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Abstract 
Utilising predictive modelling and innovative data collection methods can yield a 
comprehensive understanding, thus guiding the enhancement of indoor air quality (IAQ). 
The central goal of this doctoral study is to construct a customised intelligent IoT system 
that integrates diverse air quality sensing techniques and data from smart home automation 
systems. By implementing neural network-based methodologies, the research showcases 
the system's adeptness in accurately forecasting forthcoming air quality conditions. These 
projections can facilitate proactive adjustments to household elements, including 
ventilation, to enhance air quality. 

The data collection framework encompasses a wireless sensor node equipped with various 
strategically positioned sensors within households, complemented by the capacity to gather 
data from existing building and home automation systems. Initially employing the Long 
Short-Term Memory Neural Network (LSTM), the study examines the relationships among 
air quality factors through univariate and multivariate LSTM analyses. 

Preliminary findings underscore the effectiveness of the wireless sensor modules in 
capturing crucial and dependable data for neural network training. The neural network 
employs this data to construct a dynamic predictive model for anticipated air quality, 
assuming a continuous influx of real-time air quality data into the system. 

Furthermore, this study explores a novel variant of LSTM that integrates a shared hidden 
state. The primary objective is to facilitate the examination of interconnected prediction 
data sourced from various locations to identify potential correlations between indoor air 
quality levels across different sites. The study seeks to explore how these correlations can 
enhance predictions related to indoor air quality. 

In the future, the research will broaden the scope of IAQ data integration by incorporating 
data from existing building automation systems into the LSTM model. The objective is to 
identify correlations between controllable aspects of building automation systems and 
indoor air quality, thus paving the way for further advancements in this domain. 
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Impact statement 
The quality of the air within our living spaces has long been a point of concern, given the 
significant amount of time people spend indoors. Recognising the potential threats posed by 
compromised indoor air quality (IAQ), the presented research has taken a groundbreaking 
leap forward in comprehending and enhancing IAQ. By harnessing the capabilities of 
advanced predictive modelling coupled with innovative data collection methods, the study is 
poised to revolutionise our understanding and control of indoor environments. 

The neural network-based methodologies, primarily focusing on the Long Short-Term 
Memory Neural Network (LSTM), stand as a testament to the prowess of modern 
computational technologies. The reliability and effectiveness of wireless sensor modules, as 
corroborated by the study, have vast implications. Individuals no longer have to rely on static 
or periodic reports about IAQ. Instead, real-time and dependable data streaming allows for 
the dynamic prediction of forthcoming air quality conditions. This shift from a reactive to a 
proactive stance is crucial. Imagine being able to adjust ventilation systems or other 
household elements in anticipation of deteriorating air conditions, thereby maintaining 
optimal living conditions at all times. 

Moreover, the study is not just confined to a single household or building. Exploring a novel 
variant of LSTM that incorporates a shared hidden state delves into the realm of 
interconnected prediction data sourced from multiple locations. The ability to identify 
potential correlations between IAQ levels across different sites provides a broader, 
interconnected understanding of IAQ dynamics. Such insights could pave the way for 
community or city-wide interventions, optimising IAQ on a much larger scale than previously 
imagined. 

Yet, the research's ambition does not stop there. With plans to integrate data from existing 
building automation systems into the LSTM model in the future, the study is set to bridge the 
gap between controllable aspects of building systems and IAQ. This holistic integration is 
critical for the development of smart cities and communities where every component, from 
building designs to ventilation systems, works in harmony to ensure the health and well-being 
of its residents. 

In conclusion, as our world steadily transitions towards the age of smart homes and 
interconnected buildings, the importance of IAQ cannot be overstated. With its innovative 
approach and promising methodologies, this research not only sets the stage but actively 
drives us towards a future where living spaces are not just smart but also inherently healthier. 
By aligning state-of-the-art technology with our intrinsic need for quality air, this study 
promises a brighter, healthier future for all. 
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1 Introduction 
Air pollution is not limited to the outdoors but is also present indoors within our 
households, offices, and schools. Indoor air quality affects the health and well-being of 
occupants in the building. The concentration of some pollutants can be multiple times 
higher in the indoor environment, where many of us spend up to 90% of our time [1],[2]. 
Contrary to what most people think, indoor air quality is not solely caused by the outdoor 
pollutants leaking into the indoors, but it is a mix of outdoor sources as well as emissions 
from building materials and furnishings, central heating and cooling systems, humidification 
devices, moisture processes, electronic equipment, products for household cleaning, pets, 
and the behaviour of building occupants [3], [4]. As the sources of indoor pollutants are 
usually very localised and vary from different households, [5] this study aims to build a 
system that can analyse the sources of Indoor Air Quality(IAQ)as well as use the collected 
data to predict future IAQ values where the system is installed and using this information to 
improve the indoor air quality[3], [4], [6]. 

This thesis proposes an indoor air quality monitor system which can predict air quality 
through an improved LSTM algorithm to work seamlessly with the automation system in a 
smart home. The improved LSTM algorithm incorporates multiple sites into a single model 
to attempt to overcome the localised nature of applying LSTM to air quality data. 

 

1.1 Indoor Air Quality 
There are multiple methods to define IAQ. However, in general, IAQ is characterised by the 
depictions of concentrations of pollutants that may adversely affect the health and comfort 
of a building's occupants[7]. Air quality can be portrayed by an Air Quality Index (AQI), a 
standardised scoring system to measure air quality. However, various indexes are compiled 
by different organisations and countries, which all vary. The UK's most commonly used 
index is the Daily Air Quality Index, specified by the Committee on Medical Effects of Air 
Pollutants (COMEAP). This system is a banding structure where the overall index is 
determined by the highest value of the index obtained based on the individual gases [8]. The 
AQI used in the USA was developed by the United States Environmental Protection 
Agency (EPA). This version of the AQI is defined by a piecewise linear function of the 
pollutant concentration [8]. 

These standards are very effective ways to visualise and understand the severity of air 
quality outdoors. However, in the indoors, the pollutants we look at differ slightly. 
Pollutants such as Sulphur Dioxide (SO2) and nitrogen Dioxide (NO2) are less prevalent 
indoors, while other contaminants, such as many Volatile Organic Compounds (VOCs), 
usually occur in higher concentrations indoors than outdoors [9]. As such, these AQI 
standards are less suitable for measuring indoor air quality; many existing IAQ solutions use 
a proprietary index to visualise IAQ. These indexes are very effective in terms of real-time 
visualisation of air quality. Still, from an analysis point of view, it is more effective to look at 
the air quality by breaking it down into its individual air quality factors/pollutants. 
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1.1.1 Existing IAQ solutions 

 
Figure 1.1 Standalone IAQ Monitoring Device 

There are many existing devices and products that are capable of monitoring IAQ and 
improving it. [10] The most common are probably commercially available Standalone IAQ 
sensors, as shown in Figure 1.1. These devices are usually internet-connected devices that 
monitor the level of some gases that affect IAQ and inform the user through multiple 
possible means. Some of these devices also perform some simple analysis of the data 
obtained. However, these devices can only monitor and report and cannot change or 
improve the IAQ in buildings, so they are often used in conjunction with air filters, etc. We 
also have to consider that due to the nature of these devices, the sensors used are not the 
most accurate[11]. 

 

   
Figure 1.2 Portable IAQ Monitoring Devices 

Another known IAQ Solution is Handheld sensors, as shown in Figure 1.2. These sensors are 
very accurate but expensive, and they are used to measure the gas level of different IAQ 
factors one moment at a time and not over long periods [12]. These handheld sensors are 
very effective for some IAQ factors, such as radon, but not as useful for PM and VOC. This is 
because some air pollutants, if present, such as radon, do not vary much over time. 
However, some other factors, such as Volatile Organic Compounds (VOCs) and Particulate 
Matter (PM), vary significantly depending on what is happening in the surroundings and 
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within the building. Therefore, we should consider using these handheld solutions in 
conjunction with other solutions [13], [14]. 

 
Figure 1.3 BMS Attached IAQ Device 

Figure 1.3 shows IAQ sensors attached to the Building Management System (BMS) of a large 
building, which is an existing solution in relatively newer buildings[15]. This solution can 
measure IAQ factors and immediately attempt to resolve the issue, such as turning the 
ventilation up. These systems are usually designed to provide immediate reactions to the 
situation within the building and do not usually consider past data. These solutions also 
need to be integrated into the infrastructure of the building and require custom 
programming and designing. They usually incur extra costs to implement, resulting in them 
only being practical in newly built offices and large buildings but not smaller buildings and 
households. 

The existing commercial and applied solutions show that existing devices and systems only 
show real-time or historic sensor results, and no prediction or advice on future IAQ is 
provided. This results in any action based on these solutions being reactive towards 
observed air quality changes. Therefore, this solution, which uses neural networks to obtain 
predicted accurate IAQ results, is necessary to make proactive changes to the air quality to 
prevent spikes in air pollutants instead of mitigating them after they happen. 
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1.2 Novelty 
1.2.1 Novelty 1 – Multisite model 
The primary innovation of the present study lies in implementing a multi-site model that 
links predictions between sites. This was actualised by integrating a shared hidden state 
among multiple Long Short-Term Memory (LSTM) models. The initiative addresses several 
site-specific attributes associated with applying LSTM to indoor air quality (IAQ), with a 
potential extension to analogous applications. Traditionally, LSTM methodologies in IAQ 
necessitate site-specific data for model training prior to any predictive endeavours. This 
convention requires a preliminary training phase to enable the model to generate 
predictions. 

The employment of the multi-site model yielded two discernible advancements when 
juxtaposed with the conventional single-site methodology. The first advancement is the 
extension of the forecast horizon, which implies an enhanced capability of the model to 
project further into the future with augmented accuracy. 

The second advancement pertains to reducing the minimum training duration for the 
model, contingent upon specific conditions. In scenarios where both sites are subjected to 
concurrent model training, no conspicuous variance in training duration is observed. 
Conversely, when one site undergoes initial training with the subsequent inclusion of a 
second site at a later juncture, a notable diminution in the minimum training duration for 
the latter site was discerned. 

1.2.2 Novelty 2 – Expanding Training method. 
Another distinctive aspect of this study is incorporating a form of error correction into the 
LSTM model. We investigated three training methodologies: the conventional approach 
entailing a fixed training duration, a shifting training paradigm wherein the training period 
transitions in tandem with the predictions, and lastly, an expanding training approach. In 
the expanding training method, the model is initially trained over a predetermined duration, 
followed by introducing an error correction phase extending beyond this juncture. Through 
this error correction phase, the model's training process is iteratively refined, thereby 
potentially enhancing its predictive accuracy and adaptability across varying datasets and 
temporal frameworks. 

 

 

 

 

 



15 
 

2 Background 
 
This chapter commences by examining the individual air quality factors considered in our 
study and their implications on human health. Additionally, we explore the sensors 
designated for measuring each respective air quality element. Subsequently, we delve into 
the assorted wireless technologies evaluated during the design phase of the proposed 
indoor air quality monitoring system. The discourse then explores the theoretical reasoning 
for employing Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory 
(LSTM) networks, in air quality predictions. The utilisation of LSTM, in particular, 
underscores its aptitude for deciphering time-series data, which is essential for accurate 
forecasting in indoor air quality. 

 

2.1 IAQ Factors and Respective Sensors 
Factors that affect the Indoor Air Quality amongst those factors regularly looked at are 
Particulate Matter (PM), Volatile Organic Compounds (VOC), Radon, Carbon Monoxide, 
Carbon Dioxide, mould, and Nitrogen Dioxide[16], [17]. Contrary to what many people may 
think, the origin of some of these compounds is not limited to the outdoors; for example, 
PM can also be emitted from smoke during cooking. Furthermore, pollutants such as VOCs 
are primarily indoor pollutants often emitted from furniture, carpets, paints, etc., within the 
property. 

The factors we choose to look at initially are VOCs, Carbon Dioxide, Temperature, Humidity 
and Particulate Matter (PM), specifically PM 2.5. We also considered temperature and 
humidity as they have possible effects on other IAQ factors, such as mould, and helped us 
compensate for errors in the eCO2 reading and TVOC readings.  

 

2.1.1 Particulate Matter (PM) 
We specifically look at PM 2.5 (particulate matter of diameter smaller than 2.5 μm) as these 
particles are considered hazardous compared to larger particles. They can penetrate deep 
into the respiratory system and the lungs, as they can pass through the filtration of nose 
hair[18]. PM2.5 has a significant adverse effect on the human respiratory system, and about 
5% of all deaths are estimated to be related to PM2.5. In the UK, that is 30,000 yearly 
deaths [19], [20], [21], [22], [23], [24], [25]. Furthermore, with the COVID-19 situation, there 
is potential evidence that the risk of death due to COVID-19 correlates with exposure to high 
PM levels [26]. The unit of measure for PM 2.5 is micrograms per cubic meter of air (µg/m3), 
and according to the UK standard, healthy levels are below 16 µg/m3[27] 

 

Sensor 

Particulate Matter sensors work using a light detector and a beam of light. The 
Sensor sits at the angle to the beam of light, and as particulates pass the beam of 
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light, some light is reflected onto the sensor. As a fan is used to move air at a steady 
rate through the beam of light, the length of the pulses and quantity of pulses, the 
size and concentration of any particulate matter in the air can be found. [28] 

 

2.1.2 Total Volatile Organic Compounds (TVOC) 
Volatile Organic Compounds (VOCs) are another important group of air pollutants known to 
contribute to many serious health-related impacts. They have been linked to symptoms 
such as irritations of the nose, throat, and eyes, causing headaches, nausea, dizziness, and 
allergic skin reactions. They can also damage the internal organs such as the liver and 
kidneys. Moreover, some compounds of VOCs, such as Toluene and xylene, may not be 
immediate hazards but can lead to chronic health risks, which could result in serious 
neurosis[29], [30], [31]. Due to the large variety of VOCs, we use a Total VOC (TVOC) sensor 
that looks at the total concentration of multiple airborne VOCs. The unit of measurer for 
TVOC is micrograms per cubic meter of air (µg/m3), and according to the UK standard, 
healthy levels are below 300 µg/m3[27] 

 

Sensor 

The Total VOC sensors looked at are called metal oxide (Moxa) sensors. These 
sensors work by heating a thin film, or surface, of the metal-oxide nanoparticle to 

about 300℃. The film will adsorb oxygen particles onto the surface. These oxygen 

particles will react with the VOCs in the air, resulting in the release of electrons from 
the oxygen and thus affecting the electrical resistance of the Metal Oxide Layer. This 
resistance can then be measured; therefore, we get a reading of TVOC values.[32] 

 

2.1.3 Carbon Dioxide (CO2) & Estimated Carbon Dioxide (eCO2) 
Carbon Dioxide is another major gas considered when looking at indoor air pollution. 
Exposure to increasing CO2 is known to cause decreased concentration and drowsiness, and 
prolonged exposure has also been linked to changes in bone calcium and negative effects on 
the body’s metabolism.[33], [34] eCO2 is an estimator of current CO2 concentration by 
rescaling some easier-to-measure quantities such as TVOCs and Hydrogen Gas. The unit of 
measurer for eCO2 is parts per million(ppm), and according to the UK standard, healthy 
levels are close to 00 ppm and below 800 ppm.[27] 

 

Sensor 

When looking at CO2 sensors, we looked at both actual CO2 sensors as well as eCO2 
sensors. In terms of actual CO2 sensors, the most common type is the Non-Dispersive 
Infrared (NDIR) CO2 sensor. These sensors work in the principle that each atom and 
molecule can absorb light of a specific frequency. As such, these sensors work by 
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shining a light on the specific frequency for CO2 in a small, closed chamber and 
measuring the amount of light that reaches the other end of the small chamber. By 
doing so, different amounts of CO2 result in a different amount of light being 
absorbed, and we can obtain the CO2 concentration.[35] 

 

On the other hand, we also look at eCo2 Sensors. These sensors are Metal Oxide 
sensors, the same as TVOC sensors, where the resistivity of the sensor changes 
depending on CO2 concentration. We chose to use eCO2 Sensor due to the 
significantly lower cost of eCO2 Sensors compared to actual CO2 sensors [32] 

 

2.1.4 Temperature and Relative Humidity  
Extended exposure to low Indoor air humidity has been shown to influence perceived IAQ, 
sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus 
survival, and voice disruption. As absolute humidity requires large sensors to measure, we 
choose to take measurements of temperature and relative humidity, which can be used to 
obtain the humidity values of a space. As such, temperature and relative humidity are 
factors that should be considered when looking at IAQ [36], [37]. 

Temperature Sensor 

There exist various types of temperature sensors, the most common of which are 
thermistors, thermocouples and semiconductor junction sensors. 

Thermistors are devices whose resistance changes with temperature. Thermistors 
are passive resistive devices, which means we need to pass a current through it to 
produce a measurable voltage output. 

Thermocouples are by far the most common type of temperature sensor due to their 
simplicity. Thermocouples are thermoelectric sensors that basically consist of two 
junctions of dissimilar metals, such as copper and constantan, that are welded or 
crimped together. One junction is kept at a constant temperature, called the 
reference (Cold) junction, while the other is the measuring (Hot) junction. When the 
two junctions are at different temperatures, a voltage is developed across the 
junction, which is used to measure the temperature. 

Lastly, semiconductor junction temperature sensors work by monitoring the 
characteristics of a transistor within the integrated circuit or outside it. Transistors 
have slightly different properties at different temperatures, and as such, the sensor 
will monitor these properties to gain an accurate value of the temperature of the 
said transistor and, thus, an excellent estimate of what the ambient temperature is. 
[38] 
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We chose to use semiconductor junction temperature sensors due to their small size 
and the availability of a semiconductor junction temperature sensor with integrated 
humidity sensors. 

 

Humidity Sensor 

Semiconductor humidity sensors work by placing a thin strip of metal oxide between 
two electrodes; the capacitance between the electrodes then changes at different 
relative humidity as the electrical capacity of the metal oxide is affected by the 
relative humidity [39]. 

2.2 Wireless Technologies  
When designing the proposed indoor air quality monitoring system, multiple 
communication protocols were considered to link sensors. For flexibility in sensor 
placement, we decided to use a wireless communication method. The following wireless 
protocols were compared and considered for this application. 

Technology Power 
Consumption 

Bandwidth Range Requires 
infrastructure 

Indoor 
penetrative 
power 

LTE-M Medium 1Mbps 10km No High 
WIFI Medium 288.8Mbps 100m Yes Med 
Zigbee Low 100kbps 50m(Mesh) No (Mesh) Low 
NB-IOT Low 200kbps 10km No High 
LoRa Low 50kbps 20km Yes High 
Bluetooth Low 2Mbps 100m Yes Low 

Table 2.1 Comparison of different wireless technologies. 

Table 2.1 shows multiple wireless technologies that were considered during the design of 
the air quality data acquisition system. [40], [41] Each of the technologies had both benefits 
and some disadvantages. LTE-M and NB-IOT were both considered because we would not 
need to set up an infrastructure for gateways. WIFI was also considered because many sites 
would already have an existing WIFI infrastructure. Bluetooth Low Energy has a very low 
energy consumption while keeping a decent bandwidth but would have needed multiple 
gateways at the site due to its limited range. Mesh networks such as Zigbee are ideal in a 
situation where we have high-density data acquisition units, but where the units are less 
dense and more spread apart, we could run into issues. Finally, LoRa, which has a very long 
range while keeping a low energy consumption, would work well in a situation where 
modules are both close to the gateway or very far from the gateway. LoRa, in general, is a 
rising protocol in the IoT area. As such, we considered both LoRaWAN and LoRa using 
custom Gateways. LoRaWAN would result in simple infrastructure in places like Amsterdam, 
which has a city-wide LoRaWAN network. In the case of just using LoRa and custom 
gateways, we would have to make gateways for the modules to connect to, but this would 
work in this situation as these gateways would be an ideal location to store an information 
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database. Furthermore, using LoRa and custom gateways would significantly reduce energy 
consumption compared to LoRaWAN. 

2.3 Neural Networks for Time Series Predictions 
2.3.1 Recurrent Neural Networks 
A traditional Neural Network (TNN) takes a fixed-
size vector input. This limits the usage of a 
conventional neural network to a situation which 
involves a series of inputs with a fixed, 
predetermined size. Figure 2.1 shows a traditional 
neural network with an input of size 3(x1, x2, x3), a 
hidden layer of size two and an output layer of size 
1(y1) 

  

 
 

A TNN would have limited functionality in applications 
where we are looking at a situation that involves series 
inputs with no predetermined size. We could call a TNN 
multiple times for each input (x1, x2, x3) in the series to 
compute each output(y1,y2,y3). However, this would 
result in each of the networks not considering that one 
of the inputs may affect the others and would result in 
multiple single input single output Neural Networks, as 
shown in Figure 2.2. 

 

As such, we bring forth The Recurrent 
Neural Network, shown in Figure 2.3. This 
type of neural network remembers the past 
not only during training but also things they 
learned during prior inputs while generating 
outputs. Therefore, they can have one or 
more input vectors and produce the same 
number of output vectors where the 
outputs are not only affected by their 
respective input but also a hidden state 
vector which represents the prior learnt 
information. [42], [43], [44] 

Figure 2.1 TNN Neural Structure 

Figure 2.2 Multiple Input TNN 

Figure 2.3 RNN Neural Structure 
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2.4 LSTM Theory 

 
Figure 2.4 LSTM Cell Structure 

 

LSTM is a special kind of recurrent neural network (RNN) that focuses on resolving issues 
most RNNs have with long-term memory. In the average RNN, every time a new set of 
inputs enters the Neural Network, the network’s “memory” grows bigger and bigger. Over 
time, this results in an unstable network due to the accumulation of error gradients during 
updates. LSTMs, in the other case, are designed such that retaining information for 
prolonged time periods is the default setting. This is achieved through the incorporation of 
the LSTM gates. A typical LSTM cell has three gates: forget, input, and output. In Figure 2.4, 
these are depicted as the three sigmoid layers. 

LSTM Forget Gate: 𝑓௧ = 𝜎௚൫𝑊௙𝑥௧ + 𝑉௙ℎ௧ିଵ + 𝑏௙൯    2.1 

LSTM Input Gate: 𝑖௧ = 𝜎௚(𝑊௜ೣ௧ + 𝑉௜ℎ௧ିଵ + 𝑏௜)   2.2 

LSTM Output Gate: 𝑂௧ = 𝜎௚(𝑊௢𝑥௧ + 𝑉௢ℎ௧ିଵ + 𝑏௢)   2.3 

LSTM Cell Input: 𝑐̃௧ = 𝜎௖(𝑊௖𝑥௧ + 𝑉௖ℎ௧ିଵ + 𝑏௖)   2.4 

LSTM Cell State: 𝑐௧ = 𝑓௧ ∘ 𝑐௧ିଵ + 𝑖௧ ∘ 𝑐̃௧   2.5 

LSTM Hidden State: ℎ௧ = 𝑂௧ ∘ 𝜎௖(𝑐௧)   2.6 

Equation 2.1- Equation 2.6 are the LSTM equations which the notations can be described as 
follows. 

 Wf, Wi, WC, Wo: Weight matrices w.r.t gates and cell state  
 bf, bi, bC, bo: Biases w.r.t gates and cell state 
 σ: Sigmoid Activation function outputs a value between 0 and 1 for any given input. 
 tanh: Tanh Activation function outputs a value between -1 and 1 for any given input 

and has a steeper gradient as compared to sigmoid. 
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Breaking down the LSTM cell in Figure 2.4, we can understand how the cell functions. The 
operation of each cell can be broken down to each of its gates.[42], [43], [44] 

 

 

2.4.1 Forget Gate – 1 
The white number 1 in Figure 2.4  shows the forget gate, while the equation which is 
responsible for deciding what part of the cell state from the previous timestep (Ct-1) must be 
forgotten. The sigmoid activation is used to output values between 0 and 1, where 1 
represents “completely keep this” while 0 represents “completely get rid of this”. Equation 
2.1 shows the mathematical equation for the sigmoid function of the forget gate.[45] 

 

 

2.4.2 Input Gate – 2 
The white number 2 in Figure 2.4 shows the input gate(it) responsible for determining if 
information should be saved to the cell state or left behind.  

Now that the data to be removed has been handled by the forget gate, we need to evaluate 
what data must be carried to the next time step. This is done in two parts. The first part 
involves the sigmoid function of the input gate (it), which is described by Equation 2.2. It 
determines what data carried by the cell state must be updated and carried forward to the 
next time step. 

The second part is a tanh layer that creates a vector of new values (CȆt) that can be added to 
the current cell state, which is described by Equation 2.4. Tanh activation pushes the values 
between -1 and 1 and inhibits the data that we do not wish to add to the cell state. 

We can now use Equation 2.5 to decide the information to carry to the next timestep (Ct) 
from the outputs of the input gate, new values added to the cell state, forget gate and the 
cell state from the previous timestep.[45] 

 

2.4.3 Output Gate – 3 
The white number 3 in Figure 2.4 shows the output gate (ot). This output gate, in 
combination with the current cell state Ct, obtained earlier, is used to determine the output 
at each timestep. 

The output gate, which is also a sigmoid layer shown in Equation 2.3, decides which parts of 
the cell state we wish to output. Finally, we put the cell state through tanh described by 
Equation 2.6 and multiply it by the output of the sigmoid function to determine the hidden 
state for the next LSTM cell (ht) [45] 
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2.5 Performance Indicators 
To evaluate the performance of prediction models for indoor air quality (IAQ), prediction 
accuracy is measured by comparing the predicted values to the actual data. The discrepancy 
between these values at any given moment represents the error at that point in time. In this 
thesis, error values are frequently plotted over time to provide a visual representation of 
the model's accuracy. 

For a numerical summary of accuracy over the testing period, the Root Mean Square Error 
(RMSE) is utilized. Additionally, the Percentage Root Mean Square Error (%RMSE) is 
employed to compare error rates across variables with differing scales. The %RMSE 
normalises these differences into percentages, making it a valuable metric for cross-variable 
comparisons. In some studies, %RMSE is also referred to as the normalized root mean 
square error. 

Some further performance indicators, include the computational time and the training 
parameters which include training duration, prediction duration and Training generations.  

2.5.1 Root Mean Square Error & Percentage Root Mean Square Error 
To measure the accuracy of the model, we compare the prediction error from the actual 
data. To measure this over a period of time, we use the root mean square of this error and 
the percentage root mean square of this error, which we will refer to as RMSE and %RMSE, 
respectively. This is calculated using the following equations. 

RMSE Equation： 𝑅𝑀𝑆𝐸 =  ට
ଵ

௡
𝛴൫𝑌௣ − 𝑌 ൯

ଶ
   2.7 

Where 

n = number of non-missing data points 

𝑌௣ = predicted time series 

𝑌  = actual observations time series 

 

%RMSE Equation：    %𝑅𝑀𝑆𝐸 =  
ୖ୑ୗ୉

௒೘ೌೣି௒೘೔೙
        2.8 

Where 

𝑌௠௜௡ = minimum value of time series 

𝑌௠௔௫ = maximum value of time series 
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A smaller %RMSE value indicates higher prediction accuracy. However, when 
comparing %RMSE values in IAQ studies, it is important to consider that many factors 
beyond the model itself—such as training parameters—can influence %RMSE outcomes. 
Models trained more extensively generally outperform less rigorously trained models, 
though at the cost of increased computational demands. 

 

2.5.2 Computational time/complexity 
Computational time refers to the duration required for the model to be trained, validated, 
and tested on a computer. In this thesis, all tests related to computational complexity were 
conducted on the same device to ensure consistency and enable relative comparisons. 

Regarding computational specifications, the experiments were performed on a system using 
a single-GPU configuration equivalent to an NVIDIA RTX 3090, capable of approximately 16 
tera floating-point operations per second (TFLOPS). This setup provided sufficient 
computational power to evaluate the models while maintaining consistency across 
experiments. 

 

2.5.3 Training Duration 
Training durations refers to the amount of data used to perform the initial training of the 
model before the model makes predictions. Units for this performance indicators will 
generally be; days, weeks and months. 

 

2.5.4 Prediction Duration 
Prediction duration refers to the time horizon for which the model generates predictions, 
such as forecasting 1 hour or 3 hours into the future. This performance indicator is typically 
measured in units of minutes or hours, depending on the scope of the prediction task. 

2.5.5 Training Generations 
Training generations refers to the number of times the model processes the training data 
before it attempts to make predictions. This performance indicator is typically in the scales 
of tens and hundreds of generations.  

 

2.5.6 Performance indicator Caveats 
It is however to note that variations in computational configurations, datasets as well other 
hyperparameters within LSTM across studies can result in discrepancies, even when 
attempting to replicate another study’s model. To address these challenges, this thesis 
compares results against the base LSTM model and models from other studies, ensuring all 
comparisons use our dataset, computational equipment, and fixed training parameters to 
maintain consistency. 
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3 Literature Review 
This chapter will be initiated by examining alternative analysis models tailored for indoor air 
quality and air quality in general, which have deviated from the Neural Networks approach. 
Following that, the chapter then looks at neural network analysis approaches primarily 
LSTM and GRU to look at indoor air quality and their pros and cons. The chapter then looks 
into a couple of multisite LSTM based models which were proposed for predicting air 
quality. 

3.1 Alternate Analysis Methods 
Various alternate techniques have been proposed for IAQ. They include Multilayer feed-
forward, Multi-level temporal regression, support vector machines, and autoregressive 
models. We will discuss them in this section. 

3.1.1 Multi-level Temporal Regression Models 
Multi-level temporal regression models have been used extensively to predict air quality. 
These models leverage spatial-temporal covariance functions, allowing them to model data 
dependencies over space and time. [46].  Some of these models with complete spatial-
temporal covariance functions have achieved very accurate predictions but require a high 
computational cost to achieve this. [46].  Increasing the complexity of the covariance 
function while increasing the complexity of its hierarchical structure has resulted in lower 
but acceptable accuracy at a reduced computational cost. These models only apply to 
predictions based on data points from fixed location datasets and cannot be applied to new 
air quality monitoring sites.  

The balance between model complexity and computational cost is a recurring theme in air 
quality prediction. While these models are powerful in specific scenarios, their inability to 
generalise to new sites limits their scalability and utility for broader applications, such as 
nationwide air quality monitoring systems. 

 

3.1.2 Support Vector Machines 
SVMs have been applied to predict future pollutant levels and have the advantage of being 
computationally efficient compared to more complex models like temporal regression 
models. However, this comes at the expense of accuracy, typically achieving about 70-80%. 
SVMs are best suited for scenarios where the trade-off between computational cost and 
accuracy is acceptable and fast results are required. [47] 

SVMs represent a compromise in air quality modelling. They offer lower computational 
requirements but at the cost of accuracy. This study showed that a suitably configured SVM 
can achieve %RMSE of 20-30% while keeping with low computational requirements. This 
trade-off makes them suitable for quick estimations but less effective when high precision is 
necessary. 
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3.1.3 Multivariate analysis of variance (MANOVA ) 
Multivariate analysis of variance (MANOVA) is a statistical method used when looking at 
indoor air quality or air quality in general. MANOVA models, once built, provide an accurate 
way to predict air quality based on related factors and have offered significant success in 
predicting PM values in the indoor environment. However, a constructed model from one 
site does not always apply to other sites, as the conditions. [48], [49]Although accurate, this 
model requires building on a site-to-site basis and proves relatively difficult to automate. 
The major negative aspect of applying this method is its lack of scalability and automobility, 
but at the same time, it allows for a deeper understanding of why and what causes the 
relationship between air quality factors and the variables that affect them.  

MANOVA excels at capturing complex relationships in air quality data but lacks the 
scalability necessary for widespread deployment. Its strength lies in its ability to identify 
causal factors, but the model's site-specific nature limits its general applicability. 

 

3.1.4 Autoregressive Integrated Moving Average (ARIMA) 
Autoregressive Integrated Moving Average (ARIMA) is one of the most popular statistical 
methods for time series analysis. As such, there has been some success in using this method 
to look at indoor air quality prediction [50]ARIMA can be divided into two categories: the 
ARIMA and the seasonal ARIMA, called SARIMA, used when there is a periodicity in the data 
series instead. ARIMA predictions evolve over time, using recent data close to the predicted 
period following the process changes as input. Therefore, the ARIMA models adapt quickly 
to possible variations of the series, but they pay this quality in terms of short forecast 
periods. [50]. An ARIMA model has 3 primary components that need to be calibrated in 
order for the model to be used effectively. These components usually have varying values 
for different sites as well as different forecast periods. This results in some difficulty in 
automating this model as these components would need to be recalibrated for not only 
different sites but also different configurations within the same site. Once calibrated this 
study has shown that ARIMA can achieve prediction accuracies of over 90%.  

ARIMA's strength lies in its ability to adapt to time-based changes in data, making it suitable 
for real-time air quality predictions. However, the complexity of parameter tuning limits its 
scalability and automation, especially in dynamic environments where air quality data varies 
across regions. 

 

3.1.5 Hierarchical agglomerative cluster/Multilayer Feed Forward 
Hierarchical agglomerative cluster analysis has provided a method to identify major sources 
of indoor air pollutants. Using this method, 18 variables that largely influence indoor air 
quality were determined. Principal component analysis of each cluster revealed that the 
main factors influencing the high complaint group were fungal-related problems, indoor 
chemical dispersion, detergent, renovation, thermal comfort, fresh air intake location 
ventilation, air filters, and smoking-related activities. [51]. 
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Multilayer feed-forward neural networks have also been used to identify and categorise 
sources of pollutants in the indoor environment. [52]. Both methods have had great success 
in identifying indoor air quality sources in the case of hierarchical agglomerative cluster 
analysis. This has allowed for identifying generic sources of pollutants but not specific 
factors in households that can be changed to improve air quality. At the same time, 
Multilayer feed-forward neural networks have allowed for this identification. However, this 
information is site-specific, and the neural network must be retrained at each site to provide 
reliable results. 

Both methods excel at identifying sources of pollutants but suffer from the same limitation 
as other models—the need for retraining for new sites. This restricts their use in large-scale 
or widely distributed systems but makes them valuable for in-depth analysis of air quality in 
specific environments. 

3.2 Time Series Data Analysis – LSTM/GRU 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have provided the most 
success among all time-based machine learning methods in predicting indoor air quality. 
Both LSTM and GRU have provided similar success in predicting indoor air quality. As GRU 
reduces the number of gates and essential parameters in its analysis, there is some debate 
on whether it loses accuracy by doing this. [53]. As with the other analysis methods, LSTM 
and GRU are also site-specific models, and trained models cannot be relied on when applied 
to another site, but the advantage lies in the ease of automation that these methods offer. 
As such, LSTM and GRU can enable the creation of an automated system that can analyse 
indoor air quality and its factors without much interaction.  

The primary advantage of LSTM and GRU is their ability to handle complex time series data 
while remaining relatively easy to automate. However, the site-specific nature of these 
models poses a challenge for widespread application. 

 

 

3.2.1 Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic 
This study looked at the deployment of Wi-Fi-based low-cost air quality sensors that collect 
data and perform analysis on the cloud. [54]. This study used an LSTM model to forecast the 
upcoming air quality in the deployed locations. Their model achieved an accuracy of 99% 
when provided with approximately 2 months of training data using a prediction duration of 
1 hour. This approach, however, is site-specific, like most other LSTM deployments and will 
need to be retrained for every site. 

This method demonstrates the potential of IoT in improving indoor air quality monitoring 
with promising results. However, the reliance on LSTM’s site-specific retraining poses a 
scalability challenge, especially in environments where conditions differ significantly from 
the original training data. 
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3.2.2 IndoAirSense 
This study looked at a proposed framework called IndoAirSense. This approach deployed 
sensors in specific university classrooms. They first used multilayer perceptron (MLP) and 
eXtream Gradient Boosting Regression (XGBR) to estimate the real-time IAQ of the other 
classrooms without sensors. Following that, they used LSTM-wf, a modified Long Short Term 
Memory (LSTM) without the forget gate, to make predictions of the upcoming air quality. 
Removing the forget gate improved the training time as the LSTM model is considerably less 
complex while maintaining an overall %. However, removing the forget gate, which keeps 
the long-term memory in LSTM, resulted in the model being unable to detect and forecast 
the anomalies and sudden random spikes in the data. [55]. The prime benefit of this 
approach seems to be the incorporation of MLP and XGBR, which provided very accurate 
estimations of the IAQ in adjacent classrooms without sensors. It is likely that the estimation 
accuracy is due to the fact that these classrooms probably had similar physical 
characteristics. Will this accuracy persist if the estimation is made of a classroom in a 
different location or a room with different characteristics that have yet to be tested? 

The IndoAirSense framework is innovative in its combination of MLP, XGBR, and LSTM, 
achieving high accuracy in un-sensored locations. However, the trade-off in anomaly 
detection highlights the risk of oversimplifying models to gain speed. 

 

3.2.3 Combination GRU and LSTM  
This study introduced a combined predictive approach that employed two variations of the 
recurrent neural network (RNN) model, specifically the gated recurrent unit (GRU) and long 
short-term memory (LSTM) models [56]. Their objective was to forecast the daily air quality 
index (AQI) for the major cities of Dhaka and Chattogram in Bangladesh. Their approach 
involved utilising GRU and LSTM as the initial and subsequent hidden layers, respectively. 
These were followed by two dense layers functioning as a prediction model. The outcomes 
demonstrated that their model accurately tracked the AQI patterns for both cities and 
highlighted the enhancement in overall performance achieved by employing both GRU and 
LSTM models, in contrast to using either model individually. However, even this combined 
model retains the characteristics of being site-specific and retraining required for every site. 

3.2.4 Multivariate and multi-output indoor air quality prediction using bidirectional 
LSTM(BiLSTM) 

This study looked at using a bi-directional variation to LSTM to predict individual pollutant 
levels. This study used BiLSTM which is a variation of LSTM that learns the input sequence 
both forward and backwards and concatenate both interpretations. This study used a 
dataset of 5 months and used 60% of the data form training and 40% for validation and 
testing. With a prediction duration(forecast) of 1 hour the study achieved an %RMSE of 3-
6% across all features measured using BiLSTM when compared to LSTM which only achieved 
an %RMSE of 6-9% across all features. [57] 

This method demonstrates a simple yet beneficial method to improve the prediction 
accuracy of an LSTM model when applied to air quality data.  
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3.2.5 LSTM-Autoencoder-Based Anomaly Detection for Indoor Air Quality 
This study proposed an LSTM-AE-based hybrid deep-learning technique for detecting 
contextual anomalies in IAQ datasets. [58] The incorporation of the auto-encoder layer in 
this approach reduces the data dimension and allows for the computation of an optimal 
reconstruction error associated with each time sequence. This reconstruction error is used 
as a threshold to detect contextual anomalies that deviate from the normal pattern. This 
model achieved an accuracy of 99.5%. This seems to outperform another similar model, 
which reached accuracies of up to 99.27%, but this difference is possibly just due to the 
varying characteristics of the datasets. [58] The incorporation of the autoencoder layer 
improved the training time of the model by reducing the data dimension of the LSTM 
model.  

LSTM-Autoencoder models are effective in anomaly detection and improve training 
efficiency by reducing data dimensionality. However, the accuracy of anomaly detection 
may vary based on the characteristics of the dataset. 

 

3.2.6 ARIMA-LSTM combination model optimised by dung beetle optimiser. 
This study looks at a combination model of ARIMA and LSTM while using the dung beetle 
algorithm to optimise the LSTM's hyperparameters. This approach uses ARIMA to break the 
raw data up into linear and non-linear components. ARIMA is then used to make predictions 
on the linear components of the data, while LSTM is used to make predictions on the non-
linear components. Here, the dung beetle optimiser is used to optimise the 
hyperparameters of the LSTM neural networks for each site or set of data input. [59] This 
approach used the normalised AQI instead of looking at the various air quality factors. One 
of the noticeable benefits of this approach was the reduced training time. Another 
significant benefit is the efficiency of the dung beetle optimiser, which reduces the time 
taken to optimise the model and keeps the model optimised efficiently. However, this 
model, similarly to the other LSTM models, is site-specific and requires retraining when 
datasets from different places are used. 

 

3.2.7 Data-driven model for predicting indoor air in naturally ventilated educational 
buildings. 

This study investigated the combined use of multiple machine learning (ML) techniques to 
enhance air quality in naturally ventilated schools, with a primary goal of identifying the key 
factors influencing indoor air quality in these settings. The methods focused mainly on a 
combination of multilayer perceptron, support vector machines (SVM), and long short-term 
memory (LSTM) networks. [60]Some success was achieved in analysing multisite data, 
particularly through the use of multilayer perceptron and SVMs. However, LSTM models 
encountered difficulties when applied across multiple buildings. The study achieved a mean 
test accuracy ranging from %RMSE values of 46.4% to 19.5%, with maximum test accuracies 
between 19.3% and 18%. 
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As the study progressed, efforts centred on using these techniques to identify factors that 
could improve indoor air quality on a one-time basis, rather than creating a dynamic model 
capable of adapting to changing conditions in real time. 

 

3.2.8 Sequential prediction health risk assessment for the fine particulate matter using 
deep recurrent neural networks. 

This study used ML techniques to find and improve air quality in the subway. The study 
concluded that LSTM and GRU were the most suited ML techniques to forecast air quality in 
indoor environments in general.[61], [62]. This study looked at incorporating what they 
called surrogate indicators into the model to help indicate when the air quality would 
deteriorate. These surrogate indicators included current airflow, time of day and number of 
people in the station. Using these surrogate indicators they successfully built a model that 
could successfully predict when the air quality would deteriorate based on the surrogate 
indicators. It was found that indoor environments such as each subway station tend to be 
microenvironments where characteristics of 1 environment's characteristics would vary.  

 

The study proposed that to achieve sustainable IAQ monitoring, multiple GRU models for 
each subway microenvironment would need to be incorporated through the use of low-cost 
sensors, as the model for each environment and station would need to be trained 
separately. 
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3.3 Multisite studies 
 

3.3.1 Multi-site and multi-hour air quality index forecasting in Beijing using CNN, LSTM, 
CNN-LSTM, and spatiotemporal clustering. 

This study looked at using convolution neural networks (CNN), LSTM, a combination of CNN 
and LSTM(CNN-LSTM), as well as spatiotemporal clustering to predict air quality in both 
indoor and outdoor environments across multiple sites in Beijing. [63]This study chooses to 
use an approach to predict and measure the air quality index (AQI) instead of the individual 
air pollutant levels. In this study, it was found that using purely LSTM for multi-site 
predictions wasn’t suitable due to the site-specific nature of the air quality data. However, 
using the CNN-LSTM combination, they managed to circumvent this issue and successfully 
used it to make multi-site predictions.  

The study utilised two years of data, with 70% allocated for training (approximately 16 
months) and the remaining 30% for testing and validation. Prediction durations ranged from 
1 hour to 6 hours, though the study provided limited details on the LSTM's remaining 
hyperparameters. Results showed that LSTM and CNN-LSTM were the most effective 
models for multi-hour air quality predictions, with CNN-LSTM outperforming LSTM by 2–3% 
in terms of RMSE for multi-site predictions. For shorter forecast periods (1–2 hours), the 
performance of both models was comparable. However, the CNN-LSTM demonstrated 
superior accuracy for longer forecast periods (3–6 hours). Based on the data provided by the 
study, we estimate the %RMSE of the model using CNN-LSTM to be about 4% 

The study concluded that LSTM was the optimal model for Air quality prediction. The 
performance difference between the LSTM and CNN-LSTM was relatively small, but CNN-
LSTM had a higher computation complexity. 

 

 

3.3.2 Forecasting urban air pollution using multi-site spatiotemporal data fusion method 
(Geo-BiLSTM) 

This study looked at creating a multisite model using LSTM and a data fusion method before 
feeding the data through a BiLSTM model. The study used Krigan Interpolation to transform 
the data of a target site and its eight neighbouring sites to be used as an input into a large 
Bi-LSTM model. This study focused on predicting PM2.5 and O3 levels only in the outdoor 
environment, and no testing was done using indoor data. The study made comparisons of 
this model with the aforementioned CNN multisite study as well as standard LSTM, GRU and 
BiLSTM models. [64]  

The study used two years’ worth of data to train the model, followed by 2 months of 
validation and testing. Prediction durations of 96h were used for testing in this study, as the 
study primarily focused on the outdoor environment. However, some data on shorter 
prediction durations could be extrapolated from the graphs. At the prediction duration of 
96h, the Geo-BiLSTM model achieved an RMSE of 34.42 when compared to 76.11 of a 
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standard LSTM model. Based on the data on these graphs, these RMSE values translate 
roughly to a %RMSE of 17% for the Geo-BiLSTM model and 38% for the standard LSTM 
model. The study found that in this prediction duration of 96h, the Geo-BiLSTM model 
achieved the best results using their test data. 

The results shown through the use of this Geo-BiLSTM model show that by incorporating 
the Krigan interpolation for data fusion into a BI-LSTM model, they have achieved an 
improvement in large-scale prediction of air quality information. However, the research 
done only looks at using data from adjacent sites in the model, as their focus was looking 
into spatial relationships between sites; it would be interesting to look into incorporating 
sites which are further apart to see how this would interact with this model.  

3.4 Summary 
In this chapter we had begun by reviewing multiple alternative methods for IAQ analysis. 
Delving into these studies has furnished insights into certain indoor air quality 
characteristics, which could help understand some of the findings observed in this 
investigation. These alternative methodologies serve as a comparative framework, enriching 
our understanding of the nuances involved in indoor air quality analysis and prediction. 
Through this comparative analysis, we found that apart from LSTM there are a few methods 
that are suitable for application on IAQ. Methods such as SVMs and ARIMA are feasible 
alternatives to make time-based predictions, while techniques such as MLFF provided a way 
for data classification as opposed to predictions. 

In reviewing various LSTM approaches, it is evident that LSTM emerges as both a prevalent 
and effective methodology for predicting indoor air quality. Its efficacy is manifested 
through the high predictive accuracy exceeding 95%, as observed in multiple studies. 
Nonetheless, a recurrent characteristic associated with these LSTM approaches is the site-
specific nature of this application domain. Such site-specificity necessitates retraining the 
LSTM model for each distinct site within an application. This study ventures into a multi-site 
model to find interlinking attributes among various sites.  

We had then investigated a couple multisite variation to LSTM. These model which albeit 
were applied to primarily outdoor air quality provide methods in which LSTM could be 
modified to create a model that incorporated spatial data on top of temporal data into the 
LSTM model. 
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4 Hardware and Training Methods 
 

This chapter looks at the overall hardware architecture of the system as well as the 
specifications of the various hardware components selected, including their models and 
accuracies. This hardware design provides a foundation for data to be collected and, based 
on that, how the training of the model is performed. We then look at the various training 
methods attempted and how they perform for this application. One of these methods 
highlights one of my work's novelties. In this chapter, we will compare how these three 
methods work as well as the variations they will provide in the accuracy of prediction and 
computational time. 

 

4.1 Hardware Design 
4.1.1 Design Overview 

 
Figure 4.1 Data collection system architecture. 

Figure 4.1 Highlights the design architecture of the data collection hardware. The system 
hardware comprises the sensor modules, database hubs and the central server. First, a 
series of wireless sensor IoT modules collect the air quality data every 1 minute. These 
sensor modules wirelessly transmit the data to the local database hubs using LoRa 
technology. The database hubs can also be integrated with the local home automation 
systems at the sites to collect additional data, such as the state of the lights as well as 
heating, ventilation and cooling (HVAC), at any moment in time. These database hubs then 
synchronise all the collected data with the centralised server over the internet.  

One of the main aims of the design of this system was the scalability of the system. There 
are two scalable aspects of this system. First, each site's database hub is configured to allow 
up to 256 sensor modules. This limit is, by design, due to the allocated address size of 8 bits 
for each sensor node. The second scalable aspect is the number of sites linking to the 
central server. Our setup allows up to 150 sites to be connected to a single central server. 
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However, we are capable of increasing this number further through either some 
configuration changes or the use of intermediary servers. 

 

4.1.2 Sensor Modules 

 
Figure 4.2 Sensor module architecture. 

 

 
Figure 4.3 Sensor module. 

Figure 4.2 shows the overall architecture of each sensor module, while Figure 4.3 is a 
physical picture of a sensor module without its cover showing all its components. These 
modules do not store data but send live data to the database hub every minute. A polling 
rate of once per minute was chosen as the sensor modules are mostly battery-powered, and 
we believed this to be a reasonable polling rate while still considering power consumption 
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and battery life. We will now look at the individual components of the sensor module and 
how they are connected to each other. 

4.1.2.1 Main microprocessor 
The microprocessor (MCU) used in the sensor modules is an STM32L432KCU6; specifically, 
we used the Nucleo-L432KC development board in these initial prototypes. We chose this 
microprocessor because it is a readily available ultra-low-power MCU. Some of the other 
specifications that affected the selection of this MCU were the 256Kb flash, 64Kb SRAM, 
built-in ADC, I2C bus, and SPI bus. [65], [66] 

4.1.2.2 Wireless LoRa module 
The wireless module used is a UCL in-house LoRa module. We selected this module for its 
low power consumption and max communication range of 11.2 km. This module 
communicates with the MCU using UART. When the MCU sends its strings, the module 
transmits them to the receiving LoRa module on the database hub. 

4.1.2.3 PM 2.5 sensor 
The PM 2.5 sensor used is a GP2Y1010AU0F. Some of the main factors in choosing this 
sensor were its low cost and the voltage required to power it. This sensor could be powered 
with anything from 2.5-5 V, and as such, we could power it directly from the built-in voltage 
regulator of the MCU, which supplies 3.3V. This sensor has an analog output of 
0.5V/(100μg/m3), which is fed into the ADC of the MCU. The sensor also has a sensitivity of 
100μg/m3. [67] 

4.1.2.4 Temperature, humidity and pressure sensor 
We used a BME280 as it is a combined temperature, humidity and pressure sensor which is 
readily available. Another primary reason for choosing this sensor was its supply voltage of 
1.7-3.6 V, which the built-in linear voltage regulator of the MCU could directly supply. This 
sensor has a temperature accuracy of 1.25 °C, relative humidity accuracy of 3% and pressure 
accuracy of 100 Pa. This sensor communicates to the MCU via I2C. [68], [69] 

4.1.2.5 TVOC and eCO2 sensor 
The TVOC and eCO2 sensor used is a CCS811. This module was chosen primarily due to its 
low price to allow for mass deployment. However, it has a few drawbacks compared to 
other higher-priced TVOC modules. One of them is that the accuracy of the module is 
affected by the surrounding temperature and humidity and that the sensor needs to be 
heated up slightly to function. Fortunately, regarding heating, the sensor has a built-in 
heater to allow for this. Regarding the temperature and humidity affecting the accuracy, the 
manufacturer has supplied an algorithm that uses temperature and humidity readings to 
compensate for this variable accuracy. As we have live temperature and humidity values, we 
applied the algorithm to the MCU for all values pulled from the sensor. This sensor 
communicates to the MCU via I2C. [70], [71] 

4.1.2.6 Battery & power 
We used a TP4056 charging module and a Panasonic NCR18650B battery to supply power 
for the sensor module. The TP4056 allows us to power the module using the battery or 
directly with a 5V USB power supply. The module charges the said battery using the same 



35 
 

5V USB power input. The NCR18650B has a capacity of 3350 mAh, which can power the 
sensor module for approximately three months after a full charge. Power management is 
handled by the TP4056, which supplies 5 V to the MCU development board, which can then 
step it down using its built-in voltage regulators to 3.3V for the MCU itself, as well as the 
various other sensors and the wireless module.[72], [73] 

4.1.3 Database Hub 
The database hub consists of a Raspberry Pi Zero W (RPi) [74] Running RaspbianOS 
connected to a LoRa module developed in-house over UART. The LoRa module will send the 
data strings to the RPi upon receiving them from the sensor modules. The RPi will then 
parse the strings and store the individual sensor values, the sensor's identifier, and a 
timestamp in a MariaDB SQL database running on the hub. [75] We chose MariaDB due to 
its stable performance in data replication, which we used to connect the local database 
hubs to the central server. Using the collected data points, the hub can perform some 
simple analytics on data, such as running a trained model for short-term air quality 
predictions. 

These database hubs also integrate with the existing automation system to collect more 
data and can control a building's automation. Integration is achieved through data 
communication protocols commonly used in building automation. The protocols include 
BACnet IP, RS232 through an in-house protocol, KNX, TCP socket via an in-house protocol, 
and Modbus. 

4.1.4 Central Database 
The final hardware component is the central database, a larger server that runs a MariaDB 
database. Our current application runs the central database on a Windows PC. The database 
hubs will replicate their databases through multi-master replication to this central 
database.[75], [76] Multi-master replication allows the central database to have a complete 
collection of all the data points of all the data collection sites cumulatively, while the 
database hubs only have the data points of their site. The central database can then 
perform more compute-heavy analytics on the data, such as multisite analysis and training 
of prediction models for the sites. 

4.1.5 Sites and Sensor Distribution 
For the initial testing and deployment of the system, we have deployed it at five sites with 
varying numbers of sensors at each site. Table 4.1 It shows the site locations and the sensor 
distribution at each site. The number of sites and locations were chosen and limited by the 
number of sites and locations for which we could get access to and consent for collecting 
data. 

Site Reference Location Location Type No. Of Sensors Sensor Locations 
Site A (1) Islington House 3 Lounge, Kitchen, Bedroom 
Site B (2) Stockwell House 4 Lounge, Kitchen, Bedroom 

(2) 
Site C Chiswick Office 2 Office space, Reception 
Site D (3) Euston Apartment 3 Lounge, Kitchen, Bedroom 
Site E (4) Docklands Apartment 2 Lounge, Kitchen 

Table 4.1 Sites and sensor distribution 
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4.2 Training Methods 
The hardware system described in 4.1 was crucial in collecting indoor air quality data across 
all study sites. LSTM models were selected for their demonstrated effectiveness in analysing 
air quality data, as elaborated in3.2. LSTM was intentionally chosen over GRU to maintain 
consistency in our testing framework. The analysis process using LSTM commenced with a 
thorough investigation of multiple training approaches, emphasising data input structures 
and prediction methodologies. 

4.2.1 Description of Methods 
When applying LSTM on a data set where the sample data constantly grows in size, we 
observe that the traditional way of using fixed duration in LSTM is not always ideal. As in 
some applications of LSTM, the accuracy of the predictions can decrease over time. This loss 
of accuracy is due to changing characteristics of the sample data, which is caused by the 
large number of unaccounted factors that can affect the data. Our indoor air quality dataset 
broadly fits into this type of dataset due to the large amount of human and environmental 
factors that can affect the data. 

In order to circumvent this loss of accuracy over time, we will look at the three variations of 
how we have applied LSTM to the data set, including the aforementioned traditional 
method. To simplify the description of the methods, we assume we have a fixed sample of 
data N seconds long instead of an ever-expanding data set. 

 

4.2.1.1.1 Fixed training duration 
 

 
Figure 4.4 Fixed training method. 

In the traditional method of applying LSTM, a fixed duration of data is used as the training 
data, which is run through the LSTM model repeatedly. This method is the traditional way of 
applying LSTM onto a dataset. We label this fixed training duration as T. We then obtain a 
fully trained model based on the data from the training duration. The trained model is then 
used to create a prediction for the rest of the sample data. We label this prediction duration 
as P. The prediction data is compared to the collected data, and the error between the 
predictions and the actual data measures the performance. Things to note with this method 
is that the total size of the data is always equal to the sum of T and P, as we can see in. 
Figure 4.4. The model also does not give any additional input past the training duration. In 
our testing and comparison of the training methods, we used a training duration of 4 weeks 
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(T=4 weeks). For the traditional method, we tested with a prediction duration of 1 month up 
to 4 months. 

4.2.1.1.2 Shifting training duration (Moving method) 

 
Figure 4.5 Shifting Method 

Unlike the traditional method, the shifting training duration method is split into multiple 
steps, as shown in Figure 4.5. Using this method, we create shorter prediction durations, 
each of size P. As we can see in Figure 4.5, step 1, the initial training duration(T) is the same 
as the fixed method, but the prediction duration(P) is shorter and does not cover the whole 
sample duration. In Step 2, we shift the training and prediction sections by P away from the 
zero point. Thus, we can now obtain the next prediction duration that starts where the 
prediction duration of step 1 ended, i.e. t = T + P. We then repeat this process in step 3 and 
shift the training duration by 2P. This shifting process is repeated for n number of steps until 
we obtain enough prediction durations to combine into a complete prediction duration the 
same as the one in the traditional method, i.e. N. In this method, the total data size(N) is 
equal to the sum of the product of the number of steps(n) and the prediction duration(P) 
with the training duration(T), i.e., N = T + n × P.  

The primary benefit of this method is that as predictions are never made too far away from 
the training duration, we minimise the increasing prediction error over time. However, the 
model must be retrained at each step, and training the model is computationally time-
consuming. Ideally, we want P to be as small as possible for the highest accuracy. However, 
due to each step taking up computational time, we require P to be larger than each step's 
computational time, which is determined by the size of T. The computational time of each 
step is variable and cannot be predicted accurately, meaning we need a suitably significant P 
for this method to work. In our testing, in comparing the training methods, we used an 
initial training duration of 4 weeks (T=4 weeks). For the shifting method, we tested with a 
prediction duration of 1 hour up to 1 week. 
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4.2.1.1.3 Expanding training duration (Update Method) 
 

 
Figure 4.6 Update Method 

Lastly, we look at the expanding duration method. This method introduces an update 
duration(U) to the model. As depicted in Figure 4.6, step 1 is identical to the shifting training 
duration method where the model is initially trained with training duration T, and a 
prediction duration of size P is made. In step 2, however, we see that instead of shifting the 
training duration, we add an update duration of size U between the training and prediction 
duration. To simplify this process, U is kept the same size as P. In step 3, we add another 
update duration of size U and repeat this in every step until step n. 

Similarly to the shifting training duration method, we will now have multiple prediction 
durations starting where the previous duration ends. These prediction durations can be 
combined to create a complete prediction duration similar to the fixed training method. The 
primary difference between the expanding training duration and shifting training duration is 
that the data in the shifting training duration the model is trained from fresh at each step. In 
contrast, the expanding training duration method does an initial training once in step 1 and 
then performs updates to the initial training where the model continuously performs minor 
self-corrections. To allow for this self-correction the model needs to be continuously fed 
real time data which the model will back propagate into itself to perform the self-
corrections within the model. 
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This expanding method does not require us to retrain the model at each step; instead, 
during the initial training, the model is built with additional inputs to allow for updates. 
These update steps do not require much computation, allowing us to shrink U to as low as 
the sampling rate. This adds the benefit of enabling us to perform the updates on the model 
in real-time. However, compared to the shifting method, we have a slight performance 
decrease in prediction accuracy. In our testing of comparing the training methods, we used 
an initial training duration of 4 weeks (T=4 weeks). We tested the expanding method with a 
prediction duration of 1 hour up to 1 week and an update duration from 1 minute to 12 
hours. 

 

4.2.2 Comparison of results from training methods 
We look at testing the three different training methods described in section 4.2.1. When 
testing and comparing these three methods, we assess their performance using two 
measures. The first is the model's prediction accuracy compared with the observed data in 
the testing period; we quantise using the error function root mean square error between 
the predicted data and observed data over the testing period. The second criterion would 
be the computational time of each method. In this testing, we will use a fixed training period 
of 12 weeks and a testing period of 4 weeks. In terms of compute specifications, all training 
and computing were done on the same PC using a single-GPU piecewise config, with an RTX 
3090 equivalent to about 16 tera floating point operations per second (TFLOP). 
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Figure 4.7 Comparison of LSTM predictions using different training methods for PM 2.5 – 2 Week Period
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Figure 4.8 Comparison of LSTM predictions using different training methods for PM 2.5 – 1 Month Period 
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Figure 4.7 and Figure 4.8 shows the observed and prediction data using all three training 
methods for Particulate Matter 2.5. Figure 4.8 also shows the three error functions for the 
three training methods and their RMSE over the testing period. The computational time for 
each of these methods is highlighted in Table 4.2. Looking at the plots in Figure 4.8, the 
closest fit between the observed data and prediction is seen with the moving method 
followed by the update method. We can see this more clearly when comparing the error 
function between the predicted and observed data for each method. The moving method 
has the lowest root mean square error (RMSE) of 4.1697, the update method RMSE is 
5.6573, and the traditional method RMSE is 10.4661. It is suspected this variation in 
prediction accuracy is because both the update method and moving method are provided 
with the observed data during the test period as well as the original fixed observed data 
during the training period, while the traditional method is only provided with the specified 
fixed amount of observed data during the training period. The discrepancy between the 
accuracy of the moving method and the update method is likely due to the moving method 
reiterating its training multiple times with the observed data in the test period. In contrast, 
in the update method, the newly observed data in the test period is only fed once to 
“update” the model.  
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Figure 4.9 Comparison of LSTM predictions using different training methods for VOC – 2 Week Period 
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Figure 4.10 Comparison of LSTM predictions using different training methods for VOC – 1 Month Period 

Oscillating Pattern 
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Figure 4.9 and Figure 4.10 shows the observed and prediction data using all three training 
methods for VOC. Figure 4.9 also shows the three error functions for the three training 
methods and their RMSE over the testing period. Looking at the plots in Figure 4.9, the 
closest fit between the observed data and prediction is seen with the moving method 
followed by the update method. We can see this more clearly when comparing the error 
function between the predicted and observed data for each method. The moving method 
has the lowest root mean square error (RMSE) of 0.059244, the update method RMSE is 
0.082877, and the traditional method RMSE is 0.23181. 

 

We also observe with the traditional training method; the predictions form an oscillating 
pattern from roughly March 8th. The traditional training method also only shows a rough fit 
to the observed data from March 2nd till March 4th; past this point, no observable fit 
between the predictions of the traditional method with the observed data and a loose 
oscillating pattern forms in the predictions. This oscillating pattern is marked in Figure 4.10.  
We suspect that these Oscillations are due to the model thinking it has identified a pattern 
in the VOC from the initial training period. However, with the traditional method the model 
is not aware of any changed in the environment, due to not being given any new data since 
the end of the training period (March 1st in this case)  
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Figure 4.11 Comparison of LSTM predictions using different training methods for CO – 2 Week Period 

Error Corection 
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Figure 4.12 Comparison of LSTM predictions using different training methods for CO2 – 1 Month Period 
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Figure 4.11 and Figure 4.12 shows the observed and prediction data using all three training 
methods for CO2. Figure 4.11 also shows the three error functions for the three training 
methods and their RMSE over the testing period. Looking at the plots in Figure 4.11, the 
closest fit between the observed data and prediction is seen with the moving method 
followed by the update method. We can see this more clearly when comparing the error 
function between the predicted and observed data for each method. The moving method 
has the lowest root mean square error (RMSE) of 66.8291, the update method RMSE is 
89.0474, and the traditional method RMSE is 721.43. 

 

Similarly, with VOC we see a similar pattern with CO2, where we only see a rough fit 
between the traditional training method and the observed data from March 2nd till March 
3rd; past this point no observable fit between the predictions of the traditional method with 
the observed data and an oscillating pattern forms in the predictions.  

 

This oscillating pattern, which we observed in the traditional training method of the VOC 
predictions and more pronouncedly in the CO2, is likely due to the model picking up patterns 
in the data during its training period. This and the fact that the traditional model is unaware 
of any changes in the new data due to environment or other conditions. In the case of both 
the Moving and expanding model, this oscillating pattern doesn’t form because the models 
get newer data, allowing them to correct any spikes they think could develop but don’t in 
real life. In Figure 4.11 we show an area marked with error correction that is likely this exact 
situation happening where the moving and expanding model begin forming a spike but after 
a small delay( the forecast period) the models correct this spike and converge back towards 
the observed data 

 

 Traditional Moving Expanding 
PM2.5 3m 22s – 10.3079 40m 02s – 4.9214 7m 58s – 7.5271 
VOC 2m 48s – 0.23181 38m 38s – 0.059244 8m 17s – 0.082877 
CO2 3m 16s – 731.43 45m 13s – 66.8291 9m 15s – 89.0474 

Table 4.2 Comparison of computational time and RMSE for 2-week period for each training method 

Table 4.2 shows a summary of the training times for each model for each pollutant in a 
week prediction period with their respective RMSE. We see the same pattern with all the 3 
pollutants, where the traditional method consistently has the lowest training time but the 
highest RMSE, while the Moving method consistently has the lowest RMSE but a much 
higher training time. The expanding method sits in between but with an RMSE allot closer to 
the moving method while keeping a training time significantly closer to the traditional 
method. As such, in terms of our application of air quality predictions, we believe the 
expanding method to be the most suitable for its balance of accuracy and computational 
speed. 

 



 

49 
 

 

4.2.2.1 Moving Method - Testing Different Predictions windows (Shifts) 
Here we look at testing the affects varying different prediction windows in the moving 
method and how it affects both the compute time and accuracy of the model. As highlighted 
in Section 4.2.1.1.2 the size of the prediction window used is equivalent to the shift of the 
training duration per step.  We tested the prediction windows from using the smallest 
possible duration of 1 minute as this was the sample rate of the data, up to a duration of 24 
hours (1440 minutes). 

 

 
Figure 4.13 Moving Method - %RMSE when Varying Prediction Window 

 
Figure 4.14 Moving Method - Compute time per shift at different prediction window. 
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Figure 4.13 shows the %RMSE at different prediction windows for each Pollutant. We see 
that the %RMSE slowly rises as we increase the size of the prediction window, where is hits 
the 10% RMSE mark at the 360-480 minute mark depending on the pollutant. It was also 
observed in Figure 4.14 that the compute time per shift is also within a fixed range of 190 – 
230 seconds( roughly 2 – 4 minutes) regardless of the size of the update duration. The 
magnitude of this computational time graph will vary based on computational power of the 
system used thus if there are hardware changes on final application this analysis will need to 
be repeated. In order to achieve real time predictions, we require the predictions to be 
made/calculated before the next prediction window begins. As such the smallest possible 
prediction window feasible would be limited by the compute time, in the current setup this 
would result in a smallest possible prediction windows of 2 – 4 minutes, before accounting 
for any additional tolerance.  

 

4.2.2.2 Expanding Method - Testing Different Update Durations 
Here we look at testing the affects varying different update durations for the expanding 
method. We tested the expanding method using the smallest possible update duration of 1 
minute as this was the sample rate of the data, up to an update duration of 24 hours (1440 
minutes). 

 
Figure 4.15 Expanding Method - %RMSE when Varying Update Durations 



 

51 
 

 
Figure 4.16 Expanding Method - Compute time per update at different update durations. 

 

Figure 4.15 shows the %RMSE at different Update durations for each Pollutant. We see that 
the %RMSE breaks the 10% error mark at about 60–180 minute update durations depending 
on which pollutant is looked at. However, it was also observed in Figure 4.16 that the 
compute time per update duration is the same regardless off the size of the update 
duration. This will graph will vary based on computational power thus if there are hardware 
changes on final application this analysis will need to be repeated. However, the compute 
time per data point remains well below 1s even at update durations of 1 minute using 
current hardware which leaves a large amount of tolerance to reduce computational power. 
As such we believe that the minimum possible update duration of 1 minute is ideal.  

 

When comparing how varying the prediction window in the moving method and the update 
duration in the expanding method we see that increase either of these variables in their 
respective methods will have a negative effect on the %RMSE with the expanding method 
generally having a worse %RMSE compared to the moving method but the magnitude of the 
each compute step in the expanding method is much lower than the moving method, 
resulting in allowing use to use much smaller updates in the expanding method. Currently 
the minimum compute time for the moving method was shown to be 2-4 minute, however 
later in this thesis we begin incorporating multivariate and multiple sites to the model which 
significantly increases the compute time of the model. The study choses to move forward 
with the expanding method as the accuracy performance to compute time is much more 
suitable for real time predictions.  
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4.3 Chapter Summary 
This chapter began by examining the system's overall hardware architecture and the 
specifications of the various hardware components selected, including their models and 
accuracies. This system architecture provides a backbone for data collection and thus 
provides a large amount of data to test the outlined training method the rest of the chapter 
goes through. We compared how these three methods work and the variations they will 
provide in prediction accuracy and computational time. Method 3 of this chapter shows our 
approach to training the model, which aims to use a small sacrifice in prediction accuracy for 
a significant boost to computational time. 
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5 Overall Model Optimisation & Multisite model proposals. 
This chapter begins by looking at methods to optimise the model using various known 
methods. We will be looking at different ways of improving prediction accuracy and the 
characteristics of LSTM that need to be tweaked to make it suitable for air quality 
predictions. This chapter mainly provides a foundation to build on for the next Chapter, 
which is the main novelty of my work. Following basic optimisation, we dive into looking at 
linking models of multiple sites to optimise further and improve the performance of the 
model. We show my novel method of incorporating data from multiple sites into a 
predictive model. This has historically proved challenging because air quality data is very 
localised. We aim to use this novel approach to have a macroscopic look at indoor air quality 
across multiple locations and, from this data improve the performance of air quality 
predictions. 

5.1 Initial Optimisation 
5.1.1 Model Training Optimisation 
When looking at training the previously mentioned LSTM models in section 4.2 using the 
collected indoor air quality data, there are a few factors to consider in optimising the 
training process regarding accuracy and speed. The factors we look at here are as follows. 

1. Training Duration (T) 
a. This refers to the duration of data used in the model training before any 

predictions are made.  
b. This applies to all 3 training methods: fixed, shifting and expanding training 

duration. 
c. Tests were done with training duration from 1 day up to 3 months. 

2. Prediction Duration (P) 
a. This refers to the length of the prediction duration made by the model. 
b. While this duration exists in all 3 training methods, it cannot be optimised in 

the fixed method, and the duration will be predetermined by the size of the 
data set (N) and the training duration (T). As such, the optimisation of this 
variable was only looked at using the Shifting and Update training duration 
methods. 

c. Tests were done with a prediction duration of 1 minute up to 1 day. 
3. Training generations 

a. This refers to the number of times the model processes the training data 
before it attempts to make predictions. 

b. This applies to all 3 training methods, fixed, shifting and expanding. 
c. Tests were done with training generations as low as one up to 30,000. 
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In each of these factors, we will look at varying the factor itself and how that affects both 
the model's accuracy and the computational speed. All computations are performed on the 
same machine to keep tests consistent. We have used single variate data in all these cases 
to speed up training at all iterations while testing the instances. Apart from the variables 
being optimised, the other 2 variables were kept constant while performing the 
optimisation.  

5.1.1.1.1 Target %RMSE 
%RMSE is the main performance benchmark selected to look at indoor air quality 
predictions. In selecting a cutoff point for an acceptable %RMSE we need to consider a few 
things. Mainly %RMSE is just a numerical indication of how accurate the model is compared 
to the real data, the main determining factor of how the model performs is if the model 
data fails to show spike in air quality data. 

 

 
Figure 5.1 17% RMSE - Peaks and troughs less visible 

 
Figure 5.2 8% RMSE - Peaks and troughs still somewhat visible 
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We see in Figure 5.1 and Figure 5.2 the difference in the visibility of peaks and troughs when 
we look at a prediction with 8% RMSE and 17% RMSE. In Figure 5.2 we still can clearly see 
when there are spikes in air quality while in Figure 5.1 the spikes  appear much more muted. 
As such we initially choose to use a 10% %RMSE as the largest acceptable error. To further 
reinforce this other studies which were highlighted in sections 3.2.7, 3.3.1 and 3.3.2 also use 
10% %RMSE as their cut off point. Furthermore, this study will later further improve 
the %RMSE using other methods, and some evaluations are done with reduced parameters 
to reduce computational time. 

 

 

5.1.1.2 Training Duration 
We started the optimisation by looking at the training duration. When testing various 
training durations look at testing the training duration we kept the other training factors 
constant. In this case, we had kept the prediction duration to 2 hours and the training 
generations to 300. The following tests are all performed using the expanding method, as 
we believe this method is the best for our application. 
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Figure 5.3 PM 2.5 Comparing Training Durations 
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Figure 5.3 shows an initial comparison of the PM 2.5 level predictions. In this initial 
comparison, we used training durations of 1 week 2 weeks and 4 weeks, shown with the 
orange, yellow and purple lines, respectively. At the bottom of the figure, we have shown 
the error function of each of the predictions compared to the observed data and 
their %RMSE, which we use as a numerical measure for the performance of the predictions. 
We see in Figure 5.3, the %RMSE increases from 45.0498 to 23.3737 and finally 7.9025 with 
1 week, 2 week and 4 week training respectively. This implies a larger training duration 
provides a more accurate prediction.  

Further, using the %RMSE of the predictions, we can plot a graph of this %RMSE at various 
training durations to further assess how the training duration affects the prediction 
accuracy.  

To further test the effects of the training duration on the prediction accuracy, we will 
proceed by plotting the RMSE over a 2-week testing period using varying training periods 
from 0.5 weeks to 12 weeks. This test will be repeated with data from 7 sensors which we 
distributed amongst 3 sites at varying locations. 

 
Figure 5.4 PM 2.5 Training Duration Optimisation 

Figure 5.4 shows how the %RMSE varies as we change the training duration of the model for 
particulate matter. We can see from this that the performance increase is most significant 
up to week 2, while we still see significant improvements up to week 3. After that point, we 
gradually get diminishing performance improvements as we increase the training duration.  
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Figure 5.5 VOC Training Duration Optimisation 

We repeated the same test looking at VOC instead, shown in Figure 5.5. Here we see a 
similar pattern where the performance increase diminishes as we use larger and larger 
training durations. However, in the case of VOC, we notice that the initial %RMSE on the 
VOC prediction at even one week is lower than the %RMSE in the case of PM. We also can 
observe that the %RMSE approaches the 10% mark at about four weeks but stays 
consistently below the 10% mark after week 7 and 8. 

 

 

Figure 5.6 Carbon Dioxide Training Duration Optimisation 
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Figure 5.6 shows the same optimisation test but looks at Carbon dioxide instead. Here we 
observe the repeating pattern of the first four weeks leading to the most improvement, but 
in the case of Carbon Dioxide, little to no progress can be seen past the 5/6-week mark. 

 

5.1.1.3 Prediction Duration 
 

We performed a similar test as with the training duration with the prediction duration, but 
instead of varying the training duration, we changed the prediction duration while keeping 
all other variables constant. For this test, we kept the training generation at 300 and the 
training duration at six weeks. 

 

 

Figure 5.7 PM 2.5 Prediction Duration Optimisation 

Figure 5.7 shows the effect of an increasing prediction duration on the %RMSE of the model 
for PM 2.5, which indicates the model's accuracy. We can see that the model's accuracy gets 
worse as we increase the prediction duration. Values past the 5-hour mark start to surpass 
the 10% mark. Another observation is that past 20 hours, the %RMSE looks like it may be 
plateauing. We suspect this is because the error is as high as it can be while still within the 
limits of the possible readings. 
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Figure 5.8 VOC Prediction Duration Optimisation 

Figure 5.8 shows the effect of an increasing prediction duration on the %RMSE of the model 
for VOC, which in turn indicates the accuracy of the model. We can see that the model's 
accuracy gets worse as we increase the prediction duration. Values past the 9-hour mark 
start to surpass the 10% mark. Compared to PM 2.5, we see a more accurate prediction for 
longer. We suspect this is due to the random nature of PM 2.5 readings, which we can see 
when we compare Figure 4.8 and Figure 4.9. In these figures, we see that VOC has some 
form of recurring pattern while PM 2.5 is almost completely random

 

 

 

Figure 5.9 Carbon Dioxide Prediction Duration Optimisation 
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We can see in Figure 5.9 that Carbon Dioxide behaves very similarly to VOC. This is likely 
because the Carbon Dioxide sensor being used is an eCO2 sensor which is linked to the VOC 
sensor. 

 

5.1.1.4 Training Generations 
 

We performed a similar test with the training duration and the prediction durations for the 
training generations. We changed the number of training generations while keeping all 
other variables constant. For this test, we kept the prediction duration at 3 hours and the 
training duration at six weeks. 

 

 

Figure 5.10 PM 2.5 Generations Optimisation 

Figure 5.10 shows how the number of training generation affect the %RMSE for PM 2.5. We 
see that most performance improvement happens up to the 250-350 generation mark. We 
still get improvement in performance past this point, but the returns are less significant. 
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Figure 5.11 VOC Generations Optimisation 

Figure 5.11 shows how the number of training generation affect the %RMSE for VOC. We 
see that most of the performance improvement happens up to the 250-350 generation 
mark. We still get improvement in performance past this point, but the returns are less 
significant. 

 

 

 

Figure 5.12 Carbon Dioxide Generations Optimisation 
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Figure 5.12 shows how the number of training generation affect the %RMSE for carbon 
dioxide. We see that the majority of the performance improvement happens up to the 250-
350 generation mark. We still get improvement in performance past this point, but the 
returns are less significant. 

 

In the case of training generations, we see similar characteristics amongst all three 
pollutants in different rooms and different sites. This likely means that the training 
generations are not significantly affected by the features of the data. 

 

5.1.2 Multivariate Predictions 
Initially, we only looked at making predictions using a single air quality factor as the input 
and output of the model. The aim of looking at multivariate predictions is to find any 
correlation between the air quality factors. These correlations would hopefully allow us to 
assist in making further predictions more accurate. 

5.1.2.1.1 Pearson R score 
Initially, when looking at multivariate, we looked at a linear regression model between each 
combination of pollutants. For each combination, we obtained a Pearson R Score, 
the covariance of the two variables divided by the product of their standard deviations. This 

is done by using Pearson R equation：   𝑅 =  
ஊ(୶ି௫̅)(୷ି௬ത)

ඥஊ(୶ି௫̅)మ(୷ି௬ത)మ
                           

   5.1. We repeat this calculation for every combination of pollutants. 

Pearson R equation：   𝑅 =  
ஊ(୶ି௫̅)(୷ି௬ത)

ඥஊ(୶ି௫̅)మ(୷ି௬ത)మ
                              5.1 

Where? 

 

𝑅 =correlation coefficient 

x =values of the x-variable in a sample 

𝑥̅ =mean of the values of the x-variable 

y =values of the y-variable in a sample 

𝑦ത =mean of the values of the y-variable 

5.1.2.1.2 Testing based on RMSE. 
As discussed in section 3.1.1, some prior evidence of correlations between air quality factors 
exists. As such, we tested the effect of entering different IAQ factors into a multivariate 
variation of LSTM. In doing so, we aimed to see how different combinations of input 
variables would affect the model's percentage RMSE (%RMSE). We performed tests on 
every combination of input variables, including all combinations of 2,3,4 and 5 input 
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variables. We also repeated the same test to data from multiple sites to test if the 
correlation varies from site to site or is fixed across all locations. 

5.1.2.2 Multivariate Forecast Correlation and Forecasting 
This section looks at the possible correlation between the different pollutants in a single 
household. In section 3.1.1, we have seen evidence of statistical correlations between the 
various air pollutants.  

Initially, when looking at multivariate, we looked at a linear regression model between each 
combination of pollutants. For each combination, we obtained a Pearson R Score, 
the covariance of the two variables divided by the product of their standard deviations. 

 Co2 Humidity PM2.5 Temperature VOC 
Co2 N/A 0.1069 -0.2281 0.7132 0.3983 
Humidity 0.1069 N/A -0.0118 -0.0463 -0.1000 
Pm2.5 -0.2281 -0.0118 N/A -0.2337 0.0120 
Temperature 0.7132 -0.0463 -0.2337 N/A 0.2150 
VOC 0.3983 -0.1000 0.0120 0.2150 N/A 
      

Table 5.1 Linear Correlation Coefficient or each Factor combination 

Table 5.1 shows the Pearson R score for each combination of the pollutants. As most of the 
varieties have an R score of less than 0.4, they can be considered to have a very weak linear 
correlation. The exception to this is temperature and CO2, shown in the table as highlighted 
in green, indicating a strong correlation. 

We then looked at applying the data once again into an LSTM Neural Network, but this time 
using multivariate data to train the model. We also fed the trained model updated data 
from earlier results and an 8-week training period as from our previous testing in section 
5.1.1.2, the 7 to 8 week point is where the error drops below the 10% point 

We then looked at applying the data once again into an LSTM Neural Network, but this time 
using multivariate data to train the model. We also fed the trained model updated data 
from earlier results and an 8-week training period as from our previous testing in section 
1.2.1, the 7 to 8 week point is where the error drops below the 10% point. 
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Figure 5.13 Singlevariate LSTM Predictions 

 



 

66 
 

 
Figure 5.14 Multivariate LSTM predictions. 
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Figure 5.13 shows the predictions obtained from the model when it has been fed with just 
the PM data. Figure 5.14 shows the forecasts obtained from the model when it fed all the 
pollutant data as inputs. When all the pollutant data was fed as an input to train the model, 
we can see that the %RMSE has been reduced from 8.0458 to 2.9562. This would indicate 
that the different pollutants have some form of correlation with each other. This contradicts 
the results from the Pearson test, as the Pearson test had shown that there is only a weak or 
no correlation between PM 2.5 and other pollutants. As the Pearson test is a linear 
correlation test, this indicated that there is some form of relationship between the variables 
is not a linear correlation, but it is a more complicated correlation which is consistent with 
what was mentioned in Section 3.1.1. A few other things to note is that the multivariate 
LSTM model took a significantly larger computational time to train to model, at least 10x 
more than the single variate LSTM model. As such, the increased accuracy comes at a 
significantly higher computational cost. However, the computational cost is only to train the 
model.  

 

Based on this, we proceeded to look at how all the different combinations of input variables 
affect the %RMSE of the model. We performed this with a training duration of 8 weeks, a 
prediction duration of 1h and 500 training generations. 

 
Figure 5.15 Multivariate Input variable combinations 

Figure 5.15 shows the % RMSE with the different input variable combinations. As we can 
see, there is a general downward trend in the %RMSE as more variables are incorporated. 
We also observe that in general incorporating specific input variables has a larger effect on 
the %RMSE: temperature and humidity. 
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5.1.3 Hyperparameter optimisation 
 

Within LSTM, there exists a set of hyperparameters that can affect the performance of the 
model based on the dataset used. Some of these hyperparameters are as follows. 

 Gradient threshold 
 Initial learn rate 
 Learn rate drop period 
 Learn rate drop factor 
 Weight initialisation 
 Decay rate 
 Batch size 

In order to identify how these parameters affected the model, we tested the performance in 
terms of the percentage RMSE. The characteristic such as the deformations in the shapes of 
the peaks and troughs, as well as a fixed upward shift of the troughs when compared to the 
real data. We also used different data sets from different sites to see if these parameters 
would need to be varied from site to site or can be fixed across all sites. For the parameters 
that we could fix across sites, we used these plots to find the optimal value to set these 
parameters too. However, some of the parameters would produce varying results during 
different circumstances, such as the site location or the actual time period of the data. 

  

For said parameters that we would need to varied depending on the characteristics of the 
data, we worked on developing an algorithm that would test and optimise this from time to 
time in order to keep these parameters at the optimal values to keep the accuracy of the 
model as high as possible. Figure 5.16 shows a flow chart of the proposed hyperparameter 
optimisation algorithm. It starts by running an initial optimisation process; this optimisation 
process involves running the model multiple times while varying the chosen hypervariable. 
The optimisation process starts by lowering the number of generations and hidden states. 
This is done to shorten the computational time of each iteration at the cost of lower 
accuracy. Upon doing so, it starts testing the model using the previous optimal value for the 
hyperparameter that is being tested; in the case of the initial optimisation, a "generic 
optimal" value is used. In the next step, the algorithm would make two iterations up and 
down from the initial value, and the algorithm will constantly calculate a moving gradient of 
the RMSE against the parameter being optimised. The algorithm then continues the 
iterations in the direction of the negative gradient until the gradient becomes positive 
(across three values), taking the point with the lowest RMSE as the new optimal value. It will 
finally test the last few iterations again, but with the standard number of hidden states and 
generations. 
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Figure 5.16 Hyperparameter Optimisation 

 

Apart from the normal optimisation process shown in Figure 5.17, there are two unique 
situations we need to consider. Both situations occur in step 2, where it performs two 
iterations up and two down. In this step, if the gradients in both directions are positive or 
negative. When both are positive, the hyperparameter is already at its optimal value, and 
the algorithm will skip to the last step; this is shown in Figure 5.19. The second situation is 
shown in Figure 5.18, where both sides are negative. It will continue iterating in both 
directions until it gets to a positive gradient on both sides and will then choose the side with 
a lower RMSE. 
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Figure 5.17 Standard optimisation process 

 

 
Figure 5.18 Unique situation - both negative 
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Figure 5.19 Unique situation - both positive 
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5.2 Multisite Model Proposals 
So far, the dataset at each site has only been looked at on a site-by-site basis. This section 
aims to look at the datasets on a more macroscopic scale and at any relationship between 
the datasets from multiple sites. From section 3.1.1 There is some evidence that the 
characteristics of the dataset are very localised in terms of indoor air quality. As such, we 
will explore a few methods for applying LSTM to multisite data, including a proposal for a 
new method of applying LSTM to datasets in the hope of improving predictions. 

 

5.2.1 Description of Multisite Prediction methods 
5.2.1.1 Large scale Multivariate  
The initial approach is to apply all the data from all the sites into a single multivariate LSTM 
model. In Figure 5.20, we see how such a model would be structured. In this case, the model 
would look at all the datapoint. The characteristics of data points will not be considered in 
the process. As such, the model cannot distinguish which site each data point is from, and in 
our case, it will only know the total number of parameters it has and not know which 
parameters come from different sites or locations.  

 
Figure 5.20 Multivariate LSTM 

With this method, we are also required to add a synchronisation function between sites to 
synchronise the number and timestamps of each data point before feeding it into the 
model. This is due to multivariate LSTM requiring the input data to be synchronous. This 
synchronisation function causes a minor loss of data in some cases, as at any moment in 
time if there is a missing data point for any variable, we would have to ignore the datapoint 
of every other variable at that timestamp. In this application, the synchronisation was 
performed to the closest minute, and we took one datapoint for each variable at every 
minute to achieve the synchronisation. 

5.2.1.2 Proposed multisite model – Shared hidden layer. 
In this approach, we propose to create a variation of Multivariate LSTM that will look at 
each dataset from each site primarily and individually while incorporating a shared hidden 
layer between each site that will allow it to potentially gain additional insight from the data 
from other sites. 
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Figure 5.21 Naive single variate LSTM 

 
Figure 5.22 Asynchronous single variate 

In establishing this proposed method, we first took the structures of a naïve single variate 
LSTM, shown in Figure 5.21, and a proposed structure for an asynchronous LSTM model, 
shown in Figure 5.22. We are taking the approach of how an asynchronous model would 
apply an LSTM Network to each variable individually while incorporating a shared hidden 
layer. In the proposed method, we have taken the idea of a shared hidden layer from the 
asynchronous approach and applied it to a multivariate model, as shown in Figure 5.23. 
However, to achieve such a model, it is impossible to use the existing LSTM equations or 
even the LSTM equation for the asynchronous approach. This is because the traditional 
LSTM equation does not consider the hidden layer, while the asynchronous approach 
equation limits each neural network to a single input variable. As such, we must perform a 
different approach to achieve this multisite LSTM structure. We will look at three methods 
of implementing this proposal and their performance. 

 
Figure 5.23 Multisite LSTM Proposal 
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5.2.1.2.1 Proposal A – Shared W and V Hidden state 
This approach involves using a normalised version of the two weightage matrices (W and V) 
across all sites. Using this approach, instead of applying the individual weightage matrices 
on the LSTM model of each site, we applied an updated weightage matric. The updated 
weightage matrices are the average of all the sites' weightage matrices from W and V. 

 

5.2.1.2.2 Proposal B - Shared V Hidden state 
This proposal involved a similar approach to proposal A. However, instead of normalising 
both the weightage matrices W and V, we only normalised V and kept W as the individual 
matric for each site. 

 

5.2.1.2.3 Proposal C – New Shared Hidden state E 
With this proposal, we look at implementing a new weightage variable. This weightage 
variable is calculated using Equation 5.2. This weightage variable is a measure of the error 
caused by applying any specific hidden state. 

New Weightage Factor：     𝐸 =
ଵ

ே
∑ (𝑥௧ାଵ − 𝑥ො௧ାଵ)ே

௧ୀଵ          5.2 

 

Based on the original LSTM equations shown earlier in section 2.4, Equation 2.1 to Equation 
2.6, and we can then take a simplified version of the LSTM equation, which is highlighted in 
Equation 5.3 

Using this, we can then use the backpropagation through time (BPTT) algorithm to learn the 
parameters of the LSTM network in order to create and update equations to apply the new 
weightage value to the equations. 

Simplified LSTM Gates：    𝑉௧ = ൦

𝑂௧

𝑖௧
𝑢௧

𝑓௧

൪      5.3 

Equation5.4 shows us applying the Error function from Equation 5.3  to simplified LSTM 
Gates(Equation 5.3) using the BPTT algorithm 

BPTT applied to LSTM：  δ𝑉௞ =
డா

డ௏ೖ
      5.4  

This equation can then be expanded to what is shown in Equation 5.5 if we allow 𝑄=[𝑊,𝑈] 

BPTT to LSTM with Q = [W, U] ：         

𝛿𝑄𝑘 =  𝛿𝑉𝑘
∂Vk

∂Qk
=  𝛿𝑉𝑘[𝑥𝑘 (1), 𝑥𝑘 (2), … , 𝑥𝑘 (𝑃), ℎ𝑘 − 1]  `  5.5 

1 
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We then decompose the update sequence to Equation 5.6  for each sample of BPTT. From 
this equation, we can see the effect of a multi-sequence backpropagation update. First, we 
observe that the same weights are updated as the sum over all timesteps and are not 
independent. The LSTM combines all information into the hidden state. 

Decomposed Update Equation：         

𝛿𝑄 = ∑ 𝛿𝑄௞[𝑥௞
ଵ, ℎ௞ିଵ]௠భ

௞ୀଵ + ∑ 𝛿𝑄௞[𝑥௞
ଵ, ℎ௞ିଵ]௠మ

௞ୀ௠భ
+ ∑ 𝛿𝑄௞[𝑥௞

ଵ, ℎ௞ିଵ]௠య
௞ୀ௠మ

  5.6  

In this sequence, we can see that the early stages of training may give a significant error due 
to the different statistical properties of each variable. We note it may be possible to learn a 
function where LSTM(xk(3)) ≅ LSTM(xk(2)). As such, the series will converge, and we 
can simplify the update equation to Equation 5.7 

Simplified Update Equation： 𝛿𝑄 = ∑ 𝛿𝑄௞ൣ𝑥௞
௣

, ℎ௞ିଵ൧௧
௞ୀଵ     5.7 

We can then apply to the base LSTM equations. In this application, however, the base LSTM 
equation will only take inputs from their individual sites, while the update equation will be 
common across sites and will be this additional shared hidden state we were aiming to 
create.  

 

 

5.2.2 Comparing the performance of Multisite Predictions methods 
5.2.2.1 Large scale Multivariate  
The initial idea of looking at multisite prediction was to use a large Multivariate model and 
feed this model data from multiple sites, as discussed in section 3.5.1. We tested this using 
data from2 sites. However, we got some significantly distorted prediction graphs when we 
tested this approach. Figure 5.24 shows the malformed prediction graphs overlayed with 
the original data from the two sites used in this test case. It is suspected this is due to the 
model getting "confused" by the two sets of data that both have their own characteristics 
due to their location and surrounding circumstances while also having some similar features 
due to the nature of the pollutant itself. 
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Figure 5.24 Large Scale Multivariate 

 

5.2.2.2 Proposed multisite model – Shared hidden layer 
 

The following approaches look at a proposed modified version of LSTM that incorporates 
what I would call a shared hidden state. We look at three approaches to achieve this shared 
hidden state and compare their viability and performance. These approaches are described 
in section 5.2.1.2, where proposals 1 and 2 involve combining the existing hidden states of 
the LSTM equation to achieve this shared hidden state, with proposal 1 combining both the 
W & V hidden states, while proposal 2 involves keeping the W hidden states independent 
while combining the V hidden state. Proposal 3, instead involves the creation of a new 
hidden state based on the error function of predictions, described in section 5.2.1.2. 
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5.2.2.2.1 Site 1 Proposal comparison 

 
Figure 5.25 Site 1 Proposal Comparison 

Figure 5.25 shows the comparison of the prediction on site 1 when using the 3 proposed 
methods to achieve multisite predictions. We see that with proposals 1 and 2, the amplitude 
of the peaks and troughs of the predictions are significantly lower than the observed data. 
In proposal 1 we also see a time shift in the prediction where the predictions are inaccurate 
on a time basis. 

 

5.2.2.2.2 Site 2 Proposal comparison 
 

Figure 5.26 Site 2 Proposal Comparison 
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Figure 5.26 shows the comparison of the prediction on site 2 when using the three proposed 
methods to achieve multisite projections. We see very similar characteristics to the results 
from Site 1 where with proposals 1 and 2 the amplitude of the predictions are significantly 
lower than the real data. In proposal 1 we also see the time shift in the prediction where the 
predictions are inaccurate on a time basis. 

 

We hypothesise that these undesirable characteristics when using proposal 1 and proposal 2 
are due to the nature of the W and V Hidden state. The W hidden state is involved in 
applying a weightage factor to newly input variable values in LSTM. While the V hidden state 
is involved in the removal of previous and less desirable weightage values of historical data. 
It is possible that feeding the model data from 2 sites has “confused “its predictions as it is 
trying to apply these same weightage values to 2 sets of data that could have different 
characteristics. 

 

To test if the model is getting “confused” in proposals 1 and 2, we tried a special test case 
where of inputting data from 2 sites into the model, we input the data from a single site into 
multiple inputs of the model. This resulted in the graphs produced in Figure 5.27. We see 
that the prediction again has similar accuracy to the original multivariate model. This 
indicated to us that the model is possibly getting falsely trained by 2 sets of data that are of 
similar characteristics but have different patterns. i.e. The PM data from site 1 and site 2 
would have similar spike characteristics, but they interact with the other variables 
differently due to the different characteristics of the sites.  
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Figure 5.27 Proposal 1 and 2 Special Test Case 

5.2.2.2.3 Proposal C – New Shared Hidden State E 
Proposal C involves the creation of a new hidden variable that is incorporated into the LSTM 
equations through the backpropagation through time method. This method is described in 
section 5.2.1.2.3 

5.2.2.2.3.1 Proposal C Effect on Prediction Duration 
Initial testing using this technique showed no significant difference when compared to 
Single site models when looking at 1-hour prediction durations. However, upon testing a 
larger prediction duration we noticed that the prediction at larger prediction duration were 
much higher with this variation of the model.  

 

We also made a comparison with the existing multisite model looked at in section 3.3.2 – 
Geo-BiLSTM. This model was recreated to the best of our ability based on existing 
documentation and our data was fed into the model while keeping the other training 
parameters and hyperparameters of the geo-BiLSTM model the same as our proposed 
model. 
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Figure 5.28 Proposal C Prediction duration 

 

Figure 5.28 shows a comparison of the RMSE at different prediction durations with and 
without using the proposal C multisite variation. With this test, we see the RMSE at lower 
prediction durations are very similar in both cases. However, as the prediction duration 
increases, we see that the proposed technique’s RMSE remains lower even at large 
prediction durations of 9 hours. When compared with the existing Geo-BiLSTM, it out 
performs our proposed model, which is likely due to this model being based on Bi-LSTM 
instead of a normal LSTM model. We repeated this with multiple site combinations while 
still looking at Site 1 as the primary site for predictions and measuring the performance of 
the model, which can be seen in Figure 5.28. In all cases, we see relatively similar results 
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with some level of randomness but in general, a similar trend amongst all Multisite test 
cases when compared to Single site. 

 

5.2.2.2.3.2 Proposal C Effect of Training Duration 
We then proceed to compare the effects the multisite model has on the training duration of 
the model. 

 

 

Figure 5.29 Proposal C training Duration 

Figure 5.29 shows a comparison of the %RMSE at different training durations with and 
without using the proposal C multisite variation. With this test, we see marginal differences 
between the training durations in the case of all 3 site combinations as well as with Geo-Bi 
LSTM. 
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5.2.2.2.3.3 Proposal C Effect of Training generations 
 

 
Figure 5.30 Proposal C Training Generations 

Figure 5.30 shows a comparison of the %RMSE at different training generations with and 
without using the proposal C multisite variation. With this test, we see marginal differences 
between the training durations in the case for all 3 site combinations. We see similar results 
when compared to what we saw in Section 5.1.1.4, where the 250-300 Training generations 
point seems to be an ideal stop position as improvements are diminishing. The Existing Geo-
Bi-LSTM model also showed very similar performance with our proposed model on al sites. 
To verify this, we look at plotting the rate of change(gradient) of the %RMSE of the model at 
each point. 

 
Figure 5.31 Proposal C Training Generations Gradient 
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Figure 5.31 shows this gradient at each point. We see that past the 300 generation point we 
consistently get a gradient of approximately 0.05. Also referring to Figure 5.30, the 300-
generation mark is also the point where the %RMSE is roughly below the 10% mark. 

 

5.2.2.2.4 Proposal C Staggered Training 
While performing these tests we made an observation we noticed slightly varying results 
when staggering the training of the models. Figure 5.32 and Figure 5.33 show a depiction of 
applying said offset. 

 

 
Figure 5.32 Proposal C No Offset 

 
Figure 5.33 Proposal C with offset 

 

Figure 5.32 shows a depiction of using proposal C without the offset. In this situation, we 
trained the model for both sites simultaneously and thus, the shared hidden state forms 
from scratch for both sites. Figure 5.33 show us applying the offset to the training of 1 of the 
2 sites. In this situation, site 1 is the only site involved the in the initial formation of the 
shared hidden state. Site 2 on the other case will have access to a developed shared hidden 
state(from site 1’s data) right from the start.  
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All evaluations using this ofset is done with every site combination using site 1 are a primary 
site with our proposed methed and using the existing Geo-BiLSTM model on all site but 
without an offset. It is impossible to incorporate an ofset into the Geo-BiLSTM due to the 
nature of a normal LSTM model being synchronous. However with our proposed method, 
due to the model technically being split into multiple LSTM model instead of 1 large model, 
this allow each site to be asychronnous which is what allows for this training offset to be 
implemented.  

5.2.2.2.4.1 Effects of different sites 

 
Figure 5.34 Proposal C Staggered Training – Site 1  

Figure 5.34 shows the effect of different site combinations on the %RMSE while having a 
fixed training offset of 16 weeks (3 months). As a benchmark we again used the existing 
multisite model looked at in section 3.3.2 – Geo-BiLSTM. In Figure 5.34, the largest 
improvement is provided by the site 1 + site 2 combinations. Incorporating Site 3 and 4 has 
also shown a minor improvement in the training duration, as seen in the 1+3 and 1+4 
combinations. The improvement provided by incorporating different sites seems to vary 
from site to site. We further see the similar characteristic with the 3 site and 4 site 
combination, where more significant improvement is observed in any combination that 
includes site 2. We proceed to look at this relationship by changing the primary site and 
performing the same test using sites 2, 3 and 4 as the primary site which is used to analyse 
the performance. When this stagger in introduced we see that our proposed model 
outperforms the Geo-BiLSTM model, this is like due to the data that our proposed model 
has incorporated into the shared hidden state before site 1 was incorporated into the 
model. 
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Figure 5.35 Proposal C Staggered Training – Site 2 

 
Figure 5.36- Proposal C Staggered Training – Site 3 

Figure 5.35 and Figure 5.36 shows a similar analysis of comparing different combinations of 
site in the multisite model, but this time using site 2 and 3 as the primary site, respectively. 
The case of Site 2 as the primary site, we see similar characteristics to Site 1 where any 
combination which includes of site 1 provides a more significant RMSE improvement. This 
further reinforces our hypothesis that the site characteristics are more significant than the 
number of sites included in the multisite model. With Site 3 as the primary site, we see 
combinations including site 4 seem to provide better results compared to combinations 
including either site 1 or 2.  
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We suspect different sites provide varying scales of effect on the training duration due to 
the site’s characteristics. Referring to section 4.1.5, we see that Sites 1 and 2 are both 
apartments a few floors above ground level in urban populated areas. With these sites, we 
saw they had good synergy with each other providing a significant improvement to the 
training duration to each other. While Sites 3 and 4 are houses further away from the city 
and in the same general location. Based on this, we hypothesise that the varying scales of 
improvement is due to the site characteristics, where the model can more efficiently apply 
to another site of similar characteristics when compared to applying it to a site of varying 
characteristics. Our initial four sites seem to confirm this theory, but it would need further 
testing with more sites to be confirmed.  

 

From this results of our proposed method compared to the normal LSTM and the existing 
multisite method(Geo-BiLSTM) we see that out proposed method has the benefit of being a 
synchronous in terms of sites, this means we can incorporate more site into an existing 
model at a later time. While due to the synchronous nature of LSTM the Geo-BiLSTM model 
would need to be retrained completely when additional sites are incorporated into it. 
Furthermore with the stagger introduced our model takes a much shorter time to be trained 
to a reasonable level. The Geo Bi-LSTM outperforms our proposed model in terms of 
prediction duration but this likely due to is using Bi-LSTM as a base compared to us using 
LSTM as a base. Using Bi-LSTm as a base for our proposed method would be something 
possible to look into the future. 

5.3 Chapter Summary 
This chapter started by looking at optimising the model using various known methods. We 
looked at the effects of varying training parameters and how they would affect training 
accuracy. We also looked at the impact of incorporating multiple data points into the same 
model. Finally, we proposed a simple method to keep the hyperparameters of LSTM at or 
close to optimal values. The main aim of the chapter was to optimise the LSTM model to be 
as suitable as possible for use with indoor air quality predictions. Following this initial 
optimisation the chapter looks into incorporating data from multiple sites into the modal to 
achieve a more macroscopic take on the predictions. Based on the proposed multisite 
methods we demonstrated a novel approach to looking at data from multiple sites into a 
predictive model. The method incorporated a shared hidden state to link LSTM models from 
various sites. This shared hidden state was observed to make improvements in the training 
time and prediction duration of the LSTM prediction. 
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6 Conclusion 
The culmination of this doctoral research manifests a significant stride toward the 
development of an IoT monitoring solution for smart homes. The creation of a bespoke 
intelligent IoT system, which incorporates air quality sensing technologies with data from 
smart home automation systems, stands as a notable contribution to the domain. The 
system, as validated by the research, exhibits a pronounced capability in forecasting 
imminent air quality conditions with a high degree of accuracy, courtesy of the employed 
neural network-based methodologies, particularly the Long Short-Term Memory Neural 
Network (LSTM). 

 

The devised data collection framework, characterised by a wireless sensor node and an 
array of strategically deployed sensors within households, proved effective in gathering 
crucial and reliable data for neural network training. The dynamic predictive model 
constructed herein, predicated on a continuous influx of real-time air quality data, holds a 
promising potential in facilitating proactive adjustments to household elements, notably 
ventilation, thereby ameliorating indoor air quality. 

 
In this study, we investigated various training methods, carefully evaluating their 
advantages and disadvantages. Ultimately, we decided to adopt the expanding training 
method due to its optimal balance of high accuracy and manageable training duration. This 
method integrates a form of real-time error correction, enabling it to sustain commendably 
high accuracy without necessitating frequent retraining of the model. 

 

Additionally, the exploration of a novel LSTM variant, entailing a shared hidden state, has 
unfolded a new option for examining interconnected prediction data from multiple 
locations. This exploration has paved the way for identifying potential correlations between 
indoor air quality levels across separate sites, which provides benefits in terms of 
predictions related to indoor air quality. 

 
The study further delved into optimising the LSTM model specifically for IAQ applications, 
focusing on fine-tuning various training parameters. We concentrated on identifying the 
minimum viable values for three critical training parameters: training duration, forecast 
period, and the number of training generations needed to achieve accurate predictions. 
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The study also explored employing LSTM models to identify and analyse the correlations 
among various Indoor IAQ factors. Initially, our investigation revealed no straightforward 
correlations among these IAQ factors. However, the LSTM model exhibited some 
performance improvements when we shifted to a multivariate approach, hinting at the 
presence of more complex interrelations. To substantiate these findings, we experimented 
with various multivariate combinations and cross-referenced other studies, which 
corroborated that intricate correlations exist between IAQ factors. 

The findings and advancements stemming from this study hold promise for the future of 
IAQ management and invite further exploratory and developmental endeavours in the 
various applications of this multisite variation beyond IAQ. This versatile approach can 
potentially deliver benefits in various contexts, opening doors to new opportunities for 
innovation and progress for various applications. 

 

6.1 Future work 
The results of this study demonstrate that our approach enables accurate prediction of 
indoor air quality (IAQ) across multiple sites. Future directions for this research include 
expanding the study in two primary ways. First, we aim to incorporate additional data points 
as well as controllable aspects from home automation systems into the models for each site, 
potentially enhancing the model’s ability to identify sources of poor air quality. Second, we 
intend to increase the number of sites included in the multisite model to explore the effects 
of a broader dataset.  

 

6.1.1 Multisite – additional sites 
This study was limited to five sites due to constraints in obtaining consent for data collection 
at additional locations. Moving forward, we plan to expand the model by incorporating 
more sites to evaluate whether the findings from the initial five locations remain consistent 
as the sample size increases. Specifically, we aim to assess the improvements in training 
durations observed with the initial sites, examining the extent of further gains from 
additional sites and the associated computational costs.  

 

The study also plans to test modifying the Multisite model into a GRU model instead of 
LSTM in hope to combat the increasing computational cost of incorporating more sites. The 
study also plans to look into modifying the proposed method to use Bi-LSTM over LSTM to 
see how it would benefit the model. 
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6.1.2 Additional datapoints & home automation linkage 
To advance this study, the first objective is to investigate the integration of additional data 
points from home and building automation systems into the model. The purpose of this 
approach is to assess whether the model can identify sources or causes of poor indoor air 
quality in households. The underlying hypothesis is that, within the indoor environment, 
drops in air quality are often caused by controllable factors within the household. Therefore, 
providing the model with more comprehensive information on household conditions may 
allow it to “learn” which variables are linked to these dips in air quality. 

 

Once the further datapoints are incorporated into the model, it is planned to first see if 
there is an effect on the performance of the model, including training time, prediction 
duration, prediction accuracy and computational cost. In terms of computation cost, it is 
almost certain that it will increase due to the nature of machine learning. The study then 
investigates incorporating some other ML techniques into the model, with the aim of 
identifying the factors that have an effect on the air quality. The initial thought is 
incorporating something like Multi-layer Feed Forward (MLFF) into the model, as MLFF has 
been seen to be effective at classifying and categorising types of air pollutants and their 
sources. [52] 

 

The hope for this expanded model would be to develop a system continues to predict the 
IAQ while also automatically identifying variables and factors that have an effect on the air 
quality. Using this information the study hope to use this knowledge to manipulate 
controllable factors through the building automation system, allowing for the creation of a 
system that not just predicts negative spikes in air quality but also identifies factors that are 
related to these spikes and in turn automatically perform actions to mitigate or reduce 
them.  
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