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Theoretical models conventionally portray the consolidation of memories as a slow
process that unfolds during sleep. According to the classical Complementary Learning
Systems theory, the hippocampus (HPC) rapidly changes its connectivity during
wakefulness to encode ongoing events and create memory ensembles that are later
transferred to the prefrontal cortex (PFC) during sleep. However, recent experimental
studies challenge this notion by showing that new information consistent with prior
knowledge can be rapidly consolidated in PFC during wakefulness and that PFC
lesions disrupt the encoding of congruent events in the HPC. The contributions
of the PFC to memory encoding have therefore largely been overlooked. Moreover,
most theoretical frameworks assume random and uncorrelated patterns representing
memories, disregarding the correlations between our experiences. To address these
shortcomings, we developed a HPC-PFC network model that simulates interactions
between the HPC and PFC during the encoding of a memory (awake stage), and
subsequent consolidation (sleeping stage) to examine the contributions of each region
to the consolidation of novel and congruent memories. Our results show that the PFC
network uses stored memory “schemas” consolidated during previous experiences to
identify inputs that evoke congruent patterns of activity, quickly integrate it into its
network, and gate which components are encoded in the HPC. More specifically, the
PFC uses GABAergic long-range projections to inhibit HPC neurons representing
input components correlated with a previously stored memory “schema,” eliciting
sparse hippocampal activity during exposure to congruent events, as it has been
experimentally observed.
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A fundamental question in memory research is how new memories in a labile state are
transformed into more robust and permanent memories. A widely accepted framework
posits that during learning, the hippocampus (HPC) encodes new information, enabling
rapid acquisition of ongoing events without interfering with existing neocortical knowl-
edge. This process is followed by hippocampal replay, during sleep, which effectively
“teaches” the recently acquired information to the prefrontal cortex (PFC) (1, 2).

While extensive experimental and theoretical work support this view (2-13), recent
experimental studies highlight the involvement of the PFC during the initial stages of
learning (14-16), suggesting that it might have a broader role than previously thought,
extending beyond offline memory consolidation. Notably, lesions and pharmacological
inactivation of PFC disrupts the learning of spatial (17-19), and congruent memory tasks,
i.e., tasks that are small variations of previously learned ones (20-22). While the role
of PFC in memory encoding (during wakefulness) remains elusive, experimental studies
indicate that prior consolidation of a PFC associative memory “schema”—preexisting
network of connected neocortical representations (23)—enables rapid learning of
congruent information (24, 25). Interestingly, encoding of congruent information has
been correlated with a decrease in hippocampal activity (25-28). Furthermore, Guise and
Shapiro have shown that mPFC inactivation reduced hippocampal pattern separation
of overlapping hippocampal representations (20), a phenomenon typically ascribed to
processes supported by the hippocampal neural circuitry, in particular in dentate gyrus
(29-34). Taken together, these results emphasize the need to reevaluate the mechanisms
by which HPC-PFC interactions support memory processing.

In this study, we propose a computational model of interacting HPC and PFC
networks to examine how the PFC modulates hippocampal activity during the encoding
of congruent versus novel memories, and how prior knowledge consolidated in PFC
influences the learning rate of new information. In addition to excitatory HPC-to-PFC
projections considered in previous memory models (for example, refs. 2, 4, 7, and 9), our
model includes long-range GABAergic PEC-to-HPC connections, as recently reported
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in ref. 35. Our computational model simulates interactions
between the hippocampus and prefrontal cortex during the en-
coding of a memory (Awake stage) and subsequent consolidation
(Sleeping stage). We begin by presenting the naive network
with a new pattern representing a to-be-learned memory. After
confirming that the pattern has been successfully encoded in
the HPC and then consolidated into the PFC, we evaluated the
responses of both the HPC and PFC when presented with an
additional input pattern which is congruent (i.e., overlapping)
or novel. We then examined the distinct contributions of
HPC-to-PFC and PFC-to-HPC interactions. The simulations
capture the rapid encoding of information consistent with prior
knowledge described experimentally in ref. 24, and propose
a circuit mechanism through which the PFC uses preexisting
memory schemas to guide the integration of new information
into the HPC-PFC network. Furthermore, our modeling work
shows that the PFC creates sparse representations of congruent
inputs in the HPC, enabling pattern separation.

Results

We first aim to investigate how the mechanisms underlying the
long-term storage of novel and congruent information differ and
the specific roles of the hippocampus and PFC in these processes
over time. To that end, we begin by storing a pattern A into an
untrained (i.e., naive) HPC-PFC network. Once pattern A is
consolidated in the PFC, the network receives a pattern B which
can either overlap (congruent) or not (novel) with the neural
representation of pattern A. In our model, the HPC and PFC
are described as recurrent neural networks with plastic Hebbian
all-to-all intraregional connections (with a higher learning rate
for HPC than for PFC), and fixed one-to-one interregional
connections. In addition to excitatory HPC-to-PFC connections
and a projection of the external inputs onto the HPC considered
in conventional memory models, we implement inhibitory PFC-
to-HPC connections, as reported in ref. 35. Based on anatomical
studies (36), we also include a projection of the external inputs,
i.e., of the pattern to be encoded, onto the PFC.

Encoding and Consolidation of a Memory in a Naive Neural
Network. We start by storing a pattern A in the HPC-PFC
network that can be used as a reference to compare and classify
future incoming inputs as novel or congruent. Storing pattern
A involves submitting the network to the awake stage, when it
receives pattern A, followed by the sleeping stage.

Starting from a naive state (HPC and PFC connectivity:
Whpc = Wpre = 0; HPC and PFC initial activity: xppc (%) =
xprc(#0) = 0), the HPC and PFC receive a pattern A to be
encoded (awake stage; Fig. 141). At the end of the awake stage,
we found strong recurrent connections within the HPC network
among neurons activated by pattern A (Fig. 142), indicating
that a memory trace of pattern A is encoded in HPC. The PFC
connectivity, on the other hand, remained unchanged. This is
due to the fact that the PFC learning rate is smaller than the one
of HPC.

Once the HPC has formed a memory trace of input A,
the HPC-PFC network enters the sleeping stage, where it
cycles through a rapid eye movement (REM) (uncoupled phase;
Wrrc_aprc = Whpc_prc = 0) and a nonrapid eye movement
(NREM) (coupled phase; Wprc-tpc = —1, Whpcprc = 1)
seven times (Fig. 161). Every time the network enters the REM
stage, the HPC and PFC neurons are reset to a random noisy state,
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and the system evolves autonomously according to its intrinsic
dynamics. This enables replay of recently acquired information
during sleep, which is believed to facilitate learning (5, 37, 38).
In our case, the HPC network will converge to the memory
engram A, which means that all neurons encoding memory
pattern A will become activated in a similar fashion as during
wakefulness. At the end of the sleeping stage, PFC activity reflects
the neural representation of pattern A (Fig. 1 61, Bottom), and its
connectivity resembles the hippocampal memory engram A (Fig.
142), although with weaker connectivity weights. Nonetheless,
pattern A is consolidated in PFC, as it was confirmed by testing
the PFC ability to recall pattern A upon partial activation of its
neural ensemble (87 Appendix, Fig. S2).

Consolidation of Novel Memory Pattern Relies on Hippocampal
Replay during Sleep. Once pattern A has been consolidated in
PFC, we set out to examine the HPC-PFC network’s behavior
when receiving a novel pattern B (0% overlap with pattern A).
We consider that a long time has passed since consolidation of
pattern A, and that while the PFC network retained the memory
trace of A encoded in its connectivity, hippocampal connectivity
decayed back to its initial naive state (Whpc = 0). In other
words, the HPC does not hold any information about pattern A;
it has forgotten it.

When presented with pattern B, the hippocampal and PFC
neural ensembles targeted by the novel pattern were strongly
activated (Fig. 241). At the end of the awake stage, an engram
of pattern B was encoded in the HPC connectivity (Fig. 242).
In contrast, at this stage, the PFC did not incorporate the novel
input into its network. Only after going through the sleeping
stage was pattern B consolidated in the PFC (Fig. 242).

Interestingly, following the reset of the HPC and PFC to a
noisy state in the beginning of the REM state, the PFC does
not evolve toward the previously consolidated pattern A state of
activity (Fig. 261, End of REM). This is due to the connectivity
of the memory engram of pattern A not being strong enough to
drive the PFC network to it and the network decays back to its
resting state (xprc = 0). This suggests that replay during sleep
is mainly driven by hippocampal activity, which in this case will
evolve toward the novel pattern B.

Our modeling results suggest that incongruent knowledge
previously consolidated in the PFC does not influence the
mechanisms of long-term storage of novel information—the
HPC-PFC network exhibits a similar behavior to the naive case.
In other words, consolidation of novel information in PFC relies
on offline replay (during sleep) of hippocampal activity learned
during wakefulness. These results are consistent with the idea
that there is a fast-learning system in HPC that quickly stores
information online, which can be replayed to a slower learning
system in PFC (1, 2).

Congruent Pattern Is Quickly Stored during Wakefulness. We
next sought to examine the effects of previous knowledge (pattern
A) on the consolidation of congruent information (pattern B with
90% overlap with A).

Contrarily to what was observed for the case of a novel
incongruent pattern, when presented with a congruent input, the
PFC quickly integrated its uncorrelated components (highlighted
in Fig. 342) in its connectivity, suggesting a rapid consolidation
of pattern B during the awake stage. The HPC, on the other
hand, did not form a memory trace of pattern B (Fig. 3 42, Lef?).
During the sleeping stage, there was no replay of pattern B, and
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Fig. 1. Encoding and consolidation of a memory in a naive neural network. Top: The HPC-PFC network encodes a pattern A. The network goes through

two stages: an awake stage, where the network receives pattern A, and a sleeping stage, where the network evolves autonomously according to its intrinsic
dynamics. (A) During the awake state, the hippocampus (HPC) and prefrontal cortex (PFC) network receive a pattern A represented by ones (1; red entries) and
minus ones (—1; blue entries), targeting the first 10 neurons in the HPC and PFC network. The recurrent connections are plastic. The two regions are coupled
through fixed one-to-one HPC-to-PFC excitatory, and PFC-to-HPC inhibitory connections (Wypc_prc = 0.5, Wprc_Hpc = —1). Each circle represents a neuron of
the network, with the color and the height of the corresponding bars representing its activity (Top and Bottom, respectively). At the end of the awake stage, the
HPC and PFC show the same pattern of activation, with the HPC units more strongly activated (a1), and the HPC connectivity has formed an engram of pattern
A (a2). (B) The sleeping stage is characterized by a REM phase, when the two regions are uncoupled (Wnypc_prc = Wprc_npc = 0), and a NREM phase, when the
two regions are coupled through excitatory HPC-to-PFC and inhibitory PFC-to-HPC connections (Wypc-prc = 1, Wprc-Hpc = —1). During the sleeping stage, the
system cycles through the REM and NREM phases seven times. Every time the network enters the REM phase, the HPC and PFC networks are reset to a noisy
random state, from which it evolves according to its intrinsic dynamics. In this case, the HPC converges to memory pattern A and the PFC decays to its naive

state (b1; first sleep cycle). At the end of the sleeping stage, the memory engram A is consolidated in the PFC connectivity (b2).

the HPC and PFC connectivity remained the same as at the end
of the awake stage (Fig. 362).

Interestingly, we see that HPC neurons targeted by the
congruent pattern B were weakly activated, apart from those
that represent the input components uncorrelated with pattern A
(highlighted units in Fig. 34), contrasting to what was observed
in the case of a novel pattern. We hypothesize that this is directly
modulated by inhibition from strongly activated PFC neurons.

Given the substantial overlap (90%) between the represen-
tations of patterns A and B, activation of the pattern B neural
ensemble in the PFC drives the system into the attractor state
formed during the consolidation of pattern A. As a result, PFC
neurons that were part of the engram of A and were targeted by
B became highly activated, driven by both external inputs and
potentiated recurrent intrinsic connections (S Appendix, Figs. S4
and S54). The hippocampal neurons representing the correlated
portion were suppressed by strongly activated PFC cells. This
high PFC activity led to rapid plasticity. The strong activation
of pattern B components in PFC paired with the activation of
uncorrelated components driven by external and hippocampal
excitatory inputs (highlighted components in Fig. 3) led to
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changes in its connectivity, Wprc, to encode the congruent
pattern B. Furthermore, common features between patterns A
and B were reinforced in PFC connectivity.

Differential Roles for HPC and PFC in the Encoding of Congruent
Inputs. We next sought to examine the contributions of the
interregional connections to the rapid consolidated in PFC
and sparse hippocampal activity observed during encoding of a
congruent pattern. For that, we repeated the simulations in which
we present the HPC-PFC network with the same congruent
pattern B but set either the excitatory HPC-to-PFC or the
inhibitory PFC-to-HPC to zero. Suppression of HPC-to-PFC
excitatory connections (Whapc_prc = 0, Wppc_upc = —1)
impaired encoding of the congruent pattern B in PFC during
wakefulness (Fig. 44), while suppressing PFC-to-HPC inhibitory
connections (Wapc_prc = 0.5, Wprc_HprC 0) abolished
the previously observed sparse hippocampal activity, with the
HPC encoding for the full representation of pattern B (Fig. 4B).
These results suggest that the bidirectional interregional HPC—
PFC connections contribute in distinct ways to the behavior of
the HPC-PFC network during encoding of congruent events.

https://doi.org/10.1073/pnas.2403648121
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Fig. 2. Consolidation of novel memory pattern relies on hippocampal replay during sleep. Top: Hippocampal and prefrontal cortex activity are analyzed during
the awake stage, when the network receives a pattern B whose representation does not overlap with the previously consolidated pattern A (overlap 0%),
meaning that it targets a different neural ensemble. Encoding of pattern B happens after consolidation of pattern A in the PFC, and decay of its engram in
HPC, i.e., when the recurrent hippocampal connectivity is back to its naive state. (A) During the awake state, the hippocampus (HPC) and prefrontal cortex (PFC)
network receive a pattern B targeting 10 HPC and PFC units uncorrelated with the units encoding for pattern A (0% overlap). At the end of the awake stage,
the HPC and PFC show the same pattern of activation, with the HPC units more strongly activated (a1). The hippocampal network has encoded pattern B in
its connectivity, Wypc, forming a memory engram B. The PFC connectivity, Wppc remains unaltered, i.e., it only encodes the memory engram A (a2). (B) During
the sleeping stage, the HPC network converges to the memory pattern B at during the REM stage (b1, first sleep cycle). At the end of the sleeping stage, the

memory engram B is consolidated in the PFC connectivity (b2).

In particular, hippocampal excitatory inputs facilitate the rapid
encoding of congruent patterns in PFC, while PFC inhibition
mediates HPC sparse activity.

Examining Influence of Degree of Congruentity of New Infor-
mation in PFC Plasticity and HPC-PFC Network Activity. We
next sought to examine how these results generalize to degrees
of overlap between patterns A and B that range from 0 to
90% (instead of considering just these two extreme cases).
More specifically, we wanted to know whether there is a well-
defined threshold at which the PFC network identifies an
incoming pattern as congruent, triggering rapid consolidation
and hippocampal sparse activity, or if it is a smooth and graded
process where PFC memory traces of pattern B become stronger
the greater the degree of overlap and gradually inhibit more HPC
neurons. For that, we quantified changes in connectivity of PFC
and HPC neurons targeted by pattern B for different degrees of
overlap (0 to 90% with increments of 10%) during the awake
stage and estimated the mean HPC and PFC activity (Fig. 5 4
and B, respectively).

We found that while there is a tendency to have a stronger
memory trace of pattern B in PFC during wakefulness (i.e., bigger
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changes in PFC connectivity encoding for pattern B) the bigger
the overlap with the stored pattern A, we observe a decrease in
connectivity changes when pattern B overlaps with A by 40%
and 50% compared with the case of 30%. The same propensity
appears in the mean PFC activity, which shows a slight increase
with the degree of overlap, except for an overlap of 40 and 50%
(Fig. 5 B, Inset and SI Appendix, Fig. S5B). This indicates that,
in the framework here considered, the PFC is able to adopt a fast
(slow) speed of consolidation when the incoming information
is clearly congruent (novel), i.e., it overlaps by 90% (0%) with
previous knowledge. However, if an incoming pattern overlaps
by 40 to 50%, the network shows an ambiguous behavior. These
results align with previous indications that memories tend to be
stronger when the encoded information either aligns with our
previous knowledge or is completely novel (39).

Surprisingly, we found that there is a clear threshold for which
hippocampal activity and plasticity dramatically decreases. This
result can be explained if we consider a form of a race between the
HPC and PFC regions to form a memory trace of an incoming
pattern B. During the awake stage, both the HPC and PFC
receive the pattern to be encoded. As they do, the activity of the
HPC and PFC neurons encoding the pattern starts to increase

pnas.org
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Fig. 3. Congruent pattern is quickly stored during wakefulness. Top: Hippocampal and prefrontal cortex activity are analyzed during the awake stage, when the
network receives a pattern B whose representation overlaps with previously consolidated pattern A by 90%. Encoding of pattern B happens after consolidation
of pattern Ain the PFC, and decay of its engram in HPC. (A) The HPC network shows sparse activity, while the PFC units targeted by input B are strongly activated
(a1). At the end of the awake stage, the HPC network connectivity remains unaltered (i.e., in its naive state). The PFC network, on the other hand, has integrated
the uncorrelated components of pattern B in its connectivity with the memory engram A (a2). The circle highlights the nonoverlapping, i.e., uncorrelated,
components of pattern B. (B) During the sleeping stage, the HPC network converges to its naive state (b1). At the end of the sleeping stage, the memory engram

B is consolidated in the PFC connectivity but not in HPC (b2).

until it reaches a point (x; = 0.4) where they start to strengthen
their intraregional connections with coactivated neurons. If the
PFC neurons reach a level of activation comparable to the level
of activation of HPC neurons they target before HPC has the
chance to significantly change its connections with other neurons
representing pattern B, then their activity is suppressed by PFC
(81 Appendix, Fig. S6).

Congruent Inputs Are Linked in PFC, Whereas Novel Stimuli
Exhibit Pattern Separation. To examine how congruent inputs
are integrated with consistent knowledge in PFC, we tested the
ability of PFC to recall memory engram A and B (memory
linking), or just memory engram B (pattern separation) at the
end of the awake stage, when congruent inputs are consolidated,
and at the end of the sleeping stage, when the HPC-PFC network
replays the patterns encoded during wakefulness (Fig. 6). To that
end, we examined the response of engram A and B neurons to
activation of a subset of engram B cells. If all neurons of engram
B were activated, but not engram A, this means that the two
memories are stored independently (pattern separation). If both
engrams A and B were activated, then the two memories were
linked together (memory linking). For simplicity, we start by
analyzing the two extreme cases: when pattern B overlaps by
10% (novel) and 90% (congruent) with A. If pattern B is novel
(only overlaps by 10% with the representation of A) activating

PNAS 2024 Vol. 121 No. 30 e2403648121

90% of engram B cells at the end of the awake stage (Before
sleep test) will not prompt the recall of either the pattern B or A
in PFC (Fig. 6a1). However, if pattern B is congruent (overlaps
by 90% with A) activation of solely 30% engram B units recalls
not only the full pattern B, but also pattern A, indicating that
at the end of the awake stage, the two memories are linked in
PFC (Fig. 642). When performing the same test at the end of the
sleeping stage, we now get that activation of 90% of engram cells
of a novel pattern B causes recall of B, without recall of A (Fig.
661), indicating pattern separation of the two representation. For
a congruent pattern B, the network shows the same performance
as after the awake stage, i.e., activation of 30% engram B cells
recalls both engrams A and B (Fig. 662).

Opverall, our results show that there is a congruentity threshold
(40% overlap) above which the PFC network rapidly integrates
incoming input with previously stored congruent patterns,
linking both representations. On the other hand, inconsistent
information (less than 30% overlap) relies on HPC-PFC activity
replay during sleep to be consolidated in the PFC network
without interfering with previously consolidated knowledge
(Fig. 6C and SI Appendix, Fig. S7). Note that, according to
our model, there is an intermediate result (overlap between 30
and 40%) for which incoming inputs are congruent enough to
evoke recurrent activation of a correlated schema and rapidly
consolidate this information with the uncorrelated components

https://doi.org/10.1073/pnas.2403648121
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Fig. 4. Differential roles for HPC and PFC in the encoding of congruent inputs. (A) The HPC-PFC network receives an input B overlapping with memory A by
90%. Coupling between the two regions is only mediated by inhibitory PFC projections (Wypc_prc = 0, Wppc_ypc = —1). At the end of the awake stage, the PFC
network did not encode for the uncorrelated components of input B in its connectivity, indicating that the input was not consolidated. (B) The HPC-PFC network
receives an input B that overlaps with memory A by 90%. Coupling between the two regions is only mediated by excitatory HPC projections (Wypc_prc = 0.5,
Wprc-Hpc = 0). At the end of the awake stage, both the hippocampal and PFC network have encoded input B in its connectivity. However, we no longer have
the sparse hippocampal activity observed during the encoding of congruent memories (26-28).

of the input, but the overlapping schema is not big enough
to recruit the full engram of the previously stored consistent
pattern. This means that such inputs are rapidly consolidated
during wakefulness, but are not linked to consistent patterns.

Encoding pattern B

Encoding pattern A (0-90% overlap with A)
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Fig. 5. Examining influence of degree of congruentity of new information
in plasticity and HPC-PFC network activity. Top: HPC and PFC activity and
changes in connectivity are analyzed during the awake stage, when the
network receives a pattern B whose representation overlaps with the
previously consolidated pattern A by 0 to 90%. (A) Mean absolute changes
of the PFC (blue line) and HPC (green line) connections between neurons
encoding pattern B, estimated at the end of the awake stage, for patterns B
overlapping by 0 to 90% with A. For each degree of overlap, we considered
10 randomly generated patterns B, and the average of the mean connectivity
changes obtained for each pattern. (B) Mean absolute activity of all the HPC
and PFC neurons (green and blue line, respectively). Once more, for each
degree of overlap, we considered 10 randomly generated patterns B.
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These results were consistent regardless of the specific pattern A
considered, as we obtained the same outcomes with a different
pattern A that had a different ratio of positive to negative entries
(81 Appendix, Fig. S8).

We also note that the more congruent an incoming input is
(the bigger the overlap with stored information), the easier it is
to recall it. For example, considering the cases where pattern B
overlaps by 50 and 90% with A, both patterns are consolidated
in PFC during wakefulness and linked to pattern A. However,
with a 90% overlap, we only need to activate 30% of engram B
cells to recall it, while recall for the case of a 50% overlap requires
the activation of 90% engram B cells (S7 Appendix, Fig. S7). In
other words, the linking between patterns is stronger the bigger
the overlap. This will impact how new patterns are encoded. For
instance, a new pattern C that partially overlaps with patterns A
and B may or may not become linked to the existing patterns,
depending on the strength of the linkage between A and B (S/
Appendix, Fig. S9).

Considering that, for a certain degree of overlap, the neurons
representing the correlated components of a pattern B are
randomly selected, different patterns are going to have the
same degree of overlap with pattern A. While examining how
different patterns with a same degree of overlap affect the results
(we considered 10 randomly generated patterns), we found
that we have approximately consistent results (same as for Fig.
6C) except for pattern with a degree of overlap of 40% with
stored information. When testing recall of pattern B with a
40% overlap with A at the end of the awake stage, for certain
patterns the PFC could not recall it (see SI Appendix, Fig. S10
for examples of a pattern B with 40% overlap resulting in a
successful and unsuccessful recall). This aligns with previous
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Fig. 6. Congruentinputs are linked in PFC whereas uncongruent stimuli exhibit pattern separation. Top: Testing PFC ability to perform pattern separation and
memory linking at the end of the awake stage and at the end of the sleeping stage. (A) Testing the ability of PFC to recall pattern B and pattern A at the end
of the awake stage. If pattern B overlaps by 10% with pattern A, the PFC will not be able to recall engram B or engram A (a1). The PFC pattern of activation 90
time steps (t1) and 7,600 time steps (t,) after activating 9 out of 10 engram B units is the same (Left and Right, respectively). If pattern B overlaps by 90% with
pattern A, activating 3 engram B units results in the recall of both engram A and engram B, indicating that the two patterns are linked (i.e., activation of engram
A plus the uncorrelated components of engram B; a2). (B) Testing the PFC ability to recall pattern B and pattern A at the end of the sleeping stage. If pattern
B overlaps by 10% with pattern A, activating a subset of engram B units results in recall of engram B but not engram A, indicating pattern separation (b1). If
pattern B overlaps by 90%, activation of a subset of engram B units recalls engram A and B, similar to what was observed at the end of the awake stage (b2). (C)
Classifying pattern separation and memory linking at the end of the awake stage (Before sleep) and at the end of the sleeping stage (After sleep) for patterns B
overlapping by 0 to 90% with pattern A. Pattern separation is defined as recall of engram B without recall of A. Congruent inputs (overlap >40%) are encoded
in PFC during awake stage and are linked to previously consolidated overlapping representations. Novel inputs are separated and consolidated during sleep.

results showing that there is a break in the general tendency  idea that the ease in which “in-between” events (in this case,
of increased changes in the PFC connectivity during wakefulness ~ with a congruence degree of 40%) are recalled is inconsistent.
with the degree of overlap at 40% (Fig. 5A4), reinforcing the ~ This ambiguous behavior is particularly accentuated during
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the awake stage of encoding, with results stabilizing during
sleep.

Altogether, our model proposes that congruent inputs are
linked in PFC to congruent information during wakefulness,
while inconsistent information relies on HPC and PFC replay
during sleep to be consolidated without interfering with stored

knowledge.

Discussion

In the wild, adult animals rarely encounter new information
in isolation. Their experiences are usually linked to what they
have encountered before. Previous research shows that past
experiences affect how new memories are processed (40, 41). For
instance, consider how easily you grasp new information related
to your field compared to unrelated information. However, most
memory studies overlook the impact of previously acquired
knowledge in experiments. In recent work, Tse et al. (22, 24)
showed that new associations consistent with a previously
consolidated PFC schema quickly become HPC-independent,
suggesting rapid PFC consolidation. Consequent theoretical
work by McClelland has shown that a Rumelhart network is able
to integrate new information into existing consistent knowledge
(42). However, such networks use a backpropagation learning
rule, which is nonlocal, and it requires the propagation of
error signals backward through symmetric feedback connections,
making it biologically implausible. Thus, the neural and circuit
mechanisms underlying the rapid consolidation of congruent
information remain elusive.

In this work, we hypothesize that schemas stored in PFC
promote rapid integration of congruent events without sleep by
enabling strong activation of engram cells representing the over-
lapping representation of the stored and new events. According
to our model, rapid consolidation relies on activation of PFC
neurons by an external and hippocampal input. By adopting
a Hebbian learning rule, where changes in synaptic strength
depend on the level of activation of the pre- and postsynaptic
units, we can overcome the slow learning rates characteristic of
the PFC by strongly activating the interacting neurons that form
a memory engram. A congruent external input drives the PFC
network to the closest attractor state, previously formed during
the consolidation of a similar pattern and characterized by strong
recurrent connections. Neurons activated by both the external
inputand strong recurrent connections, i.e., neurons representing
the correlated components of the congruent input, will be
activated strongly enough to quickly strengthen their connections
with neurons representing the uncorrelated components. In other
words, the “new part” of a congruent input will readily be
incorporated with the stored schema. If, on the other hand, the
circuit receives a novel input, the PFC network will not converge
to an attractor state, and activation of the targeted neurons
will be solely due to the action of the external input. Neurons
representing the novel input will be weakly activated, and will
not be able to strengthen their synapses and form an engram.
In this case, the HPC-PFC network needs to go through the
sleeping stage, where the HPC repeatedly reactivates the neural
ensembles representing the novel input, in order to consolidate it.
It is important to note that, in this case, our model is in line with
conventional accounts of memory consolidation mechanisms (for
example, ref. 1).

Our model captures several important experimental findings;
namely, the quick consolidation of events consistent with prior
knowledge, that is disrupted by removal of the hippocampus

https://doi.org/10.1073/pnas.2403648121

(22, 24). Our results grant a broader role to the PFC in the
encoding of events than classically considered. Besides hypothe-
sizing the PFC potential to consolidate memory events without
hippocampal replay during sleep, we also propose its potential
role in supporting HPC by modulating its activity during the
encoding phase. When incoming information is congruent with
previously acquired knowledge, the PFC quickly incorporates
its uncorrelated components with a preexisting overlapping
schema in its network through strengthening of its cortico-
cortical functional connections and inhibits the hippocampal
activity encoding for the correlated components of the new
input.

Many studies have suggested that PFC exerts top—down
control over information processing in the HPC (35, 43—46).
Here, motivated by recent anatomical studies reporting long-
range GABAergic projections from the PFC to HPC (35),
we propose a network mechanism through which the PFC
exerts top—down inhibition over hippocampal activity during the
encoding of congruent events. We propose that this mechanism
may be responsible for the sparse activity observed in the
hippocampus during the encoding of congruent events. A
large body of work has focused on hippocampal contributions
to pattern separation (29-34). However, converging evidence
suggests that pattern separation is supported by a network of
brain regions (47). Here, we predict that PFC can contribute
to hippocampal pattern separation by suppressing hippocampal
activity encoding information already consolidated in PFC. Such
a mechanism could also promote increased memory capacity of
the HPC (87 Appendix, Fig. S11).

In summary, our modeling work suggests the following: 1)
rapid encoding of consistent information in PFC during wake-
fulness is mediated by hippocampal inputs and strong activation
of a congruent PFC schema; 2) inconsistent information relies
on hippocampal replay during sleep to be consolidated; 3)
congruent information is integrated in PFC into a congruent
schema whereas novel information undergoes pattern separation,
producing little interference with memories already stored in
PFC; 4) GABAergic PFC-to-HPC projections induce sparse
hippocampal activity during the encoding of congruent events,
enabling pattern separation.

Methods

Multiregion Recurrent Neural Network. The hippocampus and prefrontal
cortex regions are modeled as rate-based recurrent networks. Each region is
composed of N = 30 units with all-to-all connections. The dynamics of each unit
x; is described by the following equation:

dx;
j:—x,"F(ﬁ ]ZWI]X]+II , [1]

where ¢ is a nonlinearity applied to the total input each unit receives. It is mod-
eled as ¢p(x) = tanh(x) for the hippocampal units and ¢(x) = tanh(0.5x)
for the prefrontal cortex units, reflecting differences in the responsiveness of
neurons in both regions (48). More specifically, PFC units exhibita more gradual
response compared to HPC. Wj; is the synaptic weight between the pre- and
postsynaptic units, jand i, respectively, and /; the external input. We considered
both regions to receive identical external inputs. Patterns of ones (1) and minus
ones (—1) describe the pattern we want to store into the network. We consider
inputsrepresented by neural ensembleswith 10 units. In otherwords, an external
inputis composed of 10 entries of values 1 or —1, and the remaining 20 entries
are zero. We assume that different patterns are represented by different neural
ensembles of the same size. We will use the term “congruent input” to refer
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to an external input that is represented by a subset of neurons that overlaps
significantly with the representation of a previously stored input.

Intraregional connections are dynamicand change according to the following
standard Hebbian learning rule:

My _

dt N

where © is the step function ®(x) = 0 for x < 0 and is 1 otherwise, 4;
is the learning rate (4;(HPC)=0.45, 4;(PFC)=0.06 ), and 4, the decay rate
(A4(HPC)=0.55, A4(PFC)=0). A gating mechanism has been introduced to
the learning rule, contingent on the activity of the neurons involved. When
the absolute activities of the pre- and postsynaptic neurons, x; and x;, exceed
a threshold of 0.4, the standard Hebbian term contributes to the adjustment
of synaptic strengths, aiming to reinforce connections that are correlated with
neuronal activity. This gating mechanism enables the learning rule to account for
situations where neuronal activity is insufficient to drive synaptic potentiation,
allowing for a more biologically realistic representation of learming dynamics
in the network.

Interregional connections are mediated through one-to-one excitatory HPC-
to-PFCconnectionsand reciprocateinhibitory PFC-to-HPC connections. Note that,
these connections are not of the same nature. Excitatory functional connections
from HPCto PFCare mainly modulated by intermediate regions[forexample, the
thalamus (49)]. Inthis case, the strength of the connections Wypc_pc reflects the
coupling strength of hippocampal and PFC oscillatory activity. On the other hand,
inhibitory PFC-HPC connections represent long-range GABAergic projections,
i.e., direct connections from the PFC to HPC (35). The value of Wppc_ppc is
representative of the conductance of GABA receptors in HPC neurons.

For simulations, the differential equations were solved using Euler's method
with a time step At = 0.01 (a.u.).

A
1— W) — 0.4)0(1x| — 0.4)xx — de,»j, 12]

Simulating Awake and Sleep. During the awake stage, the HPC and PFC
receive an external input, /. The two regions are coupled through one-to-one
excitatory HPC-to-PFC connections(Wypc-prc = 0.5),and one-to-oneinhibitory
PFC-to-HPC projections (Whpc_prc = —1). The awake stage has a duration of
7,600 time steps.

Following the awake stage, the model enters the sleep period. The model has
a rapid eye movement (REM) sleep stage, where the two regions are uncoupled
and evolve autonomously according to their intrinsic dynamics, and a non-rapid
eye movement (NREM) sleep stage, where dynamics between the hippocampus
and PFC are tightly coupled (4). During sleep, coupling is modeled by setting
Whpc-prc = 1and Wppc_ype = —1. This setup s inspired by previous studies
suggesting that during NREM sleep, the coupling between HPC and PFC tends
to be relatively strong, while in REM sleep, the coupling between the HPC and
PFC is generally weaker (5, 37). We find that alternating between the REM
and NREM sleep stages 7 times facilitates the consolidation of hippocampal-
dependent memories into the PFC network, which has a small learning rate.
Each time the model enters the REM stage, the hippocampal and PFC neurons
are reset to a noisy state (38). The state of each neuron is randomly drawn from
a normal distribution with SD 0.1 and mean 0.

The REM and NREM stages have a duration of 9,000 and 900 time steps,
respectively.

Model Simulations. Starting the network from a naive state, i.e., with
hippocampal and prefrontal cortex connectivities set to zero (Wypc = 0,
Wprc = 0), the network receives a pattern Ato encode. Pattern A is represented
by 10 HPC and PFC units; in other words, it targets the first 10 neurons of each
region (PattemA=[—-11—-11-1—-11-11-10... 0]). Storing pattern
Ainvolves submitting the network to the awake stage, when it receives pattern
A, followed by the sleeping stage, instead of being set up directly in the PFC
network. This is done to ensure that the strength which pattern A is encoded
in the PFC connectivity is a result of the natural awake-sleep cycle to avoid
introducing a bias in simulations that follow.

After going through the awake and sleeping stage, we verify that pattern
A was successfully consolidated in the PFC network. We note that although in
our simulations pattern A is encoded in PFC after one awake-sleep cycle, which
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corresponds to one day, and under experimental conditions learning a new task
requires several days, replicating awake-sleeping repetitions during encoding
of pattern A does not change our results (S Appendix, Fig. S1). Similarly, setting
the HPC network connectivity Wypc to a random state (each entry drawn from
a normal distribution with mean 0 and SD 0.03) at the beginning of the awake
and sleeping stage, instead of resetting to a naive state, won't change the results
(51 Appendix, Fig. S3).

We then assume that a long time has passed (say months) and that while the
PFC network retained the memory trace of Ain its connectivity, the hippocampal
network decayed back to its naive state. At this point, the network receives an
input B whose representation overlaps with pattern A.

Pattern Bis generated by randomly selecting a fraction f of the first 10 entries
of pattern A to remain unaltered (i.e., the entries with values 1 and —1) and
the rest of the initial 10 entries (10-f) are set to zero. The parameter f reflects
the extent of overlap between patterns A and B. For instance, to generate a
pattern B with an 80% overlap with A, 8 out of the 10 first entries in pattern
A remain the same. To ensure that any disparities in activity observed in the
HPC and PFC result exclusively from their interactions, and not because input
B targets a different number of units, out of the 20 zero entries of pattern
A, we randomly select (10-f) entries to change to 1 or —1 (also in a random
independent way).

Testing Pattern Completion, Pattern Separation, and Memory Linking.
To evaluate the PFC network's ability to perform pattern completion, we assessed
the responsiveness of neurons to the activation of a subset of engram cells. A
neuron, denoted i, was deemed responsive if after 7,600 time steps |x;| > 0.2,
while activity below this threshold was considered noise. Successful pattern
completion refers to the network’s capacity to reactivate all cells withina memory
engram when a subsetis activated. Thisimplies the consolidation of the memory
within the network. The degree of consolidation is determined by the size of
the subset required for pattern completion, which we refer to as the "Recall
threshold.” The smallerthe subset of cells needed to achieve pattern completion,
the strongerthe consolidation ofthe memory. To examine pattern separation and
memory linking, we tested the network’s ability to perform pattern completion
of engram B when a subset of engram B neurons was activated, as well as
the pattern completion of engrams A and B when a subset of engram B cells
were activated. The successful pattern completion of both engrams when only
a subset of engram B is activated indicates the linking of both memories. On
the other hand, pattern completion of engram B without engram A indicates
pattern separation. To ensure the accuracy of our findings, we assessed the
responsiveness of the total number of cells forming an engram to the activation
of subsets of different sizes. The subset of cells to be activated was randomly
selected. For each subset size, we repeated the analysis 50 times, activating a
different subset of neurons each time.

Sparsity Index. In this study, two distinct approaches are utilized to quantify
and analyze sparsity. First, we investigate the amplitude and position of density
distribution peaks in the HPC and PFC activity. A higher peak centered around
zero indicates sparser activity, suggesting that a majority of neurons within the
network exhibit zero activity. To visualize these distributions, we employ kernel
density estimation (KDE) plots. Second, we calculate a sparsity index. This index
is determined by computing the average absolute activity across all neurons
in the network, represented as ) _; % A lower value of the sparsity index
suggests sparser activity. To examine the sparsity dynamics during the encoding
of various types of information, we conduct the analysis for a range of inputs
that have different degrees of overlap (0% to 90%) with a previously stored
memory.

Data, Materials, and Software Availability. Code data have been deposited
in (https://github.com/inesCompleto/role_PFC_consolidation) (50).
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