
D
h
J
a

b

A

C

K
M
U
B
S

1

T
e
k
b
o
c

u
c
u
a

h
R

Mechanical Systems and Signal Processing 232 (2025) 112689 

A
0
(

 

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp  

ynamic model updating through reliability-based sequential 
istory matching
. Cheng a , F.A. DiazDelaO a,∗, P.O. Hristov b
Clinical Operational Research Unit, Department of Mathematics, University College London, London, UK
GATE Institute, Sofia University ‘‘St. Kliment Ohridski’’, Sofia, Bulgaria

 R T I C L E  I N F O

ommunicated by H. Ouyang
eywords:
odel updating
ncertainty quantification
ayesian history matching
equential Monte Carlo

 A B S T R A C T

Computer models enable the study of complex systems and are extensively used in fields 
such as physics, engineering, and biology. History Matching (HM) is a statistical calibration 
method that accounts for various sources of uncertainty to update model parameters and align 
output with observed data. By iteratively excluding regions of the parameter space unlikely to 
yield plausible outputs, HM identifies and samples from the so-called non-implausible domain. 
However, a limitation of HM is that it does not yield full Bayesian posterior distributions for 
model parameters. Moreover, HM requires re-execution from scratch when new data is observed, 
lacking the ability to leverage prior results.

To address these limitations, we propose integrating sequential Monte Carlo (SMC) meth-
ods with HM to achieve full Bayesian posterior distributions for sequential calibration. The 
SMC framework offers a flexible and computationally efficient means to update previously 
constructed distributions as new data becomes available. This approach is demonstrated using 
an engineering example and a cardio-respiratory case study with sequential data.

Our results show that small perturbations to the posterior distributions can be effectively 
learned sequentially by updating computed posterior distributions through the SMC framework, 
thereby enabling dynamic and efficient model updating for evolving data streams.

. Introduction

Computer models, also called simulators, have become indispensable tools for the mathematical modeling of physical systems. 
hey have consistently and successfully been used across diverse fields, including physics, astrophysics, economics, healthcare, and 
ngineering [1]. Model updating aims to infer plausible values for simulator parameters based on experimental data, a process also 
nown as calibration [2–4]. A key challenge lies in accounting for various sources of uncertainty, such as measurement errors caused 
y instrument limitations and model discrepancy arising from unavoidable assumptions, simplifications, or incomplete knowledge 
f the underlying process. The reliability of predictions and decision-making in simulations is closely tied to how well they are 
alibrated to experimental data while addressing these uncertainties [5,6].
Several methodologies for uncertainty quantification have been developed within the Bayesian framework. These approaches 

pdate a prior distribution of unknown parameters to a posterior distribution using data. This is typically done through Markov 
hain Monte Carlo (MCMC) [7,8]. However, this can be computationally expensive, and this is even more expensive when the 
nderlying simulator is also expensive. To address these challenges, Bayesian History Matching (BHM) [9,10] was developed as 
n efficient alternative for achieving full Bayesian inference in calibration. History Matching (HM), a likelihood-free calibration 
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approach [11], identifies acceptable regions in the parameter space under the assumption of multiple sources of uncertainty. HM 
begins by exploring the entire parameter space and iteratively eliminates regions unlikely to produce plausible matches between 
observations and model outputs. This is achieved through an implausibility measure, which quantifies a standardized distance between 
observations and simulator outputs given model assumptions and uncertainties. At each iteration, also called wave, regions deemed 
implausible are discarded, progressively shrinking the non-implausible space.

Unlike methods relying on exact likelihood functions, HM’s flexibility allows users to focus initially on subsets of parameters and 
outputs, enabling efficient narrowing to target regions [9]. For computationally expensive simulators, emulation techniques [12] 
can be employed to approximate the original model, reducing computational costs while adapting the emulator to the updated 
non-implausible space at each wave. When computational costs are manageable, emulation is unnecessary [13]. Although HM 
does not produce probabilistic statements about unknown parameters, the non-implausible space often encloses high-probability 
regions of the true posterior, making it a valuable precursor for Bayesian calibration. For this reason, it can also be referred to as 
a precalibration method.

To approximate posterior distributions after identifying the final non-implausible space, importance sampling (IS) and resampling 
techniques have been proposed [9,10], forming the basis of BHM. However, BHM has some limitations: achieving good performance 
requires a large sample size if the importance proposal derived from HM is not sufficiently similar to the true posterior. Additionally, 
sampling within each wave of HM to explore parameter space remains challenging, particularly for complex simulators where target 
regions may be orders of magnitude smaller than the original space. Furthermore, BHM is ill-suited for dynamic Bayesian model 
updating, where parameter values evolve over time and data arrive sequentially—a common scenario in real-world applications.

In this work, we propose a method that combines HM with a sequential Monte Carlo (SMC) sampler to address these limitations. 
The proposed approach is tested on two case studies: a three-degree-of-freedom mass–spring system with simulated data and a 
patient-specific respiratory model using sequential real data streams from an intensive care unit (ICU). The paper is organized as 
follows. In Sections 2 and 3, we discuss a general framework of Bayesian history matching and introduce sequential Monte Carlo 
sampler to prepare the ground for the introduction of our new algorithm, respectively. We describe the sequence of calibration 
distributions and our new algorithm itself in Section 4 and show experimental results on a three degree-of-freedom mass spring 
system and a patient-specific respiratory model in Section 5. Finally, we conclude the paper with a discussion for future perspectives 
in Section 6.

2. Bayesian history matching

2.1. Bayesian model updating

Bayesian model updating is the process of inferring distributions for model parameters to align a model output with observed 
data. This method incorporates prior beliefs about the unknown parameters, expressed as a prior distribution, and updates these 
beliefs using Bayes’ Theorem based on the likelihood of observed data.

To rigorously perform Bayesian model updating, it is crucial to account for various sources of uncertainty. One such source is
experimental or measurement error, which arises from the discrepancies between observations and the true values of the underlying 
process, and is subject to the precision of measurement devices. This relationship can be described as: 

𝒛 = 𝒚 + 𝝐, (1)

where 𝒚 ∈ R𝑝 represents the true values of the underlying physical process, 𝒛 ∈ R𝑝 denotes the corresponding observations, and 𝝐
is the measurement error vector.

When simulating the underlying process via a computer model, 𝒚 cannot be perfectly known, even if the model parameters 
were known exactly. This discrepancy arises due to inevitable simplifying assumptions, incomplete knowledge, or mathematical 
approximations. This additional uncertainty, referred to as model discrepancy, is represented as an additive correction term [12,14]. 
Based on this, the relationship between the outputs of the simulator and observations can be expressed as: 

𝒛 = 𝜂(𝒙) + 𝜹 + 𝝐, (2)

where 𝒙 ∈  ⊆ R𝑑 represents the unknown parameters of interest, 𝜂(⋅) ∶  → R𝑝 denotes the simulator, and 𝜹 is the model 
discrepancy. The simulator, model discrepancy, and measurement error are assumed to be independent.

In this work, we assume 𝜹 and 𝝐 follow normal distributions: 
𝜹 ∼  (0,𝑽 𝛿), 𝝐 ∼  (0,𝑽 𝜖), (3)

where 𝑽 𝛿 ∈ R𝑝×𝑝 and 𝑽 𝜖 ∈ R𝑝×𝑝 are the covariance matrices associated with model discrepancy and measurement error, respectively. 
With this assumption, the likelihood function 𝑙(𝒛|𝒙) can be regarded as a Gaussian with zero mean and a covariance matrix of 𝑽 𝛿+𝑽 𝜖
approximately and defined as follows 

𝑙(𝒛|𝒙) =  (𝒛; 𝜂(𝒙),𝑽 𝛿 + 𝑽 𝜖). (4)

Let 𝜋(𝒙) be the prior distribution of the model parameters. The posterior distribution, denoted by 𝑝(𝒙|𝒛), is thus: 
𝑝(𝒙|𝒛) ∝ 𝜋(𝒙)𝑙(𝒛|𝒙). (5)
2 



J. Cheng et al. Mechanical Systems and Signal Processing 232 (2025) 112689 
Fig. 1. History matching workflow.

2.2. History matching

History matching (HM) is a precalibration method designed for computationally expensive simulators [9,10,15]. Its primary 
goal is to iteratively discard implausible regions of the parameter space that are unlikely to yield model outputs consistent with 
experimental observations.

Fig.  1 illustrates the typical HM workflow. The process begins by generating an initial set of samples {𝒙𝑖}𝑁𝑖=1 from the prior 
distribution 𝜋(⋅). A uniform prior is typically chosen, and the initial samples are generated using a space-filling design such 
as the maximin Latin hypercube design [16]. The simulator is then evaluated to obtain outputs {𝜂(𝒙𝑖)}𝑁𝑖=1. If the simulator is 
computationally expensive, the training runs  = {𝒙𝑖, 𝜂(𝒙𝑖)}𝑁𝑖=1 are used to train an emulator, which provides a computationally 
efficient approximation of the simulator. Being an approximation, emulation introduces an additional source of uncertainty known 
as code uncertainty.

History matching requires defining an implausibility measure and a corresponding cut-off value to identify parameter configura-
tions that are not likely to provide a sensible match between model output and data. Samples with implausibility measures below the 
cut-off value are retained as non-implausible. A simple and effective sampling method, such as the 𝑝-variate random walk proposed 
in [9], can be used to generate new samples in each wave, a process known as refocussing. After excluding implausible regions, 
the remaining space is referred to as the non-implausible space. In subsequent waves, the simulator is re-evaluated to refine the 
non-implausible space. Refocussed training runs are used to update the emulator. The process repeats until a stopping criterion 
is met, such as when all remaining samples are deemed non-implausible according to the implausibility measure, or when the 
emulator’s variance falls below some threshold. Gaussian process (GP) emulators [17] are a widely used choice in HM, as they 
naturally quantify code uncertainty. When using an emulator, the relationship between observations and emulator predictions can 
be expressed as: 

𝒛 = E(𝜂̂(𝒙)) + 𝛾(𝒙) + 𝜹 + 𝝐, (6)

where 𝜂̂(𝒙) is the emulator, E(⋅) is the emulator posterior mean, 𝛾(𝒙) represents code uncertainty, 𝜹 accounts for model discrepancy, 
and 𝝐 captures measurement error. The likelihood function 𝑙′(𝒛|𝒙) is updated as 

𝑙′(𝒛|𝒙) =  (𝒛; 𝜂̂(𝒙),𝑽 𝜖 + 𝑽 𝛿 + 𝑽 𝛾 (𝒙)), (7)

where 𝑽 𝜖 ,𝑽 𝛿 , and 𝑽 𝛾 (𝒙) are covariance matrices associated with measurement error, model discrepancy, and code uncertainty, 
respectively. The resulting posterior for calibration becomes proportional to 

𝜋(𝒙)𝑙′(𝒛|𝒙). (8)

The implausibility measure for one-dimensional output can hence be defined as:

𝐼(𝒙; 𝑧) = |𝑧 − E(𝜂̂(𝒙))|
√

𝑉𝜖 + 𝑉𝛿 + 𝑉𝛾 (𝒙)
,

A common choice for the cut-off value is 3, based on the 3-sigma rule [18]. For multidimensional outputs, a multivariate 
implausibility measure can be used [1]: 

𝐼(𝒙; 𝒛) = (𝒛 − E(𝜂̂(𝒙)))⊤
(

𝑽 𝜖 + 𝑽 𝛿 + 𝑽 𝛾 (𝒙)
)−1 (𝒛 − E(𝜂̂(𝒙))), (9)

where 𝑽 𝜖 + 𝑽 𝛿 + 𝑽 𝛾 (𝒙) is assumed invertible. Cut-off values are typically derived from the chi-squared distribution [1,9,10].
HM allows for simpler measures like the maximum implausibility at 𝒙 in early waves: 

𝐼𝑀 (𝒙; 𝒛) = max
𝑗

𝐼(𝒙; 𝑧𝑗 ), (10)

where 𝐼(𝒙; 𝑧𝑗 ) is the one-dimensional implausibility for the 𝑗th output. This flexibility allows gradual refinement of the parameter 
space and reintroduction of challenging input–output combinations when they become feasible.
3 
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2.3. Importance sampling

Importance sampling is a method for approximating a target distribution by drawing samples from a simpler proposal distribution 
and assigning weights to each sample based on the ratio of the target distribution to the proposal distribution. This approach is 
especially effective when the target distribution is complex or computationally intensive to sample directly.

Bayesian History Matching (BHM) [10] leverages HM as a precursor to efficiently locate high-probability regions in the parameter 
space. Once these regions are identified, importance sampling can be performed to assign weights to the samples, providing a 
computationally efficient alternative to directly implementing a full Bayesian inference algorithm from scratch.

For the final non-implausible space detected by HM, an importance proposal distribution 𝑞(⋅) is used to generate samples. These 
samples are then re-weighted according to the following rule for 𝑖 = 1,… , 𝑁 : 

𝑤(𝒙′(𝑖)) =
𝑤𝑢𝑛

(

𝒙′(𝑖)
)

∑𝑁
𝑘=1 𝑤𝑢𝑛

(

𝒙′(𝑘)
)
, (11)

where 𝑤𝑢𝑛
(

𝒙′(𝑖)
)

 is the unnormalized weight of 𝒙′(𝑖), and 𝒙′(𝑖) represents the samples drawn from the proposal distribution 𝑞(⋅). The 
unnormalized weights are calculated as: 

𝑤𝑢𝑛
(

𝒙′(𝑖)
)

=
𝜋(𝒙′(𝑖)) exp

(

− 1
2 𝐼(𝒙

′(𝑖); 𝒛)
)

𝑞(𝒙′(𝑖))
√

det(𝑽 𝛿 + 𝑽 𝜖 + 𝑽 𝛾 (𝒙′(𝑖)))
, (12)

where 𝜋(𝒙) is the prior distribution, and 𝐼(𝒙; 𝒛) is the implausibility measure.
An effective choice of the importance proposal distribution, is a multivariate normal distribution [9,10]: 

𝑞(𝒙′(𝑖)) ∼ 
(

𝒙′(𝑖) ∣ 𝜇̂, 𝜅𝛴̂
)

, (13)

where 𝜇̂ and 𝛴̂ represent the sample mean and covariance of the non-implausible samples from the final wave of HM, {𝒙(𝑖)𝑤 }𝑁𝑖=1, 
respectively. The parameter 𝜅 is a hyperparameter that controls the convergence of the proposal distribution.

To ensure a final set of 𝑁 equally weighted samples and improve estimation accuracy, [10] proposed a re-sampling step based 
on the normalized weights after importance sampling. This additional step enhances the alignment of the samples with the target 
posterior distribution.

Although importance sampling with re-sampling can effectively adjust the sample system from HM to approximate the true 
posterior, it has some limitations. A relatively large sample size is often required when the true posterior is highly concentrated or 
skewed, making it difficult to adapt the HM-generated samples efficiently in a single step. Furthermore, in a dynamical framework, 
BHM would require running the entire algorithm from scratch if new data becomes available, which prevents the reuse of previously 
computed information—even when the new data is similar to the existing observations.

To address these limitations and enable dynamic Bayesian calibration, we propose integrating a sequential Monte Carlo (SMC) 
sampler with history matching. This approach allows for the direct update of previously formed distributions as new data arrives, 
significantly improving computational efficiency and adaptability in real-time applications.

3. Sequential Monte Carlo sampler

3.1. Sequential Monte Carlo

Sequential Monte Carlo (SMC) [19] methods combine importance sampling with Monte Carlo techniques to address sequential 
sampling problems, that is, scenarios where the target distribution evolves over time or depends on a growing set of observations. 
Unlike sequential inference methods such as the Kalman filter [20], SMC does not depend on linearity or Gaussianity assumptions. 
Instead, it leverages information from the likelihood function to handle non-linear and non-Gaussian models effectively. Basic SMC 
algorithms sample from a sequence of probability distributions whose dimensionality increases over time. These distributions can 
represent the sequence of posterior distributions for a system’s state path from time 1 to time 𝑡, conditioned on observations collected 
up to time 𝑡.

Each iteration of an SMC algorithm involves three essential steps [21]: (1) Sampling the new state from a proposal distribution; 
(2) Reweighting each particle; (3) Resampling particles. The resampling step is crucial to address the weight degeneracy problem [19], 
when the particle approximation becomes dominated by a few particles as time progresses, leading to poor representation of the 
target distribution. This occurs because particles with low weights at a given time step have a negligible chance of gaining importance 
in future steps. Resampling removes low-weight particles and replicates high-weight particles to maintain particle diversity and 
improve approximation accuracy.

Basic SMC algorithms commonly use traditional resampling techniques, such as multinomial resampling [22], which generate 
𝑁 equally weighted particles after each resampling step. However, as time progresses, the discrepancy between the importance 
proposal and the target distribution increases, and successive resampling steps can deplete the diversity of earlier particle paths, 
causing the path degeneracy problem. To address this, advanced resampling techniques such as adaptive resampling [23], dynamic 
resampling [24], and rejection resampling [25] have been proposed. These methods perform resampling only when necessary, 
thereby improving estimation accuracy.

In the algorithm proposed in this paper, we use rejection resampling because it does not require hyperparameter tuning. This 
makes it more straightforward and efficient to implement.
4 
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3.2. Sequential Monte Carlo sampler

Building on SMC methods, [26] introduced the Sequential Monte Carlo sampler, a methodology for sampling from a sequence of 
distributions defined on a common space, such as a series of bridging distributions between a prior and its corresponding posterior. 
The SMC sampler constructs a sequence of artificial joint target distributions whose marginals correspond to the desired target 
distributions at each time step. This framework allows the application of standard SMC methods to approximate these targets 
effectively.

The artificial joint distribution at time 𝑡 is constructed using an auxiliary variable technique and backward Markov kernels 𝐿𝑡−1
with densities 𝐿𝑡−1(𝒙𝑡,𝒙𝑡−1). The joint distribution is defined as: 

𝜋𝑡(𝒙1∶𝑡) = 𝑝𝑡(𝒙1∶𝑡), (14)

where

𝑝𝑡(𝒙1∶𝑡) = 𝑝𝑡(𝒙𝑡|𝒛𝑡)
𝑡−1
∏

𝑖=1
𝐿𝑖(𝒙𝑖+1,𝒙𝑖),

and its marginal ∫ 𝑝𝑡(𝒙1∶𝑡)d𝒙1∶𝑡−1 recovers the target 𝑝𝑡(𝒙𝑡|𝒛𝑡). Here, 𝐿𝑖 are backward Markov kernels, and 𝑝̄𝑡(𝒙𝑡|𝒛𝑡) denotes the 
unnormalized part of 𝑝𝑡(𝒙𝑡|𝒛𝑡). The joint distribution can also be expressed as: 

𝜋𝑡(𝒙1∶𝑡) =
𝑝̄𝑡(𝒙𝑡|𝒛𝑡)

∏𝑡−1
𝑖=1 𝐿𝑖(𝒙𝑖+1,𝒙𝑖)
𝑍𝑡

, (15)

where 𝑍𝑡 is the normalizing constant of 𝑝𝑡(𝒙𝑡|𝒛𝑡).
At time step 𝑡, given a set of weighted particles {𝑊 (𝑖)

𝑡−1, 𝑋
(𝑖)
𝑡−1}

𝑁
𝑖=1 from time 𝑡 − 1, the importance proposal for the path 𝒙1∶𝑡 is 

denoted as ̃𝑞𝑡(𝒙1∶𝑡). A forward Markov kernel 𝐾𝑡 with density 𝐾𝑡(𝒙𝑡−1,𝒙𝑡) is applied to move the particles. The unnormalized weights 
are computed as:

𝑤𝑡(𝒙1∶𝑡) = 𝑊𝑡−1(𝒙1∶𝑡−1)𝑤̃𝑡(𝒙𝑡−1,𝒙𝑡), (16)

𝑤̃𝑡(𝒙𝑡−1,𝒙𝑡) =
𝑝̄𝑡(𝒙𝑡)𝐿𝑡−1(𝒙𝑡,𝒙𝑡−1)
𝑝̄𝑡−1(𝒙𝑡−1)𝐾𝑡(𝒙𝑡−1,𝒙𝑡)

, (17)

where 𝑤̃𝑡(𝒙𝑡−1,𝒙𝑡) is the incremental weight. The optimal importance proposal is the target distribution at time 𝑡, but this is generally 
impractical to sample from directly.

MCMC can be used to define 𝐾𝑡, ensuring it has the target distribution at time 𝑡 as its invariant distribution. This strategy is 
effective if 𝐾𝑡 mixes rapidly or if adjacent target distributions are similar. The corresponding backward kernel 𝐿𝑡−1 can be defined 
as: 

𝐿𝑡−1(𝒙𝑡,𝒙𝑡−1) =
𝑝𝑡(𝒙𝑡−1|𝒛𝑡−1)𝐾𝑡(𝒙𝑡−1,𝒙𝑡)

𝑝𝑡(𝒙𝑡|𝒛𝑡)
, (18)

and the unnormalized weight becomes: 

𝑤𝑡(𝒙1∶𝑡) ∝ 𝑊𝑡−1(𝒙1∶𝑡−1)
𝑝̄𝑡(𝒙𝑡)

𝑝̄𝑡−1(𝒙𝑡−1)
. (19)

The SMC sampler offers significant advantages over traditional MCMC methods due to its flexibility. It allows customization 
of initial sampling, intermediate distributions, and importance proposals. For instance, a well-designed sequence of intermediate 
distributions can mitigate weight degeneracy, while an effective importance proposal improves exploration of the target distri-
bution. Additionally, SMC samplers are naturally parallelisable because particles are independent during sampling, making them 
computationally efficient.

4. Sequential Bayesian history matching

This paper introduces Sequential Bayesian History Matching (SBHM), a framework that combines SMC samplers with HM under 
the Bayesian perspective to address the challenge of model updating when a constant stream of data is available. To achieve robust 
initial sampling, we propose reliability-based HM with SMC to identify the non-implausible space in the first time step. Once initial 
non-implausible samples are obtained from an importance proposal, they are transitioned to the true posterior of the first set of 
observations by applying the SMC sampler with intermediate distributions. For subsequent observations, the SMC sampler iteratively 
updates particles from the previous posterior to the new posterior, ensuring that previously acquired information is utilized. This 
avoids running BHM from the beginning every time new data is observed, to avoid wasteful computation.

This section provides a detailed description of the target posteriors in dynamic Bayesian calibration and the technical components 
of SBHM, including initial sampling, intermediate distributions, stopping rules, and importance proposals.
5 
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4.1. Target posteriors

In a scenario when the model parameters evolve in time, one can leverage the information from the samples at the current time 
step to update the parameters for the next step, based on new data. At time 𝑡, the relationship between an observation and the 
output of the emulator is analogous to Eq.  (6), and is expressed as: 

𝒛𝑡 = E(𝜂̂𝑡(𝒙𝑡)) + 𝛾(𝒙𝑡) + 𝜹𝑡 + 𝝐𝑡, (20)

All sources of uncertainty are assumed to follow normal distributions. A sequence of posterior distributions conditioned on the 
observations at each time 𝑡, namely {𝑝𝑡(𝒙𝑡|𝒛𝑡)}𝑇𝑡=1. can be constructed applying Bayes’ theorem.

Even in the absence of explicit prior knowledge about the evolution of the unknown parameters, sequential sampling can 
efficiently update the previously formed posterior distribution. This is particularly effective in scenarios where the new observation 
𝒛𝑡 is strongly correlated with the prior state 𝒛𝑡−1.

4.2. Reliability-based history matching

One of the main challenges posed by HM, especially for complex high-dimensional simulators, is that the non-implausible space 
can be orders of magnitude smaller than the original parameter space [1]. This means that, at every new wave, producing non-
implausible samples in a progressively shrinking space becomes progressively more difficult. To address this, a subset simulation 
(SuS)-based HM approach was proposed in [27]. SuS is an advanced Monte Carlo algorithm originally developed in [28] for rare 
event estimation in engineering reliability analysis. It samples from failure events by designing a sequence of nested conditional 
events.

SuS can be seen as a special case of a Sequential Monte Carlo (SMC) sampler [29]. Instead of conditional distributions between 
failure events, the intermediate target distributions are set as the distributions on the failure events themselves.

At each wave 𝑤, assume an implausibility measure 𝐼𝑤 with a corresponding cut-off value 𝑐𝑤. To efficiently identify the non-
implausible space, we define a sequence of intermediate distributions {1(𝐼𝑤,𝑙 < 𝑐𝑤,𝑙)}𝐿𝑙=1, where 𝑐𝑤 = 𝑐𝑤,𝐿 < ⋯ < 𝑐𝑤,1. To move 
samples between failure events, we use iterations of the adaptive Metropolis algorithm in the SMC-based SuS algorithm proposed 
in [29]. The pseudo-code for the modified SuS-based HM is given in Algorithm 1.

4.3. Intermediate distributions

After the first experimental data is observed, SuS-based HM is run to detect the corresponding non-implausible space. After that, 
a sequence of intermediate distributions is constructed, leading to the posterior: 

𝑝1,𝑟(𝒙1; 𝒛1) ∝ 𝜋(𝒙1)1−𝜑1,𝑟 𝑝̄1(𝒙1)𝜑1,𝑟 , (21)

where 𝑟 = 0, 1,… , 𝑟1 and 0 = 𝜑1,0 < ⋯ < 𝜑1,𝑟1 = 1.
These intermediate distributions enable a smooth transition from a relatively flat distribution (e.g., the prior over the non-

implausible space) to the final posterior distribution at time 1. Performing importance sampling sequentially with such intermediate 
distributions helps ensure convergence, even with a relatively small sample size.

When new data arrives, the corresponding intermediate distributions can be designed to move particles from time 𝑡 − 1 to time 
𝑡 if the new observation is highly correlated with the previous information: 

𝑝𝑡,𝑟(𝒙𝑡; 𝒛𝑡) ∝ 𝑝̄𝑡−1(𝒙𝑡−1)1−𝜑𝑡,𝑟 𝑝̄𝑡(𝒙𝑡)𝜑𝑡,𝑟 , (22)

where 𝑟 = 0, 1,… , 𝑟𝑡 and 0 = 𝜑𝑡,0 < ⋯ < 𝜑𝑡,𝑟𝑡 = 1.
These intermediate distributions gradually approach the posterior at time 𝑡, facilitating efficient particle movement. To achieve 

this, the tempering hyperparameters {𝜑𝑡,𝑟}
𝑟𝑡
𝑟=0 are adjusted by controlling their rates {𝑠𝑡,𝑟 = 𝜑𝑡,𝑟 − 𝜑𝑡,𝑟−1}

𝑟𝑡
𝑟=1, also referred to as the 

progress rates, where 𝜑𝑡,0 = 0 [30].
For the initial rate 𝑠𝑡,1, a high value (e.g., 1) is set, and it decreases until the effective sample size (ESS) [31] exceeds a predefined 

lower bound, that is: 

ESS𝑡,1(𝜑𝑡,1) =

[ 𝑁
∑

𝑖=1

(

𝑊 (𝑖)
𝑡 (𝜑𝑡,1)

)2
]−1

> 𝛼𝑁, (23)

where 𝑊 (𝑖)
𝑡 (𝜑𝑡,1) denotes the normalized weight associated with 𝜑𝑡,1. The hyperparameter 𝛼 ∈ (0, 1) is chosen by the user to control 

the quality of the corresponding ESS [31,32]. Since MCMC methods typically produce correlated samples, the ESS is a measure to 
approximate the number of samples needed to produce a sample of independent draws which contains the equivalent amount of 
information.

In theory, if the particles are moved smoothly, maintaining a constant progress rate ensures that the ESS remains within a 
reasonable range [30]. For subsequent iterations, the rate is kept constant unless:

• The tempering hyperparameter 𝜑  reaches or exceeds 1, or
𝑡,𝑟
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Algorithm 1 SuS-Based History Matching
Require: Experimental observation 𝒛, sample size 𝑁 , prior distribution 𝜋(𝒙) for the unknown parameters, cut-off value 𝑐𝑤 and level 
probability 𝑝 in SuS.

1. Initialisation: Set wave counter to 𝑤 = 1. Draw 𝑁 initial samples 
{

𝒙(𝑖)1,1
}𝑁

𝑖=1
 from the prior 𝜋(⋅). Train an initial Gaussian 

process emulator 𝐺𝑃1 using the training runs  = {𝒙𝑖, 𝜂(𝒙𝑖)}𝑁𝑖=1.
2. Iterate until stopping rule:

(a) Set SuS level 𝑙 = 1 and cut-off value 𝑐𝑤,1 = +∞.
(b) While intermediate cut-off value 𝑐𝑤,𝑙 is greater than 𝑐𝑤:

i. Update intermediate cut-off value: Rank samples in increasing order based on their implausibility. Denote 
the reordered samples as 𝐼𝑤

(

𝒙(1)𝑤,𝑙; 𝒛
)

≤ ⋯ ≤ 𝐼𝑤
(

𝒙(𝑁)
𝑤,𝑙 ; 𝒛

)

. Define the intermediate cut-off value 𝑐𝑤,𝑙 as the 
midpoint between 𝐼𝑤

(

𝒙(𝑁𝑝)
𝑤,𝑙 ; 𝒛

)

 and 𝐼𝑤
(

𝒙(𝑁𝑝+1)
𝑤,𝑙 ; 𝒛

)

.
ii. Reweight: Compute weights:

• If 𝑙 > 1:

𝑤(𝑖)
𝑤,𝑙 ∝

1
(

𝐼𝑤
(

𝒙(𝑖)𝑤,𝑙; 𝒛
)

< 𝑐𝑤,𝑙

)

1
(

𝐼𝑤
(

𝒙(𝑖)𝑤,𝑙; 𝒛
)

< 𝑐𝑤,𝑙−1

) .

• Otherwise:

𝑤(𝑖)
𝑤,𝑙 ∝

1
(

𝐼𝑤
(

𝒙(𝑖)𝑤,𝑙; 𝒛
)

< 𝑐𝑤,𝑙

)

1
(

𝐼𝑤−1

(

𝒙(𝑖)𝑤−1,𝐿𝑤
; 𝒛
)

< 𝑐𝑤−1,𝐿𝑤

) .

where 1 (⋅) is an indicator function.
iii. Resample: Perform rejection resampling to obtain equally weighted particles 

{

𝒙(𝑖)𝑤,𝑙

}𝑁

𝑖=1
.

iv. Sampling: Move particles using a Markov kernel 𝐾, whose invariant distribution is 
𝜋(𝒙)1

(

𝐼𝑤
(

𝒙(𝑖)𝑤,𝑙; 𝒛
)

< 𝑐𝑤,𝑙

)

, i.e., 𝒙(𝑖)𝑤,𝑙+1 ∼ 𝐾
(

𝒙(𝑖)𝑤,𝑙 , ⋅
)

.
v. Set 𝑙 = 𝑙 + 1.

(c) Update the emulator 𝐺𝑃𝑤 using the training runs  = {𝒙(𝑖)𝑤,𝑙 , 𝜂(𝒙
(𝑖)
𝑤,𝑙)}

𝑁
𝑖=1. Set 𝑤 = 𝑤+1, and update the implausibility 

measure 𝐼𝑤 and cut-off value 𝑐𝑤 for wave 𝑤.

3. Output: 𝑁 samples 
{

𝒙(𝑖)𝑤−1,𝑙

}𝑁

𝑖=1
.

• The ESS falls outside the predefined range: 

ESS𝑡,𝑟(𝜑𝑡,𝑟) =

[ 𝑁
∑

𝑖=1

(

𝑊 (𝑖)
𝑡 (𝜑𝑡,𝑟)

)2
]−1

∈ [𝛼𝑁, 𝛽𝑁], (24)

where 𝛼 < 𝛽 are thresholds, and 𝑊 (𝑖)
𝑡 (𝜑𝑡,𝑟) is the normalized weight for 𝜑𝑡,𝑟.

If the tempering hyperparameter 𝜑𝑡,𝑟 reaches or exceeds 1, we set 𝑠𝑡,𝑟 = 1 − 𝜑𝑡,𝑟−1. Otherwise:

• If the ESS falls below the lower threshold 𝛼𝑁 , the tempering parameter 𝜑𝑡,𝑟 is adjusted such that ESS𝑡,𝑟(𝜑𝑡,𝑟) ≈ 𝛼𝑁 , using 
iterative bisection on (0, 𝑠𝑡,𝑟−1].

• If the ESS exceeds the upper threshold 𝛽𝑁 , the parameter 𝜑𝑡,𝑟 is adjusted such that ESS𝑡,𝑟(𝜑𝑡,𝑟) ≈ 𝛽𝑁 , using iterative bisection 
on (𝑠𝑡,𝑟−1, 1 − 𝜑𝑡,𝑟−1].

This adaptive adjustment ensures efficient particle movement while maintaining diversity and accuracy.

4.4. Stopping rules

When new data is obtained, it may be highly uncorrelated to the previous one. In such cases, SMC samplers may require more 
computational effort than starting HM anew. To decide whether to proceed with SMC or reinitiate HM, we propose a stopping rule 
based on the ESS.

Assume that at time 𝑡 − 1, we have a set of weighted particles {𝑊 (𝑖)
𝑡−1, 𝑋

(𝑖)
𝑡−1}

𝑁
𝑖=1, where 𝑊

(𝑖)
𝑡−1 is the normalized weight of the 𝑖th 

particle. To evaluate the performance of these particles for the posterior distribution associated with the new observation at time 𝑡, 
7 
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the ESS is calculated as: 

ESS𝑡 =
[ 𝑁
∑

𝑖=1

(

𝑊 (𝑖)
𝑡

)2
]−1

∈ [1, 𝑁], (25)

where 𝑊 (𝑖)
𝑡  is the normalized weight of the 𝑖th particle with respect to the posterior distribution at time 𝑡. A higher ESS indicates 

that the particle system provides a more efficient representation of the target distribution.
If the ESS falls below a threshold 𝑁𝑚𝑖𝑛 = 𝑝𝑚𝑖𝑛𝑁 , where 𝑝𝑚𝑖𝑛 ∈ (0, 1) is a user-defined parameter, starting HM anew is preferred. 

On the other hand, if the ESS meets or exceeds this threshold, the previous and new posteriors are considered sufficiently similar 
to justify continuing with the SMC sampler to move particles toward the new posterior distribution.

4.5. Importance proposals

An essential component of an SMC sampler is the choice of the importance proposal. Once samples from the non-implausible 
space are identified by HM, a multivariate normal distribution  (⋅|𝜇̂, 𝜅𝛴̂) can be used as the initial importance proposal, as suggested 
by [29]. Here, 𝜇̂ and 𝛴̂ are the sample mean and covariance matrix, respectively, of the non-implausible samples obtained from the 
last wave of HM, and 𝜅 is a scaling factor (e.g., 𝜅 = 3) that controls the proposal spread.

When new data arrives, if the new posterior contains isolated or disconnected modes compared to the previous posterior, more 
complex MCMC proposals that allow transitions between modes, such as the mode-jumping proposal by [33], can be used. Otherwise, 
simpler and computationally efficient proposals, such as a standard random walk or independent Metropolis–Hastings, are suitable. 
In scenarios where the posterior at each time step is expected to have a single mode, we use adaptive Metropolis–Hastings as outlined 
in [29] to move particles efficiently.

The pseudo-code of sequential Bayesian History Matching is given in Algorithm 2.
Algorithm 2 Sequential Bayesian History Matching
Require: Experimental observations 𝒛1,… , 𝒛𝑡,…, sample size 𝑁 .

1. Initialisation: Set 𝑡 = 1.

(a) Run the modified SuS-based HM algorithm (Algorithm 1) for the observation 𝒛𝑡.
(b) Store {𝒙(𝑖)𝑡,0}𝑁𝑖=1, the 𝑁 particles in the final non-implausible space for this observation.

2. As new data arrives:
(a) Set 𝑡 = 𝑡 + 1 and compute the Effective Sample Size (ESS) for the new observation using Equation (25).
(b) If the ESS is below the threshold 𝑁𝑚𝑖𝑛, go to Step 1 to initiate a new HM. Otherwise, proceed with Step 2(c) for the 

new observation 𝒛𝑡.
(c) Set 𝑟 = 0, 𝜑𝑡,−1 = 0, and initialize 𝒙(𝑖)𝑡,0 ← 𝒙(𝑖)𝑡−1,0. Train an initial Gaussian process emulator 𝐺𝑃𝑡,0 for the observation 

𝒛𝑡 using a subset of the dataset  = {𝒙(𝑖)𝑡,0, 𝜂𝑡(𝒙
(𝑖)
𝑡,0)}.

(d) Repeat until 𝜑𝑡,𝑟−1 = 1:

i. Hyperparameter adaptation: Determine the tempering hyperparameter 𝜑𝑡,𝑟 and the next intermediate 
distribution by controlling the ESS.

ii. Reweight: Reweight the particles {𝒙(𝑖)𝑡,𝑟}𝑁𝑖=1 for the intermediate distribution.
iii. Resample: Perform rejection resampling to obtain new equally weighted particles {𝒙(𝑖)𝑡,𝑟}𝑁𝑖=1.
iv. MCMC Mutation: Move particles using a Markov kernel 𝐾, whose invariant distribution matches the current 

target:

𝒙(𝑖)𝑡,𝑟+1 ∼ 𝐾(𝒙(𝑖)𝑡,𝑟, ⋅), 𝑖 = 1,… , 𝑁.

v. Update Emulator: Increment 𝑟 = 𝑟 + 1 and retrain the Gaussian process emulator 𝐺𝑃𝑡,𝑟 with a subset of the 
updated dataset  = {𝒙(𝑖)𝑡,𝑟, 𝜂𝑡(𝒙

(𝑖)
𝑡,𝑟)}

𝑁
𝑖=1.

3. Output: Return the final set of particles {𝒙(𝑖)𝑡,𝑟}𝑁𝑖=1.

5. Numerical experiments

To demonstrate the broad utility of the proposed algorithm, this section presents two numerical case studies from distinct 
domains, engineering and healthcare. The engineering case study includes a simple three-degree-of-freedom mass–spring system 
using simulated data. This example illustrates the advantages of SBHM and the role of the key hyperparameter 𝛼. In the healthcare 
case study, a patient-specific respiratory model with read data is presented. Since this is a model with a more complex structure 
and a greater number of unknown parameters, it demonstrates the potential of SBHM in real-world applications.
8 
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Fig. 2. Three degree-of-freedom mass–spring.

Table 1
Model fits (output with estimated parameters) of HM and HM-SMC for the initial observation; N = 1000. Units are rad/s.
 Natural frequencies True Observed Initial HM HM-SMC 
 1 0.1600 0.1598 0.1805 0.1584 0.1606  
 2 0.3200 0.3198 0.3240 0.3181 0.3187  
 3 0.4500 0.4523 0.4079 0.4525 0.4525  

Table 2
Parameter fits (mean ± standard deviation) of HM and HM-SMC for the initial observation; N = 1000. Units are N/m.
 Parameter True Initial HM HM-SMC  
 𝑘1 1 2.0009 (± 0.1933) 0.9724 (± 0.0726) 1.0557 (± 0.1067) 
 𝑘6 3 1.9984 (± 0.1979) 3.0479 (± 0.0522) 3.0268 (± 0.0609) 

5.1. Three degree-of-freedom mass-spring system

The three-degree-of-freedom mass–spring system introduced in [6] is used here, see Fig.  2. The true values of parameters for this 
system are 𝑚𝑖 = 1.0 kg (𝑖 = 1, 2, 3), 𝑘𝑖 = 1.0N∕m (𝑖 = 1, 2, 3, 4, 5) and 𝑘6 = 3.0N∕m. The value of 𝑘1 and 𝑘6 are assumed as unknown 
and a prior  (2.0, 0.04) N∕m is defined for both 𝑘1 and 𝑘6. The nominal values of the natural frequencies of the three modes of the 
system are 𝜔1 = 0.16 rad∕s, 𝜔2 =0.32 rad∕s and 𝜔3 =0.45 rad∕s. The measurement error and model discrepancy are assumed to have 
Gaussian distributions with zero mean and 0.001 standard derivation. An initial observation is generated by adding measurement 
error and model discrepancy to the true values of the natural frequency. History matching and History matching with sequential 
Monte Carlo sampler (HM-MSC), i.e., the initialization of SBHM, were performed to generate samples for the unknown parameters 
𝑘1 and 𝑘6. Mean of these samples in each algorithm is chosen as its corresponding estimated parameters.

The natural frequency, parameters estimation and distributions of samples for the initial observation are shown in Table  1, Table 
2 and Fig.  3 , respectively.

From Table  1, it can be seen that compared with the output of the model with initial parameters, the output with calibrated 
parameters produced by HM or HM-SMC is more aligned with observed (and true target) data. Tables  1 and 2 show that HM-SMC 
can reset the samples from HM to further approach the target data. Moreover, Fig.  3 compares the kernel density estimate from 
HM with the marginal distribution produced by HM-SMC. While HM identifies high-probability regions, its samples do not provide 
a smooth target posterior distribution, which should be approximately Gaussian in this example. On the other hand, HM-SMC not 
only achieves a more accurate point estimate but also yields posterior samples.

Additionally, Fig.  4 presents a kernel density estimation of the final distributions of three natural frequencies 𝑓1, 𝑓2 and 𝑓3, which 
are considerably narrower and closer to the target range than the prior distributions.

During their operational lifetime spring stiffnesses can vary, for instance, due to prolonged static loads, cyclic fatigue, and other 
mechanical factors. The changes are particularly pronounced if the system is regularly exposed to elevated temperatures and extreme 
environments. Changes can also result from wear and tear, including operation outside of nominal conditions and damage. Therefore, 
it is important to not treat the unknown stiffness parameters as fixed. Thus, efficient updating in the presence of streaming data is 
crucial. To illustrate how SBHM can deal with such situations, two scenarios are considered: one in which the stiffnesses undergo 
small changes and another in which the changes are comparatively larger. In Case 1, the new true values of 𝑘1 is updated to 0.95N∕m
while 𝑘  remains unchanged. In Case 2, the new true values of 𝑘  and 𝑘  are updated to 0.9N∕m and 2.9N∕m, respectively.
6 1 6
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Fig. 3. The kernel density estimate for parameters 𝑘1 (left) and 𝑘6 (right) produced by the last iteration of HM (blue fill) and the marginal distribution for 
parameters produced by HM-SMC (orange fill) for the initial observation. The dotted black lines denote the true value of parameters; 𝑁 = 1000. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The kernel density estimation of the initial output distribution produced by the first iteration of HM (light), and that one generated by HM-SMC (dark) 
for the initial observation. Dashed lines in Figures show the target range..

Table 3
Case 1: Model fits (output with estimated parameters) of HM-SMC and SBHM with different 𝛼 for the new observation; N = 1000. Units are rad/s. 
 Natural frequencies True Observed HM-SMC SBHM (0.85) SBHM (0.9) 
 1 0.1578 0.1579 0.1577 0.1581 0.1579  
 2 0.3180 0.3178 0.3180 0.3180 0.3180  
 3 0.4495 0.4500 0.4499 0.4501 0.4498  

Table 4
Case 1: Parameter fits (mean ± standard deviation) of HM-SMC and SBHM with different 𝛼 for the new observation; N = 1000. Units are N/m. 
 Parameter True HM-SMC SBHM (0.85) SBHM (𝛼 ∶ 0.9)  
 𝑘1 0.95 0.9458 (± 0.1028) 0.9605 (± 0.1141) 0.9531 (± 0.0991) 
 𝑘6 3.0 3.0090 (± 0.0626) 3.0081 (± 0.0664) 3.0061 (± 0.0691) 

For both cases, parameter updates were estimated by using a new HM-SMC and SBHM with a stopping threshold of 𝑝𝑚𝑖𝑛 = 0.7. 
The natural frequency and parameters estimation for Case 1 are shown in Tables  3 and 4, respectively. Similarly, the natural 
frequency and parameters estimation for Case 2 are shown in Tables  5 and 6, respectively. The average computational time of 
the two algorithms for different cases are shown in Table  7.

Combining Table  3, 4, 5 and 6, we can observe that updating previously formed distributions via SBHM can achieve comparable 
(𝛼 = 0.85) or even better (𝛼 = 0.9) accuracy compared with running a new HM-SMC from scratch for a new observation under both 
smaller and larger changes. Table  7 demonstrates that SBHM can outperform new HM-SMC runs in terms of speed by leveraging 
previous information. Higher 𝛼 requires SBHM to achieve higher effective sample size at each iteration and hence gets better accuracy 
but increases the computational cost of SBHM, while lower 𝛼 reduces its accuracy (sometimes slightly worse than running a new 
HM-SMC) but save time. Thus, users should tune 𝛼 to balance accuracy and analysis time based on their needs. Moreover, Table 
7 displays the average computational time of SBHM and HM-SMC for different changes on parameters. The results indicate that 
10 
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Table 5
Case 2: Model fits (output with estimated parameters) of HM-SMC and SBHM with different 𝛼 for the new observation; N = 1000. Units are rad/s. 
 Natural frequencies True Observed HM-SMC SBHM (0.85) SBHM (0.9) 
 1 0.1564 0.1548 0.1558 0.1556 0.1560  
 2 0.3176 0.3190 0.3178 0.3175 0.3175  
 3 0.4431 0.4443 0.4443 0.4438 0.4444  

Table 6
Case 2: Parameter fits (mean ± standard deviation) of HM-SMC and SBHM with different 𝛼 for the new observation; N = 1000. Units are N/m. 
 Parameter True HM-SMC SBHM (0.85) SBHM (0.9)  
 𝑘1 0.9 0.8761 (± 0.1054) 0.8713 (± 0.1258) 0.8848 (± 0.1109) 
 𝑘6 2.9 2.9267 (± 0.0583) 2.919 (± 0.0724) 2.9260 (± 0.0630) 

Table 7
Average computational time of SBHM and HM-SMC for different changes on parameters with different 𝛼; N = 1000. Units are s.
 Case HM-SMC SBHM (0.85) SBHM (0.9) 
 1 45.3 14.5 21.9  
 2 43.8 21.3 37.8  

Table 8
Parameter ranges for the lung model. The units for resistors and capacitors are (mmHg*s)/mL and mL/mmHg, respectively. 
 𝑅1 𝑅2 𝑅3 𝑅4 𝐶1 𝐶2 𝐶3 𝐶4  
 Lower bound 0.001 0.001 0.001 0.001 1.5 1.5 2 50  
 Upper bound 0.004 0.004 0.004 0.005 3 3 6 200 

larger parameters changes lead to higher computational costs since SBHM needs more iterations to capture these changes. Setting 
an appropriate stopping threshold is, therefore, critical for maintaining the efficiency of the algorithm. When new data becomes 
nearly irrelevant to previous data, it would be more efficient to run a new HM-SMC compared with continuing with the current 
SMC sampler in SBHM.

5.2. A clinical model

We update an 8-parameter version of the patient-specific cardio-respiratory model for intensive care unit (ICU) patients as 
presented in [34]. The model is flexible and can be modified to suit various clinical scenarios. For this study, we refine the respiratory 
system component, focusing specifically on the lung. The model incorporates three key components of the lung: trachea, bronchi, 
and alveoli, which are commonly described in the literature [35–37]. Additionally, a ventilation component is introduced to address 
the needs of ICU patients.

Each component is modeled with one resistor and one capacitor, resulting in a total of eight unknown parameters. The initial 
ranges of these parameters are provided in Table  8. In our fluid system, resistors directly control flow rates, while capacitors 
temporarily store and release pressurized fluid, indirectly influencing the flow.

The lung simulator takes an observed pressure curve as input and generates a flow curve as output, which can be monitored by 
clinicians at the ICU. Thus, for this example, the model is updated every time a new observation (that is a new curve) is observed. 
Based on prior beliefs provided by the modeler, the measurement error and model discrepancy for each time point of a flow curve 
are both set to 50 mL/s.

The multivariate normal distribution proposed by [9] is not used as the importance proposal following HM because the values 
of resistors and capacitors must remain positive. Instead, we adopt a uniform prior  (⋅|𝜇̂, 𝜅𝛴̂) ∩  , where 𝜅 = 3. GP emulators for 
curves, as described in [38], are used. Additionally, when new observations are introduced, the dimension of the output changes 
because the length of breath varies. Thus, two GP emulators are trained at each wave of SBHM: one for the previous observation 
and one for the new observation. An HM-SMC procedure, representing the initialization step of the SBHM algorithm, is used to 
obtain posterior samples for the initial observation. At each iteration, a maximin strategy [9], which selects points by maximizing 
the minimum distance among the current system of samples, is used to generate the training set for the GP emulators.

Fig.  5 illustrates the shrinking process in the parameter space for SuS-based HM. After three waves, the average standard deviation 
of the Gaussian process emulator on the validation dataset fell below that of the measurement error for a single point (i.e., 50 mL/S). 
At this point, the algorithm terminates, outputting samples from the final non-implausible space. In the first wave, uniform samples 
within the ranges specified in Table  8. The maximum implausibility measure in Eq.  (10) with a threshold of 6 was used during the 
second wave to eliminate regions, whilst the multivariate implausibility measure in Eq.  (9) with a threshold of 3 was employed in 
the final wave to refine the non-implausible space further. Fig.  5 also shows how the final non-implausible space is significantly 
smaller than the original parameter space.

An SMC sampler was performed following HM to obtain posterior samples, with the mean of these samples treated as parameter 
estimates. Fig.  6 compares the model outputs using initial parameter estimates from the prior samples and those derived from 
11 
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Fig. 5. Paired scatterplots for HM waves 1 and 3. The plots show the dramatic shrinkage of the parameter space. Initial samples, 𝑁 = 1000.

posterior samples generated at the last iteration of HM-SMC. The unknown parameters primarily influence the global shape of the 
estimated flow curves, while local noise in these curves is determined by the input pressure. Fig.  6 shows that most of the model 
output lies within the defined uncertainty bounds. Moreover, the calibrated parameters obtained through HM-SMC produce outputs 
that align more closely with the observed flow compared to outputs generated with initial parameters. However, the observed 
mismatch near the minimum suggests that the model discrepancy in this region may have been underestimated. One potential 
explanation for this mismatch is the unaccounted offset between self-breathing and ventilator-induced breathing periods.

When a new flow curve is observed, there are two options: either run SBHM or run HM-SMC anew. Fig.  7 shows the calibrated 
outputs produced by both algorithms for the second observation (i.e. second curve). It can be seen that both methods delivered 
parameter configurations whose output matches the observed curve. This demonstrates that SBHM is capable of updating model 
parameters relying on information from previous observations. Moreover, the usage of one algorithm over the other one can be 
justified in terms of their computational complexity.

The computational complexity of the SuS-based HM with adaptive Metropolis is (𝑁𝐿𝑆), where 𝐿 is the sum of the number of 
intermediate thresholds across waves (𝐿 =

∑𝑊
𝑖=1 𝐿𝑖), and 𝑆 is the number of adaptive Metropolis iterations. For an SMC sampler 

with rejection resampling, the complexity is (𝑁𝑅𝑆), where 𝑅 is the number of intermediate distributions. After parallelization, 
the time complexity of SuS-based HM reduces to (𝐿𝑆), while that of the SMC sampler with rejection resampling becomes (𝑅𝑆). 
When the new observation is closely related to the previous one, the number of iterations 𝑅 required to update parameters in SBHM 
is small. In such cases, SBHM requires less computational time compared to running a new HM-SMC. Experimental results confirm 
that SBHM achieves similar or better accuracy compared to HM-SMC, while consistently requiring less computational time when 
stopping rules are not met.
12 
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Fig. 6. Model fits (output with estimated parameters) for the first and last iterations of HM-SMC for the 1st breath, error bounds of the observation: ±3√𝑉𝛿,1 + 𝑉𝜖,1, 
𝑁 = 1000.

Fig. 7. Model fits of SBHM and HM-SMC for the 2nd breath, error bounds of the observation: ±3√𝑉𝛿,2 + 𝑉𝜖,2, 𝑁 = 1000.

6. Discussion

This paper proposes an algorithm for sequential Bayesian history matching (SBHM), designed for dynamic model updating. The 
algorithm integrates two key techniques: history matching (HM) and sequential Monte Carlo (SMC) samplers. A subset-simulation-
based HM procedure serves as a precursor during the initialization step, efficiently identifying high-probability regions of the 
posterior distribution. Subsequently, SMC samplers generate posterior samples by iteratively refining and adjusting the existing 
sample set to better approximate the target posterior distribution.
13 
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When new data becomes available, SBHM uses a stopping rule based on the effective sample size to determine whether to 
continue with the current SMC sampler. If the previously obtained information becomes nearly irrelevant due to new data, SBHM 
reverts to HM. Otherwise, SBHM directly updates the available samples. In contrast, existing calibration algorithms must restart 
entirely when new data arrives, regardless of the correlation between the new data and previous observations.

We presented two numerical case studies illustrating that the proposed algorithm can generate posterior samples and efficiently 
update the posterior distribution when new data is relevant. By appropriately tuning the hyperparameter 𝛼, SBHM can provide 
accurate approximations comparable to or better than a full restart, but with significantly reduced computational cost.

The numerical case studies presented in this paper resulted in uni-modal posteriors. Preliminary experiments with models having 
multi-modal posteriors that are not presented in the current paper, indicate that SBHM is capable of detecting multi-modality at 
the cost of stability. The study of multi-modal posteriors is certainly important and we defer this to future work. Another setting 
worth exploring is that which involves computationally expensive simulators with dimensions that vary over time. Investigations 
into efficient methods for training emulators as new observations become available are another important area of future research. 
In line with the ideas of transfer learning, this could include linking the newly trained emulator with previously trained ones to 
leverage existing knowledge and minimize computational cost.
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