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ABSTRACT: High-performance liquid chromatography (HPLC)
remains the gold standard for analyzing and purifying molecular
components in solutions. However, developing HPLC methods is
material- and time-consuming, so computer-aided shortcuts are
highly desirable. In line with the digitalization of process
development and the growth of HPLC databases, we propose a
data-driven methodology to predict molecule retention factors as a
function of mobile phase composition without the need for any
new experiments, solely relying on molecular descriptors (MDs)
obtained via simplified molecular input line entry system
(SMILES) string representations of molecules. This new approach
combines: (a) quantitative structure−property relationships
(QSPR) using MDs to predict solute-dependent parameters in
(b) linear solvation energy relationships (LSER) and (c) linear solvent strength (LSS) theory. We demonstrate the potential of this
computational methodology using experimental data for retention factors of small molecules made available by the research
community for which the MDs were obtained via SMILES string representations determined by the structural formulas of the
molecules. This method can be adopted directly to predict elution times of molecular components; however, in combination with
first-principle-based mechanistic transport models, the method can also be employed to optimize HPLC methods in-silico. Both
options can reduce the experimental load and accelerate HPLC method development significantly, lowering the time and cost of the
drug manufacturing cycle and reducing the time to market. Given the growing number and quality of HPLC databases, the predictive
power of this methodology will only increase in the coming years.

■ INTRODUCTION
High-performance liquid chromatography (HPLC), intro-
duced in the 1960−70s,1,2 remains essential in both academia
and industry for analyzing and separating molecular
components in solutions. It is widely used for applications
ranging from biological sample analysis to product purification
in industrial processes.3 Its high accuracy and versatility make
it crucial for chemical and pharmaceutical research and
manufacturing. The technique involves a mobile phase (e.g.,
a solvent mixture setting the polarity) carrying the sample
liquid comprising the molecules of interest (i.e., the solutes)
through a stationary phase, typically a column packed with
small porous particles. The different affinities of the solutes
with the stationary and mobile phases (e.g., due to the
differences in polarity) determine their retention times in the
column, tR. Stronger interactions with the stationary phase
cause solutes to elute (i.e., leave the column) later; that is, the
solutes are retained in the column for longer. Unretained
solutes, which do not interact with the stationary phase, all
elute at the HPLC system-specific dead time, t0 < tR. The exit
of the column is connected to a detector that can (e.g., along
with a calibration curve) quantify the eluting solutes for sample
analysis. For purification, the solutes are collected separately.

Therefore, achieving well-resolved, time-displaced solute
elutions is crucial for effective separation and analysis, making
it the primary objective of HPLC method development,
particularly in reversed-phase liquid chromatography (RPLC),
which is the focus of this work.
The interplay of fluid dynamics, transport phenomena, and

adsorption thermodynamics (which affects the solute affinities
with the stationary and mobile phases) is complex.4 This
makes it challenging to develop a suitable HPLC method, i.e.,
to identify the right HPLC settings, such as stationary phase
material, temperature, pH, sample volume, flow rate, and
especially mobile phase composition. This is particularly true
for samples containing either several solutes or solutes with
high chemical similarity. Owing to this inherent complexity,
HPLC methods are commonly developed via trial-and-error
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experimental campaigns, with empirical starting conditions and
one-variable-at-a-time strategies often driven by experience.
For complex samples or new solutes, these approaches are at
high risk of failing, not least because the number of
experiments is often limited by the small sample quantities
available at early development stages.

■ COMPUTATIONAL HPLC METHOD
DEVELOPMENT

Different computational approaches have been considered for
HPLC method development for decades to minimize costly
and time-consuming experiments and to gain insight into the
separation mechanisms. As the accuracy of these models and
computational power continue to improve, simulations have
become more integrated into Quality by Design concepts.5

Moreover, as machine learning and artificial intelligence
become more powerful and integrated into the daily workflow,
in-silico HPLC approaches will only become more impor-
tant.6,7

Ideally, HPLC methods can be developed (and directly
validated) using digital HPLC twins equipped with models that
account for all HPLC settings considered for method
development, i.e., models predicting how each of these settings
affects the elution behavior.8 Models of this kind include, but
are not limited to, the equilibrium dispersive model, the
lumped kinetic model, and the general rate model.3,9,10 These
HPLC transport models are derived from first-principles but
are usually unclosed. To be solvable, they must be coupled
with solute-specific adsorption isotherms or mass transfer rates
(which are generally unknown). Adsorption isotherms describe
the ratio between the concentration of a solute in the mobile
phase and that of the solute adsorbed on the surface of the
stationary phase, at equilibrium conditions.11 This ratio is not
constant but depends on many variables, such as temperature,
pH, mobile phase composition, and (in general) solute
concentration in the mobile phase. Several adsorption models
are available, most of them being semiempirical in nature and
featuring parameters that cannot be predicted a priori.
Commonly used are the (single, bi- or tri-) Langmuir type
and competitive adsorption isotherm models.12−14 At a low
solute concentration, these reduce to the Henry’s adsorption
isotherm, where the solute concentrations in the stationary and
mobile phases are linearly proportional. Adsorption isotherm
models accounting for temperature and/or pH have been
reported.15−18 However, these models are rather complex,
since they feature many unknown parameters and thus are not
commonly used.
The inherently complex relation between solute adsorption

and temperature, pH, and type of stationary-phase material is
the main reason why these HPLC settings are usually preferred
to be kept constant when HPLC methods are developed.
Instead, HPLC settings related to the mobile phase
composition are often changed first due to the strong impact
on the elution behavior and the ease of doing so. A simple way
to describe how the mobile phase composition alters the solute
adsorption (hence, adsorption isotherms) and in turn the
retention times, is offered by the linear solvent strength (LSS)
theory.4,19 This theory is commonly expressed as

k k Slog log w S= (1)

where k ≡ (tR − t0)/t0 is the solute retention factor, ϕ ranges
from 0 to 1 and is the volume fraction of organic modifier (i.e.,
the least polar solvent component in the case of the commonly

used RPLC) in the mobile phase, kw is the extrapolated solute
retention factor in the lower limit of ϕ → 0 (i.e., in pure water,
if water is the polar solvent component in the mobile phase),
and SS is the solvent strength parameter. Owing to its
simplicity, the LSS theory is widely adopted, particularly for
small molecules but also for peptides and proteins,20 to
account for the effect of mobile phase composition on solute
retention. The LSS theory is, however, known to be less
accurate at high volume fractions of organic modifier, which is
why nonlinear adaptations have been proposed.21,22 It is
important to note that the LSS theory does not account for
significant changes in pH, as its parameters are specific to a
single pH value.
Deriving solute adsorption isotherms solely from first-

principles is not possible (yet). Hence, experiments remain
essential to identify suitable adsorption models and to calibrate
their parameters (e.g., kw and SS, or additional parameters for
nonlinear adsorption isotherms and/or solvent strength
models). Once the parameters have been estimated,
mathematical models are a powerful tool for developing
HPLC methods, but the experimental effort required for
parameter estimation can be considerable.

■ DATA-DRIVEN HPLC MODELS
Because of this effort, data-driven models which predict the
solute retention directly, i.e., without needing calibration
experiments, are widely recognized. Their accuracy continues
to improve in the modern era of high-throughput analysis and
machine learning.23−26 Most data-driven models relate
descriptor variables representative of the molecular attributes
of the solutes (inputs) to their retention behavior, for instance
k, tR, or retention time indices27 (outputs). These models are
referred to as quantitative structure-retention relationships
(QSRR).28 As opposed to QSRRs, QSPRs are models with
other physicochemical properties as outputs. Commonly used
descriptor variables are convolutional filters or selectors
applied to molecular structure representations, molecular
fingerprints, or molecular descriptors (MDs).29−31 MDs are
the transformations of “chemical information encoded within a
symbolic representation of a molecule into a useful number”,32

and more than 5000 such transformations can be calculated
from a molecular structure.33 MDs can be determined before a
molecule is synthesized once its molecular structure is known.
Commonly used QSRR and QSPR methods28 include multiple
linear regression,30,34,35 projection to latent structures (or
partial least-squares) regression,36,37 decision trees,38 random
forests,39 support vector regression,40−42 gradient boost-
ing,25,43 Gaussian process regression,44 and artificial neural
networks/deep learning regression.23,25,31,45,46

An approach that is not purely data-driven (i.e., where the
equations of the model are at least partly based on physical
principles) allows for the prediction of retention behavior
based on LSERs, also known as Abraham solvation parameter
models.47,48 For chromatography, LSERs relate physicochem-
ical properties of solutes as well as HPLC system (i.e.,
stationary and mobile phase) properties to retention behavior
through linear models.49 LSERs are a subclass of linear free-
energy relationships50 and are, technically, a form of QSPRs
aiming to predict any free-energy-related property through
linear contributions of different interaction abilities affecting
the solvation energy of the solutes. For HPLC systems, the
free-energy-related property is often the retention factor
predicted as
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k c eE sS aA bB vVlog = + + + + + (2)

The uppercase letters E, S, A, B, and V denote the LSER
solute parameters describing the solute properties, where E
(excess molar refraction) is a measure of solute refractivity, S
(dipolarity/polarizability) is a measure of solute dipolarity and
polarizability, i.e., the tendency of a solute to form dipole−
dipole and dipole−induced dipole interactions, A (hydrogen
bond acidity) and B (hydrogen bond basicity) quantify the
tendency of the solute to participate in hydrogen bonds as acid
and base, respectively, and V (McGowan’s molecular volume)
is a measure of the solute molecular volume. The lowercase
letters c, e, s, a, b, and v denote the LSER coefficients or
chromatographic system parameters. These are independent of
the solute and account for the specific interactions between the
mobile and stationary phases. These LSER system parameters
are commonly determined via parameter estimation from
retention experiments (where usually tR is measured) using
solutes with known LSER solute parameters and a mobile
phase with a fixed volume fraction of the organic modifier. This
is because the system parameters depend on the type of
organic modifier used and on its volume fraction. Hence, they
are (unknown) functions of ϕ, and a change in organic
modifier will require new LSER coefficients. This means that
LSERs in the form of eq 2 are not suitable for the HPLC
method development.
Other commonly used computational tools, such as the

hydrophobic subtraction model�particularly employed to
select stationary phases that maximize selectivity for solutes
across various mobile and stationary phase combinations (and
analogous approaches)51−53�are mathematically similar and
hence share comparable limitations when applied to method
development. On that note, the concept of combining these
models with submodels is very promising, as demonstrated by
the integration of the hydrophobic subtraction model and LSS
theory with QSRR to predict solute-specific coefficients.54−56

Although the potential of these data-driven approaches is well
established, they may lack predictive power for new solutes
because models are commonly trained on relatively small in-
house databases. In addition, databases are commonly based
on single chromatographic systems (i.e., same stationary phase,
same organic modifier, and same concentration or concen-
tration profile), which makes the models unusable if another
system is considered. To map retention times between
different chromatographic systems, transfer functions have
recently been proposed. An example is the PredRet database,
which comprises of retention times for various mobile and
stationary phases and HPLC settings.57 While merging
chromatographic data sets can significantly enhance data-
driven models, the accuracy of transfer functions may vary.
Nevertheless, this approach is crucial and represents a
promising path forward for integrating data obtained from
different systems. Although merging chromatographic data sets
would empower data-based models, the accuracy of transfer
functions is still insufficient. Additionally, well-structured
chromatographic databases are growing in size and number
due to the significant advances in high-throughput chromatog-
raphy, not least due to the incentive to better utilize machine
learning. Noteworthy is the METLIN small molecule data set,
which lists molecular structures and retention times of more
than 80,000 solutes, allowing for deep learning-based retention
time prediction.23 Empowered by such large data sets, data-

driven models can predict retention times remarkably well
solely based on molecular structure representations.23,31,42

Still, even the most comprehensive data-driven models are
rarely useful for HPLC method development despite the
success of these black (or gray, as they may be difficult to
interpret rather than entirely uninterpretable) box models to
accurately predict the elution behavior for new solutes. This is
because such models are usually trained for only one
chromatographic system and for specific HPLC settings.
Hence, they fail to predict solute elution behavior if any of
the HPLC settings change, including the volume fraction of
organic modifier, which is a key variable for optimizing the
separation. This is a significant limitation because it precludes
the use of these models for method development, i.e., to
computationally identify the right HPLC settings. In order to
optimize HPLC methods in-silico, models that can predict the
elution behavior for changing HPLC settings are needed. It
should be noted that this can be achieved with data-driven
models trained with solute- and HPLC setting-specific
information, i.e., HPLC settings become a model input to
allow predictions (e.g., of retention times) for new settings.46,58

Such merged models are more flexible but remain impractical
as the number of experiments needed for model training can
be expected to increase proportionally to the power of the
number of HPLC settings considered.

■ NEW METHODOLOGY AND ARTICLE STRUCTURE
In this work, we address the shortcoming of data-driven
models not being able to predict elution times for varying
HPLC settings (without the need for extensive experimenta-
tion for parameter estimation) and to relate molecular
properties to mobile phase composition-dependent retention
behavior. In particular, the approach proposed here provides a
promising tool to develop HPLC methods in-silico with
optimal mobile phase compositions based solely on the
SMILES string representation of solutes.59 First, we describe
the concept of the data-driven methodology combining
multiple data-based strategies. We also outline the details of
the QSPR, LSER, and LSS models used. Then, we demonstrate
how the methodology was applied and tested and discuss the
contribution of each model on the overall performance. And
finally, we conclude by commenting on the potential of the
methodology and addressing future perspectives. Additional
details of data selection and curation, as well as rationales for
input variable reduction, are provided in the Supporting
Information (S.1−2).

■ DATA-DRIVEN METHODOLOGY FOR PREDICTING
SOLVENT COMPOSITION DEPENDENT
RETENTION FACTORS

The methodology proposed in this work is listed in Figure 1.
The methodology combines (a) QSPR models using MDs to
predict (b) LSER solute parameters and (c) LSS theory to link
molecular retention behavior with varying mobile phase
compositions. The methodology first determines the MDs of
the solutes considered from their molecular structures, here
obtained from solute molecular SMILES strings.33 The MDs
are the inputs to four different QSPR models, each predicting
one of the following four LSER solute parameters (and not
directly retention factors or times): E, S, A, and B. The fifth
solute parameter present in eq 2, V, can be determined directly
from the molecular structure.60,61 Two LSER models equipped
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with these solute parameters and the HPLC system parameters
(here not limited to a single volume fraction of organic
modifier) are then used to determine the specific LSS
parameters of each solute, kw and SS (see eq 1).
The following section outlines the development of the

QSPR models, along with the selection of the MDs, the
development of the LSER models, and the integration of these
models with the LSS theory. This data-driven methodology
facilitates the prediction of solute retention factors, considering
changes in the mobile phase composition while requiring only
knowledge of solute SMILES string representations. This
enables in silico optimization of the mobile phase composition
for isocratic HPLC methods (ϕ is constant) or, in combination
with an HPLC transport model, of the initial and final mobile
phase compositions and of its dynamic change for gradient
HPLC methods (ϕ varies with time).
LSER Solute Parameter Prediction via QSPRs. The

LSER solute parameters E, S, A, and B are usually determined
experimentally, which is time-consuming and requires multiple
analytical techniques and sufficient material to perform the
analyses. A data-driven alternative to obtain these parameters is
to use QSPR models with MDs as inputs and rely on existing
LSER solute parameter databases for model training. This is
feasible thanks to the availability of large databases of
experimentally determined LSER solute parameters. Examples

are the UFZ-LSER database from the Helmholtz Centre for
Environmental Research, which provides LSER solute
parameters for more than 7000 small molecules collected
from different sources;62 the SoluteDB, which contains
between 7000 and more than 8000 entries for each LSER
solute parameter;63 and the Wayne State University exper-
imental descriptor data set, which lists LSER solute parameters
for several hundred solutes collected in a single laboratory via
standardized procedures, thus minimizing experimental
variations.64 For this work, we used the so-called Abraham
Absolv data set (taken from the UFZ-LSER database) which,
at the time of this work, comprised LSER solute parameters for
7881 small molecules. This data set is the result of Abraham’s
work in the field of LSER and is used here to build the QSPRs
for LSER solute parameter prediction. As detailed in the
Supporting Information (Section S.1), this data set was
reduced to 6437 solutes by (a) removing molecules with
missing values of at least one of the four LSER solute
parameters considered, (b) removing molecules with unknown
SMILES strings (for which it was not possible to associate any
MD), (c) removing duplicate molecules, and (d) narrowing
the molecular weight range, i.e., considering only solutes within
a molecular weight range of 80−400 g/mol. Additionally, 36
molecules used to demonstrate the principle of our method-
ology (see Section: Development of LSER) were excluded to
guarantee complete independence between methodology
development and testing. Hence, 6401 solutes were used for
QSPR development.
Initial MD Selection for QSPR Development. MDs

were obtained from the solute SMILES strings via the
chemoinformatics software alvaDesc.33 Selected MD classes
comprised constitutional indices, molecular properties, topo-
logical indices, ring descriptors, connectivity indices, 2D
autocorrelation descriptors, and Getaway descriptors, yielding
a total of 804 MDs. Three-dimensional (3D) MD classes were
not selected because SMILES strings contain no detailed
information on 3D molecular structures. The selected classes
were chosen as they provide information on the structure and
physicochemical properties of the solutes. The 804 MDs
computed with alvaDesc were reduced to 612 by withdrawing
(nearly) constant MDs (see Supporting Information, S.1, for
further details) and one MD containing mostly missing values
(following a manual inspection).
QSPR Development. To best predict E, S, A, and B, four

QSPRs were developed (one for each LSER solute parameter),
using least-squares regression with weight decay regularization,
i.e., ridge regression.65,66 Ridge regression is based on a linear
relationship between input and output variables, which in
principle can limit QSPR prediction capabilities.67 However,
nonlinear models based on artificial neural networks were also
tested, but despite their higher complexity, they did not
improve the predictive performance significantly compared to
ridge regression (results not shown for sake of brevity).
Additionally, the relatively simple ridge regression method
reduces the risk of overfitting (also thanks to weight decay
regularization, as explained below). The loss function J that
ridge regression minimizes can be expressed as

J b yw x w w1
2

( )
2i

N

i i
1

T
exp,

2 T= + +
= (3)

where N is the number of solutes (observations) used in the
training set, yexp ,i is the experimental value of the LSER solute

Figure 1. Work flow of data-driven methodology predicting the linear
solvent strength model parameters SS and kw via QSRR and LSER
starting from MDs. In turn, these are obtained from the molecular
structure provided as SMILES string. The molecular representation of
ciprofloxacin is taken from PubChem.
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parameter (output variable) for solute i to be predicted, xi is
the MD vector (input variables) for solute i, b is the intercept
of the linear relationship (the size of b is the same as the
number of output variables�in this case, since there is only
one output variable, it is a scalar), and w is the vector of model
parameters (whose values are determined by model training).
The regularization term w w

2
T in eq 3 penalizes models with

too many nonzero or large elements in w. This avoids giving
great importance to MDs that are not relevant for the
prediction of the output variable (as likely when using ordinary
least-squares estimators) and mitigates overfitting through the
regularization hyperparameter α.66 In this work, the value of α
was set via 10-fold cross-validation (CV), i.e., by randomly
dividing the training data set into 10-fold and evaluating model
performance on each fold at a time, using the remaining 9-fold
for calibration. The training data set was obtained dividing the
initial data set comprising 6401 molecules using an 80:20 split.
Hence, 5120 molecules were used for QSPR model training,
while the remaining 1281 were used for testing (i.e., to assess
the prediction performance of the QSPR models on unseen
molecules; see section: QSPR Prediction Performance and
Removal of Redundant MDs). Note that ridge regression can
set many elements in w to low values (indicating their limited
relevance) but does not generally set them to zero (unlike lasso
regression). Hence, the number of input parameters was not
directly reduced through ridge regression, but was instead
addressed as described below.
QSPR Prediction Performance and Removal of

Redundant MDs. To reduce the number of QSPR model
inputs (i.e., the solute MDs) and thereby reduce the number of
model parameters to increase robustness, the number of MDs
used was further reduced via a pairwise correlation method as
detailed in the Supporting Information. The basic concept is
that no significant information is lost when one of the two
highly correlated MDs is removed. Therefore, the pairwise
correlation coefficients between all (initially, 612) MDs were
calculated. For each pair of MDs with a higher correlation
coefficient than a set threshold, that with the highest
correlation coefficient with the other remaining MDs was
removed. Thus, the pairwise correlation threshold was
increased stepwise to successively include more MDs. In
each step, the predictive performance of the QSPR models was
quantified through CV (which was carried out to optimize α).
Figure 2 illustrates the impact of MD reduction on QSPR
predictive performance, showing that the predictive accuracy
remains largely consistent even after removing half of the initial
MDs. Based on this analysis, we selected 313 MDs
(corresponding to a correlation threshold of 0.85) as inputs
for the QSPR models. This selection balances predictive power
with a significantly simplified and more robust model.
Figure 3 shows the parity plots (= predicted vs actual values,

with a perfect model aligning points along the y = x line)
comparing the experimental and QSPR-predicted LSER solute
parameters for all training and test solutes. The parity plots
include the root mean squared error of prediction (RMSEP,
see eq 6), the coefficient of determination R2 (see eq 7), and a
modified mean absolute percentage error (MMAPE, see eq 8),
evaluated on the test data set. The criteria and equations used
as error indicators, hence to evaluate the predictive capabilities
of the QSPR models, are explained in section: Summary of
Performance Error Indicators Used to Evaluate Predictive
Capabilities. Figure 3 suggests the absence of overfitting.

Notably, the Topliss−Costello rule was followed, which
recommends a minimum ratio of 5:1 between training
observations and input variables to prevent model over-
fitting.68,69 While the general applicability of this rule is
debatable, the QSPR models developed here, with a ratio of
16:1 (5120 training molecules and 313 input MDs),
comfortably exceed this threshold.
LSS Theory Parameters Predicted via LSERs. The

prediction of the two LSS theory parameters, kw and SS, by
using LSERs was recently demonstrated by Poole and
Atapattu.70 Their work relied on experimental retention factors
of small molecule solutes in different chromatographic systems,
including 17 different columns (i.e., stationary phases) for
water−methanol mixtures as mobile phase and 15 columns for
water−acetonitrile mixtures as mobile phase. In particular,
instead of relying on LSERs for retention time/factor
prediction (recall eq 2), Poole and Atapattu70 used the
following two LSERs

k c e E s S a A b B

v V

log k k k k k

k

w log log log log log

log

w w w w w

w

= + + + +

+ (4)

S c e E s S a A b B v VS S S S S SS S S S S S S
= + + + + + (5)

This LSER formulation involves two equations and 12
system parameters, namely, c klog w

, e klog w
, s klog w

, a klog w
, b klog w

,
v klog w

, and cSdS
, eSdS

, sSdS
, aSdS

, bSdS
, and vSdS

. The advantage of this
combination of LSER and LSS theory is that, while the system
parameters featuring in eq 2 are functions of the volume
fraction of organic modifier (that is, they depend on ϕ and
need recalibration if ϕ changes), the system parameters in eqs
4 and 5 are not. They depend on the stationary phase and on
the constituents of the mobile phase but not on ϕ. These 6 × 2
= 12 LSER system parameters were obtained via least-squares
regression using the values of log kw and SS found by applying
the LSS theory, i.e., by fitting eq 1 to experimental retention
factors (assumed as “true values”, i.e., with no experimental
uncertainty associated; see Development of LSERs).

Figure 2. RMSECV decrease with the number of MDs inputs to the
QSPR models, for the solute parameters E (dash-dot-dotted blue
line), S (dashed orange line), A (dash-dotted green line), and B (solid
red line). The dotted black line marks the chosen cutoff at 313 MDs.
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In this work, the LSER system parameters (in eqs 4 and 5)
were not taken directly from Poole and Atapattu,70 but were
obtained likewise via least-squares regression using a reduced
(by one) data set for training (see section: Retention Data for
LSER Model Development). Specifically, to guarantee that the
solutes tested were not part of the data set used to obtain the
LSER system parameters, the latter were fitted each time
excluding the solute tested (leave-one-out approach; see
section: Proof of Concept Demonstration). It is worth noting
that in our work, we considered log kw as the natural logarithm
of the retention factor kw (however, the same methodology
could be applied considering the decimal logarithm, as was
done by Poole and Atapattu70).
Retention Data for LSER Model Development.

Experimentally obtained retention factors used to calibrate
eqs 4 and 5 were previously obtained by Poole and Atapattu
for their work,70,71 but were not therein available. In particular,
retention factor data were kindly provided by Prof. Poole
directly (personal reference from Wayne State University, 04
January 2023) for the Kinetex XB-C18 Phenomenex column
with a water−acetonitrile mixture as mobile phase. Details of

the HPLC setup used to obtain these data were previously
published.71 The data set we used here is made available for
download through this article’s Supporting Information
(PooleAtapattuOriginalData.xlsx). This data set (hereinafter
referred to as the LSER data set) comprises the natural
logarithm of retention factors of 48 solutes (see Table 1) at 10,
20, 30, 40, 50, 60, and 70% v/v (water/acetonitrile) fractions
with occasionally missing data, for a total of 210 retention
factors. Indeed, for some solutes, the retention factors were not
available for all seven mobile phase compositions.
Development of LSERs. The LSS parameters log kw and

SS (see eq 1) for each solute were obtained via a linear fit of the
natural logarithm of experimental retention factors in the LSER
data set using ordinary least-squares regression, as the LSS
theory linearly relates log k to ϕ. Like Poole and Atapattu,70

we restricted the organic modifier volume fraction range to ϕ =
0.2−0.7. Examples of LSS theory fits to experimental retention
factors are shown in Figure 4 for four solutes of the LSER data
set. For some solutes, the LSS theory failed to adequately
represent log k vs ϕ. Hence, not all of the 48 molecules of the
LSER data set were used to calibrate the LSERs. To consider

Figure 3. Parity plots comparing experimental and predicted solute parameters (a) E, (b) S, (c) A, and (d) B; training (turquoise dots), test
(orange diamonds).
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only solutes for which the LSS theory is satisfactory, we
compared the retention factors at M different organic modifier
fractions resulting from the linear fit, kfit (i.e., yfit in eq 9), with
the experimental ones, kexp (i.e., yexp in eq 9), and evaluated for
each molecule the mean absolute percentage error (MAPE)
(see eq 9) of the fit. We only kept molecules whose MAPE was
below 12% (threshold chosen arbitrarily), which reduced the
number of solutes from 48 to 36. Table 2 shows the statistics
of selected MDs from the 36 molecules kept in the LSER data
set. The LSER system-dependent parameters were fitted, as

described above, through an ordinary least-squares regression.
As already mentioned, the LSER system-dependent parameters
in eqs 4 and 5 were determined by minimizing the residual
sum of squares between the log kw and SS values found by the
LSS theory (i.e., the intercept and slope of log k vs ϕ of the
solutes used for LSER model calibration) and those calculated
by the resulting LSERs.
Summary of Performance Error Indicators Used to

Evaluate Predictive Capabilities. Below is a summary of
the error indicators used in the above sections. To evaluate
model predictive capabilities, we relied on three metrics (or
performance indicators): the coefficient of determination R2,
the RMSEP, and a metric analogous to MAPE, which we
named modified MAPE (MMAPE). The metrics are defined as
follows

M
y yRMSEP

1
( )

m

M

m m
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where yexp ,m is the m-th experimental value of the output
variable (in this case, the LSER solute parameter considered),
ypred,m is the m-th predicted value of the output variable (i.e.,
the LSER solute parameter considered), and yexp is the average
value of the experimental output variable (LSER solute
parameter) vector, yexp. As for M, it represents the number
of test samples. The MMAPE defined by eq 8 was used for
QSPR models instead of the MAPE to avoid an inflation of the
error for experimental values of the LSER solute parameters
that approach (or are equal to) zero.63 This is particularly true
for parameters A and B, which were equal to zero for several
small molecules used for model training (see Figure 3).

■ METHODOLOGY AT WORK
To validate the complete methodology, a leave-one-out
approach was used, i.e., one of the 36 solutes kept in the
LSER data set was left out at a time, and the LSER system
parameters were fitted considering all the remaining molecules.
This was repeated 36 times so that all solutes were selected
once as a test case. Hence, all 36 solutes (with up to 6 different
mobile phase fractions, as ϕ = 0.1 was not considered) were
tested using QSPR and LSER models that they did not affect.
Recall from section LSER Solute Parameter Prediction via
QSPRs, that the 36 solutes left in the LSER data set were not
considered for QSPR training and testing, either.
Proof of Concept Demonstration. The LSERs (eqs 4

and 5) were fitted considering the selected 36 solutes in the
LSER data set except one solute at a time (thus, each time 35
molecules were used to calibrate the LSER system parameters;
i.e., 2 × 36 LSERs were developed in total). The one solute left
out was used to validate the predictive capability of the

Table 1. 48 Molecules Included in the LSER Dataset Prior
to Selection Based on MAPE Associated with Fitting of the
LSS Theory with Experimental Retention Factor data.
Solutes Not Selected are Marked With*

benzamide 2-bromoacetophenone
benzophenone* N,N-dimethylaniline
benzaldehyde 4-fluoroaniline
2-phenylethanol diphenylamine
4-chlorophenol caffeine
vanillin 4-nitroaniline
diethyl phthalate* p-cresol
benzenesulfonamide 3-nitrophenol
coumarin quinoline*
methyl salicylate 2-nitrophenol
cinnamyl alcohol* p-xylene
diphenyl ether* m-xylene
4-cyanophenol iodobenzene
o-tolualdehyde 1-phenyl-2-propanol*
3-bromophenol* indole
2-naphthaldehyde* N,N-diethylaniline
naphthalene* 2-methoxybenzaldehyde
8-hydroxyquinoline phthalimide
toluene nicotinamide*
2-aminophenol 1,3-dibromobenzene
aniline 4-hydroxybenzaldehyde
2-aminobiphenyl* pentafluorophenol
anisole 4-nitrophenol
4-aminobenzonitrile 4-hydroxybenzamide*

Figure 4. Examples (4 out of the 36) of linear solvent strength theory,
i.e., linear fit matching experimental retention factors (symbols as
indicated in the legend). The orange region, representing low and
high organic modifier fractions, is marked as out of scope due to
increased nonlinearity of log k vs ϕ.
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methodology. For each solute, once its corresponding values of
kw and SS were determined through two newly developed
LSERs, the retention factor k was predicted through eq 1 for
different ϕ values. These retention factors were then compared
with the corresponding experimental values (210 values in
total, combining the 36 solutes and the 5 to 6 organic modifier
fractions for which data were available).
Figure 5 shows the parity plot comparing experimental

retention factors with the predicted k(ϕ) values. Each data

point represents the retention factor of a solute at a given
mobile phase composition. These results clearly demonstrate
the potential of this methodology. Indeed, even though
nothing but SMILES strings was used as input, the retention
factors could be estimated reasonably well, with a MAPE below
25% (see Table 3).

Method Error Propagation. The predictions achieved are
good considering that the methodology aims to predict
something as complex as organic modifier-dependent retention
factors from the molecular structure of solutes, only. This is
even more remarkable considering the limited data available
for the LSER calibration. To further improve the accuracy of
this data-driven methodology and to assess whether alternative
models and larger data sets are required, it is important to
understand the origin of the prediction errors made. The
retention factor predictions worsen progressively, as expected,
when the experimental data are replaced by model predictions.
This means that the more experimentally derived information
about a solute (e.g., LSER or LSS solute parameters) is
provided, the fewer models needed, which leads to more
accurate predictions. Figure 6 (top) and Figure S.1 (top, i.e.,
the corresponding parity plot) show how accurate the
predictions are using LSS theory only, i.e., using solely the
LSS theory to predict the experimental retention factors of the
36 solutes in the LSER data set. The errors originate from the
nonperfect fit using eq 1, which is why errors are larger for
higher volume fractions of organic modifier. Figure 6 (middle)
and Figure S.1 (bottom, i.e., the corresponding parity plot)
show the predictions made using the LSS combined with the
LSERs, i.e., LSER predicts the LSS parameters but using
experimentally determined LSER solute parameters, instead of
using the QSPR for their prediction. Relying on two models
instead of one naturally lowers the accuracy and the relative
error increase throughout the organic modifier range
considered. For the methodology presented here, as already
shown in Figure 5, it was still possible to predict the retention
factors reasonably well. This was made possible without the
luxury of carrying out experiments, but by combining three
models, i.e., (a) QSPR, (b) LSER, and (c) LSS theory and
using data either publicly available, or provided by the research
community. To quantify the contribution of each model (a-c),
the considered experimental retention factors were assumed to
be the true values (i.e., no experimental uncertainty
associated). By using the LSS theory, only, a MAPE (see eq
9) of 9.1% resulted. When determining kw and SS via LSER
using experimental LSER solute parameters, the MAPE
increased to 17.8%. Ultimately, by using all a-c models to
facilitate predictions without directly using experimental data, a
MAPE of 24.6% was obtained. Table 3 summarizes this error
propagation, including also the RMSEP and the coefficient of
determination, R2 (see eqs 6 and 7, respectively) for retention
factor predictions. Despite the obvious call for larger data sets
to train the LSER models predicting log kw and SS (remember
that only 36−1 = 35 solutes were used each time for LSER
calibration), the methodology error can be assigned to
inaccuracies using the LSS theory. This is not unexpected as

Table 2. Minimum Value, 25th, 50th, and 75th Percentiles, and Maximum Value of Some Selected MDs for the 36 Molecules
Left in the LSER Dataset According to Section: Development of LSERsa

MW nAT nSK ARR %C %H %N %O %X

min value 92 12 7 0.33 33.3 7.7 0.0 0.0 0.0
25% percentile 116 15 8 0.60 41.6 38.2 0.0 0.0 0.0
50% percentile 132 16 9 0.67 44.4 42.1 1.9 6.3 0.0
75% percentile 150 18 10 0.75 47.8 47.8 6.7 11.8 0.0
max value 236 26 14 1.00 52.9 57.7 16.7 20.0 38.5

aThe nomenclature used to indicate the MDs considered is taken from alvaDesc. MW: molecular weight (g/mol); nAT: number of atoms; nSK:
number of non-hydrogen atoms; ARR: aromatic ratio within the molecule; %C: % of carbon atoms in the molecule; %H: % of hydrogen atoms in
the molecule; %N: % of nitrogen atoms in the molecule; %O: % of oxygen atoms in the molecule; %X: % of halogen atoms in the molecule.

Figure 5. Parity plots comparing the 210 predicted with
corresponding experimental retention factors. Each point represents
one solute (used for validation, according to a leave-one-out
approach) at a given mobile phase composition.

Table 3. Summary of Error Propagation on the Retention
Factor ka

error LSS LSS + LSER LSS + LSER + QSPR

MAPE 9.1% 17.8% 24.6%
RMSEP 0.98 1.8 1.9
R2 0.98 0.95 0.94

aMAPE: mean absolute percentage error; RMSEP: root mean squared
error of prediction; LSS: linear solvent strength theory; LSER: linear
solvation−energy relationships; QSPR: quantitative structure−prop-
erty relationships.
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the LSS theory fails to capture a common nonlinear increase in
log k as ϕ → 0. Figure 4 reveals this as the linearity of log k vs
ϕ seems valid strictly for 30% < ϕ < 60% only. Hence, to
overcome this limitation, the methodology could be extended
by introducing more complex (e.g., quadratic) solvent strength
models.21,22 This, however, would entail additional LSERs to
predict the additional parameters of the nonlinear solvent
strength model and is therefore not considered here.

■ CONCLUSIONS AND PERSPECTIVES
Our methodology offers a practical solution for predicting
mobile phase-dependent retention factors using only the
molecular structures of solutes. Unlike other data-driven
tools that predict solute retention behavior for specific
HPLC settings, our approach serves as a promising in-silico
tool for optimizing mobile phase profiles. Moreover, since the
model inputs consist solely of MDs (obtainable directly from
the structural formula of molecules), this methodology can be
applied even before any material is synthesized for
experimental campaigns. The functionality of our methodology
originates from a multimodel data-driven approach that
combines (a) quantitative structure−property relationships
(QSPR) that use MDs to predict parameters of (b) linear
solvation energy relationships (LSER) and (c) classical linear
solvent strength (LSS) theory. The methodology’s potential
was demonstrated using small molecules whose experimentally

determined retention factors were provided by the research
community. Although the data set used for this proof of
concept was limited in size, the approach demonstrated
substantial predictive power. Using only MDs, the method-
ology predicted mobile phase-dependent retention factors of
small molecules in a C-18 stationary phase system with a
MAPE of less than 25%. Furthermore, the predictive power of
this approach has significant potential for improvement with
larger training data sets. Such an increase in available data is
anticipated due to the growing number of HPLC databases,
advancements in high-throughput HPLC screening capabil-
ities, global digitalization of HPLC method development
workflows, and the consolidation of chromatography records
across companies. However, it is crucial to emphasize that data
set size is not the only factor that matters; the quality of the
data set is equally important, particularly the “similarity”
between the molecules in the training set and those being
predicted. It is clear that any data-driven methodology is only
as effective as the data used for training. While we acknowledge
that the QSPR models were trained with more than 5000
different small molecules, the data set used for LSER system
parameter prediction contained only 35 (i.e., 36−1) solutes
with similar size, polarity, and functional group composition.
Solutes that differ significantly in these properties are unlikely
to allow for accurate prediction of mobile phase dependent
elution behavior with the models developed in this work. To
make the developed approach truly versatile, it is important to
consider that (1) the diversity of molecular features in the data
set represents the solutes for which predictions are intended
and that (2) this (and all) data-driven approaches should
always provide a quantitative measure of similarity between the
training data and the target solutes (e.g., molecular features
captured through MDs) to indicate the applicability of a
model.
When combined with first-principles-based mechanistic

transport models, this method can be used to optimize
HPLC methods in silico during early development stages. This
would significantly reduce the experimental workload and has
the potential to render many initial-stage experiments
redundant, effectively replacing them with data-driven
predictions. Furthermore, by integrating sensible system
parameters for LSER to predict LSS parameters for various
columns and organic modifiers, our methodology also enables
in silico screening of stationary and mobile phases. This
capability would further minimize experimental efforts, there-
fore enhancing efficiency across the HPLC method develop-
ment workflow.
While the data-driven approach demonstrated remarkable

accuracy, it is not yet capable of fully replacing experimental
campaigns, especially for complex multicomponent samples
prone to coelution. Nevertheless, our results show that this
purely data-driven approach provides a reliable initial estimate
of elution times across various mobile phase compositions (not
considering different pH values) without any prior exper-
imentation required.
In conclusion, the methodology presented in this work

provides a promising solution for the prediction of isotherm
parameters, offering several advantages. It attains good
accuracy without the necessity of any additional experimental
data, by utilizing existing databases instead. Furthermore, it
may become more powerful with the rapid growth of HPLC
databases. The data-driven method presented stands out for its
ability to initiate parameter estimation through traditional

Figure 6. Sketch of error propagation due to the combined use of the
(I) linear solvent strength (LSS) theory, (II) linear solvation-energy
relationships (LSER), and (III) quantitative structure−property
relationships (QSPR). The corresponding parity plots are shown in
Figures 5 and S.1.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.4c03466
Anal. Chem. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.analchem.4c03466?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c03466?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c03466?fig=fig6&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.4c03466/suppl_file/ac4c03466_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c03466?fig=fig6&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.4c03466?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


methods, even in the absence of experimental chromatographic
data. This forward-thinking approach gaining its versatility
from hybrid models allows for method development before
actual samples are obtained, thus enabling a streamlining of the
experimental process and potentially saving valuable time and
resources.
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