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Abstract

Utilising predictive modelling and innovative data collection methods can yield a
comprehensive understanding, thus guiding the enhancement of indoor air quality (IAQ).
The central goal of this doctoral study is to construct a customised intelligent loT system
that integrates diverse air quality sensing techniques and data from smart home automation
systems. By implementing neural network-based methodologies, the research showcases
the system's adeptness in accurately forecasting forthcoming air quality conditions. These
projections can facilitate proactive adjustments to household elements, including
ventilation, to enhance air quality.

The data collection framework encompasses a wireless sensor node equipped with various
strategically positioned sensors within households, complemented by the capacity to gather
data from existing building and home automation systems. Initially employing the Long
Short-Term Memory Neural Network (LSTM), the study examines the relationships among
air quality factors through univariate and multivariate LSTM analyses.

Preliminary findings underscore the effectiveness of the wireless sensor modules in
capturing crucial and dependable data for neural network training. The neural network
employs this data to construct a dynamic predictive model for anticipated air quality,
assuming a continuous influx of real-time air quality data into the system.

Furthermore, this study explores a novel variant of LSTM that integrates a shared hidden
state. The primary objective is to facilitate the examination of interconnected prediction
data sourced from various locations to identify potential correlations between indoor air
guality levels across different sites. The study seeks to explore how these correlations can
enhance predictions related to indoor air quality.

In the future, the research will broaden the scope of IAQ data integration by incorporating
data from existing building automation systems into the LSTM model. The objective is to
identify correlations between controllable aspects of building automation systems and
indoor air quality, thus paving the way for further advancements in this domain.



Impact statement

The quality of the air within our living spaces has long been a point of concern, given the
significant amount of time people spend indoors. Recognising the potential threats posed by
compromised indoor air quality (IAQ), the presented research has taken a groundbreaking
leap forward in comprehending and enhancing IAQ. By harnessing the capabilities of
advanced predictive modelling coupled with innovative data collection methods, the study is
poised to revolutionise our understanding and control of indoor environments.

The neural network-based methodologies, primarily focusing on the Long Short-Term
Memory Neural Network (LSTM), stand as a testament to the prowess of modern
computational technologies. The reliability and effectiveness of wireless sensor modules, as
corroborated by the study, have vast implications. Individuals no longer have to rely on static
or periodic reports about IAQ. Instead, real-time and dependable data streaming allows for
the dynamic prediction of forthcoming air quality conditions. This shift from a reactive to a
proactive stance is crucial. Imagine being able to adjust ventilation systems or other
household elements in anticipation of deteriorating air conditions, thereby maintaining
optimal living conditions at all times.

Moreover, the study is not just confined to a single household or building. Exploring a novel
variant of LSTM that incorporates a shared hidden state delves into the realm of
interconnected prediction data sourced from multiple locations. The ability to identify
potential correlations between IAQ levels across different sites provides a broader,
interconnected understanding of IAQ dynamics. Such insights could pave the way for
community or city-wide interventions, optimising IAQ on a much larger scale than previously
imagined.

Yet, the research's ambition does not stop there. With plans to integrate data from existing
building automation systems into the LSTM model in the future, the study is set to bridge the
gap between controllable aspects of building systems and IAQ. This holistic integration is
critical for the development of smart cities and communities where every component, from
building designs to ventilation systems, works in harmony to ensure the health and well-being
of its residents.

In conclusion, as our world steadily transitions towards the age of smart homes and
interconnected buildings, the importance of IAQ cannot be overstated. With its innovative
approach and promising methodologies, this research not only sets the stage but actively
drives us towards a future where living spaces are not just smart but also inherently healthier.
By aligning state-of-the-art technology with our intrinsic need for quality air, this study
promises a brighter, healthier future for all.
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1 Introduction

Air pollution is not limited to the outdoors but is also present indoors within our
households, offices, and schools. Indoor air quality affects the health and well-being of
occupants in the building. The concentration of some pollutants can be multiple times
higher in the indoor environment, where many of us spend up to 90% of our time [1],[2].
Contrary to what most people think, indoor air quality is not solely caused by the outdoor
pollutants leaking into the indoors, but it is a mix of outdoor sources as well as emissions
from building materials and furnishings, central heating and cooling systems, humidification
devices, moisture processes, electronic equipment, products for household cleaning, pets,
and the behaviour of building occupants [3], [4]. As the sources of indoor pollutants are
usually very localised and vary from different households, [5] this study aims to build a
system that can analyse the sources of Indoor Air Quality(IAQ)as well as use the collected
data to predict future IAQ values where the system is installed and using this information to
improve the indoor air quality[3], [4], [6].

This thesis proposes an indoor air quality monitor system which can predict air quality
through an improved LSTM algorithm to work seamlessly with the automation systemin a
smart home. The improved LSTM algorithm incorporates multiple sites into a single model
to attempt to overcome the localised nature of applying LSTM to air quality data.

1.1 Indoor Air Quality

There are multiple methods to define IAQ. However, in general, IAQ is characterised by the
depictions of concentrations of pollutants that may adversely affect the health and comfort
of a building's occupants[7]. Air quality can be portrayed by an Air Quality Index (AQl), a
standardised scoring system to measure air quality. However, various indexes are compiled
by different organisations and countries, which all vary. The UK's most commonly used
index is the Daily Air Quality Index, specified by the Committee on Medical Effects of Air
Pollutants (COMEAP). This system is a banding structure where the overall index is
determined by the highest value of the index obtained based on the individual gases [8]. The
AQl used in the USA was developed by the United States Environmental Protection

Agency (EPA). This version of the AQl is defined by a piecewise linear function of the
pollutant concentration [8].

These standards are very effective ways to visualise and understand the severity of air
quality outdoors. However, in the indoors, the pollutants we look at differ slightly.
Pollutants such as Sulphur Dioxide (SO;) and nitrogen Dioxide (NO>) are less prevalent
indoors, while other contaminants, such as many Volatile Organic Compounds (VOCs),
usually occur in higher concentrations indoors than outdoors [9]. As such, these AQl
standards are less suitable for measuring indoor air quality; many existing IAQ solutions use
a proprietary index to visualise IAQ. These indexes are very effective in terms of real-time
visualisation of air quality. Still, from an analysis point of view, it is more effective to look at
the air quality by breaking it down into its individual air quality factors/pollutants.
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1.1.1 Existing IAQ solutions
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Figure 1.1 Standalone IAQ Monitoring Device

There are many existing devices and products that are capable of monitoring IAQ and
improving it. [10] The most common are probably commercially available Standalone IAQ
sensors, as shown in Figure 1.1. These devices are usually internet-connected devices that
monitor the level of some gases that affect IAQ and inform the user through multiple
possible means. Some of these devices also perform some simple analysis of the data
obtained. However, these devices can only monitor and report and cannot change or
improve the IAQ in buildings, so they are often used in conjunction with air filters, etc. We

also have to consider that due to the nature of these devices, the sensors used are not the
most accurate[11].

di

T

Figure 1.2 Portable IAQ Monitoring Devices

Another known IAQ Solution is Handheld sensors, as shown in Figure 1.2. These sensors are
very accurate but expensive, and they are used to measure the gas level of different IAQ
factors one moment at a time and not over long periods [12]. These handheld sensors are
very effective for some IAQ factors, such as radon, but not as useful for PM and VOC. This is
because some air pollutants, if present, such as radon, do not vary much over time.
However, some other factors, such as Volatile Organic Compounds (VOCs) and Particulate
Matter (PM), vary significantly depending on what is happening in the surroundings and
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within the building. Therefore, we should consider using these handheld solutions in
conjunction with other solutions [13], [14].

Z -

Figure 1.3 BMS Attached IAQ Device

Figure 1.3 shows IAQ sensors attached to the Building Management System (BMS) of a large
building, which is an existing solution in relatively newer buildings[15]. This solution can
measure IAQ factors and immediately attempt to resolve the issue, such as turning the
ventilation up. These systems are usually designed to provide immediate reactions to the
situation within the building and do not usually consider past data. These solutions also
need to be integrated into the infrastructure of the building and require custom
programming and designing. They usually incur extra costs to implement, resulting in them
only being practical in newly built offices and large buildings but not smaller buildings and
households.

The existing commercial and applied solutions show that existing devices and systems only
show real-time or historic sensor results, and no prediction or advice on future IAQ is
provided. This results in any action based on these solutions being reactive towards
observed air quality changes. Therefore, this solution, which uses neural networks to obtain
predicted accurate IAQ results, is necessary to make proactive changes to the air quality to
prevent spikes in air pollutants instead of mitigating them after they happen.
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1.2 Novelty

1.2.1 Novelty 1 — Multisite model

The primary innovation of the present study lies in implementing a multi-site model that
links predictions between sites. This was actualised by integrating a shared hidden state
among multiple Long Short-Term Memory (LSTM) models. The initiative addresses several
site-specific attributes associated with applying LSTM to indoor air quality (IAQ), with a
potential extension to analogous applications. Traditionally, LSTM methodologies in IAQ
necessitate site-specific data for model training prior to any predictive endeavours. This
convention requires a preliminary training phase to enable the model to generate
predictions.

The employment of the multi-site model yielded two discernible advancements when
juxtaposed with the conventional single-site methodology. The first advancement is the
extension of the forecast horizon, which implies an enhanced capability of the model to
project further into the future with augmented accuracy.

The second advancement pertains to reducing the minimum training duration for the
model, contingent upon specific conditions. In scenarios where both sites are subjected to
concurrent model training, no conspicuous variance in training duration is observed.
Conversely, when one site undergoes initial training with the subsequent inclusion of a
second site at a later juncture, a notable diminution in the minimum training duration for
the latter site was discerned.

1.2.2  Novelty 2 — Expanding Training method.

Another distinctive aspect of this study is incorporating a form of error correction into the
LSTM model. We investigated three training methodologies: the conventional approach
entailing a fixed training duration, a shifting training paradigm wherein the training period
transitions in tandem with the predictions, and lastly, an expanding training approach. In
the expanding training method, the model is initially trained over a predetermined duration,
followed by introducing an error correction phase extending beyond this juncture. Through
this error correction phase, the model's training process is iteratively refined, thereby
potentially enhancing its predictive accuracy and adaptability across varying datasets and
temporal frameworks.
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2 Background

This chapter commences by examining the individual air quality factors considered in our
study and their implications on human health. Additionally, we explore the sensors
designated for measuring each respective air quality element. Subsequently, we delve into
the assorted wireless technologies evaluated during the design phase of the proposed
indoor air quality monitoring system. The discourse then explores the theoretical reasoning
for employing Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory
(LSTM) networks, in air quality predictions. The utilisation of LSTM, in particular,
underscores its aptitude for deciphering time-series data, which is essential for accurate
forecasting in indoor air quality.

2.1 IAQ Factors and Respective Sensors

Factors that affect the Indoor Air Quality amongst those factors regularly looked at are
Particulate Matter (PM), Volatile Organic Compounds (VOC), Radon, Carbon Monoxide,
Carbon Dioxide, mould, and Nitrogen Dioxide[16], [17]. Contrary to what many people may
think, the origin of some of these compounds is not limited to the outdoors; for example,
PM can also be emitted from smoke during cooking. Furthermore, pollutants such as VOCs
are primarily indoor pollutants often emitted from furniture, carpets, paints, etc., within the
property.

The factors we choose to look at initially are VOCs, Carbon Dioxide, Temperature, Humidity
and Particulate Matter (PM), specifically PM 2.5. We also considered temperature and
humidity as they have possible effects on other IAQ factors, such as mould, and helped us
compensate for errors in the eCO; reading and TVOC readings.

2.1.1 Particulate Matter (PM)

We specifically look at PM 2.5 (particulate matter of diameter smaller than 2.5 um) as these
particles are considered hazardous compared to larger particles. They can penetrate deep
into the respiratory system and the lungs, as they can pass through the filtration of nose
hair[18]. PM2.5 has a significant adverse effect on the human respiratory system, and about
5% of all deaths are estimated to be related to PM2.5. In the UK, that is 30,000 yearly
deaths [19], [20], [21], [22], [23], [24], [25]. Furthermore, with the COVID-19 situation, there
is potential evidence that the risk of death due to COVID-19 correlates with exposure to high
PM levels [26]. The unit of measure for PM 2.5 is micrograms per cubic meter of air (ug/m3),
and according to the UK standard, healthy levels are below 16 pug/m3[27]

Sensor

Particulate Matter sensors work using a light detector and a beam of light. The
Sensor sits at the angle to the beam of light, and as particulates pass the beam of
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light, some light is reflected onto the sensor. As a fan is used to move air at a steady
rate through the beam of light, the length of the pulses and quantity of pulses, the
size and concentration of any particulate matter in the air can be found. [28]

2.1.2 Total Volatile Organic Compounds (TVOC)

Volatile Organic Compounds (VOCs) are another important group of air pollutants known to
contribute to many serious health-related impacts. They have been linked to symptoms
such as irritations of the nose, throat, and eyes, causing headaches, nausea, dizziness, and
allergic skin reactions. They can also damage the internal organs such as the liver and
kidneys. Moreover, some compounds of VOCs, such as Toluene and xylene, may not be
immediate hazards but can lead to chronic health risks, which could result in serious
neurosis[29], [30], [31]. Due to the large variety of VOCs, we use a Total VOC (TVOC) sensor
that looks at the total concentration of multiple airborne VOCs. The unit of measurer for
TVOC is micrograms per cubic meter of air (ug/m3), and according to the UK standard,
healthy levels are below 300 pg/m3[27]

Sensor

The Total VOC sensors looked at are called metal oxide (Moxa) sensors. These
sensors work by heating a thin film, or surface, of the metal-oxide nanoparticle to

about 300°C. The film will adsorb oxygen particles onto the surface. These oxygen

particles will react with the VOCs in the air, resulting in the release of electrons from
the oxygen and thus affecting the electrical resistance of the Metal Oxide Layer. This
resistance can then be measured; therefore, we get a reading of TVOC values.[32]

2.1.3 Carbon Dioxide (CO;) & Estimated Carbon Dioxide (eCO3)

Carbon Dioxide is another major gas considered when looking at indoor air pollution.
Exposure to increasing CO; is known to cause decreased concentration and drowsiness, and
prolonged exposure has also been linked to changes in bone calcium and negative effects on
the body’s metabolism.[33], [34] eCO; is an estimator of current CO, concentration by
rescaling some easier-to-measure quantities such as TVOCs and Hydrogen Gas. The unit of
measurer for eCO; is parts per million(ppm), and according to the UK standard, healthy
levels are close to 00 ppm and below 800 ppm.[27]

Sensor

When looking at CO; sensors, we looked at both actual CO; sensors as well as eCO;
sensors. In terms of actual CO; sensors, the most common type is the Non-Dispersive
Infrared (NDIR) CO2 sensor. These sensors work in the principle that each atom and
molecule can absorb light of a specific frequency. As such, these sensors work by
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shining a light on the specific frequency for CO; in a small, closed chamber and
measuring the amount of light that reaches the other end of the small chamber. By
doing so, different amounts of CO; result in a different amount of light being
absorbed, and we can obtain the CO; concentration.[35]

On the other hand, we also look at eCo2 Sensors. These sensors are Metal Oxide
sensors, the same as TVOC sensors, where the resistivity of the sensor changes
depending on CO; concentration. We chose to use eCO; Sensor due to the
significantly lower cost of eCO, Sensors compared to actual CO sensors [32]

2.1.4 Temperature and Relative Humidity

Extended exposure to low Indoor air humidity has been shown to influence perceived IAQ,
sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus
survival, and voice disruption. As absolute humidity requires large sensors to measure, we
choose to take measurements of temperature and relative humidity, which can be used to
obtain the humidity values of a space. As such, temperature and relative humidity are
factors that should be considered when looking at IAQ [36], [37].

Temperature Sensor

There exist various types of temperature sensors, the most common of which are
thermistors, thermocouples and semiconductor junction sensors.

Thermistors are devices whose resistance changes with temperature. Thermistors
are passive resistive devices, which means we need to pass a current through it to
produce a measurable voltage output.

Thermocouples are by far the most common type of temperature sensor due to their
simplicity. Thermocouples are thermoelectric sensors that basically consist of two
junctions of dissimilar metals, such as copper and constantan, that are welded or
crimped together. One junction is kept at a constant temperature, called the
reference (Cold) junction, while the other is the measuring (Hot) junction. When the
two junctions are at different temperatures, a voltage is developed across the
junction, which is used to measure the temperature.

Lastly, semiconductor junction temperature sensors work by monitoring the
characteristics of a transistor within the integrated circuit or outside it. Transistors
have slightly different properties at different temperatures, and as such, the sensor
will monitor these properties to gain an accurate value of the temperature of the
said transistor and, thus, an excellent estimate of what the ambient temperature is.
[38]
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We chose to use semiconductor junction temperature sensors due to their small size
and the availability of a semiconductor junction temperature sensor with integrated
humidity sensors.

Humidity Sensor

Semiconductor humidity sensors work by placing a thin strip of metal oxide between
two electrodes; the capacitance between the electrodes then changes at different
relative humidity as the electrical capacity of the metal oxide is affected by the
relative humidity [39].

2.2 Wireless Technologies

When designing the proposed indoor air quality monitoring system, multiple
communication protocols were considered to link sensors. For flexibility in sensor
placement, we decided to use a wireless communication method. The following wireless
protocols were compared and considered for this application.

Technology | Power Bandwidth Range Requires Indoor
Consumption infrastructure | penetrative

power

LTE-M Medium 1Mbps 10km No High

WIFI Medium 288.8Mbps | 100m Yes Med

Zigbee Low 100kbps 50m(Mesh) | No (Mesh) Low

NB-IOT Low 200kbps 10km No High

LoRa Low 50kbps 20km Yes High

Bluetooth Low 2Mbps 100m Yes Low

Table 2.1 Comparison of different wireless technologies.

Table 2.1 shows multiple wireless technologies that were considered during the design of
the air quality data acquisition system. [40], [41] Each of the technologies had both benefits
and some disadvantages. LTE-M and NB-IOT were both considered because we would not
need to set up an infrastructure for gateways. WIFI was also considered because many sites
would already have an existing WIFI infrastructure. Bluetooth Low Energy has a very low
energy consumption while keeping a decent bandwidth but would have needed multiple
gateways at the site due to its limited range. Mesh networks such as Zigbee are ideal in a
situation where we have high-density data acquisition units, but where the units are less
dense and more spread apart, we could run into issues. Finally, LoRa, which has a very long
range while keeping a low energy consumption, would work well in a situation where
modules are both close to the gateway or very far from the gateway. LoRa, in general, is a
rising protocol in the loT area. As such, we considered both LoRaWAN and LoRa using
custom Gateways. LoRaWAN would result in simple infrastructure in places like Amsterdam,
which has a city-wide LoRaWAN network. In the case of just using LoRa and custom
gateways, we would have to make gateways for the modules to connect to, but this would
work in this situation as these gateways would be an ideal location to store an information
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database. Furthermore, using LoRa and custom gateways would significantly reduce energy

consumption compared to LoRaWAN.

2.3  Neural Networks for Time Series Predictions

°© 0

23.1

Recurrent Neural Networks

A traditional Neural Network (TNN) takes a fixed-
size vector input. This limits the usage of a
conventional neural network to a situation which
involves a series of inputs with a fixed,

predet

ermined size. Figure 2.1 shows a traditional

result in each of the networks not considering that one

e \ neural network with an input of size 3(x1, x2, x3), a
T4 hidden layer of size two and an output layer of size
0 ° 6 1(y1)
Figure 2.1 TNN Neural Structure
A TNN would have limited functionality in applications
where we are looking at a situation that involves series
inputs with no predetermined size. We could call a TNN
multiple times for each input (x1, x2, x3) in the series to
compute each output(y1,y2,y3). However, this would

of the inputs may affect the others and would result in 6
multiple single input single output Neural Networks, as

shown in Figure 2.2.

Figure 2.3 RNN Neural Structure
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Figure 2.2 Multiple Input TNN

As such, we bring forth The Recurrent
Neural Network, shown in Figure 2.3. This
type of neural network remembers the past
not only during training but also things they
learned during prior inputs while generating
outputs. Therefore, they can have one or
more input vectors and produce the same
number of output vectors where the
outputs are not only affected by their
respective input but also a hidden state
vector which represents the prior learnt
information. [42], [43], [44]



2.4 LSTM Theory
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Figure 2.4 LSTM Cell Structure

LSTM is a special kind of recurrent neural network (RNN) that focuses on resolving issues
most RNNs have with long-term memory. In the average RNN, every time a new set of
inputs enters the Neural Network, the network’s “memory” grows bigger and bigger. Over
time, this results in an unstable network due to the accumulation of error gradients during
updates. LSTMs, in the other case, are designed such that retaining information for
prolonged time periods is the default setting. This is achieved through the incorporation of
the LSTM gates. A typical LSTM cell has three gates: forget, input, and output. In Figure 2.4,
these are depicted as the three sigmoid layers.

LSTM Forget Gate: ft =0y (fot + Vihe_q + bf) 2.1
LSTM Input Gate: ip = 0g(Wixe + Vihe_q + b;) 2.2
LSTM Output Gate: 0r = og(Woxe + Voheq + by) 2.3
LSTM Cell Input: ¢t = o, (Wexy +V.he_q + b.) 2.4
LSTM Cell State: Ct = ftoCr_q +itoC; 2.5
LSTM Hidden State: hs = 0; o a.(c;) 2.6

Equation 2.1- Equation 2.6 are the LSTM equations which the notations can be described as
follows.

o  Ws, Wi, W¢, Wo: Weight matrices w.r.t gates and cell state

e by, b, be, bo: Biases w.r.t gates and cell state

e ¢: Sigmoid Activation function outputs a value between 0 and 1 for any given input.

e tanh: Tanh Activation function outputs a value between -1 and 1 for any given input
and has a steeper gradient as compared to sigmoid.

20



Breaking down the LSTM cell in Figure 2.4, we can understand how the cell functions. The
operation of each cell can be broken down to each of its gates.[42], [43], [44]

2.4.1 ForgetGate—1

The white number 1 in Figure 2.4 shows the forget gate, while the equation which is
responsible for deciding what part of the cell state from the previous timestep (C:-1) must be
forgotten. The sigmoid activation is used to output values between 0 and 1, where 1
represents “completely keep this” while 0 represents “completely get rid of this”. Equation
2.1 shows the mathematical equation for the sigmoid function of the forget gate.[45]

2.4.2 Input Gate—2
The white number 2 in Figure 2.4 shows the input gate(it) responsible for determining if
information should be saved to the cell state or left behind.

Now that the data to be removed has been handled by the forget gate, we need to evaluate
what data must be carried to the next time step. This is done in two parts. The first part
involves the sigmoid function of the input gate (i:), which is described by Equation 2.2. It
determines what data carried by the cell state must be updated and carried forward to the
next time step.

The second part is a tanh layer that creates a vector of new values (C:) that can be added to
the current cell state, which is described by Equation 2.4. Tanh activation pushes the values
between -1 and 1 and inhibits the data that we do not wish to add to the cell state.

We can now use Equation 2.5 to decide the information to carry to the next timestep (Ct)
from the outputs of the input gate, new values added to the cell state, forget gate and the
cell state from the previous timestep.[45]

2.4.3 Output Gate—3

The white number 3 in Figure 2.4 shows the output gate (o:). This output gate, in
combination with the current cell state C; obtained earlier, is used to determine the output
at each timestep.

The output gate, which is also a sigmoid layer shown in Equation 2.3, decides which parts of
the cell state we wish to output. Finally, we put the cell state through tanh described by
Equation 2.6 and multiply it by the output of the sigmoid function to determine the hidden
state for the next LSTM cell (ht) [45]
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2.5 Performance Indicators

To evaluate the performance of prediction models for indoor air quality (IAQ), prediction
accuracy is measured by comparing the predicted values to the actual data. The discrepancy
between these values at any given moment represents the error at that point in time. In this
thesis, error values are frequently plotted over time to provide a visual representation of
the model's accuracy.

For a numerical summary of accuracy over the testing period, the Root Mean Square Error
(RMSE) is utilized. Additionally, the Percentage Root Mean Square Error (%RMSE) is
employed to compare error rates across variables with differing scales. The %RMSE
normalises these differences into percentages, making it a valuable metric for cross-variable
comparisons. In some studies, %RMSE is also referred to as the normalized root mean
square error.

Some further performance indicators, include the computational time and the training
parameters which include training duration, prediction duration and Training generations.

2.5.1 Root Mean Square Error & Percentage Root Mean Square Error

To measure the accuracy of the model, we compare the prediction error from the actual
data. To measure this over a period of time, we use the root mean square of this error and
the percentage root mean square of this error, which we will refer to as RMSE and %RMSE,
respectively. This is calculated using the following equations.

. . 1 2
RMSE Equation : RMSE = |-2(Y, = Yr) 2.7

Where
n = number of non-missing data points
Y, = predicted time series

Yr = actual observations time series

%RMSE Equation : %RMSE = _RMSE 2.8

max—Ymin
Where
Yinin = minimum value of time series

Yinax = maximum value of time series
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A smaller %RMSE value indicates higher prediction accuracy. However, when

comparing %RMSE values in IAQ studies, it is important to consider that many factors
beyond the model itself—such as training parameters—can influence %RMSE outcomes.
Models trained more extensively generally outperform less rigorously trained models,
though at the cost of increased computational demands.

2.5.2 Computational time/complexity

Computational time refers to the duration required for the model to be trained, validated,
and tested on a computer. In this thesis, all tests related to computational complexity were
conducted on the same device to ensure consistency and enable relative comparisons.

Regarding computational specifications, the experiments were performed on a system using
a single-GPU configuration equivalent to an NVIDIA RTX 3090, capable of approximately 16
tera floating-point operations per second (TFLOPS). This setup provided sufficient
computational power to evaluate the models while maintaining consistency across
experiments.

2.5.3 Training Duration

Training durations refers to the amount of data used to perform the initial training of the
model before the model makes predictions. Units for this performance indicators will
generally be; days, weeks and months.

2.5.4 Prediction Duration

Prediction duration refers to the time horizon for which the model generates predictions,
such as forecasting 1 hour or 3 hours into the future. This performance indicator is typically
measured in units of minutes or hours, depending on the scope of the prediction task.

2.5.5 Training Generations

Training generations refers to the number of times the model processes the training data
before it attempts to make predictions. This performance indicator is typically in the scales
of tens and hundreds of generations.

2.5.6 Performance indicator Caveats

It is however to note that variations in computational configurations, datasets as well other
hyperparameters within LSTM across studies can result in discrepancies, even when
attempting to replicate another study’s model. To address these challenges, this thesis
compares results against the base LSTM model and models from other studies, ensuring all
comparisons use our dataset, computational equipment, and fixed training parameters to
maintain consistency.

23



3 Literature Review

This chapter will be initiated by examining alternative analysis models tailored for indoor air
guality and air quality in general, which have deviated from the Neural Networks approach.
Following that, the chapter then looks at neural network analysis approaches primarily
LSTM and GRU to look at indoor air quality and their pros and cons. The chapter then looks
into a couple of multisite LSTM based models which were proposed for predicting air
quality.

3.1 Alternate Analysis Methods

Various alternate techniques have been proposed for IAQ. They include Multilayer feed-
forward, Multi-level temporal regression, support vector machines, and autoregressive
models. We will discuss them in this section.

3.1.1 Multi-level Temporal Regression Models

Multi-level temporal regression models have been used extensively to predict air quality.
These models leverage spatial-temporal covariance functions, allowing them to model data
dependencies over space and time. [46]. Some of these models with complete spatial-
temporal covariance functions have achieved very accurate predictions but require a high
computational cost to achieve this. [46]. Increasing the complexity of the covariance
function while increasing the complexity of its hierarchical structure has resulted in lower
but acceptable accuracy at a reduced computational cost. These models only apply to
predictions based on data points from fixed location datasets and cannot be applied to new
air quality monitoring sites.

The balance between model complexity and computational cost is a recurring theme in air
quality prediction. While these models are powerful in specific scenarios, their inability to
generalise to new sites limits their scalability and utility for broader applications, such as
nationwide air quality monitoring systems.

3.1.2 Support Vector Machines

SVMs have been applied to predict future pollutant levels and have the advantage of being
computationally efficient compared to more complex models like temporal regression
models. However, this comes at the expense of accuracy, typically achieving about 70-80%.
SVMs are best suited for scenarios where the trade-off between computational cost and
accuracy is acceptable and fast results are required. [47]

SVMs represent a compromise in air quality modelling. They offer lower computational
requirements but at the cost of accuracy. This study showed that a suitably configured SVM
can achieve %RMSE of 20-30% while keeping with low computational requirements. This
trade-off makes them suitable for quick estimations but less effective when high precision is
necessary.
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3.1.3 Multivariate analysis of variance (MANOVA )

Multivariate analysis of variance (MANOVA) is a statistical method used when looking at
indoor air quality or air quality in general. MANOVA models, once built, provide an accurate
way to predict air quality based on related factors and have offered significant success in
predicting PM values in the indoor environment. However, a constructed model from one
site does not always apply to other sites, as the conditions. [48], [49]Although accurate, this
model requires building on a site-to-site basis and proves relatively difficult to automate.
The major negative aspect of applying this method is its lack of scalability and automobility,
but at the same time, it allows for a deeper understanding of why and what causes the
relationship between air quality factors and the variables that affect them.

MANOVA excels at capturing complex relationships in air quality data but lacks the
scalability necessary for widespread deployment. Its strength lies in its ability to identify
causal factors, but the model's site-specific nature limits its general applicability.

3.1.4 Autoregressive Integrated Moving Average (ARIMA)

Autoregressive Integrated Moving Average (ARIMA) is one of the most popular statistical
methods for time series analysis. As such, there has been some success in using this method
to look at indoor air quality prediction [S0]JARIMA can be divided into two categories: the
ARIMA and the seasonal ARIMA, called SARIMA, used when there is a periodicity in the data
series instead. ARIMA predictions evolve over time, using recent data close to the predicted
period following the process changes as input. Therefore, the ARIMA models adapt quickly
to possible variations of the series, but they pay this quality in terms of short forecast
periods. [50]. An ARIMA model has 3 primary components that need to be calibrated in
order for the model to be used effectively. These components usually have varying values
for different sites as well as different forecast periods. This results in some difficulty in
automating this model as these components would need to be recalibrated for not only
different sites but also different configurations within the same site. Once calibrated this
study has shown that ARIMA can achieve prediction accuracies of over 90%.

ARIMA's strength lies in its ability to adapt to time-based changes in data, making it suitable
for real-time air quality predictions. However, the complexity of parameter tuning limits its
scalability and automation, especially in dynamic environments where air quality data varies
across regions.

3.1.5 Hierarchical agglomerative cluster/Multilayer Feed Forward

Hierarchical agglomerative cluster analysis has provided a method to identify major sources
of indoor air pollutants. Using this method, 18 variables that largely influence indoor air
guality were determined. Principal component analysis of each cluster revealed that the
main factors influencing the high complaint group were fungal-related problems, indoor
chemical dispersion, detergent, renovation, thermal comfort, fresh air intake location
ventilation, air filters, and smoking-related activities. [51].
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Multilayer feed-forward neural networks have also been used to identify and categorise
sources of pollutants in the indoor environment. [52]. Both methods have had great success
in identifying indoor air quality sources in the case of hierarchical agglomerative cluster
analysis. This has allowed for identifying generic sources of pollutants but not specific
factors in households that can be changed to improve air quality. At the same time,
Multilayer feed-forward neural networks have allowed for this identification. However, this
information is site-specific, and the neural network must be retrained at each site to provide
reliable results.

Both methods excel at identifying sources of pollutants but suffer from the same limitation

as other models—the need for retraining for new sites. This restricts their use in large-scale
or widely distributed systems but makes them valuable for in-depth analysis of air quality in
specific environments.

3.2 Time Series Data Analysis — LSTM/GRU

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have provided the most
success among all time-based machine learning methods in predicting indoor air quality.
Both LSTM and GRU have provided similar success in predicting indoor air quality. As GRU
reduces the number of gates and essential parameters in its analysis, there is some debate
on whether it loses accuracy by doing this. [53]. As with the other analysis methods, LSTM
and GRU are also site-specific models, and trained models cannot be relied on when applied
to another site, but the advantage lies in the ease of automation that these methods offer.
As such, LSTM and GRU can enable the creation of an automated system that can analyse
indoor air quality and its factors without much interaction.

The primary advantage of LSTM and GRU is their ability to handle complex time series data
while remaining relatively easy to automate. However, the site-specific nature of these
models poses a challenge for widespread application.

3.2.1 Internet of Things (loT) Based Indoor Air Quality Sensing and Predictive Analytic

This study looked at the deployment of Wi-Fi-based low-cost air quality sensors that collect
data and perform analysis on the cloud. [54]. This study used an LSTM model to forecast the
upcoming air quality in the deployed locations. Their model achieved an accuracy of 99%
when provided with approximately 2 months of training data using a prediction duration of
1 hour. This approach, however, is site-specific, like most other LSTM deployments and will
need to be retrained for every site.

This method demonstrates the potential of 10T in improving indoor air quality monitoring
with promising results. However, the reliance on LSTM’s site-specific retraining poses a
scalability challenge, especially in environments where conditions differ significantly from
the original training data.
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3.2.2 IndoAirSense

This study looked at a proposed framework called IndoAirSense. This approach deployed
sensors in specific university classrooms. They first used multilayer perceptron (MLP) and
eXtream Gradient Boosting Regression (XGBR) to estimate the real-time IAQ of the other
classrooms without sensors. Following that, they used LSTM-wf, a modified Long Short Term
Memory (LSTM) without the forget gate, to make predictions of the upcoming air quality.
Removing the forget gate improved the training time as the LSTM model is considerably less
complex while maintaining an overall %. However, removing the forget gate, which keeps
the long-term memory in LSTM, resulted in the model being unable to detect and forecast
the anomalies and sudden random spikes in the data. [55]. The prime benefit of this
approach seems to be the incorporation of MLP and XGBR, which provided very accurate
estimations of the IAQ in adjacent classrooms without sensors. It is likely that the estimation
accuracy is due to the fact that these classrooms probably had similar physical
characteristics. Will this accuracy persist if the estimation is made of a classroom in a
different location or a room with different characteristics that have yet to be tested?

The IndoAirSense framework is innovative in its combination of MLP, XGBR, and LSTM,
achieving high accuracy in un-sensored locations. However, the trade-off in anomaly
detection highlights the risk of oversimplifying models to gain speed.

3.2.3 Combination GRU and LSTM

This study introduced a combined predictive approach that employed two variations of the
recurrent neural network (RNN) model, specifically the gated recurrent unit (GRU) and long
short-term memory (LSTM) models [56]. Their objective was to forecast the daily air quality
index (AQl) for the major cities of Dhaka and Chattogram in Bangladesh. Their approach
involved utilising GRU and LSTM as the initial and subsequent hidden layers, respectively.
These were followed by two dense layers functioning as a prediction model. The outcomes
demonstrated that their model accurately tracked the AQJ patterns for both cities and
highlighted the enhancement in overall performance achieved by employing both GRU and
LSTM models, in contrast to using either model individually. However, even this combined
model retains the characteristics of being site-specific and retraining required for every site.

3.2.4 Multivariate and multi-output indoor air quality prediction using bidirectional
LSTM(BILSTM)
This study looked at using a bi-directional variation to LSTM to predict individual pollutant
levels. This study used BiLSTM which is a variation of LSTM that learns the input sequence
both forward and backwards and concatenate both interpretations. This study used a
dataset of 5 months and used 60% of the data form training and 40% for validation and
testing. With a prediction duration(forecast) of 1 hour the study achieved an %RMSE of 3-
6% across all features measured using BiLSTM when compared to LSTM which only achieved
an %RMSE of 6-9% across all features. [57]

This method demonstrates a simple yet beneficial method to improve the prediction
accuracy of an LSTM model when applied to air quality data.
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3.2.5 LSTM-Autoencoder-Based Anomaly Detection for Indoor Air Quality

This study proposed an LSTM-AE-based hybrid deep-learning technique for detecting
contextual anomalies in IAQ datasets. [58] The incorporation of the auto-encoder layer in
this approach reduces the data dimension and allows for the computation of an optimal
reconstruction error associated with each time sequence. This reconstruction error is used
as a threshold to detect contextual anomalies that deviate from the normal pattern. This
model achieved an accuracy of 99.5%. This seems to outperform another similar model,
which reached accuracies of up to 99.27%, but this difference is possibly just due to the
varying characteristics of the datasets. [58] The incorporation of the autoencoder layer
improved the training time of the model by reducing the data dimension of the LSTM
model.

LSTM-Autoencoder models are effective in anomaly detection and improve training
efficiency by reducing data dimensionality. However, the accuracy of anomaly detection
may vary based on the characteristics of the dataset.

3.2.6  ARIMA-LSTM combination model optimised by dung beetle optimiser.

This study looks at a combination model of ARIMA and LSTM while using the dung beetle
algorithm to optimise the LSTM's hyperparameters. This approach uses ARIMA to break the
raw data up into linear and non-linear components. ARIMA is then used to make predictions
on the linear components of the data, while LSTM is used to make predictions on the non-
linear components. Here, the dung beetle optimiser is used to optimise the
hyperparameters of the LSTM neural networks for each site or set of data input. [59] This
approach used the normalised AQl instead of looking at the various air quality factors. One
of the noticeable benefits of this approach was the reduced training time. Another
significant benefit is the efficiency of the dung beetle optimiser, which reduces the time
taken to optimise the model and keeps the model optimised efficiently. However, this
model, similarly to the other LSTM models, is site-specific and requires retraining when
datasets from different places are used.

3.2.7 Data-driven model for predicting indoor air in naturally ventilated educational
buildings.
This study investigated the combined use of multiple machine learning (ML) techniques to
enhance air quality in naturally ventilated schools, with a primary goal of identifying the key
factors influencing indoor air quality in these settings. The methods focused mainly on a
combination of multilayer perceptron, support vector machines (SVM), and long short-term
memory (LSTM) networks. [60]Some success was achieved in analysing multisite data,
particularly through the use of multilayer perceptron and SVMs. However, LSTM models
encountered difficulties when applied across multiple buildings. The study achieved a mean
test accuracy ranging from %RMSE values of 46.4% to 19.5%, with maximum test accuracies
between 19.3% and 18%.
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As the study progressed, efforts centred on using these techniques to identify factors that
could improve indoor air quality on a one-time basis, rather than creating a dynamic model
capable of adapting to changing conditions in real time.

3.2.8 Sequential prediction health risk assessment for the fine particulate matter using
deep recurrent neural networks.
This study used ML techniques to find and improve air quality in the subway. The study
concluded that LSTM and GRU were the most suited ML techniques to forecast air quality in
indoor environments in general.[61], [62]. This study looked at incorporating what they
called surrogate indicators into the model to help indicate when the air quality would
deteriorate. These surrogate indicators included current airflow, time of day and number of
people in the station. Using these surrogate indicators they successfully built a model that
could successfully predict when the air quality would deteriorate based on the surrogate
indicators. It was found that indoor environments such as each subway station tend to be
microenvironments where characteristics of 1 environment's characteristics would vary.

The study proposed that to achieve sustainable IAQ monitoring, multiple GRU models for
each subway microenvironment would need to be incorporated through the use of low-cost
sensors, as the model for each environment and station would need to be trained
separately.
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3.3 Multisite studies

3.3.1 Multi-site and multi-hour air quality index forecasting in Beijing using CNN, LSTM,
CNN-LSTM, and spatiotemporal clustering.
This study looked at using convolution neural networks (CNN), LSTM, a combination of CNN
and LSTM(CNN-LSTM), as well as spatiotemporal clustering to predict air quality in both
indoor and outdoor environments across multiple sites in Beijing. [63]This study chooses to
use an approach to predict and measure the air quality index (AQl) instead of the individual
air pollutant levels. In this study, it was found that using purely LSTM for multi-site
predictions wasn’t suitable due to the site-specific nature of the air quality data. However,
using the CNN-LSTM combination, they managed to circumvent this issue and successfully
used it to make multi-site predictions.

The study utilised two years of data, with 70% allocated for training (approximately 16
months) and the remaining 30% for testing and validation. Prediction durations ranged from
1 hour to 6 hours, though the study provided limited details on the LSTM's remaining
hyperparameters. Results showed that LSTM and CNN-LSTM were the most effective
models for multi-hour air quality predictions, with CNN-LSTM outperforming LSTM by 2—-3%
in terms of RMSE for multi-site predictions. For shorter forecast periods (1-2 hours), the
performance of both models was comparable. However, the CNN-LSTM demonstrated
superior accuracy for longer forecast periods (3—6 hours). Based on the data provided by the
study, we estimate the %RMSE of the model using CNN-LSTM to be about 4%

The study concluded that LSTM was the optimal model for Air quality prediction. The
performance difference between the LSTM and CNN-LSTM was relatively small, but CNN-
LSTM had a higher computation complexity.

3.3.2 Forecasting urban air pollution using multi-site spatiotemporal data fusion method
(Geo-BiLSTM)
This study looked at creating a multisite model using LSTM and a data fusion method before
feeding the data through a BiLSTM model. The study used Krigan Interpolation to transform
the data of a target site and its eight neighbouring sites to be used as an input into a large
Bi-LSTM model. This study focused on predicting PM2.5 and O3 levels only in the outdoor
environment, and no testing was done using indoor data. The study made comparisons of
this model with the aforementioned CNN multisite study as well as standard LSTM, GRU and
BiLSTM models. [64]

The study used two years’ worth of data to train the model, followed by 2 months of
validation and testing. Prediction durations of 96h were used for testing in this study, as the
study primarily focused on the outdoor environment. However, some data on shorter
prediction durations could be extrapolated from the graphs. At the prediction duration of
96h, the Geo-BiLSTM model achieved an RMSE of 34.42 when compared to 76.11 of a
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standard LSTM model. Based on the data on these graphs, these RMSE values translate
roughly to a %RMSE of 17% for the Geo-BiLSTM model and 38% for the standard LSTM

model. The study found that in this prediction duration of 96h, the Geo-BiLSTM model

achieved the best results using their test data.

The results shown through the use of this Geo-BiLSTM model show that by incorporating
the Krigan interpolation for data fusion into a BI-LSTM model, they have achieved an
improvement in large-scale prediction of air quality information. However, the research
done only looks at using data from adjacent sites in the model, as their focus was looking
into spatial relationships between sites; it would be interesting to look into incorporating
sites which are further apart to see how this would interact with this model.

3.4 Summary

In this chapter we had begun by reviewing multiple alternative methods for IAQ analysis.
Delving into these studies has furnished insights into certain indoor air quality
characteristics, which could help understand some of the findings observed in this
investigation. These alternative methodologies serve as a comparative framework, enriching
our understanding of the nuances involved in indoor air quality analysis and prediction.
Through this comparative analysis, we found that apart from LSTM there are a few methods
that are suitable for application on IAQ. Methods such as SVMs and ARIMA are feasible
alternatives to make time-based predictions, while techniques such as MLFF provided a way
for data classification as opposed to predictions.

In reviewing various LSTM approaches, it is evident that LSTM emerges as both a prevalent
and effective methodology for predicting indoor air quality. Its efficacy is manifested
through the high predictive accuracy exceeding 95%, as observed in multiple studies.
Nonetheless, a recurrent characteristic associated with these LSTM approaches is the site-
specific nature of this application domain. Such site-specificity necessitates retraining the
LSTM model for each distinct site within an application. This study ventures into a multi-site
model to find interlinking attributes among various sites.

We had then investigated a couple multisite variation to LSTM. These model which albeit
were applied to primarily outdoor air quality provide methods in which LSTM could be
modified to create a model that incorporated spatial data on top of temporal data into the
LSTM model.
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4 Hardware and Training Methods

This chapter looks at the overall hardware architecture of the system as well as the
specifications of the various hardware components selected, including their models and
accuracies. This hardware design provides a foundation for data to be collected and, based
on that, how the training of the model is performed. We then look at the various training
methods attempted and how they perform for this application. One of these methods
highlights one of my work's novelties. In this chapter, we will compare how these three
methods work as well as the variations they will provide in the accuracy of prediction and
computational time.

4.1 Hardware Design

4.1.1 Design Overview

Site 1 Central Server

Sensor Module 1

Data Analysis

Central Database A.l
] etc

Automation System

e
Internet

Figure 4.1 Data collection system architecture.

Figure 4.1 Highlights the design architecture of the data collection hardware. The system
hardware comprises the sensor modules, database hubs and the central server. First, a
series of wireless sensor loT modules collect the air quality data every 1 minute. These
sensor modules wirelessly transmit the data to the local database hubs using LoRa
technology. The database hubs can also be integrated with the local home automation
systems at the sites to collect additional data, such as the state of the lights as well as
heating, ventilation and cooling (HVAC), at any moment in time. These database hubs then
synchronise all the collected data with the centralised server over the internet.

One of the main aims of the design of this system was the scalability of the system. There
are two scalable aspects of this system. First, each site's database hub is configured to allow
up to 256 sensor modules. This limit is, by design, due to the allocated address size of 8 bits
for each sensor node. The second scalable aspect is the number of sites linking to the
central server. Our setup allows up to 150 sites to be connected to a single central server.

32



However, we are capable of increasing this number further through either some
configuration changes or the use of intermediary servers.

4.1.2 Sensor Modules

/

PM Sensor

Analog

VOC & eCo2 Sensor s

Temperature,
Humidity and
Pressure Sensor

4

Figure 4.2 Sensor module architecture.

Battery & holder

. Battery charging &
management circuit

PM2.5 sensor

Microprocessor
VOC & eCo2 Sensor

Temperature, humidity
and pressure sensor

Figure 4.3 Sensor module.

Figure 4.2 shows the overall architecture of each sensor module, while Figure 4.3 is a
physical picture of a sensor module without its cover showing all its components. These
modules do not store data but send live data to the database hub every minute. A polling
rate of once per minute was chosen as the sensor modules are mostly battery-powered, and
we believed this to be a reasonable polling rate while still considering power consumption
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and battery life. We will now look at the individual components of the sensor module and
how they are connected to each other.

4.1.2.1 Main microprocessor

The microprocessor (MCU) used in the sensor modules is an STM321L432KCU6; specifically,
we used the Nucleo-L432KC development board in these initial prototypes. We chose this
microprocessor because it is a readily available ultra-low-power MCU. Some of the other
specifications that affected the selection of this MCU were the 256Kb flash, 64Kb SRAM,
built-in ADC, 12C bus, and SPI bus. [65], [66]

4.1.2.2 Wireless LoRa module

The wireless module used is a UCL in-house LoRa module. We selected this module for its
low power consumption and max communication range of 11.2 km. This module
communicates with the MCU using UART. When the MCU sends its strings, the module
transmits them to the receiving LoRa module on the database hub.

4.1.2.3 PM 2.5 sensor

The PM 2.5 sensor used is a GP2Y1010AUOF. Some of the main factors in choosing this
sensor were its low cost and the voltage required to power it. This sensor could be powered
with anything from 2.5-5 V, and as such, we could power it directly from the built-in voltage
regulator of the MCU, which supplies 3.3V. This sensor has an analog output of
0.5V/(100ug/m?3), which is fed into the ADC of the MCU. The sensor also has a sensitivity of
100ug/m3. [67]

4.1.2.4 Temperature, humidity and pressure sensor

We used a BME280 as it is a combined temperature, humidity and pressure sensor which is
readily available. Another primary reason for choosing this sensor was its supply voltage of
1.7-3.6 V, which the built-in linear voltage regulator of the MCU could directly supply. This
sensor has a temperature accuracy of 1.25 °C, relative humidity accuracy of 3% and pressure
accuracy of 100 Pa. This sensor communicates to the MCU via 12C. [68], [69]

4.1.2.5 TVOC and eCO;sensor

The TVOC and eCO; sensor used is a CCS811. This module was chosen primarily due to its
low price to allow for mass deployment. However, it has a few drawbacks compared to
other higher-priced TVOC modules. One of them is that the accuracy of the module is
affected by the surrounding temperature and humidity and that the sensor needs to be
heated up slightly to function. Fortunately, regarding heating, the sensor has a built-in
heater to allow for this. Regarding the temperature and humidity affecting the accuracy, the
manufacturer has supplied an algorithm that uses temperature and humidity readings to
compensate for this variable accuracy. As we have live temperature and humidity values, we
applied the algorithm to the MCU for all values pulled from the sensor. This sensor
communicates to the MCU via 12C. [70], [71]

4.1.2.6 Battery & power

We used a TP4056 charging module and a Panasonic NCR18650B battery to supply power
for the sensor module. The TP4056 allows us to power the module using the battery or
directly with a 5V USB power supply. The module charges the said battery using the same
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5V USB power input. The NCR18650B has a capacity of 3350 mAh, which can power the
sensor module for approximately three months after a full charge. Power management is
handled by the TP4056, which supplies 5 V to the MCU development board, which can then
step it down using its built-in voltage regulators to 3.3V for the MCU itself, as well as the
various other sensors and the wireless module.[72], [73]

4.1.3 Database Hub

The database hub consists of a Raspberry Pi Zero W (RPi) [74] Running RaspbianOS
connected to a LoRa module developed in-house over UART. The LoRa module will send the
data strings to the RPi upon receiving them from the sensor modules. The RPi will then
parse the strings and store the individual sensor values, the sensor's identifier, and a
timestamp in a MariaDB SQL database running on the hub. [75] We chose MariaDB due to
its stable performance in data replication, which we used to connect the local database
hubs to the central server. Using the collected data points, the hub can perform some
simple analytics on data, such as running a trained model for short-term air quality
predictions.

These database hubs also integrate with the existing automation system to collect more
data and can control a building's automation. Integration is achieved through data
communication protocols commonly used in building automation. The protocols include
BACnet IP, RS232 through an in-house protocol, KNX, TCP socket via an in-house protocol,
and Modbus.

4.1.4 Central Database

The final hardware component is the central database, a larger server that runs a MariaDB
database. Our current application runs the central database on a Windows PC. The database
hubs will replicate their databases through multi-master replication to this central
database.[75], [76] Multi-master replication allows the central database to have a complete
collection of all the data points of all the data collection sites cumulatively, while the
database hubs only have the data points of their site. The central database can then
perform more compute-heavy analytics on the data, such as multisite analysis and training
of prediction models for the sites.

4.1.5 Sites and Sensor Distribution

For the initial testing and deployment of the system, we have deployed it at five sites with
varying numbers of sensors at each site. Table 4.1 It shows the site locations and the sensor
distribution at each site. The number of sites and locations were chosen and limited by the
number of sites and locations for which we could get access to and consent for collecting
data.

Site Reference | Location Location Type | No. Of Sensors | Sensor Locations

Site A (1) Islington House 3 Lounge, Kitchen, Bedroom

Site B (2) Stockwell House 4 Lounge, Kitchen, Bedroom
(2)

Site C Chiswick Office 2 Office space, Reception

Site D (3) Euston Apartment 3 Lounge, Kitchen, Bedroom

Site E (4) Docklands Apartment 2 Lounge, Kitchen

Table 4.1 Sites and sensor distribution
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4.2 Training Methods

The hardware system described in 4.1 was crucial in collecting indoor air quality data across
all study sites. LSTM models were selected for their demonstrated effectiveness in analysing
air quality data, as elaborated in3.2. LSTM was intentionally chosen over GRU to maintain
consistency in our testing framework. The analysis process using LSTM commenced with a
thorough investigation of multiple training approaches, emphasising data input structures
and prediction methodologies.

4.2.1 Description of Methods

When applying LSTM on a data set where the sample data constantly grows in size, we
observe that the traditional way of using fixed duration in LSTM is not always ideal. As in
some applications of LSTM, the accuracy of the predictions can decrease over time. This loss
of accuracy is due to changing characteristics of the sample data, which is caused by the
large number of unaccounted factors that can affect the data. Our indoor air quality dataset
broadly fits into this type of dataset due to the large amount of human and environmental
factors that can affect the data.

In order to circumvent this loss of accuracy over time, we will look at the three variations of
how we have applied LSTM to the data set, including the aforementioned traditional
method. To simplify the description of the methods, we assume we have a fixed sample of
data N seconds long instead of an ever-expanding data set.

4.2.1.1.1 Fixed training duration

RMSE increases over time

t=T t=T+P

Where N=P+T

Figure 4.4 Fixed training method.

In the traditional method of applying LSTM, a fixed duration of data is used as the training
data, which is run through the LSTM model repeatedly. This method is the traditional way of
applying LSTM onto a dataset. We label this fixed training duration as T. We then obtain a
fully trained model based on the data from the training duration. The trained model is then
used to create a prediction for the rest of the sample data. We label this prediction duration
as P. The prediction data is compared to the collected data, and the error between the
predictions and the actual data measures the performance. Things to note with this method
is that the total size of the data is always equal to the sum of T and P, as we can see in.
Figure 4.4. The model also does not give any additional input past the training duration. In
our testing and comparison of the training methods, we used a training duration of 4 weeks
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(T=4 weeks). For the traditional method, we tested with a prediction duration of 1 month up
to 4 months.

4.2.1.1.2 Shifting training duration (Moving method)

Step 1

t=P t=P+T t=T+2P

Step 3
to
Step n-1

Step n

i O e S  [raininge —Prediction > t=N
t=(n-1)P t=(n-1)P+T

Where N=nP+T

Figure 4.5 Shifting Method

Unlike the traditional method, the shifting training duration method is split into multiple
steps, as shown in Figure 4.5. Using this method, we create shorter prediction durations,
each of size P. As we can see in Figure 4.5, step 1, the initial training duration(T) is the same
as the fixed method, but the prediction duration(P) is shorter and does not cover the whole
sample duration. In Step 2, we shift the training and prediction sections by P away from the
zero point. Thus, we can now obtain the next prediction duration that starts where the
prediction duration of step 1 ended, i.e. t =T + P. We then repeat this process in step 3 and
shift the training duration by 2P. This shifting process is repeated for n number of steps until
we obtain enough prediction durations to combine into a complete prediction duration the
same as the one in the traditional method, i.e. N. In this method, the total data size(N) is
equal to the sum of the product of the number of steps(n) and the prediction duration(P)
with the training duration(T), i.e.,, N=T+n x P.

The primary benefit of this method is that as predictions are never made too far away from
the training duration, we minimise the increasing prediction error over time. However, the
model must be retrained at each step, and training the model is computationally time-
consuming. Ideally, we want P to be as small as possible for the highest accuracy. However,
due to each step taking up computational time, we require P to be larger than each step's
computational time, which is determined by the size of T. The computational time of each
step is variable and cannot be predicted accurately, meaning we need a suitably significant P
for this method to work. In our testing, in comparing the training methods, we used an
initial training duration of 4 weeks (T=4 weeks). For the shifting method, we tested with a
prediction duration of 1 hour up to 1 week.
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4.2.1.1.3 Expanding training duration (Update Method)

Step 1
t=0 t=N
t=T t=T+P
Step 2
t=0 e doe e i e t=N
t=T t=U+T t=T+U+P
Step 3
=08  Trainine =  B——hedeee . podiction t=N
t=T t=2U+T t=T+U+P
Step 4
to
step n-1
Step n
t= 0 LG L. T t=N
t=T t=T+nU

Where N=T +(n-1)U + P

Figure 4.6 Update Method

Lastly, we look at the expanding duration method. This method introduces an update
duration(U) to the model. As depicted in Figure 4.6, step 1 is identical to the shifting training
duration method where the model is initially trained with training duration T, and a
prediction duration of size P is made. In step 2, however, we see that instead of shifting the
training duration, we add an update duration of size U between the training and prediction
duration. To simplify this process, U is kept the same size as P. In step 3, we add another
update duration of size U and repeat this in every step until step n.

Similarly to the shifting training duration method, we will now have multiple prediction
durations starting where the previous duration ends. These prediction durations can be
combined to create a complete prediction duration similar to the fixed training method. The
primary difference between the expanding training duration and shifting training duration is
that the data in the shifting training duration the model is trained from fresh at each step. In
contrast, the expanding training duration method does an initial training once in step 1 and
then performs updates to the initial training where the model continuously performs minor
self-corrections. To allow for this self-correction the model needs to be continuously fed
real time data which the model will back propagate into itself to perform the self-
corrections within the model.
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This expanding method does not require us to retrain the model at each step; instead,
during the initial training, the model is built with additional inputs to allow for updates.
These update steps do not require much computation, allowing us to shrink U to as low as
the sampling rate. This adds the benefit of enabling us to perform the updates on the model
in real-time. However, compared to the shifting method, we have a slight performance
decrease in prediction accuracy. In our testing of comparing the training methods, we used
an initial training duration of 4 weeks (T=4 weeks). We tested the expanding method with a
prediction duration of 1 hour up to 1 week and an update duration from 1 minute to 12
hours.

4.2.2 Comparison of results from training methods

We look at testing the three different training methods described in section 4.2.1. When
testing and comparing these three methods, we assess their performance using two
measures. The first is the model's prediction accuracy compared with the observed data in
the testing period; we quantise using the error function root mean square error between
the predicted data and observed data over the testing period. The second criterion would
be the computational time of each method. In this testing, we will use a fixed training period
of 12 weeks and a testing period of 4 weeks. In terms of compute specifications, all training
and computing were done on the same PC using a single-GPU piecewise config, with an RTX
3090 equivalent to about 16 tera floating point operations per second (TFLOP).
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Figure 4.7 and Figure 4.8 shows the observed and prediction data using all three training
methods for Particulate Matter 2.5. Figure 4.8 also shows the three error functions for the
three training methods and their RMSE over the testing period. The computational time for
each of these methods is highlighted in Table 4.2. Looking at the plots in Figure 4.8, the
closest fit between the observed data and prediction is seen with the moving method
followed by the update method. We can see this more clearly when comparing the error
function between the predicted and observed data for each method. The moving method
has the lowest root mean square error (RMSE) of 4.1697, the update method RMSE is
5.6573, and the traditional method RMSE is 10.4661. It is suspected this variation in
prediction accuracy is because both the update method and moving method are provided
with the observed data during the test period as well as the original fixed observed data
during the training period, while the traditional method is only provided with the specified
fixed amount of observed data during the training period. The discrepancy between the
accuracy of the moving method and the update method is likely due to the moving method
reiterating its training multiple times with the observed data in the test period. In contrast,
in the update method, the newly observed data in the test period is only fed once to
“update” the model.
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Figure 4.9 and Figure 4.10 shows the observed and prediction data using all three training
methods for VOC. Figure 4.9 also shows the three error functions for the three training
methods and their RMSE over the testing period. Looking at the plots in Figure 4.9, the
closest fit between the observed data and prediction is seen with the moving method
followed by the update method. We can see this more clearly when comparing the error
function between the predicted and observed data for each method. The moving method
has the lowest root mean square error (RMSE) of 0.059244, the update method RMSE is
0.082877, and the traditional method RMSE is 0.23181.

We also observe with the traditional training method; the predictions form an oscillating
pattern from roughly March 8™. The traditional training method also only shows a rough fit
to the observed data from March 2" till March 4t; past this point, no observable fit
between the predictions of the traditional method with the observed data and a loose
oscillating pattern forms in the predictions. This oscillating pattern is marked in Figure 4.10.
We suspect that these Oscillations are due to the model thinking it has identified a pattern
in the VOC from the initial training period. However, with the traditional method the model
is not aware of any changed in the environment, due to not being given any new data since
the end of the training period (March 1st in this case)
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Figure 4.11 and Figure 4.12 shows the observed and prediction data using all three training
methods for CO,. Figure 4.11 also shows the three error functions for the three training
methods and their RMSE over the testing period. Looking at the plots in Figure 4.11, the
closest fit between the observed data and prediction is seen with the moving method
followed by the update method. We can see this more clearly when comparing the error
function between the predicted and observed data for each method. The moving method
has the lowest root mean square error (RMSE) of 66.8291, the update method RMSE is
89.0474, and the traditional method RMSE is 721.43.

Similarly, with VOC we see a similar pattern with CO,, where we only see a rough fit
between the traditional training method and the observed data from March 2" till March
3"d: past this point no observable fit between the predictions of the traditional method with
the observed data and an oscillating pattern forms in the predictions.

This oscillating pattern, which we observed in the traditional training method of the VOC
predictions and more pronouncedly in the CO,, is likely due to the model picking up patterns
in the data during its training period. This and the fact that the traditional model is unaware
of any changes in the new data due to environment or other conditions. In the case of both
the Moving and expanding model, this oscillating pattern doesn’t form because the models
get newer data, allowing them to correct any spikes they think could develop but don’t in
real life. In Figure 4.11 we show an area marked with error correction that is likely this exact
situation happening where the moving and expanding model begin forming a spike but after
a small delay( the forecast period) the models correct this spike and converge back towards
the observed data

Traditional Moving Expanding
PM2.5 3m 22s-10.3079 40m 02s —4.9214 7m 58s—-7.5271
VOC 2m 48s-0.23181 38m 38s5s—-0.059244 | 8m 17s—0.082877
CO; 3m 16s—731.43 45m 135 - 66.8291 9m 155 —-89.0474

Table 4.2 Comparison of computational time and RMSE for 2-week period for each training method

Table 4.2 shows a summary of the training times for each model for each pollutant in a
week prediction period with their respective RMSE. We see the same pattern with all the 3
pollutants, where the traditional method consistently has the lowest training time but the
highest RMSE, while the Moving method consistently has the lowest RMSE but a much
higher training time. The expanding method sits in between but with an RMSE allot closer to
the moving method while keeping a training time significantly closer to the traditional
method. As such, in terms of our application of air quality predictions, we believe the
expanding method to be the most suitable for its balance of accuracy and computational
speed.

48



4.2.2.1 Moving Method - Testing Different Predictions windows (Shifts)

Here we look at testing the affects varying different prediction windows in the moving
method and how it affects both the compute time and accuracy of the model. As highlighted
in Section 4.2.1.1.2 the size of the prediction window used is equivalent to the shift of the
training duration per step. We tested the prediction windows from using the smallest
possible duration of 1 minute as this was the sample rate of the data, up to a duration of 24
hours (1440 minutes).
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Figure 4.13 Moving Method - %RMSE when Varying Prediction Window
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Figure 4.14 Moving Method - Compute time per shift at different prediction window.
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Figure 4.13 shows the %RMSE at different prediction windows for each Pollutant. We see
that the %RMSE slowly rises as we increase the size of the prediction window, where is hits
the 10% RMSE mark at the 360-480 minute mark depending on the pollutant. It was also
observed in Figure 4.14 that the compute time per shift is also within a fixed range of 190 —
230 seconds( roughly 2 — 4 minutes) regardless of the size of the update duration. The
magnitude of this computational time graph will vary based on computational power of the
system used thus if there are hardware changes on final application this analysis will need to
be repeated. In order to achieve real time predictions, we require the predictions to be
made/calculated before the next prediction window begins. As such the smallest possible
prediction window feasible would be limited by the compute time, in the current setup this
would result in a smallest possible prediction windows of 2 — 4 minutes, before accounting
for any additional tolerance.

4.2.2.2 Expanding Method - Testing Different Update Durations

Here we look at testing the affects varying different update durations for the expanding
method. We tested the expanding method using the smallest possible update duration of 1
minute as this was the sample rate of the data, up to an update duration of 24 hours (1440
minutes).
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Figure 4.15 Expanding Method - %RMSE when Varying Update Durations
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Figure 4.15 shows the %RMSE at different Update durations for each Pollutant. We see that
the %RMSE breaks the 10% error mark at about 60—180 minute update durations depending
on which pollutant is looked at. However, it was also observed in Figure 4.16 that the
compute time per update duration is the same regardless off the size of the update
duration. This will graph will vary based on computational power thus if there are hardware
changes on final application this analysis will need to be repeated. However, the compute
time per data point remains well below 1s even at update durations of 1 minute using
current hardware which leaves a large amount of tolerance to reduce computational power.
As such we believe that the minimum possible update duration of 1 minute is ideal.

When comparing how varying the prediction window in the moving method and the update
duration in the expanding method we see that increase either of these variables in their
respective methods will have a negative effect on the %RMSE with the expanding method
generally having a worse %RMSE compared to the moving method but the magnitude of the
each compute step in the expanding method is much lower than the moving method,
resulting in allowing use to use much smaller updates in the expanding method. Currently
the minimum compute time for the moving method was shown to be 2-4 minute, however
later in this thesis we begin incorporating multivariate and multiple sites to the model which
significantly increases the compute time of the model. The study choses to move forward
with the expanding method as the accuracy performance to compute time is much more
suitable for real time predictions.
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4.3  Chapter Summary

This chapter began by examining the system's overall hardware architecture and the
specifications of the various hardware components selected, including their models and
accuracies. This system architecture provides a backbone for data collection and thus
provides a large amount of data to test the outlined training method the rest of the chapter
goes through. We compared how these three methods work and the variations they will
provide in prediction accuracy and computational time. Method 3 of this chapter shows our
approach to training the model, which aims to use a small sacrifice in prediction accuracy for
a significant boost to computational time.
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5 Overall Model Optimisation & Multisite model proposals.

This chapter begins by looking at methods to optimise the model using various known
methods. We will be looking at different ways of improving prediction accuracy and the
characteristics of LSTM that need to be tweaked to make it suitable for air quality
predictions. This chapter mainly provides a foundation to build on for the next Chapter,
which is the main novelty of my work. Following basic optimisation, we dive into looking at
linking models of multiple sites to optimise further and improve the performance of the
model. We show my novel method of incorporating data from multiple sites into a
predictive model. This has historically proved challenging because air quality data is very
localised. We aim to use this novel approach to have a macroscopic look at indoor air quality
across multiple locations and, from this data improve the performance of air quality
predictions.

5.1 Initial Optimisation

5.1.1 Model Training Optimisation

When looking at training the previously mentioned LSTM models in section 4.2 using the
collected indoor air quality data, there are a few factors to consider in optimising the
training process regarding accuracy and speed. The factors we look at here are as follows.

1. Training Duration (T)

a. This refers to the duration of data used in the model training before any
predictions are made.

b. This applies to all 3 training methods: fixed, shifting and expanding training
duration.

c. Tests were done with training duration from 1 day up to 3 months.

2. Prediction Duration (P)

a. This refers to the length of the prediction duration made by the model.

b. While this duration exists in all 3 training methods, it cannot be optimised in
the fixed method, and the duration will be predetermined by the size of the
data set (N) and the training duration (T). As such, the optimisation of this
variable was only looked at using the Shifting and Update training duration
methods.

c. Tests were done with a prediction duration of 1 minute up to 1 day.

3. Training generations

a. This refers to the number of times the model processes the training data
before it attempts to make predictions.

b. This applies to all 3 training methods, fixed, shifting and expanding.

Tests were done with training generations as low as one up to 30,000.
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In each of these factors, we will look at varying the factor itself and how that affects both
the model's accuracy and the computational speed. All computations are performed on the
same machine to keep tests consistent. We have used single variate data in all these cases
to speed up training at all iterations while testing the instances. Apart from the variables
being optimised, the other 2 variables were kept constant while performing the
optimisation.

5.1.1.1.1 Target %RMSE

%RMSE is the main performance benchmark selected to look at indoor air quality
predictions. In selecting a cutoff point for an acceptable %RMSE we need to consider a few
things. Mainly %RMSE is just a numerical indication of how accurate the model is compared
to the real data, the main determining factor of how the model performs is if the model
data fails to show spike in air quality data.

50 T T T
——Qbserved
45| -
|l
[
40 - | =
I
il
|
]
“ [ |
/ .| o
|
Il
A i
{1\ |
b ! I
[ =
|| b
1 | ‘ In
I 1M
| | | l. 111
| |
I
i W =
| Vin ) Ay
ol | il | 1 Nl il 1 1 L — fI—
Feb 28 Mar 03 Mar 06 Mar 09 Mar 12 Mar 15 Mar 18 Mar 21 Mar 24 Mar 27 Mar 30
Time 2022
Figure 5.1 17% RMSE - Peaks and troughs less visible
50 -
Observed
45! | Predicted ||
407
35¢ | ' F |
| | f ] J
301 \ i Ll ‘ | ‘ -
S o5l | ‘ A I
o2 ‘ | & il ‘L ‘ ‘ .
(] ] ] ol | ‘} \ |
i | | | 1 ly | =]
20 . L/ Fis | ‘ ol ! |
il VMY | . |
1515 N 1 A\ M A ‘ \t | - | | \
: Al I IR |
oIy N | all \Ny(| b [
\ i [ S a1 N
5f \
0 | | | | | |
Feb 28 Mar 03 Mar 06 Mar 09 Mar 12 Mar 15 Mar 18 Mar 21 Mar 24 Mar 27 Mar 30

Time 2022
%RMSE = 8.0458

Figure 5.2 8% RMSE - Peaks and troughs still somewhat visible

54



We see in Figure 5.1 and Figure 5.2 the difference in the visibility of peaks and troughs when
we look at a prediction with 8% RMSE and 17% RMSE. In Figure 5.2 we still can clearly see
when there are spikes in air quality while in Figure 5.1 the spikes appear much more muted.
As such we initially choose to use a 10% %RMSE as the largest acceptable error. To further
reinforce this other studies which were highlighted in sections 3.2.7, 3.3.1 and 3.3.2 also use
10% %RMSE as their cut off point. Furthermore, this study will later further improve

the %RMSE using other methods, and some evaluations are done with reduced parameters
to reduce computational time.

5.1.1.2 Training Duration

We started the optimisation by looking at the training duration. When testing various
training durations look at testing the training duration we kept the other training factors
constant. In this case, we had kept the prediction duration to 2 hours and the training
generations to 300. The following tests are all performed using the expanding method, as
we believe this method is the best for our application.
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Figure 5.3 shows an initial comparison of the PM 2.5 level predictions. In this initial
comparison, we used training durations of 1 week 2 weeks and 4 weeks, shown with the
orange, yellow and purple lines, respectively. At the bottom of the figure, we have shown
the error function of each of the predictions compared to the observed data and

their %RMSE, which we use as a numerical measure for the performance of the predictions.
We see in Figure 5.3, the %RMSE increases from 45.0498 to 23.3737 and finally 7.9025 with
1 week, 2 week and 4 week training respectively. This implies a larger training duration
provides a more accurate prediction.

Further, using the %RMSE of the predictions, we can plot a graph of this %RMSE at various
training durations to further assess how the training duration affects the prediction
accuracy.

To further test the effects of the training duration on the prediction accuracy, we will
proceed by plotting the RMSE over a 2-week testing period using varying training periods
from 0.5 weeks to 12 weeks. This test will be repeated with data from 7 sensors which we
distributed amongst 3 sites at varying locations.
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Figure 5.4 PM 2.5 Training Duration Optimisation

Figure 5.4 shows how the %RMSE varies as we change the training duration of the model for
particulate matter. We can see from this that the performance increase is most significant
up to week 2, while we still see significant improvements up to week 3. After that point, we
gradually get diminishing performance improvements as we increase the training duration.
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Figure 5.5 VOC Training Duration Optimisation

We repeated the same test looking at VOC instead, shown in Figure 5.5. Here we see a
similar pattern where the performance increase diminishes as we use larger and larger
training durations. However, in the case of VOC, we notice that the initial %RMSE on the
VOC prediction at even one week is lower than the %RMSE in the case of PM. We also can
observe that the %RMSE approaches the 10% mark at about four weeks but stays
consistently below the 10% mark after week 7 and 8.
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Figure 5.6 Carbon Dioxide Training Duration Optimisation
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Figure 5.6 shows the same optimisation test but looks at Carbon dioxide instead. Here we
observe the repeating pattern of the first four weeks leading to the most improvement, but
in the case of Carbon Dioxide, little to no progress can be seen past the 5/6-week mark.

5.1.1.3 Prediction Duration

We performed a similar test as with the training duration with the prediction duration, but
instead of varying the training duration, we changed the prediction duration while keeping
all other variables constant. For this test, we kept the training generation at 300 and the
training duration at six weeks.
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Figure 5.7 PM 2.5 Prediction Duration Optimisation

Figure 5.7 shows the effect of an increasing prediction duration on the %RMSE of the model
for PM 2.5, which indicates the model's accuracy. We can see that the model's accuracy gets
worse as we increase the prediction duration. Values past the 5-hour mark start to surpass
the 10% mark. Another observation is that past 20 hours, the %RMSE looks like it may be
plateauing. We suspect this is because the error is as high as it can be while still within the
limits of the possible readings.
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Figure 5.8 VOC Prediction Duration Optimisation

Figure 5.8 shows the effect of an increasing prediction duration on the %RMSE of the model
for VOC, which in turn indicates the accuracy of the model. We can see that the model's
accuracy gets worse as we increase the prediction duration. Values past the 9-hour mark
start to surpass the 10% mark. Compared to PM 2.5, we see a more accurate prediction for
longer. We suspect this is due to the random nature of PM 2.5 readings, which we can see
when we compare Figure 4.8 and Figure 4.9. In these figures, we see that VOC has some
form of recurring pattern while PM 2.5 is almost completely random
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Figure 5.9 Carbon Dioxide Prediction Duration Optimisation
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We can see in Figure 5.9 that Carbon Dioxide behaves very similarly to VOC. This is likely

because the Carbon Dioxide sensor being used is an eCO; sensor which is linked to the VOC
sensor.

5.1.1.4 Training Generations

We performed a similar test with the training duration and the prediction durations for the
training generations. We changed the number of training generations while keeping all
other variables constant. For this test, we kept the prediction duration at 3 hours and the
training duration at six weeks.
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Figure 5.10 PM 2.5 Generations Optimisation

Figure 5.10 shows how the number of training generation affect the %RMSE for PM 2.5. We
see that most performance improvement happens up to the 250-350 generation mark. We
still get improvement in performance past this point, but the returns are less significant.
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Figure 5.11 shows how the number of training generation affect the %RMSE for VOC. We
see that most of the performance improvement happens up to the 250-350 generation

mark. We still get improvement in performance past this point, but the returns are less
significant.
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Figure 5.12 Carbon Dioxide Generations Optimisation
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Figure 5.12 shows how the number of training generation affect the %RMSE for carbon
dioxide. We see that the majority of the performance improvement happens up to the 250-
350 generation mark. We still get improvement in performance past this point, but the
returns are less significant.

In the case of training generations, we see similar characteristics amongst all three
pollutants in different rooms and different sites. This likely means that the training
generations are not significantly affected by the features of the data.

5.1.2 Multivariate Predictions

Initially, we only looked at making predictions using a single air quality factor as the input
and output of the model. The aim of looking at multivariate predictions is to find any
correlation between the air quality factors. These correlations would hopefully allow us to
assist in making further predictions more accurate.

5.1.2.1.1 Pearson R score
Initially, when looking at multivariate, we looked at a linear regression model between each
combination of pollutants. For each combination, we obtained a Pearson R Score,

the covariance of the two variables divided by the product of their standard deviations. This
_ _ZxDey)
VEIE-%)2(y-¥)?

5.1. We repeat this calculation for every combination of pollutants.

is done by using Pearson R equation -

Pearson R equation : R = 2&06-Y) -

VEE-X)2(y-y)?
Where?

R =correlation coefficient

x =values of the x-variable in a sample
X =mean of the values of the x-variable
y =values of the y-variable in a sample
Yy =mean of the values of the y-variable

5.1.2.1.2 Testing based on RMSE.

As discussed in section 3.1.1, some prior evidence of correlations between air quality factors
exists. As such, we tested the effect of entering different IAQ factors into a multivariate
variation of LSTM. In doing so, we aimed to see how different combinations of input
variables would affect the model's percentage RMSE (%RMSE). We performed tests on
every combination of input variables, including all combinations of 2,3,4 and 5 input
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variables. We also repeated the same test to data from multiple sites to test if the
correlation varies from site to site or is fixed across all locations.

5.1.2.2 Multivariate Forecast Correlation and Forecasting

This section looks at the possible correlation between the different pollutants in a single
household. In section 3.1.1, we have seen evidence of statistical correlations between the
various air pollutants.

Initially, when looking at multivariate, we looked at a linear regression model between each
combination of pollutants. For each combination, we obtained a Pearson R Score,
the covariance of the two variables divided by the product of their standard deviations.

Co2 Humidity PM2.5 Temperature | VOC
Co2 N/A 0.1069 -0.2281 0.7132 0.3983
Humidity 0.1069 N/A -0.0118 -0.0463 -0.1000
Pm2.5 -0.2281 -0.0118 N/A -0.2337 0.0120
Temperature | 0.7132 -0.0463 -0.2337 N/A 0.2150
VOC 0.3983 -0.1000 0.0120 0.2150 N/A

Table 5.1 Linear Correlation Coefficient or each Factor combination

Table 5.1 shows the Pearson R score for each combination of the pollutants. As most of the
varieties have an R score of less than 0.4, they can be considered to have a very weak linear
correlation. The exception to this is temperature and CO3, shown in the table as highlighted
in green, indicating a strong correlation.

We then looked at applying the data once again into an LSTM Neural Network, but this time
using multivariate data to train the model. We also fed the trained model updated data
from earlier results and an 8-week training period as from our previous testing in section
5.1.1.2, the 7 to 8 week point is where the error drops below the 10% point

We then looked at applying the data once again into an LSTM Neural Network, but this time
using multivariate data to train the model. We also fed the trained model updated data
from earlier results and an 8-week training period as from our previous testing in section
1.2.1, the 7 to 8 week point is where the error drops below the 10% point.
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Figure 5.13 shows the predictions obtained from the model when it has been fed with just
the PM data. Figure 5.14 shows the forecasts obtained from the model when it fed all the
pollutant data as inputs. When all the pollutant data was fed as an input to train the model,
we can see that the %RMSE has been reduced from 8.0458 to 2.9562. This would indicate
that the different pollutants have some form of correlation with each other. This contradicts
the results from the Pearson test, as the Pearson test had shown that there is only a weak or
no correlation between PM 2.5 and other pollutants. As the Pearson test is a linear
correlation test, this indicated that there is some form of relationship between the variables
is not a linear correlation, but it is a more complicated correlation which is consistent with
what was mentioned in Section 3.1.1. A few other things to note is that the multivariate
LSTM model took a significantly larger computational time to train to model, at least 10x
more than the single variate LSTM model. As such, the increased accuracy comes at a
significantly higher computational cost. However, the computational cost is only to train the
model.

Based on this, we proceeded to look at how all the different combinations of input variables
affect the %RMSE of the model. We performed this with a training duration of 8 weeks, a
prediction duration of 1h and 500 training generations.
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Figure 5.15 Multivariate Input variable combinations
Figure 5.15 shows the % RMSE with the different input variable combinations. As we can
see, there is a general downward trend in the %RMSE as more variables are incorporated.

We also observe that in general incorporating specific input variables has a larger effect on
the %RMSE: temperature and humidity.
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5.1.3 Hyperparameter optimisation

Within LSTM, there exists a set of hyperparameters that can affect the performance of the
model based on the dataset used. Some of these hyperparameters are as follows.

e Gradient threshold
Initial learn rate
e Learn rate drop period

e Learn rate drop factor
Weight initialisation

e Decayrate
Batch size

In order to identify how these parameters affected the model, we tested the performance in
terms of the percentage RMSE. The characteristic such as the deformations in the shapes of
the peaks and troughs, as well as a fixed upward shift of the troughs when compared to the
real data. We also used different data sets from different sites to see if these parameters
would need to be varied from site to site or can be fixed across all sites. For the parameters
that we could fix across sites, we used these plots to find the optimal value to set these
parameters too. However, some of the parameters would produce varying results during
different circumstances, such as the site location or the actual time period of the data.

For said parameters that we would need to varied depending on the characteristics of the
data, we worked on developing an algorithm that would test and optimise this from time to
time in order to keep these parameters at the optimal values to keep the accuracy of the
model as high as possible. Figure 5.16 shows a flow chart of the proposed hyperparameter
optimisation algorithm. It starts by running an initial optimisation process; this optimisation
process involves running the model multiple times while varying the chosen hypervariable.
The optimisation process starts by lowering the number of generations and hidden states.
This is done to shorten the computational time of each iteration at the cost of lower
accuracy. Upon doing so, it starts testing the model using the previous optimal value for the
hyperparameter that is being tested; in the case of the initial optimisation, a "generic
optimal" value is used. In the next step, the algorithm would make two iterations up and
down from the initial value, and the algorithm will constantly calculate a moving gradient of
the RMSE against the parameter being optimised. The algorithm then continues the
iterations in the direction of the negative gradient until the gradient becomes positive
(across three values), taking the point with the lowest RMSE as the new optimal value. It will
finally test the last few iterations again, but with the standard number of hidden states and
generations.
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Figure 5.16 Hyperparameter Optimisation

Apart from the normal optimisation process shown in Figure 5.17, there are two unique
situations we need to consider. Both situations occur in step 2, where it performs two
iterations up and two down. In this step, if the gradients in both directions are positive or
negative. When both are positive, the hyperparameter is already at its optimal value, and
the algorithm will skip to the last step; this is shown in Figure 5.19. The second situation is
shown in Figure 5.18, where both sides are negative. It will continue iterating in both
directions until it gets to a positive gradient on both sides and will then choose the side with
a lower RMSE.
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Figure 5.17 Standard optimisation process
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5.2  Multisite Model Proposals

So far, the dataset at each site has only been looked at on a site-by-site basis. This section
aims to look at the datasets on a more macroscopic scale and at any relationship between
the datasets from multiple sites. From section 3.1.1 There is some evidence that the
characteristics of the dataset are very localised in terms of indoor air quality. As such, we
will explore a few methods for applying LSTM to multisite data, including a proposal for a
new method of applying LSTM to datasets in the hope of improving predictions.

5.2.1 Description of Multisite Prediction methods

5.2.1.1 Large scale Multivariate

The initial approach is to apply all the data from all the sites into a single multivariate LSTM
model. In Figure 5.20, we see how such a model would be structured. In this case, the model
would look at all the datapoint. The characteristics of data points will not be considered in
the process. As such, the model cannot distinguish which site each data point is from, and in
our case, it will only know the total number of parameters it has and not know which
parameters come from different sites or locations.
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Figure 5.20 Multivariate LSTM

With this method, we are also required to add a synchronisation function between sites to
synchronise the number and timestamps of each data point before feeding it into the
model. This is due to multivariate LSTM requiring the input data to be synchronous. This
synchronisation function causes a minor loss of data in some cases, as at any moment in
time if there is a missing data point for any variable, we would have to ignore the datapoint
of every other variable at that timestamp. In this application, the synchronisation was
performed to the closest minute, and we took one datapoint for each variable at every
minute to achieve the synchronisation.

5.2.1.2 Proposed multisite model — Shared hidden layer.

In this approach, we propose to create a variation of Multivariate LSTM that will look at
each dataset from each site primarily and individually while incorporating a shared hidden
layer between each site that will allow it to potentially gain additional insight from the data
from other sites.
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Figure 5.21 Naive single variate LSTM

he(1
D1 P ——{ LSTM()

1 @) 15T™E2)

) 1P LSTM(F)

Figure 5.22 Asynchronous single variate

In establishing this proposed method, we first took the structures of a naive single variate
LSTM, shown in Figure 5.21, and a proposed structure for an asynchronous LSTM model,
shown in Figure 5.22. We are taking the approach of how an asynchronous model would
apply an LSTM Network to each variable individually while incorporating a shared hidden
layer. In the proposed method, we have taken the idea of a shared hidden layer from the
asynchronous approach and applied it to a multivariate model, as shown in Figure 5.23.
However, to achieve such a model, it is impossible to use the existing LSTM equations or
even the LSTM equation for the asynchronous approach. This is because the traditional
LSTM equation does not consider the hidden layer, while the asynchronous approach
equation limits each neural network to a single input variable. As such, we must perform a
different approach to achieve this multisite LSTM structure. We will look at three methods
of implementing this proposal and their performance.
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Figure 5.23 Multisite LSTM Proposal
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5.2.1.2.1 Proposal A—Shared W and V Hidden state

This approach involves using a normalised version of the two weightage matrices (W and V)
across all sites. Using this approach, instead of applying the individual weightage matrices
on the LSTM model of each site, we applied an updated weightage matric. The updated
weightage matrices are the average of all the sites' weightage matrices from W and V.

5.2.1.2.2 Proposal B - Shared V Hidden state

This proposal involved a similar approach to proposal A. However, instead of normalising
both the weightage matrices W and V, we only normalised V and kept W as the individual
matric for each site.

5.2.1.2.3 Proposal C—New Shared Hidden state E

With this proposal, we look at implementing a new weightage variable. This weightage
variable is calculated using Equation 5.2. This weightage variable is a measure of the error
caused by applying any specific hidden state.

New Weightage Factor : E = % ’tvzl(le — Xey1) 5.2

Based on the original LSTM equations shown earlier in section 2.4, Equation 2.1 to Equation
2.6, and we can then take a simplified version of the LSTM equation, which is highlighted in
Equation 5.3

Using this, we can then use the backpropagation through time (BPTT) algorithm to learn the
parameters of the LSTM network in order to create and update equations to apply the new
weightage value to the equations.

Simplified LSTM Gates v, =k 5.3

Equation5.4 shows us applying the Error function from Equation 5.3 to simplified LSTM
Gates(Equation 5.3) using the BPTT algorithm

BPTT applied to LSTM : &, =L

= v, 5.4

This equation can then be expanded to what is shown in Equation 5.5 if we allow Q=[W,U]

BPTT to LSTM with Q = [W, U] :

J
50k = SVka—Z = §Vk[xk (1), xk (2), ..., xk (P), hk — 1] ‘ 5.5

1
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We then decompose the update sequence to Equation 5.6 for each sample of BPTT. From
this equation, we can see the effect of a multi-sequence backpropagation update. First, we
observe that the same weights are updated as the sum over all timesteps and are not
independent. The LSTM combines all information into the hidden state.

Decomposed Update Equation :

6Q = Yp2y 8Qulxi, he—1] + Z;cnﬁml 8Qr [xie, hye—1] + Z;nimz §Qc [, hye—1] 5.6

In this sequence, we can see that the early stages of training may give a significant error due
to the different statistical properties of each variable. We note it may be possible to learn a
function where LSTM(xk(3)) = LSTM(xk(2)). As such, the series will converge, and we
can simplify the update equation to Equation 5.7

Simplified Update Equation : 50 =YL, (SQk[x,f,hk_l] 5.7

We can then apply to the base LSTM equations. In this application, however, the base LSTM
equation will only take inputs from their individual sites, while the update equation will be
common across sites and will be this additional shared hidden state we were aiming to
create.

5.2.2 Comparing the performance of Multisite Predictions methods

5.2.2.1 Large scale Multivariate

The initial idea of looking at multisite prediction was to use a large Multivariate model and
feed this model data from multiple sites, as discussed in section 3.5.1. We tested this using
data from2 sites. However, we got some significantly distorted prediction graphs when we
tested this approach. Figure 5.24 shows the malformed prediction graphs overlayed with
the original data from the two sites used in this test case. It is suspected this is due to the
model getting "confused" by the two sets of data that both have their own characteristics
due to their location and surrounding circumstances while also having some similar features
due to the nature of the pollutant itself.
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Figure 5.24 Large Scale Multivariate

5.2.2.2 Proposed multisite model — Shared hidden layer

The following approaches look at a proposed modified version of LSTM that incorporates
what | would call a shared hidden state. We look at three approaches to achieve this shared
hidden state and compare their viability and performance. These approaches are described
in section 5.2.1.2, where proposals 1 and 2 involve combining the existing hidden states of
the LSTM equation to achieve this shared hidden state, with proposal 1 combining both the
W & V hidden states, while proposal 2 involves keeping the W hidden states independent
while combining the V hidden state. Proposal 3, instead involves the creation of a new
hidden state based on the error function of predictions, described in section 5.2.1.2.
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5.2.2.2.1 Site 1 Proposal comparison
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Figure 5.25 Site 1 Proposal Comparison

Figure 5.25 shows the comparison of the prediction on site 1 when using the 3 proposed
methods to achieve multisite predictions. We see that with proposals 1 and 2, the amplitude
of the peaks and troughs of the predictions are significantly lower than the observed data.

In proposal 1 we also see a time shift in the prediction where the predictions are inaccurate
on a time basis.

5.2.2.2.2 Site 2 Proposal comparison
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Figure 5.26 Site 2 Proposal Comparison
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Figure 5.26 shows the comparison of the prediction on site 2 when using the three proposed
methods to achieve multisite projections. We see very similar characteristics to the results
from Site 1 where with proposals 1 and 2 the amplitude of the predictions are significantly
lower than the real data. In proposal 1 we also see the time shift in the prediction where the
predictions are inaccurate on a time basis.

We hypothesise that these undesirable characteristics when using proposal 1 and proposal 2
are due to the nature of the W and V Hidden state. The W hidden state is involved in
applying a weightage factor to newly input variable values in LSTM. While the V hidden state
is involved in the removal of previous and less desirable weightage values of historical data.
It is possible that feeding the model data from 2 sites has “confused “its predictions as it is
trying to apply these same weightage values to 2 sets of data that could have different
characteristics.

To test if the model is getting “confused” in proposals 1 and 2, we tried a special test case
where of inputting data from 2 sites into the model, we input the data from a single site into
multiple inputs of the model. This resulted in the graphs produced in Figure 5.27. We see
that the prediction again has similar accuracy to the original multivariate model. This
indicated to us that the model is possibly getting falsely trained by 2 sets of data that are of
similar characteristics but have different patterns. i.e. The PM data from site 1 and site 2
would have similar spike characteristics, but they interact with the other variables
differently due to the different characteristics of the sites.
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Figure 5.27 Proposal 1 and 2 Special Test Case

5.2.2.2.3 Proposal C—New Shared Hidden State E

Proposal C involves the creation of a new hidden variable that is incorporated into the LSTM
equations through the backpropagation through time method. This method is described in
section 5.2.1.2.3

5.2.2.2.3.1 Proposal C Effect on Prediction Duration

Initial testing using this technique showed no significant difference when compared to
Single site models when looking at 1-hour prediction durations. However, upon testing a
larger prediction duration we noticed that the prediction at larger prediction duration were
much higher with this variation of the model.

We also made a comparison with the existing multisite model looked at in section 3.3.2 —
Geo-BiLSTM. This model was recreated to the best of our ability based on existing
documentation and our data was fed into the model while keeping the other training
parameters and hyperparameters of the geo-BiLSTM model the same as our proposed
model.
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Figure 5.28 Proposal C Prediction duration
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Figure 5.28 shows a comparison of the RMSE at different prediction durations with and
without using the proposal C multisite variation. With this test, we see the RMSE at lower
prediction durations are very similar in both cases. However, as the prediction duration

increases, we see that the proposed technique’s RMSE remains lower even at large

prediction durations of 9 hours. When compared with the existing Geo-BiLSTM, it out
performs our proposed model, which is likely due to this model being based on Bi-LSTM
instead of a normal LSTM model. We repeated this with multiple site combinations while
still looking at Site 1 as the primary site for predictions and measuring the performance of
the model, which can be seen in Figure 5.28. In all cases, we see relatively similar results
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with some level of randomness but in general, a similar trend amongst all Multisite test
cases when compared to Single site.

5.2.2.2.3.2 Proposal C Effect of Training Duration
We then proceed to compare the effects the multisite model has on the training duration of
the model.
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Figure 5.29 Proposal C training Duration

Figure 5.29 shows a comparison of the %RMSE at different training durations with and
without using the proposal C multisite variation. With this test, we see marginal differences
between the training durations in the case of all 3 site combinations as well as with Geo-Bi
LSTM.
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5.2.2.2.3.3 Proposal C Effect of Training generations
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Figure 5.30 Proposal C Training Generations

Figure 5.30 shows a comparison of the %RMSE at different training generations with and
without using the proposal C multisite variation. With this test, we see marginal differences
between the training durations in the case for all 3 site combinations. We see similar results
when compared to what we saw in Section 5.1.1.4, where the 250-300 Training generations
point seems to be an ideal stop position as improvements are diminishing. The Existing Geo-
Bi-LSTM model also showed very similar performance with our proposed model on al sites.
To verify this, we look at plotting the rate of change(gradient) of the %RMSE of the model at

each point.
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Figure 5.31 Proposal C Training Generations Gradient
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Figure 5.31 shows this gradient at each point. We see that past the 300 generation point we
consistently get a gradient of approximately 0.05. Also referring to Figure 5.30, the 300-
generation mark is also the point where the %RMSE is roughly below the 10% mark.

5.2.2.2.4 Proposal C Staggered Training

While performing these tests we made an observation we noticed slightly varying results
when staggering the training of the models. Figure 5.32 and Figure 5.33 show a depiction of
applying said offset.
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Site 1 Training Duration
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Figure 5.32 Proposal C No Offset
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Figure 5.33 Proposal C with offset

Figure 5.32 shows a depiction of using proposal C without the offset. In this situation, we
trained the model for both sites simultaneously and thus, the shared hidden state forms
from scratch for both sites. Figure 5.33 show us applying the offset to the training of 1 of the
2 sites. In this situation, site 1 is the only site involved the in the initial formation of the
shared hidden state. Site 2 on the other case will have access to a developed shared hidden
state(from site 1’s data) right from the start.
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All evaluations using this ofset is done with every site combination using site 1 are a primary
site with our proposed methed and using the existing Geo-BiLSTM model on all site but
without an offset. It is impossible to incorporate an ofset into the Geo-BiLSTM due to the
nature of a normal LSTM model being synchronous. However with our proposed method,
due to the model technically being split into multiple LSTM model instead of 1 large model,
this allow each site to be asychronnous which is what allows for this training offset to be
implemented.

5.2.2.2.4.1 Effects of different sites
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Figure 5.34 Proposal C Staggered Training — Site 1

Figure 5.34 shows the effect of different site combinations on the %RMSE while having a
fixed training offset of 16 weeks (3 months). As a benchmark we again used the existing
multisite model looked at in section 3.3.2 — Geo-BiLSTM. In Figure 5.34, the largest
improvement is provided by the site 1 + site 2 combinations. Incorporating Site 3 and 4 has
also shown a minor improvement in the training duration, as seen in the 1+3 and 1+4
combinations. The improvement provided by incorporating different sites seems to vary
from site to site. We further see the similar characteristic with the 3 site and 4 site
combination, where more significant improvement is observed in any combination that
includes site 2. We proceed to look at this relationship by changing the primary site and
performing the same test using sites 2, 3 and 4 as the primary site which is used to analyse
the performance. When this stagger in introduced we see that our proposed model
outperforms the Geo-BiLSTM model, this is like due to the data that our proposed model
has incorporated into the shared hidden state before site 1 was incorporated into the
model.
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Figure 5.35 Proposal C Staggered Training — Site 2
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Figure 5.36- Proposal C Staggered Training — Site 3

Figure 5.35 and Figure 5.36 shows a similar analysis of comparing different combinations of
site in the multisite model, but this time using site 2 and 3 as the primary site, respectively.
The case of Site 2 as the primary site, we see similar characteristics to Site 1 where any
combination which includes of site 1 provides a more significant RMSE improvement. This
further reinforces our hypothesis that the site characteristics are more significant than the
number of sites included in the multisite model. With Site 3 as the primary site, we see
combinations including site 4 seem to provide better results compared to combinations
including either site 1 or 2.
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We suspect different sites provide varying scales of effect on the training duration due to
the site’s characteristics. Referring to section 4.1.5, we see that Sites 1 and 2 are both
apartments a few floors above ground level in urban populated areas. With these sites, we
saw they had good synergy with each other providing a significant improvement to the
training duration to each other. While Sites 3 and 4 are houses further away from the city
and in the same general location. Based on this, we hypothesise that the varying scales of
improvement is due to the site characteristics, where the model can more efficiently apply
to another site of similar characteristics when compared to applying it to a site of varying
characteristics. Our initial four sites seem to confirm this theory, but it would need further
testing with more sites to be confirmed.

From this results of our proposed method compared to the normal LSTM and the existing
multisite method(Geo-BiLSTM) we see that out proposed method has the benefit of being a
synchronous in terms of sites, this means we can incorporate more site into an existing
model at a later time. While due to the synchronous nature of LSTM the Geo-BiLSTM model
would need to be retrained completely when additional sites are incorporated into it.
Furthermore with the stagger introduced our model takes a much shorter time to be trained
to a reasonable level. The Geo Bi-LSTM outperforms our proposed model in terms of
prediction duration but this likely due to is using Bi-LSTM as a base compared to us using
LSTM as a base. Using Bi-LSTm as a base for our proposed method would be something
possible to look into the future.

5.3 Chapter Summary

This chapter started by looking at optimising the model using various known methods. We
looked at the effects of varying training parameters and how they would affect training
accuracy. We also looked at the impact of incorporating multiple data points into the same
model. Finally, we proposed a simple method to keep the hyperparameters of LSTM at or
close to optimal values. The main aim of the chapter was to optimise the LSTM model to be
as suitable as possible for use with indoor air quality predictions. Following this initial
optimisation the chapter looks into incorporating data from multiple sites into the modal to
achieve a more macroscopic take on the predictions. Based on the proposed multisite
methods we demonstrated a novel approach to looking at data from multiple sites into a
predictive model. The method incorporated a shared hidden state to link LSTM models from
various sites. This shared hidden state was observed to make improvements in the training
time and prediction duration of the LSTM prediction.
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6 Conclusion

The culmination of this doctoral research manifests a significant stride toward the
development of an loT monitoring solution for smart homes. The creation of a bespoke
intelligent 10T system, which incorporates air quality sensing technologies with data from
smart home automation systems, stands as a notable contribution to the domain. The
system, as validated by the research, exhibits a pronounced capability in forecasting
imminent air quality conditions with a high degree of accuracy, courtesy of the employed
neural network-based methodologies, particularly the Long Short-Term Memory Neural
Network (LSTM).

The devised data collection framework, characterised by a wireless sensor node and an
array of strategically deployed sensors within households, proved effective in gathering
crucial and reliable data for neural network training. The dynamic predictive model
constructed herein, predicated on a continuous influx of real-time air quality data, holds a
promising potential in facilitating proactive adjustments to household elements, notably
ventilation, thereby ameliorating indoor air quality.

In this study, we investigated various training methods, carefully evaluating their
advantages and disadvantages. Ultimately, we decided to adopt the expanding training
method due to its optimal balance of high accuracy and manageable training duration. This
method integrates a form of real-time error correction, enabling it to sustain commendably
high accuracy without necessitating frequent retraining of the model.

Additionally, the exploration of a novel LSTM variant, entailing a shared hidden state, has
unfolded a new option for examining interconnected prediction data from multiple
locations. This exploration has paved the way for identifying potential correlations between
indoor air quality levels across separate sites, which provides benefits in terms of
predictions related to indoor air quality.

The study further delved into optimising the LSTM model specifically for IAQ applications,
focusing on fine-tuning various training parameters. We concentrated on identifying the
minimum viable values for three critical training parameters: training duration, forecast
period, and the number of training generations needed to achieve accurate predictions.
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The study also explored employing LSTM models to identify and analyse the correlations
among various Indoor IAQ factors. Initially, our investigation revealed no straightforward
correlations among these IAQ factors. However, the LSTM model exhibited some
performance improvements when we shifted to a multivariate approach, hinting at the
presence of more complex interrelations. To substantiate these findings, we experimented
with various multivariate combinations and cross-referenced other studies, which
corroborated that intricate correlations exist between IAQ factors.

The findings and advancements stemming from this study hold promise for the future of
IAQ management and invite further exploratory and developmental endeavours in the
various applications of this multisite variation beyond IAQ. This versatile approach can
potentially deliver benefits in various contexts, opening doors to new opportunities for
innovation and progress for various applications.

6.1 Future work

The results of this study demonstrate that our approach enables accurate prediction of
indoor air quality (IAQ) across multiple sites. Future directions for this research include
expanding the study in two primary ways. First, we aim to incorporate additional data points
as well as controllable aspects from home automation systems into the models for each site,
potentially enhancing the model’s ability to identify sources of poor air quality. Second, we
intend to increase the number of sites included in the multisite model to explore the effects
of a broader dataset.

6.1.1 Multisite — additional sites

This study was limited to five sites due to constraints in obtaining consent for data collection
at additional locations. Moving forward, we plan to expand the model by incorporating
more sites to evaluate whether the findings from the initial five locations remain consistent
as the sample size increases. Specifically, we aim to assess the improvements in training
durations observed with the initial sites, examining the extent of further gains from
additional sites and the associated computational costs.

The study also plans to test modifying the Multisite model into a GRU model instead of
LSTM in hope to combat the increasing computational cost of incorporating more sites. The
study also plans to look into modifying the proposed method to use Bi-LSTM over LSTM to
see how it would benefit the model.
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6.1.2 Additional datapoints & home automation linkage

To advance this study, the first objective is to investigate the integration of additional data
points from home and building automation systems into the model. The purpose of this
approach is to assess whether the model can identify sources or causes of poor indoor air
quality in households. The underlying hypothesis is that, within the indoor environment,
drops in air quality are often caused by controllable factors within the household. Therefore,
providing the model with more comprehensive information on household conditions may
allow it to “learn” which variables are linked to these dips in air quality.

Once the further datapoints are incorporated into the model, it is planned to first see if
there is an effect on the performance of the model, including training time, prediction
duration, prediction accuracy and computational cost. In terms of computation cost, it is
almost certain that it will increase due to the nature of machine learning. The study then
investigates incorporating some other ML techniques into the model, with the aim of
identifying the factors that have an effect on the air quality. The initial thought is
incorporating something like Multi-layer Feed Forward (MLFF) into the model, as MLFF has
been seen to be effective at classifying and categorising types of air pollutants and their
sources. [52]

The hope for this expanded model would be to develop a system continues to predict the
IAQ while also automatically identifying variables and factors that have an effect on the air
quality. Using this information the study hope to use this knowledge to manipulate
controllable factors through the building automation system, allowing for the creation of a
system that not just predicts negative spikes in air quality but also identifies factors that are
related to these spikes and in turn automatically perform actions to mitigate or reduce
them.
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