 2022; Kahl et al., 2021; Park et al., 2019). These techniques included time and

frequency masking, Gaussian noise addition, artificial echo addition, and random

image cropping. Time and frequency masking involve randomly selecting a band of

pixels in the time or frequency direction of the input spectrogram and setting their

values to the average spectrogram value. I used random bands with a maximum

width of 10 pixels out of the total 128 pixels. Gaussian noise addition involve adding

random noise to each spectrogram pixel drawn from a Gaussian distribution with a

signal-to-noise ratio of 3. Artificial echoes were added by overlaying a time-shifted

and attenuated version of the original spectrogram. Finally, random image cropping

involve randomly selecting a portion of the spectrogram and rescaling it to the ori-

ginal size. This process could result in stretching of the time and frequency axes, but

the size of the selected crop was limited to a minimum of 90% of the original width

and height to minimise distortion. While bat echolocation calls typically exhibit

frequency specificity, some degree of frequency plasticity is observed (Montauban

et al., 2021). Consequently, the frequency shifts introduced by random cropping

help emulate natural variations within the call’s frequency range. However, as with

any data augmentation method, this approach may not fully represent the complex,

coordinated adjustments in frequency and duration that occur naturally.
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Appendix for Chapter 4

C.1 Model architecture details
This section provides additional details on the BatDetect2 model architecture, expand-

ing upon the description in the main text. The model employs a 3-layer U-Net-style

architecture (Ronneberger et al., 2015), incorporating an encoder, a decoder, and

skip connections between them. A self-attention layer (Vaswani, 2017), denoted

as self_attn, is incorporated in the central bottleneck of the model, enabling it to

leverage information across extended timescales. This self-attention layer utilises a

feature dimension of 256 and does not employ positional encoding. The model incor-

porates two specialised building blocks: CoordConvDown and CoordConvUp. The

CoordConvDown layer performs the following sequence of operations: appending

frequency coordinate information, 2D convolution, 2×2 max-pooling for down-

sampling, batch normalisation (BN) (Ioffe & Szegedy, 2015), followed by a ReLU

non-linearity (Nair & Hinton, 2010). The CoordConvUp layer performs a similar,

but inverse, set of operations, effectively upsampling the input tensor. This involves

2D bilinear upsampling, appending frequency coordinates, 2D convolution, batch

normalisation, followed by a ReLU activation. The complete architecture of the

BatDetect2 model is detailed in Table C.1.

Following the model output, a non-maximal suppression operation is applied,

implemented as two-dimensional max-pooling with a 9×9 kernel. The model then
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reports the top 200 events for each one-second segment of input audio, ranked by

detection probability. Although the model can process input sequences of arbitrary

length, in practice, it is recommended to segment longer audio files into clips of less

than two seconds for independent processing.

After output, I run a simple non-maximal suppression which is implemented as a

two dimensional max pooling operation with a kernel size of 9×9. The model then

reports the top 200 events, ordered by detection probability, for each one second of

input audio. While the model can operate on arbitrary length sequences, in practice

it is best to chunk longer input audio files into clips that are less than two second

long, and then process each clip independently.

Table C.1: Description of the full architecture for BatDetect2 model. The values for input
and output size refer to the feature dimension, height, and width of the respective tensors
(e.g. (1, 128, 512) is one feature channel, with height 128 and width 512). The kernel size
is represented as height and width. In the case where two tensors are added together for
the input to a layer, this is simply performed using an element wise addition. The model
outputs a C+ 1 dimensional vector for each location in time and frequency, where C+ 1
represents the number of classes plus one additional class for background, i.e. ‘Not bat’. The
model also outputs an additional two dimensional vector for each location which encodes the
predicted width (i.e. duration) and height (i.e. frequency range) of any echolocation event at
that location in time and frequency.

layer name input layer type input size output size kernel size
Encoder
conv_down_0 spectrogram CoordConvDown (1, 128, 512) (32, 64, 256) (3,3)
conv_down_1 conv_down_0 CoordConvDown (32, 64, 256) (64, 32, 128) (3,3)
conv_down_2 conv_down_1 CoordConvDown (64, 32, 128) (128, 16, 64) (3,3)

Bottleneck
conv_3 conv_down_2 Conv2d, BN, ReLU (128, 16, 64) (256, 16, 64) (3,3)
conv_1d conv_3 Conv2d, BN, ReLU (256, 16, 64) (256, 1, 64) (16,1)
self_attn conv_1d Self-Attention (256, 1, 64) (256, 1, 64) n/a
repeat_vert self_attn Repeat Vertical (256, 1, 64) (256, 16, 64) n/a

Decoder
conv_up_0 repeat_vert + conv_3 CoordConvUp (256, 16, 64) (64, 32, 128) (2,2)
conv_up_1 conv_up_0 + conv_down_1 CoordConvUp (64, 32, 128) (32, 64, 256) (2,2)
conv_up_2 conv_up_1 + conv_down_0 CoordConvUp (32, 64, 256) (32, 128, 512) (2,2)

Output
conv_op_0 conv_up_2 Conv2d, BN, ReLU (32, 128, 512) (32, 128, 512) (3,3)
pred_class - Ŷ conv_op_0 Conv2d, Softmax (32, 128, 512) (C+1, 128, 512) (1,1)
pred_size - Ŝ conv_op_0 Conv2d, ReLU (32, 128, 512) (2, 128, 512) (1,1)
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C.2 Training loss details
In this section I describe the training loss used by BatDetect2. The loss function

is composed of three main terms and is inspired by those used in the CenterNet

method for object detection in images (Zhou et al., 2019). The combined losses

encourage the model to correctly predict the location, in frequency and time, of each

echolocation call, the duration and frequency range of the call, and the species that

is responsible for making the call.

Let us denote x ∈ RH×W as the input spectrogram, with height H and width

W . Here, height refers to the number of frequency bins and width is the number

of temporal bins in the spectrogram. Prior to the final post-processing step (i.e.

non-maximal suppression), the model outputs two tensors, Ŷ ∈ [0,1]H×W×C+1 and

Ŝ ∈ RH×W×2
≥0 . Here, C is the total number of species of interest, while the additional

class is used to represent the background class (i.e. no bat present). Ŷ is the predicted

species class probabilities and Ŝ contains the predicted size of any echolocation call

estimated to be present. At training time the model has access to the ground truth

values for Y and S. Both Ŷ and Ŝ contain an estimated value for each location in time

and frequency space in the input spectrogram. For example, for a given frequency

band f and time step t, Ŝ f t1 encodes the predicted duration of the call (i.e. tend−tstart),

and Ŝ f t2 encodes the predicted frequency range of the call (i.e. fmax − fmin). For a

description of how Y and S are generated, please see the main text.

Additionally, let us define Ê f t = ∑
C
c=1 Ŷf tc, and similarly E f t = ∑

C
c=1Yf tc. Ê and

E represent predicted and ground truth class-agnostic echolocation call scores, i.e.

‘Bat’ versus ‘Not bat’. Note that for Ê and E, the sum over does not include the

background class. These additional terms are included as there are many instances

in which the annotators have difficulty determining the correct species for a given

call, and thus they can only label the event with the generic ‘Bat’ class label. This

supervision can still be leveraged by allowing the model to determine which species

may be present.

The goal during training is to minimise the difference between the estimated
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Ê, Ŷ , and Ŝ and the respective ground truth values E, Y , and S. If successful, the

model will be able to correctly predict the location in time and frequency of any

echolocation call along with the species of the bat that generated the call.

C.2.0.1 Losses

The first loss encourages the model to correctly discriminate between bat echoloca-

tion calls and non-bat calls, i.e. background noise or other vocalising species. To

achieve this, I use the focal loss (Lin et al., 2017), specifically, the keypoint variant

of the focal loss from Law & Deng (2018), which is defined as:

Ldet =− 1
N

H

∑
f=1

W

∑
t=1


(1− Ê f t)

α log(Ê f t) if E f t = 1

(1−E f t)
β (Ê f t)

α log(1− Ê f t) otherwise,

(C.1)

where N is the number of echolocation events in the spectrogram.

The next loss penalises the model for assigning the wrong species label to a

detected echolocation call. This loss is similar Ldet , but instead of only discriminating

between ‘Bat’ and ‘Not bat’, this loss encourages the model to predict the correct

species label for each echolocation call. I use a masked version of the loss which

is only applied to locations in the spectrogram where there is a echolocation call

present, i.e. where E f t > 0.

Lclass =− 1
N

H

∑
f=1

W

∑
t=1

C+1

∑
c=1


0 if E f t = 0

(1− Ŷf tc)
α log(Ŷf tc) if E f t > 0 and Y f tc = 1

(1−Yf tc)
β (Ŷf tc)

α log(1− Ŷf tc) otherwise.
(C.2)

The final component of the loss penalises the model for incorrectly predicting the

‘size’ of the predicted bounding box which overlaps with a ground truth echolocation
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call. Like Lclass, this loss is only applied to locations in time and frequency where an

echolocation call in the training set has been annotated.

Lsize =
1
N

H

∑
f=1

W

∑
t=1


∣∣Ŝ f t1 −S f t1

∣∣+ ∣∣Ŝ f t2 −S f t2
∣∣ if ∑k S f tk > 0

0 otherwise.
(C.3)

Here, ∑k S f tk > 0 simply indicates that this size loss is only applied where there

is a echolocation call present.

The final combined loss to minimise during training is

L = λ1Ldet +λ2Lclass +λ3Lsize. (C.4)

The loss is summed over each spectrogram in a given input training batch. During

training, I set λ1, λ2, λ3 to 1.0, 2.0, and 0.1 respectively, and for both focal losses I

set α = 2 and β = 4.
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C.3 Audio datasets
Here I provide additional details of the different datasets used in for training and

evaluation.

C.3.1 UK data

In total there are 17 species in the UK dataset. This is the total number of species

which are known to be breeding in the UK. The data comes from 2,809 audio files,

and contains a total of 34,635 annotated echolocation calls. The data has been

collected using a variety of devices and was provided by a number of different

sources. There are six main sources of data, where each source constitutes a single

organisation or individual that provided multiple different audio files. This diversity

is important as it maximises the variation in the training set, with the ultimate aim of

having better generalisation performance at test time. The majority of the recordings

were made in the UK, but there were also some additional files included from the

species of interest that were recorded elsewhere (e.g. Europe). The annotation

process prioritised annotating only one clip, at most two seconds in duration, from

each original input recording, rather than densely annotating long, multi-second

audio files. This was also performed in order to increase the data diversity, as there

can often be a large amount of self-similarity within the same longer recording. As a

result, the clipped files vary in duration from between 0.4 to two seconds, and the

average duration is just over one second.

In order to increase robustness to background noise, I also supplement the UK

species audio by including additional recordings that are either empty (i.e. did

not contain bats) or where a bat was present but of unknown species. The empty

recordings were collected in London, UK, using the custom built IoT smart sensor

from Gallacher et al., 2021. In total there are 345 three second files in this set. The

second set of extra data came from the iBats Program (Jones et al., 2013) as was

adapted from Mac Aodha et al., 2018. This set includes 4,225 files of 0.384 seconds

in duration and contains 6,842 annotated bat calls. This data was recorded using

Tranquility Transect detector using a time expansion factor of ten.
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With the exception of the background and bat-only recordings, the rest of the files

were recorded to contain confirmed species at the file level. Experienced annotators,

familiar with the characteristics of UK bat echolocation calls, drew bounding boxes

around each individual echolocation call and assigned species labels, where possible,

based on the file level confirm species. When unsure of the species label, they

annotated the call using the generic ‘Bat’ class label.

The BatDetect2 model predicts the location of the lower left corner for each

echolocation call in an input recording. For the two constant call frequency-based

species in the UK, Rhinolophus ferrumequinum and Rhinolophus hipposideros, there

was a high degree of variability in the position of the lower left corner of the call.

This happens as a direct result of the recording quality, characteristics of the local

environment, and the distance of the bat from the microphone As a result, it was

often difficult to determine the exact lower frequency for these two species. To

overcome this issue, I standardised the lower and upper frequency for each of the

these species by setting them to per-species mean values, where the means were

computed on the training sets.

I constructed two splits for the UK dataset. Both splits contain the same number

of calls overall, and only differ in how the data is distributed between their respective

training and test sets. As noted earlier, there are six main sources of data for the

UK bat recordings. The first split, referred to as UKsame, simply shuffles the files

randomly into training and test sets and ensures that there is a maximum of four

recordings (i.e. files not calls) per species, per data source, in the test set. This results

in a split with 7,010 training files and 369 test files (Table C.2).

The second split, UKdiff, is more challenging. Here I simulate a difficult real

world setting where an entire data source is held out for validation. I remove one of

the largest sources, which leaves 5,911 training files and 1,468 test files (Table C.3).

This increases the difficulty due to the reduction in the training set size as well as

increasing any potential domain gap that may exists between the train and test sets.

This test set does not contain one of the species, Pipistrellus nathusii, as it was not
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Table C.2: Number of annotated echolocation calls in the UK dataset using the UKsame
split. There are a total of 7,010 and 369 training and test files, each containing 36,955 and
4,522 annotated echolocation calls respectively.

id species name num train calls num test calls

0 Bat 8112 203
1 Barbastellus barbastellus 864 179
2 Eptesicus serotinus 2374 211
3 Myotis alcathoe 695 183
4 Myotis bechsteinii 648 222
5 Myotis brandtii 1775 166
6 Myotis daubentonii 5729 640
7 Myotis mystacinus 2430 384
8 Myotis nattereri 2384 328
9 Nyctalus leisleri 1056 85
10 Nyctalus noctula 310 99
11 Pipistrellus nathusii 1224 236
12 Pipistrellus pipistrellus 1653 245
13 Pipistrellus pygmaeus 2171 396
14 Plecotus auritus 917 193
15 Plecotus austriacus 690 177
16 Rhinolophus ferrumequinum 1915 290
17 Rhinolophus hipposideros 2008 285

possible to capture any recordings of it. Note that in both cases the data is still split

at the file level (as opposed to individual call level). This minimises any potential

overlap between the training and test sets.

Figures C.1 depicts a per-class average spectrogram for each species in the

training set for the UKdiff split. Note that this averaging hides many of the recording

specific difficulties and noise. It is thus is only provided for illustrative purposes as

it shows the dominant ‘shape’ of the call for each species.

C.3.2 Yucatan data

This dataset consists of 285 passive recordings gathered in the Yucatan peninsula in

Mexico as part of a field study conducted between 2004 and 2006 (MacSwiney G.

et al., 2008). A Pettersson D980 bat detector device was used to detect and record bat

calls. The device was active throughout three ten-minute periods at night, in a total

of eight sites and covering twelve sampling nights per site. When active, and if a bat
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Table C.3: Number of annotated echolocation calls in the UK dataset using the UKdiff
split. There are a total of 5,911 and 1,468 training and test files, each containing 24,315 and
17,162 annotated echolocation calls respectively.

id species name num train calls num test calls

0 Bat 7501 814
1 Barbastellus barbastellus 468 575
2 Eptesicus serotinus 403 2182
3 Myotis alcathoe 374 504
4 Myotis bechsteinii 241 629
5 Myotis brandtii 351 1590
6 Myotis daubentonii 3998 2371
7 Myotis mystacinus 1378 1436
8 Myotis nattereri 2610 102
9 Nyctalus leisleri 695 446
10 Nyctalus noctula 209 200
11 Pipistrellus nathusii 1460 0
12 Pipistrellus pipistrellus 868 1030
13 Pipistrellus pygmaeus 1461 1106
14 Plecotus auritus 528 582
15 Plecotus austriacus 331 536
16 Rhinolophus ferrumequinum 717 1488
17 Rhinolophus hipposideros 722 1571

call was detected, the device would record for three seconds and a time expanded

version would be stored on a magnetic tape. The recordings were then cut into one

second clips, resulting in a total of 1,193 audio files.

The species identification of the bat calls was made in two phases. For the original

study, all recordings were reviewed manually. From each recording, at most five

representative echolocation calls per detected species was selected and analyzed

using Bat Sound Pro 3.10. The species of each call was then identified through

comparison to a bat call library of captured bats from the same study. Please consult

MacSwiney G. et al., 2008 to see the full details of their identification protocol.

In the second phase I annotated all missing bat calls using the annotation interface.

Bounding boxes were drawn around each detected bat call in the spectrogram.

Species identification was performed by comparing to the previously annotated calls.

In order to gain confidence on the species labels for the additional boxes, I evaluated
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Figure C.1: Visualisation of the UKdiff species. Here, each sub-image represents the
average spectrogram for each echolocation call from that species in the training set. The
vertical axis represents kHz, and spans 10kHz to 120kHz, and the time duration for each
spectrogram is 33.5 milliseconds.

my identification accuracy. A species label was added only if I could accurately

identify said species (precision above 95%). In cases where it was not possible to

determine the species, the call was labelled using the generic ‘Bat’ class. A recording

was fully annotated when all bat echolocation calls were marked with a bounding

box and all recognisable calls were tagged with its species, or the generic, label.

This resulted in a total of 1,193 audio clips that were fully annotated and kept as

part of the dataset. Three species (Pteronotus personatus, Molossops greenhalli,

and Molossus sinaloae) were excluded as they only appeared in fewer than seven

distinct recordings. The annotations for these species was set to the generic ‘Bat’

class. The final annotated dataset consists of 10,020 individual bat echolocation calls
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with bounding box annotations from 17 different species.

To train and evaluate the detection and classification models I split the dataset into

distinct training and testing subsets. To minimise any leakage from the test to the

train set, I opted to split the data at the recording level, i.e. I avoided including one-

second clips from the same recording in the training and testing subsets. The test set

contains ∼20% (282 audio clips) of all recordings while the remaining ∼80% (911

audio clips) was used for training (Table C.4). In order to maintain the distribution

of calls per species between the full dataset and the testing and training datasets, I

labelled each recording with all its occurring species and used a stratified sampling

method for multilabel datasets (Sechidis et al., 2011).
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Figure C.2: Visualisation of Yucatan species. Here, each sub-image represents the average
spectrogram for each echolocation call from that species in the training set. The vertical axis
represents kHz, and spans 10kHz to 120kHz, and the time duration for each spectrogram
is 33.5 milliseconds. Note that for some species we have limited numbers of example calls
which results in noisy average spectrograms.
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Table C.4: Number of annotated echolocation calls in the Yucatan dataset. In total
there are 911 and 282 training and test files, which contain 7,677 and 2,343 individual calls
respectively.

id species name num train calls num test calls

0 Bat 3556 1236
1 Eptesicus furinalis 94 4
2 Eumops auripendulus 156 36
3 Eumops ferox 60 24
4 Eumops nanus 66 33
5 Eumops underwoodi 36 18
6 Lasiurus ega 250 69
7 Lasiurus intermedius 106 31
8 Molossus nigricans 65 25
9 Mormoops megalophylla 172 30
10 Myotis pilosatibialis 519 90
11 Natalus mexicanus 62 26
12 Nyctinomops laticaudatus 98 23
13 Peropteryx macrotis 1036 322
14 Pteronotus fulvus 509 167
15 Pteronotus mesoamericanus 345 81
16 Rhogeessa aeneus 166 36
17 Saccopteryx bilineata 381 92

C.3.3 Australia data

The Australian dataset used to train and test the model was taken from a bat call

reference library collected by a bat expert. The subset used consists of a set of 14

bat species which have a sympatric distribution in the major cotton growing region

on the north west plains of New South Wales and adjacent areas in central southern

Queensland. Bat calls were recorded in the field from individuals released after

capture, following positive species identification. A custom made digital ultrasound

recorder from Nanobat Systems was used to record echolocation calls in 5 second

sequences with a sampling rate 500 kHz and stored as 16 bit WAVs. Bats were

recorded for as long as they flew around the release site until out of recording range.

The resulting files were analysed and edited using Audacity 3.2.0 to find echolocation

pulse sequences with good signal to noise ratio, undistorted waveforms and as close

to search phase as possible. Edited wav files were then accumulated from the release
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recordings of multiple individuals of the same species and across the species group.

These audio files had an average length of 3.29 seconds, with the shortest being

0.23 seconds and the longest being 10 seconds in duration. All annotated pulses were

labelled by species since the original sequences were obtained from individually

released bats, identified to species level. The only exception comes from the Ozimops

species where the low release number of individuals (rarely caught) was augmented

by identifying species from additional field recordings of bat activity at night. This

was done manually by conventional sound analysis of field recordings taken from

various study areas and using an experienced bat bioacoustics expert familiar with

this genus. There were some instances where multiple species may have been present

in a given file, and thus were potentially incorrectly attributed to the wrong species

label.

The data was randomly split at the file level, with 80% of the recordings for a

species staying the train set, and the rest in the test. This resulted in 220 training and

60 testing files (Table C.5).

Table C.5: Number of annotated echolocation calls in the Australia dataset. In total
there are 220 and 60 training and test files, which contain 4,569 and 1,327 individual calls
respectively.

id species name num train calls num test calls

0 Bat 180 18
1 Austronomus australis 125 35
2 Chalinolobus gouldii 568 146
3 Chalinolobus morio 429 155
4 Chalinolobus picatus 327 157
5 Nyctophilus corbeni 537 101
6 Nyctophilus geoffroyi 179 41
7 Nyctophilus gouldi 363 97
8 Ozimops petersi 149 42
9 Ozimops planiceps 142 52
10 Ozimops ridei 122 64
11 Saccolaimus flaviventris 131 40
12 Scotorepens balstoni 232 120
13 Scotorepens greyii 273 90
14 Vespadelus vulturnus 812 169
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Figure C.3: Visualisation of Australian species. Here, each sub-image represents the
average spectrogram for each echolocation call from that species in the training set. The
vertical axis represents kHz, and spans 10kHz to 120kHz, and the time duration for each
spectrogram is 33.5 milliseconds.

C.3.4 Brazil data

Data for this study was collected between January and March 2019 in south-eastern

Brazil. The data used for training is a subset of acoustic data collected using

AudioMoth (Hill et al., 2019) recorders which were set to record at a sampling

rate of 395 kHz for one minute every five minutes between 22:00 and 04:00. The

recorders were deployed on coffee plantations and in adjacent forest fragments. The

final dataset consists of 320 ten second audio recordings.

As no species labels were available for this dataset, I opted to group the calls into

groups based on their dominant frequency. Specifically, calls were initially labelled

to genus level where quality allowed, but were later merged to a coarser call type
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groups. This resulted in three distinct sonotypes, along with the generic bat class

which served as an additional class for cases where it was not possible to identify

calls to one of the previously mentioned three groups.

I randomly assigned ∼80% of the audio files (256 files) to the training set and the

remaining ∼20% (64 files) to the test set. This resulted in a total of 7,989 and 2,010

calls in the respective sets (Table C.6).

Table C.6: Number of annotated echolocation calls in the Brazil dataset. In total there
are 256 files in the training set and 64 in the test set. In both cases the files are ten seconds in
duration.

id species name num train calls num test calls

0 Bat 1646 619
1 Group One 2168 490
2 Group Two 2993 742
3 Group Three 1182 159
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Figure C.4: Visualisation of the Brazil data. Here, the spectrograms do not represent
species, but instead three distinct groups of calls. Each sub-image represents the average
spectrogram for each echolocation call from that group in the training set. The vertical axis
represents kHz, and spans 10kHz to 120kHz, and the time duration for each spectrogram is
33.5 milliseconds.
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C.4 Full performance report
In this section, I present a comprehensive report of the BatDetect2 performance

across all five datasets (Figure C.5). For each dataset, precision-recall curves are

presented for each species. Additionally, per-genus precision-recall curves are

displayed. These curves are generated by summing the predicted probabilities of

all species within a genus to obtain a genus-level probability. Finally, file-level

confusion matrices are presented. These matrices are generated by assigning each

call within a file to the species with the highest predicted probability and then

comparing these assignments to the ground truth species labels at the file level. I

exclude files containing multiple species from the confusion matrix computation.
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Figure C.5: Precision-recall (PR) and confusion matrices for our BatDetect2 model for the
five different test sets. The first column depicts the per-species precision-recall curves and
the second column is the per-genus equivalent. The third column illustrates the file-level
confusion matrix, where white rows indicate that there were no species of that type in the
filtered test set. Each row depicts a different dataset.
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C.5 Self attention mechanism
This section provides an illustrative example of the self-attention mechanism em-

ployed within the BatDetect2 model. During the processing of an input spectrogram,

the self-attention mechanism enables the model to identify and weight the most

relevant time steps for predicting the species present at a given time point. The at-

tention module operates solely along the temporal dimension. Figure C.6 illustrates

the self-attention mechanism in action for a sample audio file. At each time point,

the module computes self-attention scores against all other time steps in the input

sequence. This process allows the model to leverage global contextual information

across the entire input sequence when estimating the species present at a specific

time point.
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Figure C.6: Visualisation of the self-attention scores for one audio file from the UK
dataset. Here we show the attention weights for only two locations in the input - at 0.289
and 0.312 seconds in the input spectrogram. We denote these two time points with a blue and
orange arrow respectively, along with showing bounding boxes on the calls. The attention
scores corresponding to the two time points are illustrated with blue and orange lines on the
bottom plot. The orange line shows high attention for the other Myotis calls and the blue line
indicates that the model places more attention on the other, less prominent, Pipistrelle calls.
Note, there appears to be a very faint Pipistrelle call before the 0.4 second time step that the
model has a low attention score for.
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Appendix for Chapter 5

D.1 Deployment configurations
The acoupi framework offers flexible configuration options, enabling customisation

of both acoupi_batdetect2 and acoupi_birdnet deployments. Key configurable

parameters include: (1) Microphone: selection of the recording device and its

sampling rate (e.g., 44.1kHz for birds, 250kHz for bats). (2) Recording: definition

of the duration of each contiguous audio recording triggered by the system, with a

configurable schedule defining the start and end times during which recordings are

permitted. (3) Task intervals: specification of the time interval, in seconds, between

the triggering of each scheduled task, such as recording or messaging. (4) Model:

the detection threshold, representing the minimum confidence score required for an

AI model’s detection to be transmitted to a remote server. (5) Saving filters: criteria

for the permanent storage of audio recordings, including time-based filters (start

and end times during which saving is allowed) and a detection threshold, ensuring

that only recordings containing detections exceeding the specified confidence are

saved. Table D.1 provides a detailed breakdown of the specific settings used in the

deployments described in the main text.
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Table D.1: Configuration of deployed acoupi programmes. Key settings used to deploy
two acoupi systems acoupi_birdnet for bird monitoring and acoupi_batdetect2 for bat
monitoring during November 2024 at the People and Nature Lab Garden in London, UK.
These settings control audio capture, recording schedules, task intervals, and model detection
thresholds.

Programme
Parameter acoupi_birdnet acoupi_batdetect2

Microphone
Device UAC 1.0 Microphone & HID-Mediak UltraMic 250K 16 bit r4
Samplerate (Hz) 44100 250000
Audio channels 1 1

Recording
Duration (s) 9 3
Schedule start 00:00:00 17:00:00
Schedule end 23:59:59 07:00:00

Task intervals (s)
Recording 10 10
Messaging 60 60
Heartbeat 3600 3600
Summarise 3600 3600

Model
Detection threshold 0.4 0.4

Saving filters
Start time 06:00:00 17:00:00
End time 22:00:00 07:00:00
Detection Threshold 0.4 0.4
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D.2 Detection results
Table D.2: Bat detections by BatDetect2 with acoupi. Summary of the detections by
BatDetect2 during a one-month deployment of acoupi in November 2024 at the People and
Nature Lab Garden, London, UK. For each bat species, the maximum detection score, the
total number of detections, and the number of detections with scores above 0.4 and 0.85 are
displayed. Rows are sorted by the maximum detection score in descending order. In the UK,
bats are typically hibernating during November.

Detection Counts

Species Max Score Total Score > 0.4 Score > 0.85

Nyctalus leisleri 0.613 1,604,336 170 0

Plecotus austriacus 0.490 205,073 1 0

Pipistrellus nathusii 0.465 113,516 2 0

Pipistrellus pipistrellus 0.403 658,435 1 0

Myotis nattereri 0.387 9,722 0 0

Pipistrellus pygmaeus 0.362 208,803 0 0

Nyctalus noctula 0.348 240,926 0 0

Plecotus auritus 0.303 50,726 0 0

Rhinolophus ferrumequinum 0.286 6,438,263 0 0

Eptesicus serotinus 0.270 1,787,009 0 0

Myotis alcathoe 0.247 38 0 0

Rhinolophus hipposideros 0.197 7,952,268 0 0

Barbastellus barbastellus 0.181 36,023 0 0

Myotis bechsteinii 0.138 2,019 0 0

Myotis daubentonii 0.092 97,757 0 0

Myotis mystacinus 0.070 8,344 0 0

Myotis brandtii 0.022 3,650 0 0
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Table D.3: Top detections by BirdNET with acoupi. Summary of the top 20 classes
detected by BirdNET during a one-month deployment of acoupi in November 2024 at the
People and Nature Lab Garden, London, UK. For each class, the maximum confidence score,
the total number of detections, and the number of detections with confidence scores above
0.4 and 0.85 are displayed. BirdNET was run without geographical filtering, asterisks (*)
indicate species known to not occur in the UK. Rows are sorted by the maximum detection
score in descending order.

Detection Counts

Class Max Score Total Score > 0.4 Score > 0.85

Siren 0.999 1382 911 273

Redwing 0.997 313 171 50

Peregrine falcon 0.997 74 40 12

Fireworks 0.997 782 491 175

Eurasian magpie 0.997 707 613 308

White wagtail 0.995 96 74 31

European robin 0.994 813 434 38

Broad-winged hawk* 0.994 164 102 25

Eurasian woodcock* 0.993 8 3 1

Cape May warbler* 0.991 4 2 1

Engine 0.989 7955 3151 73

Egyptian goose 0.987 2 2 2

Little ringed plover 0.982 11 5 1

Malabar whistling thrush* 0.982 20 9 1

Eurasian bittern 0.980 25 17 4

Eurasian wren 0.977 1308 844 61

Arizona toad* 0.976 78 47 10

Belted kingfisher* 0.975 34 23 4

Barn owl 0.973 36 23 1

Yosemite toad* 0.969 27 14 2

Tawny owl 0.969 64 27 4
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