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Abstract: Despite advances in theory and experiments, how biodiversity influences the 

structure and functioning of natural ecosystems remains debated. By applying new theory 

to data on 84,695 plant, animal and protist assemblages we show that the general positive 

effect of species richness on stocks of biomass, as well as much of the variation in the 

strength and sign of this effect, is predicted by a fundamental macroecological quantity: the 5 

scaling of species abundance with body mass. Standing biomass increases with richness 

when large-bodied species are numerically rare but is independent of richness when species 

size and abundance are uncoupled. These results suggest a new fundamental law in the 

structure of ecological communities and show that the impacts of changes in species 

richness on biomass are predictable.   10 
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Main Text: Human activities are rapidly eroding global biodiversity, creating a pressing need to 

understand the consequences of these losses for the structure and function of Earth’s ecosystems 

(1-3). Hundreds of experimental studies based on artificial species assemblages have provided 

critical evidence that biodiversity supports higher standing stocks of biomass and fluxes of 

energy through ecosystems (4), and theory identifies several underlying mechanisms for these 5 

effects (5-7). But understanding the relationship between biodiversity and the structure and 

functioning of assemblages in nature, with their greater scale and complexity, remains a major 

challenge (8).  

On the one hand, many empirical studies of animal and plant assemblages have reported 

positive associations between species richness and biomass that are consistent with, or stronger 10 

than, effects estimated from experiments (9-11). However, in other cases, the biomass supported 

by an ecosystem appears to be decoupled from changes in species richness, or even declines at 

higher levels of biodiversity (11-13). This heterogeneity has led to the suggestion that the effect 

of species richness on ecosystem function in nature is likely to be idiosyncratic and context 

dependent, eluding a general unifying theory (14). The problem is therefore to explain not only 15 

the widespread empirical trend for biomass stocks to increase with biodiversity, but also the 

substantial variation in the strength and sign of this relationship (15). In contrast to artificial 

species assemblages, which typically consist of random mixtures of species, natural assemblages 

exhibit a number of general regularities, or ‘macroecological rules’, that describe how the 

abundance of individuals and their traits—such as body size—are distributed across species and 20 

space (16, 17). One potentially promising approach for understanding the effect of biodiversity 

on ecosystem functioning is therefore to consider the patterns that arise from the 

macroecological rules governing how assemblages in nature are structured (18).  

Here we develop and test a macroecological model to predict the effect of species 

richness on standing biomass. While biomass represents a simplistic proxy that does not capture 25 

the full multi-dimensional nature of ecosystem functioning (19), we use it here because it 

provides a universal and widely measured property of ecosystems linked to a variety of critical 

functions and services (13), including carbon storage (20), primary production (21) and trophic 

energy flows (22). Our model is designed to make minimal assumptions while capturing the key 

macroecological rules that describe how assemblages in nature are structured and sampled. 30 

These rules should be applicable to any kind of organism or environment (23) and thus we assess 

the predictions of this model using data on the richness and standing biomass of a diverse 

compilation of aquatic and terrestrial assemblages spanning plants, animals and protists (Table 

S1). Our analysis reveals how the general positive effect of species richness on stocks of biomass 

observed across taxa arises from a well-known but previously unlinked macroecological rule: the 35 

trend for large bodied species to be numerically rare. 

 

A macroecological model of biomass scaling with species richness 

To understand the link between biodiversity effects, species abundance and body size, consider a 

model consisting of a regional pool of species that vary in their abundance (A) and body mass 40 

(M) (Fig. 1) (24). We assume that variation in species body masses and abundances both follow 

the widely supported lognormal distribution (17, 25, 26) and that, as is common in nature, A and 

M are negatively related (27, 28) and follow a power-law relationship with exponent λ. That is, 

when plotted on a log-log scale this relationship is linear with slope λ.  

 45 

𝑙𝑜𝑔(𝐴) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝜆 × 𝑙𝑜𝑔(𝑀) 
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Such a negative effect of M on A is often attributed to energetic or spatial constraints on 

population carrying capacity, as larger organisms that consume more resources and occur at 

higher trophic levels can be supported at lower densities (28-30).  

Further assume for simplicity that local assemblages represent random samples of 5 

individuals drawn from the environment. Differences in richness and biomass across 

assemblages thus arise in our model due to stochastic variation in the sampled abundance of each 

species. A positive relationship between species richness and biomass in our model could arise 

because species rich assemblages (i) contain a greater number of individuals and/or (ii) contain 

individuals which are on average larger, with these having potentially different implications for 10 

ecosystem functioning (31). Because the effect of the number of individuals is relatively 

straightforward, we focus on the average size effect, by examining the relationship between 

species richness and biomass across samples of a fixed total abundance. We later relax this 

assumption to explore the joint effect of the number of individuals and average size. We focus on 

predicting the slope (θ) of the least squares regression of log-log transformed biomass (B) on 15 

richness (R).  

 
𝑙𝑜𝑔(𝐵) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝜃 × 𝑙𝑜𝑔(𝑅) 

 

Our use of a power law to estimate θ should not be taken to imply we are assuming a 20 

particular mechanistic basis to this relationship, or that this is necessarily the best fitting model. 

Rather we follow previous broad-scale analyses (e.g., (32)) in using a power law because we are 

interested in predicting the relative change in biomass given a relative change in species 

richness, allowing comparison across organism groups where body mass is measured on very 

different scales.  25 

This simple theoretical model reveals that a positive effect of species richness on 

standing biomass (θ > 0) arises due to the general macroecological rule for abundance to decline 

with body mass (λ < 0) (Fig. 1). First, note that when a constant number of individuals is 

repeatedly sampled at random from the species pool, variation in richness and biomass is 

mathematically constrained. Assemblages that, by chance, contain only a single species can have 30 

anything from a very low to very high total biomass, depending on whether the individuals come 

from the smallest- or largest-bodied species respectively. In contrast, a species-rich assemblage 

must contain both small- and large-bodied species (because there are a limited number of small-

bodied and large-bodied species, respectively, to sample from) and is thus constrained to have an 

intermediate biomass. Second, note that while this mathematical constraint defines the space of 35 

possible richness and biomass values, assemblages are unlikely to occupy this space evenly. This 

is because when individuals are randomly sampled from the environment, small-bodied species 

that occur at a higher abundance are more likely to be included in the sample. Thus, for an 

assemblage where, by chance, all individuals that were sampled happened to belong to a single 

species, it is much more likely to be a common small-bodied species than a rare large-bodied 40 

species. This dominance of small individuals will result in this species-poor assemblage having a 

relatively low standing biomass. Equally, the rarity of large-bodied species makes them less 

likely to be sampled, and these rare species will tend to only be represented in those assemblages 

that by chance have a higher species richness. The presence of these rare but large-bodied 

species ensures a relatively high standing biomass in species-rich assemblages compared to 45 

assemblages comprising fewer species. Thus, when large-bodied species are numerically rare (λ 
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< 0), the random sampling of individuals alone can generate a positive relationship between 

species richness and biomass (θ > 0). 

While it has been argued that the species body mass-abundance relationship has a 

canonical form of  λ = −3 4⁄  (26), empirical studies show that λ varies across taxa and contexts 

from strongly negative to absent or even weakly positive (27). We therefore next examined the 5 

effects of variation in λ on the expected slope of the richness-biomass relationship. Throughout 

our theoretical analysis, we use the value of λ estimated from the abundance of species across the 

simulated local assemblages matching the kind of data typically available in empirical studies. 

We note, however, that similar theoretical results are obtained when using the body mass-

abundance relationship of the regional pool (fig. S1).  10 

Our macroecological model shows that variation in λ is expected to give rise to 

predictable variation in the sign and strength of θ (Fig. 2A). Specifically, when body mass is 

negatively correlated with abundance (λ < 0), then as illustrated in Fig. 1, the expected effect of 

richness on biomass is positive (θ > 0). In contrast, when variation in species body mass and 

abundance are independent (λ = 0), biomass is expected to vary independently of species 15 

richness (θ = 0). And, when the typical relationship between species body mass and abundance is 

reversed—so that numerically abundant species have a larger body mass (λ > 0)—the expected 

effect of richness on biomass is also reversed, with biomass declining with increasing richness (θ 

< 0).  

While λ acts as a master variable controlling the sign of θ, our simulations show that it 20 

explains only limited variation in the magnitude of θ, as this also depends on the variance in log-

transformed M (𝜎𝑙𝑜𝑔(𝑀)
2 ) and A (𝜎𝑙𝑜𝑔(𝐴)

2 ) (Fig. 2A). When there is relatively little variation in 

body mass among species, then regardless of how these species are mixed within assemblages, 

total biomass will vary little. When there is relatively high variation in abundance among 

species, most assemblages will comprise the same highly abundant species, again resulting in 25 

little variation in biomass. Thus, for a given λ, the expected magnitude of θ can vary 

substantially (Fig. 2A). Rescaling λ by the relative variance in log-transformed M (𝜎𝑙𝑜𝑔(𝑀)
2 ) and 

A (𝜎𝑙𝑜𝑔(𝐴)
2 ) provides a metric, 𝜆𝑆, that accounts for these effects. 

  

𝜆𝑆 = 𝜆 ×
𝜎𝑙𝑜𝑔(𝑀)

2

𝜎𝑙𝑜𝑔(𝐴)
2  30 

 

Having done this rescaling, the unexplained variation in θ largely collapses, with λS 

reliably predicting both the expected sign and steepness of θ (Fig. 2B). An exact analytical link 

between θ and 𝜆𝑆 is lacking and the exact form of the relationship depends on the precise 

parameters of the model, such as the number of species in the regional pool (figs. S2-S3). 35 

However, sensitivity analyses suggest that under a range of realistic scenarios, 𝜆𝑆 could serve as 

a heuristic metric to predict how changes in species richness influence the biomass of ecological 

assemblages (24). For example, the strong theoretical dependency of θ on 𝜆𝑆 is robust to relaxing 

key assumptions of our model, including the shape of the species abundance distribution (fig. 

S3), the presence of intra-specific size variation (fig. S4) and non-random sampling arising due 40 

to the spatial aggregation of species populations (figs. S5-S6). When we relaxed our assumption 

that assemblages consist of a fixed number of individuals, we continue to observe a strong 

dependency of θ on 𝜆𝑆 (Fig. 2c). In this case, and for a given value of 𝜆𝑆, the expected slope of 

the richness-biomass relationship is shifted upwards and is consistently positive, because 
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assemblages containing more individuals will tend to sample more species and to contain a 

higher total biomass (fig. S7). This effect becomes progressively stronger with increasing 

variation in the number of individuals across assemblages, until eventually (e.g., with 20-fold 

variation in total abundance) θ is strongly positive regardless of 𝜆𝑆 (Fig. 2c). Taken together, 

these results confirm the strong theoretical dependency of the richness-biomass relationship on 5 

the number of individuals, while revealing an additional macroecological rule, whereby 

differences in 𝜆𝑆 modulate the richness-biomass relationship by altering the average body size of 

the individuals in an assemblage. 

 

Biomass scaling with species richness across taxa in nature 10 

To test this theoretical prediction, we collated a database of assemblages comprising records of 

species abundance across multiple survey sites and for which we could obtain estimates of 

individual or species average mass (24). In total, our database includes 84,695 assemblages, 

consisting of ~60 million individual organisms and 4,092 species. Those species come from 11 

major taxonomic groups with vastly different ecologies, from earthworms to elephants and from 15 

unicellular nanoplankton weighing one trillionth of a gram to trees weighing 200 tonnes (Table 

S1). The empirical relationship between richness and biomass could be sensitive to difference in 

the area or volume (i.e., grain size) of survey sites, as larger grains will encompass more habitats 

and individuals (33). While grain size necessarily varies substantially across organism groups, 

we selected datasets such that within each group assemblages were generally sampled using a 20 

standardised grain size that reflects the relevant scale at which those individuals within that 

group interact. Nevertheless, the number of sampled individuals often varied substantially across 

assemblages driving consistently strong positive richness-biomass relationships (fig. S8, table 

S2). Variation in the number of individuals across empirical assemblages could reflect a causal 

effect of biodiversity on organism density (31). However, as predicted by our theoretical model, 25 

it could also reflect the stochastic nature of sampling (24) or environmental (e.g., energetic (34)) 

constraints on carrying capacity, both of which could drive the appearance of a positive effect of 

richness on biomass. To isolate the effect of richness on biomass independent of total 

assemblage abundance, we therefore subsampled (i.e., rarefied) assemblages to a constant 

number of individuals before estimating biomass, richness and θ (24). 30 

Across most taxa, stocks of biomass increase with species richness, supporting the widely 

reported positive effect of biodiversity on biomass (11). However, θ varies substantially across 

groups (Fig. 3A): it is significantly positive for six of the eleven taxonomic groups, is not 

significantly different from zero for three (mammals, earthworms and coccolithophores) and for 

two others is significantly negative (moths and birds) (table S3). This is consistent with the 35 

heterogeneity in the effects of biodiversity on biomass previously reported for natural 

assemblages of animals and plants (11-13). In accordance with our theoretical model, much of 

this variation in the sign and steepness of θ across these taxanomic groups follows predictably 

from variation in the sign and magnitude of 𝜆𝑆 that we estimated from our raw local assemblage 

data (i.e., prior to rarefaction) (Fig. 3C). For example, fish exhibit the steepest negative 𝜆𝑆 (𝜆𝑆 =40 

 -0.29) and accordingly also exhibit the steepest increase in biomass with species richness. In 

contrast, 𝜆𝑆 is weakly positive in our dataset of UK breeding birds (𝜆𝑆 = 0.04), and in this group 

biomass declines with species richness. Other groups have intermediate values of 𝜆𝑆 between 

these extremes, with the effect of species richness on biomass varying as predicted i.e., becoming 

more strongly positive as the effect of body size on abundance becomes more strongly negative 45 

(table S3). 
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Overall, a linear model including 𝜆𝑆 alone is able to explain 60% of the variation in θ 

across taxonomic groups (intercept = -0.02, slope = -2.58, p = 0.003 (24)). This strong 

dependency and predictive power is robust to uncertainty in estimates of 𝜆𝑆and θ, including that 

resulting from how assemblages are subsampled (figs. S9-10) and whether they are standardised 

to a constant abundance or level of sampling completeness (fig. S11). Variation among 5 

taxonomic groups in θ is also predicted by the unscaled slope λ (intercept = 0.08, slope = -0.88, p 

= 0.03, r2 = 36%), but in accordance with our theoretical model, this dependency is weaker than 

the dependency on 𝜆𝑆 (Fig. 3B). Examples from particular taxa highlight the reason for this. For 

instance, species abundance in Dinoflagellates declines strongly with size (λ = -0.56), but 

because there is relatively little variation in body mass among species, θ is weaker than expected 10 

from λ alone. In contrast, fish exhibit relatively large variation in body mass and this, combined 

with the strong negative scaling of abundance with size (λ = -0.47), results in a particularly steep 

increase in biomass with species richness. Richness-biomass relationships are thus most steeply 

positive in those taxa that exhibit both strong size-dependent constraints on abundance and 

substantial variation in body mass across species. 15 

 

Conclusions 

 

Together, our theoretical and empirical findings provide evidence that the general positive effect 

of species richness on the standing biomass of natural assemblages across ecosystems arises as a 20 

mirror image of the general negative effect of body mass on species abundance within 

ecosystems. Furthermore, far from being idiosyncratic, we show that differences among taxa and 

environments in the sensitivity of biomass to changes in species richness arise predictably from 

differences in the scaling of abundance with body size. For example, biomass increases more 

strongly with species richness in aquatic compared to terrestrial groups (32), as expected from 25 

the stronger negative scaling of abundance with body size in aquatic ecosystems (35). While in 

this work we have focussed on comparing organism groups with very different size structures, 

we note that human activities have driven, and continue to drive, profound changes in the 

distribution of species size and abundance (36, 37). Our model could provide a basis for 

predicting the consequences of these changes in size-structure for how biodiversity influences 30 

ecosystem function.  

Our results should not be taken to suggest a simple bivariate relationship between 

richness and biomass in nature, and its dependency on the species body mass-abundance slope. 

As we show, uncovering these relationships requires first controlling for differences in the 

relative extent of variation in body mass across species (Fig. 2B) and for differences across 35 

assemblages in the number of individuals (Fig. 2C). An important next step will be to integrate 

our findings into a more general theoretical framework that aims to predict these additional state 

variables that are critical for a comprehensive understanding of how biodiversity and ecosystem 

function are connected (e.g., (18, 34)). Further work is also required to understand how different 

regional pool structures, environmental contexts, non-random patterns of sampling and 40 

community assembly processes—including interactions between species—alter our theoretical 

predictions and ability to explain the empirical patterns. For example, the key ecological 

mechanisms of niche complementarity and facilitation that experiments have shown promote 

higher biomass in more species rich systems (6) are not explicitly considered in our model. 

Incorporating these mechanisms could potentially explain additional variation in the richness-45 
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biomass relationship, especially for organisms where body size varies substantially within 

species (e.g. trees) (24).  

The ability of our model to predict how biomass scales with species richness without 

considering niche complementarity or facilitation should not be taken to imply that these 

mechanisms are unimportant in explaining patterns of ecosystem functioning in nature. Rather, 5 

our results suggest that knowledge of how these mechanisms operate may not be required to 

predict the impact of changes in species richness on biomass (38). For example, the key 

constraint identified in our theoretical model that drives increases in biomass with species 

richness, is for numerically rare (large bodied) species to preferentially occur in more species 

rich assemblages (Fig. 1). In our model this arises due to random sampling, but the same effect 10 

could be driven by other niche-based mechanisms that cause numerically rare species to 

congregate in the richest assemblages (e.g., lower extinction rates) (34). Our analysis is unable to 

resolve what ultimately drives the distribution of rarity across species assemblages and body size 

classes (27), but the quest to identify the causes of these macroecological rules (39) emerges 

from our analysis as a priority for understanding the role of biodiversity in the functioning of 15 

ecosystems.  

Here we identify a previously unappreciated fundamental law in the scaling of biomass 

with species richness that appears to hold across contrasting physical environments and 

kingdoms of life. Because metabolic rates and fluxes of energy and matter consistently scale 

with body mass (40), and because abundance covaries with a number of other species traits (41), 20 

this law could encompass similar generalities in the relationship between other facets of 

biodiversity (e.g. functional trait diversity) and metrics of ecosystem function (e.g. productivity 

or stability). Such a prospect points towards a unification of macroecology and ecosystem 

science, in which changes in the structure and functioning of ecosystems can be predicted from 

the natural rules governing the abundance and distribution of individual species.  25 
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Fig. 1. How size-dependent constraints on species abundance determine the effect of 

richness on biomass stocks. (A) Within a regional pool of species, species abundance (A) varies 

inversely with mean species body mass (M) (here, λ = -1). For simplicity here we show a species 

pool consisting of 5 hypothetical species represented by circles of different colors, with circle 

size denoting mass M. (B) A fixed number of individuals (here n = 5) are repeatedly drawn at 5 

random from the species pool to form local assemblages, which exhibit stochastic variation in 

both richness and biomass. Here three exemplar assemblages are shown. While not evident in 

this simplified example with only five individuals, local assemblages exhibit species body mass-

abundance relationships mirroring the regional pool (fig. S1). (C) The two-dimensional space of 

all possible richness (R) and biomass (B) states from our model are constrained (dashed black 10 

lines) by the body masses available in the species pool. Cells indicate the probability (dark 

shading indicates higher probability) of each richness-biomass combination under a random 

draw of individuals. Solid line shows the expected effect of species richness on biomass (θ) 

estimated via least squares regression. For each level of species richness, assemblages with the 

highest and lowest possible biomass are shown. Numerals indicate the richness-biomass states of 15 

the assemblages shown in (B). For simplicity in this example, intraspecific size variation is 

ignored, but the dependency of θ on λ is robust to intraspecific size variability (24). 

 

Fig. 2. Theoretical expectation of how differences in size-dependent constraints on species 

abundance drive heterogeneity in the sign and steepness of the species richness-biomass 20 

relationship (θ). (A) The slope λ of the relationship between species body-mass (M) and 

abundance (A) determines the expected sign of θ. For a given λ, the steepness of θ varies widely 

depending on the relative variance in species body mass (𝜎𝑙𝑜𝑔(𝑀)
2 ) and species abundance 

(𝜎𝑙𝑜𝑔(𝐴)
2 ), indicated by different colors. Each point shows the mean θ across 500 replicate 

simulations. (B) When accounting for the variance in body mass and abundance, the rescaled 25 

species body-mass abundance relationship 𝜆𝑆 strongly predicts both the sign and steepness of θ. 

(C) the dependency of θ on 𝜆𝑆 when the total number of individuals varies across assemblages, 

showing scenarios from a 2-fold to 20-fold variation in total abundance. In (A-C)  λ and 𝜆𝑆 are 

estimated from the species abundance across local assemblages to match the empirical data 

typically available. 30 

 

Fig. 3. Size-dependent constraints on species abundance predict heterogeneity in the slope 

of the species richness-biomass relationship (θ) across taxa. (A) The observed relationship for 

each taxonomic group (n = 11) between log-log transformed species richness and biomass and 

log-log transformed species body mass and abundance. Lines are estimated regression slopes 35 

(table S3). Groups are ordered according to the rescaled species body-mass abundance 

relationship 𝜆𝑆, from steeply negative (left) to positive (right). (B) Covariation across taxonomic 

groups between the slope of the species richness-biomass relationship (θ) and the slope of the 

relationship between species body-mass and abundance (λ) (C) Covariation between θ and 𝜆𝑆 , the 

rescaled slope of the relationship between species body-mass and abundance. In (B, C), colors 40 

indicate the taxonomic group in (A). Bars show 95% confidence intervals (not visible for some 

taxa). The fitted line is the ordinary least square regression slope (±S.E). See (24) for sources of 

taxon images. 
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