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ABSTRACT 

Stress has a well-documented role in mental health, but molecular mechanisms are uncertain. This 

thesis adopts a psychoneuroimmunological and precision medicine framework to explore likely 

sleep and biological pathways. Chapter 1 reviews extant literature, providing a foundation for the 

multidisciplinary approach detailed in Chapter 2 that uses English Longitudinal Study of Ageing 

data. The five following studies address different parts of the framework. Chapter 3 (STUDY1) 

compares compositional and contextual socioeconomic stressors in immune-neuroendocrine 

activity. Chapter 4 (STUDY2) explores immune-neuroendocrine patterning and its response to 

common stressors, considering genetic predisposition. Chapter 5 (STUDY3) tests independent, 

interactive, and genetic associations between stress and suboptimal sleep in latent categorisation 

of biological risk. Chapter 6 (STUDY4) investigates suboptimal sleep and depression directionality 

through polygenic predisposition. Chapter 7 (STUDY5) assesses inflammation and subclinical 

depression associations when experiencing pandemic-related stress. RESULTS. Stress was a key 

driver of immune-neuroendocrine processes in older adults. Financial factors, at the individual-

level, were more salient than differences in neighbourhood deprivation. Financial stress was 

associated with short but not long sleep and was associated with distinct immune-neuroendocrine 

profiles. Suboptimal sleep was not associated with immune-neuroendocrine profiles, and it did not 

moderate associations. Phenotypic findings supported bidirectionality between suboptimal sleep 

and depression, but polygenic analyses showed a unidirectional association of short sleep on 

depression. Pre-pandemic inflammation increased vulnerability to subclinical depression during 

the pandemic. CONCLUSIONS. Those with fewer socioeconomic resources are more 

vulnerable to biological stability, which may contribute to risk of depression. Independently of 

neighbourhood deprivation, financial stress emerged as a potential target for reducing short sleep 

and offers a promising pathway for understanding immune-neuroendocrine changes. However, 

there is limited evidence that stress and sleep act synergistically in biological processes. Although 

sleep duration is a less persuasive target for immune-neuroendocrine changes in older adults, a 

more direct role in depression was identified.  
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CONCEPTUAL OVERVIEW 

Accounting for approximately one-third of disability worldwide, mental ill-health comes at a 

tremendous personal and societal cost.1 Many health care systems are overburdened by both 

subclinical forms of mental distress among the general population2 and psychopathology in clinical 

populations.3 Interestingly, mounting evidence has revealed the potential for a shared aetiology or 

common phenotypic expression across the mental health spectrum.4,5 In spite of the distinct 

diagnostic classifications between common and severe mental disorders, there are noteworthy 

conceptual, clinical, and causal links that should prevent entirely distinct lines of study.6,7 Moreover, 

mental ill-health is biologically complex, driven by a network of interdependent mechanisms. Thus, 

my interest is to establish whether mental illnesses share common antecedents using a single 

psychoneuroimmunological and precision medicine framework. Psychoneuroimmunology (PNI) 

being the connective pathway between cognition and the physiological response of the immune, 

nervous, and endocrine systems.8 Precision medicine being the use of statistical and genomic 

strategies to enable a more precise targeting of subgroups with disease.9 It is predicated on an 

increased understanding of the genetic and molecular mechanism of disease, to improve diagnostic 

sensitivity, and to make it possible to intervene earlier.10 Both approaches consider variability in 

biology, behaviour, and environment. Together they offer an improved model for the prediction, 

prevention, and treatment of disease. The role of stress in mental health is well-documented, but 

the biological and genetic contributions to this dynamic remain unclear.11 Evidence points to 

stress-induced suboptimal sleep and adverse immune-neuroendocrine responses,12,13 as pathways 

through which stress leads to psychological dysfunction.14–16 There is, however, the issue of 

directionality.17–20 Stress, sleep, and immune-neuroendocrine activity have historically been thought 

of as epiphenomena of or secondary to mental ill-health, but a growing literature suggests that they 

may be prodromal.21,22 For this reason, and to strengthen causal inference, I test associations within 

the present framework using advanced statistical techniques, and genetically informed designs.23–

25 
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IMPACT STATEMENT 

Leveraging advanced statistical, epidemiological, and genomic methods, in observational and 

summary-level data, I hope to advance the understanding of the synthesis between stress, sleep, 

immune, and neuroendocrine processes in maintaining mental health. I have generated evidence 

on how stress associated with material deprivation, and other psychosocial stressors, ultimately 

contributes to adverse mental states, through genetic, biological, and sleep mechanisms. In this 

respect, critical gaps in the literature and key methodological issues have been addressed.  

 

The evidence generated has been disseminated through various channels, including peer-reviewed 

publications, academic articles, blogs, journalistic interviews, news articles, media appearances, 

social media, conferences, and lectures. The hope remains to raise awareness, broaden the reach 

of acquired knowledge, and pursue the sustainability of its impact. One paper, for example, 

captured more than 400 articles worldwide in a day of release (Figure 1.1) and was featured by 

The Guardian, The Independent, The Telegraph, The Washington Post, and elsewhere. Published 

work has received over 75,000 views, with a single blog reaching an audience of over 10,000. 

 
Figure 1.1 Global article tracker coverage of doi.org/10.1038/s41398-023-02622-z on 20/10/23
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I have led seven research projects for my PhD, four of which that have been published in journals 

of international standing, one that is under review, another that is being prepared for submission, 

and the final one that is in progress. The former five have been included in this thesis. Separately, 

I have published a systematic review and have an econometrics paper under review, with two other 

working papers. The work generated throughout my PhD has also led to a scholar award of 

monetary value from the Society for Biopsychosocial Science and Medicine (formerly known as 

the American Psychosomatic Society [APS]), remunerated consultancy requests, two tuition 

scholarships to attend the University of Venice and Harvard University respectively, a UKRI study 

grant, an call to attribute as a special edition Editor for the Sociological Review journal, and an 

invitation for an extended institutional visit to Harvard T. H. Chan School of Public Health, 

Harvard Medical School, and Massachusetts General Hospital. 

 

For various reasons, the line of study in this thesis is important to the broader academic 

community, clinicians, pharmaceutical professionals, policy makers, and society at large. First, the 

exploration of stress-induced dysfunctional sleep across the psychological spectrum has the 

potential to reveal both disorder-specific and transdiagnostic psychophysiological mechanisms,26 

such that intervening on stress or dysfunctional sleep at an early stage, as modifiable targets for 

treatment,27,28 could offer an evidence-based preventive strategy for the onset or prognosis of 

psychological disorders.22 Second, the exploration of how molecular processes result in 

differences in mental health outcomes advances our relatively limited understanding of how 

biological systems interact, revealing, for example, whether specific biomarkers are independently 

related to changes in specific outcomes, or whether there are synergistic effects between a 

collection of biomarkers that contribute to symmetries in clinical outcomes, with differences 

underpinned by genetic vulnerabilities. These greatly benefit efforts to understand the genesis of 

mental health conditions, individualised care within a precision medicine setting, and how 

observational evidence can effectively translate to clinical trials. Third, while it is still very early 
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days to consider clinical utility, support is provided for the potential benefit of genetic-medical 

integration to improve diagnostics and the quality of care. This advocates the routine assessment 

of genetic and biological markers in clinic for patients who present with prodrome symptoms of 

mental ill-health. Fourth, there has been a rise in community-based social and behavioural 

prescriptions to coincide with pharmacological treatments,29 but adherence to social prescriptions 

can be low, particularly for mental health complaints. An increase in the strategic generation and 

distribution of quality evidence may convince the public of the value of social prescriptions.30 

Finally, the findings serve to inform policy through the submission of evidence that could inform 

macro- and individual-level interventions. For instance, markedly raising the minimum wage could 

reduce the financial burden of low socioeconomic groups. As a result, lessening their stress 

exposure and leading to a greater prioritisation of sleep that is more consolidated. This in turn 

could confer salubrious effects on immunity, and thus, mental health. Such non-clinical 

interventions have the potential to improve mental health outcomes, reduce health inequalities, 

while lessening pressures on primary and secondary care systems.31 Each leading to a lesser 

financial and social burden on society. 

 

With valuable contributions from Professors Andrew Steptoe and Karoline Kuchenbäecker, my 

supervisors, I developed the structure of this thesis and led its efficient completion. Together we 

defined objectives, shaped the study designs, and made strategic decisions on the statistical 
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Yvonne Kelly, Esme Elsden, Tracy Odigie, Nathalie Rich, Dr Madelaine Davies-Kelloc, Dr 

Evangeline Tabor, Dr Olesya Ajnakina, Professor Paola Zaninotto, Dr Giorgio Di Gessa, 

Professor James Kirkbride, Dr Jennifer Dykxhoorn, Dr Victoria Garfield, Valentina Paz, Professor 

Neil Davies, Dr Isabelle Austin-Zimmerman, Dr Georgina Navoly, Diana Dunca, Dr Emma 

Anderson, Dr Luke Daves, Dr Shaun Scholes, Professor Aric Prather, Dr Bizu Gelaye, and Dr 

Diana Juvinao-Quintero. Each in different ways have added to my knowledgebase in contribution to this thesis.  
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CHAPTER 1. BACKGROUND 

1.1 Chapter overview  

This chapter reviews the literature on stress and sleep duration associations with mental ill-health, 

and the underlying genetic, immune, and neuroendocrine mechanisms. It has seven interrelated 

themes. In the opening section, the centrality of mental health to population health across life 

course is discussed, along with the individual and societal burden that arises from its absence. In 

section two, stress is described, with a focus on accumulative, chronic, psychosocial stressors, and 

special attention given to financial-related stress. Evidence of the physiological role of sleep in 

maintaining health is introduced. Then the known reciprocity between stress and poor sleep in the 

literature is reviewed. Next, we see how mental health is shaped by stress and maladaptive sleep 

experiences. In section three, the biological framework is outlined and offers evidence on the 

molecular basis of immune-neuroendocrine concentrations, with genomic contributions 

considered. Here, the role of stress and sleep in a biological context reviewed. The penultimate 

section of this chapter comprehensively details PNI pathways, with reflections on its role in 

mental ill-health. In the final sections, the way in which precision medicine underpins the thesis 

and gives it clinical relevance is outlined, before concluding on what is yet known and the gaps 

that this thesis seeks to fill, with research questions and hypotheses detailed. At each juncture, 

limitations of the existing literature are discussed. 

 
1.1.2. Mental Ill-health 
 
“The energy of the mind is the essence of life.” Aristotle 
 
Mental disorders are among the most intractable enigmas in medicine, and it is clear that mental 

ill-health comes at a tremendous personal and societal cost.32,33 Age at onset maps across life-

course, as revealed by a meta-analysis of 708,561 individuals across 192 epidemiological studies, 

with over a third of mental disorder detected before the age of 14.34 It is unsurprising then that 

some health care systems are overburdened by both subclinical forms of mental distress among 
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the general population and psychopathology in clinical populations.35 Further, meta-analytic 

findings, across 203 studies in 29 countries, reveal that individuals who suffer from mental illness 

have 2.22 times higher mortality rate than those without. This comes at an estimated an annual 8 

million deaths worldwide attributable to mental ill-health.36 Noted also as the leading worldwide 

cause of years lived with a disability, driven up by population growth and ageing,37 mental illness 

is estimated to account for one-third of all disability worldwide.38 A recent study estimated mental 

illness accounted for 970.1 million cases.33 The global number of disability-adjusted life-years 

(DALY) due to mental illnessa rose by 44.5 million between 1990-2019.33 Depressive (37.3%) and 

anxiety disorders (22.9%) accounted for the largest proportion of mental illness DALYs, followed 

by schizophrenia at 12.2%, and bipolar disorder (BD) trailing at 6.8%.33 These corroborate 

Whiteford and colleagues’ (2013)37 estimates where depressive disorders accounted for 40.5% 

(95% confidence intervals [CI]=31.7-49.2) of DALYs caused by mental illness, whereas, anxiety 

disorders were reported at 14.6% (CI=11.2-18.4), schizophrenia at 7·4% (CI=5.0-9.8), and BD at 

7.0% (CI=4.4-10.3). The age-standardised DALY rate for mental illness was highest in The 

Americas and Australasia. It was also higher among females by 276.8 per 100,000 people. For these 

reasons, efforts must be made to understand, prevent, and manage both common and severe 

mental illness. An extensive body of evidence suggests an appropriate model is one of 

multifactorial causations. To this end, a PNI and precision medicine framework will be used to 

investigate the potentially causal sleep, genetic, and immune-neuroendocrine mechanisms through 

which stress affects mental health. 

 

1.1.3. Stress 
 
“It’s not stress that kills us, it is our reaction to it.” Hans Selye 
 

 
a Disability-adjusted life-years (DALY) are measured as the sum of years lived with and years of life lost to disability.33 
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Although stress perception and reactivity varies by person and within person over time,39 broadly 

speaking, there are physiological benefits to time-limited stress, such as that experienced during 

exams or public speaking. This type of good stress (in the vernacular) or eustress, is processed 

adaptively,40 but chronic – repeated and prolonged – stress exposure is a key factor in the onset 

and progression of  non-communicable41 and chronic disease.42,43 Stress can be imposed on us or 

we can think it into being. It is, however, notoriously difficult to define.44 Though there are many 

classifications,39,45–47 there is no single definitional consensus. Cohen and Prather (2019)44 suggest 

that each classification represents different stages and facets of a single model, be it environmental, 

psychological, or biological, acute or chronic, actual or anticipatory, resistance to stress exposure 

is futile. This makes stress an especially attractive modifiable target for maintaining mental health. 

In this thesis, stress is represented using seven likely chronic psychosocial stressors (Figure 1.2), 

with special attention given to financial-related stress, as a long-acknowledged cross-cultural 

determinant of health. Financial-related is indexed by material deprivation, financial strain, and 

socioeconomic staus.16,48,49 As such, it has been referred to as ‘the status syndrome’,50 which has been 

widely associated with a high prevalence of mental illness.12,51,52 It is assessed also at contextual and 

compositional levels. Contextual factors refer to characteristics of the place in which people live, 

combining information from multiple domains, across education, employment, income, skills, 

training, housing, crime; health and disability.53 It captures the multidimensional nature of 

deprivation and the poverty it signifies, while compositional factors relate to idiosyncratic 

characteristics of the individuals within a neighbourhood. 

 

1.1.4. Maladaptive Sleep 
 
“Sleep is that golden chain that ties health and our bodies together.” Thomas Dekker 
 
Sleep, as a state of decreased arousal and responsiveness, occurs in repeating cycles controlled by 

the internal circadian clock.54 Despite the ubiquity of sleep, its purpose and mechanistic function 
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Figure 1.2  Psychosocial stressors known to be associated with sleep, inflammation, and mental illness 
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in maintaining health remains an enigma.55,56 Sleep macrostructure refers to the temporal 

organisation of sleep stages. It is based on successive epochs of conventional lengths during 

nighttime sleep, typically 60-90 minutes. It cycles through non-Rapid Eye Movement (NREM) 

sleep – stages 1-2 and slow wave sleep (SWS) – and Rapid Eye Movement (REM) sleep.57 This 

differs from sleep microstructure that is measured on the basis of shorter, phasic events (e.g., sleep 

spindlesb; alternate phases of arousal). Despite these differences, both are physiologically and 

clinically valuable.59 Sleep architecture is the overall structure and sequence of the cyclic sleep 

stages that occur through the night. It is marked by clear transitions between sleep stages, with 

adequate time spent in deep sleep.26 Sleep duration can influence the number of sleep cycles, 

affecting the quality of sleep events and the distribution of cycles. Short sleep can limit the number 

of cycles, with less time spent in restorative sleep stages like deep NREM sleep. A shorter sleep 

period can alter the structure, sequence, and balance of sleep, with certain stages, such as REM 

sleep, being prioritised to compensate for the sleep deficit. Conversely, long sleep can extend the 

number of sleep cycles, potentially leading to prolonged time in lighter sleep stages (such as NREM 

stages 1-2), which may reduce sleep efficiency, while long sleep may allow for more time in 

restorative stages, it is often associated with sleep fragmentation, so decreased sleep quality.60  

 

According to one study, the UK prevalence of insufficient short sleep, defined as less than 5-6 

hours per night,61–63 has increased from 8.6% to 10.1% over a 10-year period.64 During the same 

period, excessive long sleep, with thresholds greater than 8-10 hours a night,61–63 reduced from 

31.5% to 25.6%, although this is still exceptionally high from a population perspective.64 Such rates 

raise concerns about a potential increase in the incidence of mental ill-health, particularly among 

older adults, given the purported downward trajectory of optimal sleep duration observed across 

life-course.65 A meta-analysis by Ohayon and colleagues (2004)66 found that total sleep time, sleep 

 
b  Sleep spindles are brief bursts of oscillatory electroencephalographic activity that occurs during non-rapid eye 

movement (NREM) sleep.58 
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efficiency, the percentage of SWS, REM sleep, and REM latency all decreased with age, while sleep 

latency, sleep disturbances, and the percentage of sleep stages 1-2 increased with age. The decrease 

in sleep efficiency was more evident from age 40, with a 3% decrease observed per decade, but 

only sleep efficiency continued to significantly decrease after 60, while sleep latency increased 

expeditiously with age, being more pronounced after 65. However, middle-aged individuals were 

not included in these analyses.66 A subsequent cross-sectional population study was largely 

consistent with this earlier meta-analysis, such that there were significant alterations to sleep 

structure and duration across age in the general population.67 However, a study of 198 participants 

from the general population, aged 20-95 had mixed results. There was little variation in sleep 

architecture with increasing age and, notably, older individuals did not necessarily need more time 

to fall asleep than their younger counterparts. Interindividual variation in sleep appeared to 

diminish with age, but total sleep time, sleep efficiency index, and the percentage of SWS and REM 

sleep decreased with age, as did the variability of these parameters. Authors surmise that the 

experimental nature of the study may lack ecological value. The artificial conditions of the study 

setting may influence sleep, key sleep events may occur outside of the 8 hours recording window, 

or it might not fully capture the variability or complexity of nighttime sleep.68 

 

Many sleep studies solely focus on the physiopathological characteristics of sleep debt instead of 

its social properties.69 In contrast, here the biopsychosocial aspects of sleep take the fore; tested as 

manifestation of stress; a potentiator of inflammation; and an upstream antecedent of mental ill-

health. Research has not provided a complete understanding of the dynamic and multifactorial 

role of sleep architecture in maintaining mental health,70 and studies have yielded mixed results, in 

part, due to the differences in sleep measures.71 There are many aspects of sleep, but here, 

assessments of suboptimal sleep durations are the primary indication of risk, with additional 

attention given to dyssomnias where data permits. This is because sleep duration, as compared to 

sleep disturbance or quality,  is a relatively consistent, widely available tool, that is easy to measure 
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(non-invasive, low burden, so inexpensive). It can offer relatively precise, quantifiable estimates 

through self-report or sleep diaries that are less influenced by perceptual bias, and it can be 

supported by actigraphy or polysomnography (PSG) techniques.72 Granted, suboptimal sleep 

durations experienced with sleep disturbance, for example, is likely more problematic for mental 

health outcomes than each of these experienced singularly,73 but an objective of this thesis is to 

generate evidence unencumbered by multiple lines of evidence on difference sleep measures. 

 

1.1.5. Stress and Maladaptive Sleep 
 
“Sleep is the best cure for waking troubles.” Miguel de Cervantes 
 
Anecdotally, many of us struggle to sleep when stressed, and we experience stress more intensely 

after a bad night’s sleep, but such conventional wisdom has been evidenced empirically.74 

Bidirectionality between them is problematic because cause and effect is unclear,71,75 with both 

direct and indirect influences.76 Several theoretical models have been proposed to give reason to 

this multiplicative relationship, of them, the Stress-Diathesis Model of Insomnia77 and Cognitive 

Model of Insomnia are especially compelling.78 The former model posits that those with a 

predisposing vulnerability from underlying pathogenic mechanisms, be it genetic, biological, or 

psychological, are more susceptible to sleep disorders when exposed to stress.77 The latter submits 

that sleep disorders are perpetuated by distorted thinking, such as a hyperfocus on sleep loss or its 

consequences that increase cognitive valence and emotional arousal.78 The suggestion is that stress 

interacts with predisposing (e.g., personality) and perpetuating factors (e.g., stimulus control) to 

predict the onset and maintenance of maladaptive sleep duration, timing, and efficiency, while 

sleep loss itself exacerbates stress perceptions.71 That said, limited empirical support has emerged 

for these models, despite their intuitive explanatory power.77 

 

As evidenced in animals, chronic stress reduces the duration of both SWS and REM sleep, but 

different stress modalities result in distinct sleep responses,79 the pattern of change depending on 
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the nature of the stressful experience and the ability of the rats to leverage coping strategies.80 In 

humans, stress can also indirectly contribute to poor sleep via unhealthy behaviours, such as 

smoking, heavy alcohol or coffee consumption, sedentary routines, and substance abuse.81,82 

Inversely, insufficient sleep has been linked to physiological stress responses, including 

hypothalamic-pituitary-adrenal-axis (HPA-axis) dysregulation and rapid autonomic activation.80 

The latter involves the rapid, involuntary activation of the autonomic nervous system (ANS) that 

consists of the sympathetic (SNS) and parasympathetic (PNS) nervous systems, respectively 

responsible for the counterbalancing of the fight or flight and rest and digest responses.80,83,84 

 

On balance of evidence,77,85,86 stress likely precedes poor sleep, initiating a downward cyclical 

trajectory between them. Sleep is plausibly the central biosocial factor linking everyday social 

events to biological processes, that when dysregulated result in states of mental ill-health.87–89 This 

is especially troubling because modern-day stressors,90 and mounting societal demands,91 amid 

global health challenges,92 have disrupted normative sleep routines, certainly for some 

demographics more than others, with sleep duration increasing for young adults but reducing for 

middle aged adults. This is notable given the finding that sleep was a mechanism through which 

stressors experienced during the 2019 coronavirus disease (COVID-19) had measurable impact 

on mental health.94 More so, given earlier indications of a clear gradient across the number of 

adverse events experienced each week by socioeconomic groups during the pandemic, and a 

perpetuation of inequality; particularly as it relates to financial adversities.95 However, it is still in 

debate as to whether stress has forced a gradual decline in the number of hours devoted to sleep 

or not.96 Some studies have supported an increase in percentage incidence of suboptimal sleep,61 

while others have cast doubt on this increase.64,96 It is conceivable that an increased awareness of 

sleep hygiene, along with the emergence of sleep medicine, may have contributed to the observed 

rises in self-reported sleep problems and clinical sleep disorder diagnoses. 
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1.1.6. Stress and Mental Ill-heath 

Stress has a complex relationship with health. Psychosocial stressors have long been linked to poor 

health,97,98 and those with limited socioeconomic resources, as a proxy for stress, tend to have 

worse mental and physical health,99 with a shorter life expectancy than those who are not materially 

deprived. For example, in a Finnish and United Kingdon (UK) cohort prospective study, Kivimäki 

and colleagues (2020)99 reported that being less advantaged was associated with an increased risk 

for 18 (32.1%) of the 56 conditions assessed (validated by replication), and area deprivation was 

associated with a further three. Of the 18 temporally sequenced, socioeconomically patterned 

illnesses, 16 (88.9%) of them were strongly interconnected with mental health problems. They 

revealed that a disease cascade began with psychomorbidity and was followed by diseases of the 

pancreas, liver, kidney, lungs, heart, vascular system, cancer, and dementia. Differences in health 

between socioeconomic groups have been attributed to variations in economic, social, educational, 

and psychological resources.100 These socioeconomic determinants are correlated but their 

associations with mental health may differ, as each represents a different permutation of social and 

economic capital.14 It is likely that each has a monotonic functional relationship with health.16  

 

Of socioeconomic determinants, financial strain, as it has been conceptualised in the literature,101 

is of particular interest for three main reasons. First, it is predicated on a perceived (relative) or 

actual (absolute) inability to meet needs and fund financial obligations irrespective of the social 

stratum to which one belongs.101 Second, it is a relatively underutilised socioeconomic construct 

in biosocial literature. Finally, it has escalated in saliency across populations because of the ‘cost of 

living crisis’,102 it can surreptitiously pervade every aspect of an individual’s life, arguably, in a way 

that other stressors do not. For instance, congruent with material deprivation,c financial strain can 

contribute toward or be a single, proximal source for familial and social conflict, social exclusion 

 
c Material deprivation reflects a lack of physical resources necessary for a standard quality of life, whereas financial 

strain refers to stress arising from perceived income insufficiency and difficulty meeting financial obligations.103 
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and isolation, karoshi,d hunger, reduced freedoms, restricted medical care, denied opportunity, and 

lost hope. It can also contribute to the erosion of personal resources, such as self-esteem and 

confidence.11 Even as a direct correlate of disadvantage, individuals with a lack of resources may 

be vulnerable to and less able to cope with other chronic stressors, psychological distress, traumatic 

life events, and daily struggles.16,105,106 

 

Therefore, health and well-being may be shaped by socioeconomic resources, but the biological 

and genetic mechanisms that contribute to this relationship are yet to be fully explicated.11 Cellular 

and molecular contributions are biologically complex, and with few credible stress-related loci 

identified, there is no immediate avenue for assessing the genetic basis of stress and its role in 

mental health.107,108 Still, the strong and consistent documented gradients between socioeconomic 

determinants and health using phenotypic data,16,48,49,101 with a range of non-specific outcomes,99 

draw attention to possible biosocial pathways that may explain how financial stress leads to mental 

ill-health. Stress-induced sleep abnormalities and aberrant immune-neuroendocrine activity are 

two proposed pathways.14–16 It is argued that the cumulative burden of stressors, particularly those 

associated with a lack of socioeconomic resources, could lead to a vulnerability of poor sleep and 

adverse biological reactivity that results in psychological dysfunction.12,13 

 

1.1.7. Maladaptive Sleep and Mental Ill-health 

Converging evidence has advanced maladaptive sleep as an underlying diathesis in subclinical and 

pathological expression of common109 and severe mental disorders,110 but only recently has it been 

recognised as a public health concern.111 One study found that relative to healthy controls, 

participants with major depressive disorder (MDD) had prolonged sleep latency, increased REM 

density, but longer REM latency, with fewer arousals.112 During the acute phase of illness, an early 

 
d A Japanese phrase translated as “death from overwork”.104 
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review revealed that 50-80% of psychiatric patients complained of poor sleep. This percentage 

averaged 40-47% in randomly selected community samples without mental illness.113 However, 

sleep that is too little, too much, or too fragmented has also been implicated in the genesis of 

mental illness across a spectrum of severity.22 This is concerning given that 260 million older adults 

are expected to experience suboptimal sleep durations by 2030,63 as a result of ongoing 

epidemiologic transitions.114 A meta-analysis of seven longitudinal studies that involved 25,271 

participants for short sleep and 23,663 participants for long sleep duration, found that these 

suboptimal sleep durations were significantly associated with increased risk of depression in adults, 

with relative risk ratios (RRR) at 31% and 42% respectively.115 A more recent meta-analysis across 

154 studies (n=5,717) offered evidence that extended wakefulness, shortened sleep, and sleep 

disturbances adversely influenced emotional functioning. Authors explored experimental 

reductions in sleep (i.e, total sleep deprivation, partial sleep restriction, or sleep fragmentation) on 

multiple aspects of subclinical emotional experiences (i.e., positive and negative affect, mood 

disturbances, anxiety and depressive symptoms, and emotional reactivity). All forms of sleep loss 

led to lower positive affect, more anxiety symptoms and blunted emotional arousal. However, 

negative affect, emotional valence, and depressive symptoms depended on the type of sleep loss.116 

In fact, sleep has been offered as a central antecedent of interest in mental illness across 

experimental and epidemiological paradigms,22 but no single sleep alteration has proved to be 

specific to a single mental health disorder.26 Despite persuasive longitudinal and meta-analytic 

evidence, results from different studies have been contradictory. This calls into question the 

temporal sequence between maladaptive sleep and mental illness, which may be better examined 

using a combination of genetic and observational data, with sufficiently long follow-up periods. 

For instance, suboptimal sleep has received serious interest in the expression of mental ill-

health.117–119 It is implicated in the onset and persistence of psychological distress among the 

general population,111,119 and it has emerged as a plausible causal factor in the genesis of various 

psychomorbidities of an affective, anxious, and psychotic nature.26 However, this juxtaposes 
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evidence to suggest that maladaptive sleep is a common side effect of pharmacologic treatments, 

prescribed to treat mental illness; from antidepressants and antipsychotics to other sedative 

psychotropic medications. This would suggest that suboptimal sleep follows treatment for mental 

illness.120 There is additional evidence proposing that maladaptive sleep is a non-specific 

epiphenomenon of mental illness20 or that it is secondary to common and severe mental illness, 

implying that it follows mental illness.61,110 Thus, we see that in spite of a large body of evidence 

that has explored prognostic sequencing between suboptimal sleep durations, specifically, and 

mental ill-health,117,118,121,122 the directional role between them has been inconsistent, so these 

complex associations remain incompletely understood. 

 

1.1.7.1. Genetics of Sleep and Mental Disorders 

Efforts to unravel bidirectional associations between suboptimal sleep and mental ill-health has 

been obfuscated in part by the use of observational, phenotypic data. Environmental factors, such 

as stress, can contribute to overall sleep duration, but sleep is also heritable.123 A twin study showed 

that genetic differences account for 35-40% of the variance in sleep, with no evidence of a decline 

in genetic predisposition over the life-course.124 However, single nucleotide polymorphisms (SNP) 

heritability (viz. narrow-sense heritability) for overall sleep duration estimates at 9.8%, with short 

sleep at 7.9%, and long sleep at 4.7%.125 Genetic instruments, arguably, offer the most 

parsimonious solution to resolving the direction of effects, given that they are not susceptible to 

confounding.126 Disentangling the genetics of traits from the traits themselves in associations could 

enhance models involved in identifying disease risk. Polygenic scores integrate common genetic 

variant effects into a single risk metric, used to model genetic risk and helpful to reduce unobserved 

confounding.126 However, Mendelian randomization (MR) presents as a powerful tool to make the 

assessment of causality possible, given its use of genetic variants as instrumental variables (IVs) 

with assumptions.127 By focusing only on the genetically regulated component of exposures, MR 

can avoid reverse causality and estimates will not be biased by confounders because genotypes 
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minimally change from conception.128 Clinical utility remains low but there is significant promise 

for future clinical applications as sample sizes and ancestral diversity of GWAS increase.129 

Although not formally tested in this thesis, earlier MR studies provide a useful benchmark to 

compare results from observational and polygenic analyses. 

 

Using genome-wide association studies (GWAS) for self-reported sleep duration, Dashti and 

colleagues (2019)125 derived a polygenic score (PGS) from 78 associated SNPs that explained 1.4% 

of the phenotypic variance. For observed PGS associations, authors went on to test causality using 

a two-sample MR (2SMR)e by looking at the per allele difference in disease outcomes. Authors 

found curvilinear phenotypic associations between sleep duration and depression, with long sleep 

being additionally associated with BD, but not schizophrenia in fully adjusted models, and there 

was no polygenic risk. Congruent with these findings, another recent study by Austin-Zimmerman 

and colleagues (2023)131 used an inverse-variance weighted (IVW) estimate method in a MR study 

to support a positive, unidirectional causal effect of short sleep on depression, with bidirectionality 

seen between long sleep and depression. Elsewhere, Sun and colleagues (2022)132 used insomnia, 

chronotype, and sleep duration associated SNPs in a bidirectional 2SMR analysis. They found a 

causal effect of overall sleep duration on the risk of BD but not for other psychiatric disorders; an 

effect of insomnia on MDD and post-traumatic stress disorder (PTSD); and a negative effect of 

morningness chronotype on MDD and schizophrenia. Curiously, the weakest evidence was for sleep 

duration, which may have been due to its quadratic quality. Results may have differed should it 

have been demarcated by short and long sleep parameters. Even so, a bidirectional causal effect 

of MDD and PTSD on insomnia was observed, along with a suggestive inverse association 

between MDD and sleep duration. There is stronger support here for the predictive effect of short 

sleep on mental health outcomes that infers unidirectional effects, but there appears to be 

 
e A two-sample Mendelian randomization (2SMR) uses genetic variants as instruments to estimate causal effects by 
leveraging separate, non-overlapping datasets for the genetic association between the exposure and outcome traits.130 
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bidirectional effects between long sleep and said outcomes. Therefore, directionality may be 

predicated on the sleep measure. Stronger powered GWAS should be used to inform future MRs, 

with SNPs across multiple ancestries to add to the evidence on the generalisability. In addition, 

further information offered on the biological mechanisms between suboptimal sleep durations and 

a range of mental disorders would benefit our understanding of these processes. 

 

1.1.8. Stress, Maladaptive Sleep, and Mental Ill-health 

Studies have shown that stress is associated with anxiety, depression,133 schizophrenia,134 and 

BD,135 but less have looked at the simultaneous role of stress and poor sleep in mental ill-health.76 

There is evidence of a reciprocal relationship between stress and maladaptive sleep,74,136,137 and 

both are identified determinants of mental ill-health.14120,137–139 Less clear is whether poor sleep is a 

mediator or moderator of associations between stress and mental ill-health. Merrill (2022)76 found 

that stress was independently more strongly related to mental ill-health than sleep. However, the 

cumulative effect of both stress and sleep revealed the strongest associations, supporting effect 

modification between the two over additive effects. Curiously, schizophrenia was most prone to 

this interaction, plausibly due to the role of stress140 and maladaptive sleep141 in psychosis, with an 

influence on extreme mood swings (mania and depression), which is characteristic of BD.142 

 

As it relates to socioeconomic stress, Steptoe, Emch, and Hamer (2020)101 showed that financial 

strain, specifically, was positively related to maladaptive sleep and poorer reported mental health, 

while Moore, Adler, Williams, and Jackson (2002)48 identified a mediating role of sleep in the 

association between socioeconomic status and mental health. Others have shown significant inter-

individual variations in reported sleep patterns among general and clinical populations that are 

greatly influenced by an individual’s socioeconomic profile.69,143 The problem is that associations 

are not universally consistent,76 and the type of measurement used is relevant to associations, such 

that different stressors and different sleep measurement techniques should be seen as 
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complementary, rather than redundant.71 One study compared associations and tested interactions 

between stress and dyssomnias in various mental health conditions in 21,027 working-aged adults 

(mean [M]=46.42 standard deviations [±] 11.50). The risk of stress was significantly greater for 

those with a dyssomnia (2.36; CI=1.90-2.94), and stress was more strongly associated with mental 

disorder than dyssomnias, but contrary to other research, the combined risk of stress and 

dyssomnias was not exclusively worse for risk of mental disorder than stress and sleep 

independently. It was greater for anxiety, depression, obsessive-compulsive disorder (OCD), and 

schizophrenia, but not BD.76 

 

1.2. The Biological Framework 
 
“The best and most efficient pharmacy is within your own system.” Robert C. Peale 
 
Scholars have warned against operationalising stress as a unilateral path to mental ill-heath, instead 

of giving salience to attributing mediators.19 To uncover alternative pathways that capture the 

complexities of the association between stress and mental ill-health, interdisciplinary efforts are 

required, with complex, multivariate, transactional models that account for time, person and 

environment.19 This approach underpins the rationale of this thesis, insofar as the need to focus 

on mechanisms, using advanced analytics, while taking an interdisciplinary approach. Thus, 

building on a PNI and precision medicine framework (later discussed), the stress-mental health 

relationship is viewed in the context of suboptimal sleep and immune-neuroendocrine biomarkers, 

while considering the role of genetics, as conceptualised in Figure 1.3. Ultimately, immune and 

neuroendocrine responses are believed to be dependent on individual genetic architecture,144–146 

psychosocial stress exposure147,148 and sleep.56,87,149 This is notable given the suggestion that elevated 

levels of systemic inflammation is a risk factor for mental illness,150–153 despite it not being a 

universal observation,154,155 that is dependant on the biomarker tested.150 The current evidence 

suggests more than a correlational effect, but the degree to which immune and neuroendocrine  
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Figure 1.3 A conceptual psychoneuroimmunology and precision medicine framework 
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dysregulation plays a role in the genesis and aetiology of mental illness, and how this differs 

between disorders is not absolute.156 

 

1.2.1. The Molecular Basis of Immune-Neuroendocrine Activity 

Haematological traits are important biomedical indicators that describe blood cells circulating in 

the body. Blood cell types are extremely diverse, with a wide range of functions central to health 

and disease, but they share a common progenitor cell type; the hematopoietic stem cell.157 They 

are broadly classified into three distinct groups (i.e., leukocytes [white blood cell counts {WBCC}]; 

erythrocytes [red blood cell counts{RBCC}]; thrombocytes [platelets]). Each are integral to a 

plethora of physiological processes (Figure 1.4). The values of haematological traits are not 

distributed independently, but are significantly correlated, because of the processes through which 

they differentiate from hematopoietic stem cells and reside in peripheral blood. Haematological 

homeostasis, as it pertains to the counts and volume of peripheral blood cells, along with their 

biological activity, is tightly regulated within narrow physiological ranges. For this reason, 

abnormalities are closely linked to the development of disease and they serve as useful prognostic 

parameters.158 

 

Cytokines are signalling molecules produced by immune cells that have been generated through 

haematopoiesisf (Figure 1.4).159 With over 300 discovered, including chemokines, lymphokines, 

interferons, and tumor necrosis factors,160 cytokines are marked by a complex series of 

physiological interactions that involve pleiotropy, redundancy, synergy, and antagonism (Figure 

1.5). A common feature is their pleiotropic nature, insofar as a given cytokine triggering 

proliferation in one type of cell, but another cell type may respond to the same cytokine with 

growth arrest. This complexity is confounded by the fact that cytokines act in concert with other 

 
f Haematopoiesis is the process of blood cell maturation and formation.159 
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Figure 1.4 Haematopoiesis | Blood cell maturation and formation.159,161 
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Figure 1.5 An example conceptualisation of the complexity of cytokine action.162,163 
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Figure 1.6 A network of cytokine secretions.164,165 
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Figure 1.7 A conceptual diagram of modes of cytokine signalling.160,166  
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contextual signals (Figure 1.6).167 In addition, they play a critical role in immune response 

orchestration and coordination with neural and endocrine processes through autocrine, paracrine, 

and endocrine signalling (Figure 1.7). They traverse the blood-brain barrier (BBB) to modulate 

various molecular and cellular processes, including monoamines metabolism,168 and signal directly 

to the brain via the autonomic nervous system (ANS). Released cytokines are detected by the 

afferent vagus nerve, which relays this information to the nucleus tractus solitarius (NTS) and the 

dorsal motor nucleus (DMN). This then activates the efferent vagus nerve, initiating the 

cholinergic anti-inflammatory pathway, which suppresses cytokine production via α7 nicotinic 

acetylcholine receptors (α7nAchR) on immune cells. This process contributes to abnormal 

psychological states across a continuum of severity.28,87,169 It is why inflammation is conceptualised 

as a mediator of the association between stress-induced sleep abnormalities and a diverse set of 

mental health conditions.170  

 

Locally, cytokine production triggers the release of biomarkers, such as CRP and fibrinogen, 

positive acute-phase proteins (APP)171 that are synthesised by hepatocytesg in the liver. Where even 

minor APP elevations can represent prognostic implications for future disease, so they represent 

strong easily detectable markers of inflammation.173 However, they have been inconsistently 

associated with mental illness across a spectrum of severity.154,155 

 

Inflammation is a defence mechanism responsible for maintaining homeostatic equilibrium, as a 

cellular and molecular adaptive response to stimuli. This response can be acute, with a short 

lifecycle, accelerating rapidly in severity from trauma, infection, or injury. Whereas chronic 

inflammation, characterised by a prolonged and sustained release, can persist months, even 

years.174–176 The regulation of inflammation involves a vast network of interacting molecules, cells 

 
g Hepatocytes being the major parenchymal cells in the liver that are responsible for a variety of cellular functions, 
such as carbohydrate, lipid and protein metabolism, detoxification, and immune cell activation to maintain liver 
homeostasis.172 
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and proteins. Besides neural mediated actions, the endocrine system is an active participant in this 

regulation.177  For this reason, there are numerous biomarkers involved in inflammatory processes 

that can be useful for diagnostic purposes. However, five were selected owing to data availability 

and because they reflect immune, neural, and endocrine pathways. These were C-reactive protein 

(CRP); fibrinogen (Fb); WBCC; insulin-like growth factor 1 (IGF-1); and hair cortisol (cortisol). 

Pro-inflammatory markers include CRP, fibrinogen, and WBCC. By contrast, IGF-1 is a key 

marker of the neuroendocrine function involved in anabolic processes and cortisol is a key  

neuroendocrine marker involved in catabolic processes. Inflammation has downregulation effects 

on IGF-1 secretion,178 while the IGF-1-axis has anti-inflammatory effects on inflammation.179 

 

More specifically, CRP, largely used as a marker of inflammation and infection, is produced under 

the transcriptional control of IL- (interleukin-) 6.180 In normal state, it is present at low, even 

undetectable, concentrations, so high-sensitivity tests should be performed and analysed in a 

laboratory for greater accuracy. It has a rapid increase of up to 5-1,000-fold, or up to 50,000 fold 

in acute inflammatory processes, which is measurable within 4-6 hours of a single stimulus with a 

prompt return to baseline. With few exceptions, CRP is a positive correlate of IL-6, and is 

frequently used as a IL-6 surrogate.181 Understanding CRP is important because it remains a widely 

studied marker of low-grade systemic inflammation linked to physical182–184 and mental illness,185–

187 where even subtle elevations in baseline concentrations can significantly increase disease risk.181 

In addition, it is not merely a short-term marker of risk but has longer term consequences.188  

 

By contrast, fibrinogen is a slow reacting APP involved in clot-formation, with approximately two-

three fold increases in response to infection, inflammation, and trauma. Increases are apparent 

after approximately 8 hours and it remains elevated for 24-48 hours.189,190 Fibrinogen is a soluble 

protein that is synthesised also by hepatocytes.191 It is the end product of the coagulation cascade 

that is key to clot formation and is an active regulator of the inflammatory response, identified as 
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a significant risk factor for disease.192 As an APP, fibrinogen range 2-4 g/L under normal 

physiological conditions, with a half-life of ~4 days.191 The proinflammatory function of fibrinogen 

(and its derivative peptides) lies in its ability to bind to and activate a number of immune cells 

through distinct ligand–receptor interactions.193 Its signalling has been shown to activate 

proinflammatory pathways, such as nuclear factor kappa-B (NF-κB), a complex protein that 

controls deoxyribonucleic acid (DNA) transcription.194 It also regulates the local production of 

cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1 beta (β),192 along with leukocyte 

recruitment and cell survival.195  

 

WBCC is a cellular component that plays a fundamental role in the innate and adaptive immune 

response. It releases inflammatory mediators that activate and regulate these responses. As the first 

line of defence against pathogens, detect and respond to foreign antigens,196 leukocytes fight 

infections, and they promote apoptosish and debris removal198 to promote tissue regeneration. It 

originates from hematopoietic stem cells in the bone marrow, differentiating into granulocytes, 

lymphocytes, and monocyte-macrophage lineage cells (Figure 1.4). Neutrophils represent 50-70% 

of total WBCC, lymphocytes 20-30%, monocytes 5-10%, eosinophils 1-5%, and basophils 0.5-1%. 

Each have further narrower classifications.158 In spite of their non-specificity, WBCC are useful 

indicators of inflammation that are frequently used in clinic. The proportional balance of each 

component likely presents better than single parameters the state and severity of inflammation, so 

that treatment decisions can be better informed.199 WBCC are of additional interest because of 

their exchange with cytokines190 and glucocorticoids.200 They have receptors for stress hormones 

that are produced by the pituitary and adrenal glands, and when cytokines are released during the 

immune response, they have direct impact on the function and infiltration of WBCC.190 These 

counter actions between cytokine signalling and leukocyte activity are key to immune function 

 
h Apoptosis is programmed cell death that promotes monocyte and macrophage recruitment to sites of inflammation 
and facilitates later cell corpse clearance, a process known as efferocytosis that ultimately suppresses inflammation.197 
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(Figure 1.6) and their dual role in maintaining health. WBCC and CRP are also phenotypically201 

and genetically202 correlated with the other. In whole-blood culture stimulation assays, CRP elicited 

a 2-fold activation of peripheral leukocytes on average from a 1-4 hour time-point, inducing 

proinflammatory changes. Of note, the increase in WBCC was entirely attributed to an increase in 

neutrophils. Circulating lymphocytes decreased by ~40% and there were no significant changes to 

monocyte counts 203 

 

Cortisol is a hormone and glucocorticoid steroid that has biphasic regulation of inflammation. 

Identified as an end product of HPA-axis activity, it has a central role in organising the stress 

response, so is deemed a reliable stress measure. Briefly, the hypothalamus secretes corticotrophin-

releasing hormone (CRH) on stimulation, then adrenocorticotrophic hormone (ACTH) is secreted 

by the pituitary gland, which stimulates cortisol secretion from the cortex of the adrenal gland. In 

the main, the HPA-axis self-regulates through negative feedback, where elevated cortisol levels 

suppress CRH and ACTH release, thus reducing cortisol production. With a biological half-life of 

~80 minutes, cortisol varies from anti-(suppressive) to pro-(stimulating) inflammatory in a time-

dependent way. It can be assayed using hair, saliva, urine, or blood substrates, but the former, 

thought to reflect cortisol secretion from three months earlier, has been best established as a long-

term, retrospective assessment of cumulative HPA axis activity. Cortisol levels peak prior to 

awakening, then progressively decrease throughout the day, reaching to low levels in the evening. 

Central to the stress response, glucocorticoids mobilise amino acids and fats for energy and 

synthesis into new compounds, They also exhibit mineralocorticoid activity, suppress the immune 

system, and exert anti-inflammatory effects on traumatised tissues.142,204–207 

 

Macrophage-derived IGF-1 is a small anabolic peptide hormone or growth factor. It is principally 

produced by hepatocytes in the liver in response to growth hormone (GH), which is secreted by 

anterior pituitary somatotrophs, but it can be synthesised by most other somatic cells in response 
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to stress stimuli. Central to ageing, it is an endocrine mediator of growth and development but is 

also a prominent component of innate and acquired immunity in cooperation with cytokines. 

Together they regulate innate immunity by modulating differentiation and proliferation of myeloid 

lineage cells. As a single chain polypeptide consisting of 70 amino acids, it primarily exerts its 

effects though autocrine and paracrine interactions between growth factors and cytokines (Figure 

1.8). IGF circulates at nanomolar levels and has a half-life of minutes, which can be extended up 

to 15 hours when complexed with one of seven known IGF-binding proteins (IGFBPs). Almost 

all immune cells, including lymphocytes, peripheral blood mononuclear cells (PBMC) and natural 

killer (NK) cells are susceptible to IGF-1 expression.174,205–207175,206–208177,208–210 The precise 

mechanisms of how IGF-1 influences cytokine production are complex and are still an active area 

of research, but its role in immune regulation highlights the interconnectedness of the endocrine 

system and cytokine activity.211 Although the growth hormone (GH) axis, of which IGF-1 is a 

mediator, exerts pro- and anti-inflammatory effects, relationships with the immune system are 

reported as mutual. This axis has a number of additional effects, including modulation of 

carbohydrate, lipid, protein and mineral metabolism, cancer development, and various other 

physiological processes related mainly to the cardiovascular and renal systems. 212  

 

Importantly, polymorphic variations213 are known to significantly contribute to the inter-individual 

variance of circulating concentrations of these biomarkers.146 Genes encoding biomarkers are 

candidate loci for diseases with an inflammatory basis,213 and many common SNPs are linked to 

mental disorder,1 but genetic contributions are rarely considered in phenotypic analyses.146  

 

1.2.1.1. Heritability in Immune-Neuroendocrine Activity 

Heritability measures the proportion of phenotypic variance that is explained by genetic factors in 

a population.23 Broad-sense heritability, narrow-sense heritability, and SNP-based heritability are 

the prevailing types. Broad-sense heritability represents the proportion of phenotypic variance 
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explained by all genetic factors, including additive, dominant and epistatic effects. This estimation 

relies on pedigree-based designs involving monozygotic (MZ) and dizygotic (DZ) twins, or family-

based designs involving full siblings. Narrow-sense heritability evaluates the proportion of 

phenotypic variance explained by additive genetic effects. It represents the degree to which genes 

transmitted by parents determine the phenotype of their children. It is determined by GWAS that 

perform association tests on millions of SNPs, assayed across the whole genome in distally related 

individuals who have been drawn from the general population.23,214 However, narrow-sense 

heritability only explains a fraction of the heritability estimated from familial studies. Causal SNPs 

are thought to individually account for such a small proportion of variations that their effects do 

not reach statistical significance in GWAS studies. To resolve this, Yang and colleagues (2010)215 

developed SNP-based heritability. This method estimates the proportion of additive genetic 

variance that can be captured by considering all available SNPs simultaneously, without testing for 

the association of any individual SNP with the phenotype. Thus, most of the heritability is not 

missing but has not previously been detected because the individual effects are too small to pass 

stringent significance tests.215 

 

Heritability of biomarkers is an important consideration because it indicates the role that genetic 

factors play in determining individual differences in these traits. Familiar and twin studies have 

consistently demonstrated a strong genetic component to these traits, and they are highly 

polygenic. Evidence suggests a substantial familial and genetic influence on CRP, fibrinogen, 

WBCC, cortisol, and IGF-1.216 Each have relatively high heritability, which in brief can be 

understood as the proportion of the total variation of the trait that can be attributed to unobserved 

genetic effects.216 IGF-1 is a polypeptide product of the IGF-1 gene, with twin-based heritability 

estimates as high as 62%.217 There have been hypotheses of age dependences, although, these have 

not been confirmed.217,218 A twin study found a substantial proportion of variance in cortisol was 

attributable to genetic factors, with no significant contribution found for shared environment. This 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 45/340 

corresponded to a heritability estimate of 72% (hr
2=0.72) in a robustly adjusted multivariate 

model.205 Comparatively, circulating fibrinogen concentrations have a relatively moderate 

heritability range of 34-46%.145 Residual heritability estimates have been shown to be statistically 

greater than zero for CRP and WBCC (CRP hr
2=0.40; WBCC hr

2=0.35), indicating that major genes 

in other chromosomal regions, polygenes, and other familial factors may account for up to 35-

40% of the variance in these traits.216 Equally, twin studies reveal that there is a highly significant 

hereditable component in base-line CRP concentrations (20-52%), with associations between CRP 

production and genetic polymorphisms in IL-1 and IL-6 also suggested.180,219 In addition, twin 

heritability estimates show a 2-fold variation for WBCC ranging 35-71%,220 with twin heritability 

for neutrophils (67%), monocytes (66%), eosinophils (69%), and lymphocytes (71%) also being 

relatively high.221 This is important because WBCC derives from myeloid lineage cells (Figure 1.4). 

Given their collective, fundamental role in the innate and adaptive immune response, they are 

important clinical indicators of inflammation.158,220 Even a 109/L increment in WBCC has been 

associated with a 32% increased risk of coronary heart disease, 20% of all-cause mortality,220 with 

greater symptom severity in BD,222 and differences in the regulation of leukocytes seen in 

depression and schizophrenia.200  

 

1.2.1.2. Genome-wide Association Studies (GWAS) in Immune-Neuroendocrine Activity 

Biomarker GWAS have been successful in identifying novel biological pathways via thousands of 

biomarker-associated loci and their impact on disease.223 For example, GWAS have identified 266 

unique loci, said to explain 16.3% of the variation in CRP levels, with 42 biological pathways 

underpinning CRP regulation.146 This supports a polygenic model for this trait.224 Ligthart and 

colleagues (2018)225 used Data-Driven Expression-Prioritized Integration for Complex Traits 

(DEPICT) analysis to offer further evidence that genes annotated to the associated CRP variants 

predominately cluster at genes linked to the immune and liver systems, which is consistent with 

CRP being a highly sensitive, prototypical APP. GWAS also identified independent signals in 23 
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loci, 15 of which were unique, together explaining 3.7% of fibrinogen variation.226 GWAS linked 

145 genomic loci to traits that impact the formation of WBCC, RBCC, and platelets; 

predominantly reported in European ancestry (227 SNPs discovered in n>62,000 participants), 

then Asian (48 SNPs, n=16,000) and African (36 SNPs, n=14,000) cohorts.227 Authors estimated 

common autosomal genotypes explained between 5-21% of the variance in white cell indices, 

compared to 10-28% in red cell and 18-30% in platelet indices.228 In another GWAS, Kaplan and 

colleagues (2011)229 showed that rs700752 was the only SNP associated with circulating IGF-1 

concentrations at the level of genome-wide significance (p=4.9×10-9). However, this association 

was attenuated (meta-analysis p=0.038) after adjustment for IGFBP-3 concentrations. Three 

additional SNPs for IGF-I concentrations achieved significance at p<10-6. The CORtisol 

NETwork (CORNET) consortium undertook GWAS meta-analysis for plasma cortisol in 12,597 

European participants. Authors showed that <1% of variance in plasma cortisol was accounted 

for by genetic variation in a single region of chromosome 14.230 

 
1.2.2. Psychoneuroimmunological Pathways 
 
“Our bodies are our gardens, to which our wills are gardeners.” Shakespeare (Othello). 
 
PNI, the scientific field centred on the integrative network between cognition, immunity, 

endocrinology and the central nervous system (CNS), provides a useful framework to understand 

how stress through sleep influences inflammation (Figure 1.8).138,231,232 It looks at how 

psychological dynamics modulate physiological responses and influence overall health via 

cytokine-mediated communications, such that increased cytokine serum levels may lead to 

decreased availability of serotonin and other neurotransmitters.150,171 In brief, the CNS innervates 

the immune and endocrine systems through neurotransmitters. Hormonal signals from the 

endocrine system modulate the CNS and immunity, while immune cells communicate through 

soluble proteins (cytokines) that are transported through the blood-brain interface or through  
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Figure 1.8 A conceptual diagram of psychoneuroimmunological pathways  
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neurotransmitter release to the endocrine and nervous systems147 (Figures 1.7c; 1.8). As discussed, 

this dynamic, trilateral process can be dysregulated by stress or maladaptive sleep, with striking 

similarities of immuno-modulation seen between the two.90 Stress can lead to a redistribution of 

immune cells in peripheral circulation, an upregulation in inflammatory genes, as well as an 

impairment in neuroendocrine activity that regulates inflammatory activity,74 although, 

mechanisms underlying these processes are poorly understood. Abnormal sleep parameters are 

believed to more proximately stimulate downstream pathways from the CNS to the periphery, 

which alters cell gene expression and transcription that potentiates negative immune action.233 In 

both instances, innate immune signalling pathways become activated towards dysregulation, with 

the release of innate proinflammatory cytokines. 

 

Correspondingly, stress exposure, as perceived by the brain, can induce a cascade of 

neuroendocrine responses that impact upon cytokine production. This is said to transpire through 

the stimulation of two key pathways; the HPA204 and sympathetic–adrenal–medullary (SAM) 

axes,234 as crucial parts of the interface between stress and brain functioning (Figure 1.9). Notably, 

most immune cells have receptors for one or more ‘stress hormones’ associated with the HPA and 

SAM axes. Immune modulation can be either direct, through binding of the hormone to its 

cognate receptor, or indirect through cytokine production dysregulation.235 Adrenocorticotropic 

hormone (ACTH) production by the pituitary gland promotes glucocorticoid hormones, the 

primary glucocorticoid of interest here being cortisol.234 The suppressive role of cortisol in immune 

function is long known.236,237 When functional, it exerts an inhibitory effect on pro-inflammatory 

cytokines by binding to glucocorticoid receptors on immune cells. This binding can suppress the 

transcription of pro-inflammatory cytokine genes, and alter the production of cytokines, including 

interferons, chemokines, interleukins, tumor necrosis factors, and transforming growth factors. 

The stress response, characterised by increased cortisol release, can then be seen as a regulatory 

mechanism of inflammation, that when perturbed fails in this important endeavour. Therefore, we  
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Figure 1.9 Stress-associated modulation of the neuroendocrine response.234 

 

see that glucocorticoids play a key role in the upregulation of pro-inflammatory cytokines, such as 

TNF-α and IL-6, which have transcriptional control of APPs, such as CRP, through the liver,180,238 

on the immune system. It can stimulate the production of anti-inflammatory cytokines while 

inhibiting pro-inflammatory cytokines.239 

 

1.2.2.1. Stress and Immune-Neuroendocrine Activity 

Transient stress can be acutely immunoenhancing, supporting a rapid response to threats, but 

prolonged stress can lead to immunosuppression during later stages of the immune response.142,240 
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Still, meta-analytic results from 293 independent studies (n=18,941; Mage=34.8±15.9) over 30 years 

showed that different stressful events reliably associate with changes in multiple markers of the 

immune system in both general and clinical populations,231 and a growing body of literature has 

supported associations between socioeconomic determinants of stress and inflammation,241,242 

despite variability across sample demographics.16 Materially deprived individuals have shown 

higher levels of circulating inflammatory markers even in the general population.243,244 However, a 

meta-analysis across 43 studies with non-patient samples (n=111,156; Magerange=9.96-74.26) 

found considerable variability in the strength of the estimated role of material deprivation in CRP 

and IL-6.15 Certainly, this variability might be indicative of demographic differences, but a more 

nuanced consideration is variation arising from unobserved factors, such as suboptimal sleep and 

variations in genetic signature. 

 

1.2.2.2. Maladaptive Sleep and Immune-Neuroendocrine Activity 

Converging evidence has demonstrated the homeostatic role of sleep in the regulation of 

inflammatory processes.141,245,246 More specifically, sleep architecture is a key component of the 

acute phase response (APR), central to host defence function,56 and it is a critical modulator of 

hormonal release and glucose regulation.247 Adaptive sleep supports neurally-integrated 

immunity.87 In contrast, maladaptive sleep initiates and sustains activation of the inflammatory 

response,149 as seen through marked elevations in systemic, cellular, and genomic markers of 

inflammation.245 One systematic review and meta-analysis73 of 72 studies (n>500,000) revealed 

some heterogeneity among studies that looked at sleep disturbance and duration in inflammation 

(indexed by CRP, IL-6, and TNF-α). On balance of evidence, authors found evidence for sleep 

disturbance and long sleep, but not short sleep, being associated with increased systemic 

inflammation. Notably, larger effect sizes were linked to younger age and a greater proportion of 

the sample were female. However, results largely depended on the biomarker tested, the method 

of data collection, and the sleep parameter used. For example, symptom reporting of sleep 
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disturbance was not associated with increased CRP levels, but it was with IL-6. Whereas sleep 

disturbance assessed by questionnaire was associated with CRP and IL-6. This remained true when 

symptom reporting, questionnaire, and diagnostic assessments were combined, such that sleep 

disturbance was associated with CRP and higher levels of IL-6, but not TNF-α. Notably, diagnosed 

assessments of sleep disturbance could only be investigated when combined because of a lack of 

power. As it relates to sleep duration, when treated continuously it was not associated with these 

inflammatory markers. When the extremes of sleep duration were compared to optimal sleep (i.e., 

7-8 hours), short sleep was not associated with CRP, neither IL-6, nor TNF-α, but long sleep was 

associated with higher levels of CRP, IL-6, but not TNF-α. 

 

Elsewhere, short sleep trajectories have been shown to be particularly relevant to inflammatory 

responses,248 and a more salient concern to cohorts prone to age-related declines in sleep 

efficiency.249 Even one night of sleep restricted to 4-hours can lead to over a three-fold increase in 

monocyte production of IL-6, TNF-α, and messenger RNA (mRNAs),250 while a single hour of 

shorter sleep has been associated with CRP and IL-6 elevations.251 In a randomised controlled trial 

(RCT), sleep-deprived adults had higher baseline cortisol levels and an exaggerated cortisol 

response to stress than well-rested adults.252 Findings that suggest that sleep deprivation 

contributes to inflammatory processes by sensitising the brain to stress.253 Although there are some 

consistencies, these studies highlights the difficultly in replicating results, comparing studies with 

different study designs, and making broad-stoke generalisations across different populations. 

 

1.2.2.3. Psychoneuroimmunological Pathways and Mental-Ill-health 

The acknowledgement that inflammatory processes may represent a common mechanism of 

disease has long been extended to psychiatric disorders.254 Thus, it is fair to say that the exploration 

of immune and neuroendocrine mechanisms is key to understanding the genesis and 

pathophysiology of mental disorders, to improve diagnosis, stratification, and treatment.255,256 
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There are different proposed pathways through which this can occur. Higher levels of pro-

inflammatory cytokines may influence neurotransmission, leading to altered production of 

neurotransmitters, such as serotonin, norepinephrine, dopamine, and brain-derived neurotrophic 

factor (BDNF). Each which have even been associated with specific psychiatric symptoms, such 

as anhedonia.257 Cytokines may also influence neurocircuitry, leading to alterations in motivation 

status, anxiety, arousal, and alarm response.258 Converging evidence from experimental, genomic, 

and epidemiological data, support that immune and neuroendocrine biomarkers underpin mental-

ill-health across a spectrum of severity.154,255,259–261 There is robust observational evidence for 

depression,153,185,254 BD,262–264 and schizophrenia,152,168,265 but limited, less compelling evidence for 

anxiety,266,267 and mixed support for causality in these conditions.154,155,225 In a 2SMR study, Chen 

and colleagues (2022)155 assessed the causal effects of 41 systemic inflammatory regulators on seven 

mental and neurodevelopmental disorders. The results found support for the genetically predicted 

concentrations of 15 unique systemic inflammatory regulators being causally associated with the 

risk of mental disorder. These included basic fibroblast growth factor (bFGF) and IL-1 receptor 

antagonist (IL-1Ra) for MDD, Eotaxin, bFGF, IL-8, and TNF-α for anorexia nervosa, cutaneous 

T-cell attracting chemokine (CTACK) and IL-18 for OCD, and monocyte-specific chemokine 3 

(MCP3), hepatocyte growth factor (HGF), IL-17, IL-1Ra and TNF-related apoptosis-inducing 

ligand (TRAIL) for schizophrenia, with no support for BD.  

 

Despite the aforementioned evidence, a fundamental issue is that associations have been reported 

in the opposite direction, suggesting that the presumed causal direction favours mental illness as 

an antecedent to inflammatory processes. This is conceivable. One study found a prospective 

association between agoraphobia and CRP over 5½ years, with no evidence of inflammation in 

any anxiety disorder.268 Using multiple methodological approaches, Sumner and colleagues 

(2020)269 concluded that elevated inflammation may increase risk of PTSD onset, but equally PTSD 

may lead to heightened inflammation. This inconsistency is seen with other severe mental 
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disorders.270,271 In an experimental study, Juruena and colleagues (2006) found that depressed 

patients had higher cortisol levels compared with controls.272 Another study found that baseline 

IL-6 did not predict a 6-year change in subclinical depression, with no evidence, in either direction, 

of a relationship between CRP and subclinical depression. On balance of evidence, authors 

supposed depression likely precedes inflammatory processes in older adults.268 Yet in a systematic 

review, meta-analysis, and meta-regression, Mac Giollabhui and colleagues (2021)273 found 

longitudinal associations, of small magnitude, in both directions, between depression and 

inflammatory markers, particularly for IL-6. However, the extent of these associations is likely 

obscured by the heterogeneity in depression and profound methodological differences between 

studies. Interestingly, severity may account for bidirectional associations. Strawbridge and 

colleagues (2019)274 found that more severe, chronic or treatment-resistant depressive disorders 

were associated with dysregulated inflammatory activity. Still, the inconsistent associations suggest 

the need for a more nuanced, translational approach that considers genetic influence, biological 

clustering, and between-study comparisons in homogenous populations, with similar 

methodological strategies. Here it is proposed that mental disorders have a shared immune- 

neuroendocrinological basis, with environmental exposure and genetic signatures predisposing 

individuals to developing one psychopathological strand over another. 

 

1.2.2.4. Psychoneuroimmunological Pathways | Unresolved Components 

A substantial amount of knowledge has been generated to advance our understanding of how the 

integrative network between immunity, endocrinology and the neurology regulates homeostasis, 

and how a disruption to this dynamic, conceivably from factors such as stress and sleep, trigger 

the overproduction of proinflammatory cytokines275 seen in mental illness.81,97 However, there 

remains a number of unresolved components. First, the combined mechanisms, order of risk, and 

causality remain uncertain. Second, the type and level of stress exposure, plus the time that it takes 

for dysfunctional sleep to translate to inflammatory states is not often accounted for.245 Third,  
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complexity arises from the diverse selection of biomarkers used across the integrative network of 

immune, endocrine, and nervous systems, leading to low specificity, with independent biomarkers 

being inconsistently implicated in different mental health conditions.276 Fourth, genetic drivers of 

immune and neuroendocrine concentrations are rarely taken into account when assessing their 

antecedents in health and disease, which increases residual confounding and likely inflates effects. 

Finally, we lack an understanding of the complex ways in which these biomarkers interact, and 

their patterns of exchange are seldom considered in analytic designs. Thus, elucidating the role of 

genes, biomarkers, stress, and sleep in mental health remains a critical area of scientific exploration. 

 

1.3. Precision Medicine 
 
“It is far more important to know what person the disease has than what disease the person has.” Hippocrates 
 
A peripheral focus of this thesis is to assess what populations are most at risk to PNI processes 

and subsequent disease, by bringing the importance of personalised medicine to the fore. Precision 

medicine is a transformative approach to healthcare that harnesses statistical and genomic evidence 

to better understand population risk,9 such that treatments can be tailored, and interventions can 

be targeted to individuals rather than the inverse.254 The premise of precision medicine is well-

established, and can, for example, be easily understood through the now conventional practice of 

donor-recipient matching for blood transfusions, rather than transfusion by randomly selected 

donors. 

 

Advanced statistical techniques, such as latent profile analysis (LPA), takes a precision medicine 

approach, by leveraging large-scale observational and health data, to uncover sub-populations of 

disease risk. Greater specificity in cohort characteristics and biological profiles that are relevant to 

disease risk can enhance clinical treatment responses and healthcare decisions. LPA is a model-

based, structural equation modeling method for identifying and clustering individuals into 
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unobserved groups. It assumes individuals can be probabilistically classified into subpopulations 

with distinct attributes. Through model fit criteria, it identifies the optimal number of profiles by 

modelling the distribution of the observed data, and it estimates the proportional size and 

characteristics of each profile within the population. Once defined, latent profile membership can 

be used as a distinct variable in subsequent analyses.277,278 

 

Equally, systematically recording information on the genomic signature of individuals, where the 

presence of genetic variants associated with disease risk and treatment response is identified, can 

offer insight into individuals’ genetic predispositions and susceptibilities to disease with increased 

specificity.10 We are a distance away from the population-level clinical utility of these genomic 

strategies in many areas, but notable progress has been made in fields like oncology, where these 

strategies are extensively used by the National Health Service (NHS) for routine practice to guide 

personalised treatments. Genetic-medical integration continues to hold great promise for clinicians 

to choose more effective, personalised treatment options, with the potential to improve diagnosis 

and therapeutic outcomes, while minimising adverse effects. By leveraging these approaches, 

precision medicine promises a new era of more effective, safer, and patient-centric medical 

interventions. All for the ultimate benefit of society in that it improves quality of care and, thus, 

improves the efficacy of health care provision overall. 

 

1.4. Limitations of Extant Evidence 
 
“The only true wisdom is in knowing you know nothing.” Socrates 
 
Causation is a tenet of scientific inquiry, but the existing body of evidence on associations between 

stress, sleep, immune-neuroendocrine biomarkers, and mental ill-health, by large, lack the capacity 

to establish causal claims. This is for several reasons: 
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i. Much of the cumulated evidence has not been examined prospectively, and with cross-sectional 

evidence, directionality cannot be inferred because the temporal order cannot be established.279  

ii. Causality is putatively made possible with the use of IVs, but genetic methods are predicated 

on strong assumptions23,280 that are not always satisfied, which frustrates causal claims.281  

iii. Research could benefit from a multifaceted approach that integrates self-reported, diagnostic, 

biological, and genomic data, as together they have the potential to offer greater objectivity.  

iv.  Too few studies take a systematic approach to covariate control. A DAG offers a logical 

structure to causal claims, based on the integration of multiple lines of evidence. 

v. The link between stress and mental ill-health is widely acknowledged, but the mechanisms are 

not universally agreed nor understood. 

vi. Capturing the extent and complexity of associations is further obfuscated by likely publication 

bias, as positive results are more likely to be published; plausibly skewing the available evidence.  

vii. A shortage of syndicate studies have left a gap in knowledge. The use of standardised measures, 

comparative populations, and consistent methods allow for fairer comparison and an 

unambiguous synthesis of results. 

 
1.5. Conclusion 

Stress, particularly financial-related stress, has been implicated in mental health conditions,48,99 

although its effects vary across different segments of the population.282 With consideration given 

to genetic predisposition, the overarching hypothesis of this thesis is that this association is linked 

through the mechanistic action of suboptimal sleep and aberrant immune and neuroendocrine 

activity. Compelling hypotheses have been put forward to explain these relationships, including 

the hypothalamic-pituitary stress system, a hallmark of the stress response.283 However, low-grade 

systemic inflammation through PNI pathways, have been proposed as a more proximal 

mechanism, with changes seen to cellular, molecular, and epigenetic forms of plasticity.97  For this 

reason, research efforts in PNI have shifted in part from neural-immune to immune-neural 
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signalling. Specifically, in how the activation of inflammatory networks shape mood, cognition and 

behaviour.234,284–286 Research to elucidate the biological mechanisms underlying these associations 

are essential to reducing socioeconomic disparities in health.287 There are various complications to 

understanding the relationships presented here, but a gallant step has been taken within this thesis 

to advance the understanding of stress, suboptimal sleep, and immune-neuroendocrine biomarkers 

in mental illness across a spectrum of severity, with considerable attention given to the underlying 

role of genetics. 

 

1.6. Overarching Objectives 

Overall, this thesis seeks to understand the biobehavioural mechanisms that link stress to the onset 

and progression of mental ill-health. It is intended to evoke novel interventions and improve 

treatment decisions. The thesis takes a structured, progressive, phased approach to the framework 

illustrated in Figure 1.10. Each phase corresponds to a unique research question, and each research 

question has been assigned a chapter, as detailed below. Various advanced statistical techniques 

have been used to offer a nuanced response to each question and improve on earlier evidence. 

 

1.7. Research Questions (RQ) and Hypotheses (H#) 

CHAPTER 3.  SOCIOECONOMIC STRESS AND IMMUNE-NEUROENDOCRINE ACTIVITY 

 | Cross-sectional and longitudinal analysis of compositional and contextual effects, 

with the percentage of the protective association explained in confounding structures. 

RQ 2. What determinants are most strongly associated with variations in immune and neuroendocrine activity? 

H2a. Contextual socioeconomic determinants were expected to be stronger drivers of biomarker 

activity than compositional determinants cross-sectionally and longitudinally. 

H2a. Of all covariates, health behaviours were expected to account for the greatest variance. 

 

CHAPTER 4.  STRESS AND IMMUNE-NEUROENDOCRINE PATTERNING 

 | A latent profile analysis, longitudinal analysis, and polygenic risk prediction 
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RQ 1. Are common psychosocial stressors associated with immune and neuroendocrine latent profiles?  

H1a. Heterogeneous patterns of immune and neuroendocrine activity were expected, with two to 

three subgroups emerging from the data.  

H1b. Psychosocial stress was expected to be longitudinally associated with more adverse immune 

and neuroendocrine profiles, irrespective of genetic predisposition. 

 

CHAPTER 5.  FINANCIAL STRESS, SLEEP DURATION, AND IMMUNE-

NEUROENDOCRINE PATTERNING 

| An analytic triangulation, with latent profile analysis, effect modification, and  

 polygenic risk prediction 

RQ 3. Is financial stress and suboptimal sleep independently and interactively associated with adverse 

immune and neuroendocrine profiles. 

H3a. Financial stress and suboptimal sleep were expected to be independently and interactively 

associated with adverse immune and neuroendocrine profiles. 

H3b. Polygenic risk for short and long sleep were expected to be genetically associated with 

adverse immune and neuroendocrine profiles. 

 

CHAPTER 6. POLYGENIC PREDISPOSITION, SLEEP DURATION, AND DEPRESSION 

 | Polygenic risk prediction, with longitudinal phenotypic associations 

RQ 4. What is the directional association between sleep duration and depression? 

H4. A positive, unidirectional association between polygenic predisposition to overall sleep 

duration, short sleep, and long sleep were expected in the onset of subclinical depression. 

 

CHAPTER 7.   COVID-19 STRESS, INFLAMMATION, AND DEPRESSION  

 | Longitudinal analysis 

RQ 5. Is inflammation associated with depression in the presence of pandemic-related stress? 

H5. Greater inflammation was expected to be longitudinally associated with depression in the 

presence of stress during the pandemic. 
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Figure 1.10 The Conceptual Framework by Chapter  
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CHAPTER 2. METHODOLOGY 

 
2.1. Data 

Fully anonymised data were drawn from the English Longitudinal Study of Ageing (ELSA), an 

ongoing multidisciplinary, observational study, with a household response rate of ~70% at first 

wave.288 Aligned with the National Census, ELSA is representative of the non-institutionalised 

general population aged ≥50 in England. Data collection is performed in participants’ homes, via 

computer-assisted personal interviews (CAPI) and self-completed questionnaires biennially, then 

nurse visits quadrennially for biological samples. However, not all participants provided blood 

samples for assay, due to problems in scheduling visits from study nurses and ineligibility (e.g., 

being on anticoagulant medication; having a haematological disorder; having a history of 

convulsions). All participants provided written consent, and ethical approval was granted by the 

National Research Ethics Service (London Multicentre Research Ethics Committee).  

 

2.2. Variable Construction 

2.2.1. Stress Composite Score 

Psychosocial stress was measured as a composite score on a scale from no stressful life events to 

the experience of six stressors. An ordinal score was estimated as the summation of the presence 

of six binary stressors, dichotomised (low versus high) at the median. Despite this median split, 

there was an unequal distribution of participants in each group due to the limited number of integer 

values of this score (0-6): 

Financial Strain. The perceived chance of not having enough financial resources in the 

future to meet needs; categorised by 0; 1-39; 40-60; 61-99; 100% and dichotomised at >60%. 

Care Giving. Being an informal caregiver to an adult who is sick or frail, in the past week, 

or during the last month while being in receipt of Carer's Allowance. 
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Disability. Has one or more difficulties mobilising (i.e., walking 100 yards; sitting 2-hours; 

rising from chairs after sitting long periods; climbing stairs; stooping, kneeling, crouching; reaching 

or extending arms above shoulders; pulling or pushing large objects; lifting or carrying objects over 

10 pounds; picking-up a 5p coin). 

Illness. Has a longstanding illness or health condition that limits activity. 

Bereavement. Experienced the death of a parent, spouse, or partner in the past two years. 

Divorce. experienced divorce or a long-term relationship breakdown in the past two years. 

 

2.2.1. Socioeconomic Stress Indicators 

 

2.2.1.1. Contextual (Neighbourhood-level)  

Index of Multiple Deprivation for England (IMD). Due to the waves of data analysed 

throughout this thesis, the 2004 IMD (i.e., neighbourhood deprivation) was used. It is a relative 

measure of deprivation that combines multiple area-level socioeconomic indicators into a single 

deprivation score. It is predicated on 38 indicators, across seven domains: education; employment; 

income; skills and training deprivation; barriers to housing and services; living environment 

deprivation and crime; health and disability (Table 2.1). The seven domains were measured at the 

‘lower level super output area’ (LSOA), a statistical unit introduced in the 2001 Census that 

contains 1,500 households on average. Details of both theoretical and practical implementation of 

this measure, including its reliability and validity, have been published elsewhere.289 

Neighbourhood deprivation was demarcated into tertiles; the first representing the most deprived 

on a gradient to the third that represents the least deprived (reference category). 

 

2.2.1.2 Compositional (Individual-level) 

Wealth. Calculated by summating total household wealth, as determined by net wealth 

from property, possessions, housing, liquid assets; cash, savings, investments, artwork, and 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

 
 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 62/340 

jewellery, net of debt, exclusive of pension wealth. Wealth was then divided into tertiles; the first 

representing the least wealth and the third representing the greatest wealth (reference category). 

Total wealth is a more reliable socioeconomic measure than income in older cohorts, owing to a 

greater reliance on accumulated capital as one ages, conferring income less salience.290 

 

Education. Recoded from 7-items into four categories of higher education (i.e., degree or 

equivalent; reference category);  primary and secondary school qualifications (i.e., A-level, higher 

education below degree, GCSE [General Certificate of Secondary Education] or equivalent); and 

no qualifications. 

Occupational Social Class (Occupation). A three-category version of the National 

Statistics Socio-Economic Classification:291 managerial and professional (reference category); 

intermediate; routine and manual. Occupation, in this context, is predicated on the individuals’ last 

known career, rather than their current occupation. 

 

2.2.4. Sleep Duration 

Sleep duration was measured with an open-ended question, asking participants about the length 

of their sleep on an average weeknight. Outlier values greater than 3± from the M were excluded 

from the raw data. Following literature, to improve model fit, interpretability, and to avoid non-

linear interaction complexity,118,121 sleep duration was categorised into “≤5 hours (hrs)” (i.e., short 

sleep), “>5-<9hrs” (i.e., optimal-sleep), and “≥9hrs” (i.e., long sleep). 

 

2.2.5. Subclinical Depression 

The eight-item Centre for Epidemiologic Studies Depression Scale (CES-D)292 was used to assess 

self-reported experiences of depression over the past week. The psychometric properties were 

excellent in validity and reliability to the original 20-item scale.293 The eight-item scale included  
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Table 2.1 Components of the Index of Multiple Deprivation (IMD) 

Domains Indicators 
Income Deprivation (5) 1. Adults and children in Income Support families 

2. Adults and children in income-based Jobseeker’s Allowance families 
3. Adults and children in Pension Credit (Guarantee) families 
4. Adults and children in Child Tax Credit families (who are not claiming Income Support, income-based Jobseeker’s Allowance or Pension Credit)  

whose equivalised income (excluding housing benefits) is below 60% of the median before housing costs 
5. Asylum seekers in England in receipt of subsistence support, accommodation support, or both 

Employment Deprivation (7) 1. Claimants of Jobseeker’s Allowance (both contribution-based and income-based) women aged 18-59 and men aged 18-64, averaged over four quarters 
2. Claimants of Incapacity Benefit women aged 18-59 and men aged 18-64, averaged over four quarters 
3. Claimants of Severe Disablement Allowance women aged 18-59 and men aged 18-64, averaged over four quarters 
4. Claimants of Employment and Support Allowance (those with a contribution-based element) women aged 18-59 and men aged 18-64 
5. Participants in New Deal for the 18-24s who are not in receipt of Jobseeker’s Allowance, averaged over four quarters 
6. Participants in New Deal for 25+ who are not in receipt of Jobseeker’s Allowance, averaged over four quarters 
7. Participants in New Deal for Lone Parents (after initial interview) aged 18 and over, averaged over four quarters 

Health Deprivation and Disability (4) 1. Years of Potential Life Lost 
2. Comparative Illness and Disability Ratio 
3. Acute morbidity 
4. Mood or anxiety disorders 

Education Skills and Training Deprivation (7) 1. Key Stage 2 attainment 
2. Key Stage 3 attainment 
3. Key Stage 4 attainment 
4. Secondary school absence 
5. Staying on in education post 16 
6. Entry to higher education 
7. Adult skills 

Barriers to Housing and Services (7) 1. Household overcrowding 
2. Homelessness 
3. Housing affordability 
4. Road distance to a GP surgery 
5. Road distance to a supermarket or convenience store 
6. Road distance to a primary school 
7. Road distance to a Post Office 

Living Environment Deprivation (4) 1. Housing in poor condition 
2. Houses without central heating 
3. Air quality 
4. Road traffic accidents 

Crime (4) 1. Violence 
2. Burglary 
3. Theft 
4. Criminal damage 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

 
 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 64/340 

whether, “during past week”, participants felt:- “…depressed much of the time”; “…everything was an effort”; 

“…happy much of the time”; “…felt sad much of the time”; “…lonely much of the time”; “…enjoyed life much 

of the time”; “…could not get going much of the time”; and “whether their sleep was restless during the past week”. 

The items were scored on a binary response scale (anchored at 1=‘yes’; 0=‘no’). Positively worded 

items were reversed scored. Higher scores indicated a greater experience of depression. Scores 

were summed to generate a total continuous score, ranging 0 (‘no depression’) to 7 (‘subclinical 

depression’), then dichotomised at ≥4; a well-recognised clinically significant indicator of 

pathological depression.293 The Cronbach’s alpha (α) for the original and reduced score in this 

sample was 0.80, suggesting adequate internal consistency. This corresponds to the α computed 

by Steffick (2000) for the first three waves of data (i.e., 0.84; 0.83; 0.81).293 

 

2.2.6. Biomarkers 

Immune and neuroendocrine biomarkers included high-sensitivity plasma C-reactive protein 

(hsCRP/CRP; mg/L), plasma fibrinogen (Fb; g/L), plasma leukocytes/white blood cell counts 

(WBCC; 109/L), hair cortisol (cortisol; pg/mg), and serum insulin-like growth factor-1 (IGF-1; 

mmol/L). Selection was based on availability of immune and neuroendocrine-related biomarkers. 

Blood samples were discarded if deemed insufficient or unsuitable (e.g., haemolysed; received >5 

days post-collection). Exclusion criteria included coagulation, haematological disorders, being on 

anticoagulant medication or having a history of convulsions.  was normally distributed, but due to 

an initially skewed distribution, logarithmic (log) transformation was performed on CRP, WBCC, 

cortisol, and IGF-1 values. Correlations reported in each study between the biomarkers were as 

expected and in line with earlier evidence.207,294–296 

C-reactive Protein. Plasma CRP (mg/L) was assayed using the N Latex CRP mono 

Immunoassay on the Behring Nephelometer II analyser (Dade Behring, Milton Keynes, UK). Intra 

and inter-assay coefficients of variation were <2%. The lower detection limit of the assay was 

0.2mg/L. CRP values >20mg/L were excluded from analyses (n=116), as these were taken to 
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reflect acute inflammatory processes rather than chronic inflammation.188 CRP was treated as 

continuous, with higher values indicating greater levels of inflammation. 

Fibrinogen. Plasma fibrinogen (g/L) was analysed using a modification of the Clauss 

thrombin clotting method on the Organon Teknika MDA 180 coagulation analyser (Organon 

Teknika, Durham, USA). Intra and inter-assay coefficients of variation were <7%. The lower 

detection limit of the assay was 0.5 g/L. Fibrinogen was treated as continuous, with higher values 

indicating greater levels of inflammation. 

Leukocytes (White Blood Cell Counts). Plasma leukocytes/WBCC were analysed as 

continuous counts per 109/L; measured on a haematology-automated analyser (Abbott 

Diagnostics Cell-Dyn 4000 and Sysmex XE), with higher values indicating greater levels of 

inflammation. 

Hair Cortisol. Hair strands ~3cm in length, weighing ~10mg were collected from the 

posterior vertex, as close to the scalp as possible. Assuming an average hair growth of ∼1cm per 

month,297 the hair segment closest to the scalp is thought to provide a measure of the average 

cortisol output over the preceding three months prior to sampling. Exclusion criteria for hair 

sampling included pregnancy, breastfeeding, select scalp conditions, having <2cm of hair length, 

and an inability keep one’s head still. Hair cortisol concentrations were analysed at the Technische 

Universität Dresden (Germany). Cortisol levels were assayed using high performance liquid 

chromatography-mass spectrometry (LC/MS) following a standard wash and steroid extraction 

procedure,298 and were expressed in pg/mg. Data was log-transformed, as the distribution was 

positively skewed. Cortisol was treated as continuous, with higher values indicating greater levels 

of inflammation. 

Insulin-like Growth Factor-1. Serum IGF-1 (nmol/L) was measured using the DPC 

Immulite 2000 method, by an electrochemiluminescent immunoassay on IDS ISYS analyser. Inter 
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and intra-assay coefficients of variation were <14%. IGF-1 was treated as continuous, with lower 

values indicating greater neuroendocrine activity. 

 

2.2.7. Cross-study Covariates 

Baseline outcomes, along with factors likely to confound analyses across studies were selected a 

priori. These included demographic variables: age (≥50 years); age2 ([squared] to account for non-

linearity); sex (male; female); smoking status (binary:- non-smokers/ex-smokers or smokers); 

weekly alcohol consumption (binary:- low <3 or high ≥3 day); weekly physical activity (binary:- 

sedentary or moderate/vigorous activity); genetic variables: PGS for CRP, WBCC, cortisol, and IGF-

1, short sleep and long sleep, and 10 principal components (PCs) to account for population 

stratification (methods later explained); clinical variables: body mass index (BMI); calculated as 

weight in kilograms divided by height in meters squared [underweight:≤18.5; normal:18.6-24.9; 

overweight:25-29.9; obese:≥30kg/m2]); health variables: any self-reported clinician diagnosis 

(abnormal heart rhythm; angina; arthritis; asthma; cancer; chronic lung disease; congestive heart 

failure; coronary heart disease; diabetes; heart murmur; hypertension; osteoporosis; dementia; 

Parkinson's disease; or psychiatric disorder). 

 

2.2.8. Genetic Data Derivation 

The genome-wide genotyping was performed at University College London (UCL) Genomics in 

2013-2014 with funding from the ESRC using the llumina HumanOmni2.5 BeadChips 

(HumanOmni2.5-4v1, HumanOmni2.5-8v1.3), which measures ~2.5 million markers that capture 

the genomic variation down to 2.5% minor allele frequency (MAF). Using PLINK and PRSice 

software, PGS for CRP, cortisol, and IGF-1 were calculated using summary statistics from GWAS 

from the UK Biobank.299 Unless otherwise stated, a single p-value threshold of 0.001 was used for 

all PGSs to limit multiple testing, while maximising their potential predictive ability. 
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2.2.8.1. Quality Control 

The methods employed for quality control of genomic data in the ELSA study are those outlined 

by the Health and Retirement Study (HRS).300 This was done to harmonise the research across the 

age-related longitudinal studies by adopting a consistent methodology. SNPs were excluded if they 

were non-autosomal, MAF was <1%, if more than 2% of genotype data were missing and if the 

Hardy-Weinberg Equilibrium was p<10−4. Samples were removed based on call rate (<0.99), 

heterozygosity, relatedness, and if the recorded sex phenotype was inconsistent with genetic sex. 

To identify ancestrally homogenous analytic samples the ELSA genomic samples use a 

combination of both self-reported ethnicity and analyses of genetic ancestry. To improve genome 

coverage, untyped quality-controlled genotypes to the Haplotype Reference Consortium were 

imputed301 using the University of Michigan Imputation Server.302 Post-imputation, variants were 

kept that were genotyped or imputed at INFO>0.80, in low linkage disequilibrium (R2<0.1) and 

with Hardy-Weinberg Equilibrium p-value>10−5. After the sample quality control 7,179,780 

variants were retained for further analyses. To account for potentially biasing ancestry differences 

in genetic structures, a PCs analysis was conducted, retaining the top 10 PCs,303 which were 

subsequently used to adjust for possible population stratification in the association analyses.303,304 

Genetic ancestry was estimated via comparison of participants’ genotypes to global reference 

populations using principal component analyses (PCA) employing PLINK1.9. 303,304 PCA allows 

examining population structure in a cohort by determining the average genome-wide genetic 

similarities of individual samples. Therefore, derived PCs can be used to group individuals with 

shared genetic ancestry, to identify outliers, and as covariates, to reduce false positives due to 

population stratification. Although up to 98% of the ELSA participants self-described to be of 

European background, PCA highlighted the presence of ancestral admixture in 0.9% (n=65) 

individuals,303 implying they had ancestors from two or more populations. Even though this type 

of labelling of ancestral populations oversimplifies the complexity of human genetic variation, 

accounting for systematic differences in allele frequencies is necessary for genetic analyses. 
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Therefore, these participants with ancestral admixture were removed from the analyses. The final 

sample includes all self-reported European participants that had PC loadings within 1± of the 

mean for eigenvectors one. PCs were then re-calculated to further account for population 

stratification, retaining the top 10 PCs,303 which were subsequently used to adjust for possible 

population stratification in the association analyses.303,304 Therefore, the analytic sample included 

the full ELSA sample that provided genetic samples and passed quality control. It is noteworthy 

that the methods employed for quality control of genomic data as described above are those 

outlined by the HRS.305 This was done to harmonise the research across the age-related longitudinal 

studies by adopting a consistent methodology. 

 

2.2.8.2. Polygenic Scores (PGS) 

PGSs are indices of individuals’ genetic propensity for a trait, derived as the sum of the total 

number of trait-associated alleles, otherwise known as SNPs, across the genome and weighted by 

their respective association effect size estimated through genome-wide association analysis.306 To 

aid in the interpretability of the results, all PGSs were standardised by subtracting the mean and 

dividing by their corresponding standard deviations; this scaling ensured a comparison of results 

across models. 

PGS for CRP. This PGS used results from two GWAS, based on both HapMap and 1,000 

Genomes imputed data and encompassing data from 88 studies comprising 204,402 European 

individuals.225 The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p<5×10−8). After 

adjustment for BMI in the regression analysis, the associations at all except three loci remained. 

The lead variants at the distinct loci explained up to 7.0% of the variance in circulating 

concentrations of CRP. Further, 66 gene sets that were organised in two substantially correlated 

clusters were identified, one mainly composed of immune pathways and the other characterised 

by metabolic pathways in the liver. The GWAS summary statistics for this phenotype contained 
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10,019,203 SNPs; of these, 1,301,076 SNPs overlapped with the ELSA genetic database and were 

included in the PGS for the CRP phenotype.  

PGS for WBCC. This PGS in ELSA was calculated using summary statistics from GWAS 

meta-analyses that included data from the UKB and a largescale international collaborative effort, 

including data from 563,085 European ancestry participants. There were 27,090,932 genetic loci 

at a genome-wide significance of p<5×10−8, with 5,106 new genetic variants independently 

associated with 29 blood cell phenotypes covering a range of variation that impacts 

haematopoiesis. The WBCC phenotype (109/L), as an aggregate number of white blood cells per 

unit volume of blood, is one of several quantitative clinical laboratory measures that together 

reflect hematopoietic progenitor cell production, haemoglobin synthesis, maturation, release from 

the bone marrow, and clearance of mature or senescent blood cells from circulation.307 Raw 

phenotypes were regressed on age, age2, sex, PCs, and cohort specific covariates. WBCC related 

traits were log10 transformed before regression modelling. Residuals from the modelling were 

obtained and then inverse normalised. The cohort level association analyses were conducted using 

a linear mixed effects model to account for known or cryptic relatedness (e.g., BOLT-LMM, 

EPACTS https://github.com/statgen/EPACTS and rvtests with the additive genetic model). 

Linear mixed effects models have been shown to effectively account for both population structure 

and inter-individual relatedness within the UK Biobank cohort, along with having increased 

discovery power over simple linear regression with PCs. 

PGS for IGF-1. This PGS was calculated using summary statistics from GWAS that 

included 10,280 men and women in the analyses, comprising 1,712 participants from the 

Cardiovascular Health Study (CHS), 3,507 from the Framingham Heart Study (FHS), 1,607 

participants from the Cooperative Research in the Region of Augsburg (KORA) study, and 3,454 

from the Study of Health in Pomerania (SHIP). Analyses of SNPs associated with IGF-1 

concentrations revealed that rs700752 was associated with IGF-I concentrations (p=4.9×10−9), but 

this was attenuated (meta-analysis p=0.038) after adjustment for IGFBP-3 concentrations. Three 
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additional SNPs achieved p<10−6 in relation to IGF-I concentrations: rs2153960 on chromosome 

6q21, MAF=0.31, p=5.1×10−7; rs1245541 on chromosome 10q22.1, MAF=0.39, p=5.0×10−7; 

rs7780564 on chromosome 7p21.3, MAF=0.45, p=3.9×10−7.  

PGS for Morning Plasma Cortisol. This PGS in ELSA was contracted using the results 

from the CORNET consortium, who undertook the GWAS meta-analysis for plasma cortisol in 

12,597 White participants from 11 Western European population-based cohorts and replicated 

their results in 2,795 participants from three independent cohorts.230 Cortisol was measured by 

immunoassay in blood samples collected from study participants between 07:00h and 11:00h. Each 

study performed single marker association tests, and study-specific linear regression models that 

used z-scores of log-transformed cortisol, and additive SNP effects, and were adjusted for age and 

sex (model 1); age, sex, and smoking (model 2); then age, sex, smoking and BMI (model 3). 

Imputation of the gene-chip results used the HapMap CEU population, build 36. The results 

indicate that <1% of variance in plasma cortisol was accounted for by genetic variation in a single 

region of chromosome 14. The CORNET GWAS summary statistics for this phenotype contained 

2,660,191 SNPs; of these, 837,709 SNPs overlapped with the ELSA genetic database and were 

included in the PGS for ‘Morning Plasma Cortisol’ phenotype. 

 

2.3. Methodological Techniques 

 

2.3.1. Directed Acyclic Graph (DAG) 

Research questions cannot be computed from the data alone, nor from the distributions that 

govern the data, control decisions should have a strong theoretical basis. There must also be a 

demonstrable dose-response relationship, that is, variation in the exposure must statistically 

explain changes in the magnitude of the outcome, and this explanation of change must remain 

statistically significant after controlling for likely rival explanations.308 However, many of the 

available studies have a limited selection of covariates, so have considerable unobserved 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

 
 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 71/340 

confounding. Controlling for factors associated with both the exposure and outcome is essential 

for making fully justified inferences about causality, but there is some question as to whether some 

studies have inadvertently introduced bias by conditioning on a variable that serves as a mediator. 

This would be a collider, that is, a variable that itself is caused by two alternate variables, one that 

is (or is associated with) the exposure and another that is (or is associated with) the outcome.309 

For instance, BMI has previously been linked to both inflammation and mental illness. Therefore, 

conditioning on BMI in a study investigating these associations may have introduced collider 

stratification bias.310 This type of endogenous selection bias gives reason for DAGs, a valuable 

technique to visually represent posited causal relationships among variables, while considering 

potential sources of bias and confounding. It helps to ensure that the tested associations are 

scientifically plausible and consistently observed across different study designs, populations, and 

contexts to support generalisability. This level of replication is central to establishing causality 

irrespective of contextual variation. Ultimately, the DAG was developed to trace causal pathways, 

mitigate bias, optimise parameter inferences, and improve estimate accuracy. Variables that were 

likely on the causal pathway were excluded from the main models, because conditioning on them 

would have introduced collider bias.311 The DAG served as validation for the proper 

parameterisation of the models, to reduce overadjustment bias, and to ensure the adherence of 

assumptions, inter alia homoscedasticity and an absence of interactions.312,313 It is important to note 

that while the DAG identifies the presence of bias, it does not explicitly specify the type nor the 

magnitude of the bias, whether there are competing biases, or whether the observed bias is 

clinically meaningful.314 DAGs were conducted in DAGitty.net. 

 

2.3.2. Multiple Imputation 

Multiple imputation can reduce bias despite the proportion of missingness being substantial.315 

Thus, owing to a better powered sample, with greater precision, and a higher possibility of bias 

from case-wise deletion,316 the main analyses were conducted using imputed datasets, except if 
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otherwise stated. Imputations were performed on data missing on exposures, covariates, and 

outcomes, with the exclusion of genetic data and entirely absent biological data. Imputation was 

performed using missForest; a Random Forests algorithm-based machine learning imputation 

method. Random forests is non-parametric, it works with high-dimensional data, and it has a built-

in feature selection that evaluates entropy and information gain, so it is robust to noisy data and 

multicollinearity. In the presence of nonlinearity and interactions missForest outperformed 

prominent imputation methods, such as multiple imputation by chained equations (MICE) and k-

nearest neighbours (KNN) in all metrics.317 In ELSA, socioeconomic and health-related variables 

are the main drivers of attrition288 but these variables were included in the imputation models, so 

the assumption that missingness was at random (MAR) was likely to be met. Imputed and observed 

data were homogenous in the early use of the study data, indicating that results deriving from 

imputed data aligned with those from complete case analyses (Chapters 3, 4, and 6). The 

imputation yielded minimal variable error across studies, with continuous variables measured as 

the normalized root mean squared error (NRMSE) and categorical variables measured as the 

proportion of falsely classified (PFC). Values lower than 0.5 for NRMSE and PFC are well within 

the range of accuracy.317 Therefore, the error rates in all studies herein indicate excellent 

performance relative to these benchmarks. Multiple imputation was conducted in R v.4.2.0: 

RStudio v.2022.02.2. 

 

2.3.3. Latent Profile Analysis (LPA) 

Immune and neuroendocrine biomarkers, which varied across studies, were entered into the LPA. 

The LPA model for observed variable A can be expressed as: 

𝜎
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where 𝜇"! and 𝜎"!#  denote (t) class-specific means and variances for variable A, and 𝜋! show the 

proportion of N participants that belong to class t. A stepwise approach was taken to identify the 

optimal number of latent profiles, while ensuring statistical saliency; starting with a single-profile 

model, additional profiles were added to improve model fit. The number of latent profiles was 

determined on the basis of the Akaike information criterion (AIC),318 Bayesian information 

criterion (BIC),319 and adjusted Bayesian information criterion (aBIC).320 Further, the information 

criteria and the likelihood ratio tests (LRT) indicated the goodness of fit of different latent profile 

models, with the best model being the one with the lowest AIC, BIC, and aBIC values, with a 

significant LRT (p<0.05). The entropy statistic that provides the quality of the classification model, 

and the average posterior probabilities for each latent profile, indicating profile membership 

classification errors, were also taken into account.321 The closer to 1 these indicators were, the 

better the classification quality,322 although a common cut-off point for posterior probabilities is 

≥0.70.323 An entropy of ≥0.80 indicates clear profile separation.324 Every profile needed to contain 

≥5% of participants, with the profiles being of good theoretical interpretability.325 Once the 

number of latent profiles was established, each individual within the sample was assigned to a 

cluster for which they had the largest posterior probability, reflecting the most likely affiliation. 

The low-risk profile was the reference in all cases. The LPA was conducted in Stata 18.1 (STATA 

CorpLP, USA). 

 

2.3.4. Association Analyses 

Baseline characteristics across studies were expressed as means and proportions, with Analysis of 

Variance (ANOVA) or Chi-squared (χ2) comparisons on outcomes wherever useful. Where 

appropriate, the studies tested associations using linear, logistic, or multinomial regression. 

Respectively, results were reported as betas coefficients (unstandardised or standardised), odds 

ratios (OR), or RRR, with standard errors (SE) and CI. Analyses were two-tailed. All regression 
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assumptions were met.326,327 Different models were fitted to understand the role of covariates on 

associations. For stepwise model adjustments, changes in OR/RRR due to the inclusion of 

covariates were calculated using the equation exp(βj,new−βj), which represents the multiplicative 

change in the ratios for a given covariate Xj after adjusting for the effects of other covariates. 

Where βj is the original coefficient associated with the covariate Xj in the model before the 

inclusion of additional covariates, and βj,new is the new coefficient associated with the covariate Xj 

after the inclusion of additional covariates, reflecting the adjusted effect of Xj in the presence of 

other covariates.  Moreover, to test the extent to which different models explained associations, 

the B for outcomes were calculated using the percentage of the protective association explained 

(PPAE); a well-established epidemiological method328 using the formula: PPAE = (B [crude model 

1 and model X] – B [crude model 1] / (1-B [crude model 1]), where X is the model tested. 

Association analyses were all conducted in Stata 18.1 (STATA CorpLP, USA).  



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

 
 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 75/340 

CHAPTER 3. SOCIOECONOMIC STRESS AND IMMUNE-NEUROENDOCRINE 

ACTIVITY  

 

3.1. Chapter overview  

With findings published in Brain, Behavior, and Immunity (Hamilton & Steptoe, 2022),329 this chapter 

reviews the evidence on and draws a distinction between contextual and compositional 

socioeconomic determinants of inflammation and neuroendocrine activity. It examines how 

immune-neuroendocrine activity are cross-sectionally and longitudinally nested in these meso-level 

socioeconomic characteristics. 

 

Figure 3.1 The section of the conceptual framework (Figure 1.10) addressed in Chapter 3 

 

 
 

 

3.2. Introduction 

Immune and neuroendocrine processes are of vital importance in health and disease.98,171,330 331 The 

economic burden332 and the gravity of these accumulative costs to health183 have prompted a more 

in depth study of the factors contributing to inflammatory and neuroendocrine processes. One 

important determinant from a biobehavioural perspective is material deprivation. 
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Material deprivation can lead to psychological stress, and is known to actuate a systemic level 

response through PNI pathways.333–335 Among developed countries, the UK has one of the largest 

gradients in deprivation,336 with 7.8 million people in persistent poverty.337 This is a concern for 

policy makers, not least, because of growing health disparities.338 There is greater exposure to 

stress339 and communicable disease in deprived areas, while individuals within those areas are, on 

average, more likely to engage in harmful health behaviours.15,340 Still, they tend to have fewer 

educational, social, and psychological resources with which to cope,339 with less availability of 

medical services and a reduced inclination to access care.341  

 

An important distinction can be drawn between contextual and compositional socioeconomic 

indicators.342 Deprived populations are disproportionately exposed to environments characterised 

as pro-inflammatory.343 Compositional factors have been linked to inflammatory and 

neuroendocrine states.15 However, given the multidimensional of deprivation, it is conceivable that 

contextual determinants are more proximal risk factors,344 such that health and disease are shaped 

by social and spatial context. The interest here is in the relative strength of contextual and 

compositional factors and prospective nature of these associations, as well as the extent to which 

different sets of covariates account for the gradient in outcomes. Differentiating between 

contextual and compositional effects is key to understanding how the environment confers risk 

on health after accounting for individual-level risk factors.345 This could help inform the focus, 

level, and magnitude of interventions targeted at narrowing the health divide. Ignoring this 

distinction increases the likelihood of an invalid transfer of results obtained at the ecological level 

to the individual level (the ecological fallacy), as is the case when failing to account for ecology or 

context (the individualistic fallacy). Overlooking their dependent nature, along with the source of 

the dependency, can lead to significant findings where none exist.346 
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Older cohorts are increasingly relevant to the understanding of socioeconomic determinants of 

immune and neuroendocrine activity because material deprivation is related to the acceleration of 

core phenotypic, functional, molecular, and cellular aging processes.49,347 Also inflammaging348 and 

somatopause349 are aspects of ageing that contribute toward the gradual elevations of low-grade 

circulating inflammatory markers and decrements in the expression of circulating IGF-1 over time.  

 

Misspecification of effects is possible when making isolated selections within a study,350 given that 

biologics are pleiotropic, so associations were tested using CRP, fibrinogen, WBCC, and IGF-1.351  

 

3.2.1. Hypotheses 

Neighbourhood-contextual indicators were expected to be stronger drivers of biomarker activity 

cross-sectionally and longitudinally, because individual-compositional indicators are less salient at 

older ages,290 and neighbourhood-contextual indicators have been more consistent predictors of 

poor health in this population.352 In addition, modifiable health behaviours were expected to 

account for greater variance in associations than demographic or clinical factors. 

 

3.3. Methods 

All measure details and methods are described in Chapter 2, so are not repeated here. 

 

3.3.1. Study Design 

Data were drawn from ELSA.288 Cross-sectional data and longitudinal exposures were taken from 

W4 (baseline; 2008) and longitudinal outcomes from W6 (follow-up; 2012). 7,568 participants had 

measures on all exposures and covariates at baseline. Though 6,466 participants had complete data 

on any of the biomarkers at baseline, 5,841 participants had complete data on all biomarkers at 

baseline, which was reduced to 3,562 at follow-up four years later. Each biomarker was analysed 

independently. After exclusions on CRP values >20mg/L (n=116),188 the analytic sample for CRP 
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was 3,968 (36.92%), 3,932 (36.58%) for fibrinogen, 4,022 (37.42%) for WBCC, and 4,056 (37.73%) 

for IGF-1. There were no substantial differences in the characteristics and biomarker levels 

between participants included and excluded from analyses. 

 

3.3.2. Study Variables 

3.3.2.1 Exposures 

Contextual (Neighbourhood-level) Socioeconomic Indicators. The IMD, that is 

neighbourhood deprivation, was assessed at W4 (2008). The measure was demarcated into tertiles; 

the first representing the most deprived on a gradient to the third that represents the least deprived 

(reference category). 

Compositional (Individual-level) Socioeconomic Indicators. Compositional indicators were 

assessed at W4 (2008), and included, wealth, education, and occupational social class. Each were 

divided into tertiles. The first represented the lowest category, and the third the highest, which was 

the reference category. 

 

3.3.2.2 Outcomes 

Immune and Neuroendocrine Biomarkers. Immune and neuroendocrine biomarkers 

measured at W6 (2012) included CRP, fibrinogen, WBCC, and IGF-1. CRP, fibrinogen, and 

WBCC were treated as continuous, with higher values indicating greater levels of inflammation. 

IGF-1 was treated as continuous, with lower values indicating greater neuroendocrine activity. 

 

3.3.2.3 Covariates 

Factors likely to confound analyses were selected a priori, including demographic variables: age; sex; 

clinical variables: BMI; health variables: limiting longstanding illness; and mobility difficulties; modifiable 

health behaviours: smoking status; alcohol consumption; physical activity. Reference categories were 
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being male, of normal weight, not having a limiting longstanding illness, being fully mobile, a non-

smoker/ex-smoker, having low alcohol consumption, and being physically active. 

 

3.3.4. Statistical Analyses 

3.3.4.1. Multiple Imputation 

Missingness ranged from 0.00-52.33% (Table S3.1). The imputation of the missing values yielded 

a minimal error for continuous variables (NRMSE=0.02%) and categorical variables 

(PFC=0.20%). Imputed and observed data were homogenous (Table S3.1). 

 

3.3.4.2. Association Analyses 

Cross-sectional analyses used a series of linear regressions to assess associations between exposures 

and outcomes at W4 (2008). Longitudinal analyses extended this to outcomes at W6 (2012). 

Analyses were weighted using inverse probability weights to ensure national representation and to 

take account of differential nonresponse at follow-up.353 The most deprived category was reported 

against the least deprived reference. Results were presented as B regression coefficients with SE. 

The basic model for the analysis can be expressed as: (Ŷi = B0 + B1X1i + B2X2i + ... + BpXpi + ui 

where Ŷ is the predicted value of the outcome; B0 is the value of Ŷ when all exposures equal zero; 

B1 through Bp are the estimated regression coefficients, X1-Xp are distinct covariates, and u is the 

error term). Each regression coefficient represents the change in Ŷ relative to a one-unit change 

in the respective exposure. Independent multivariate models were fitted to understand the role of 

different sets of covariates on associations. Biomarkers were modelled independently as CRP was 

linearly correlated with fibrinogen (r=0.310), WBCC (r=0.262), and IGF-1 (r=0.158) at p<0.001. 

No further issues existed with collinearity and all models met regression assumptions. The 

unadjusted model (1), that conditioned on the baseline biomarker being measured, was included 

in all models. Model 2 adjusted for age and sex (demographic variables). Model 3 adjusted for BMI, 

limiting longstanding illness, and mobility difficulties (clinical variables); Model 4 adjusted for 
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smoking status, alcohol consumption, and physical activity (modifiable health behaviours); Model 5 

adjusted for all covariates. To test the extent to which different models explained associations 

PPAE was used. 

 

3.3.4.3. Sensitivity Analyses 

Six sensitivity analyses were carried out on longitudinal associations. First, sets of covariates were 

added sequentially rather than independently. Second, due to the potentially confounding effects 

of inflammaging and somatopause, the moderating effect of age was tested (dichotomised by mean 

age [≥64.25 years]). Third, immune and neuroendocrine levels have been shown to be higher in 

men than women,244,354 so the role of sex as an effect modifier was tested. Fourth the exclusion of 

CRP values thought to represent acute inflammatory processes (≥20mg/L) was reassessed on the 

basis of arguments put forward by Giollabhui et al. (2020),355 so regressions were repeated 

including those values. Fifth, analyses used complete cases to compare the efficiency and coverage 

of CI for the estimated coefficients and to ensure results were not an artefact of the imputed data. 

Association analyses replicated that in imputed data. The analytical sample formation for the 

complete case analysis (CCA) is illustrated in Figure S3.1. Finally, changes in residence over time 

may have influenced the longitudinal role of neighbourhood-contextual and individual-

compositional factors in immune and neuroendocrine responses, so analyses were redistricted to 

non-movers. 

 

3.4. Results 

3.4.1 Descriptive Statistics 

Descriptive statistics for the exposures and outcomes are shown in Table 3.1. The sample 

comprised 3,562 individuals for whom total baseline data was available. Of these, 44.67% were 

male, 55.33% female, aged on average 64.26 years (±8.35; range50-99). Participants were, on average,   
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Table 3.1  Sample characteristics 

Variable 
Baseline (N = 3,562) 

N / Mean (SD) % / Range 
    
Age  64.26 (8.35) 50-99 
Sex Male 1,591 44.67 
 Female 1,971 55.33 
BMI (kg/m2) Underweight (≤18.5) 21 0.59 
 Normal (18.6-24.9) 963 27.04 
 Overweight (25–29) 1,580 44.36 
 Obese (≥30) 998 28.02 
Limiting Longstanding Illness No 2,571 72.18 
 Yes 991 27.82 
Mobility Difficulties No 1,753 49.27 
 Yes 1,807 50.73 
Smoking Status Non-smokers/Ex-smokers 3,125 87.73 
 Smokers 437 12.27 
Alcohol Consumption <3 days a week 2,259 63.42 
 ≥3 days a week 1,303 36.58 
Physically Activity Moderately/Vigorously Active 2,699 75.77 
 Sedentary 863 24.23 
Change of Residence (2008-2013) No 3,400 95.45 
 Yes 162 4.55 
IMD Lowest Tertile  998 28.02 
 Middle Tertile  1,598 44.86 
 Highest Tertile  966 27.12 
Wealth Lowest Tertile  1,079 30.21 
 Middle Tertile  1,537 43.15 
 Highest Tertile  949 26.64 
Education Higher 1,263 35.46 
 Primary/Secondary/Tertiary  1,174 32.96 
 Alternative or None 1,125 31.58 
OSC Managerial/Professional 1,353 37.98 
 Intermediate Occupations 919 25.80 
 Routine/Manual 1,290 36.22 
CRP* (mg/L; Baseline)  1.11 (0.63) 0.18-3.04 
CRP* (mg/L; Follow-up)  1.03 (0.59) 0.10-3.05 
Fb (g/L; Baseline)  3.31 (0.52) 1.30-5.40 
Fb (g/L; Follow-up)  2.94 (0.50) 1.30-5.30 
WBCC* (109/L; Baseline)  1.80 (0.29) -0.22-3.92 
WBCC* (109/L; Follow-up)  1.82 (0.28) 0.72-3.48 
IGF-1* (nmol/L; Baseline)  2.72 (0.35) 1.39-4.17 
IGF-1* (nmol/L; Follow-up)  2.74 (0.32) 1.39-4.04 
    

  

Notes: ELSA, waves 4-6 (2008/09-2012/13); N = observations; % = percentage frequencies; SD = standard deviations; BMI = Body Mass 
Index; IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; CRP = C-reactive 
protein; Fb = Fibrinogen; WBC = White Blood Cell Counts (leukocytes); IGF-1 = Insulin-Growth Factor-1; * Log-transformed variable. 
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overweight (72.38%), moderately to vigorously active (75.77%), with no limiting longstanding 

illness (72.18%), and were non-smokers (87.73%), who consumed alcohol less than three days in 

a given week (63.42%), but there was an equal balance of those with and without mobility 

difficulties. Biomarkers were stable on average from baseline to follow-up, although individual 

trajectories varied widely. 

 
3.4.2. Cross-sectional associations between compositional and contextual socioeconomic 

indicators and biomarkers 

All associations between compositional and contextual socioeconomic indicators and biomarker 

activity were significant in the unadjusted model (Table 3.2). All in the fully adjusted model (Model 

5), the association between IMD and IGF-1 was significant (β=-0.055, CI=-0.084--0.026), but the 

relationships with CRP (β=0.026, CI=-0.023-0.075), fibrinogen (β=0.001, CI=-0.044-0.045), and 

WBCC (β=-0.011, CI=-0.034-0.012) were no longer significant. Less wealth was associated with 

higher concentrations of CRP (β=0.104 CI=0.054-0.155), fibrinogen (β=0.086, CI=0.040-0.132), 

and WBCC (β=0.032 CI=0.008-0.056), and with lower IGF-1 (β=--0.065, CI=-0.095--0.035). With 

two exceptions; education and IGF-1 (β=-0.012, CI=-0.040-0.015); occupation and WBCC 

(β=0.010, CI=-0.010-0.028), associations between individual-compositional socioeconomic 

indicators and biomarkers were significant (Education: CRP β=0.050, CI=0.006-0.094; fibrinogen 

β=0.069, CI=-0.030-0.109; WBCC β=0.030, CI=0.010-0.051; Occupation: CRP β=0.061, 

CI=0.018-0.103; fibrinogen β=0.041, CI=0.002-0.080; IGF-1 β=-0.031, CI=-0.056--0.005).  

 

3.4.3. Longitudinal associations between compositional and contextual socioeconomic 

indicators and biomarkers 

Across the 4-year follow-up period, all compositional and contextual socioeconomic indicators 

were longitudinally associated with biomarker activity in basic models adjusted only for baseline 

biomarker levels (Table 3.3). Overall, being less advantaged was associated with greater future 
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Table 3.2  Cross-sectional relationships of compositional and contextual socioeconomic indicators with immune and neuroendocrine 
biomarkers 

 

Adjustments 
CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

C
on

te
xt

ua
l 

In
di

ca
to

rs
 IMD 

Model 1: Crude model 0.131 (0.027) 0.078-0.183 <0.001 0.084 (0.023) 0.038-0.130 <0.001 0.038 (0.012) -0.013-0.062 0.002 -0.060 (0.015) -0.089--0.031 <0.001 

Model 5: Fully Adjusted d 0.026 (0.025) -0.023-0.075 0.303 0.001 (0.023) -0.044-0.045 0.972 -0.011 (0.012) -0.034-0.012 0.358 -0.055 (0.015) -0.084--0.026 <0.001 

C
om

po
si

tio
na

l I
nd

ic
at

or
s  

Wealth 

Model 1: Crude model 0.285 (0.026) 0.233-0.336 <0.001 0.230 (0.023) 0.185-0.275 <0.001 0.101 (0.012) 0.078-0.125 <0.001 -0.091 (0.015) -0.120--0.062 <0.001 

Model 5: Fully Adjusted d 0.104 (0.026) 0.054-0.155 <0.001 0.086 (0.023) 0.040-0.132 <0.001 0.032 (0.012) 0.008-0.056 0.010 -0.065 (0.015) -0.095--0.035 <0.001 

Education 

Model 1: Crude model 0.114 (0.024) 0.067-0.161 <0.001 0.117 (0.021) 0.076-0.158 <0.001 0.049 (0.011) 0.027-0.071 <0.001 -0.067 (0.014) -0.094--0.041 <0.001 

Model 5: Fully Adjusted d 0.050 (0.022) 0.006-0.094 0.025 0.069 (0.020) -0.030-0.109 <0.001 0.030 (0.011) 0.010-0.051 0.004 -0.012 (0.014) -0.040-0.015 0.375 

OSC 

Model 1: Crude model 0.171 (0.023) 0.126-0.216 <0.001 0.139 (0.020) 0.099-0.178 <0.001 0.047 (0.011) 0.026-0.068 <0.001 -0.057 (0.014) -0.085--0.030 <0.001 

Model 5: Fully Adjusted d 0.061 (0.022) 0.018-0.103 0.006 0.041 (0.020) 0.002-0.080 0.037 0.010 (0.010) -0.010-0.028 0.341 -0.031 (0.013) -0.056--0.005 0.018 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Demographic variables: age and sex  
b Clinical variables: BMI, limiting longstanding illness, and mobility difficulties 
c Modifiable health behaviours: smoking status, alcohol consumption, and physical activity 
d All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity
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Table 3.3  Longitudinal relationships of compositional and contextual socioeconomic indicators with immune and neuroendocrine 
biomarkers  

 

Adjustments 
CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

C
on

te
xt

ua
l 

In
di

ca
to

rs
 IMD 

Model 1: Crude model a 0.068 (0.020) 0.028-0.108 0.001 0.053 (0.019) 0.016-0.091 0.005 0.034 (0.009) 0.015-0.052 <0.001 -0.017 (0.009) -0.034--0.001 0.050 

Model 5: Fully Adjusted b 0.042 (0.021) 0.002-0.082 0.039 0.029 (0.019) -0.009-0.067 0.135 0.023 (0.010) 0.005-0.042 0.014 -0.015 (0.009) -0.032-0.003 0.095 

C
om

po
si

tio
na

l I
nd

ic
at

or
s  

Wealth 

Model 1: Crude model a 0.076 (0.020) 0.037-0.116 <0.001 0.076 (0.019) 0.038-0.113 <0.001 0.050 (0.009) 0.032-0.069 <0.001 -0.029 (0.009) -0.046--0.011 0.001 

Model 5: Fully Adjusted b 0.028 (0.021) -0.014-0.070 0.194 0.031 (0.020) -0.017-0.052 0.119 0.035 (0.010) 0.016-0.055 <0.001 -0.015 (0.009) -0.034--0.003 0.099 

Education 

Model 1: Crude model a 0.058 (0.018) 0.022-0.094 0.002 0.078 (0.017) 0.044-0.112 <0.001 0.030 (0.009) 0.013-0.047 <0.001 -0.026 (0.008) -0.042--0.011 0.001 

Model 5: Fully Adjusted b 0.020 (0.019) -0.018-0.058 0.298 0.034 (0.018) 0.001-0.070 0.050 0.020 (0.009) 0.002-0.037 0.029 0.002 (0.008) -0.014-0.019 0.777 

OSC 

Model 1: Crude model a 0.056 (0.018) 0.022-0.091 0.001 0.064 (0.016) 0.032-0.097 <0.001 0.033 (0.008) 0.017-0.049 <0.001 -0.021 (0.008) -0.037--0.006 0.006 

Model 5: Fully Adjusted b 0.028 (0.018) -0.007-0.063 0.118 0.034 (0.017) 0.001-0.067 0.045 0.024 (0.008) 0.008-0.041 0.003 -0.006 (0.008) -0.021-0.009 0.449 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity
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inflammation and lower IGF-1 concentration. Some attenuation was seen after full adjustment 

(Model 4), but IMD remained associated with CRP (β=0.042, CI=0.002-0.082) and WBCC 

(β=0.023, CI=0.005-0.042). As were individual-contextual factors, specifically wealth with WBCC 

(β=0.035, CI=0.016-0.055), education with fibrinogen (β=0.034, CI=0.001-0.070) and WBCC 

(β=0.020, CI=0.002-0.037), and occupation with fibrinogen (β=0.034, CI=0.001-0.067) and 

WBCC (β=0.024, CI=0.008-0.041). Other associations were lost after taking covariates into 

account ([IMD: fibrinogen β=0.029, CI=-0.009-0.067; IGF-1 β=-0.015, CI=-0.032-0.003]; 

[Wealth: CRP β=0.028, CI=-0.014-0.070; fibrinogen β=0.031, CI=-0.017-0.052; IGF-1 β=-0.015, 

CI=-0.034--0.003]; [Education: CRP β=0.020, CI=-0.018-0.058; IGF-1 β=0.002, CI=-0.014-

0.019]; [Occupation: CRP β=0.028, CI=-0.007-0.063; IGF-1 β=-0.006, CI=-0.021-0.009]). 

 

3.4.4. Associations between neighbourhood-contextual indicators and biomarkers after  

accounting for individual-compositional indicators 

Table 3.4 details analyses testing the extent to which associations between IMD and biomarkers 

survived adjustment for individual-level indicators. In the unadjusted models, IMD was 

significantly associated with all immune and neuroendocrine biomarkers. After full adjustment 

(Model 4), IMD was longitudinally associated with higher CRP (β=0.042, CI=0.002-0.082) and 

WBCC (β=0.023, CI=0.005-0.042) over the four-year period. These associations remained robust 

to the inclusion of education (CRP β=0.041, CI=0.000-0.081; WBCC β=0.021, CI=0.002-0.040) 

and occupation (CRP β=0.040, CI=0.000-0.081; WBCC β=0.020, CI=0.001-0.039), but they were 

not longer significant after wealth and other covariates together were taken into account (CRP 

β=0.039, CI=-0.004-0.082; WBCC β=0.015, CI=-0.005-0.035). 

 

3.4.5. Percentage of protective association explained (PPAE) for models assessing 

compositional and contextual socioeconomic indicators in biomarker activity 
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Covariates accounted for a varying degree of the association between socioeconomic indicators 

and biomarkers (Table 3.5). The three sets of covariates in combination, accounted for 11.76-

92.31% of the PPAE. Clinical variables BMI; limiting longstanding illness; mobility difficulties) 

explained between 9.09-35.29% of the variance. Modifiable health behaviours (smoking status; alcohol 

consumption; physical activity) accounted for the greatest PPAE in CRP, fibrinogen, and WBCC 

(≤42.11%). However, demographic variables (age; sex) were most salient to IGF-1 (≤88.46%). 

 
3.4.6. Sensitivity Analyses 

First, there was a consistent pattern of results when covariates were added sequentially rather than 

independently to the longitudinal analyses, suggesting that findings were not biased by model 

strategy (Table S3.2). Second, there were no significant interactions between compositional and 

contextual socioeconomic indicators and age, suggesting that inflammaging and somatopause were 

not biasing results (Table S3.3). Third, sex did not relate to the pattern of results, as there were no 

significant interactions between compositional and contextual socioeconomic indicators and sex 

(Table S3.4). Fourth, results were materially unchanged when CRP values ≥20mg/L were included 

in analyses, suggesting that associations were robust to the inclusion of these very high values 

(Table S3.5). Fifth, there was a substantial overlap in CI between the analyses performed in 

complete cases versus imputed data in the main analyses, suggesting that the use of imputed data 

did not bias results (Table S3.6). Finally, when analyses were restricted to people who did not move 

their residence over the study period, results were again materially unchanged (Table S3.7). 

 

3.5. Discussion 

In this large longitudinal population study of UK older adults, neighbourhood contextual and 

individual compositional indicators of socioeconomic status were associated with heightened 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

 
 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 87/340 

Table 3.4  Differences in the relationship between neighbourhood factors and biomarkers explained by individual socioeconomic 
indicators 

 

Adjustments 
CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

IMD 

Model 1: Crude model a 0.068 (0.020) 0.028-0.108 0.001 0.053 (0.019) 0.016-0.091 0.005 0.034 (0.009) 0.015-0.052 <0.001 -0.017 (0.009) -0.034--0.001 0.050 

Model 5: Fully Adjusted b 0.042 (0.021) 0.002-0.082 0.039 0.029 (0.019) -0.009-0.067 0.135 0.023 (0.010) 0.005-0.042 0.014 -0.015 (0.009) -0.032-0.003 0.095 

IMD | Wealth 

Model 1: Crude model + Wealth a 0.047 (0.022) 0.004-0.090 0.031 0.028 (0.021) -0.012-0.068 0.174 0.019 (0.010) -0.001-0.039 0.067 -0.005 (0.010) -0.024-0.014 0.612 

Model 5: Fully Adjusted + Wealth b 0.039 (0.022) -0.004-0.082 0.073 0.022 (0.020) -0.019-0.062 0.294 0.015 (0.010) -0.005-0.035 0.146 -0.010 (0.009) -0.028-0.009 0.314 

IMD | Education 

Model 1: Crude model + Education a 0.059 (0.021) 0.019-0.100 0.004 0.040 (0.019) 0.002-0.077 0.040 0.029 (0.010) 0.010-0.048 0.003 -0.012 (0.009) -0.030-0.006 0.182 

Model 5: Fully Adjusted + Education b 0.041 (0.021) 0.000-0.081 0.049 0.024 (0.019) -0.014-0.062 0.216 0.021 (0.010) 0.002-0.040 0.030 -0.016 (0.009) -0.033-0.002 0.085 

IMD | OSC 

Model 1: Crude model + OSC a 0.060 (0.021) 0.019-0.100 0.004 0.039 (0.019) 0.000-0.077 0.047 0.027 (0.010) 0.008-0.046 0.005 -0.014 (0.009) -0.032-0.004 0.128 

Model 5: Fully Adjusted + OSC b 0.040 (0.021) 0.000-0.081 0.050 0.022 (0.020) -0.017-0.060 0.270 0.020 (0.010) 0.001-0.039 0.043 -0.015 (0.009) -0.033-0.003 0.102 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity 
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Table 3.5  The percentage of protective association between socioeconomic indicators and biomarkers by different sets of covariates 
  

 
Adjustments CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

 IMD     

C
on

te
xt

ua
l 

In
di

ca
to

rs
 

Model 1: Crude model a - - - - 

Model 2: Model 1 + demographic b -2.94 -5.66 -2.94 -17.65 

Model 3: Model 1 + clinical c 20.59 18.87 11.76 35.29 

Model 4: Model 1 + health behaviours  d 26.47 39.62 23.53 29.41 

Model 5: Fully Adjusted e 38.24 45.28 32.35 11.76 
C

om
po

si
tio

na
l I

nd
ic

at
or

s 
Wealth     

Model 1: Crude model a - - - - 

Model 2: Model 1 + demographic b 3.95 2.63 2.00 24.14 

Model 3: Model 1 + clinical c 31.58 19.74 10.00 34.48 

Model 4: Model 1 + health behaviours  d 38.16 42.11 18.00 31.03 

Model 5: Fully Adjusted e 63.16 59.21 30.00 48.28 

Education     

Model 1: Crude model a - - - - 

Model 2: Model 1 + demographic b 17.24 19.23 0.00 88.46 

Model 3: Model 1 + clinical c 29.31 16.67 13.33 23.08 

Model 4: Model 1 + health behaviours  d 32.76 29.49 20.00 26.92 

Model 5: Fully Adjusted e 65.52 56.41 33.33 92.31 

OSC     

Model 1: Crude model a - - - - 

Model 2: Model 1 + demographic b 7.14 10.94 -3.03 47.62 

Model 3: Model 1 + clinical c 23.21 14.06 9.09 23.81 

Model 4: Model 1 + health behaviours  d 30.36 31.25 18.18 28.57 

Model 5: Fully Adjusted e 50.00 46.88 27.27 71.43 

 
Notes: PPAE = percentage of protective association explained; IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b Demographic variables: age and sex  
c Clinical variables: BMI, limiting longstanding illness, and mobility difficulties 
d Health behaviours: smoking status, alcohol consumption, and physical activity 
e All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity 
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inflammation and low IGF-1 concentrations in models adjusted for baseline biomarkers, implying 

a higher risk to the overall systemic status of individuals with fewer socioeconomic resources. It is 

striking that these socioeconomic effects were observed over a 4-year period, and that many 

remained independent of a comprehensive selection of covariates. In particular, associations 

between all four socioeconomic indicators and greater WBCC remained significant after taking 

demographic, clinical, and behavioural factors into account. Contrary to hypothesis, 

neighbourhood contextual indicators were weaker drivers of inflammation and neuroendocrine 

activity than were individual compositional indicators. Certainly, in the case of WBCC, 

neighbourhood effects survived individual differences in education and occupation, but 

significance was lost when wealth was taken into account. As expected, health behaviours 

accounted for a greater proportion of the variance in socioeconomic associations with 

inflammation than the other sets of covariates, but this was not so for concentrations of IGF-1 

where demographics were more salient. 

 

Interestingly, the variations in immune and neuroendocrine activity observed between the cross-

sectional and longitudinal associations allude to possible socioeconomic differences in immune 

and neuroendocrine expression over time. Contexts and health can change over time,346 but 

consistent UK geographical patterns of deprivation have been reported over a century,356,357 with 

more stability in the deprivation profile seen in geographically larger areas.356  

 

There are reciprocal relationships between the complex physiological processes aimed at 

homeostatic balance, that could explain differences in effect sizes, and the temporal changes seen 

in the biological pattern of results within the data cross-sectionally and longitudinally.358 Fibrinogen 

is involved in processes other than inflammation, such as haemostasis and angiogenesis. CRP, by 

contrast, has high sensitivity to insult, as the major human APP, so the rapidity and magnitude of 

effects may be more substantial. IGF-1 in circulation is downregulated by inflammatory 
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cytokines179, so cytokine expression may have attenuated the independent predictive value of 

socioeconomic determinants in IGF-1 at the cellular level. Interactions as crosstalk and 

antagonism are possible, since low IGF-1 also antagonises the CRP mechanism through the 

activation of a number of intracellular signalling pathways, which may have reduced CRP 

expression prospectively.358 

 

A substantial literature support that where you live, over and above individual characteristics, shape 

individual health and health inequalities among populations.244,335,342,344,359,360 However, the present 

results cast doubt on research that has implicated neighbourhood determinants in inflammation 

and neuroendocrine processes without consideration being given to individual effects in the study 

design. One study of patients with coronary artery disease found that neighbourhood deprivation 

was associated with lower cardiovascular stress reactivity with no differences in immune or 

neuroendocrine response.360 These results were independent of individual-level factors, and after 

accounting for variation in the probability of residing in a deprived or affluent neighbourhood by 

using a propensity weighting scheme. Further research is needed to elucidate the exact contextual 

mechanisms for environmental factors that appear to modulate inflammation and neuroendocrine 

activity.  

 

As is documented elsewhere,335 socioeconomic differences in inflammation and neuroendocrine 

activity were mostly explained by variations in health behaviours; smoking status, alcohol 

consumption and physical activity specifically. This confirms the hypotheses. The PPAE for each 

model has not been described in this context before. Health behaviours  explained up to a half of 

the variance in associations between socioeconomic factors and inflammation. Remarkably, the 

PPAE for the demographics model accounted for over four fifths of the association between 

socioeconomic indicators and neuroendocrine activity. This was an unexpected result but may be 

explained by the sensitivity of IGF-1 to the somatopause. Modifiable health behaviours have 
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previously been identified as mediators between neighbourhood-contextual factors and 

inflammatory markers such as CRP.359 

 

3.5.1. Strengths and Limitations 

This study uniquely explored how immune and neuroendocrine activity was cross-sectionally and 

longitudinally nested in meso-level socioeconomic characteristics. For the first time, to our 

knowledge, it also tested what factors accounted for the greatest variance in associations between 

socioeconomic indicators and inflammation. Information is provided on pre-disease mechanisms 

that allow for a richer understanding of the deprivation-health gradient before disease become 

evident.338 As it relates to limitations that are specific to this study, the length of residence was not 

taken into account, although, whether participants had moved during the study period was 

assessed. Residential areas within the UK are not monolithic, so although the index of multiple 

deprivation is calculated at a detailed level of areas, typically with 1,000-3,000 residents, most areas 

are heterogenous.289 Contextual indicators may therefore be underestimated for some and 

overestimated for others in the same area, leading to the ecological fallacy.361 Other strengths and 

limitations of the present study are highlighted in the general discussion (Chapter 8). 

 

3.5.2. Conclusion 

Several interesting findings emerged from this prospective population-based study that examined 

associations of socioeconomic determinants at the contextual and compositional level with 

immune and neuroendocrine activity, while taking into account the role of covariates. 

Neighbourhood associations were primarily dependent on the characteristics of people living in 

the area, rather than the area itself. Examining disparities in immune and neuroendocrine status 

through the lens of compositional factors can improve the surveillance of important equity issues345 

and steer interventions toward individual-level prescriptions, over a broader society approach.  
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CHAPTER 4. STRESS AND IMMUNE-NEUROENDOCRINE PATTERNING  

 

4.1. Chapter overview  

With findings published in Brain, Behavior, and Immunity (Hamilton et al., 2024),362 on the back of 

Chapter 3, where differences in associations and effect sizes were observed between biomarkers, 

this chapter first explores patterns of immune-neuroendocrine activity through LPA. It then tests 

whether common life stressors are longitudinally associated with the derived profiles, after 

controlling for genetic predisposition and a broad selection of confounding factors. 

 

Figure 4.1 The section of the conceptual framework (Figure 1.10) addressed in Chapter 4 

 

 
 

4.2. Introduction 

Communication between proinflammatory cytokines of the innate immune system with 

glucocorticoids and their analogs of the neuroendocrine system, is an active continuous process 

necessary to maintain homeostasis, even in healthy individuals.358,363 Dysregulation of this network 

has negative implications in disease aetiology.364,365 The high rates of chronic conditions associated 

with inflammatory and neuroendocrine dysregulation, along with the advancing age of the 

population, has provided the impetus to identify modifiable factors that could be leveraged to 

mitigate disease genesis; stress is one such factor.287 
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Stress has been implicated as a modulator of immune and neuroendocrine activity via PNI 

pathways.178,366 However, the dominant position that stress disrupts immune and neuroendocrine 

integrity is an oversimplification of this biological pathway that fails to account for the reciprocal 

regulation of these transducing systems364,367 and their variation among the population.368 Immune 

and neuroendocrine interactions may be intensified in the presence of stress,178 but individuals can 

have highly heterogeneous patterns of immune and neuroendocrine activity, which may conflate 

effects and give a partial explanation for the diverse and comorbid clinical outcomes associated 

with stress in the literature.287,369,370,41,371 

 

Owing to interindividual and intraindividual variability in biomarkers,372 genetic variation is another 

key consideration. As a major determinant of circulating immune and neuroendocrine function, 

genetic variation plays an important role in susceptibility to disease,21  and these biomarkers are of 

high polygenic heritability.213 It is, therefore, important that genetic markers are accounted for in 

analyses that explore immune and neuroendocrine traits. 

 

Moreover, despite concerns of inflammaging and somatopause (i.e., age-related increases in plasma 

concentrations of inflammatory peptide biomarkers and the reduced expression of growth 

hormone secretion across age),373 there remains a paucity of literature on stress and immune-

neuroendocrine activity in older cohorts. This demographic group is increasingly relevant from a 

public health perspective because of the advancing age of the population. 

 

Classifying the different patterns of immune and neuroendocrine activity in a population-based 

cohort of older adults, quantifying their prevalence, and identifying which profiles are most 

strongly associated with long-term stress exposure could be beneficial for three reasons. First, it 

may help to elucidate some of the present uncertainty about immune and neuroendocrine 

patterning.276 Second, it could contribute to more targeted preventative treatments and novel 
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therapeutic strategies, such as the identification of biomarkers that characterise patients into 

subgroups most likely to benefit from cytokine-mediated pharmacological treatments, or the 

design of more personalised clinical trials through targeted recruitment. Third, it could be a 

resource for the formulation of more robust hypotheses for future research exploring stress 

models in immune and neuroendocrine activity, and their subsequent roles in human health and 

behaviour. 

 

These issues were addressed in a UK cohort of community-dwelling older adults, to classify and 

quantify distinct immune and neuroendocrine profiles, and to investigate the longitudinal 

association between psychosocial stress and the revealed profiles. To represent these interrelated, 

molecular pathways, two acute-phase reactants (i.e., CRP and fibrinogen) were selected, along with 

two hormones; one catabolic (i.e., cortisol), the other anabolic (i.e., IGF-1).  

 

4.2.1. Hypotheses 

Heterogeneous patterns of immune and neuroendocrine activity were expected, with two to three 

subgroups emerging from the data. Psychosocial stress was also expected to be longitudinally 

associated with more adverse immune and neuroendocrine patterns four years later. 

 

4.3. Methods 

All measure details and methods are described in Chapter 2, so are not repeated here. 

 

4.3.1. Study Design 

The present study used data from ELSA participants at wave (W) 4 (2008), who were followed up 

four years later at W6 (2012).288 

 

4.3.2. Study Variables 
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4.3.1.1. Exposures 

Psychosocial Stress. Each proposed stressor was assessed at W4 (2008).  This composite score 

comprised:- Financial Strain; Care Giving; Disability; Illness; Bereavement; and Divorce. 

 

4.3.1.2. Outcomes 

Immune and Neuroendocrine Biomarkers. Each of the biomarkers were measured at W6 

(2012) included CRP (mg/L), fibrinogen (g/L), IGF-1 (mmol/L) and cortisol (pg/mg). 

 

4.3.1.3. Covariates 

Factors likely to confound analyses were selected a priori (see Figure 4.2 for the DAG), including 

demographic variables: age; sex; socioeconomic variables: education; occupational social class; health 

behaviours: smoking status; alcohol consumption; physical activity; genetic variables: PGSs for CRP, 

cortisol, and IGF-1 and 10 PCs; biomarkers: baseline (W4) CRP, fibrinogen, and IGF-1 entered into 

the LPA; binary health indicator: any self-reported physician diagnosis. 

 

4.3.4. Statistical Analyses  

4.3.4.1. Polygenic Scores (PGS)  

A single p-value threshold of 0.001 was used for PGS for CRP, cortisol, and IGF-1 to limit multiple 

testing, while maximising their potential predictive ability. 

 

4.3.4.2. Multiple Imputation 

Missingness ranged from 0.00-52.26%, with cortisol having the greatest proportion of missingness, 

and other variables having less than 37% missing (Table S4.1). Given the possibility of bias in the 

complete case analyses,316 missing values on exposures, covariates, and outcomes were imputed 

using missForest.317 Participants without genetic information were excluded from the analyses,  
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Figure 4.2  DAG conceptually representing associations between study variables 
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rather than imputed. The imputation of the missing values yielded minimal error for continuous 

variables (NRMSE=0.02%) and categorical variables (PFC=0.07%). Imputed and observed data 

were comparable in terms of participant characteristics summary distributions (Table S4.1).  

 

4.3.4.3. Latent Profile Analysis (LPA) 

An LPA was conducted on CRP, fibrinogen, IGF-1, and cortisol to uncover patterns of immune 

and neuroendocrine activity at both waves. 

 

4.3.4.4. Association Analyses 

Multinomial logistic regression was used to investigate the association between psychosocial stress 

at W4 (2008) and the probability of immune and neuroendocrine profile membership at W6 (2012). 

Models with different sets of covariates were fitted to understand their role in the association 

between stress and immune and neuroendocrine profiles. Model 1 was unadjusted. Model 2 

adjusted for baseline immune and neuroendocrine profiles. Model 3 additionally adjusted for 

demographic and genetic variables. Model 4 adjusted for all covariates. Results were presented as RRR, 

with SE and CI.  

 

4.3.5. Sensitivity Analyses 

Six sensitivity analyses were conducted to examine the robustness of the findings. First, to ensure 

associations were not dependent on the binary classification of stress, analyses were repeated using 

an ordinal score of stress (reported as unstandardised [B] regression coefficients with SE). Second, 

to reveal any differences in stress exposure on profile membership, regressions were repeated using 

each of the six psychosocial stressors independently. Third, individuals who were disabled or with 

longstanding limiting illness were more likely to be immunosuppressed given anti-inflammatory 

prescriptions, thus altering immune and neuroendocrine activity. Therefore, the stress index was 

reconstructed, excluding these measures, before rerunning the analyses to quantify the extent to 
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which they could have biased the results. Fourth, due to the potentially confounding effects of 

inflammaging and somatopause,373 along with known differences in stress associations across 

age,374 the moderating effect of age was tested (dichotomised by mean age [≥65 years]). Fifth, 

because of known sex differences in biomarker activity,375 effect modification by sex was tested. 

Finally, results were compared from the imputed analyses with a CCA to understand the potential 

impact of different approaches to deal with missing data on the results. The analytical sample 

formation for CCA is illustrated in Figure S4.1. 

 

4.4. Results 

4.4.1. Descriptive Statistics 

Of the 6,512 core respondents, 1,578 had missing genetic data, leaving a final analytic sample of 

4,934 (Figure 4.3). Participant characteristics are shown in Table 4.1. Those from the analytic 

sample were materially unchanged from participants in the core sample (Table S4.1). CRP was 

linearly correlated with fibrinogen (r=0.706); cortisol (r=0.273); and IGF-1 (r=-0.163), as 

fibrinogen was with cortisol (r=0.176; all at p<0.001; Table S4.2). Participants, male (~45%) and 

female (~55%), with a median age of 65 years old (interquartile range: 59-72; Mage=66.31; ±9.35; 

range50-99) were followed over a four year period (2008-2012). Most were non-smokers (87.27%) 

and consumed alcohol less than three days a week (64.27%), and almost two thirds were sedentary 

(72.88%). There was a fairly equal educational (Higher - 32.12%; Primary/Secondary/Tertiary - 

31.29%; Alternative/None - 36.58%) and occupational social class divide 

(Managerial/Professional - 36.28%; Intermediate Occupations - 25.62%; Routine/Manual - 

38.10%). There were 8,083 unique documented stress experiences (Figure 4.4). Approximately 

13% of the sample experienced a high level of stress, and this high stress group tended to be 

younger, female, smokers, who drank less than three alcoholic drinks a week (Table 4.1). As it 

pertains to each independent stressor, 17.02% of the sample experienced financial strain, 7.01%  
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Figure 4.3  Flow chart of missingness and the analytic sample for imputed data 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

were informal carers, 45.80% had difficulty mobilising, 31.46% had a limiting longstanding illness, 

40.86% were bereaved, and 9.18% were divorcees (Figure 4.5). 

 

4.4.2. Latent Profile Analysis of Immune and Neuroendocrine Biomarkers 

A three-profile model of immune and neuroendocrine biomarkers provided the most 

parsimonious fit to biomarker data at W6 (Table S4.3; Figures S4.2 [a-g]), after which there were 

limited returns in AIC and BIC value (Figure 4.6); entropy was above 0.80 (Figure 4.7); the mean 

posterior probabilities did not exceed 0.70; each profile comprised more than 5% of participants 

(Figure 4.8); and each profile was theoretically meaningful. The most common profile was 2 (40%), 

followed by profile 1 (36%), then profile 3 (24%; Figure 4.9). Profile 1 (Mage=64.16; ±7.77; 36% 

of the sample) was defined as ‘low-risk’ as it was characterised by those having low CRP, low 

fibrinogen, low cortisol, and high IGF-1. Profile 2 (Mage=66.59; ±9.38; 40% of the sample) was  
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Table 4.1  Sample characteristics 

 

Variable 
Baseline (N=4,934) 

N / M (SD) % / Range t χ2 
      

Age  66.31 (9.35) 50-99 <0.001  

Age (Binary) < M 2,437 49.39  <0.001 

 ≥ M 2,497 50.61   

Sex Male 2,235 45.30  <0.001 

 Female 2,699 54.70   

Education Higher 1,585 32.12  0.961 

 Primary/Secondary/Tertiary  1,544 31.29   

 Alternative/None 1,805 36.58   

Occupational Social Class Managerial/Professional 1,790 36.28  0.708 

 Intermediate Occupations 1,264 25.62   

 Routine/Manual 1,880 38.10   

Smoking Status Non-smokers/Ex-smokers 4,306 87.27  <0.001 

 Smokers 628 12.73   

Alcohol Consumption <3 days a week 3,171 64.27  0.004 

 ≥3 days a week 1,763 35.73   

Physical Activity  Moderately/Vigorously Active 1,338 27.12  0.335 

 Sedentary 3,596 72.88   

PGS for CRP Low 3,945 79.96  0.421 

 High 989 20.04   

PGS for cortisol Low 3,969 80.44  0.482 

 High 965 19.56   

PGS for IGF-1 Low 3,929 79.63  0.180 

 High 1,005 20.37   

Stress Score (Ordinal)  1.51(.90) 0-6 -  

Stress Score (Binary) No 4,318 87.52  - 

 Yes 616 12.48   

CRP* (mg/L; Baseline)  1.19 (.68) .18-3.04 0.915  

CRP* (mg/L; Follow-up)  1.37 (.73) .10-3.05 0.998  

Fb (g/L; Baseline)  3.38 (.56) 1.30–5.90 0.728  

Fb (g/L; Follow-up)  3.12 (.54) 1.50–5.80 0.984  

Cortisol* (pg/mg; Follow-up)  2.93 (1.34) .13-6.49 0.999  

IGF-1* (nmol/L; Baseline)  2.78 (.34) 1.10-4.19 0.393  

IGF-1* (nmol/L; Follow-up)  2.78 (.27) 1.61-4.06 0.309  
    

  

 
Notes: ELSA, waves 4-6 (2008/09-2012/13); N = observations; M = mean; % = percentage frequencies; SD = standard deviations; t = t-test significance 
between the exposed and unexposed for continuous variables; χ2 = Pearson Chi square test significance between the exposed and unexposed for categorical 
variables; < = less than; ≥ = greater than or equal to; OSC = occupational social class; CRP = C-reactive protein; Fb = Fibrinogen; IGF-1 = Insulin-growth 
factor-1; * Log-transformed variable; I-N = immune and neuroendocrine. 
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Figure 4.4.  Percentage of total stress experienced (N=8,083) 

 

 
 

 
Figure 4.5  Independent stress experiences of the sample (N=8,083) 
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Figure 4.6  The Akaike information criterion (AIC), Bayesian information criterion (BIC) 

for seven profiles 

 
 

Figure 4.7  The entropy and normalised entropy statistic for the seven profile LPA model 
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Figure 4.8  The mean posterior probabilities for the seven profile LPA model fit 

 
 
 
 
Figure 4.9 The percentage of participants belonging to each immune and 

neuroendocrine profile 
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Figure 4.10 The mean levels of immune and neuroendocrine biomarkers for a three-
profile solution 
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supplement (Table S4.4). There was evidence of suppression by demographic and genetic variables, 

which increased the RRR by 38% (Model 3: RRR=1.80, CI=1.39-2.35, p<0.001), and by health 

variables, which increased the RRR by 20% (Model 3c: RRR=1.81, CI=1.39-2.36, p<0.001). 

 

Table 4.2  Longitudinal associations of stress with immune and neuroendocrine 
biomarker profiles (N=4,934) 

 
 

Adjustments 
Binary Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.98 0.10 0.81 1.20 0.870 

Model 2: Model 1 + baseline biomarkers a 1.01 0.11 0.83 1.24 0.898 

Model 3: Model 2 + demographics & genetics b 1.14 0.12 0.93 1.41 0.213 

Model 4: Fully Adjusted c 1.10 0.12 0.89 1.35 0.401 

High-risk Profile 

Model 1: Unadjusted 1.34 0.15 1.08 1.66 0.008 

Model 2: Model 1 + baseline biomarkers a 1.42 0.18 1.10 1.83 0.007 

Model 3: Model 2 + demographics & genetics b 1.80 0.24 1.39 2.35 <0.001 

Model 4: Fully Adjusted c 1.61 0.22 1.23 2.12 0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 

 

4.4.4. Sensitivity Analyses 

First, results were consistent when a continuous classification of psychosocial stress was used. For 

each single increase in the stress score, individuals were 19% more likely to be in the high-risk 

immune and neuroendocrine profile versus the low-risk profile in the fully adjusted model (Model 

4: RRR=1.19, CI=1.23-2.12, p=0.001; Table S4.5). Second, when individual stressors were tested 

against immune and neuroendocrine profile membership, financial strain (Model 4: RRR=1.59, 

CI=1.25-2.01, p<0.001), limiting longstanding illness (Model 4: RRR=1.34, CI=1.10-1.65, 
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p=0.005), and bereavement (Model 4: RRR=1.26, CI=1.04-1.52, p=0.016) were each associated 

with belonging to the high-risk profile, as compared with the low-risk profile in fully adjusted models. 

Financial strain and bereavement showed gradients in risk, as each were associated with high- and 

moderate-risk profile membership. Caregiving and divorce were not associated with differences in 

profile membership, while disability was associated with a 30% lower risk of belonging to the high-

risk profile (Tables S4.6[a-f]). Third, the stress index that excluded both disability and limiting long 

standing illness had higher relative risk coefficients than the primary composite score (Model 4: 

RRR=1.71, CI=1.32-2.22, p<0.001), consistent with the previous observation with respect to 

disability (Table S4.7). Fourth, there was no evidence of differences in the association between 

stress and biomarker profile membership between younger and older age groups (interaction 

p=0.913), although relative risk coefficients were substantially larger for those aged 65 and older 

(Table S4.8a-b). Fifth, similar to age, there was no interaction (p=0.239) nor difference in the risk 

profile between the sexes when results were stratified by sex (Tables S4.9a-b). Finally, similar mean 

levels of immune and neuroendocrine biomarkers for a three-profile solution in a CCA were 

observed (Figures S4.3-4) as compared with the main imputed data (Figure S4.2c). Re-analysis of the 

association between stress and profile membership in the CCA sample yielded similar results 

(Table S4.10). 

 

4.5. Discussion 

In a large nationally representative sample of UK older adults, we used multiple biomarkers in a 

LPA to provide a comprehensive characterisation of physiological activity across the integrative 

network of the immune, nervous, and endocrine systems. We found longitudinal evidence of an 

overall association between stress and the risk of high versus low immune and neuroendocrine 

profile membership four years later. Associations remained significant after accounting for 

polygenic markers of immune and neuroendocrine activity, and a range of demographic, 

socioeconomic, behavioural, and health factors. There was, however, no consistent gradient in risk 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 

 
107/340 

as there was no significant difference in stress levels between low- and moderate-risk profiles, nor 

were there differences in the association between stress and immune-neuroendocrine profile 

activity by age or sex. Stress associated with financial strain was the strongest independent 

determinant of belonging to the high-risk immune and neuroendocrine profile, followed by limiting 

longstanding illness and bereavement. Furthermore, financial strain and bereavement showed 

gradients in risk. In contrast, disability was associated with a lower risk for moderate- and high-risk 

profile membership (vs low-risk). 

 

As noted elsewhere,376 the biological responses to stress exposure are multiphasic, where we see 

the stimulation or suppression of immune and neuroendocrine activity, or both simultaneously,377 

with the direction of effect depending on the biomarker being evaluated.378 The complexity of 

immune and neuroendocrine interconnectivity was addressed by using latent profile analyses to 

identify distinct typologies of activity. Variability was revealed within the derived profiles, and 

highlights why the evaluation of single biomarkers can obfuscate understanding of stress exposure.  

 

The incremental rise in mean fibrinogen and cortisol levels from profile one to three, aligns with 

increases in mean CRP, which is consistent with earlier evidence on the synchronised physiological 

exchange between their respective systems to maintain homeostasis.363 However, the unexpected 

moderate decline in IGF-1 between each of the derived profiles is notable. The reasons for this is 

unclear given the well documented covariance between each represented system in the 

LPA.179,358,378 As part of a coordinated systemic regulatory mechanism that facilitates a dynamic 

cellular microenvironment, proinflammatory cytokines can induce a state of resistance in 

hormonal secretion, including in IGF-1.378  This can attenuate the mitogenic effect of IGF-1, but 

can also have anti-proliferative effects on IGF-1,358 which should be reflected here. The reason for 

the blunted effect of IGF-1 seen in the present study, is conceivably because IGF-1 secretion is 

sensitive to nutritional and endocrine control, such that hormonal resistance is rendered 
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maladaptive by pharmacologic use and dietary choices;212 neither of which were measured here. In 

addition, O’Connor and colleagues (2008)358 suggest that cellular responses can vary tremendously 

depending on ligand origin and concentration, the number of cell receptors, and signalling kinetics 

post receptor activation, not to mention extracellular control of IGF-1, which is a second mode 

of regulation. 

 

It is also clear from converging lines of evidence that different stressors have different predictive 

power.178,231,368,371 There was some evidence to support this in the present study, with the largest 

effect sizes observed following financial stress, but given the overlap of CI, there is not strong 

associative differentiation. Part of the challenge is in establishing a ‘hierarchy of stress’ to determine 

which psychosocial stressors are most problematic; distinguishing between rare acute stressors that 

have high clinical risk and everyday stressors that create chronic risk and contribute more to overall 

disease burden in the population. The present study takes a step toward this purpose, and while 

an LPA was used to look at immune and neuroendocrine patterning, future study would benefit 

from a more comprehensive stress score that is also submitted to LPA to see how stress clusters 

in the population. 

 

4.5.1. Strengths and Limitations 

This study has several strengths. To our knowledge this is the first study to explore how common 

stressors are related to immune and neuroendocrine profile membership. Dichotomising the 

ordinal stress score reduced the influence of its non-normality, quasi-continuous quality, and 

limited the chance of underestimated correlations and an inflation of Type II errors (i.e., false 

negatives). Therefore, it offered more meaningful results, despite the potential loss of power. 

However, it is important to caveat that the self-reported nature of each item of the stress score 

may have introduced some measurement error to the results, and there is an assumption in the 

stress measure that different exposures carry equal weight, but this is typically not so. Further 
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limitations of this study map across other studies in this thesis, so are reflected on in the general 

discussion (Chapter 8). 

 

4.5.2. Conclusion 

The synergistic immune and neuroendocrine response to stress represents an important target for 

secondary clinical intervention. Intervening on these processes could alter the course of disease.379 

Multivariate biomarkers were examined, including CRP, fibrinogen, cortisol, and IGF-1, using 

empirically derived data reduction techniques to uncover subgroup differences in how immune 

and neuroendocrine biomarkers pattern together. It proved an effective method to explore the 

complex series of reactions across the immune, nervous, and endocrine systems. Because stress 

was positively associated with the derived immune and neuroendocrine profiles, the results support 

that exposure to high levels of stress can actuate a cascade of complex central and peripheral 

physiological events that has previously been linked to pathology, sub-clinical illness, and debility. 
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CHAPTER 5. FINANCIAL STRESS, SLEEP DURATION, AND IMMUNE-

NEUROENDOCRINE PATTERNING  

 

5.1. Chapter overview  

This chapter takes learnings from Chapters 3 and 4, then explores the independent and interactive 

risk of financial-related stress and suboptimal sleep durations in adverse immune and 

neuroendocrine latent profile membership. In Chapter 3, compositional factors were more salient 

to biological risk, than were contextual factors, so efforts to elucidate individual-level factors were 

reflected here. Analyses were expanded to include suboptimal sleep, as a factor not earlier explored 

in this context. However, the focus was narrowed to financial stress, as the strongest independent 

determinant of belonging to the high-risk immune and neuroendocrine profile, with a gradient in 

risk, in Chapter 4. For results less encumbered by confounding, this study also uses polygenic risk 

prediction to test short and long sleep associations with profile membership. The full manuscript 

is under review and is available on medRxiv (Hamilton & Steptoe, 2024).380 

 

Figure 5.1 The section of the conceptual framework (Figure 1.10) addressed in Chapter 5 

 
 

5.2. Introduction 

The most intriguing aspect of inflammation is the plurality of its modulators and its breadth of 

effects that support health or contribute to morbidity, both physical and mental, and mortality 
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worldwide.381,98 Human, animal, and in vitro studies converge to the understanding that exogenous 

acute and chronic stress directs adverse effects on immunologic mechanisms.382 In humans, 

material deprivation is ubiquitous and among the strongest indicators of stress.15,46 When sleep 

deprived, alterations can also be seen to major effector systems, including the HPA-axis and the 

SNS. This corresponds to catecholamine elevations that drive abnormal inflammatory responses, 

with shifts seen to the levels and temporal profile of the response. In addition, there are functional 

alterations in the expression of pro-inflammatory cytokines that then interact with the brain 

through humoral, neural, and cellular pathways.87,250,383 

 

It is equally important to consider whether stress is as antithetical to good sleep as poor sleep is to 

stress, with evidence that they co-occur and are reciprocally reinforcing.384 Stress has been 

implicated as a predisposing factor for shorter actigraphy-determined total sleep time. In turn 

worse sleep has been associated with greater stress perception.71 In another study, a one unit 

increase in self-reported stress was associated with a 3min decrease in actigraphic and self-reported 

total sleep, but there were no significant associations between sleep parameters and next-day 

stress.75 On balance of evidence, it is likely that stress precedes poor sleep. Still, results have been 

difficult to unravel, with inconsistencies between and within studies. On one side, findings have 

largely depended on the type, acuteness and chronicity of stress On the other side, findings have 

depended on the type and degree of sleep abnormality, along with whether it is assessed by self-

report, actigraphy, or polysomnography.71,385 

 

A better understanding of the interaction between financial stress and suboptimal sleep may clarify 

how they independently and collectively influence immune-neuroendocrine biomarkers as a 

clinically relevant pathway to disease. It is possible that the impact of experiencing both is 

synergistic rather than additive or multiplicative. Therefore, reflecting worse combined effects on 

biological processes. One study found that stress was associated with total serum brain-derived 
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neurotrophic factor (BDNF), determined by an Analysis of Covariance (ANCOVA). A significant 

interaction was also found between stress and self-reported insomnia on levels of BDNF. In the 

same data, a mediation analysis showed that insomnia mediated the association between stress and 

BDNF.386 This dual role of insomnia suggests that sleep influences the strength and direction of 

stress on BDNF (moderation) and interrupts the pathway through which stress influences BDNF 

(mediation). However, in another study that used a repeated measures Analysis of Variance 

(ANOVA), no interaction between stress and sleep deprivation was detected. Authors surmised 

that sleep loss instead lowers the threshold at which an event is perceived as a stressful.137 Methods 

and measures likely account for these differences.387 This raises the question of whether the nature 

of the relationship between financial stress and inflammatory processes is altered by the presence 

of suboptimal sleep. Particularly, having controlled for genetic predisposition and a rich selection 

of confounders. 

 

When results from different approaches, across disciplines, with unrelated source of bias, point to 

the same conclusion it strengthens confidence in the finding.388 For this reason, in this study, 

several statistical, genomic, and epidemiological techniques were used to address this research 

question. First, an LPA, described in earlier chapters, was used to capture the heterogeneity and 

latent structure of all five immune and neuroendocrine biomarkers (i.e., CRP; fibrinogen; WBCC; 

cortisol; IGF-1) that decomposed the population into a small number of groups.389 Second, PGS 

were taken into account in the analyses to index genetic predisposition and to understand genetic 

risk for immune-neuroendocrine profile membership. Third, the construction of a DAG served 

to identify sources of bias and visually represent the complex causal pathways between variables.314 

Fourth, an observational, longitudinal design allowed for temporal associations to be traced in a 

way that points to directionality. Finally, effect modification between financial stress and 

suboptimal sleep was evaluated to uncover subgroup differences in patterning of immune-

neuroendocrine processes. 
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5.2.1. Hypotheses 

Given findings from Chapter 4, similar heterogeneous patterns of immune and neuroendocrine 

activity were expected, with three clusters emerging from the data. In addition, financial stress and 

suboptimal sleep were hypothesised to be independently associated with belonging to the highest 

risk latent profile of immune-neuroendocrine biomarkers. Moreover, an interaction between 

financial stress and suboptimal sleep in this association was anticipated. 

 

5.3. Methods 

All measure details and methods are described in Chapter 2, so are not repeated here. 

 

5.3.1. Study Design 

Fully anonymised data were drawn from ELSA.288 Here, longitudinal sample derivation is from 

W4 (2008) and W6 (2012). Analyses were weighted using longitudinal survey weights. A total of 

6,523 participants had complete measures and at least one biomarker at baseline. The sample was 

6,407, after exclusions of CRP values >20mg/L (n=116; as these values reflect acute, rather than 

chronic inflammation). Of these, 1,467 had missing genetic data, leaving an analytic sample of 

4,940 (Figure 5.2). 

 

5.3.1.1. Exposure 

Financial Stress. Financial stress was assessed at W4 (2008), as indexed by financial strain, a 

binary measure of the perceived chance of not having enough financial resources to meet needs 

(dichotomised at >60% chance). The higher the percentage, the higher the belief of having 

insufficient resources and, thus, the higher the stress experience. 

 

 

 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 

 
114/340 

Figure 5.2.  Flow chart of missingness and the analytic sample for imputed data 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1.2. Moderator 

Sleep Duration. Sleep duration was assessed at W4 (2008) and was demarcated by “≤5hrs” (i.e., 

short sleep), “>5-<9hrs” (i.e., optimal-sleep), and “≥9hrs” (i.e., long sleep). 

 

5.3.1.3. Outcomes 

Immune and Neuroendocrine Biomarkers. Each of the biomarkers were measured at W6 

(2012) included CRP, fibrinogen, WBCC, cortisol, and IGF-1. CRP, fibrinogen, WBCC, and 

cortisol were treated as continuous, with higher values indicating greater levels of inflammation. 

IGF-1 was treated as continuous, with lower values indicating greater neuroendocrine activity. 
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Figure 5.3  DAG conceptually representing causal effects between study variables 
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5.3.1.4. Covariates 

Covariates were built into the model a priori, on the basis of a DAG (Figure 5.3). All measured at 

W4, covariates included demographics: age; age2; sex; genetic variables: 10 PCs, PGS for CRP, WBCC, 

cortisol, IGF-1, and sleep duration; socioeconomic variables: education; wealth; health behaviours: 

smoking status; weekly alcohol consumption; weekly physical activity; health variables: limiting 

longstanding illness; any self-reported clinician diagnosis; difficulty with mobility. 

 

5.3.2. Statistical Analyses 

5.3.2.1. Polygenic Score (PGS) 

Z-scores were used to standardise all PGSs for CRP, WBCC, IGF-1, cortisol, and sleep duration 

in these analyses, so values from different distributions could be equitably compared and to 

improve interpretability.  

 

5.3.2.2. Multiple Imputation 

Owing to attrition and item non-response missingness ranged 0.00-61.0% (Table S5.1). Imputation 

yielded a minimal error for continuous variables (NRMSE=0.07%) and categorical variables 

(PFC=0.05%). 

 

5.3.2.3.  Latent Profile Analysis (LPA) 

To cluster the sample according to concentrations of CRP, fibrinogen, WBCC, cortisol, and IGF-

1, an LPA was conducted. 

 

5.3.2.4. Association Analyses 

Baseline characteristics were expressed as means and proportions, with ANOVA and χ2 

comparisons on biomarkers. Logarithmic transformation was performed on CRP, WBCC, cortisol, 

and IGF-1 values because of their originally skewed distribution, but fibrinogen was normally 
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distributed. There was no evidence of attrition bias due to systematic differences in missing data 

or differential loss-to-follow-up (Table S5.1). Multinomial regressions were used to test several key 

associations. First, the cross-sectional association between financial stress and suboptimal sleep at 

W4 (2008). Second, the longitudinal association of financial stress at W4 on suboptimal sleep, then 

immune-neuroendocrine profile membership at W6 (2012). Third, the association between 

suboptimal sleep at W4 and immune-neuroendocrine profile membership at W6. Finally, a 

multiplicative interaction term was applied between financial stress and suboptimal sleep at W4 on 

immune-neuroendocrine profiles at W6; expressed by an ordinary least squares (OLS) regression 

equation: 

𝑌	 = 	𝜇	 + 	𝜂𝛸	 + 	𝛼𝐷	 + 	𝛽(𝐷 ∙ 𝑋) 	+ 	𝑍𝛾	 + 	𝜖. 

where 𝑌 represents immune-neuroendocrine profile membership (W6 outcome); 𝐷 represents 

financial stress (W4 exposure); 𝑋 represents suboptimal sleep (W4 moderator);  𝐷⋅𝑋 is the interaction 

term with its constituent first-order terms (𝐷 and 𝑋); 𝑍 is a vector of covariates, while 

𝜇 and 𝜖 represent the constant and error terms, respectively. The magnitude of the interaction 

coefficient represents the estimated change in the effect of the focal exposure 𝐷 on the outcome 

𝑌 for a single unit change in the moderator 𝑋 (conceptual and statistical illustration in Figure 5.4). 

All regression assumptions were met.326,327 The highest risk category was reported against the 

lowest risk reference. Results were reported as RRR, with SE and CI. Different models were fitted 

to understand the role of covariates on associations: Model 1 was unadjusted; model 2 adjusted 

for baseline immune-neuroendocrine profiles; model 3 controlled for demographic and genetic 

variables; model 4 was fully adjusted. 

 

5.3.2.5. Sensitivity Analyses 

To test the robustness of the results, nine additional analyses were performed. First, owing to 

known changes in stress perception390 and sleep trajectories as we age,249 it is conceivable that these 
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factors are a less salient risk to biological processes in later adulthood, so associations were 

stratified by median age (≥65). Second, sex-stratified analyses were performed because individuals 

who experience short sleep are more likely to be men, while women are more likely to experience 

long sleep,248,391 with sex differences also reported in stress experience.392 Third, excess adipose 

tissue, as measured by BMI, is a likely mediator because of its shared genetic basis with suboptimal 

sleep,393 along with its known roles in stress394 and inflammation,395 so independent analyses 

controlled for BMI. Fourth, caseness of suboptimal sleep durations were low. Thus, to ensure that 

results were not contingent on power nor the extremities of short and long sleep, the thresholds 

were changed to “≤6hrs” (i.e., short sleep), “>6-<8hrs” (i.e., optimal-sleep), and “≥8hrs” (i.e., 

long sleep) on the basis of an umbrella review of 85 meta-analyses.396 Fifth, while longitudinal 

analyses are more informative for understanding temporal relationships, cross-sectional analyses 

may highlight associations that might have been obscured by time-based fluctuations or noise. 

Thus, cross-sectional findings between financial stress and the biological profiles may serve as a 

useful contrast to longitudinal patterns. Sixth, a stepwise regression of each confounder would be 

helpful to better understand associations between stress, sleep, and immune-neuroendocrine 

profiles. Seventh, longitudinal associations were tested between the immune and neuroendocrine 

biomarkers and suboptimal sleep durations to test whether associations were hypothesised in the 

right direction. Eighth, to ensure the temporal stability of the latent profiles across waves, a 

Cohen’s Kappa statistic and χ2 between waves was tested. Finally, PGSs can detect a common 

genetic basis between traits and provide a prediction of an individual’s genetic risk for a particular 

disease, or in this case a biological outcome.397 PGSs for short and long sleep were, therefore, used 

to test associations with immune-neuroendocrine profile membership, for results less encumbered 

by confounding, and to provide stronger evidence of a possible causal effect between the two. 

There are no GWAS from which a PGS for stress could be derived. The final analysis for sensitivity 

tested for possible reverse causality between the immune-neuroendocrine latent profiles and 

suboptimal sleep durations. 
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Figure 5.4  Conceptual and Statistical Diagrams Illustrating Effect Modification 
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5.4. Results 

5.4.1. Descriptive Statistics 

Sample characteristics are described in Table 5.1. Participants were male (45.3%) and female 

(54.7%), aged 66.3 years on average (±9.35; range50-99). Of these, 17.0% experienced financial 

strain, 12.7% short sleep, and 1.7% long sleep. Although individual trajectories varied widely, 

biomarkers were relatively stable from baseline to follow-up. CRP was linearly correlated with 

fibrinogen (r=0.707); WBCC (r=0.448); cortisol (r=0.281); and IGF-1 (r=-0.167; all p=<0.001). 

All other correlations can be found in Table S5.2. Participants were, on average, overweight 

(73.4%), but active (72.9%), most consumed alcohol less than three days a week (64.3%) and were 

non-smokers (87.3%). The majority were without disorder (67.2%), and most had no limiting 

longstanding illness (68.5%), but similar proportions were with and without mobility difficulties 

(45.8/54.2%). Financial stress declined 3.22 percentage points (pp) between baseline and follow-

up, short sleep declined 2.2pp, but long sleep increased 3.56pp (Table S5.3). 

 

5.4.2. Latent profile analysis of immune and neuroendocrine biomarkers 

Similar to the earlier chapter, a three-profile model of the immune-neuroendocrine biomarkers 

offered the most parsimonious fit to the data (Table S5.4; Figures S5.1-2a-g). After which there were 

limited returns in AIC, BIC, and aBIC value. The lowest values offered the most optimal balance 

between model fit and simplicity (Figure 5.5). The significant LRT indicated that this model was 

statistically preferable to the simpler model. Entropy was 0.67 (Figure 5.6) and the mean posterior 

probabilities did not exceed 0.70, together signalling clear profile separation and good classification 

quality. Each profile had ≥5% of participants (Figure 5.7); and there was theoretical meaning to 

the profiles. The predicted marginal mean margins of the profiles can be seen in Figure 5.8. Profile 

1, defined as ‘low-risk’, included 35.2% of the sample (Mage=64.05; ±7.72; male47.44/female52.56%), 

characterised by individuals with low CRP, fibrinogen, WBCC, cortisol, and high IGF-1.  
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Table 5.1  Sample characteristics 
 

Variable 
Baseline (N= 4,940) 

N / M (SD) % / Range ANOVA χ2 
      

Age  66.3 (9.35) 50-99 <0.001  
Age (Binary) <65 Md 2,436 49.31  <0.001 
 ≥65 Md 2,504 50.69   
Sex Male 2,237 45.3  0.073 
 Female 2,703 54.7   
Education Higher 1,589 32.2  <0.001 
 Lower 1,543 31.2   
 Alternative/No 1,808 36.6   
Wealth Lowest 1,573 31.8  <0.001 
 Middle 2,014 40.8   
 Highest 1,353 27.4   
Smoking Status Never/Ex-Smokers 4,312 87.3  <0.001 
 Current Smoker 628 12.7   
Alcohol Consumption <3 days a week 3,175 64.3  <0.001 
 ≥3 days a week 1,765 35.7   
Physical Activity Sedentary 1,340 27.1  <0.001 
 Active 3,600 72.9   
Mobility Mobile 2,678 54.2  <0.001 
 Not Mobile 2,262 45.8   
Limiting Longstanding Illness None 3,386 68.5  <0.001 
 Present 1,554 31.5   
Health No health condition 3,319 67.2  <0.001 
 At least one health condition 1,621 32.8   
BMI <25, Underweight/Normal 1,312 26.6  <0.001 
 25-30, Overweight: Pre-obese 2,213 44.8   
 30 or over, Obese 1,415 28.6   
PGS for CRP  0.00 (1.00) -3.50 (3.76) 0.235  
PGS for WBCC  0.00 (1.00) -4.03 (2.58) 0.123  
PGS for IGF-1  0.00 (1.00) -3.69 (3.83) 0.411  
PGS for cortisol  0.00 (1.00) -3.47 (3.28) 0.928  
PGS for Sleep Duration  0.00 (1.00) -4.09 (2.87) 0.449  
CRP* (mg/L; Baseline)  0.28 (0.46) -0.70-1.30 <0.001  
CRP* (mg/L; Follow-up)  0.40 (0.48) -1.00-1.30 <0.001  
Fb (g/L; Baseline)  3.38 (.56) 1.30-5.90 <0.001  
Fb (g/L; Follow-up)  3.12 (0.52) 1.50-5.80 <0.001  
WBCC* (nmol/L; Baseline)  0.79 (0.13) -0.10-1.50 0.062  
WBCC* (nmol/L; Follow-up)  0.81 (0.11) 0.34-1.51 <0.001  
IGF-1* (nmol/L; Baseline)  1.18 (0.16) 0.30-1.81 <0.001  
IGF-1* (nmol/L; Follow-up)  1.18 (0.13) 0.60-1.76 <0.001  
Cortisol* (nmol/L; Follow-up)  1.23 (0.65) -0.85-2.82 0.158  
Stress (indexed by Financial Strain) No Strain (0-60%) 4,099 83.0  <0.001 
 Strain (61-100%) 841 17.0   
Sleep Duration Short Sleep 627 12.7  <0.001 
 Optimal Sleep 4,227 85.6   
 Long Sleep 86 1.7   
I-N Profiles (Baseline) Low-risk 2,590 52.4  <0.001 
 Moderate-risk 1,773 35.9   
 High-risk 577 11.7   
I-N Profiles (Follow-up) Low-risk 1,739 35.2  - 
 Moderate-risk 1,951 39.5   
 High-risk 1,250 25.3   
      

 
Notes: ELSA, waves 4-6 (2008-2012); N = observations; M = mean; Md = median; % = percentage frequencies; SD = standard deviations; 
ANOVA = analysis of variance between the exposed and unexposed for continuous variables with a 3-level categorical variable; χ2 = Pearson chi 
square test significance between the exposed and unexposed for categorical variables with a 3-level categorical variable; < = less than; ≥ = greater 
than or equal to; BMI = body mass index; PGS = polygenic score; CRP = C-reactive protein; Fb = fibrinogen; WBCC = white blood cell counts; 
IGF-1 = insulin-growth factor-1; Cortisol = hair cortisol; * Log-transformed variable; I-N = immune and neuroendocrine.  
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Figure 5.5.  Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) Values of Immune and Neuroendocrine Profiles to Assess Model 

Fit for wave 6 

 

 
 
 
 

The modal profile 2, defined as ‘moderate-risk’, included 39.5% of the sample (Mage=66.53; ±9.31; 

male43.77/female56.23%) and consisted of individuals with moderate CRP, fibrinogen, WBCC, 

cortisol, and IGF-1 levels. Finally, profile 3, defined as ‘high-risk’, included 25.3% of the sample 

(Mage=69.13; ±10.60; male44.68/female55.32%;) and was marked by a high probability of high CRP, 

fibrinogen, WBCC, cortisol, and low IGF-1 (Figure 5.8). The number of individuals within the 

low-risk group fell by 17.2% from baseline (W4; 2008) to follow-up (W6; 2012), with the moderate-

risk group increasing by 3.6%, and the high-risk group increasing by 13.6% (Table 5.1). 
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Figure 5.6.  Entropy and Normalised Entropy Values of Immune and Neuroendocrine 

Biomarker Profiles to Assess Profile Quality for wave 6 

 

 
 

Figure 5.7.  Mean Posterior Probabilities of Immune and Neuroendocrine Biomarker 

Profiles to Assess Membership Confidence (≥5%) for wave 6 
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Figure 5.8.  Predicted Marginal Mean Margins of Immune and Neuroendocrine Profiles 

 

 
 

5.4.3. Cross-sectional associations of financial stress with suboptimal sleep  

As shown in Table 5.2, after adjustment for, age, sex, and genetic predisposition to adverse 

immune-neuroendocrine biological signatures, the experience of financial-related stress was cross-

sectionally associated with an 80% greater risk of experiencing short sleep (Model 3: RRR=1.80; 

CI=1.47-2.20), but not long sleep (Model 4: RRR=1.24; CI=0.70-2.19). Associations held after full 

adjustment, with financial stress being associated with a 45% greater risk of short sleep (RRR=1.45; 

CI=1.18-1.79). 

 

5.4.4. Longitudinal associations of financial stress with suboptimal sleep  

In models adjusted for baseline suboptimal sleep, age, sex, and genetic predisposition (Table 5.3), 

financial stress was longitudinally associated with a greater risk of experiencing short sleep (Model 

3: RRR=1.46; CI=1.14-1.86), but not long sleep (Model 3: RRR=1.22; CI=0.86-1.72). When fully 

adjusted, financial stress was associated with a 31% greater risk of experiencing short sleep 4 years 

later (Model 4: RRR=1.31; CI=1.02-1.68). 
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Table 5.2  Cross-sectional associations between stress and suboptimal sleep 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Short Sleep 

Model 1: Unadjusted 1.80 0.18 1.47 2.19 <0.001 

Model 2: Model 2 + demographics & genetics a, b 1.80 0.19 1.47 2.20 <0.001 

Model 3: Fully Adjusted c 1.45 0.15 1.18 1.79 <0.001 

Long Sleep 

Model 1: Unadjusted 1.13 0.32 0.64 1.98 0.680 

Model 2: Model 2 + demographics & genetics a, b 1.24 0.36 0.70 2.19 0.463 

Model 3: Fully Adjusted c 1.11 0.33 0.62 1.98 0.721 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Demographic variables: age; sex 
b Genetic variables: 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood cell counts (WBCC) PGS; 

insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; wealth; occupational social status; smoking 

status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart 
disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; 
dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 

 
 

Table 5.3  Longitudinal associations between stress and suboptimal sleep 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Short Sleep 

Model 1: Unadjusted 1.80 0.20 1.45 2.23 <0.001 

Model 2: Model 1 + baseline sleep duration a 1.47 0.18 1.15 1.87 0.002 

Model 3: Model 2 + demographics & genetics b 1.46 0.18 1.14 1.86 0.003 

Model 4: Fully Adjusted c 1.31 0.17 1.02 1.68 0.035 

Long Sleep 

Model 1: Unadjusted 1.06 0.18 0.76 1.48 0.729 

Model 2: Model 1 + baseline sleep duration a 1.09 0.19 0.78 1.53 0.628 

Model 3: Model 2 + demographics & genetics b 1.22 0.22 0.86 1.72 0.265 

Model 4: Fully Adjusted c 1.05 0.19 0.74 1.50 0.773 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline sleep duration. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; baseline suboptimal sleep; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 

PGS; cortisol PGS; sleep duration PGS; education; wealth; occupational social status; smoking status; alcohol consumption; physical 
activity; mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder).  
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5.4.5. Longitudinal associations between financial stress with immune and 

neuroendocrine profiles  

Having adjusted for baseline profiles, along with demographic and genetic factors, as shown in 

Table 5.4, financial stress experience was longitudinally associated with 28% increased likelihood 

of being classified into the moderate-risk profile, as compared to the low-risk profile (Model 3: 

RRR=1.28; CI=1.06-1.54). This was reduced to null after full adjustment as other factors 

introduced into the model explained associations (Model 4: RRR=1.18; CI=0.97-1.43). By 

contrast, with membership of the high-risk profile across the same models, financial stress was 

associated with a 65% greater risk of belonging to this group (Model 3: RRR=1.65; CI=1.31-2.07), 

which fell to 42% after full adjustment (Model 4: RRR=1.42; CI=1.12-1.80). 

 

5.4.6. Longitudinal associations between  suboptimal sleep with immune and 

neuroendocrine profiles  

At any level of adjustment, suboptimal sleep durations were not prospectively associated with a 

greater risk of belonging to the moderate-risk profile compared with the low-risk profile (Table 5.5). 

Short sleep was not associated with future risk of high-risk immune-neuroendocrine profile 

membership in adjusted models. There were indications that long sleep was associated with a two-

fold increase in the likelihood of high-risk profile membership when adjusted for baseline profiles, 

demographic, and genetic factors (Model 3: RRR=2.02; CI=1.02-3.98), but this association was 

attenuated to null after full adjustment (Model 4: RRR=1.48; CI=0.73-2.98). 

 

5.4.7. Effect modification between financial stress and suboptimal sleep in immune and 

neuroendocrine profile membership 

There was no moderating effect of suboptimal sleep on the association between financial stress 

and immune-neuroendocrine profile membership (Table 5.6). The coefficients of interaction 
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terms were close to zero for short sleep. The magnitude of effects was large for long sleep but 

with large confidence intervals. Thus, there was insufficient evidence to reject the null hypothesis. 

 

5.4.8. Sensitivity Analyses 

First, when associations were stratified by age, financial stress was associated with a 70% higher 

relative risk of belonging to the high-risk immune-neuroendocrine profile in younger individuals 

(RRR=1.70; CI=1.20-2.41; p=0.003), with indications of a gradient in risk, such that the moderate-

risk profile showed an intermediate pattern (RRR=1.30; CI=1.00-1.70; p=0.050). However, there 

were no associations in the older age category (Table S5.5). As it relates to the suboptimal sleep 

associations with immune-neuroendocrine profile membership, effect sizes did not differ by age 

(Table S5.6). In the second sensitivity analysis, sex-stratified analyses revealed that men, but not 

 

Table 5.4  Longitudinal associations of stress with immune and neuroendocrine profiles 
 

 

Adjustments 
Stress 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.26 0.12 1.05 1.50 0.012 

Model 2: Model 1 + baseline profiles a 1.23 0.12 1.03 1.48 0.025 

Model 3: Model 2 + demographics & genetics b 1.28 0.12 1.06 1.54 0.010 

Model 4: Fully Adjusted c 1.18 0.12 0.97 1.43 0.093 

High-risk Profile 

Model 1: Unadjusted 1.57 0.15 1.30 1.90 <0.001 

Model 2: Model 1 + baseline profiles a 1.52 0.17 1.21 1.90 <0.001 

Model 3: Model 2 + demographics & genetics b 1.65 0.19 1.31 2.07 <0.001 

Model 4: Fully Adjusted c 1.42 0.17 1.12 1.80 0.004 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; 

wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., 
chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; 
cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder).  
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Table 5.5  Longitudinal associations of suboptimal sleep with immune and 
neuroendocrine profiles 

 
 

Adjustments 
Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.15 0.12 0.94 1.41 0.171 

Model 2: Model 1 + baseline profiles a 1.08 0.11 0.88 1.33 0.447 

Model 3: Model 2 + demographics & genetics b 1.01 0.11 0.82 1.25 0.907 

Model 4: Fully Adjusted c 0.90 0.10 0.72 1.12 0.335 

High-risk Profile 

Model 1: Unadjusted 1.45 0.16 1.17 1.80 0.001 

Model 2: Model 1 + baseline profiles a 1.26 0.16 0.98 1.62 0.075 

Model 3: Model 2 + demographics & genetics b 1.19 0.16 0.92 1.54 0.192 

Model 4: Fully Adjusted c 0.87 0.12 0.67 1.14 0.323 

Adjustments 
Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.55 0.48 0.85 2.84 0.152 

Model 2: Model 1 + baseline profiles a 1.43 0.45 0.77 2.66 0.254 

Model 3: Model 2 + demographics & genetics b 1.16 0.37 0.62 2.16 0.650 

Model 4: Fully Adjusted c 1.05 0.34 0.55 1.98 0.893 

High-risk Profile 

Model 1: Unadjusted 3.52 1.03 1.98 6.24 <0.001 

Model 2: Model 1 + baseline profiles a 2.78 0.94 1.43 5.41 0.003 

Model 3: Model 2 + demographics & genetics b 2.02 0.70 1.02 3.98 0.043 

Model 4: Fully Adjusted c 1.48 0.53 0.73 2.98 0.277 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; 

wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., 
chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; 
cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table 5.6  Effect modification between stress and suboptimal sleep in immune and 
neuroendocrine profile membership 

 
 

Adjustments 
Stress × Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.90 0.22 0.55 1.45 0.660 

Model 2: Model 1 + baseline profiles a 0.95 0.24 0.58 1.57 0.852 

Model 3: Model 2 + demographics & genetics b 0.95 0.24 0.58 1.57 0.841 

Model 4: Fully Adjusted c 0.95 0.24 0.57 1.57 0.827 

High-risk Profile 

Model 1: Unadjusted 0.77 0.20 0.46 1.28 0.309 

Model 2: Model 1 + baseline profiles a 0.78 0.24 0.43 1.42 0.408 

Model 3: Model 2 + demographics & genetics b 0.83 0.26 0.45 1.53 0.557 

Model 4: Fully Adjusted c 0.85 0.27 0.46 1.58 0.602 

Adjustments 
Stress × Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 4.07 4.57 0.45 36.79 0.211 

Model 2: Model 1 + baseline profiles a 4.23 4.81 0.45 39.30 0.205 

Model 3: Model 2 + demographics & genetics b 4.64 5.30 0.49 43.60 0.179 

Model 4: Fully Adjusted c 4.02 4.64 0.42 38.62 0.228 

High-risk Profile 

Model 1: Unadjusted 2.11 2.36 0.24 18.86 0.503 

Model 2: Model 1 + baseline profiles a 2.08 2.51 0.20 22.16 0.545 

Model 3: Model 2 + demographics & genetics b 2.97 3.59 0.28 31.61 0.366 

Model 4: Fully Adjusted c 2.28 2.81 0.21 25.50 0.502 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; 

wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., 
chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; 
cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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women, stressed from a lack of resources had a greater risk of belonging to the high-risk immune-

neuroendocrine profile (RRR=1.68; CI=1.16-2.43; p=0.006; Table S5.7) despite an overlap of 

confidence intervals. However, this pattern between the sexes was not replicated in suboptimal 

sleep associations with immune-neuroendocrine profile membership (Table S5.8). The third 

sensitivity analysis included BMI as an additional covariate in Model 4, with no substantive change 

seen in the magnitude of effects (Tables S5.9-10). The fourth sensitivity analysis used less stringent 

thresholds for short and long sleep (≤6 hr [n=2,095; 19.29%]; ≥8 hr [n=4,788; 44.08%] 

respectively) and results were materially unchanged (Table S5.11). The fifth sensitivity analysis 

showed that financial stress was cross-sectionally associated with the immune and neuroendocrine 

profiles in the minimally adjusted model (Model 2: moderate-risk: RRR=1.24; CI=1.05-1.45; 

p=0.010; high-risk: RRR=1.30; CI=1.03-1.64; p=0.028). This was true also in model 3 (moderate-risk: 

RRR=1.25; CI=1.07-1.47; p=0.006; high-risk: RRR=1.32; CI=1.04-1.67; p=0.021), but associations 

were reduced to null by other competing factors in the final model (Model 4: moderate-risk: 

RRR=1.07; CI=0.90-1.26; p=0.446; high-risk: RRR=1.01; CI=1.79-1.29; p=0.951). This suggests 

that financial stress might have delayed effects on immune and neuroendocrine systems that are 

better captured prospectively. In the sixth sensitivity analyses, a stepwise regression of each 

confounder along with their discrete contributions provided a clearer understanding of their 

individual contributions to the associations between stress, sleep, and immune-neuroendocrine 

profiles (Tables S5.12a-b; 13a-b). The seventh analysis for sensitivity, longitudinal associations 

were revealed between the immune and neuroendocrine biomarkers and long sleep durations, but 

not short sleep. This suggests a possible reversal of roles between biological processes and long 

sleep (Table S5.14). The eighth sensitivity analysis, the Kappa suggests fair class stability over time, 

with a significant value that supports the presence of a genuine relationship beyond chance 

(κ=0.263, SE=0.0087, Z=30.08, p<0.001). The statistically significant relationship between profile 

assignments across waves show that participant classifications were meaningfully associated, rather 

than shifting randomly over time (χ2[4]=1400, p<0.001). In the final sensitivity analysis, a 1± 
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increase in genetic liability for short sleep and long sleep was not associated with immune-

neuroendocrine profile membership (Table S5.15). 

 

5.5. Discussion  

In a large, population-representative, prospective cohort study of older adults, cross-sectional, 

longitudinal, and multiplicative associations were tested between financial stress and suboptimal 

sleep in immune-neuroendocrine profile membership. Financial stress was cross-sectionally and 

longitudinally associated with short sleep, but not long sleep. Associations held having controlled 

for genetic predisposition and a broad selection of covariates. Financial stress was additionally 

associated with high-risk profile membership four years later. It is worth noting that there was no 

change in the magnitude of effects when accounting for BMI. In addition, against expectations, 

suboptimal sleep was not associated with immune-neuroendocrine profile membership, nor did it 

modify the relationship between financial stress and said profiles. 

 

The unexpected finding that suboptimal sleep was not prospectively associated with immune-

neuroendocrine profile membership is an important contribution to understanding the role of 

sleep in immune-neuroendocrine processes. It challenges compelling evidence elsewhere that sleep 

is integral to endocrine, metabolic, and immune integrity, and where sleep loss, even acutely, 

perturbs gene expression and the functional cellular response.250,383 Meta-analytic evidence 

substantiates cross-sectional associations between suboptimal sleep and heightened inflammatory 

levels,398 with further evidence that associations are longitudinal.251,399 Even when modelled 

curvilinearly, sleep duration remained associated with inflammatory processes.391 Still, in all cases, 

results depended on the biomarkers measured and the temporal relationship between exposures 

and outcomes. 
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Polygenic risk prediction is a useful tool in observational studies to confirm the less confounded 

role of traits in outcomes, albeit limited to genetic contribution.23 Results arising from the PGSs 

for short and long sleep, support the phenotypic findings that suboptimal sleep durations are not 

prospectively associated with immune-neuroendocrine profiles. These corresponding results raise 

the possibility of reverse causality. First, having considered the previously reported role of 

immune-neuroendocrine biomarkers in diurnal variations,84,87 with much of the evidence on sleep 

duration and inflammation being cross-sectional, limiting inferences on directionality.398,400 Second, 

because PGSs point to directionality given they are largely unconfounded; predicated on inherited 

DNA differences from birth that increase the predictive facility of complex traits in unrelated 

individuals among the population.401,402 Still, the current predictive facility of PGSs is insufficient 

for clinical implementation. This is due to the aetiological complexity of common disorders, like 

sleep duration, that are influenced by gene-environment interactions, with polygenic architecture 

that has contributions from multiple SNPs of small effect, rather than a dominant genetic variant 

of large effect that can be isolated.403 Owing to this complexity, the ecological value of PGSs is 

reduced and the immediate scope to dismiss the credibility of sleep-related policy from these 

findings is narrow. Thus, results can be considered preliminary and hypothesis-generating. 

 

It is, nonetheless, important to control for genetic influence in analyses, given the stability of 

genetic sequence across the lifespan and genetic variation that accounts for a notable proportion 

of individual difference in health and disease.404 Our adjustment for a comprehensive selection of 

confounders, notably genetic predisposition for adverse biomarker levels, has rarely been reported 

elsewhere. We show that the longitudinal role of financial stress on suboptimal sleep and immune-

neuroendocrine profiles is independent of genetic predisposition, but the role of suboptimal sleep 

on profile membership was not robust enough to withstand this genetic influence. The contrast 

with earlier evidence linking suboptimal sleep to inflammatory markers, may, in part, be 

attributable to statistically less controlled analyses that increase the likelihood of Type I error.405 
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In the absence of moderation, results putatively contradict anecdotal and empirical evidence406 that 

stress exposure compounded with suboptimal sleep durations increase risk to biological signatures. 

Analyses can be considered preliminary, owing to the modest cell sizes of suboptimal sleep cases, 

and other common power attenuating factors, including exposure-mediator intercorrelations, scale 

coarseness, the artificial categorisations of continuous variables, or the transformation of non-

normal outcomes.407 These may have restricted the detection of interactions, with unstable 

parameter estimates and inflated standard errors, but given the sizeable alphas, it is unlikely that a 

greater powered sample would have detected moderating effects with reliable estimates. Results 

point to financial stress being a more proximate risk factor to immune-neuroendocrine processes 

than suboptimal sleep, so much so that financial stress may reach a threshold beyond which 

suboptimal sleep has limited additional returns. The lack of interaction is consistent with the 

limited influence of sleep duration in this cohort.408 

 

5.5.1. Strengths and Limitations 

This was the first study, to our knowledge, to triangulate evidence across multiple fields of study 

to advance PNI knowledge, by revealing how inflammation and neuroendocrine markers cluster 

in older cohorts and respond to financial stress and suboptimal sleep over time. There are many 

other strengths to this study and, invariably, findings must be interpreted in light of some 

limitations. As these span across multiple studies within this thesis, they are discussed more broadly 

in the general discussion (Chapter 8). 

 

5.5.2. Conclusion 

Immune and neuroendocrine activity has a highly complex aetiology due to multisystem exchanges 

and exogenous influences. We capitalise on converging methods of estimation to unravel a portion 

of this complexity. Results show the distinct and interactive roles of financial stress and suboptimal 
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sleep in determining immune-neuroendocrine latent profile membership. Suboptimal sleep has 

long been recognised as a prime factor in biological processes. However, its inconsistent findings 

in the present study make it a less compelling target for immune-neuroendocrine patterning, 

certainly in older adults. This is especially true because there was no evidence to support that the 

combined experience of financial stress and suboptimal sleep was worse for immune-

neuroendocrine patterning than financial stress alone. This study underscores several potential 

areas of interest for future research while emphasising the need for translational investigations. 

Key areas among them are the need to assess whether results hold in a younger cohort, whether 

associations are causal, and whether these immune-neuroendocrine profiles mediate associations 

between stress and disease. Addressing these questions will contribute to an improved 

understanding of biosocial mechanisms to disease. 
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CHAPTER 6. POLYGENIC PREDISPOSITION, SLEEP DURATION, AND 

DEPRESSION 

 
 

6.1. Chapter overview  

This chapter investigates the prospective direction of suboptimal sleep durations and subclinical 

depression, with findings published in Translational Psychiatry (Hamilton et al., 2023).409 It uses PGS 

of short sleep, long sleep, and depression to understand associations less confounded by other 

factors. It also looks at phenotypic associations longitudinally to compare with the genetic results. 

 

Figure 6.1 The section of the conceptual framework (Figure 1.10) addressed in Chapter 6 

 

 

 

6.2. Introduction 

Short sleep (typically <5-6hrs) and long sleep (typically >8-10hrs)61–63 are suboptimal sleep 

durations that, along with depression, are major contributors to public health burden among 

community-dwelling older adults. Cai and colleagues’ (2023)410 meta-analysis of 55 studies revealed 

that over a third of older populations globally had depression (n=59,851). Elsewhere, depression 

prevalence was found to increase with age but plateau in adults aged 55-74.411 Older adults also 

tend to experience a downward trajectory of optimal sleep duration as they age.66 Given the 
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worldwide phenomenon of population ageing, an emergent need has arisen for a better 

understanding of the mechanism driving the nexus of suboptimal sleep durations and depression 

onset in older adults. 

 

Clinical and epidemiological evidence have demonstrated the comorbid nature of suboptimal sleep 

durations and depression,115 with longitudinal associations shown in both directions.61,121 

Specifically, some evidence suggests that short sleep119 and long sleep117 precedes the onset of 

depression, whereas others have suggested that depression precedes the onset of suboptimal sleep 

durations.61 Inconsistencies observed between results may be due to methodological constraints, 

such as the use of different measures for sleep and depression,61,117 cross-sectional designs,412,413 

relatively small sample sizes, and participant pools with a diverse range of characteristics, including 

military personnel121 and adolescents,414 across clinical and sub-clinical populations.121,415 One 

compelling study on bidirectionality revealed that sleep disorders predict depression more 

consistently than depression predicts sleep disorders over a 20-year period.415 However, the 

absence of genetic information may be an important factor that contributes to the uncertainty of 

directionality between suboptimal sleep durations and depression in adults. PGSs are thought to 

be key in beginning to understand the nature of sleep duration416 and depression.417 As earlier 

discussed, PGSs can detect whether a common genetic basis exists between related traits or 

diseases, and can provide prediction of an individuals’ genetic risk for a particular disease or 

outcome.418 This approach, therefore, can be used to investigate whether suboptimal sleep 

durations and depression possess underlying shared genetic aetiology. 

 

Using a large, phenotypically well-defined sample of UK population-representative older adults, 

PGSs were used across an average course of 8 years. First, to ascertain the role of polygenic 

predisposition to overall sleep duration, short sleep, and long sleep in the development of 

depression. Second, to test the role of polygenic predisposition to depression in overall sleep 
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duration, and the onset of short sleep and long sleep. Despite substantial variation in thresholds 

defining short sleep and long sleep in the literature, a meta-analysis of prospective studies 

supported a curvilinear risk of short sleep (<5-7hrs) and long sleep (>8-9hrs) sleep on depression 

that did not differ substantially by age.115 The extremes of these durations informed the sleep 

thresholds used in the present study. 

 

6.2.1. Hypotheses 

As sleep disorders have been found to be stronger and more persistent longitudinal predictors of 

future depression than the inverse,415 a significant, unidirectional association was hypothesised 

between polygenic predisposition to overall sleep duration, short sleep, and long sleep duration in 

the onset of depression during an average 8-year period. 

 

6.3. Methods 

All measure details and methods are described in Chapter 2, so are not repeated here. 

 

6.3.1. Study Design 

Data were derived from ELSA.288 Data from combined waves 2 and 4 (2004-2008) were used as 

baseline as genetic data were first introduced across this period. Data for outcomes on sleep 

duration and depression were derived from combined waves 6 and 8 (2012-2016), given that 

depression and sleep duration may fluctuate within subjects over time. When testing the role of 

sleep at baseline on depression onset at follow-up, the sample of 7,146 was reduced by 625 (8.8%) 

participants who experienced depression at baseline. Correspondingly, when testing the role of 

depression at baseline in the onset of suboptimal sleep durations at follow-up, 1,076 (15.1%) 

participants who experienced short sleep or long sleep at baseline were excluded from the sample 

of 7,146. This left two analytic samples of 6,521 and 6,070, respectively (Figure 6.2). 
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Figure 6.2  Flow chart of the analytic sample for imputed data 

 

 

 

 

6.3.2. Study variables  

6.3.2.1. Sleep Duration 

Sleep duration was assessed at combined waves 2-4 (2004-2008) and waves 6-8 (2012-2016). These 

were demarcated by “≤5hrs” (i.e., short sleep), “>5-<9hrs” (i.e., optimal-sleep), and “≥9hrs” (i.e., 

long sleep). 

 

6.3.2.2. Subclinical Depression 

The CES-D292 was used to assess self-reported experiences of depression over the past week. The 

scale was reduced by a single item (i.e., “whether their sleep was restless during the past week”), as this item 

iterated sleep estimations. Scores were summed to generate a total discrete score, ranging 0-7 (‘no 

depression’ to ‘depression’), then dichotomised by ≥4. 

 

6.3.2.3. Covariates 

Covariates for the genetic analyses included age; age2; sex; and 10 PCs. 
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6.3.4. Statistical Analyses 

6.3.4.1. Genetic Analyses 

The genome-wide genotyping was performed at UCL Genomics in 2013-2014 with ESRC funding. 

 

6.3.4.2. Quality Control 

SNPs were excluded if they were non-autosomal, had MAF <1%, more than 2% missing genotype 

data, or Hardy-Weinberg Equilibrium p<10−4. Samples were removed based on call rate (<0.99), 

heterozygosity, relatedness, or inconsistencies between recorded sex phenotype and genetic sex. 

To ensure ancestral homogeneity, self-reported ethnicity was combined with genetic ancestry 

analyses, estimating ancestry via PCA, and removed participants with ancestral admixture (n=65). 

Post-imputation, variants with INFO>0.80, low linkage disequilibrium (R2<0.1), and Hardy-

Weinberg p>10−5 were retained, with 179,780 variants kept for further analyses. 

 

6.3.4.3. Polygenic Scores (PGS) 

PGS for sleep duration, short sleep, and long sleep were calculated using summary statistics from 

UK Biobank GWAS.412,419 To calculate PGS for depression, summary statistics from GWAS of 

MDD was conducted by the Psychiatric Genomics Consortium (PGC) encompassing n=1331010 

participants.417 All PGSs here were calculated using a six p-value threshold (PT; i.e., 0.001, 0.01, 

0.05, 0.1, 0.3, and 1) using PRSice (Table S6.1).420 To estimate the strength of the polygenic score, 

information was used on sample size (n; total size of the training and target samples in case/control 

studies, n is the sum of the number of cases and number of controls), total number of independent 

markers in the polygenic score (m), lower and upper P-values to select markers into polygenic 

score, proportion of variance explained by genetic effects in the training sample, and the genetic 

variance for each trait included in the analyses as reported in the original articles.412,417,419 The 

strength of the PGSs was estimated for each trait across all PT using the Additive Variance 

Explained and Number of Genetic Effects Method of Estimation (AVENGEME) package 
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implemented in R (Table S6.1).421,422 This is a widely used tool to estimate the statistical power of 

PGSs.403,423 Because the same traits in the training and testing samples were included, estimating of 

cov12 is not required, as it is the same as the genetic variance (vg1); thus, cov12 was omitted from 

the polygenescore function of this approach. AVENGEME further requires pi0 as an input in the 

calculations of the power of PGSs. In the present study, the default value of pi0, that is zero, was 

used, which may give lower power than other values. These estimates allowed selection with PT to 

for each polygenic score to use in the analyses. Analyses showed that the ultimate PT was 0.001 for 

the PGSs for sleep duration (m=39476, R2=0.003, P=2.12×10-5), short sleep (m=52197, R2=0.004, 

P=6.52×10-08), long sleep (m=24262, R2=0.011, P=6.47×10-18), and depression (m=63824, 

R2=0.001, P=0.003). Although the PGSs for sleep duration, short sleep and depression at the 

chosen thresholds followed a normal distribution, the PGS for long sleep followed a multimodal 

distribution at the 0.001 PT. This is not uncommon as PGS derived using the PT+ clump approach 

will often include only a small number of SNPs when using a stringent p value threshold and may 

therefore not fit a normal distribution.397 Thus, the PGS for long sleep at the 0.01 PT (m=127099, 

R2=0.003, P=5.79×10-06) was used, which did not violate the assumption of normality.424 The 

estimated predictive accuracy for PGSs can be found in Table S6.1. All PGSs were standardised. 

Correlations between PGSs and phenotypic data ranged --0.057-+0.048 (Table S6.2). 

 

6.3.4.4. Multiple Imputation 

Missingness from baseline to follow-up, ranged 0.0-46.7% across all variables. As with all earlier 

studies, the imputation of the missing values yielded a minimal error for continuous 

(NRMSE=0.09%) and categorical (PFC=0.14%) variables, and a comparison of imputed and 

observed data indicated homogeneity between samples (Table S6.3). 
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6.3.4.5. Association Analyses 

Logistic regressions, reported as OR with CI, were used to test whether PGSs for sleep duration, 

short sleep, and long sleep were associated with the onset of depression during an average 8-year 

follow-up period. Using multilinear and multinomial regressions, associations were investigated 

between PGS for depression and overall sleep duration, and onset of short sleep and long sleep 

during follow-up. Here, standardised regression coefficients (β) and RRR, respectively, with SE 

and CI, denote the unit increase in overall sleep duration and the relative risk of short sleep and 

long sleep, as compared to optimal-sleep (the reference category). Sleep duration was modelled 

continuously with quadratic (squared) terms to account for nonlinearity. When significant linear 

and quadratic effects were detected, the linear effect took lower-order and was subsumed under 

the quadratic effect. Models were fitted to understand the role of covariates on associations: Model 

1 was unadjusted; Model 2 controlled for baseline age, age2, sex and 10 PCs. 

 

6.3.4.6. Sensitivity Analyses 

Five sets of sensitivity were performed to measure the robustness of the main results. First, to test 

whether associations were dependent on the categorisation of depression, so analyses were 

repeated using continuous scores. Second, phenotypic associations, using self-reported sleep 

duration, short sleep, long sleep, and depression, were tested to assess consistency with the genetic 

findings. Due to the likelihood of socioeconomic, environmental, and behavioural confounding in 

phenotypic studies, these sensitivity analyses were additionally adjusted for education, wealth, 

smoking status, physical activity, BMI, triglycerides, and limiting longstanding illness. The 

breakdown of the analytic sample for phenotypic associations with missingness, exclusions, and 

attrition across waves can be found in the supplement (2). Third, although exploratory studies do 

not strictly require multiplicity adjustment, confirmatory studies do, so analyses were corrected for 

the total number of regressions per outcome measure (i.e., two tests for each, resulting in an p-

value threshold change from 0.05 to 0.025).425 Fourth, to ensure consistency with results from 
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imputed data, analyses were repeated using complete cases. Finally, since the clinically significant 

CES-D is based on an eight-item scale with a cut-off threshold of 4,292 it was important to ensure 

that results from the reduced score were consistent with the original. 

 

6.4. Results 

6.4.1. Descriptive Statistics 

The details of the sample at baseline are given in Table 6.1. There were no notable differences in 

participant characteristics between the analytic samples when the exposures were overall sleep 

duration, short sleep, and long sleep (n=6,521) versus depression (n=6,070). Participants, with an 

average age of 65 years (±9), were followed up to 12 years (M=8; range=4-12). At baseline, mean 

sleep duration was 6.97 hours a night (±1.24); 10.47% (n=755) of participants reported ≤5 hours 

a night, and 4.49% (n=321) reported sleeping ≥9 hours a night, whereas 15.27% (n=625) of all 

older adults reported depression. At the end of the follow-up period, mean sleep duration was 6.92 

(±1.14); 15.27% (n=1,091) of participants reported sleeping ≤5 hours a night, and 4.76% (n=340) 

reported sleeping ≥9 hours a night, while 11.47% (n=820) of all older adults reported the 

experience of depression. 

 

6.4.2. PGSs for sleep duration, short sleep, and long sleep in depression onset  

Relationships between PGSs for sleep duration, short sleep, and long sleep in onset of depression 

during the average 8-year follow-up are presented in Table 6.2. One standard deviation increase 

in PGS for short sleep was associated with an average increase of 14% in odds of developing 

depression during the follow-up period in the fully adjusted model (Model 2: OR=1.40; CI=1.03-

1.25). However, there was no significant association of the PGS for sleep duration (Model 2: 

OR=0.92, CI=0.84-1.00) and long sleep (Model 2: OR=0.97, CI=0.89=-1.06) and the onset of 

depression during the same follow-up period.  
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Table 6.1  Sample characteristics 

 

 Complete Sample Analytic Samples 

Variable 
(N = 7,146) 

Longitudinal  
depression sample  

(N = 6,521) 

Longitudinal sleep  
duration sample 

(N = 6,070) 
N / Mean 

(SD) % / Range N / Mean 
(SD) % / Range N / Mean 

(SD) % / Range 

        
Age (years)  64.83 (9.52) 50-99 64.66 (9.39) 50-99 64.72 (9.52) 50-99 
Sex Male 3,296 46.12 3100 47.54 2873 47.33 
 Female 3,850 53.88 3421 52.46 3197 52.67 
Sleep Duration  Short Sleep ≤5 hrs 755 10.57 639 9.80 - - 

(Baseline) Optimal Sleep >5 - <9 
hrs 6,070 84.94 5592 85.75 6070 84.94 

 Long Sleep ≥9 hrs 321 4.49 290 4.45 - - 
Sleep Duration  Short Sleep ≤5 hrs 1,091 15.27 951 14.58 629 10.36 

(Follow-up) Optimal Sleep >5 - <9 
hrs 5,715 79.98 5263 80.71 5206 85.77 

 Long Sleep ≥9 hrs 340 4.76 307 4.71 235 3.87 
Depression No 6,521 91.25 6521 91.25 5592 92.13 
(Baseline) Yes 625 8.75 - - 478 7.87 
Depression No 6,326 88.53 5986 91.80 5494 90.51 
(Follow-up) Yes 820 11.47 535 8.20 576 9.49 
        

  

Notes: ELSA, waves 2–8; N = observations; M = mean; SD = standard deviation; % = percentage frequencies. 
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Table 6.2  Relationships of polygenic scores for sleep duration, short sleep, and 
long sleep with onset of depression during an average 8-year follow-up 

 

Models 
Depression 

OR (SE) 95% CI p 

Polygenic score for sleep duration 

Model 1: Unadjusted model a 0.914 (0.041) 0.838-0.997 0.044* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.916 (0.041) 0.839-1.001 0.053 

Polygenic score for short sleep  

Model 1: Unadjusted model a 1.122 (0.051) 1.027-1.226 0.011* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.140 (0.056) 1.035-1.255 0.008* 

Polygenic score for long sleep  

Model 1: Unadjusted model a 0.968 (0.043) 0.887-1.057 0.466 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.973 (0.044) 0.890-1.063 0.544 

Note. PCs = principal components; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. 
a Baseline caseness of outcomes were omitted from analyses. Alpha values have been adjusted to account for multiple testing. * denotes 

significance at <0.001. 

 

 

6.4.3. PGS for depression in overall sleep duration, and short sleep and long sleep onset  

Relationships between PGS for depression in overall sleep duration, and onset of short sleep and 

long sleep during an 8-year follow-up are presented in Table 6.3. In the fully adjusted model (2), 

no significant associations were observed between PGS for depression and future overall sleep 

duration (β=-0.02; CI=-0.04-0.00), or short sleep (RRR=1.05, CI=0.97-1.15), and long sleep 

(RRR=0.97, CI=0.85-1.10) by the end of the follow-up period. 

 

A conceptual diagram of all PGSs and phenotypic associations are illustrated in Figure 6.3. 
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Table 6.3  Relationships of polygenic score for depression with overall sleep duration, and onset of short sleep and long sleep during an 
average 8-year follow-up 

 

Models 
Sleep duration Short sleepc Long sleepc 

β (SE) 95% CI p RRR (SE) 95% CI p RRR (SE) 95% CI p 

Polygenic score for depression  

Model 1: Unadjusted model a b -0.001 (0.002) -0.005-0.002 0.452 1.043 (0.044) 0.960-1.133 0.324 0.972 (0.065) 0.854-1.108 0.675 

Model 2: Model 1 + age, age2, sex, and 10 PCs -0.002 (0.002) -0.005-0.002 0.407 1.055 (0.045) 0.970-1.148 0.212 0.966 (0.065) 0.846-1.103 0.607 

 Note. PCs = principal components; β = standardised regression coefficient; RRR = relative risk ratios; SE = standard error; CI = confidence interval; p = significance value. Alpha values have been adjusted to account for 
multiple testing. 

a Baseline caseness of outcomes were omitted from analyses. 
b Sleep duration squared was included in sleep duration models to account for non-linearity. 
c Baseline comparison was optimal sleep. 
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Figure 6.3   Conceptual diagram of relationships between polygenic score for sleep duration, short sleep, long sleep or depression and phenotypic 

overall sleep duration, short sleep, long sleep, and depression 
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6.4.4. Sensitivity Analyses  

The results from the first set of sensitivity analyses that used continuous scores for depression 

followed the same pattern as those found in the main analyses, therefore, the categorisation of 

depression did not bias results (Table S6.4). The second set of sensitivity analyses between 

phenotypic associations showed that overall sleep duration was associated with lower odds of 

depression onset (Model 2: OR=0.79, CI=0.74-0.84, p<0.001). However, short sleep (Model 2: 

OR=2.58, CI=2.05-3.26, p<0.001) and long sleep (Model 2: OR=1.58, CI=1.07-2.33, p=0.022) 

were associated with higher odds of depression onset (Table S6.5). Depression was associated with 

overall sleep duration (Model 2: β=-0.02, CI=-0.03- -0.00, p=0.012) and short sleep onset (Model 

2: RRR=1.31, CI=0.98-1.75, p=0.050), but not long sleep onset (Model 2: RRR=1.02, CI=0.62-

1.66, p=0.944; Table S6.6). The third set of sensitivity analyses correcting for multiple testing did 

not influence the results. The fourth set of sensitivity analyses that used complete cases  followed 

the same pattern as those in the main analyses (Table S6.7-8; the analytic sample formation for this 

study can be found in Figure S6.1). The final set of analyses that assessed consistency between the 

original and reduced CES-D scores revealed that results were materially unchanged (Tables S6.9-

10). 

 

6.5. Discussion 

To our knowledge, this is the first study to use polygenic predisposition to prospectively investigate 

directionality between suboptimal sleep durations and depression, in a large population-

representative sample of older adults. Results show that genetic predisposition to short sleep was 

strongly associated with the onset of depression over an average 8-year period, but genetic 

predisposition to overall sleep duration and long sleep was not. During the same follow-up period, 

polygenic predisposition to depression was not associated with overall sleep duration, short sleep, 

or long sleep among older adults, suggesting that different mechanisms underlie the relationship 

between depression and the subsequent onset of suboptimal sleep durations in older adults. 
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Findings were, by and large, upheld in a comprehensive set of sensitivity analyses highlighting their 

robustness. 

 

Results showed that suboptimal sleep durations were experienced by 15% or less of an otherwise 

healthy, non-clinical sample of English older adults. Although there was no change to the average 

sleep time of seven hours per night, the 43% increase in percentage incidence of short sleep echoes 

earlier evidence.61 This within-person change may reflect age-related changes in sleep patterns,66 

but it is inconsistent with reviews that have cast doubt on the proliferation of suboptimal sleep 

durations among the general population.64,96 It is conceivable that an increased awareness of poor 

sleep, along with the emergence of sleep medicine, have led to observed rises in self-reported sleep 

problems and clinical sleep disorder diagnoses.  

 

Corresponding to earlier observational evidence,61 levels of depression also increased over the 

average follow-up period of 8 years. In line with hypotheses, results showed that polygenic 

predisposition to short sleep was related to between-person variation in depression. This 

contradicts a MR study,426 that found no causal relationship between short sleep (nor overall, or 

long sleep duration) and depression in either direction using IVW, weighted median (WM), and 

MR Egger methods. However, the definitional cut-off point was <7hrs, as compared to ≤5hrs in 

the present study. Although the use of polygenic risk prediction is a methodological advancement, 

results are consistent with twin studies,414 and findings highlighting a positive genetic correlation 

between short sleep and depression in adults aged 40-69.412 Several mechanisms have been 

theorised to translate short sleep to depression, including electroencephalogram abnormalities 

(e.g., prolonged time spent in REM sleep), abnormal circadian rhythms,427 and HPA-axis 

hyperactivity, which is closely linked to impaired sleep continuity and reduction of SWS.428 

Evidence is extended by demonstrating that common genetic markers for short sleep also play an 

important role the incidence of depression in older adults. Owing to the nature of genetic risk, 
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coupled with high rates of depression and suboptimal sleep durations among the population, the 

modest effect sizes found in the present study are plausibly of clinical and public health 

importance. 

 

In agreement with meta-analytic results that combined data on 23,663 participants from seven 

prospective studies,115 table five in the supplementary shows that phenotypic self-reported long 

sleep was a risk factor for the onset of depression during the average 8-year follow-up in older 

adults. In addition, overall phenotypic sleep duration was negatively associated with depression, 

which aligns with earlier work.119 However, contrary to hypotheses, these relationships were not 

replicated in the genetic analyses, nor were they in two MR studies that focused on overall sleep 

duration.132,429 The first that found that overall sleep duration was not causally associated with 

depression, the second that found it had a 19% protective effect. It is plausible that these 

discrepancies between phenotypic and genetic associations are attributable to the strength of the 

genetic instruments. Specifically, in the present study no significant relationships were found of 

polygenic predisposition for overall sleep duration or long sleep with onset of depression. 

Congruently, no associations were observed between polygenic predisposition to depression in 

onset of long sleep during the same follow-up period. Together, these results suggest that other 

underlying factors drive the nexus of overall sleep duration, long sleep, and depression in older 

adults. Inflammation and metabolic abnormalities are two such potential factors that could account 

for increases in long sleep87 and depression.153 

 

Polygenic predisposition to depression was not associated with overall sleep duration, nor short 

sleep or long sleep onset, but on the same basis in phenotypic data, the present study echoes earlier 

assertions122,430 that depression is a risk factor for the expression of short sleep, and is negatively 

associated with overall sleep duration. However, in line with the genetic findings, depression did 

not precede long sleep. This contrasts observational evidence put forward that depression has a 
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curvilinear association with sleep duration, so is salient to both short sleep and long sleep.118,121 An 

appropriate next step for future study is to test causal sequences using MR for observed polygenic 

associations.  

 

6.5.1. Strengths and Limitations 

This was a novel study that explored directionality between suboptimal sleep durations and 

depression in older adults, using polygenic risk prediction and phenotypic evidence. There are 

several other strengths and non-specific limitations to the present study that apply also to the 

syndicate of studies in this thesis. These are, therefore, more extensively discussed in Chapter 8. 

However, it is important to note here that the phenotypic sensitivity analyses did not account for 

physical or mental comorbidities, nor relevant medications that can affect sleep duration and 

depression. This is because of limited data availability across a broader number of waves in this 

study. Additionally, classical depression, typically associated with reduced sleep, and atypical 

depression, often linked to increased sleep, were analysed within the same sample.431 This may 

have introduced heterogeneity into the analyses, potentially attenuating associations between sleep 

duration and depression by masking distinct underlying biological or behavioural mechanisms.  

 

6.5.2. Conclusion 

Here, important groundwork is laid for future investigations using polygenic risk prediction to 

understand associations between suboptimal sleep durations and depression. Polygenic 

predisposition to short sleep was associated with onset of depression, but polygenic predisposition 

to sleep duration and long sleep were not. Polygenic predisposition to depression was also not 

associated with overall sleep duration, short sleep, or long sleep onset. Evidence is provided of 

molecular mechanisms involved, with an indication of the direction of effects. Future research 

should focus on the clinical utility of these results, with genetic-medical integration used to 

improve the quality of care.  
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CHAPTER 7. COVID-19 STRESS, INFLAMMATION, AND DEPRESSION 

 

7.1. Chapter overview  

This chapter explores whether elevated inflammatory biomarkers measured pre-pandemic would 

be positively associated with increased symptoms of depression experienced during the COVID-

19 pandemic. It also examines the incidence of depression in English older adults during this 

period. Findings have been published in Translational Psychiatry (Hamilton et al., 2021).432 It is 

positioned last as it completes the framework, by showing clearly how inflammatory processes can 

influence mental health, with a stressor that is clearly defined in time, (i.e., COVID-19 did not exist 

when the inflammatory markers were measured), so there can be no doubt about temporality. 

 

Figure 7.1 The section of the conceptual framework (Figure 1.10) addressed in Chapter 7 

 

 

 

7.2. Introduction 

The outbreak of Sars-CoV-2 (COVID-19) infection led to over 7,600,000 infections within the 

UK, 231,550,000 cases worldwide, and a mortality rate among the infected exceeding 2%.433 The 

mental health sequelae of the pandemic became a distinct public health concern.434,435 Older adults 

were among those most vulnerable to fatal incidence of COVID-19,436 which led to intense fears 

of contagion and a heightened awareness of individual fragility. Reports of affective responses 

STRESS

MALADAPTIVE SLEEP

MENTAL ILLNESS

M1

X Y1
a1

a2

c'

MALADAPTIVE SLEEP 
GENETIC VARIANT

IV1

INFLAMMATION 
GENETIC VARIANT

IV2

INFLAMMATION

M2

b1
b2

c1

MENTAL ILLNESS 
GENETIC VARIANT

IV3



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 152/340 

were diverse, from emotional distress, depression, irritability and insomnia to fear, anxiety, despair, 

guilt and anger.437 The population worldwide was subjected to intrusive pandemic containment 

measures intended to limit pathogen transmission, reduce prognostic severity, and minimise 

mortality. Containment measures limited daily routines such that social and economic activity were 

substantially reduced, with access to healthcare and care provisions being interrupted.438,439 These 

mitigation efforts came at the expense of psychological wellbeing,440 with a rise in psychosocial 

stressors ranging from social isolation and financial insecurity441 to increased rates of domestic 

discord.442 Equally, harmful behaviours such as high-risk alcohol consumption,443 dysfunctional 

eating,444 and medical care avoidance438 were on the rise, with Buss and colleagues (2023)340 

reporting an increase in the prevalence of smoking and high-risk drinking, at 17.7% and 32.2% 

respectively, from pre-pandemic levels (n=47,799). The proliferation of pandemic-related stress 

raised concerns over the psychological vulnerability of older individuals.445,446 

 

COVID-19 resulted in a dislocation of people lives that had very broad effects. Studies on the 

emotional responses to earlier epidemics offered insight into the deleterious impact of highly 

virulent infectious disease on community mental health that impacts sectors of the population 

differently.447,448 Further, given the pre-pandemic inequalities in mental wellbeing, similar 

disproportionate patterns of vulnerability were anticipated during COVID-19.449 Research on 

responses to the COVID-19 pandemic exposed disparities in the distribution of distress, the 

severity of mental illness, and variation in the magnitude of change from pre-pandemic status.450 

Demographic factors contributing to effects were found to explain this variation, with less 

advantaged groups, females, ethnic minorities, the disabled, and those with pre-existing physical 

or mental conditions being at greatest risk to adverse emotional responses.436,437,449,451 

 

CRP and fibrinogen have been found to predict poor course of depression,452,453 and both are 

established markers of inflammation in relation socioeconomic status, social isolation, loneliness, 
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and other factors.15,454,455 However, meta-analytic surveys of existing evidence have concluded that 

links between CRP concentration and future depression in both adults and children are weak and 

inconsistent.273,456 Such associations may be more likely to emerge under conditions of severe 

stress. It is plausible, therefore, that heightened antecedent inflammation primes vulnerable 

individuals to increased depression in the face of pandemic-related challenges, particularly when 

those psychosocial stressors are perceived as unpredictable and uncontrollable. The pandemic may 

function as a catalyst for neuroimmune dysregulation to increase risk of depressive symptoms, but 

our understanding of these processes is limited by a lack of studies linking pre-pandemic 

inflammation to mental health outcomes during the pandemic. The current study is, therefore, 

aimed to examine the incidence of depression in older adults during the COVID-19 pandemic 

considering inflammatory levels and depression before the pandemic.  

 

7.2.1. Hypotheses 

We postulated that individuals with higher systemic inflammation pre-pandemic would present 

higher depression during the pandemic. 

 

7.3. Methods 

All measure details and methods are described in Chapter 2, so are not repeated here. 

 

7.3.1. Study Design  

Fully anonymised data were drawn from ELSA.288 The COVID-19 Substudy started in June 2020 

to capture a robust selection of psychosocial experiences during the pandemic, using an online 

platform or computer-assisted telephone interviews (CATI).  The present study used data from 

the COVID-19 Substudy (2020), and ELSA W8 (2016/17) and W9 (2018/19). The COVID-19 

Substudy had a 75% response rate (n=7,040), of which 5,820 were core respondents, while the 

remaining were non-core (younger partners of the core respondents from whom data was 
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collected). There were no missing data on depression. Of the 5,820 core respondents, 3,830 had 

measures of CRP and 3,591 of fibrinogen in waves 8 and 9. After exclusions on missing data for 

covariates, the analytic samples were 3,574 for CRP analyses and 3,314 for fibrinogen (Figure 7.2). 

 

7.3.2. Study Variables 

7.3.2.1. Exposures 

Inflammatory Biomarkers. Two inflammatory markers were analysed, CRP (mg/L) and 

fibrinogen (g/L). Samples were collected for half of the participants in W8 and the remaining half 

during W9, then data were combined. CRP values >20mg/L were excluded from analyses (n=79). 

Using a well-recognised clinical demarcation of inflammation in the adult population,457 CRP was 

dichotomised low (<3mg/L) and high [≥3mg/L]. CRP and fibrinogen were treated as continuous 

variables, with higher values indicating greater levels of inflammation. 

 

7.3.2.2. Outcome 

Subclinical Depression. The CES-D292 was used to assess depression ‘over the past week’ in the 

COVID-19 Substudy and ELSA W8 and W9. However, one item (i.e., “felt sad much of the time…”) 

was unintentionally omitted from the COVID-19 Substudy, so for comparability, an analogous 

seven-item scale was calculated for pre-pandemic waves (8/9). The internal consistency (α) in this 

sample was 0.75 across waves 8 and 9, and 0.80 in the COVID-19 Substudy, indicating good scale 

reliability. A threshold of ≥4 was used to indicate subclinical depression caseness, which produces 

comparative results to the 16-symptom cut-off in the 20-item CES-D scale.293 

 

7.3.1.3. Covariates 

Variables considered likely to confound the analyses were selected a priori, comprising: demographic 

variables: age and sex; socioeconomic variables: education, and wealth; health behaviours: smoking status,  
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Figure 7.2   Flow Chart of the COVID-19 Substudy Analytic Sample 
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alcohol consumption, and physical activity; clinical variables: plasma triglycerides, high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), and limiting longstanding illness. 

 

7.3.3. Statistical Analyses 

7.3.3.1 Association Analyses 

Longitudinal associations between inflammatory markers at baseline (combined waves 8-9; 

2016/19) and depression during the COVID-19 Substudy (2020) were assessed with logistic 

regressions. Separate analyses were carried out for each inflammatory marker. ORs were computed 

with CI for the presence of depression among people with high CRP, with the reference category 

being low CRP. The analyses of fibrinogen report the OR of depression per unit increase in 

fibrinogen concentration. The basic model (1) adjusted for pre-pandemic depression only. 

Subsequent models additionally adjusted for demographic variables (Model 2), socioeconomic variables 

(Model 3), health behaviours (Model 4), and clinical variables (Model 5). The final model (6) included 

all covariates. 

 

7.3.3.2. Sensitivity Analyses 

The first sensitivity analysis tested whether the associations found in the main analyses depended 

on the binary classification of depression (using the CES-D threshold); instead, continuous CES-

D scores were analysed. The results are presented as β coefficients with SE. Exposure to COVID-

19 may have led to an overestimation of emotional responses,458–460 so the second sensitivity 

analysis tested whether the results remained unchanged when participants with possible COVID-

19 infection were excluded. We assessed exposure to COVID-19 in two ways. First, participants 

were asked whether they had been hospitalised for COVID-19. Second, the presence of at least 

two of the three core coronavirus symptoms was evaluated, as defined by the UK NHS: “high 

temperature”; “new continuous cough”; and “loss of sense of smell or taste”. Those hospitalised or those 

meeting the NHS criteria for core symptoms were categorised as possible COVID-19 cases. In 
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the third sensitivity analysis, the exclusion of very high CRP values was reassessed on the basis of 

arguments put forward by Giollabhui et al. (2020).355 The regression models were therefore 

repeated, including individuals with CRP values ≥20mg/L in the depression group. The fourth 

sensitivity analysis evaluated whether associations between CRP and later depression depended on 

the binary division of CRP into normal and high categories. Therefore, continuously distributed 

CRP values were included into the regression models. Fifth, BMI was added as an additional 

covariate. BMI was not included in the primary analyses because conditioning on BMI may have 

introduced collider stratification bias,309,310 and because the sample size was reduced through 

missing data on height and weight. The sixth sensitivity analysis repeated the analyses with alcohol 

intake modelled across the full range of consumptions (8 points from ‘almost daily’ to ‘not at all in 

the past 12 months’) instead of binary categorisation. The seventh analysis, it was considered that 

individual’s exposure to different types of stress during the pandemic may be responsible for the 

results. Therefore a suite of measures of personal exposure to the coronavirus was identified (i.e., 

a combined measure of NHS core symptoms; personal hospitalisation; or household member 

hospitalisation and/or death due to coronavirus), together with the financial impact of the 

pandemic (current personal financial circumstance on a 5-point scale [“much worse off” to “much better 

off”, as compared to pre-pandemic status), and a difficulty in accessing services during the 

pandemic (including access to a bank/cashpoint, supermarket, hospital, and/or pharmacy on a 4-

point scale [“easy”; “difficult”; “unable”; “unwilling”]). These variables were controlled for to test 

whether the association between pre-pandemic inflammation and depression during the pandemic 

was reduced when these factors were taken into account. 

 

7.4. Results 

7.4.1. Descriptive Statistics 

Participant baseline characteristics are displayed in Table 7.1. CRP and fibrinogen were positively 

correlated (r=0.481, p<0.001). There were no notable differences in participant characteristics   
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Table 7.1.  Sample characteristics for the CRP and fibrinogen analyses 

Variable 
CRP (n = 3,574) Fb (n = 3,314) 

Obs. Mean (SD) 
/ N (%) Range Obs. Mean (SD) 

/ N (%) Range 

Age  3,574 67.91 (8.38) 52-90 3,314 67.87 (8.42) 52-90 

Sex Male 1,548 43.31%  1,439 43.42%  

 Female 2,026 56.69%  1,875 56.58%  

Education Higher Education 1,492 41.75%  1,362 41.10%  

 Tertiary Education 413 11.56%  389 11.74%  

 Secondary/Primary Education 910 25.46%  850 25.65%  

 Alternative or No Education 759 21.24%  713 21.51%  

Wealth Lowest Quintile (1) 428 11.98%  411 12.40%  

 2nd Quintile 558 15.61%  514 15.51%  

 3rd Quintile 805 22.52%  747 22.54%  

 4th Quintile 917 25.66%  848 25.59%  

  Highest Quintile (5) 866 24.23%  794 23.96%  

Smoking Status Non-smoker 2,916 81.59%  2,701 81.50%  

 Smoker 658 18.41%  613 18.50%  

Alcohol Consumption Less than daily 2,886 80.75%  2,680 80.87%  

 Daily (5-7 per week) 688 19.25%  634 19.13%  

Physical Activity Sedentary (0) 443 12.40%  418 12.61%  

(Vigorous/Moderate) 1 479 13.40%  443 13.37%  

 2 1,116 31.23%  1,042 31.44%  

 3 652 18.24%  603 18.20%  

 Active (4) 884 24.73%  808 24.38%  

Triglyceride (mmol/l)  3,574 1.43 (0.69) 0.3-4.5 3,314 1.43 (0.69) 0.4-4.5 

HDL (mmol/l)  3,574 1.60 (0.47) 0.4-4 3,314 1.59 (0.47) 0.4-4 

LDL (mmol/l)  3,574 2.91 (0.98) 0.4-7.6 3,314 2.91 (0.98) 0.4-7.6 
Limiting Longstanding 
Illness No 2,534 70.90%  2,329 70.28%  

 Yes 1,040 29.10%  985 29.72%  

COVID-19 NHS CORE 
Symptoms 

No 3,491 97.71%  3,231 97.52%  

Yes 82 2.29%  82 2.48%  

Hospitalisation for 
COVID-19 

No 3,561 99.66%  3,301 99.64%  

Yes 12 0.34%  12 0.36%  

CRP (log, ≤20 mg/L)  3,574 0.96 (0.60) 0.01-3.01 - - - 

CRP (≤20 mg/L) <3 mg/L 2,732 76.44%  - - - 

 ≥3 mg/L 842 23.56%  - - - 

Fb (g/L)  - - - 3,314 3.23 (0.56) 1.6-6.5 
Depression  
(Baseline CES-D)  3,574 1.02 (1.41) 0-7 3,314 0.08 (0.26) 0-1 

Depression  
(Pandemic CES-D)  3,574 1.56 (1.88) 0-7 3,314 0.16 (0.37) 0-1 

Depression  
(Baseline CES-D) 

<4 3,317 92.81%  3,067 92.55%  

≥4 257 7.19%  247 7.45%  

Depression  
(Pandemic CES-D) 

<4 3,001 83.97%  2,773 83.68%  

≥4 573 16.03%  541 16.32%  

        

Note. CRP = C-reactive protein; Fb = Fibrinogen; SD = standard deviation; NHS = National Health Service. 
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between the CRP (n=3,574) and fibrinogen (n=3,314) samples. Participants were ~43% male and 

~57% female, with an average age of ~69.89 (±8.40; range=52-90). In both samples, the majority 

of participants were non-smokers (81.59%/81.50%), and only around one in five drank alcohol 

on most days of the week. Two-thirds reported no longstanding limiting illness (70.90%/70.28%), 

while over a third were engaged in moderate to vigorous physical activity (42.97%/42.58%). A 

small number of participants had been exposed to the coronavirus; 82 were symptomatic 

(2.29%/2.48%); 12 had been hospitalised (0.34%/0.36%). Before the pandemic 7.19% (CRP 

analysis) and 7.45% (fibrinogen analysis) had depression above threshold, and this increased to 

16.03%/16.32% during the pandemic, confirming a large increase in incidence of depression. 

 

7.4.2. Associations between inflammation and depression during the pandemic 

Analyses are summarised in Table 7.2. CRP was positively associated with the incidence of 

depression. The crude odds ratio of 1.69  in model 1, adjusted for baseline depression (Model 1: 

OR=1.69; CI=1.38-2.08), was reduced to 1.40 (Model 6: OR=1.40 CI=1.12-1.73) after full 

adjustment. This indicates that the odds of depression during the COVID-19 crisis were increased 

by 40% among participants with high CRP concentrations pre-pandemic. Plasma fibrinogen was 

also associated with depression when unadjusted, and remained significant after adjusting for 

baseline depression, age, sex, education, wealth (Model 3: OR=1.23, CI=1.04-1.46), and clinical 

variables (Model 5: OR=1.22, CI=1.03-1.45). However, associations were attenuated and no 

longer significant after adjustment of health behaviours (Model 4: OR=1.16, CI=0.98-1.38), 

suggesting that these factors accounted substantially for the relationship between fibrinogen and 

depression. The odds for depression for every unit increase in fibrinogen were 12% , but it was 

not significant in the fully adjusted model (Model 6: OR=1.12, CI=0.94-1.34). The largest 

reduction in odds was observed in models 3 and 4, with an indication that wealth, physical activity, 

and smoking may partially explain the association between inflammation and depression during 

the pandemic. 
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Table 7.2.  Longitudinal associations between pre-pandemic inflammatory markers 
and depression during the pandemic  

Adjustments 
CRP (n = 3,574) Fb (n = 3,314) 

OR (SE) 95% CI p OR (SE) 95% CI p 

Model 1: adjusted for baseline  
 depressive symptoms 1.69 (0.18) 1.38-2.08 <0.001 1.29 (0.11) 1.09-1.52 0.003 

Model 2: Model 1 + adjustment  
 for age and sex 1.65 (0.17) 1.34-2.03 <0.001 1.26 (0.11) 1.07-1.50 0.007 

Model 3: Model 1 + adjustment  
 for education and 
 wealth 

1.57 (0.17) 1.27-1.93 <0.001 1.23 (0.11) 1.04-1.46 0.019 

Model 4: Model 1 + adjustment 
  
 for health behaviours a 

1.50 (0.16) 1.22-1.85 <0.001 1.16 (0.10) 0.98-1.38 0.085 

Model 5: Model 1 + adjustment 
  
 for clinical variablesb 

1.59 (0.17) 1.29-1.97 <0.001 1.22 (0.11) 1.03-1.45 0.025 

Model 6: adjusted for all 
 covariatesc 1.40 (0.16) 1.12-1.73 0.003 1.12 (0.10) 0.94-1.34 0.180 

Note. CRP = C-reactive protein; Fb = Fibrinogen; OR = odds ratio; SE = standard error; CI = confidence interval; p = significance value 
a Health behaviours = smoking status; alcohol consumption; physical activity. 
b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 
c  All covariates = depression (CES-D ≥4); age; sex; education; wealth; smoking status; alcohol consumption; physical activity; 
 triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 

 

7.4.3. Sensitivity Analyses 

The first sensitivity analysis modelled depression as continuous scores. Findings did not 

substantially deviate from the results of the main analyses (Table S7.1). The β adjusted for baseline 

depression, age, and sex (Model 1: β=0.23, CI=0.10-0.36, p<0.001) was 0.14 in the fully adjusted 

CRP model (Model 6: β=0.14, CI=0.01-0.27, p=0.034). The results for the prospective associations 

between fibrinogen and depression were significant in models 1-5 but no longer robust in the fully 

adjusted model (Model 6: β=0.07, CI=-0.04-0.17, p=0.202). The second sensitivity analysis showed 

that the associations between CRP and depression were mostly unaffected by additional 
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adjustment for coronavirus exposure (Table S7.2). Estimates of the relationship between 

fibrinogen and depression remained broadly similar after exposure to the coronavirus was taken 

into account. In the third sensitivity analysis, the magnitude of associations remained unchanged 

when analyses included very high CRP values. The fourth sensitivity analysis modelled CRP as a 

continuous measure. The association with depression during the pandemic remained significant in 

the fully adjusted model (Model 6: OR=1.18, CI=1.00-1.39, p=0.046; Table S7.3). The fifth 

sensitivity analysis introduced BMI as an additional covariate (Table S7.4). The sample size was 

reduced both for the CRP and fibrinogen analyses, resulting in reduced power. However, the 

association between CRP and depression (Model 5: OR=1.41, CI=1.12-1.79, p=0.004) and 

fibrinogen and depression (Model 5: OR=1.24, CI=1.03-1.50, p=0.026) remained significant when 

BMI was added to the models. In sensitivity analysis six alcohol consumption was modelled across 

8 categories. The results were mostly unchanged from those of the primary analysis (Table S7.5). 

Finally, in the seventh sensitivity analysis, personal exposure to the coronavirus, the financial 

impact of the pandemic, and a difficulty in accessing services during the pandemic was conditioned 

on. The relationship between CRP and depression (Model 6: OR=1.70, CI=1.38-2.09, p<0.001; 

Table S7.6), and fibrinogen and depression (Model 6: OR=1.29, CI=1.09-1.52, p=0.003) was 

independent of these COVID-19 impact factors. 

 

7.5. Discussion 

This study sought to relate the magnitude of change in depression during the pandemic in older 

adults with earlier levels of systemic inflammation while taking into consideration pre-pandemic 

levels of depression. The results revealed that pre-pandemic CRP concentrations were positively 

associated with depression in the early months of the COVID-19 pandemic in England, 

independently of pre-pandemic depression, sociodemographic factors, behavioural, and health-

related factors. Pre-pandemic fibrinogen concentration was also related to depression during the 

pandemic, but these associations were explained by covariates, notably health behaviours.  
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Infection with COVID-19 has been linked to subsequent severe psychiatric conditions,435,461 but 

even in the general population without COVID-19 infection, increases in psychological distress 

have been substantial.449,462–464 Inflammation is relevant to this dynamic for two reasons. First, 

psychological stress modulates immunity at cellular and molecular levels, as has been established 

in experimental and observational studies, which can lead to prolonged endocrine and immune 

dysregulation with deleterious health consequences.178 Second, systemic inflammation is an 

important determinant of depression, and this association has been established in animal models,364 

studies of affective responses to pro-inflammatory medication,465 along with population and 

clinical studies.150,466–469 

 

Results suggest that the background level of systemic inflammation measured before the pandemic 

is associated with heightened depression during the stressful early phase of the pandemic. In the 

analytic models adjusted for age, sex and baseline depression, the odds of depression during 

June/July 2020 increased to 69% for high CRP and 29% for each unit increase in fibrinogen. 

Stress-induced sensitisation of the neuroimmune microenvironment,178 neuroendocrine 

pathways469 and inflammasomes470 have been identified as potential mechanisms contributing to 

these findings. Although CRP and fibrinogen are positively correlated and both are reliable 

indicators of inflammation, each represent different aspects of inflammation. CRP is known to be 

a more sensitive neuroimmune biomarker, since patterns of change in plasma fibrinogen 

concentrations are rather more moderate.296,471 This is likely due to fibrinogen being additionally 

involved in other physiological processes, such as haemostasis and angiogenesis.472 

 

The origin of differences in pre-pandemic inflammatory levels governed the selection of covariates 

in these analyses. Systemic inflammation is inversely associated with socioeconomic status,15 

physical health,457 and behavioural factors, such as smoking and sedentary behaviour.473 Smoking 
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and sedentary behaviours are known to have increased in a subset of the population during the 

COVID-19 pandemic,474,475 and during this same period, being less advantaged and having lower 

physical health were shown to predict greater psychological distress.450,476 This health inequality 

during this period is unsurprising as in the years before the pandemic (2013-2019), Kock and 

colleagues (2021)477 reported that the most disadvantaged occupational social grade, with children, 

experienced the highest smoking prevalence among groups. There is additional evidence that 

smoking478 and physical inactivity473 are related to inflammation and depression. Within the sample, 

modifiable health behaviours (i.e., smoking, inactivity, alcohol consumption) had the largest impact 

on the association between inflammation and depression during the pandemic, but even when 

these and other factors were taken into account, the relationship for CRP remained significant. 

 

Sensitivity analyses confirmed that depression as continuous scores did not substantially deviate 

from the results of the main analyses. In addition, the magnitude of effects remained unchanged 

when analyses were performed after including individuals with CRP values of 20mg/L and above. 

The regression coefficients were only minimally affected by the additional adjustment of subjects 

who were exposed to the coronavirus. Modelling CRP as a continuous variable provided a similar 

pattern of results to those of the main findings. When testing also tested whether personal 

experiences during the pandemic affected the pattern of results. Exposure to stressors such as 

financial hardship, restricted access to services and COVID-19 infection among friends and family 

did not modify the primary results. This is not to imply that these factors do not contribute to 

psychological distress during the pandemic, but that their influence was independent of the links 

between inflammation and depression that were identified. Overall, these sensitivity analyses 

suggest that the conclusions have not been biased by the way that variables have been categorised.  

 

Further research is needed to develop a complete picture of other psychological outcomes 

experienced during the pandemic due to neuro-immune persistence. In addition, an exploration 
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into other possible biomarkers could offer insight into the extent of biological mechanisms 

involved. This could confer targets for treatment in inflammation-induced psychiatric conditions 

and could be especially advantageous in reducing psychological burden during pandemics. Public 

health systems could become better equipped to manage population distress in the face of potential 

future widescale virulent outbreaks, and in doing so, the healthcare burden and public spending 

could be reduced.479  

 

7.5.1. Strengths and Limitations 

To the best of our knowledge, this was the first study to prospectively address inflammatory 

conditions prior to the COVID-19 pandemic in relation to depression during the pandemic while 

considering earlier levels of depression. In addition, few studies have explored the role of both 

CRP and fibrinogen in the experience of depression in this context. Pre-pandemic measures of 

inflammation were measured as part of routine data collection before COVID-19 emerged, so 

prior expectations could not bias results. The response rate for data collection during June/July 

2020 (75%) was higher than in most studies of mental health during the pandemic. Despite 

concerns that the inclusion of participants who had been exposed to the coronavirus may lead to 

an overestimation of emotional responses, the inclusion of their data did not bias results. 

Nevertheless, conclusions should be interpreted with respect to limitations, three that are more 

critical in the current study. Depression was measured early in the pandemic, and it has been shown 

to fluctuate over time.480 It is also not possible to be certain of inflammatory levels immediately 

before the pandemic since measures were taken 1-3 years earlier. However, other studies have 

demonstrated that inflammation is relatively stable over several years in the ELSA cohort.481 

Finally, research has shown that early life stress, unaccounted for in these analyses, can have long-

lasting effects on immune function and may have contributed to raised inflammatory levels in later 

life.481,482 This could represent an important factor for understanding the persistence of 

inflammation and its association with depression during the pandemic. 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 165/340 

 

7.5.2. Conclusion 

In a cohort of UK older adults, findings show that those with heightened inflammation before the 

pandemic were at most risk of developing depression in the early months of the COVID-19 crisis. 

Earlier immune dysfunction may be a key consideration in the development of depression during 

pandemics where psychosocial stressors are pervasive. The high prevalence of population distress 

has implications for community mental ill-health, public resources, national recovery and 

preparedness in the face of future virulent outbreaks. 

 

  



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 166/340 

CHAPTER 8. GENERAL DISCUSSION 

Five empirical studies have been included to further the evidence and scientific understanding of 

the biobehavioural and genetic mechanisms that link stress to mental ill-health in older adults. 

Each study responded to a section of the overarching PNI and precision medicine framework 

(Figure 1.10). The emerging core piece was to understand the mechanistic role of the immune, 

endocrine, and neural systems, how this occurs in the face of genetic vulnerability, and how this 

can improve diagnostic sensitivity, in a way that could make it possible to intervene earlier.10 Thus, 

this thesis was able to speak to combined mechanisms of mental ill-health, over cross-sectional 

and longitudinal timepoints, in a non-clinical population of older men and women in England. A 

number of methodologies were used, with a view to enabling a more precise targeting of groups 

for the better prediction, prevention, and treatment of disease. It combines techniques and 

principles across epidemiology, statistics, biology, genetics, behavioural science, economics, and 

precision medicine. 

 

8.1. Biological Considerations 

The molecular and mathematical drivers of immune and neuroendocrine communications have 

been long studied.364,381,483 Results across studies one to three confirm that the evaluated biomarkers 

are, on average, temporally stable, despite individual trajectories varying widely, also shown 

elsewhere.481 Critically, studies two and three within this thesis were able to provide an important 

characterisation of physiological activity across the integrative network through LPA.  It revealed 

a pattern of multisystem dysregulation, with biological subgroups and gradients of risk identified. 

Each that were not formally considered together in this context. Study two and three reveal that 

stress has systemic influences on biology, and not just on isolated biomarkers alone was shown in 

study one. For this reason, uniform impacts on health across a population cannot then be assumed. 

Mechanistic precision medicine approaches should be exploited to further develop this line of 

enquiry. The findings from the LPA may give partial reason to the inconsistent findings in the 
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literature that explore biological processes in disease.484,485 Particularly as it relates to the often 

irreconcilable findings between observational studies and randomised control trials, that this thesis 

offers a theorised method to resolve.486,487 This also underscores the importance of considering the 

complex crosstalk between these systems in maintaining homeostasis,358,363 rather than fixations on 

single biomarkers that can be fundamentally misleading from a biological perspective when used 

exclusively.381 In this way it biomarker panels avoid relatively arbitrary single selections, based on 

ease of collection, assay, and analysis. Still, it is important to note the value of independent 

biomarkers, which helps to reduce noise, by isolating the most relevant biomarkers involved in 

maintaining health. Independent biomarker analyses, as in study one, serve as a foundation for 

validating latent profiles and other integrative models. Ultimately, both are mutually reinforcing. 

The LPA reveals systemic patterns and identifies holistic risk panel, while independent biomarker 

analyses deepen biological understanding. Together, they form a powerful toolkit for advancing 

PNI research and its application in personalised care.  

 

Each biomarker has a unique role in maintaining health, but functionally they are involved in 

proliferation, differentiation, migration, and apoptosis of targeted cells.488 Some biomarkers are 

more resistant to exogenous factors that are typically not controlled for in analyses.489 They are 

characterised by interrelated pleiotropic, synergistic, and redundant actions that have afferent and 

efferent functional components.365 Such factors should be among the various considerations when 

making biomarker selections. When this dynamic process is dysregulated, as supported by the 

results here, it contributes toward to varying concentrations of circulating biomarkers367 that can 

contribute to diversity in disease sequelae.178,490 This can make prediction more challenging and the 

interpretation of single biomarkers less intuitive. Particularly because the multicollinearity 

assumption in regressions mean that biomarkers are best modelled independently.491 The latent 

variable modelling approach taken in studies two and three, similar to an earlier study of American 

adults,492  allowed for a synchronised assessment of a diverse set of biomarkers. Three profiles 
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emerged in across these studies, but the results here are otherwise not directly comparable, as the 

selection of biomarkers differed rather considerably. Even so, the derived profiles here lend 

support to study one within this thesis, along with earlier research that reflects symmetry between 

biomarkers of the immune, nervous, and endocrine systems.358,378,493,494 

 

8.2 Genetic Considerations 

The findings across the first three studies extend previous evidence on PNI processes,178,231,368 by 

showing that stress exposure is associated with immune and neuroendocrine biomarkers 

independently, and a greater probability of high-risk immune and neuroendocrine profile 

membership, irrespective of the genetic contribution of the PGS included in the model. The latter 

is a particularly important feature of this thesis. It is also a methodological advance over previous 

observational research where genetic contribution is rarely considered. It is well-established that 

genetic factors affect the magnitude of the immune and neuroendocrine response.213 Inter-

individual variability in biomarker concentrations and their respective binding proteins are partly 

the result of polymorphic variations in respective genes, while genes encoding biomarkers are 

candidate loci for diseases with an inflammatory basis.213 Moreover, CRP,495 fibrinogen,495 

cortisol,496 WBCC,220 and IGF-1497 each have high heritability. Still, the role of genes in the 

circulation of these biomarkers in blood is complex and multiphasic,498 insofar as genetic influences 

on these biomarkers varying across different biological stages or in response to environmental and 

physiological stimuli. Take cortisol for example, it is implicated in the elevation of inflammation, 

but it can paradoxically bind the glucocorticoid receptor (GR) and repress the expression of genes 

encoding pro-inflammatory cytokines.499All things considered, while SNPs associated with each 

biomarker only explained a small proportion of the variance in our phenotypic associations, where 

the magnitude or strength of associations was small, it is plausible that they confounded earlier 

evidence, such that their omission modestly inflated effect sizes or widened confidence intervals. 

It is, thus, clear from extant literature that genetic variation plays an important role in immune, 
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endocrine, and neural function and circulating levels in blood.216,223,500 This thesis supports that 

immune and neuroendocrine coding genes influence these traits across studies one, two, and three. 

In studies two and three, the relative risk ratios were reduced by between 1-89 percent with the 

inclusion of demographic and genetic variables. As is common with narrow-sense heritability,215 

the genetic contribution to these traits tended to be small. When included in models independently 

for sensitivity, genetic variables accounted for up to one percent of the variance, but each reached 

statistical significance, indicating a relationship with the respective phenotypes that could bias 

results if unaccounted for. These values were small, but they represented cumulative explanatory 

power, reflecting aggregate genetic contribution, and in one instance, the role of suboptimal sleep 

on immune-neuroendocrine profiles was not robust enough to withstand genetic influence. Thus, 

results support the supposition that the inclusion of these genetic substructures remains key to 

increasing the ecological validity of observational studies. Therefore, controlling for them is a 

strength of this thesis.  

 

Polygenic risk prediction using genetic scores in studies three and four proved a useful tool to 

point to directionality, and the phenotypic and genetic differences between suboptimal durations 

and subclinical depression associations in study four are persuasive in explaining why directionality 

between indices of sleep and depression has been obfuscating. However, these results could not 

speak to causality in the same way that MR does because of directional pleiotropy.23 The method 

used in polygenic risk prediction could not be used to isolate SNPs exclusively associated with the 

exposure of interest, but it is a strong step toward unravelling issues of directionality. Although 

polygenic risk prediction has its limitations when compared to MR, the two approaches share 

several methodological similarities and often yield comparable results. Both exploit GWAS 

summary statistics and can be performed using individual-level or summary-level data. However, 

most polygenic risk applications, require individual-level data, except when estimating shared 

genetic aetiology. Importantly, both methods can estimate the effect of liability to an exposure on 
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an outcome, and PGS can even be utilised in a one-sample MR framework. When heterogeneity 

is low and the PGS is appropriately scaled to the exposure, as in studies three and four here, both 

methods should yield equivalent results. Furthermore, both rely on the variance explained (R²) as 

a metric of the instrument’s total strength.501 Given these overlapping principles, the methods 

applied in this thesis offer a robust basis for inferring causal directionality. Moreover, although we 

are far from universal clinical utility, PGSs hold promise as a useful diagnostic tool for the early 

detection of disorders broadly,502 and certainly of subclinical depression. With this in mind, 

intervening on short sleep at an early stage could be a preventative strategy for the risk of 

depression symptomology in the future. The presence of both should be routinely assessed in 

clinic, since independent conditions that cooccur can be treated as a way to attenuate the 

synergistic effects seen between them.  

 

8.3. Stress Considerations 

In study two, over 12 percent of older adults experienced a high level of stress, with more than 

8,000 unique stress experiences reported. Results from studies one and two show that there was a 

difference in the type and level of stress chronicity, which in associations with biological processes, 

was not previously known. Stress linked to financial strain, illness, and bereavement in study two 

was the strongest prospective determinants of adverse biological profiles. There was also a clear 

dose effect, with each additional stressor experience leading to worse immune and neuroendocrine 

activity, and of the common life stressors evaluated, financial stress emerged as an important 

modulator of these biological processes in this thesis, and results held in study three. Financial 

stress was associated with adverse immune and neuroendocrine activity overall in study one, but 

immune and neuroendocrine changes depended on individual-compositional factors, over and 

above neighbourhood-contextual factors. In some cases, neighbourhood effects survived 

individual differences in education and occupation, but not when wealth was taken into account. 

These results together give weight to the view that wealth in older cohorts290 is especially 
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meaningful to biological stability and mental health, particularly when considering study five 

results, which indicate that biological instability was associated with depression amidst pandemic-

related stress. Moreover, results from study three support that financial stress is a reliable target to 

reduce short sleep, while also offering a promising pathway to understand the stratification of 

immune-neuroendocrine activity among the general population. The cumulative results suggest 

that policies designed to alleviate the financial burden on the population could be effective in 

reducing adverse biological and physiological processes. This is with the view that such policies 

could mitigate the burden on an already stretched public health system. Still, the magnitude of 

associations between socioeconomic stress and inflammation has varied widely across earlier 

studies.15,242 This is attributable in part to variations in sample characteristics and study design, 

including principles used to limit confounding bias,503 which gave reason for the intentional 

congruence in study design within this thesis. At the same time, meta-analytic findings by Muscatell 

and colleagues (2020)15 from 43 papers in 111,156 individuals revealed that the less advantaged, 

defined by income, education, and occupation, experienced higher levels of systemic inflammation, 

indexed by CRP and IL-6. However, this was less consistent for fibrinogen and WBCC in study 

two, this was echoed by the cross-sectional findings for CRP and IGF-1, and additional evidence 

was provided on the upregulation of WBCC longitudinally in a sample of community-dwelling 

older adults. In other words, deprivation can set individuals on an adverse immune-

neuroendocrine trajectory that can even be observed among non-clinical populations. Extant 

literature has shown that CRP is higher among those with less wealth,242,243,504 lower education,505,506 

and lower occupation,505,507 while wealth,243,508 education,243,339,508,509 and occupation339,505,508 have 

been identified as correlates of change in circulating fibrinogen. In addition, lower education and 

occupation are known to be associated with elevated WBCC.339,505 However, unlike the evidence 

produced here, most other studies are cross-sectional, so no inferences can be made on the 

direction of these results. Still, although unadjusted longitudinal neighbourhood-contextual effects 

have been observed with CRP and fibrinogen, only associations with fibrinogen remained 
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statistically significant after full adjustment.359 This has been echoed at the individual-

compositional level,510,511 with larger effects also seen in WBCC over CRP.510  

 

Curiously, caregiving and divorce as stressors in study two were not independently associated with 

differences in profile membership. Then contrary to expectations, disability was associated with a 

30 percent lower risk of belonging to the high-risk profile. These findings sit in direct contrast to 

financial strain, bereavement, and longstanding illness. The former two which also revealed 

gradients in risk. The reasons for these results are uncertain. As it relates to caregiving, Roth and 

colleagues’ (2019) meta-analysis in an older population revealed that caregivers had greater 

inflammation than those without caring responsibilities, with small reductions in immune 

functioning too. However, associations were weak, with questionable clinical significance. In 

addition, authors raised concerns of possible selection bias.512 It is conceivable that caregiving, as 

an act of altruism, fosters purpose and fulfilment. Reinforcing one’s self-view and beliefs about 

one’s own morality, goodness, usefulness, and values. It can also be a way to maintain social 

connectiveness with another human being. In these ways, caregiving may build psychological 

resources that become protective, despite the inevitable pressure that comes with it.513–515 Divorce 

is paradoxical in that it can create516 or alleviate stress,517 with intraindividual variation over time. 

Divorce has accelerated among adults 50 or older. A population who are now more likely to 

experience marital dissolution than widowhood.518 This aligns with prognostications about this 

group being more accepting of divorce than their predecessors,519 although, it is perhaps the 

enduring attachment to an ex-spouse that can be biologically problematic. Under these 

circumstances, one study found impairments in the cellular immune response, but it remains one 

of the few studies that explores ways in which psychological responses to divorce may be 

associated with immunological changes.520 Finally disability, granted as a non-specific, broad 

designation, can be a protective factor in immune-neuroendocrine processes for several reasons. 

Individuals with disabilities tend to have valuable access to social support, whether from family, 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 173/340 

friends, or community resources, and social support is a well-documented candidate for reducing 

stress.521 Living with a disability can promote higher reserves of resiliency as a compensatory 

hallmark to cope with normative losses. This, coupled with greater variation in stress-reactivity 

among older adults.522 Equally, disability can lead to physical and psychological adaptation and 

flexibility that may mitigate against stress.523 Certainly in England, social provisions have been 

developed to lessen the additional burden associated with disability,524 albeit an imperfect system. 

Perhaps it is the societal barriers to access, rather than the disability itself that increases stress and 

poses greater risk to one’s biological status. Given that this group is wealthier on average, 

participants may have greater resources with which to overcome these barriers, thus mitigate stress. 

 

Beyond a binary interpretation of statistical significance, the interpretation of estimates must 

consider whether effect sizes are meaningful from a public health perspective. An evaluation that 

is contingent on exposure and outcome prevalence, together with the Minimal Clinically Important 

Difference (MCID), which captures the magnitude of the issue and its ecological value.525 Given 

the ubiquity of financial stress exposure526 and the far-reaching impacts that biological processes 

have on health,98 a 42-59 percent increase in relative risk identified in studies two and three is 

meaningful. This is in spite of a more comprehensive biomarker matrix included into the LPA in 

study three, with more exhaustive controls used to mitigate confounding. Although there are 

notable complications to drawing policy conclusions from a single study,527 the same was true 

across studies both studies, and financial stress associations with immune-neuroendocrine profile 

memberships echoes study one results in the same longitudinal dataset. The findings from these 

three studies can, therefore, be treated as scientific replication that underscores the robustness and 

consistency of the observed relationships. Together making results more persuasive. 

 

8.4. Suboptimal Sleep Considerations 
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Suboptimal sleep durations did not moderate associations between stress and biological processes 

in study three. Mediation is improbable since neither short nor long sleep were associated with the 

profiles of immune and neuroendocrine activity. It is conceivable that immune and 

neuroendocrine interactions compensate for sleep deficits (at least in the short term), but these 

compensatory mechanisms are thought to be overwhelmed by chronic suboptimal sleep 

durations.87,88,391 So these results were unexpected. In study four, phenotypic analyses showed that 

short and long sleep was associated with depression, with large effect sizes and narrow confidence 

intervals. This supports that there was sufficient power to detect a signal in this dataset with a 

similar sample size. Thus, the null results in study three are likely true. It is possible that 

associations are underestimated without multiple assessments and a sufficiently long follow-up 

period for suboptimal sleep to translate to inflammatory states. However, it is more likely that the 

effect of suboptimal sleep is not sufficiently strong to influence a set of biomarkers within a profile. 

Instead, it may have specific influences over select markers of inflammation,250,383 as has been seen 

elsewhere, where results depended on the biomarkers measured.251,391,399 In this respect, results 

could also depend on the sleep type and combination. One study found that insomnia was 

associated with CRP, but only in participants who slept equal to or less than six hours.528 The self-

reporting nature of measurement may have influenced results, but subjective reports of total sleep 

time and sleep efficiency have not previously differed from actigraphy and PSG.529 

 

All this said, there are strong indications of reverse causality. When investigating CRP and IL-6 

independently, a study of 147,478 individuals from the UKB and 2,905 from the Netherlands 

Study of Depression and Anxiety (NESDA), found that CRP was associated with a 5 percent odds 

increase in sleep problems. Both biomarkers were respectively associated with a 27 and 26 percent 

odds increase in sleep duration. Congruent with these results, the authors found that genetically 

predicted IL-6 was associated with an increased risk of sleep problems. This was determined 

through a MR, fixed-effects IVW meta-analysis per exposure-outcome combination, and results 
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held after False-Discovery Rate (FDR) correction for multiple testing.267 Study three confirms 

these results, insofar as the biological profiles being associated with long sleep, although not short 

sleep, in the sensitivity analyses. In addition, there a gradient in risk was identified that has not 

earlier been seen. Ultimately, results suggest that the sleep mechanism may be further downstream 

from stress and more proximate to mental illness in the framework. 

 

Still, the age composition of the cohort has important implications to sleep.67,530 There is suggestive 

evidence of age-related effects from the first sensitivity analyses in study three that warrants 

replication in a younger sample. One notion that merits consideration is survivor bias (viz. left 

truncation), where selective attrition led to a healthier, more resilient older group upon 

stratification, who are not characteristic of the general population.531 Certainly, suboptimal sleep 

may be just a less prominent risk factor for immune and neuroendocrine processes in older adults. 

Equally, results could be attributed to the confounding effects of inflammaging and the 

somatopause.373 Hence, why system-wide investigations in this demographic group is important 

from a public health perspective. Differences in age by stratification and effect modification was 

tested, but they were not found to bias results. The age range may need to be broader to effectively 

differentiate between groups. 

 

From a behavioural point of view, the practice of napping in this group might serve as a protective 

factor for immune and neuroendocrine processes. One study found that cortisol decreased 

immediately after a midday nap of up to 30 minutes, which was accompanied by a return to 

baseline leukocytes counts.532 In a later randomised, polysomnography-monitored study, an 

increase in norepinephrine and cytokine values after a sleep-restricted night was not observed after 

the countermeasure of a nap.533 Given the higher prevalence of napping among older cohorts,249 

this practice may have mitigated the influence of sleep duration on the inflammatory status of this 

population by acting on homeostatic processes. Equally, this cohort may not expend as much 
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energy as younger cohorts,534 with insufficient sleep debt corresponding to lesser homeostatic 

pressurei.535 This pressure accumulates exponentially during wakefulness and dissipates during 

sleep. Striking a balance between sleep-promoting and wake-promoting neurons that control the 

volume and amplitude of slow-wave activity.408 

 

Overall, extant evidence supports a growing view that short sleep is more salient to the experience 

of biological processes248,250,251 and depression119,536 than long sleep, and that this is true across 

lifespan. The former could not be confirmed in study three, but findings from study four confirm 

the latter. In either case, different molecular mechanisms are said to underlie associations at either 

end of the sleep duration distribution.416,537 Dashti and colleagues found a negative genetic 

correlation between short sleep and long sleep (rg=-0.28). Correspondently, Garfield (2021) found 

that of the two novel SNPs at the PAX8 signal, the one associated with short sleep was near the 

activator of transcription and developmental regulator (AUTS2) gene, but the one associated with 

long sleep was near the mitogen-activated protein kinase associated protein 1 (MAPKAP1) gene. 

Mutations at each gene have been implicated in different disorders, so this variation in gene 

expression could underlie the suboptimal sleep differences observed in this thesis. Although 

robustly replicated common variants of sleep duration are at the Vaccinia Related Kinase 2 (VRK2) 

and Paired Box 8 (PAX8) genes,416 there may be unidentified markers of large effects that drive 

the risk for long sleep. Important also is that the genic basis of sleep duration is known to be 

pleiotropic, with the presence of the same SNPs but different risk alleles reacting in a multiplicity 

of ways.538 This could additionally explain differences seen between short sleep and long sleep 

associations.  

 

 

 
i  Homeostatic pressure refers to the compensatory increases in essential sleep duration, sleep consolidation, and 

sleep intensity that mounts in response to an extended period of wakefulness.535 
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8.5. Mental Ill-health Considerations 

Owing to the collection of studies, much can be said of the mechanisms but less can be said of 

mental ill-health broadly. Further evidence, in the same population, is necessary to understand the 

symmetries across the mental health spectrum. Study five closes the loop of the framework, insofar 

as linking stress, inflammation, and mental ill-health. There we see pre-pandemic inflammation is 

associated with heightened depression during the pandemic. The implication being that 

inflammation makes us more prone to mental illness when stressed. Further, there was a striking 

dose-response, with the odds increasing by up to 69 percent for each unit increase in inflammatory 

concentrations. This is plausibly of clinical consequence.525 Without the broader context of the 

pandemic, results are supported, in part, by a persuasive study of over 150,000 adults, across two 

samples, insofar as inflammation being associated with core depressive symptoms of low mood 

and anhedonia. However, the magnitude of associations was small, there were less consistent 

associations with anxiety, and only IL-6 was thought to be causally linked to depression. Moreover, 

unlike the evidence presented here, there was no account of stress in this study.267 Still, this thesis 

would have benefitted from the formal testing of causality and the mediation of inflammation in 

stress and multiple mental health outcomes using predictive methods, which should also resolve 

directionality. 

 

Study four is especially helpful to unravel directionality between sleep and depression. Here, the 

contrasting results from phenotypic and polygenic analyses was an important contribution to the 

literature. There is much uncertainty in the literature about whether suboptimal sleep precedes 

depression, or whether depression is an antecedent of sleep. Prognostic sequencing has been 

shown in both directions.61,121 Even in study four, with large effect sizes, short and long sleep were 

associated with depression eight years later, and depression was associated with overall sleep 

duration and short sleep over the same time period. Moreover, the genetic basis of depression was 
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not associated with suboptimal sleep durations, but on the same basis in phenotypic data, earlier 

assertions were echoed.122,430 Again, corresponding to earlier literature where associations are 

observed in both directions,121,539 with similar results observed in younger populations too.413,540 

For the first time, we see that having a polygenic risk for short sleep makes individuals more prone 

to depression, which credibly initiates the bidirectional cycle between the two. Overall, results go 

against accepted clinical lorej about sleep as it is incongruent with notions of short and long sleep 

primarily being a symptom of mental illness.22 

 

Considerations were also given to depression incidence, where an increase in caseness was seen 

overtime. This aligns with a study of almost 17,000 individuals that found a high prevalence of 

depression likelihood in 64 percent of an international convenience sample. A further 69 percent 

of those did not meet the recommended 7-9 hours of nighttime sleep.118 Depression has been 

described as one of the most prevalent psychiatric conditions, with a point prevalence rate 

estimated at 5 percent and a lifetime prevalence at  circa 15 percent.541 However, it is also comorbid 

with a range of other psychomorbidities,22,541,542 albeit rarely primary risk factor,541 so exploring it 

in isolation misses an opportunity to see the broader matrix of mental health.  

 

8.6. Framework Considerations 

Taken together, results suggest that the ordering of the framework may need to be revisited 

(Figure 8.1). As postulated, it is most likely that stress is the starting point. Owing to the results, 

stress is now thought to more proximately dysregulate immune-neuroendocrine processes, while 

also directly driving changes in sleep durations. A testable theory is that immune-neuroendocrine 

processes connect stress to suboptimal sleep, where each of these are now believed to have an 

influence on mental ill-health through this multifactorial pathway. 

 
j Clinical lore being the conventional understanding of diagnostic order among clinicians. 
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Figure 8.1 A comparison of the original and revised conceptual frameworks 
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Consequently, a reordering is proposed of suboptimal sleep durations and immune- 

neuroendocrine processes in the framework. This is said with caution given that directionality has 

not explicitly been tested between all variables of interest in a single study. Although stress is 

positioned as the origin of this dynamic, feedback loops occurring between them could mean that 

once provoked they influence each another in complex, cyclic ways rather than following a single, 

linear, unidirectional path. This was demonstrated in study four, where phenotypic associations 

indicated bidirectionality, but polygenic associations revealed both unidirectionality and a likely 

starting point in this dynamic. A more nuanced framework should account for feedback loops and 

consider group variability to fully capture the complexity of these relationships. 

 

8.7. Directionality 

Directionality is an important consideration in this thesis because relationships between stress, 

sleep duration, biomarkers, and mental illness are complex and multidirectional. The findings 

across the eight chapters of this thesis provide valuable insights into the likely direction of these 

relationships, adding empirical weight to the final theoretical framework (Figure 8.1). In the first 

study, results supported a stress-induced immune activation model, given that financial stress, at 

the individual and neighbourhood level, was associated with heightened inflammatory responses. 

The cross-sectional nature of the first analysis limited inferences being made on the temporal 

order, but this was resolved through longitudinal analyses that confirmed this prospective 

sequence. The same was corroborated in the second study, where a selection of commonly 

experienced stressors, including financial stress, were independently and collectively tested against 

profiles of the biomarkers and results were significant with increased odds reaching 71 percent. 

The third study replicated this ordering between financial stress and profiles of the biomarkers. 

This study also offered additional information on the likely placement of sleep on this 

hypothesised pathway, insofar as suboptimal sleep durations did not precede inflammatory risk in 

phenotypic nor genetic models. In addition, study three reinforced the hypothesis that stress is a 
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precursor to suboptimal sleep, even though suboptimal sleep was neither a mediator nor 

moderator of the association between stress and the immune-neuroendocrine markers. The fourth 

study was especially helpful in unravelling directionality between sleep and depression given its 

primary use of genetic data. Here, the contrasting results between the phenotypic and polygenic 

analyses provided an important contribution to the literature on directionality in observational 

analyses. There has been much uncertainty regarding whether suboptimal sleep precedes 

depression or whether depression is an antecedent of suboptimal sleep given that sequences have 

been observed in both directions. However, the polygenic analyses here supported a unidirectional 

relationship of short sleep duration increasing the risk of depression. This lends credence to short 

sleep being an early marker for depressive symptomatology, rather than a consequence or side 

effect of depression. The final study provided evidence that stress-induced inflammation 

temporally precedes depression. This supports the idea that systemic inflammation may be a 

vulnerability factor that interacts with stress to give rise to mental illness. These final results were 

particularly beneficial to the thesis in that it supported the proposed ordering between 

inflammatory markers and depression in the overall framework. 

 

8.8. Precision Medicine Considerations 

The analytical strategy leveraged much more than a convenient device with which to model 

individual differences. Semiparametric, finite mixture models, such as the LPA used here, offered 

a principled way to identify heterogeneity based on observed patterns within empirical data.543 It 

proves useful when the normality assumption of the maximum likelihood (ML) fitting function, 

used to estimate the model, is unwittingly violated.544 These models avoid the need for ad hoc 

classifications. Instead they are estimated in the service of more flexibly modelling characteristics 

of the aggregate population as a whole.389 Studies that isolate individual biomarkers offer important 

mechanistic insights, but studies that aggregate profiles contribute to a more comprehensive 

understanding of system-level activity. Distinct biological groups in the population have been 
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identified across studies. Where stress was an antecedent, differences in the risk of belonging to 

the moderate- or high-risk groups, as compared to the low-risk group, emerged. This emphasis on 

group-level differences highlights the importance of considering the biological context and 

complexity. LPA was chosen over other traditional clustering methods because it identifies 

subgroups of individuals with similar biomarker activity,545 with population-level configurations of 

immune and neuroendocrine biomarker activity with increased specificity. Although it is not yet a 

mechanistic development with clinical utility, results advance a precision medicine approach9 that 

paves the wave for predictive strategies built on high-performance computing (HPC) and artificial 

intelligence (AI).546 Technologies that can be trained to assimilate the LPA model in order to 

predict risk groups with greater accuracy, such that remedies can be directed toward identified 

subgroups, rather than indiscriminate treatments ascribed across heterogeneous populations.389 

 

8.9. Methodological Considerations 

It was important that the design and population did not vary widely between each study for sake 

of evaluating the proposed framework without introducing unnecessary bias, as has been earlier 

reported as being problematic elsewhere.547 Still, the intricacies of these relationships warrant 

careful interpretation because it has been tested in a relatively affluent, older cohort of the general 

population in England. Extrapolations to other groups is probable but not absolute. ELSA is a 

demographically representative cohort but the majority of the sample, circa 99 percent are of White 

European origin and are of older age.288 A broader demographic representation would have 

improved generalisability, and given that ethnic groups are said to experience higher levels of 

stress,548 their absence in each study is perhaps a considerable limitation. Still, this data is linked to 

census indicators of objectively measured contextual and compositional characteristics, and offers 

precise estimates of objective, systematically measured, interrelated biomarkers. Notably, each 

study also benefited from a comprehensive calculation of wealth that is unavailable in most studies. 

Wealth was computed on the basis of precise information on multiple individual components 
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rather than a broad categorisation of assets. Certainly, this makes deriving evidence more 

compelling. 

 

As in all cohort studies, the confounding structure was limited to the data available at each wave. 

However, the sheer scope of data allowed for discriminative decisions to be made variables. In 

this respect, the DAGs offered a visual representation of the likely covariates. Following 

epidemiological principles, confounding variables that were included in the model had a strong 

theoretical basis,314,549 with a data-driven approach used in parallel to arrive at the most optimal 

model formation. One that sought to limit unobserved confounding, while avoiding over-

adjustment, or introducing unnecessary bias. To this point, conditioning on possible mediators 

was carefully considered to mitigate the likelihood of collider stratification bias.309–311 By and large, 

associations held having accounted for genetic vulnerabilities, and results were also generally 

independent of the comprehensive selection of confounders identified through the DAGs. At the 

same time, study two, aligned with study five, found that health behaviours accounted for the 

greatest variance in associations. First, between socioeconomic stress and inflammation (at the 

individual-compositional and neighbourhood-contextual level). Second, between inflammation 

and depression when exposed to pandemic-related stress. However, it should be noted that age, 

sex, and genetic factors were more salient to neuroendocrine activity when evaluating biomarkers 

independently. Still, variation in these exposures was statistically associated with changes in the 

magnitude of these outcomes and remained significant after controlling for these rival explanations 

Nonetheless, the causal DAG represented a particular set of assumptions, but its complexity does 

not explicitly reflect real-world concerns about reciprocity or sources of bias, and it does not 

specify the estimate magnitude, nor its interplay with random errors.314. 

 

Complete case analysis remains the dominant method for handling missing data in biosocial 

research,489 but evidence can be skewed by missingness,316 so the preferred method adopted in this 
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thesis was multiple imputation. It is a common feature of this thesis, and comparisons between 

complete cases and imputations have consistently converged, with results being materially 

unchanged. Invariably, confidence intervals were narrower, and the magnitude of effects were 

larger in the imputed data. Chatzi and colleagues (2024)489 revealed similar findings, in that cortisol 

and cortisone levels among the most deprived groups were smaller in the complete case analysis 

than in the imputed set. As it relates to the applied imputation method, missForest in all metrics 

has been shown to outperform other prominent imputation methods, such as MICE and KNN. 

This is in the presence of nonlinearity and interactions.317 There are some promising newer 

methods, such as deep learning,550 but one study550 found that missForest outperformed deep 

generative models, particularly in imputing categorical variables. Concluding that there is no gain 

with deep learning where the sample size is limited. Moreover, the number of hyperparameters to 

tune for deep generative models is typically much larger than in missForest. The training time and 

memory size needed for the hyperparameter search on big data can also be prohibitive in some 

applications. Finally, the stability and convergence of the deep generative models were 

questionable for data of a small or moderate size, or even when the number of observations was 

relatively large, that is, less than 30,000.550Therefore, benefits to deep learning typically manifest 

when using big data. 

 

As persuasive as results are, the present syndicate of results cannot speak to causality. Predictive 

facility cannot be claimed, but this is with all observational studies that cannot yield definitive 

conclusions on cause and effect, particularly in the face of reverse causality.551 It is not without 

limitations, but MR and machine learning (later discussed) offer a promising avenue to overcome 

this challenge. Nonetheless, each study adds much value to the understanding of mechanisms that 

connect stress to mental illness. The evidence has been examined prospectively in all studies, so 

directionality can be inferred through the temporal order of events.552Arguably, the most 

promising approach is to triangulate evidence across multiple techniques to improve inferences, 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 185/340 

as was borne out in this thesis.388 The systematic approach taken provides a logical structure from 

which to later test causal claims. Future hypotheses can be based on theory submitted here and 

the triangulation of multiple lines of scientific evidence. This translational approach helps to ensure 

that the tested associations are empirically credible and observable across different lines of enquiry. 

Again, why the use of standardised measures, in the same population, with converging methods 

was necessary to allow for an unambiguous synthesis of results, less encumbered by bias. 

 

8.10. General Strengths 

In addition to study-specific strengths earlier detailed, this thesis benefits from several broader 

strengths across studies. One is in the use of a large, well-powered, well-characterised, nationally 

representative, longitudinal cohort of older adults.288 Furthermore, the prospective and polygenic 

nature of the studies facilitated an exploration into the temporal direction of associations using 

polygenic and phenotypic data. The LPA solved statistical complications not previously feasible in 

this context.553 Wherever used, the multiple imputation strategy was consistent with CCA. Genetic 

predisposition is accounted for, which while normative in clinical trials through natural random 

assignment,554 is an underutilised approach in observational research. Given the triangulation of 

evidence, diverse analytic strategy, and inclusion of objective genetic and biological measures, there 

was not an overreliance of self-reported measures that can be susceptible to a number of biases. 

Finally, all associations were tested in a sizeable sample, and the PGSs were constructed using the 

results from most recent and largest GWAS meta-analyses, so analyses were not constrained by 

the sample size.  

 

8.11. General Limitations 

Invariably there are several weaknesses across the studies that could not be overcome. Models 

based on nested counterfactuals rest on strong assumptions about confounding,555 but as with all 

observational studies, results might be subject to over-adjustment, unobserved confounding, or 
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residual confounding. In Chapters 3, 4, and 5, a four-year period may be insufficient to establish 

causal directionality, especially in light of the chronic nature of stress and suboptimal sleep. 

However, the longitudinal nature of the study allows for the inference of temporal relationships. 

In this respect, Mendelian randomization (MR) offers a promising avenue to overcome these 

challenges, although it is not without limitations.554,556 Still, this thesis supports that the most 

promising approach is to triangulate evidence across multiple sources to improve causal claims.388. 

Concerns have been raised about the under-reporting of depression in older adults.557 The CES-

D is an established, commonly used measure, but Steffick (2000) raises its shortcomings in 

evaluating depressive disorders.293 Among them is that it is indicative of subclinical depression, 

and not major depressive disorder as a psychiatric diagnosis, which is the GWAS the PGS was 

based upon. It, thus, captures genetic risk for clinical depression that may be biologically different 

to the symptoms captured by the CES-D.417 Financial stress and sleep duration are self-reported 

and time varying, so individuals may experience changes throughout the course of the study that 

are subject to recall bias. Future study may benefit from objective measures in a time-varying effect 

model.558 Moreover, financial stress was measured with a single item, so it may not have captured 

its multidimensionality. There are many aspects of sleep, so assessments of sleep duration offer 

only one indication of risk, and while participants provided single sleep duration estimates, there 

are likely intra-individual differences in sleep duration that were not assessed. Independently, each 

study may have benefited from a more extended follow-up period and the use of time-stratified 

survival analysis to strengthen inferences. Additionally, covariates were measured at baseline 

without time-varying assessments. Immune and neuroendocrine activation involves a constellation 

of cells that interact and create a microenvironment that promotes disease. Many of which are 

further upstream than those tested here.483 but here a relatively small number of biomarkers are 

included to represent this complex network. Biomarker measurement can be challenging, more so 

on a large scale. The confounding structure in each study was carefully designed, guided by DAGs, 

to ensure informed adjustments, but the absence of information about medication that may have 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 187/340 

influenced the biomarkers of interest remains a limitation. Summary statistics for fibrinogen was 

not available from existing GWAS, so the PGS could not be developed and included in the models. 

However, a strong genetic correlation with CRP has been documented elsewhere,495 and PGS for 

CRP was accounted for in analyses. Similarly, baseline cortisol was unavailable, but follow-up 

cortisol was correlated with CRP, fibrinogen, and WBCC; each adjusted for at baseline where 

relevant. A consistent number of profiles derived from analysis across waves despite its omission. 

As it relates to power, heterogeneity in the GWAS discovery sampling may have influenced the 

predictive power of the derived PGSs. Incidence for suboptimal sleep outcomes is low, particularly 

for long sleep, limiting power and perhaps suppressing associative signals. In addition, as the 

default pi0 parameter was used, which is zero, the estimated power for each polygenic score might 

have been lower than it would have been if other values for this parameter were used. Then owing 

to the non-random nature of the studies, no claim can be made on prevalence. Genomic strategies 

assume lifetime exposure to the risk factor,127 as a common epidemiological limitation of 

longitudinal investigations, but the present study would have benefited from the retrospective 

subclinical and pathological episode records of participants from birth.  

 

8.12. Literature Contributions 

This thesis contributes to the literature in several ways. First, much of the existing literature on 

stress, suboptimal sleep, immune-neuroendocrine biomarkers is cross-sectional and in small 

samples, which limits generalisability and the ability to infer temporality. Moreover, older adults 

remain an understudied population in this area, despite being disproportionately impacted due to 

age-related biological changes. Given these physiological vulnerabilities associated with ageing, it 

was important to focus analyses on this population. This thesis addresses these gaps by integrating 

a collection of longitudinal analyses, in a well-defined, large dataset of community-dwelling older 

adults. In addition, this thesis combines self-reported and objective measures, alongside biological 

and genetic data, ensuring a multifaceted, comprehensive approach. Through the application of 
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consistent measures across studies within the same population, this thesis enables a clearer 

synthesis of findings, addressing a common shortfall in previous research. There are also few 

studies where genetic contributions are accounted for in analyses, despite their known importance 

in sleep, biological processes, and mental illness. This thesis revealed that their inclusion in models 

was important, so it is important to account for heritable factors that have been largely overlooked 

in observational studies. The genetic markers used in analyses were also helpful in pointing to the 

causal direction between suboptimal sleep, immune-neuroendocrine activity, and depression. 

DAGs, though increasingly used in epidemiological research, remain a relatively novel 

methodological tool to systematically adjust for confounders to reduce bias. The extensive 

literature review undertaken through this process allowed for various critical discussions on 

inconsistencies observed in the existing body of literature, ensuring a balanced view and 

interpretation that acknowledges null findings when applicable and considers the likely influence 

of publication bias. Finally, this thesis puts forward a structured framework through which stress 

may lead to mental ill-states, which has not previously been reported. By shedding light on these 

pathways, particularly within an ageing population, this research advances the understanding of 

the genetic, biological, and behavioural mechanisms linking stress to mental health, with important 

implications for both prevention and intervention strategies. 

 

8.13. Future Research Prospects 

Time and space did not allow for the inclusion of other studies in this thesis. However, there are 

several other lines of enquiry, and five methodological advancements that would have been helpful 

to more completely elucidate mechanisms that connect stress to mental ill-health. Among them is 

understanding the prevalence and severity of stress, suboptimal sleep durations, and mental illness 

within older cohorts. As earlier discussed, there is reason to believe that age is a key consideration 

in these relationships, so comparisons with other age groups may benefit the scientific community, 

clinicians, and society at large. In this respect, it would be interesting to explore trajectories of 
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stress exposure and how its relationship with biological processes evolves across the lifespan. This 

could identify critical periods, hypothetically during adolescence or menopause, that heighten 

vulnerability to adverse outcomes. In addition, testing the entire framework across a broader range 

of mental health conditions would clarify whether findings hold across disorders. 

 

From a methodological perspective, the identification of causal effects between suboptimal sleep, 

inflammation, and mental disorder across a spectrum of severity would also have been 

enlightening. A mediated MR would allow for the estimation of the magnitude of that causal effect. 

It would also determine whether inflammatory markers mediate that effect. However, it comes 

with strong assumptions that must be met to conclude causality. Second, though not assessed here, 

it is important to note that the experience of stress in later life may differ from that in early or mid-

life due to physical and psychological resources,339,559 behavioural,560 and other salient factors that 

are characteristic of this group.249 To this end, a multi-cohort case-control study stratified by age 

that spans the life course would be of value.  Third, it is important to assess whether latent profiles 

of immune and neuroendocrine biomarkers are associated with mental disorder. Whether this 

differs from associations with physical disorder, and whether there are differences in efficacy 

between biomarker profiles and independent biomarkers. This would reveal whether a biomarker-

wide approach offers greater insight into outcome-wide disease risk, compared to assessing 

biomarkers independently. A cox proportional hazards regression could be used to model time-

to-event. This would facilitate a comparison of the hazard ratios for outcome-wide disorders based 

on these biomarker profiles. It would also allow for time-varying covariates to be included in the 

model. However, a violation of the assumption of proportional hazards (viz., the relative risk 

between groups is not constant over time) could lead to erroneous conclusions, and Cox models 

may not appropriately capture complex, non-linear relationships as would be intended. Fourth, 

Generalized Estimating Equations (GEE) would be a powerful statistical tool to analyse repeated 

measures and longitudinal, correlated data such as these. It would provide robust estimates of 
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population-averaged effects, but its inability to model subject-specific effects moves us away from 

the intended precision medicine approach. Fifth, a Random Forest machine learning approach 

could be applied to identify key drivers of mental disorder. Specifically, assessing the relative 

contributions of stress, suboptimal sleep, biological markers and genetic scores, along with other 

peripheral factors. Random Forests would make predictions by constructing decision trees on 

different bootstrap samples of the data, reducing overfitting and variance through aggregation, 

while improving predictive accuracy through averaging or majority voting. Unfortunately, machine 

learning is often seen as a black box model because it is difficult to understand how predictors 

interact or contribute to outcomes in a meaningful way. For that reason among others, 

interpretation is difficult, which can make it less translatable to policy and practice than traditional 

statistical methods.561 Moreover, these methods are data-hungry and require large, well-structured 

datasets to yield reliable, robust results. Without appropriate tuning and validation, biased 

predictions or unstable importance rankings are likely. Sixth, associations between stress, 

suboptimal sleep, inflammatory biomarkers, and mental illness likely involve variation in means as 

well as distributions. Interventions that shift the outcome mean, while reducing variability are more 

optimal solutions than those that impact the mean only.562 Therefore, the Generalized Additive 

Model for Location, Scale and Shape (GAMLSS)563 approach may be particularly advantageous to 

the ongoing aims of this thesis. It is a flexible, data-driven statistical model that allows for 

associations and interactions to be fit without assuming linearity or homoscedasticity.k GAMLSS 

models associations by the mean (location) as is typical in regressions, but also by the variance 

(scale), skewness (shape), and kurtosis (tail) of the outcome. Understanding if and how the 

exposures influence variability in mental health has aetiological significance. Especially since these 

exposures could feasibly affect mental health variability but not affect the mean.563 Finally, a 

structural equation modeling (SEM) approach could be taken to test the full model, that is, 

 
k  The assumption of homoscedasticity is that the variability of the outcome is unrelated to the exposure, but this is 

not always the case.562 
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simultaneous assessment of all exposures and outcomes, with direct and indirect effects between 

all variables. This is a hybrid approach combines factor analysis among latent variables and multiple 

regression via simultaneous equation modeling; an econometrics approach.564 It maintains several 

advantages over regression and other multivariate techniques. Specifically it allows for the 

specification of a complex, a priori theory-driven models that can be tested with empirical data, 

such as that proposed here.565 Together, these seven additional studies would enhance 

understanding and predictive accuracy over that which has already been established in this thesis. 

 

8.14. Final Conclusion 

As has been earlier found, 63,64 stress remains a compelling target to reduce suboptimal sleep, 

inflammatory status, and mental ill-health.48,99 A lack of socioeconomic resources has emerged as 

a key stressor, credibly because of its rare ability to impress upon a diverse set of life experiences,566 

but the path to mental-ill health does not appear to be linear, nor unidimensional. The role of sleep 

in biological processes is less absolute, certainly in older cohorts. Conceivably as a result of 

naturally occurring behaviours that are mitigating. Yet, suboptimal sleep seems to have a more 

direct path to mental ill-health. Genetic contributions are important, and findings here suggest that 

evidence not accounting for genetic inheritance may have been moderately overinflated. Still, the 

studies included in this thesis support the notion that inflammatory processes across the integrative 

network97,283 are the lynchpin that connects psychosocial factors to mental ill-health.234,284–286 As 

underpinned by PNI. Strides have been taken to understand the sub-populations most at risk to 

PNI processes and subsequent disease, which brings the importance of personalised medicine to 

the fore. Further study will help to confirm these conclusions with clinical relevance. Yet as 

intended, the insights from this thesis on the biopsychosocial mechanisms of mental ill-health are 

proposed to be key to reducing socioeconomic disparities in health.287 By advancing our 

understanding of the interplay between stress, suboptimal sleep, immune and neuroendocrine 
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activity, and genetic predisposition in mental ill-health, this work contributes to scientific discourse 

in a meaningfully way. 
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Figure S3.1  Flow chart of the analytic sample for complete cases 
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Table S3.1 A comparison of imputed and observed sample characteristics, with missing 
data 

 
  

Variable Missing Data 
N | % 

Complete Cases (N = 2,996) Imputed (N = 3,562) 

N / Mean (SD) % / Range N / Mean (SD) % / Range 
       
Age  0 | 0.00% 64.41 (8.18) 50-99 64.26 (8.35) 50-99 

Sex Male 0 | 0.00% 1,334 44.53 1,591 44.67 

 Female  1,662 55.47 1,971 55.33 

BMI (kg/m2) Underweight (≤18.5) 2,474 | 23.02% 17 0.57 21 0.59 

 Normal (18.6-24.9)  800 26.70 963 27.04 

 Overweight (25–29)  1,327 44.29 1,580 44.36 

 Obese (≥30)  852 28.44 998 28.02 

Limiting Longstanding Illness No 8 | 0.07% 2,178 72.70 2,571 72.18 

 Yes  818 27.30 991 27.82 

Mobility Difficulties No 141 | 1.31% 1,454 48.53 1,753 49.27 

 Yes  1,542 51.47 1,807 50.73 

Smoking Status Non-smokers/Ex-smokers 203 | 1.89% 2,655 88.62 3,125 87.73 

 Smokers  341 11.38 437 12.27 

Alcohol Consumption <3 days a week 1,956 | 18.20% 1,811 60.45 2,259 63.42 

 ≥3 days a week  1,185 39.55 1,303 36.58 

Physically Activity Moderately/Vigorously Active  2,326 77.64 2,699 75.77 

 Sedentary 179 | 1.67% 670 22.36 863 24.23 

IMD Lowest Tertile 23 | 0.21% 860 28.70 998 28.02 

 Middle Tertile  1,339 44.69 1,598 44.86 

 Highest Tertile  797 26.60 966 27.12 

Wealth Lowest Tertile 1,160 | 10.79% 878 29.31 1,079 30.21 

 Middle Tertile  1,308 43.66 1,537 43.15 

 Highest Tertile  810 27.04 949 26.64 

Education Higher 100 | 0.93% 1,072 35.78 1,263 35.46 

 Primary/Secondary/Tertiary  991 33.08 1,174 32.96 

 Alternative or None  933 31.14 1,125 31.58 

OSC Managerial/Professional 534 | 4.97% 1,149 38.35 1,353 37.98 

 Intermediate   788 26.30 919 25.80 

 Routine/Manual  1,059 35.35 1,290 36.22 

CRP* (mg/L; Baseline)  4,502 | 41.88% 1.10 (0.63) 0.18-3.03 1.11 (0.63) 0.18-3.04 

CRP* (mg/L; Follow-up)  5,625 | 52.33% 1.02 (0.59) 0.10-3.05 1.03 (0.59) 0.10-3.05 

Fb (g/L; Baseline)  4,535 | 42.19% 3.31 (0.52) 1.30-5.40 3.31 (0.52) 1.30-5.40 

Fb (g/L; Follow-up)  5,620 | 52.28% 2.94 (0.49) 1.30-5.30 2.94 (0.50) 1.30-5.30 

WBCC* (109/L; Baseline)  4,471 | 41.59% 1.79 (0.29) -0.22-3.92 1.80 (0.29) -0.22-3.92 

WBCC* (109/L; Follow-up)  5,571 | 51.83% 1.81 (0.28) 0.72-3.48 1.82 (0.28) 0.72-3.48 

IGF-1* (nmol/L; Baseline)  4,441 | 41.32% 2.72 (0.35) 1.39-4.14 2.72 (0.35) 1.39-4.17 

IGF-1* (nmol/L; Follow-up)  5,519 | 51.34% 2.74 (0.32) 1.39-4.04 2.74 (0.32) 1.39-4.04 
       

 
Notes: ELSA, waves 4-6 (2008/09-2012/13); N = observations; % = percentage frequencies; M = mean; SD = standard deviations; BMI = 
Body Mass Index; IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; CRP = C-reactive 
protein; Fb = Fibrinogen; WBC = White Blood Cell Counts (leukocytes); IGF-1 = Insulin-Growth Factor-1; * Log-transformed variable.  
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Table S3.2  Relationships of compositional and contextual socioeconomic indicators with immune and neuroendocrine biomarkers, adding 

covariates sequentially 
 

Adjustments 
CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

C
on

te
xt

ua
l 

In
di

ca
to

rs
 

IMD 

Model 1: Crude model a 0.068 (0.020) 0.028-0.108 0.001 0.053 (0.019) 0.016-0.091 0.005 0.034 (0.009) 0.015-0.052 <0.001 -0.017 (0.009) -0.034--0.001 0.050 

Model 2: Model 1 + demographic b 0.070 (0.020) 0.031-0.110 0.001 0.056 (0.019) 0.018-0.093 0.003 0.035 (0.009) 0.017-0.054 <0.001 -0.020 (0.009) -0.037--0.003 0.023 

Model 3: Model 2 + clinical c 0.057 (0.020) 0.018-0.097 0.005 0.047 (0.019) 0.010-0.085 0.013 0.032 (0.009) 0.013-0.050 0.001 -0.017 (0.009) -0.034-0.001 0.060 

Model 4: Model 3 + health behaviours  d 0.042 (0.021) 0.002-0.082 0.039 0.029 (0.019) -0.009-0.067 0.135 0.023 (0.010) 0.005-0.042 0.014 -0.015 (0.009) -0.032-0.003 0.095 

C
om

po
si

tio
na

l I
nd

ic
at

or
s  

Wealth 

Model 1: Crude model a 0.076 (0.020) 0.037-0.116 <0.001 0.076 (0.019) 0.038-0.113 <0.001 0.050 (0.009) 0.032-0.069 <0.001 -0.029 (0.009) -0.046--0.011 0.001 

Model 2: Model 1 + demographic b  0.073 (0.020) 0.033-0.112 <0.001 0.074 (0.019) 0.037-0.112 <0.001 0.049 (0.009) 0.031-0.068 <0.001 -0.022 (0.009) -0.039--0.005 0.011 

Model 3: Model 2 + clinical c 0.052 (0.021) 0.011-0.092 0.012 0.061 (0.019) 0.023-0.099 0.002 0.045 (0.010) 0.026-0.064 <0.001 -0.018 (0.009) -0.035--0.000 0.046 

Model 4: Model 3 + health behaviours  d 0.028 (0.021) -0.014-0.070 0.194 0.031 (0.020) -0.017-0.052 0.119 0.035 (0.010) 0.016-0.055 <0.001 -0.015 (0.009) -0.034--0.003 0.099 

Education 

Model 1: Crude model a 0.058 (0.018) 0.022-0.094 0.002 0.078 (0.017) 0.044-0.112 <0.001 0.030 (0.009) 0.013-0.047 <0.001 -0.026 (0.008) -0.042--0.011 0.001 

Model 2: Model 1 + demographic b 0.048 (0.019) 0.011-0.085 0.012 0.063 (0.018) 0.028-0.097 <0.001 0.030 (0.009) 0.012-0.047 0.001 -0.003 (0.008) -0.019-0.013 0.726 

Model 3: Model 2 + clinical c 0.035 (0.019) -0.002-0.072 0.063 0.053 (0.018) 0.018-0.088 0.003 0.027 (0.009) 0.009-0.044 0.003 -0.000 (0.008) -0.016-0.016 0.978 

Model 4: Model 3 + health behaviours  d 0.020 (0.019) -0.018-0.058 0.298 0.034 (0.018) 0.001-0.070 0.050 0.020 (0.009) 0.002-0.037 0.029 0.002 (0.008) -0.014-0.019 0.777 

OSC 

Model 1: Crude model a 0.056 (0.018) 0.022-0.091 0.001 0.064 (0.016) 0.032-0.097 <0.001 0.033 (0.008) 0.017-0.049 <0.001 -0.021 (0.008) -0.037--0.006 0.006 

Model 2: Model 1 + demographic b 0.052 (0.018) 0.017-0.086 0.003 0.057 (0.017) 0.024-0.089 0.001 0.034 (0.008) 0.017-0.050 <0.001 -0.011 (0.008) -0.026-0.004 0.163 

Model 3: Model 2 + clinical c 0.041 (0.018) 0.007-0.076 0.019 0.050 (0.017) 0.018-0.083 0.002 0.031 (0.008) 0.015-0.047 <0.001 -0.008 (0.008) -0.023-0.007 0.297 

Model 4: Model 3 + health behaviours  d 0.028 (0.018) -0.007-0.063 0.118 0.034 (0.017) 0.001-0.067 0.045 0.024 (0.008) 0.008-0.041 0.003 -0.006 (0.008) -0.021-0.009 0.449 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b Demographic variables: age and sex 
c Clinical variables: BMI, limiting longstanding illness, and mobility difficulties 
d Health behaviours: smoking status, alcohol consumption, and physical activity
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Table S3.3  Relationships of compositional and contextual socioeconomic indicators with biomarkers, with age interactions 
 
 

 
Adjustments 

CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

 β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

IMD 

Main Effect 
Model 1: Crude model a 0.079 (0.027) 0.027-0.131 0.003 0.061 (0.025) 0.011-0.111 0.016 0.043 (0.013) 0.019-0.068 0.001 -0.013 (0.012) -0.036-0.010 0.252 

Model 5: Fully Adjusted b 0.049 (0.027) -0.003-0.102 0.066 0.032 (0.025) -0.018-0.082 0.206 0.030 (0.013) 0.005-0.055 0.017 -0.008 (0.012) -0.032-0.015 0.487 

Interaction c 

IMD * Age 
Model 1: Crude model a -0.026 (0.041) -0.106-0.054 0.528 -0.017 (0.038) -0.092-0.058 0.662 -0.022 (0.019) -0.059-0.016 0.254 -0.010 (0.018) -0.045-0.025 0.585 

Model 5: Fully Adjusted b -0.013 (0.041) -0.093-0.066 0.744 -0.006 (0.038) -0.080-0.069 0.880 -0.016 (0.019) -0.053-0.021 0.407 -0.010 (0.018) -0.045-0.025 0.561 

Wealth 

Main Effect 
Model 1: Crude model a 0.066 (0.026) 0.014-0.118 0.011 0.059 (0.025) 0.010-0.107 0.018 0.051 (0.012) 0.027-0.075 <0.001 -0.022 (0.012) -0.045-0.000 0.055 

Model 5: Fully Adjusted b 0.024 (0.027) -0.029-0.077 0.481 0.018 (0.026) -0.033-0.068 0.488 0.037 (0.013) 0.012-0.062 0.004 -0.014 (0.012) -0.038-0.009 0.229 

Interaction c 

Wealth * Age 
Model 1: Crude model a 0.024 (0.041) -0.055-0.104 0.550 0.044 (0.038) -0.030-0.119 0.245 -0.008 (0.019) -0.045-0.029 0.666 -0.010 (0.018) -0.045-0.025 0.575 

Model 5: Fully Adjusted b 0.012 (0.040) -0.067-0.091 0.764 0.032 (0.038) -0.043-0.106 0.403 -0.006 (0.019) -0.043-0.031 0.752 -0.009 (0.018) -0.044-0.026 0.614 

Education 

Main Effect 
Model 1: Crude model a 0.048 (0.025) -0.002-0.097 0.058 0.051 (0.024) 0.005-0.098 0.032 0.024 (0.012) 0.001-0.047 0.043 -0.017 (0.011) -0.039-0.005 0.126 

Model 5: Fully Adjusted b 0.018 (0.025) -0.032-0.068 0.480 0.019 (0.024) -0.028-0.066 0.434 0.016 (0.012) -0.007-0.040 0.169 -0.011 (0.011) -0.022-0.011 0.320 

Interaction c 

Education * Age 
Model 1: Crude model a 0.019 (0.037) -0.054-0.092 0.609 0.046 (0.035) -0.022-0.115 0.186 0.002 (0.017) -0.032-0.037 0.896 -0.002 (0.016) -0.034-0.031 0.924 

Model 5: Fully Adjusted b 0.011 (0.037) -0.062-0.083 0.776 0.036 (0.035) -0.033-0.104 0.305 0.007 (0.017) -0.027-0.041 0.702 -0.000 (0.016) -0.032-0.032 0.994 

OSC 

Main Effect 
Model 1: Crude model a 0.048 (0.023) 0.003-0.093 0.035 0.044 (0.022) 0.002-0.087 0.040 0.033 (0.011) 0.012-0.054 0.002 -0.029 (0.010) -0.049--0.009 0.004 

Model 5: Fully Adjusted b 0.019 (0.023) -0.027-0.064 0.423 0.015 (0.022) -0.028-0.058 0.483 0.026 (0.011) 0.005-0.048 0.017 -0.023 (0.010) -0.043--0.003 0.023 

Interaction c 

OSC * Age 
Model 1: Crude model a 0.018 (0.035) -0.052-0.087 0.614 0.042 (0.033) -0.023-0.107 0.209 -0.005 (0.017) -0.038-0.027 0.754 0.025 (0.016) -0.005-0.056 0.105 

Model 5: Fully Adjusted b 0.028 (0.035) -0.041-0.097 0.424 0.045 (0.033) -0.019-0.110 0.169 -0.003 (0.016) -0.035-0.030 0.876 0.026 (0.016) -0.005-0.056 0.099 
 

Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity 
c Age (>=64.25) 
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Table S3.4  Relationships of compositional and contextual socioeconomic indicators with biomarkers, with sex interactions 
 
 

 
Adjustments 

CRP* (N = 3,968) Fb (N = 3,932) WBCC* (N = 4,022) IGF-1* (N = 4,056) 

 β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

IMD 

Main Effect 
Model 1: Crude model a 0.095 (0.030) 0.036-0.154 0.002 0.054 (0.029) -0.002-0.110 0.060 0.047 (0.014) 0.019-0.075 0.001 -0.015 (0.013) -0.041-0.011 0.247 

Model 5: Fully Adjusted b 0.069 (0.030) 0.010-0.129 0.021 0.030 (0.029) -0.027-0.086 0.301 0.038 (0.014) 0.010-0.065 0.008 -0.013 (0.013) -0.038-0.013 0.332 

Interaction c 

IMD * Sex 
Model 1: Crude model a -0.050 (0.041) -0.129-0.030 0.221 -0.001 (0.038) -0.076-0.074 0.986 -0.024 (0.019) -0.061-0.014 0.215 -0.004 (0.018) -0.039-0.031 0.815 

Model 5: Fully Adjusted b -0.050 (0.040) -0.128-0.029 0.218 -0.001 (0.038) -0.076-0.073 0.972 -0.026 (0.019) -0.063-0.011 0.173 -0.004 (0.017) -0.038-0.030 0.824 

Wealth 

Main Effect 
Model 1: Crude model a 0.075 (0.030) 0.015-0.134 0.014 0.048 (0.029) -0.008-0.104 0.091 0.058 (0.014) 0.030-0.086 <0.001 -0.031 (0.013) -0.057--0.005 0.018 

Model 5: Fully Adjusted b 0.032 (0.031) -0.029-0.092 0.306 0.012 (0.029) -0.045-0.069 0.681 0.044 (0.014) 0.015-0.072 0.002 -0.024 (0.013) -0.050-0.003 0.079 

Interaction c 

Wealth * Sex 
Model 1: Crude model a 0.002 (0.040) -0.077-0.081 0.954 0.052 (0.038) -0.023-0.126 0.173 -0.010 (0.019) -0.047-0.027 0.582 0.011 (0.018) -0.024-0.045 0.537 

Model 5: Fully Adjusted b -0.007 (0.040) -0.086-0.071 0.860 0.034 (0.038) -0.039-0.108 0.362 -0.016 (0.019) -0.052-0.021 0.402 0.016 (0.017) -0.018-0.050 0.366 

Education 

Main Effect 
Model 1: Crude model a 0.058 (0.028) 0.003-0.113 0.040 0.043 (0.027) -0.009-0.096 0.103 0.028 (0.013) 0.002-0.053 0.036 -0.006 (0.012) -0.030-0.018 0.610 

Model 5: Fully Adjusted b 0.023 (0.028) -0.032-0.079 0.414 0.010 (0.027) -0.042-0.063 0.702 0.012 (0.013) -0.014-0.038 0.365 0.007 (0.012) -0.017-0.031 0.560 

Interaction c 

Education * Sex 
Model 1: Crude model a 0.006 (0.038) -0.068-0.080 0.870 0.060 (0.035) -0.009-0.130 0.089 0.021 (0.018) -0.013-0.056 0.232 -0.015 (0.016) -0.047-0.017 0.356 

Model 5: Fully Adjusted b 0.000 (0.037) -0.073-0.074 0.991 0.050 (0.035) -0.019-0.119 0.156 0.018 (0.017) -0.016-0.052 0.300 -0.010 (0.016) -0.042-0.022 0.550 

OSC 

Main Effect 
Model 1: Crude model a 0.047 (0.025) -0.003-0.097 0.065 0.054 (0.024) 0.007-0.101 0.023 0.030 (0.012) 0.006-0.053 0.012 -0.024 (0.011) -0.045--0.002 0.034 

Model 5: Fully Adjusted b 0.022 (0.025) -0.028-0.072 0.380 0.034 (0.024) -0.014-0.081 0.162 0.019 (0.012) -0.004-0.042 0.112 -0.016 (0.011) -0.038-0.006 0.153 

Interaction c 

OSC * Sex 
Model 1: Crude model a 0.017 (0.035) -0.052-0.085 0.637 0.013 (0.033) -0.052-0.077 0.702 0.014 (0.016) -0.018-0.046 0.403 0.017 (0.015) -0.014-0.047 0.281 

Model 5: Fully Adjusted b 0.010 (0.035) -0.058-0.078 0.777 0.000 (0.033) -0.064-0.064 0.998 0.011 (0.016) -0.021-0.043 0.502 0.019 (0.015) -0.011-0.049 0.206 
 

Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity 
c Sex (Male [reference group] & Female) 
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Table S3.5  Relationships of compositional and contextual socioeconomic 
indicators with CRP, including values ≥20mg/L 

 

Adjustments 
CRP* (N = 3,968) 

β (SE) 95% CI p 
C

on
te

xt
ua

l 
In

di
ca

to
rs

 IMD    

Model 1: Crude model a 0.068 (0.020) 0.028-0.108 0.001 

Model 5: Fully Adjusted e 0.042 (0.021) 0.002-0.082 0.039 

C
om

po
si

tio
na

l I
nd

ic
at

or
s 

Wealth 

Model 1: Crude model a 0.076 (0.020) 0.037-0.116 <0.001 

Model 5: Fully Adjusted e 0.028 (0.021) -0.014-0.070 0.194 

Education 

Model 1: Crude model a 0.058 (0.018) 0.022-0.094 0.002 

Model 5: Fully Adjusted e 0.020 (0.019) -0.018-0.058 0.298 

OSC 

Model 1: Crude model a 0.056 (0.018) 0.022-0.091 0.001 

Model 5: Fully Adjusted e 0.028 (0.018) -0.007-0.063 0.118 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social 
Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance 
value. 
* Log transformed variable 
a Controlled for baseline CRP = C-reactive protein  
b Demographic variables: age and sex  
d Clinical variables: BMI, limiting longstanding illness, and mobility difficulties 
c Health behaviours: smoking status, alcohol consumption, and physical activity 
e All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, 
and physical activity
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Table S3.6  Relationships of compositional and contextual factors with immune and neuroendocrine biomarkers (2008/09-2012/13), using 
complete cases 

 
 

Adjustments 
CRP* (N = 3,340) Fb (N = 3,305) WBCC* (N = 3,379) IGF-1* (N = 3,408) 

β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

C
on

te
xt

ua
l 

In
di

ca
to

rs
 

IMD             

Model 1: Crude model a 0.064 (0.022) 0.020-0.108 0.004 0.036 (0.021) -0.004-0.076 0.079 0.027 (0.010) 0.007-0.048 0.008 -0.011 (0.010) -0.030-0.008 0.247 

Model 2: Model 1 + demographic b 0.066 (0.022) 0.022-0.110 0.003 0.039 (0.020) 0.002-0.079 0.060 0.029 (0.010) 0.008-0.049 0.006 -0.014 (0.009) -0.032-0.005 0.142 

Model 3: Model 1 + clinical d 0.050 (0.022) 0.006-0.093 0.026 0.026 (0.021) -0.014-0.067 0.205 0.023 (0.010) 0.003-0.043 0.027 -0.006 (0.010) -0.025-0.012 0.505 

Model 4: Model 1 + health behaviours  c 0.049 (0.023) 0.005-0.094 0.029 0.019 (0.021) -0.022-0.060 0.356 0.019 (0.010) -0.001-0.040 0.065 -0.007 (0.010) -0.026-0.012 0.499 

Model 5: Fully Adjusted e 0.040 (0.023) -0.004-0.085 0.074 0.014 (0.021) -0.026-0.055 0.490 0.016 (0.010) -0.004-0.037 0.119 -0.009 (0.010) -0.028-0.010 0.338 

C
om

po
si

tio
na

l I
nd

ic
at

or
s 

Wealth 

Model 1: Crude model a 0.073 (0.022) 0.029-0.116 0.001 0.084 (0.020) 0.044-0.124 <0.001 0.047 (0.010) 0.027-0.067 <0.001 -0.025 (0.010) -0.044--0.006 0.009 

Model 2: Model 1 + demographic b   0.069 (0.022) 0.025-0.113 0.002 0.080 (0.020) 0.040-0.120 <0.001 0.046 (0.010) 0.025-0.066 <0.001 -0.019 (0.009) -0.037--0.000 0.045 

Model 3: Model 1 + clinical d 0.047 (0.023) 0.003-0.091 0.037 0.068 (0.021) 0.027-0.109 0.001 0.041 (0.011) 0.020-0.062 <0.001 -0.016 (0.010) -0.035-0.003 0.093 

Model 4: Model 1 + health behaviours  c 0.048 (0.023) 0.002-0.093 0.041 0.056 (0.021) 0.014-0.098 0.009 0.037 (0.011) 0.016-0.058 0.001 -0.017 (0.010) -0.037-0.003 0.092 

Model 5: Fully Adjusted e 0.027 (0.023) -0.011-0.069 0.249 0.043 (0.022) 0.000-0.085 0.048 0.030 (0.011) 0.009-0.052 0.005 -0.013 (0.010) -0.032-0.007 0.208 

Education 

Model 1: Crude model a 0.053 (0.020) 0.013-0.093 0.009 0.073 (0.019) 0.037-0.110 <0.001 0.029 (0.009) 0.010-0.047 0.002 -0.026 (0.009) -0.043--0.009 0.003 

Model 2: Model 1 + demographic b 0.044 (0.021) 0.003-0.085 0.036 0.059 (0.019) 0.022-0.097 0.002 0.028 (0.010) 0.009-0.047 0.003 -0.003 (0.009) -0.020-0.014 0.747 

Model 3: Model 1 + clinical d 0.036 (0.020) -0.004-0.076 0.077 0.061 (0.019) 0.024-0.098 0.001 0.024 (0.009) 0.006-0.043 0.010 -0.020 (0.009) -0.037--0.003 0.024 

Model 4: Model 1 + health behaviours  c 0.037 (0.021) -0.004-0.078 0.074 0.054 (0.019) 0.017-0.092 0.005 0.022 (0.010) 0.004-0.041 0.019 -0.020 (0.009) -0.038--0.003 0.024 

Model 5: Fully Adjusted e 0.021 (0.021) -0.021-0.062 0.333 0.034 (0.020) -0.005-0.072 0.085 0.018 (0.010) -0.001-0.037 0.064 0.001 (0.009) -0.016-0.019 0.878 

OSC 

Model 1: Crude model a 0.056 (0.019) 0.018-0.094 0.004 0.054 (0.018) 0.019-0.088 0.003 0.035 (0.009) 0.017-0.053 <0.001 -0.019 (0.008) -0.035--0.003 0.023 

Model 2: Model 1 + demographic b 0.052 (0.019) 0.014-0.090 0.007 0.046 (0.018) 0.011-0.081 0.010 0.035 (0.009) 0.018-0.053 <0.001 -0.008 (0.008) -0.025-0.008 0.301 

Model 3: Model 1 + clinical d 0.043 (0.019) 0.005-0.081 0.027 0.045 (0.018) 0.010-0.080 0.012 0.031 (0.009) 0.014-0.049 0.001 -0.014 (0.008) -0.030-0.003 0.105 

Model 4: Model 1 + health behaviours  c 0.042 (0.020) 0.004-0.081 0.032 0.036 (0.018) 0.000-0.071 0.049 0.028 (0.009) 0.010-0.046 0.002 -0.014 (0.008) -0.030-0.003 0.109 

Model 5: Fully Adjusted e 0.032 (0.020) -0.007-0.070 0.109 0.026 (0.018) -0.010-0.061 0.158 0.025 (0.009) 0.007-0.043 0.006 -0.004 (0.008) -0.021-0.012 0.593 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b Demographic variables: age and sex  
c Clinical variables: BMI, limiting longstanding illness, and mobility difficulties 
d Health behaviours: smoking status, alcohol consumption, and physical activity 
e All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity 
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Table S3.7 Longitudinal relationships of compositional and contextual socioeconomic indicators with immune and neuroendocrine 
biomarkers, having restricted the sample to non-movers  

 

Adjustments 
CRP* (N = 3,794) Fb (N = 3,753) WBCC* (N = 3,847) IGF-1* (N = 3,877) 

β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p β (SE) 95% CI p 

C
on

te
xt

ua
l 

In
di

ca
to

rs
 IMD 

Model 1: Crude model a 0.069 (0.020) 0.028-0.109 0.001 0.056 (0.020) 0.018-0.094 0.004 0.035 (0.010) 0.016-0.054 <0.001 -0.014 (0.009) -0.032-0.004 0.116 

Model 5: Fully Adjusted b 0.044 (0.021) 0.003-0.085 0.036 0.033 (0.020) -0.005-0.072 0.091 0.025 (0.010) 0.006-0.044 0.011 -0.012 (0.009) -0.030-0.006 0.180 

C
om

po
si

tio
na

l I
nd

ic
at

or
s 

Wealth 

Model 1: Crude model a 0.065 (0.020) 0.025-0.106 0.002 0.067 (0.020) 0.031-0.108 <0.001 0.049 (0.010) 0.030-0.068 <0.001 -0.028 (0.009) -0.046--0.010 0.002 

Model 5: Fully Adjusted b 0.018 (0.021) -0.025-0.061 0.408 0.026 (0.021) -0.015-0.066 0.213 0.034 (0.010) 0.014-0.054 0.001 -0.015 (0.009) -0.033-0.004 0.125 

Education 

Model 1: Crude model a 0.059 (0.018) 0.022-0.096 0.002 0.073 (0.018) 0.039-0.108 <0.001 0.030 (0.009) 0.012-0.047 0.001 -0.026 (0.008) -0.042--0.010 0.002 

Model 5: Fully Adjusted b 0.021 (0.019) -0.017-0.060 0.284 0.033 (0.019) -0.003-0.070 0.073 0.019 (0.009) 0.001-0.037 0.040 0.003 (0.009) -0.014-0.020 0.711 

OSC 

Model 1: Crude model a 0.062 (0.018) 0.026-0.097 0.001 0.068 (0.017) 0.035-0.101 <0.001 0.032 (0.008) 0.016-0.049 <0.001 -0.023 (0.008) -0.038--0.007 0.004 

Model 5: Fully Adjusted b 0.034 (0.018) -0.001-0.070 0.060 0.040 (0.017) 0.006-0.074 0.021 0.024 (0.009) 0.007-0.041 0.005 -0.007 (0.008) -0.023-0.008 0.348 

 
Notes: IMD = Index of Multiple Deprivation (i.e., Neighbourhood Deprivation); OSC = Occupational Social Class; β = unstandardised regression coefficient; SE = standard error; CI = confidence interval; p = significance value. 
* Log transformed variable 
a Baseline neuroimmune biomarkers respectively controlled for: CRP = C-reactive protein; Fb = fibrinogen; WBC = white blood cell counts; IGF-I = insulin-like growth factor-1  
b All variables: age, sex, BMI, limiting longstanding illness, mobility difficulties, smoking status, alcohol consumption, and physical activity 
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Figure S4.1  Flow chart of missingness and the analytic sample for complete cases 
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Figure S4.2 [a-g] Mean immune and neuroendocrine biomarker levels for a one to seven profile 

solution (N = 4,934) 

a 

 
 
 

b 
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Figure S4.3 The predicted mean values of immune and neuroendocrine biomarker profiles for the 

three-profile solution using complete case data (N = 1,677) 
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Figure S4.4  The percentage of participants belonging to each immune and neuroendocrine biomarker 

profile with 95% confidence intervals for the three-profile solution using complete case data 

(N = 1,677) 

 

 
 

 
 
 

Profile N % 

   

1 1,028 61.30 

2 517 30.83 

3 132 7.87 
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Table S4.1  A comparison of core, imputed, and observed sample characteristics, with missing data 
 

Variable 
Missing Data Core Sample (N=6,456) Imputed (N=4,934) Complete Cases (N=1,677) 

N | % N / Mean (SD) % / Range N / Mean (SD) % / Range N / Mean (SD) % / Range 

           
Age  0 | 0 65.40 (9.42) 50-99 66.31 (9.35) 50-99 65.04 (8.01) 50-99 
Age (Binary) < Median 0 | 0 3,684 56.57 2,437 49.39 826 49.25 

 ≥ Median  2,828 43.43 2,497 50.61 851 50.75 
Sex Male 0 | 0 2,941 45.16 2,235 45.30 540 32.20 

 Female  3,571 54.84 2,699 54.70 1,137 67.80 
Education Higher 15 | 0.23 2,111 32.42 1,585 32.12 567 33.81 

 Primary/Secondary/Tertiary   2,075 31.86 1,544 31.29 562 33.51 
 Alternative or None  2,326 35.72 1,805 36.58 548 32.68 

Occupational Social Class Managerial/Professional 149 | 2.31 2,430 37.32 1,790 36.28 598 35.66 
 Intermediate Occupations  1,639 25.17 1,264 25.62 455 27.13 
 Routine/Manual  2,443 37.52 1,880 38.10 624 37.21 

Smoking Status Non-smokers/Ex-smokers 44 | 1.68 5,663 86.96 4,306 87.27 1,485 88.55 
 Smokers  849 13.04 628 12.73 192 11.45 

Alcohol Consumption <3 days a week 548 | 8.49 4,253 65.31 3,171 64.27 1,029 61.36 
 ≥3 days a week  2,259 34.69 1,763 35.73 648 38.64 

Physical Activity  Moderately/Vigorously Active 34 | 0.53 1,781 27.35 1,338 27.12 383 22.84 
 Sedentary  4,731 72.65 3,596 72.88 1,294 77.16 

PGS for CRP Low 1,522 | 23.57 3,945 79.96 3,945 79.96 1,353 80.68 
 High  989 20.04 989 20.04 324 19.32 

PGS for cortisol Low 1,522 | 23.57 3,969 80.44 3,969 80.44 1,377 82.11 
 High  965 19.56 965 19.56 300 17.89 

PGS for IGF-1 Low 1,522 | 23.57 3,929 79.63 3,929 79.63 1,345 80.20 
 High  1,005 20.37 1,005 20.37 332 19.80 

Stress Score  0 | 0 1.56 (.90) 0-6 1.51(.90) 0-6 1.50 (.89) 0-6 
Binary Stress Score No 0 | 0 5,655 86.84 4,318 87.52 1,487 88.67 

 Yes  857 13.16 616 12.48 190 11.33 
CRP* (mg/L; Baseline)  159 | 2.46 1.18 (.68) .18-3.05 1.19 (.68) .18-3.04 1.13 (.65) .18–3.03 
CRP* (mg/L; Follow-up)  2,374 | 36.77 1.35 (.71) .10-3.05 1.37 (.73) .10-3.05 1.04 (.60) .10-3.03 
Fb (g/L; Baseline)  188 | 2.91 3.37 (.56) 1.30-5.90 3.38 (.56) 1.30–5.90 3.32 (.52) 1.70–5.30 
Fb (g/L; Follow-up)  2,373 | 36.76 3.11 (.51) 1.30-5.80 3.12 (.54) 1.50–5.80 2.96 (.50) 1.60–5.20 
Cortisol* (pg/mg; Follow-up)  3,374 | 52.26 2.76 (1.35) .13-6.49 2.93 (1.34) .13-6.49 2.50 (1.22) .13-6.49 
IGF-1* (nmol/L; Baseline)  95 | 1.47 2.77 (.34) 1.10-4.19 2.78 (.34) 1.10-4.19 2.78 (.32) 1.61–3.85 
IGF-1* (nmol/L; Follow-up)  2,297 | 35.58 2.78 (.27) 1.61-4.06 2.78 (.27) 1.61-4.06 2.79 (.30) 1.61–4.06 
                  

Notes: ELSA, waves 4-6 (2008/09-2012/13); N = observations; % = percentage frequencies; SD = standard deviations; OSC = occupational social class; CRP = C-reactive protein; Fb = Fibrinogen; IGF-1 = Insulin-
growth factor-1; * Log-transformed variable; I-N = immune and neuroendocrine.



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 212/340 

Table S4.2  Correlations between immune and neuroendocrine biomarkers 
 
 

 CRP Fb Cortisol IGF-1 

CRP 
1    

-    

Fb 
0.706* 1   

<0.001    

Cortisol 
0.273* 0.176* 1  

<0.001 <0.001   

IGF-1 
-0.163* -0.011 0.005 1 

<0.001 0.438 0.752  

 
Notes: C-reactive protein (CRP); Fb = Fibrinogen; IGF-1 = insulin-growth factor-1; * Significant at p<0.001 level 
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Table S4.3  Seven Profile LPA model fit indices and predicted probability of profile 

membership (N = 4934) 

 

Criteria 
One Two Three Four Five Six Seven 

Profile Profiles Profiles Profiles Profiles Profiles Profiles 

AIC 36460.95 32478.36 30823.00 30574.08 30283.37 30214.23 30105.23 

AIC Difference (N) - 3982.59 1655.36 248.92 290.71 69.14 109.00 

AIC Difference (%) - 12.26 5.37 0.81 0.96 0.23 0.36 

BIC 36512.98 32562.92 30940.07 30723.67 30465.48 30428.86 30352.38 

BIC Difference (N) - 3950.06 1622.85 216.40 258.19 36.62 76.48 

BIC Difference (%) - 12.13 5.25 0.70 0.85 0.12 0.25 

aBIC 36487.56 32521.61 30882.87 30650.59 30376.51 30324.00 30231.63 

aBIC Difference (N) - 3965.95 1638.73 232.29 274.08 52.51 92.37 

aBIC Difference (%) - 12.19 5.31 0.76 0.90 0.17 0.31 

Entropy - 0.88 0.84 0.73 0.83 0.82 0.87 

Normalised Entropy - 0.84 0.78 0.64 0.77 0.77 0.83 

M Posterior 
Probabilities (SE) 

- 0.711 (.007) 0.358 (.008) 0.211 (.012) 0.185 (.008) 0.150 (.008) 0.179 (.008) 

- 0.289 (.007) 0.399 (.008) 0.218 (.011) 0.225 (.008) 0.185 (.010) 0.042 (.009) 

- - 0.243 (.006) 0.333 (.009) 0.296 (.008) 0.119 (.010) 0.187 (.011) 

- - - 0.238 (.006) 0.073 (.006) 0.258 (.010) 0.296 (.008) 

- - - - 0.223 (.006) 0.066 (.005) 0.074 (.006) 

- - - - - 0.221 (.006) 0.003 (.001) 

- - - - - - 0.219 (.006) 

N classes >5% Yes Yes Yes Yes Yes Yes No 
 

Notes: AIC = Akaike information criterion; BIC = Bayesian information criterion; aBIC = adjusted Bayesian information criterion; N = number of 

observations; M = mean; SE = standard errors. 
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Table S4.4  Longitudinal associations of the stress score with immune and 
neuroendocrine biomarker profiles, with incremental model adjustment 
(N=4,934) 

 
 

Adjustments 
Binary Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.98 0.10 0.81 1.20 0.870 

Model 2: Model 1 + baseline biomarkers a 1.01 0.11 0.83 1.24 0.898 

Model 3: Model 2 + demographics & genetics b 1.14 0.12 0.93 1.41 0.213 

Model 3a: Model 3 + socioeconomics b1 1.14 0.12 0.92 1.40 0.232 

Model 3b: Model 3 + health behaviours  b2 1.09 0.12 0.88 1.35 0.412 

Model 3c: Model 3 + health b3 1.15 0.12 0.93 1.41 0.206 

Model 4: Fully Adjusted c 1.10 0.12 0.89 1.35 0.401 

High-risk Profile 

Model 1: Unadjusted 1.34 0.15 1.08 1.66 0.008 

Model 2: Model 1 + baseline biomarkers a 1.42 0.18 1.10 1.83 0.007 

Model 3: Model 2 + demographics & genetics b 1.80 0.24 1.39 2.35 <0.001 

Model 3a: Model 3 + socioeconomics b1 1.77 0.24 1.36 2.31 <0.001 

Model 3b: Model 3 + health behaviours  b2 1.61 0.22 1.22 2.11 0.001 

Model 3c: Model 3 + health b3 1.81 0.25 1.39 2.36 <0.001 

Model 4: Fully Adjusted c 1.61 0.22 1.23 2.12 0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1PGS. 
b1  Socioeconomics: education; occupational social status. 
b2  Health behaviours : smoking status; alcohol consumption; physical activity. 
b3  Health: chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; 

hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder. 
c  Fully adjusted: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; 

smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; 
heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; 
osteoporosis; psychiatric disorder). 
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Table S4.5  Longitudinal associations of the stress score with immune and 
neuroendocrine biomarker profiles (N=4,934) 

 
 

Adjustments 
Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.08 0.05 1.00 1.18 0.766 

Model 2: Model 1 + baseline biomarkers a 1.11 0.05 1.01 1.22 0.942 

Model 3: Model 2 + demographics & genetics b 1.25 0.06 1.13 1.38 0.080 

Model 4: Fully Adjusted c 1.19 0.06 1.07 1.31 0.175 

High-risk Profile 

Model 1: Unadjusted 1.08 0.05 1.00 1.18 0.050 

Model 2: Model 1 + baseline biomarkers a 1.11 0.05 1.01 1.22 0.031 

Model 3: Model 2 + demographics & genetics b 1.25 0.06 1.13 1.38 0.000 

Model 4: Fully Adjusted c 1.19 0.06 1.07 1.31 0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Table S4.6a  Longitudinal associations of financial strain with immune and 
neuroendocrine biomarker profiles (N=4,934) 

 

Adjustments 
Binary Financial Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.28 0.12 1.07 1.53 0.007 

Model 2: Model 1 + baseline biomarkers a 1.27 0.12 1.06 1.53 0.010 

Model 3: Model 2 + demographics & genetics b 1.32 0.12 1.09 1.58 0.004 

Model 4: Fully Adjusted c 1.23 0.12 1.02 1.48 0.033 

High-risk Profile 

Model 1: Unadjusted 1.66 0.16 1.37 2.01 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.66 0.19 1.33 2.09 <0.001 

Model 3: Model 2 + demographics & genetics b 1.79 0.21 1.42 2.26 <0.001 

Model 4: Fully Adjusted c 1.59 0.19 1.25 2.01 <0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Table S4.6b  Longitudinal associations of care giving with immune and 
neuroendocrine biomarker profiles (N=4,934) 

 

Adjustments 
Binary Care Giving Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.05 0.14 0.82 1.36 0.685 

Model 2: Model 1 + baseline biomarkers a 1.02 0.14 0.79 1.33 0.866 

Model 3: Model 2 + demographics & genetics b 1.07 0.14 0.83 1.40 0.598 

Model 4: Fully Adjusted c 1.10 0.15 0.84 1.43 0.484 

High-risk Profile 

Model 1: Unadjusted 1.05 0.15 0.79 1.40 0.726 

Model 2: Model 1 + baseline biomarkers a 1.02 0.17 0.73 1.42 0.930 

Model 3: Model 2 + demographics & genetics b 1.17 0.21 0.83 1.65 0.371 

Model 4: Fully Adjusted c 1.29 0.23 0.91 1.83 0.153 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder).  
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Table S4.6c  Longitudinal associations of disability with immune and neuroendocrine 
biomarker profiles (N=4,934) 

 

Adjustments 
Binary Disability Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.59 0.04 0.51 0.67 <0.001 

Model 2: Model 1 + baseline biomarkers a 0.65 0.04 0.57 0.75 <0.001 

Model 3: Model 2 + demographics & genetics b 0.74 0.05 0.64 0.85 <0.001 

Model 4: Fully Adjusted c 0.80 0.06 0.69 0.92 0.002 

High-risk Profile 

Model 1: Unadjusted 0.33 0.03 0.28 0.39 <0.001 

Model 2: Model 1 + baseline biomarkers a 0.46 0.04 0.39 0.55 <0.001 

Model 3: Model 2 + demographics & genetics b 0.55 0.05 0.45 0.66 <0.001 

Model 4: Fully Adjusted c 0.70 0.07 0.58 0.86 <0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Table S4.6d  Longitudinal associations of limiting longstanding illness with immune and 
neuroendocrine biomarker profiles (N=4,934) 

 

Adjustments 
Binary Limiting Longstanding Illness Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.46 0.11 1.26 1.69 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.34 0.10 1.15 1.55 <0.001 

Model 3: Model 2 + demographics & genetics b 1.25 0.10 1.07 1.46 0.004 

Model 4: Fully Adjusted c 1.14 0.09 0.97 1.34 0.112 

High-risk Profile 

Model 1: Unadjusted 2.64 0.21 2.26 3.10 <0.001 

Model 2: Model 1 + baseline biomarkers a 2.01 0.19 1.67 2.42 <0.001 

Model 3: Model 2 + demographics & genetics b 1.81 0.18 1.50 2.18 <0.001 

Model 4: Fully Adjusted c 1.34 0.14 1.10 1.65 0.005 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 
status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; 
congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric 
disorder).  
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Table S4.6e  Longitudinal associations of bereavement with immune and 
neuroendocrine biomarker profiles (N=4,934) 

 

Adjustments 
Binary Bereavement Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.06 0.07 0.93 1.21 0.397 

Model 2: Model 1 + baseline biomarkers a 1.07 0.07 0.93 1.22 0.354 

Model 3: Model 2 + demographics & genetics b 1.16 0.08 1.01 1.33 0.040 

Model 4: Fully Adjusted c 1.18 0.08 1.02 1.36 0.022 

High-risk Profile 

Model 1: Unadjusted 1.11 0.08 0.96 1.29 0.178 

Model 2: Model 1 + baseline biomarkers a 1.10 0.10 0.93 1.31 0.273 

Model 3: Model 2 + demographics & genetics b 1.25 0.12 1.04 1.50 0.016 

Model 4: Fully Adjusted c 1.26 0.12 1.04 1.52 0.016 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Table S4.6f  Longitudinal associations of divorce with immune and neuroendocrine 
biomarker profiles (N=4,934) 

 

Adjustments 
Binary Divorce Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.03 0.12 0.82 1.29 0.810 

Model 2: Model 1 + baseline biomarkers a 1.05 0.13 0.83 1.32 0.698 

Model 3: Model 2 + demographics & genetics b 1.10 0.13 0.87 1.39 0.441 

Model 4: Fully Adjusted c 0.98 0.12 0.77 1.25 0.886 

High-risk Profile 

Model 1: Unadjusted 1.27 0.16 0.99 1.62 0.060 

Model 2: Model 1 + baseline biomarkers a 1.31 0.20 0.98 1.76 0.069 

Model 3: Model 2 + demographics & genetics b 1.52 0.23 1.13 2.05 0.006 

Model 4: Fully Adjusted c 1.20 0.19 0.88 1.64 0.243 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Table S4.7  Longitudinal associations of stress with immune and neuroendocrine 
biomarker profiles, excluding measures for disability and limiting 
longstanding illness (N=4,934) 

 
 

Adjustments 
Reduced Binary Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.04 0.10 0.86 1.26 0.698 

Model 2: Model 1 + baseline biomarkers a 1.05 0.11 0.86 1.28 0.646 

Model 3: Model 2 + demographics & genetics b 1.17 0.12 0.95 1.43 0.141 

Model 4: Fully Adjusted c 1.11 0.12 0.90 1.36 0.335 

High-risk Profile 

Model 1: Unadjusted 1.47 0.15 1.19 1.80 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.52 0.19 1.19 1.94 0.001 

Model 3: Model 2 + demographics & genetics b 1.89 0.24 1.47 2.43 <0.001 

Model 4: Fully Adjusted c 1.71 0.23 1.32 2.22 <0.001 

 
 

Adjustments 
Reduced Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.10 0.05 1.01 1.21 0.029 

Model 2: Model 1 + baseline biomarkers a 1.11 0.05 1.01 1.21 0.033 

Model 3: Model 2 + demographics & genetics b 1.18 0.06 1.07 1.30 0.001 

Model 4: Fully Adjusted c 1.15 0.06 1.04 1.27 0.004 

High-risk Profile 

Model 1: Unadjusted 1.25 0.06 1.13 1.38 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.25 0.08 1.11 1.41 <0.001 

Model 3: Model 2 + demographics & genetics b 1.42 0.09 1.26 1.61 <0.001 

Model 4: Fully Adjusted c 1.35 0.09 1.19 1.53 <0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; 

smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; 
heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; 
osteoporosis; psychiatric disorder). 
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Table S4.8a  Longitudinal associations of stress with immune and neuroendocrine biomarker profiles stratified by median age (65 years) 
 
 

Adjustments 
Binary Stress Score | < Mdn Age (N=2,437) Binary Stress Score | ≥ Mdn Age (N=2,497) 

RRR SE 95% CI p RRR SE 95% CI p 

Moderate-risk Profile       

Model 1: Unadjusted 1.06 0.13 0.83 1.35 0.660 1.10 0.21 0.76 1.59 0.624 

Model 2: Model 1 + baseline biomarkers a 1.13 0.15 0.88 1.45 0.350 1.08 0.21 0.74 1.58 0.687 

Model 3: Model 2 + demographics & genetics b 1.13 0.15 0.88 1.46 0.343 1.16 0.23 0.79 1.70 0.458 

Model 4: Fully Adjusted c 1.08 0.14 0.83 1.39 0.583 1.12 0.22 0.76 1.65 0.581 

High-risk Profile       

Model 1: Unadjusted 1.26 0.18 0.95 1.67 0.117 2.05 0.38 1.43 2.95 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.40 0.24 0.99 1.96 0.056 1.98 0.42 1.31 3.00 0.001 

Model 3: Model 2 + demographics & genetics b 1.37 0.24 0.96 1.93 0.079 2.29 0.51 1.49 3.53 <0.001 

Model 4: Fully Adjusted c 1.18 0.22 0.83 1.69 0.354 2.13 0.49 1.36 3.34 0.001 

 
Notes: The low-risk group is the reference; < = less than; ≥ = greater than or equal to; Mdn = Median; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; 

coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S4.8b  The moderated effective of age on longitudinal associations between stress 
and immune and neuroendocrine biomarker profiles (N=4,934) 

 
 

Adjustments 
Stress Score | Age 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.00 0.00 0.99 1.01 0.445 

Model 2: Model 1 + baseline biomarkers a 1.00 0.00 0.99 1.00 0.229 

Model 3: Model 2 + demographics & genetics b 0.99 0.01 0.99 1.00 0.202 

Model 4: Fully Adjusted c 0.99 0.01 0.99 1.00 0.172 

High-risk Profile 

Model 1: Unadjusted 1.01 0.01 1.00 1.02 0.205 

Model 2: Model 1 + baseline biomarkers a 1.00 0.01 0.99 1.01 0.829 

Model 3: Model 2 + demographics & genetics b 1.00 0.01 0.99 1.01 0.801 

Model 4: Fully Adjusted c 1.00 0.01 0.99 1.01 0.913 
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Table S4.9a  Longitudinal associations of stress with immune and neuroendocrine biomarker profiles stratified by sex 
 
 

Adjustments 
Binary Stress Score | Male (N=2,235) Binary Stress Score | Female (N=2,699) 

RRR SE 95% CI p RRR SE 95% CI p 

Moderate-risk Profile       

Model 1: Unadjusted 0.90 0.15 0.66 1.25 0.540 1.01 0.13 0.78 1.31 0.922 

Model 2: Model 1 + baseline biomarkers a 0.96 0.16 0.69 1.33 0.790 1.03 0.14 0.79 1.35 0.818 

Model 3: Model 2 + demographics & genetics b 1.09 0.19 0.78 1.53 0.611 1.16 0.16 0.89 1.52 0.280 

Model 4: Fully Adjusted c 0.97 0.17 0.69 1.37 0.857 1.16 0.16 0.88 1.53 0.289 

High-risk Profile       

Model 1: Unadjusted 1.32 0.23 0.94 1.84 0.112 1.34 0.19 1.01 1.76 0.042 

Model 2: Model 1 + baseline biomarkers a 1.46 0.30 0.97 2.18 0.069 1.41 0.24 1.02 1.97 0.040 

Model 3: Model 2 + demographics & genetics b 1.82 0.39 1.19 2.77 0.006 1.78 0.31 1.26 2.50 0.001 

Model 4: Fully Adjusted c 1.48 0.33 0.95 2.29 0.080 1.66 0.30 1.17 2.37 0.005 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; 

coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S4.9b  The moderated effective of sex on longitudinal associations between stress and 
immune and neuroendocrine biomarker profiles (N=4,934) 

 
 

Adjustments 
Stress Score | Sex 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.03 0.08 0.89 1.19 0.704 

Model 2: Model 1 + baseline biomarkers a 1.05 0.08 0.91 1.23 0.495 

Model 3: Model 2 + demographics & genetics b 1.11 0.09 0.95 1.29 0.189 

Model 4: Fully Adjusted c 1.09 0.09 0.93 1.27 0.299 

High-risk Profile 

Model 1: Unadjusted 1.03 0.09 0.87 1.21 0.742 

Model 2: Model 1 + baseline biomarkers a 1.08 0.11 0.89 1.31 0.469 

Model 3: Model 2 + demographics & genetics b 1.15 0.12 0.94 1.41 0.163 

Model 4: Fully Adjusted c 1.13 0.12 0.92 1.39 0.239 

 
  



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 227/340 

Table S4.10  Longitudinal associations of stress with immune and neuroendocrine biomarker 
profiles (N=4,934) 

 
 
 

Adjustments 
Binary Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.98 0.10 0.81 1.20 0.870 

Model 2: Model 1 + baseline biomarkers & demographics a  1.14 0.12 0.92 1.40 0.225 

Model 3: Model 2 + genetics b 1.14 0.12 0.93 1.41 0.213 

Model 4: Fully Adjusted c 1.10 0.12 0.89 1.35 0.401 

High-risk Profile 

Model 1: Unadjusted 1.34 0.15 1.08 1.66 0.008 

Model 2: Model 1 + baseline biomarkers & demographics a  1.79 0.24 1.38 2.33 <0.001 

Model 3: Model 2 + genetics b 1.80 0.24 1.39 2.35 <0.001 

Model 4: Fully Adjusted c 1.61 0.22 1.23 2.12 0.001 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers and genetic variables: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1); age; sex. 
b  Demographic: 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; 

alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive 
heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S4.11  Longitudinal associations of stress with immune and neuroendocrine biomarker 
profiles, with complete case data (N=1,677) 

 
 

Adjustments 
Binary Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.23 0.20 0.89 1.70 0.210 

Model 2: Model 1 + baseline biomarkers a 1.33 0.25 0.93 1.91 0.117 

Model 3: Model 2 + demographics & genetics b 1.38 0.26 0.96 1.99 0.084 

Model 4: Fully Adjusted c 1.33 0.25 0.91 1.93 0.136 

High-risk Profile 

Model 1: Unadjusted 1.22 0.34 0.71 2.11 0.473 

Model 2: Model 1 + baseline biomarkers a 1.35 0.41 0.74 2.46 0.330 

Model 3: Model 2 + demographics & genetics b 1.44 0.45 0.78 2.65 0.239 

Model 4: Fully Adjusted c 1.23 0.40 0.65 2.32 0.524 

 
 
 

Adjustments 
Stress Score 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.09 0.07 0.97 1.23 0.141 

Model 2: Model 1 + baseline biomarkers a 1.11 0.07 0.97 1.26 0.125 

Model 3: Model 2 + demographics & genetics b 1.13 0.08 0.99 1.29 0.071 

Model 4: Fully Adjusted c 1.12 0.08 0.98 1.29 0.096 

High-risk Profile 

Model 1: Unadjusted 1.13 0.12 0.92 1.38 0.236 

Model 2: Model 1 + baseline biomarkers a 1.14 0.13 0.92 1.43 0.241 

Model 3: Model 2 + demographics & genetics b 1.19 0.14 0.95 1.49 0.141 

Model 4: Fully Adjusted c 1.09 0.13 0.86 1.38 0.492 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking 

status; alcohol consumption; physical activity; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 
murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder). 
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Figure S5.1  The percentage of participants belonging to each immune and neuroendocrine biomarker profile with 

95% confidence intervals for the wave 4 three-profile solution (N = 4,940) 
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Figure S5.2 [a-g] Predicted mean of immune and neuroendocrine biomarker levels for a one to seven profile 

solution for wave 6 (N = 4,940) 
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Table S5.1  The distribution of missing data, with a comparison between imputed, core, and complete case sample characteristics 
 

Variable 
Missing Data Imputed (N = 4,940) Core (N = 6,523) Complete Case (N = 1,305) 

N | % N / M (SD) % / Range N / M (SD) % / Range N / M (SD) % / Range 
         

Age  0 | 0 66.3 (9.35) 50-99 65.4 (9.43) 50-99 64.53 (7.85) 50-99 
Age (Binary) < Md 0 | 0 2,436 49.31 3,205 49.13 628 48.12 
 ≥ Md  2,504 50.69 3,318 50.87 677 51.88 
Sex Male 0 | 0 2,237 45.3 2,945 45.15 410 31.42 
 Female  2,703 54.7 3,578 54.85 895 68.58 
Education Higher 100 | 0.93 1,589 32.2 2,116 32.44 445 34.10 
 Primary/Secondary/Tertiary  1,543 31.2 2,075 31.81 436 33.41 
 Alternative/No  1,808 36.6 2,332 35.75 424 32.49 
Wealth Lowest 1,160 | 10.79 1,573 31.8 2,082 31.92 399 30.57 
 Middle  2,014 40.8 2,581 39.57 565 43.30 
 Highest  1,353 27.4 1,860 28.51 341 26.13 
OSC Managerial/Professional 534 | 4.97 1,793 36.3 2,434 37.31 475 36.40 
 Intermediate  1,264 25.6 1,641 25.16 352 26.97 
 Routine/Manual  1,883 38.1 2,448 37.53 478 36.63 
Smoking Status Never/Ex-Smokers 203 | 1.89 4,312 87.3 5,673 86.97 1,146 87.82 
 Current Smoker  628 12.7 850 13.03 159 12.18 
Alcohol Consumption <3 days a week 1,597 | 14.86 3,175 64.3 4,262 65.34 815 62.45 
 ≥3 days a week  1,765 35.7 2,261 34.66 490 37.55 
Physical Activity Sedentary 179 | 1.67 1,340 27.1 1,786 27.38 304 23.30 
 Active  3,600 72.9 4,737 72.62 1,001 76.70 
Mobility Mobile 141 | 1.31 2,678 54.2 3,422 52.46 687 52.64 
 Not Mobile  2,262 45.8 3,101 47.54 618 47.36 
Limiting Longstanding Illness None 8 | 0.07 3,386 68.5 4,535 69.52 923 70.73 
 Present  1,554 31.5 1,988 30.48 382 29 
Health No health condition 132 | 1.23 3,319 67.2 4,640 71.13 866 66.36 
 At least one health condition  1,621 32.8 1,883 28.87 439 33.64 
BMI (kg/m2) <25, Underweight/Normal 2,474 | 23.02 1,312 26.6 1,769 27.12 354 27.13 
 25-30, Overweight: Pre-obese  2,213 44.8 2,917 44.72 564 43.22 
 30 or over, Obese  1,415 28.6 1,837 28.16 387 29.66 
CRP* (mg/L; Baseline)  4,502 | 41.88 0.28 (0.46) -0.70-1.30 0.28 (0.46) -0.70-1.30 0.24 (0.46) -0.70-1.29 
CRP* (mg/L; Follow-up)  5,625 | 52.33 0.40 (0.48) -1.00-1.30 0.39 (0.47) -1.00-1.30 0.19 (0.43) -1.00-1.29 
Fb (g/L; Baseline)  4,535 | 42.19 3.38 (0.56) 1.30-5.90 3.37 (0.56) 1.30-5.90 3.32 (0.53) 1.70-5.30 
Fb (g/L; Follow-up)  5,620 | 52.28 3.12 (0.52) 1.50-5.80 3.10 (0.52) 1.30-5.80 2.95 (0.49) 1.60-4.70 
WBCC* (nmol/L; Baseline)  4,471 | 41.59 0.79 (0.13) -0.10-1.50 0.79 (0.13) -0.10-1.70 0.78 (0.13) 0.15-1.50 
WBCC* (nmol/L; Follow-up)  5,571 | 51.83 0.81 (0.11) 0.34-1.51 0.81 (0.11) 0.31-1.51 0.79 (0.13) 0.39-1.51 
IGF-1* (nmol/L; Baseline)  4,441 | 41.32 1.18 (0.16) 0.30-1.81 1.17 (0.16) 0.30-1.81 1.18 (0.15) 0.60-1.66 
IGF-1* (nmol/L; Follow-up)   1.18 (0.13) 0.60-1.76 1.18 (0.13) 0.60-1.76 1.19 (0.14) 0.70-1.76 
Cortisol* (nmol/L; Follow-up)  6,556 | 60.99 1.23 (0.65) -0.85-2.82 0.39 (0.47) -1.00-1.30 0.89 (0.59) -0.85-2.82 
Stress (indexed by Financial Strain) No Strain (0-60%) 676 | 6.29 4,099 83.0 5,407 82.89 1,049 80.38 
 Strain (61-100%)  841 17.0 1,116 17.11 256 19.62 
Sleep Duration Short Sleep 0 | 0 627 12.7 828 12.69 181 13.72 
 Optimal Sleep  4,227 85.6 5,575 85.47 1,126 85.37 
 Long Sleep  86 1.70 120 1.84 12 0.91 
         

 
Notes: ELSA, waves 4-6 (2008/09-2012/13); N = observations; M = mean; Md = median; % = percentage frequencies; SD = standard deviations; < = less than; ≥ = greater than or equal to; OSC = occupational 
social class; BMI = body mass index; CRP = C-reactive protein; Fb = fibrinogen; WBCC = white blood cell counts; IGF-1 = insulin-growth factor-1; Cortisol = hair cortisol; * Log-transformed variable; I-N = 
immune and neuroendocrine.
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Table S5.2  Correlations between immune and neuroendocrine biomarkers 

 

 

 CRP Fb WBCC Cortisol IGF-1 

CRP 
1     

     

Fb 
0.7065* 1    

<0.001     

WBCC 
0.4477* 0.4122* 1   

<0.001 <0.001    

Cortisol 
0.2811* 0.1893* 0.2317* 1  

<0.001 <0.001 <0.001   

IGF-1 
-0.1671* -0.011 -0.006 0.004 1 

<0.001 0.356 0.627 0.755  

 
 

Notes: CRP = C-reactive protein; Fb = fibrinogen; WBCC = white blood cell counts; IGF-1 = insulin growth factor-1; 
Cortisol = hair cortisol; * Significant at p<0.001 level 
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Table S5.3  Change in financial stress and suboptimal sleep cases across waves 

 
Variable n % 

Financial Stress (W4) 
No Strain (0-60%) 4,114 83.28 

Strain (61-100%) 826 16.72 

Financial Stress (W5) 
No Strain (0-60%) 4,179 84.60 

Strain (61-100%) 761 15.40 

Financial Stress (W6) 
No Strain (0-60%) 4,273 86.50 

Strain (61-100%) 667 13.50 

Sleep Duration (W4) 

Short Sleep 627 12.69 

Optimal Sleep 4,227 85.57 

Long Sleep 86 1.74 

Sleep Duration (W6) 

Short Sleep 518 10.49 

Optimal Sleep 4,160 84.21 

Long Sleep 262 5.30 

 
Notes: W = wave; n = number of observations; % = percentage of observations. Wave 5 sleep duration was unavailable. 
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Table S5.4  Seven profile LPA model fit indices and predicted probability of profile 

membership 

 

Criteria 
One Two Three Four Five Six Seven 

Profile Profiles Profiles Profiles Profiles Profiles Profiles 

AIC 35960.37 30398.85 28688.66 28428.96 28023.89 27852.44 27662.91 

AIC Difference (N) - 5561.52 1710.19 259.70 405.07 171.45 189.53 

AIC Difference (%) - 18.30 5.96 0.91 1.45 0.62 0.69 

BIC 36025.42 30502.93 28831.77 28611.10 28245.06 28112.65 27962.14 

BIC Difference (N) - 5522.49 1671.16 220.67 366.04 132.41 150.51 

BIC Difference (%) - 18.10 5.80 0.77 1.30 0.47 0.54 

aBIC 35993.64 30452.09 28761.86 28522.13 28137.02 27985.54 27815.97 

aBIC Difference (N) - 5541.55 1690.23 239.74 385.11 151.48 169.57 

aBIC Difference (%) - 18.20 5.88 0.84 1.37 0.54 0.61 

Entropy - 0.91 0.83 0.79 0.83 0.86 0.86 

Normalised Entropy - 0.88 0.77 0.71 0.77 0.82 0.81 

M Posterior 
Probabilities (SE) 

- .712 (.007) .352 (.008) .298 (.013) .185 (.008) .181 (.008) .180 (.008) 

  .288 (.007) .395 (.008) .079 (.014) .221 (.008) .054 (.012) .059 (.011) 

    .254 (.006)  .370 (.009) .293 (.008) .172 (.114) .167 (.013) 

      .253 (.006) .070 (.005) .293 (.008) .292 (.008) 

        .231 (.006) .069 (.005) .048 (.006) 

          .231 (.006) .024 (.004) 

            .230 (.006) 

N classes >5% Yes Yes Yes Yes Yes No No 
 

Notes: AIC = Akaike information criterion; BIC = Bayesian information criterion; aBIC = adjusted Bayesian information criterion; N = number 

of observations; M = mean; SE = standard errors. 
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Table S5.5  Longitudinal associations of stress with immune and neuroendocrine biomarker profiles stratified by median age (65 years) 
 
 

Adjustments 
Binary Stress Score | < Md Age (N=2,436) Binary Stress Score | ≥ Md Age (N=2,504) 

RRR SE 95% CI p RRR SE 95% CI p 

Moderate-risk Profile       

Model 1: Unadjusted 1.39 0.17 1.09 1.78 0.008 1.12 0.15 0.86 1.46 0.383 

Model 2: Model 1 + baseline biomarkers a 1.39 0.18 1.08 1.80 0.011 1.10 0.15 0.84 1.43 0.498 

Model 3: Model 2 + demographics & genetics b 1.38 0.18 1.07 1.79 0.014 1.19 0.17 0.90 1.56 0.221 

Model 4: Fully Adjusted c 1.30 0.18 1.00 1.70 0.050 1.08 0.15 0.81 1.42 0.614 

High-risk Profile       

Model 1: Unadjusted 1.97 0.28 1.50 2.60 <0.001 1.31 0.18 0.99 1.72 0.056 

Model 2: Model 1 + baseline biomarkers a 1.98 0.33 1.43 2.75 <0.001 1.24 0.20 0.91 1.69 0.176 

Model 3: Model 2 + demographics & genetics b 1.97 0.33 1.42 2.75 <0.001 1.40 0.23 1.02 1.93 0.040 

Model 4: Fully Adjusted c 1.70 0.30 1.20 2.41 0.003 1.23 0.21 0.88 1.71 0.232 

 
Notes: The low-risk group is the reference; < = less than; ≥ = greater than or equal to; Md = Median; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; 

coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S5.6  Longitudinal associations of suboptimal sleep with immune and neuroendocrine biomarker profiles stratified by median age 
(65 years) 

 

Adjustments 
Short Sleep | < Md Age (N=2,436) Short Sleep | ≥ Md Age (N=2,504) 

RRR SE 95% CI p RRR SE 95% CI p 

Moderate-risk Profile       
Model 1: Unadjusted 1.09 0.16 0.82 1.45 0.547 1.17 0.17 0.88 1.56 0.281 
Model 2: Model 1 + baseline biomarkers a 0.95 0.15 0.70 1.29 0.745 1.15 0.17 0.86 1.54 0.335 
Model 3: Model 2 + demographics & genetics b 0.93 0.14 0.69 1.26 0.636 1.07 0.16 0.79 1.44 0.664 
Model 4: Fully Adjusted c 0.87 0.14 0.64 1.19 0.387 0.93 0.15 0.68 1.26 0.629 

High-risk Profile       
Model 1: Unadjusted 1.61 0.26 1.18 2.21 0.003 1.29 0.20 0.96 1.75 0.093 
Model 2: Model 1 + baseline biomarkers a 1.15 0.23 0.79 1.69 0.471 1.29 0.22 0.92 1.81 0.148 
Model 3: Model 2 + demographics & genetics b 1.14 0.23 0.77 1.69 0.504 1.16 0.21 0.82 1.65 0.410 
Model 4: Fully Adjusted c 0.89 0.19 0.59 1.35 0.594 0.84 0.16 0.58 1.21 0.351 

 Long Sleep | < Md Age (N=2,436) Long Sleep | ≥ Md Age (N=2,504) 
Moderate-risk Profile       
Model 1: Unadjusted 1.98 1.01 0.73 5.38 0.180 1.22 0.47 0.57 2.60 0.604 
Model 2: Model 1 + baseline biomarkers a 1.54 0.83 0.53 4.43 0.426 1.20 0.47 0.56 2.57 0.648 
Model 3: Model 2 + demographics & genetics b 1.53 0.83 0.53 4.43 0.437 0.94 0.38 0.43 2.06 0.876 
Model 4: Fully Adjusted c 1.39 0.77 0.47 4.11 0.554 0.86 0.35 0.38 1.92 0.706 

High-risk Profile       
Model 1: Unadjusted 3.70 1.92 1.34 10.25 0.012 2.80 1.00 1.39 5.63 0.004 
Model 2: Model 1 + baseline biomarkers a 1.79 1.14 0.52 6.23 0.358 2.68 1.07 1.22 5.88 0.014 
Model 3: Model 2 + demographics & genetics b 2.00 1.28 0.58 6.99 0.275 1.78 0.75 0.78 4.07 0.173 
Model 4: Fully Adjusted c 1.44 0.95 0.40 5.22 0.575 1.35 0.59 0.57 3.20 0.502 

 
Notes: The low-risk group is the reference; < = less than; ≥ = greater than or equal to; Md = Median; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; 

coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder).  
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Table S5.7  Longitudinal associations of stress with immune and neuroendocrine biomarker profiles stratified by sex 
 
 

Adjustments 
Binary Stress Score | Male (N=2,237) Binary Stress Score | Female (N=2,703) 

RRR SE 95% CI p RRR SE 95% CI p 

Moderate-risk Profile       

Model 1: Unadjusted 1.18 0.17 0.88 1.57 0.267 1.28 0.15 1.02 1.62 0.033 

Model 2: Model 1 + baseline biomarkers a 1.20 0.18 0.90 1.60 0.225 1.23 0.15 0.97 1.56 0.093 

Model 3: Model 2 + demographics & genetics b 1.25 0.19 0.93 1.67 0.145 1.27 0.16 0.99 1.61 0.058 

Model 4: Fully Adjusted c 1.18 0.18 0.87 1.60 0.289 1.15 0.15 0.90 1.48 0.275 

High-risk Profile       

Model 1: Unadjusted 1.78 0.27 1.32 2.40 <0.001 1.42 0.18 1.10 1.83 0.006 

Model 2: Model 1 + baseline biomarkers a 1.91 0.34 1.35 2.69 <0.001 1.31 0.20 0.97 1.76 0.074 

Model 3: Model 2 + demographics & genetics b 2.02 0.36 1.42 2.87 <0.001 1.41 0.22 1.04 1.91 0.027 

Model 4: Fully Adjusted c 1.68 0.32 1.16 2.43 0.006 1.23 0.20 0.90 1.68 0.203 

 
Notes: The low-risk group is the reference; < = less than; ≥ = greater than or equal to; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; 

coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S5.8  Longitudinal associations of suboptimal sleep with immune and neuroendocrine biomarker profiles stratified by sex 
 

 

Adjustments 
Short Sleep | Male (N=2,237) Short Sleep | Female (N=2,703) 

RRR SE 95% CI p RRR SE 95% CI p 

Moderate-risk Profile       
Model 1: Unadjusted 1.04 0.17 0.75 1.43 0.837 1.20 0.16 0.93 1.55 0.162 
Model 2: Model 1 + baseline biomarkers a 1.00 0.17 0.72 1.40 0.981 1.12 0.15 0.85 1.46 0.427 
Model 3: Model 2 + demographics & genetics b 0.95 0.16 0.68 1.33 0.766 1.06 0.15 0.81 1.38 0.694 
Model 4: Fully Adjusted c 0.83 0.15 0.58 1.18 0.293 0.94 0.13 0.71 1.24 0.669 

High-risk Profile       
Model 1: Unadjusted 1.41 0.25 1.00 1.99 0.050 1.46 0.21 1.10 1.92 0.008 
Model 2: Model 1 + baseline biomarkers a 1.33 0.27 0.89 1.97 0.166 1.23 0.21 0.89 1.71 0.212 
Model 3: Model 2 + demographics & genetics b 1.21 0.25 0.80 1.82 0.365 1.17 0.20 0.84 1.63 0.362 
Model 4: Fully Adjusted c 0.77 0.17 0.50 1.19 0.233 0.93 0.17 0.66 1.32 0.697 

 Long Sleep | Male (N=2,237) Long Sleep | Female (N=2,703) 
Moderate-risk Profile       
Model 1: Unadjusted 1.46 0.77 0.52 4.12 0.476 1.56 0.59 0.75 3.28 0.237 
Model 2: Model 1 + baseline biomarkers a 1.41 0.76 0.49 4.03 0.522 1.38 0.54 0.64 2.99 0.415 
Model 3: Model 2 + demographics & genetics b 1.13 0.61 0.39 3.27 0.821 1.11 0.45 0.51 2.44 0.796 
Model 4: Fully Adjusted c 1.02 0.56 0.35 3.01 0.969 0.99 0.41 0.44 2.21 0.982 

High-risk Profile       
Model 1: Unadjusted 4.19 2.02 1.63 10.78 0.003 3.12 1.15 1.52 6.43 0.002 
Model 2: Model 1 + baseline biomarkers a 4.51 2.41 1.58 12.86 0.005 2.01 0.89 0.85 4.79 0.114 
Model 3: Model 2 + demographics & genetics b 3.45 1.88 1.19 10.06 0.023 1.47 0.66 0.61 3.56 0.395 
Model 4: Fully Adjusted c 2.49 1.43 0.81 7.65 0.111 1.11 0.51 0.45 2.75 0.820 

 
Notes: The low-risk group is the reference; < = less than; ≥ = greater than or equal to; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth factor-1 (IGF-1). 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c  All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; IGF-1 PGS; education; occupational social status; smoking status; alcohol consumption; physical activity; health (i.e., chronic lung disease; 

coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S5.9  Longitudinal associations of stress with immune and neuroendocrine profiles, 
adjusted for BMI 

 
 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.26 0.12 1.05 1.50 0.012 

Model 2: Model 1 + baseline biomarkers a 1.23 0.12 1.03 1.48 0.025 

Model 3: Model 2 + demographics & genetics b 1.28 0.12 1.060 1.54 0.010 

Model 4: Fully Adjusted c 1.18 0.12 0.97 1.43 0.099 

High-risk Profile 

Model 1: Unadjusted 1.57 0.15 1.30 1.90 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.52 0.17 1.21 1.90 <0.001 

Model 3: Model 2 + demographics & genetics b 1.65 0.19 1.308 2.07 <0.001 

Model 4: Fully Adjusted c 1.42 0.17 1.12 1.80 0.004 

 
Notes: BMI = body mass index; The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence 

interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; 

wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., 
chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; 
cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder); BMI. 
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Table S5.10  Longitudinal associations of suboptimal sleep with immune and 
neuroendocrine profiles, adjusted for BMI 

 
 

Adjustments 
Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.15 0.12 0.94 1.41 0.171 

Model 2: Model 1 + baseline biomarkers a 1.08 0.11 0.88 1.33 0.447 

Model 3: Model 2 + demographics & genetics b 1.01 0.11 0.82 1.25 0.907 

Model 4: Fully Adjusted c 0.89 0.10 0.71 1.10 0.281 

High-risk Profile 

Model 1: Unadjusted 1.45 0.16 1.17 1.80 0.001 

Model 2: Model 1 + baseline biomarkers a 1.26 0.16 0.98 1.62 0.075 

Model 3: Model 2 + demographics & genetics b 1.19 0.16 0.92 1.54 0.192 

Model 4: Fully Adjusted c 0.86 0.12 0.66 1.13 0.280 

Adjustments 
Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.55 0.48 0.85 2.84 0.152 

Model 2: Model 1 + baseline biomarkers a 1.43 0.45 0.77 2.66 0.254 

Model 3: Model 2 + demographics & genetics b 1.16 0.37 0.62 2.16 0.650 

Model 4: Fully Adjusted c 1.05 0.34 0.55 1.98 0.893 

High-risk Profile 

Model 1: Unadjusted 3.52 1.03 1.98 6.24 <0.001 

Model 2: Model 1 + baseline biomarkers a 2.78 0.94 1.43 5.41 0.003 

Model 3: Model 2 + demographics & genetics b 2.02 0.70 1.02 3.98 0.043 

Model 4: Fully Adjusted c 1.48 0.53 0.73 2.99 0.277 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; 

wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., 
chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; 
cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder); BMI. 
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Table S5.11  Longitudinal associations between suboptimal sleep durations at less 
stringent thresholds (≤6 hr; >6-<8 hr; and ≥8 hr) and immune and 
neuroendocrine profile membership 

 
 

 

Adjustments 
Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.21 0.09 1.05 1.39 0.010 

Model 2: Model 1 + baseline biomarkers a 1.13 0.09 0.98 1.31 0.098 

Model 3: Model 2 + demographics & genetics b 1.08 0.08 0.93 1.25 0.329 

Model 4: Fully Adjusted c 0.99 0.08 0.85 1.15 0.885 

High-risk Profile 

Model 1: Unadjusted 1.46 0.12 1.24 1.71 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.26 0.12 1.05 1.52 0.014 

Model 3: Model 2 + demographics & genetics b 1.20 0.12 0.99 1.46 0.058 

Model 4: Fully Adjusted c 0.97 0.10 0.79 1.18 0.736 

Adjustments 
Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.10 0.16 0.83 1.45 0.507 

Model 2: Model 1 + baseline biomarkers a 1.00 0.15 0.75 1.34 0.982 

Model 3: Model 2 + demographics & genetics b 0.88 0.13 0.65 1.17 0.367 

Model 4: Fully Adjusted c 0.85 0.13 0.63 1.14 0.282 

High-risk Profile 

Model 1: Unadjusted 2.09 0.30 1.58 2.76 <0.001 

Model 2: Model 1 + baseline biomarkers a 1.61 0.27 1.16 2.24 0.005 

Model 3: Model 2 + demographics & genetics b 1.31 0.23 0.94 1.84 0.116 

Model 4: Fully Adjusted c 1.18 0.21 0.83 1.67 0.354 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive protein (CRP) polygenic score (PGS); white blood 

cell counts (WBCC) PGS; insulin growth factor-1 (IGF-1) PGS; cortisol PGS; sleep duration PGS. 
c  All variables: baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; cortisol PGS; education; 

wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; health (i.e., 
chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; hypertension; diabetes; 
cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S5.12a  Longitudinal associations of stress with immune and neuroendocrine 
profiles, with stepwise adjustments 

 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.26 0.12 1.05 1.50 0.012 

Model 2: Baseline profiles a + Model 1 a 1.23 0.12 1.03 1.48 0.025 

Model 3a: Genetics b  + Model 2 1.23 0.12 1.03 1.48 0.025 

Model 3b: Demographics c  + Model 3a 1.28 0.12 1.06 1.54 0.010 

Model 3c: Socioeconomics d  + Model 3b 1.22 0.12 1.01 1.47 0.041 

Model 3d: Health behaviours  e  + Model 3c 1.20 0.12 0.99 1.45 0.067 

Model 4: Health f  + Model 3d 1.18 0.12 0.97 1.43 0.093 

High-risk Profile 

Model 1: Unadjusted 1.57 0.15 1.30 1.90 <0.001 

Model 2: Baseline profiles a + Model 1 a 1.52 0.17 1.21 1.90 <0.001 

Model 3a: Genetics b  + Model 2 1.51 0.17 1.20 1.89 <0.001 

Model 3b: Demographics c  + Model 3a 1.65 0.19 1.31 2.07 <0.001 

Model 3c: Socioeconomics d  + Model 3b 1.49 0.18 1.18 1.88 0.001 

Model 3d: Health behaviours  e  + Model 3c 1.45 0.18 1.14 1.83 0.002 

Model 4: Health f  + Model 3d 1.42 0.17 1.12 1.80 0.004 
 

Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Genetics: 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood Cell Counts (WBCC) PGS; 

Insulin  Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  Demographics: age; sex. 
d  Socioeconomics: education; wealth; occupational social status. 
e  Health behaviours : smoking status; alcohol consumption; physical activity. 
e  Health: mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 

murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; 
osteoporosis; psychiatric disorder).  
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Table S5.12b  Longitudinal associations of stress with immune and neuroendocrine 
profiles, with discrete covariate contributions  

 
 
 

Adjustments 
Stress 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.26 0.12 1.05 1.50 0.012 

Model 2: Baseline profiles a 1.23 0.12 1.03 1.48 0.025 

Model 3a: Genetics b + Model 2 1.23 0.12 1.03 1.48 0.025 

Model 3b: Demographics c + Model 2 1.28 0.12 1.06 1.54 0.010 

Model 3c: Socioeconomics d + Model 2 1.16 0.11 0.96 1.40 0.123 

Model 3d: Health behaviours  e + Model 2 1.18 0.11 0.98 1.42 0.081 

Model 3e: Health f + Model 2 1.20 0.11 1.00 1.45 0.053 

High-risk Profile 

Model 1: Unadjusted 1.57 0.15 1.30 1.90 <0.001 

Model 2: Baseline profiles a 1.52 0.17 1.21 1.90 <0.001 

Model 3a: Genetics b + Model 2 1.51 0.17 1.20 1.89 <0.001 

Model 3b: Demographics c + Model 2 1.66 0.19 1.32 2.09 <0.001 

Model 3c: Socioeconomics d + Model 2 1.35 0.16 1.07 1.69 0.010 

Model 3d: Health behaviours  e + Model 2 1.40 0.16 1.11 1.76 0.004 

Model 3e: Health f + Model 2 1.42 0.17 1.13 1.78 0.003 
 

Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Genetics: 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood Cell Counts (WBCC) PGS; Insulin 

Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  Demographics: age; sex. 
d  Socioeconomics: education; wealth; occupational social status. 
e  Health behaviours : smoking status; alcohol consumption; physical activity. 
e  Health: mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 

murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder).  
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Table S5.13a  Longitudinal associations of suboptimal sleep with immune and 
neuroendocrine profiles, with stepwise adjustments 

 

Adjustments 
Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 
Model 1: Unadjusted 1.15 0.12 0.94 1.41 0.171 
Model 2: Baseline profiles a + Model 1 a 1.08 0.11 0.88 1.33 0.447 
Model 3a: Genetics b  + Model 2 1.08 0.11 0.88 1.33 0.479 
Model 3b: Demographics c  + Model 3a 1.16 0.11 0.82 1.25 0.883 
Model 3c: Socioeconomics d  + Model 3b 0.96 0.10 0.77 1.18 0.686 
Model 3d: Health behaviours  e  + Model 3c 0.94 0.10 0.78 1.16 0.75 
Model 4: Health f  + Model 3d 0.90 0.10 0.72 1.12 0.335 

High-risk Profile 
Model 1: Unadjusted 1.45 0.16 1.17 1.80 0.001 
Model 2: Baseline profiles a + Model 1 a 1.26 0.16 0.98 1.62 0.075 
Model 3a: Genetics b  + Model 2 1.27 0.16 0.99 1.64 0.063 
Model 3b: Demographics c  + Model 3a 1.19 0.16 0.919 1.54 0.187 
Model 3c: Socioeconomics d  + Model 3b 1.02 0.14 0.79 1.33 0.869 
Model 3d: Health behaviours  e  + Model 3c 0.93 0.13 0.71 1.21 0.57 
Model 4: Health f  + Model 3d 0.87 0.12 0.67 1.14 0.323 

Adjustments 
Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 
Model 1: Unadjusted 1.55 0.48 0.85 2.84 0.152 
Model 2: Baseline profiles a + Model 1 a 1.43 0.45 0.77 2.66 0.254 
Model 3a: Genetics b  + Model 2 1.41 0.45 0.76 2.62 0.279 
Model 3b: Demographics c  + Model 3a 1.16 0.37 0.62 2.16 0.618 
Model 3c: Socioeconomics d  + Model 3b 1.12 0.10 0.59 2.09 0.742 
Model 3d: Health behaviours  e  + Model 3c 1.04 0.34 0.55 1.96 0.551 
Model 4: Health f  + Model 3d 1.05 0.34 0.55 1.98 0.893 

High-risk Profile 
Model 1: Unadjusted 3.52 1.03 1.98 6.24 <0.001 
Model 2: Baseline profiles a + Model 1 a 2.78 0.94 1.43 5.41 0.003 
Model 3a: Genetics b  + Model 2 2.82 0.97 1.45 5.52 0.002 
Model 3b: Demographics c  + Model 3a 2.02 0.70 1.02 1.54 0.043 
Model 3c: Socioeconomics d  + Model 3b 1.83 0.64 0.92 3.63 0.085 
Model 3d: Health behaviours  e  + Model 3c 1.50 0.53 0.74 3.01 0.744 
Model 4: Health f  + Model 3d 1.48 0.53 0.73 2.98 0.277 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Genetics: 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood Cell Counts (WBCC) PGS; Insulin  

Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  Demographics: age; sex. 
d  Socioeconomics: education; wealth; occupational social status. 
e  Health behaviours : smoking status; alcohol consumption; physical activity. 
e  Health: mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 

murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; 
osteoporosis; psychiatric disorder).  
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Table S5.13b  Longitudinal associations of suboptimal sleep with immune and 
neuroendocrine profiles, with discrete covariate contributions  

 

Adjustments 
Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 
Model 1: Unadjusted 1.15 0.12 0.94 1.41 0.171 
Model 2: Baseline profiles a 1.08 0.11 0.88 1.33 0.447 
Model 3a: Genetics b + Model 2 1.08 0.11 0.88 1.33 0.479 
Model 3b: Demographics c + Model 2 1.02 0.11 0.83 1.26 0.835 
Model 3c: Socioeconomics d + Model 2 1.00 0.11 0.81 1.23 0.965 
Model 3d: Health behaviours  e + Model 2 1.01 0.11 0.82 1.24 0.958 
Model 3e: Health f + Model 2 0.96 0.10 0.79 1.19 0.715 

High-risk Profile 
Model 1: Unadjusted 1.45 0.16 1.17 1.80 0.001 
Model 2: Baseline profiles a 1.26 0.16 0.98 1.62 0.075 
Model 3a: Genetics b + Model 2 1.27 0.16 0.99 1.64 0.063 
Model 3b: Demographics c + Model 2 1.18 0.16 0.92 1.53 0.916 
Model 3c: Socioeconomics d + Model 2 1.04 0.14 0.81 1.35 0.746 
Model 3d: Health behaviours  e + Model 2 1.02 0.14 0.79 1.33 0.873 
Model 3e: Health f + Model 2 0.94 0.13 0.73 1.23 0.65 

Adjustments 
Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 
Model 1: Unadjusted 1.55 0.48 0.85 2.84 0.152 
Model 2: Baseline profiles a 1.43 0.45 0.77 2.66 0.254 
Model 3a: Genetics b + Model 2 1.41 0.11 0.76 2.62 0.279 
Model 3b: Demographics c + Model 2 1.17 0.37 0.63 2.18 0.623 
Model 3c: Socioeconomics d + Model 2 1.35 0.43 0.73 2.52 0.344 
Model 3d: Health behaviours  e + Model 2 1.26 0.40 0.68 2.35 0.465 
Model 3e: Health f + Model 2 1.24 0.40 0.67 2.32 0.497 

High-risk Profile 
Model 1: Unadjusted 3.52 1.03 1.98 6.24 <0.001 
Model 2: Baseline profiles a 2.78 0.94 1.43 5.41 0.003 
Model 3a: Genetics b + Model 2 2.82 0.97 1.44 5.52 0.002 
Model 3b: Demographics c + Model 2 1.98 0.68 1.01 3.89 0.047 
Model 3c: Socioeconomics d + Model 2 2.39 0.83 1.22 4.70 0.012 
Model 3d: Health behaviours  e + Model 2 2.04 0.70 1.04 4.01 0.039 
Model 3e: Health f + Model 2 1.94 0.67 0.99 3.83 0.055 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Genetics: 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood Cell Counts (WBCC) PGS; Insulin 

Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  Demographics: age; sex. 
d  Socioeconomics: education; wealth; occupational social status. 
e  Health behaviours : smoking status; alcohol consumption; physical activity. 
e  Health: mobility; limiting longstanding illness; health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart 

murmur; congestive heart failure; angina; hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; 
psychiatric disorder).  
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Table S5.14 Longitudinal associations of immune and neuroendocrine profiles with 
suboptimal sleep  

 
 

Adjustments 
Moderate-risk Profile  

RRR SE 95% CI p 

Short Sleep 

Model 1: Unadjusted 1.51 0.15 1.24 1.84 <0.001 

Model 2: Model 1 + baseline profiles a 1.38 0.15 1.11 1.71 0.003 

Model 3: Model 2 + demographics & genetics b 1.38 0.15 1.11 1.72 0.004 

Model 4: Fully Adjusted c 1.21 0.14 0.96 1.51 0.103 

Adjustments 
High-risk Profile  

RRR SE 95% CI p 

Model 1: Unadjusted 1.33 0.20 0.99 1.79 0.059 

Model 2: Model 1 + baseline profiles a 1.13 0.19 0.82 1.57 0.454 

Model 3: Model 2 + demographics & genetics b 1.11 0.19 0.80 1.54 0.539 

Model 4: Fully Adjusted c 0.86 0.15 0.61 1.22 0.388 

Adjustments 
Moderate-risk Profile  

RRR SE 95% CI p 

Long Sleep 

Model 1: Unadjusted 2.14 0.31 1.61 2.83 <0.001 

Model 2: Model 1 + baseline profiles a 2.11 0.31 1.58 2.80 <0.001 

Model 3: Model 2 + demographics & genetics b 1.91 0.28 1.43 2.56 <0.001 

Model 4: Fully Adjusted c 1.66 0.25 1.23 2.23 0.001 

Adjustments 
High-risk Profile  

RRR SE 95% CI p 

Model 1: Unadjusted 2.93 0.53 2.06 4.18 <0.001 

Model 2: Model 1 + baseline profiles a 2.81 0.52 1.96 4.03 <0.001 

Model 3: Model 2 + demographics & genetics b 2.30 0.43 1.59 3.33 <0.001 

Model 4: Fully Adjusted c 1.81 0.35 1.24 2.64 0.002 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a  Baseline immune and neuroendocrine profiles. 
b  Demographic and genetic variables: age; sex; 10 principal components (PCs); C-reactive Protein (CRP) polygenic score (PGS); White Blood 

Cell Counts (WBCC) PGS; Insulin Growth Factor-1 (IGF-1) PGS; [Hair] Cortisol PGS; Sleep Duration PGS. 
c  All variables: Baseline immune and neuroendocrine profiles; age; sex; 10 PCs; CRP PGS; WBCC PGS; IGF-1 PGS; Cortisol PGS; 

education; wealth; occupational social status; smoking status; alcohol consumption; physical activity; mobility; limiting longstanding illness; 
health (i.e., chronic lung disease; coronary heart disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; 
hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; arthritis; osteoporosis; psychiatric disorder). 
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Table S5.15  The longitudinal role of PGS for suboptimal sleep durations in immune and 
neuroendocrine profile membership 

 
 

Adjustments 
PGS for Short Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 1.01 0.03 0.95 1.08 0.818 

Model 2b: Model 1 + demographics & genetics a 0.99 0.04 0.92 1.07 0.831 

High-risk Profile 

Model 1: Unadjusted 1.04 0.04 0.97 1.12 0.300 

Model 2b: Model 1 + demographics & genetics a 1.00 0.05 0.91 1.10 0.992 

Adjustments 
PGS for Long Sleep 

RRR SE 95% CI p 

Moderate-risk Profile 

Model 1: Unadjusted 0.99 0.03 0.93 1.05 0.694 

Model 2b: Model 1 + demographics & genetics a 0.97 0.03 0.91 1.04 0.439 

High-risk Profile 

Model 1: Unadjusted 1.06 0.04 0.99 1.15 0.097 

Model 2b: Model 1 + demographics & genetics a 1.03 0.05 0.94 1.13 0.555 

 
Notes: The low-risk group is the reference; RRR = relative risk ratio; SE = standard errors; CI = confidence interval; p = significance value. 
a Demographic and genetic variables: age; age2; sex; 10 principal components (PCs). 
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Figure S6.1  Flow chart of the analytic sample for complete case analyses 
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Table S6.1 Estimated the predictive accuracy (R2, P-value) for polygenic scores 

 

Variable 
P-value threshold for polygenic scores (PT) 

0.001 0.01 0.05 0.1 0.3 1 

        

Polygenic score for sleep duration  

m 39,476 106,361 384,317 384,317 836,823 2,092,574 
R2 0.003 0.002 0.002 0.002 0.002 0.001 

P 2.12×10-5 1.09×10-4 1.11×10-4 1.37×10-4 4.60×10-4 9.12×10-3 

        

 m 52,197 191,839 569,428 988,019 229,2361 6,227,565 

Polygenic score for short sleep R2 0.004 0.002 0.002 0.002 0.001 0.001 

 P 6.52×10-08 6.82×10-05 0.0002 0.001 0.002 0.026 

        

 m 24,262 127,099 448,761 837,119 2,125,346 6,246,221 

Polygenic score for long sleep R2 0.011 0.003 0.002 0.002 0.039 0.001 

 P 6.47×10-18 5.79×10-06 0.0002 0.001 0.004 0.039 

        

 m 63,824 213,672 579,538 925,255 2,049,803 5,356,042 

Polygenic score for depression  R2 0.001 0.001 0.001 0.001 0.001 0.0004 

 P 0.003 0.005 0.005 0.005 0.011 0.056 

Notes: m = total number of independent markers in genotyping panel; R2 = the predictive accuracy; P = p-value 
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Table S6.2 Correlations between polygenic scores for sleep duration, short sleep, long sleep and depression and phenotypic sleep 

duration, short sleep, long sleep, and depression 
 

 Polygenic score for 
depression 

Polygenic score for 
sleep duration 

Polygenic score for 
short sleep 

Polygenic score for 
long sleep 

Depression 
phenotype 

Sleep duration 
phenotype 

Polygenic score for 
depression 1.000      

Polygenic score for  
sleep duration 0.160** 1.000     

Polygenic score for  
short sleep 0.031* -0.500** 1.000    

Polygenic score for  
long sleep 0.047* 0.620** -0.033* 1.000   

Depression  
phenotype 0.048** -0.009 0.039* 0.003 1.000  

Sleep duration  
phenotype -0.025* 0.043* -0.057** -0.003 -0.147** 1.000 

 
Notes = Significant at *** p<0.001; ** p<0.05
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Table S6.3 A comparison of imputed and observed sample characteristics 

 

Variable 

Imputed  
(N = 7,146) 

Complete Case  
(N = 3,494) 

% Mean (SD) 
Range % Mean (SD) 

Range 
      

Age  100 64.83 (9.52) 
50-99 100 61.93 (7.24) 

50-89 
Sex Male 46.12  44.36  
 Female 53.88  55.64  

Sleep Duration   100 6.97 (1.24) 
1-13  6.85 (1.23) 1.5-

12 
(Baseline) Short Sleep ≤5 hrs 10.57  12.22  
 Optimal Sleep >5 - <9 hrs 84.94  86.55  
 Long Sleep ≥9 hrs 4.49  1.23  

Sleep Duration   100 6.92 (1.14) 
1-14  3,494 (6.84) 1-

14 
(Follow-up) Short Sleep ≤5 hrs 15.27  6.58  
 Optimal Sleep >5 - <9 hrs 79.97  89.58  
 Long Sleep ≥9 hrs 4.76  3.84  
Depression No 91.25  91.16  
(Baseline) Yes 8.75  8.84  
Depression No 88.53  86.81  
(Follow-up) Yes 11.47  13.19  

      
  

Notes: ELSA, waves 2–8; % = N = observations; percentage frequencies; M = mean; SD = standard deviations. 
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Table S6.4  Relationships of polygenic scores for sleep duration, short sleep, and long 
sleep with onset of depression during an average 8-year follow-up, using 
continuous values for depression 

 

Models  
Depression 

β (SE) 95% CI p 

Polygenic score for sleep duration 

Model 1: Unadjusted model a -0.023 (0.014) -0.051-0.005 0.109 

Model 2: Model 1 + age, age2, sex, and 10 PCs -0.021 (0.013) -0.047-0.006 0.121 

Polygenic score for short sleep  

Model 1: Unadjusted model a 0.037 (0.014) 0.009-0.065 0.010* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.044 (0.015) 0.016-0.073 0.002* 

Polygenic score for long sleep  

Model 1: Unadjusted model a -0.008 (0.014) -0.036-0.019 0.553 

Model 2: Model 1 + age, age2, sex, and 10 PCs -0.002 (0.013) -0.028-0.025 0.909 

Note. PCs = principal components; β = standardised regression coefficient; SE = standard error; CI = confidence interval; p = 

significance value. Alpha values have been adjusted to account for multiple testing. * denotes significance at <0.001. 
a Baseline caseness of outcomes were omitted from analyses. 
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Table S6.5  Relationships of phenotypic overall sleep duration, short sleep, and long 
sleep with onset of depression during an average 8-year follow-up  

 

Models 
Depression 

OR (SE) 95% CI p 

Sleep duration phenotype 

Model 1: Unadjusted model a 0.736 (0.026) 0.688-0.788 <0.001* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.744 (0.026) 0.694-0.796 <0.001* 

Model 3: Adjustment for all baseline covariates b 0.788 (0.028) 0.736-0.844 <0.001* 

Short sleep phenotype 

Model 1: Unadjusted model a 3.364 (0.380) 2.695-4.199 <0.001* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 3.173 (0.364) 2.535-3.972 <0.001* 

Model 3: Adjustment for all baseline covariates b 2.583 (0.306) 2.048-3.257 <0.001* 

Long sleep phenotype 

Model 1: Unadjusted model a 1.776 (0.342) 1.218-2.590 0.003* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.729 (0.336) 1.181-2.532 0.005* 

Model 3: Adjustment for all baseline covariates b 1.578 (0.313) 1.069-2.328 0.022* 

Note. PCs = principal components; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. 
a Baseline caseness of outcomes were omitted from analyses. Alpha values have been adjusted to account for multiple testing. * denotes 

significance at <0.001. 

b Baseline covariates controlled for: age, age2, sex, 10 PCs, education, wealth, smoking status, physical activity, body mass  

  index, triglyceride and limiting longstanding illness. 

 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 260/340 

 

Table S6.6  Relationships of phenotypic depression with overall sleep duration, and onset of short sleep and long sleep during an 
average 8-year follow-up 

 

Models 
Sleep duration Short sleepd Long sleepd 

β (SE) 95% CI p RRR (SE) 95% CI p RRR (SE) 95% CI p 

Depression phenotype  

Model 1: Unadjusted model a b -0.028 (0.007) -0.041--0.014 <0.001* 1.468 (0.205) 1.117-1.930 0.006 1.146 (0.274) 0.716-1.832 0.571 

Model 2: Model 1 + age, age2, sex, and 10 PCs -0.026 (0.007) -0.040--0.012 <0.001* 1.452 (0.206) 1.099-1.918 0.009 1.036 (0.251) 0.644-1.667 0.885 

Model 3: Adjustment for all baseline covariates c -0.018 (0.007) -0.032--0.004 0.012* 1.310 (0.193) 0.982-1.749 0.050 1.018 (0.254) 0.624-1.659 0.944 

Note. PCs = principal components; RRR = relative risk ratio; SE = standard error; CI = confidence interval; p = significance value. Alpha values have been adjusted to account for multiple testing. * denotes significance at <0.001. 
a Baseline caseness of outcomes were omitted from analyses. 

b Sleep duration squared was included in sleep duration models to account for non-linearity. 
c Baseline covariates controlled for: age, age2, sex, 10 PCs, education, wealth, smoking status, physical activity, body mass  

  index, triglyceride and limiting longstanding illness. 
d Baseline comparison was optimal sleep. 
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Table S6.7  Relationships of polygenic scores for sleep duration, short sleep, and long 
sleep with onset of depression during an average 8-year follow-up in 
complete case data (N=3185) 

 

Models 
Depression 

OR (SE) 95% CI p 

Polygenic score for sleep duration 

Model 1: Unadjusted model a 0.915 (0.053) 0.816-1.025 0.123 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.916 (0.054) 0.815-1.028 0.136 

Polygenic score for short sleep  

Model 1: Unadjusted model a 1.113 (0.065) 0.992-1.249 0.067 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.136 (0.073) 1.002-1.289 0.047* 

Polygenic score for long sleep  

Model 1: Unadjusted model a 0.963 (0.055) 0.861-1.078 0.516 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.969 (0.057) 0.864-1.087 0.591 

Note. PCs = principal components; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. Alpha values 

have been adjusted to account for multiple testing. * denotes significance at <0.001. 
a Baseline caseness of outcomes were omitted from analyses. 
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Table S6.8  Relationships of polygenic scores for depression with overall sleep duration, and onset of short sleep and long sleep 
during an average 8-year follow-up in complete case data (N=3134) 

 

Models 
Sleep duration Short sleepc Long sleepc 

β (SE) 95% CI p RRR (SE) 95% CI p RRR (SE) 95% CI p 

Polygenic score for depression  

Model 1: Unadjusted model a b -0.018 (0.021) -0.058-0.022 0.376 1.055 (0.129) 0.830-1.340 0.661 0.985 (0.108) 0.794-1.220 0.887 

Model 2: Model 1 + age, age2, sex, and 10 PCs -0.024 (0.021) -0.065-0.016 0.238 1.090 (0.136) 0.854-1.392 0.489 0.963 (0.107) 0.775-1.197 0.737 

Note. PCs = principal components; RRR = relative risk ratio; SE = standard error; CI = confidence interval; p = significance value. Alpha values have been adjusted to account for multiple testing. 
a Baseline caseness of outcomes were omitted from analyses. 

b Sleep duration squared was included in sleep duration models to account for non-linearity. 
c Baseline comparison was optimal sleep. 

 



STRESS AND SLEEP IN MENTAL HEALTH: A PNI AND PRECISION MEDICINE FRAMEWORK 

ODESSA S. HAMILTON | UNIVERSITY COLLEGE LONDON (UCL) 263/340 

Table S6.9  Relationships of polygenic scores for sleep duration, short sleep, and 
long sleep with onset of depression during an average 8-year follow-
up using a cut-off threshold of 3 for the Centre for Epidemiologic 
Studies Depression Scale (CES-D) 

 

Models 
Depression 

OR (SE) 95% CI p 

Polygenic score for sleep duration 

Model 1: Unadjusted model a 0.944 (0.039) 0.870-1.024 0.162 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.938 (0.040) 0.863-1.019 0.938 

Polygenic score for short sleep  

Model 1: Unadjusted model a 1.159 (0.049) 1.067-1.259 <0.001* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.200 (0.055) 1.096-1.313 <0.001* 

Polygenic score for long sleep  

Model 1: Unadjusted model a 1.001 (0.042) 0.922-1.087 0.985 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.012 (0.044) 0.931-1.101 0.773 

Note. PCs = principal components; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. Alpha values 

have been adjusted to account for multiple testing. * denotes significance at <0.001. 
a Baseline caseness of outcomes were omitted from analyses. 
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Table S6.10  Relationships of polygenic scores for sleep duration, short sleep, 
and long sleep with onset of depression during an average 8-year 
follow-up using the 8-item CES-D 

 

Models 
Depression 

OR (SE) 95% CI p 

Polygenic score for sleep duration 

Model 1: Unadjusted model a 0.932 (0.044) 0.849-1.024 0.142 

Model 2: Model 1 + age, age2, sex, and 10 PCs 0.932 (0.045) 0.848-1.025 0.147 

Polygenic score for short sleep  

Model 1: Unadjusted model a 1.129 (0.055) 1.027-1.241 0.012* 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.148 (0.060) 1.036-1.271 0.008* 

Polygenic score for long sleep  

Model 1: Unadjusted model a 1.020 (0.049) 0.928-1.121 0.682 

Model 2: Model 1 + age, age2, sex, and 10 PCs 1.027 (0.050) 0.933-1.130 0.592 

Note. PCs = principal components; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. Alpha values 

have been adjusted to account for multiple testing. * denotes significance at <0.001. 
a Baseline caseness of outcomes were omitted from analyses. 
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Table S7.1  Longitudinal associations between pre-pandemic inflammatory markers 
and depression during the pandemic modelled as continuous scores 

 

Adjustments 
CRP (n = 3 574) Fb (n = 3 314) 

Coef. (SE) 95% CI p Coef. (SE) 95% CI p 

Model 1: adjusted for baseline  

 depressive symptoms 
0.25 (0.07) 0.12-0.38 <0.001 0.14 (0.05) 0.04-0.24 0.005 

Model 2: Model 1 + adjustment  

 for age and sex 
0.23 (0.07) 0.10-0.36 <0.001 0.13 (0.05) 0.03-0.23 0.013 

Model 3: Model 1 + adjustment  

 for education and 

 wealth 

0.21 (0.07) 0.08-0.34 0.001 0.13 (0.05) 0.03-0.23 0.014 

Model 4: Model 1 + adjustment for  

health behaviours a 
0.20 (0.07) 0.07-0.33 0.003 0.11 (0.05) 0.00-0.21 0.044 

Model 5: Model 1 + adjustment for 

clinical variablesb 
0.21 (0.07) 0.08-0.34 0.001 0.11 (0.05) 0.01-0.22 0.028 

Model 6: adjusted for all 

 covariatesc 
0.14 (0.07) 0.01-0.27 0.034 0.07 (0.05) -0.04-0.17 0.202 

Notes. CRP = C-reactive protein; Fb = Fibrinogen; Regression coefficient (X) = a one-unit increase in inflammation is associated with an X 

unit increase in depressive symptoms; SE = standard error; CI = confidence interval; p = significance value. 

 

a Health behaviours = smoking status; alcohol consumption; physical activity. 

b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 

c  All covariates = depression (CES-D); age; sex; education; wealth; smoking status; alcohol consumption; physical activity; triglyceride; high-

density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 
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Table S7.2  Longitudinal associations between pre-pandemic inflammatory markers 
and depression during the pandemic, accounting for participant exposure to 
the coronavirus 

 

Adjustments 
CRP (n = 3 573) Fb (n = 3 313) 

Coef. (SE) 95% CI p Coef. (SE) 95% CI p 

Model 1:  adjusted for baseline  

 depressive symptoms 
0.25 (0.07) 0.12-0.38 <0.001 0.14 (0.05) 0.04-0.24 0.005 

Model 2:  Model 1 + adjustment  

 for age and sex 
0.23 (0.07) 0.10-0.36 <0.001 0.13 (0.05) 0.03-0.23 0.014 

Model 3:  Model 1 + adjustment  

 for education and wealth 
0.21 (0.07) 0.08-0.34 0.001 0.13 (0.05) 0.02-0.23 0.016 

Model 4:  Model 1 + adjustment 

 for health behaviours a 
0.20 (0.07) 0.07-0.32 0.003 0.10 (0.05) 0.00-0.21 0.047 

Model 5:  Model 1 + adjustment for 

clinical variablesb and 

COVID-19 variablesc 

0.21 (0.07) 0.08-0.34 0.001 0.11 (0.05) 0.01-0.22 0.029 

Model 6:  adjusted for all 

 covariatesd 
0.14 (0.07) 0.01-0.27 0.034 0.07 (0.05) -0.04-0.17 0.216 

Notes. CRP = C-reactive protein; Fb = Fibrinogen; Regression coefficient (X) = one-unit increase in inflammation is associated with an X unit 

increase in depressive symptoms; SE = standard error; CI = confidence interval; p = significance value. 

 

a Health behaviours = smoking status; alcohol consumption; physical activity. 

b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 

c  COVID-19 variables = hospitalized for COVID-19; two of three National Health Service (NHS) core coronavirus symptoms. 

d All covariates = depression (CES-D); age; sex; education; wealth; smoking status; alcohol consumption; physical activity; triglyceride; high-

density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness; hospitalized for COVID-19; two of three National 

Health Service (NHS) core coronavirus symptoms. 
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Table S7.3  Longitudinal associations between inflammatory markers 
(continuous logarithmic transformed CRP) and depression 
during the pandemic 

 

Adjustments 
CRP (n = 3 574) 

OR (SE) 95% CI p 

Model 1:  adjusted for baseline  

 depressive symptoms 
1.39 (0.11) 1.19-1.61 <0.001 

Model 2:  Model 1 + adjustment  

 for age and sex 
1.35 (0.10) 1.16-1.57 <0.001 

Model 3:  Model 1 + adjustment  

 for education and wealth 
1.30 (0.10) 1.12-1.52 0.001 

Model 4:  Model 1 + adjustment for  

 health behaviours a 
1.26 (0.10) 1.08-1.47 0.004 

Model 5: Model 1 + adjustment for  

 clinical variablesb 
1.32 (0.11) 1.13-1.55 <0.001 

Model 6:  adjusted for all covariatesd 1.18 (0.10) 1.00-1.39 0.046 

Notes. CRP = C-reactive protein; OR = odds ratio; SE = standard error; CI = confidence 

interval; p = significance value. 

 

a Health behaviours = smoking status; alcohol consumption; physical activity. 

b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein 

(LDL); limiting longstanding illness. 

c All covariates = depression (CES-D ≥4); age; sex; education; wealth; smoking status; 

alcohol consumption; physical activity; triglyceride; high-density lipoprotein (HDL); low-

density lipoprotein (LDL); limiting longstanding illness. 
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Table S7.4  Longitudinal associations between pre-pandemic inflammatory markers 
and depression during the pandemic, accounting for BMI. 

 

Adjustments 
CRP (n = 3 120) Fb (n = 2 880) 

OR (SE) 95% CI p OR (SE) 95% CI p 

Model 1:  adjusted for baseline  

 depressive symptoms 
1.56 (0.18) 1.24-1.95 <0.001 1.33 (0.12) 1.11-1.60 0.002 

Model 2:  Model 1 + adjustment  

 for age and sex 
1.52 (0.18) 1.22-1.91 <0.001 1.29 (0.12) 1.08-1.56 0.006 

Model 3:  Model 1 + adjustment  

 for education and wealth 
1.45 (0.17) 1.16-1.82 <0.001 1.27 (0.12) 1.06-1.53 0.010 

Model 4:  Model 1 + adjustment 
 for health behaviours a 1.38 (0.16) 1.10-1.74 0.006 1.21 (0.12) 1.00-1.46 0.046 

Model 5:  Model 1 + adjustment for 
clinical variablesb and BMIc 1.41 (0.17) 1.12-1.79 0.004 1.24 (0.12) 1.03-1.50 0.026 

Model 6:  adjusted for all 
 covariatesd 1.26 (0.16) 0.99-1.61 0.056 1.14 (0.11) 0.94-1.39 0.189 

Notes. BMI = Body Mass Index; CRP = C=reactive protein; Fb = Fibrinogen; OR = (odds ratio); SE = standard error; CI = confidence interval; 

p = significance value. 

 

a Health behaviours = smoking status; alcohol consumption; physical activity. 

b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness; BMI. 

c All covariates = depression (CES-D ≥4); age; sex; education; wealth; smoking status; alcohol consumption;  physical activity; triglyceride; high-

density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness; BMI. 
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Table S7.5  Longitudinal associations between pre-pandemic inflammatory markers and 
depression during the pandemic, conditioned on an 8-point classification of 
alcohol consumption 

 

 

Adjustments 
CRP (n = 3 574) Fb (n = 3 331) 

OR (SE) 95% CI p OR (SE) 95% CI p 

Model 1: adjusted for baseline  

 depressive symptoms 
1.69 (0.18) 1.38-2.08 <0.001 1.29 (0.11) 1.09-1.52 0.003 

Model 2: Model 1 + adjustment  

 for age and sex 
1.65 (0.17) 1.34-2.03 <0.001 1.26 (0.11) 1.07-1.50 0.007 

Model 3: Model 1 + adjustment  

 for education and wealth 
1.57 (0.17) 1.27-1.93 <0.001 1.23 (0.11) 1.04-1.46 0.019 

Model 4: Model 1 + adjustment for  

 health behaviours a 
1.49 (0.16) 1.21-1.84 <0.001 1.14 (0.10) 0.96-1.36 0.136 

Model 5: Model 1 + adjustment for  

 clinical variablesb 
1.59 (0.17) 1.29-1.97 <0.001 1.22 (0.11) 1.03-1.45 0.025 

Model 6: adjusted for all 

 covariatesc 
1.40 (0.16) 1.13-1.75 0.002 1.12 (0.10) 0.93-1.34 0.224 

Notes. CRP = C=reactive protein; Fb = Fibrinogen; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. 

 

a Health behaviours = smoking status; alcohol consumption; physical activity. 

b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 

c All covariates = depression (CES-D ≥4); age; sex; education; wealth; smoking status; alcohol consumption;  physical activity; triglyceride; high-

density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 
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Table S7.6  Longitudinal associations between pre-pandemic inflammatory markers 
and depression during the pandemic, accounting for participant exposure 
to the coronavirus, financial impact of the pandemic and a difficulty in 
accessing services during the pandemic 

 

Adjustments 
CRP (n = 3 572) Fb (n = 3 312) 

OR (SE) 95% CI p OR (SE) 95% CI p 

Model 1: adjusted for baseline  

 depressive symptoms 
1.70 (0.18) 1.38-2.08 <0.001 1.29 (0.11) 1.09-1.53 0.003 

Model 2: Model 1 + adjustment  

 for age and sex 
1.65 (0.17) 1.34-2.03 <0.001 1.27 (0.11) 1.07-1.50 0.007 

Model 3: Model 1 + adjustment  

 for education and wealth 
1.57 (0.17) 1.28-1.94 <0.001 1.23 (0.11) 1.04-1.46 0.016 

Model 4: Model 1 + adjustment for  

 health behaviours a 
1.51 (0.16) 1.22-1.86 <0.001 1.16 (0.10) 0.98-1.38 0.084 

Model 5: Model 1 + adjustment for  

 clinical variablesb 
1.60 (0.17) 1.29-1.97 <0.001 1.23 (0.11) 1.03-1.46 0.020 

Model 6: Model 1 + COVID-19 impact 

variablesc 
1.70 (0.18) 1.38-2.09 <0.001 1.29 (0.11) 1.09-1.52 0.003 

Model 7: adjusted for all 

 covariatesd 
1.40 (0.16) 1.13-1.74 0.003 1.12 (0.10) 0.94-1.34 0.215 

Notes. CRP = C=reactive protein; Fb = Fibrinogen; OR = (odds ratio); SE = standard error; CI = confidence interval; p = significance value. 

a Health behaviours = smoking status; alcohol consumption; physical activity. 

b Clinical variables = triglyceride; high-density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 

c COVID-19 impact variables = exposure to the coronavirus, the financial impact of the pandemic and a difficulty in accessing services during the 

pandemic. 

d All covariates = depression (CES-D ≥4); age; sex; education; wealth; smoking status; alcohol consumption; physical activity; triglyceride; high-

density lipoprotein (HDL); low-density lipoprotein (LDL); limiting longstanding illness. 
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