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Many mathematical models suffer from model dis-

crepancy, posing a significant challenge to their

use in clinical decision-making. In this article, we

consider methods for addressing this issue. In the

first approach, a mathematical model is treated as a

black box system, and model discrepancy is defined

as an independent and additive term that accounts for

the difference between the physical phenomena and

the model representation. A Gaussian Process (GP)

is commonly used to capture the model discrepancy.

An alternative approach is to construct a hybrid

grey box model by filling in the incomplete parts

of the mathematical model with a neural network.

The neural network is used to learn the missing

processes by comparing the observations with the

model output. To enhance interpretability, the outputs

of this non-parametric model can then be regressed

into a symbolic form to obtain the learned model.

We compare and discuss the effectiveness of these

approaches in handling model discrepancy using

clinical data from the ICU and the Siggaard–Andersen

oxygen status algorithm.

This article is part of the theme issue ‘Uncertainty

quantification for healthcare and biological systems

(Part 2)’.
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1. Introduction
In recent years, there has been a growing effort to adopt mathematical models and simulations

to support decisions across various fields [1]. Despite the advances in mathematical modelling

and simulation, their limitations must be recognized and acknowledged. In this article, we dis-

cuss model discrepancy, also known as model error, model bias and structural uncertainty. This

refers to the unavoidable difference between the real-world process of interest and the model

representation used to study it. This discrepancy can arise due to various reasons. In particu-

lar, computational models are based on current scientific understanding, therefore, incomplete

knowledge about the system being modelled can result in inaccuracies. In addition, simulation

models require numerical approximation methods to produce their output, which will often lead

to discrepancies between model output and observed values. Understanding and addressing

model discrepancy is crucial in assessing the correctness, credibility and predictive power of the

mathematical model when making high-stakes decisions.

Various approaches have been proposed to address model inadequacy of computational mod-

els. In weather forecasting and climate modelling, delta change and quantile mapping methods

can be used to model the difference between the model predictions and the observations at the

post-processing stage [2,3]. In uncertainty quantification (UQ), model discrepancy is also consid-

ered as part of inverse problems to obtain unbiased estimates of unknownmodel parameters [4,5]

proposed to define model discrepancy as an independent and additive term that represents the

difference between the physical phenomena and themodel representation. It is common to choose

a stochastic process, namely a Gaussian Process (GP) to capture the model discrepancy since it is

a flexible, non-parametric model that provides uncertainty estimates for the obtained predictions

[5,6]. Most approaches propose to specify priors on model parameters, as well as model dis-

crepancy, with the aim of performing a joint parameter and model discrepancy inference [4,5,7].

However, this type of inference is known to encounter non-identifiability issues, which can only

be resolved by imposing stronger priors [4]. An alternative approach, which distinguishes be-

tween internal and external discrepancy, has been proposed by [8]. Internal model discrepancy

can be quantified through experiments on the computational model, such as varying model pa-

rameters that are usually kept fixed. External model discrepancy directly relates to the limitations

of the model and cannot be addressed as part of internal model discrepancy assessment. Interest-

ingly, before this terminology was introduced by [8,9] considered these types of discrepancies in

their uncertainty analysis of a cosmological model, [10] proposed to use expert judgment and rei-

fiedmodelling to determine external model discrepancy [11]. In the majority of these approaches,

the computational model is treated as a black box, where only the model’s inputs and outputs are

observed. Consequently, we refer to these methods as black box approaches.

Occasionally, mathematical models can be partially knownwith some notable examples across

various fields [12–14]. In the context of partially known models, recent developments in the field

of scientific machine learning (SciML) have demonstrated the possibility of learningmissing com-

ponents of partially known systems from the observations. A popular SciML approach within the

field of dynamical systems is universal differential equations (UDEs) [15], where the unknown

components of a partially known model prescribed by a system of ordinary or partial differential

equations (ODEs or PDEs) are set to be governed by a neural network. This hybrid structure is

often called a grey box model [16] and is hereafter referred to as such. The available data are used

to train the grey box model such that the embedded neural network captures the dynamics miss-

ing from the system. The trained network can subsequently be regressed down to mathematical

expressions, providing insight into the missing physics, thereby transforming it into a learned

model. This method has been used on simple dynamical systems [15], as well as more complex

systems [17–20]. Although the mathematical model of interest in this paper is not a system of

ODEs or PDEs, the general framework can still be applied in largely the same manner.

In this paper, we consider the mathematical model of the oxygen dissociation curve (ODC)

of human blood, the Siggaard–Andersen (S.A.) algorithm [21], to illustrate the black box ap-

proach and methods from SciML, namely the grey box and learned models, in addressing model
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inadequacy. In clinical settings, clinicians can improve oxygen delivery to tissues using, for in-

stance, supplemental oxygen or even mechanical ventilation. It is crucial to deliver the right

amount of oxygen—low tissue oxygen levels may prevent energy production and lead to cell

death, but high levels of tissue oxygen may also cause damage through reactive oxygen species

[22]. In addition, high mechanical ventilation pressures can cause traumatic damage to lungs.

Traditionally, intensive care unit (ICU) clinicians have used pO2 to guide treatment, although

this is largely a guide to how much oxygen can cross the lung barrier into blood, rather than

what can be delivered to tissues. More recently, pulse oximetry has gained common use to pro-

vide a continuous measure of haemoglobin oxygen saturations (SpO2) an estimate of the arterial

haemoglobin oxygen saturations (SaO2). There is some uncertainty among clinicians about the

optimum SpO2 value to target when making treatment decisions [23]. SpO2 (and SaO2) are mark-

ers of howmuch oxygen can be delivered to tissues, but howmuch is actually delivered depends

on how strongly haemoglobin binds, and conversely, is willing to unload, oxygen. This prop-

erty of haemoglobin, known as haemoglobin oxygen affinity, is defined by the ODC, which de-

scribes the relationship between haemoglobin oxygen saturations SO2 and the partial pressure of

oxygen, pO2.

In practice, oxygen affinity is difficult to measure. Mathematical models such as the S.A. al-

gorithm [21], have been adopted by the medical engineering industry to display affinity-based

values in blood gas analyzers that are commonly used in ICU. Typically, these values have not

found clinical use in decision making, due to clinician scepticism regarding model accuracy. A

more accurate estimation of oxygen affinity would add information for more tailored clinical

decisions regarding oxygen therapy.

The outline of this paper is as follows. In §2, we introduce a mathematical model of the ODC.

§3 describes approaches tomodel discrepancy. Next, in §4, we illustrate our approaches with syn-

thetic data study. In §5, we apply these methods to the real clinical data. §6 contains concluding

remarks and discussion.

2. Oxygen-haemoglobin dissociation curve
The ODC describes the relationship between partial pressure of oxygen dissolved in blood (pO2)

and the haemoglobin oxygen saturation (SO2), the proportion of haemoglobin that is saturated

with oxygen relative to the total binding sites available. In short, the ODC expresses the affinity

that haemoglobin, the major oxygen carrier in the blood, has for oxygen. In particular, the sig-

moid shape of curve represents that oxygen binds to haemoglobin when the surrounding oxygen

partial pressure is high, in the lungs, and dissociates from oxygen when partial pressure is low, in

the tissue capillaries. In addition, the ODC can shift position due to changes in pH, temperature

(T), 2,3-diphosphoglycerate (2,3-DPG) in red blood cells, partial pressure of carbon dioxide in

the blood (PCO2) and haemoglobin variants (FCOHb, FMetHb, FHbF). In conditions of increased

metabolic activity, where tissues requiremore oxygen, SO2 is relatively lower for a given pO2. This

results in a rightward shift of the ODC, leading to greater oxygen dissociation from haemoglobin.

The opposite effect occurs when the metabolic activity is low, with the haemoglobin affinity for

oxygen increasing.

To construct the ODC and derive the affinity of haemoglobin for oxygen for an individual

patient, we adopt the S.A. algorithm [21] together with patients’ recorded values. We note that

2,3-DPG, denoted as cDPG in the S.A. model, is difficult to measure clinically—indirect mea-

surements of 2,3-DPG have been used in research laboratories and for quality control in blood

banks [24]. There are various ways to estimate levels of cDPG. For instance, [25] proposed to use

a nomogram to derive a cDPG level from observed pO2, PCO2, pH and p50, the value of partial

pressure of oxygen when oxygen saturation of haemoglobin is 50%; [26] suggested to use p50st,

the value of p50 under standard conditions for adult humans, to calculate cDPG value. How-

ever, it is unclear how this variable is derived in calculations performed in blood gas analyser

machines.
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Figure 1. Oxygen dissociation curve (ODC): (left panel) logarithmic scale; (right panel) linear scale; black line corresponds to
the reference ODC, red line represents the shift in the ODC due to alkalosis (blood pH increase).

A mathematical model representing the haemoglobin-dissociation curve can be written as

y − yo = (x − xo) + h tanh
(
ko(x − xo)

)
, (2.1)

where ko = 0.5343, y= ln
(

s

1−s

)
, yo = ln

(
so

1−so

)
, with so = 0.867, and x= ln

(
p

po

)
with po = 7kPa and

xo = a + b, h= ho + a, where ho = 3.5 and b= 0.055 × (T − 37). The actual position of the ODC in

the coordinate system is represented by a Hill plot [27], which is given by y= (ln(s∕(1 − s)))
and x= ln(p) that are used in the mathematical model, with s and p corresponding to the com-

bined saturation of oxygen and carbon monoxide and the combined partial pressure of oxygen

and carbon monoxide, respectively. To obtain s and p, we are required to perform the following

transformations:

p= pO
2
+
pO

2

SO2

× [ FCOHb

1 − FCOHb − FMetHb
], (2.2)

s=
SO2 × (1 − FCOHb − FMetHb) + FCOHb

1 − FMetHb
. (2.3)

The target used for training and inference in this work is s. The terms a and b reflect the ODC dis-

placement from the reference position to its actual position. The term a describes the displacement

at 37◦C, whereas b describes the additional displacement due to the patient temperature differ-

ence from 37◦C. The reference position of the ODC was chosen to be the one that corresponds

to standard conditions for adult humans, namely: pH= 7.40, PCO2 = 5.33 kPa, FCOHb, FMetHb,

FHbF= 0 and cDPG= 5 mmol/L. Figure 1 shows the ODCs on the logarithmic and linear scales.

We can observe that a change in the a component of the model leads to the leftward shift of the

ODC from its reference position. We chose to adopt the ODC on a linear scale to represent the

results of our analysis since it is more interpretable in a clinical setting.

Typically, to derive the actual position of the ODC for a given patient, we must first calculate

the shift of the reference curve at 37◦C due to changes in pH, partial pressure of carbon dioxide,

variants of haemoglobin and cDPG represented by the term ac in equation (2.4):

a= ac + a6, (2.4)

where the ac term is written as

ac= a1 + a2 + a3 + a4 + a5,

a1 =−0.88 × (pH − 7.40),

a2 = 0.048 × ln (
PCO2

5.33 ),
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a3 =−0.7 × FMetHb,

a4 = (0.3 − 0.1FHbF) × (cDPG∕5 − 1),

a5 =−0.25 × FHbF.

In the second phase, we shift the curve further to pass through the known set of coordinates

(p0, s0) obtained fromperforming the transformations in equations (2.2) and (2.3) from the patient’s

measurements and adjust for the contribution of ‘unknown knowns’ (a6).

Based on the description above, we recognize that similar to other mathematical models, the

ODC suffers from model inadequacy. Firstly, there is a lack of clarity among clinicians on how

cDPG is estimated. In addition, it is known among the clinical community that the influence of

2,3-DPG changes with pH and temperature, which is not reflected in the model [28]. Secondly,

a numerical method, such as the Newton–Raphson algorithm, can be used to calculate a6, which

represents changes in ODC due to ‘unknown knowns’ and provides very limited interpretability

for clinicians. In our analysis, instead of considering both terms a4 and a6 in equation (2.4), which

can lead to serious non-identifiability issues, we assume that a6 = 0, and a4 now represents the

changes in ODC due to ‘unknown knowns’ that can include changes in 2,3-DPG.

3. Methods
Here, we present the black box model and approaches from SciML to address the model limi-

tations discussed in §2. In particular, using a black box approach, we set a4 = 0 within the S.A.

model and aim to use a GP to account for the model’s limitations arising from its failure to ac-

count for changes in theODCdue to ‘unknown knowns’when performingmodel-based inference

regarding a patient’s oxygen affinity. On the contrary, the SciML approach aims to explicitly cap-

ture the behaviour of the missing component, a4, by constructing a grey box model wherein a4
is defined as the output of a neural network and the remaining model structure is retained. The

neural network is trained with observational data. To obtain the learned model, we regress the

network down tomathematical expressions, which increases interpretability by providing insight

into the dynamics of the system. The inputs to both the neural network and the GP are [pH, PCO2,

FMetHb, T, p].

(a) Black box model and Gaussian process (GP)
We propose to treat a mathematical model as a function f that takes as input the parameter vec-

tor x= (x1, x2, … , xp) ∈ ℝp and produces output f (x). We define model discrepancy as the systemic

difference between computational model predictions and the corresponding physical process of

interest. Following [5], we choose to represent model discrepancy, denoted as �(x), as an addi-

tive term that depends on the input vector x. The relationship between the observation z and the

model output f (x) is then given by

z= f (x) + �(x) + e, (3.1)

where e is the observation error term, modelled as Gaussian additive noise, i.e. e∼N(0, �2
e ). We

further assume that all three terms in equation (3.1) are independent of each other. Suppose we

have n observations of the physical systemof interest, denoted by z= (z1, z2, … , zn), associatedwith
inputs X=

(
x1, … , xn

)
. The objective of model discrepancy inference is to estimate the discrepancy

term �(x) using observations of the physical system together with the computational model. We

can then use the resulting updated model f (x) + �(x) to perform inferences about the true phys-

ical process of interest. We note that contrary to [4,5,7], which considered calibration parameter

estimation as part of the inference problem, we solely focus on model discrepancy inference.

We choose a stochastic process, namely the GP, to represent the model discrepancy. This is a

class of flexible, nonparametric models that are capable of approximating an unknown function
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of interest [6]. GP also provides a measure of uncertainty about the obtained prediction, which is

crucial for credibility assessment.

We specify a zero-mean GP prior for �(⋅)with covariance function k(⋅, ⋅) so that

�(⋅) ∼GP
(
0, k(⋅, ⋅)

)
, (3.2)

with separable squared exponential covariance function:

k(x, x′) = �2 exp { −
p∑

i=1

(xi − x′
i


i

)2
}, (3.3)

where �2 and 
 = (
1, … , 
p) are a variance parameter and a vector of correlation length parame-

ters, respectively. The variance parameter controls the scale of the model discrepancy, whereas

the correlation length parameters determine how far apart x and x′ need to be before �(x) and �(x′)
become uncorrelated [4,29]. In particular, stronger correlation in model discrepancy for x and x′

in the ith direction can be obtained with larger values of 
i, whereas the exact opposite holds for
small values of 
i. We choose the squared exponential covariance function, a widely used kernel

function for GPs [29]. We are interested in obtaining the posterior distribution of �(x). Similar to

[4], we can integrate our prior knowledge about the model discrepancy by conditioning the pro-

cess and its derivatives at pre-specified points. We demonstrate how this can be done in practice

in §4 (see appendix (A.3) for computational details).

(b) Grey box model and neural networks (NNs)
Artificial neural networks (NNs) are powerful nonparametric models, that are made up of neu-

rons (a placeholder for a value) arranged in layers with connections between them, but can take a

wide range of architectural forms depending on the specific task. The simplest version is known

as a fully connected (or dense) network, where each neuron in a given layer is connected to each

neuron in the next layer. The ith output of a fully connected network with one hidden layer, �i(x),
can be written as

�i(x) = b1
i
+

N1∑

j=1

w1
ij
x1
j
(x), x1

j
(x) = �

(
b0
j
+

p∑

k=1

w0
jk
xk
)
, (3.4)

wherewl
ij
and bl

i
are components ofweight and bias parameters for the lth layer,�(⋅) is an activation

function, and Nl denotes the number of neurons in the lth layer (the width of the layer).

A grey boxmodel can be constructed by defining the output of the NN as a component or mul-

tiple components within a mathematical model. To train the embedded NN, the grey box model

is simulated to produce predictions, which are compared to ground truth values, or observations,

in order to calculate a loss value. The objective is to update the weights and biases of the NN so as

to minimize this loss value. The mean-squared error (MSE) [30] is a commonly used loss function

for regression tasks and is used in this work.

Popular choices for the optimization are the Adam (adaptive moment estimation) [31] and

BFGS (Broyden, Fletcher, Goldfarb and Shanno) [32–35] optimizers. Adam is efficient in moving

the network parameters into a more favourable region, after which the BFGS optimizer (a quasi-

Newton algorithm) is used, which utilizes second-order information about the loss function (the

Hessian matrix) and is able to converge to a minimum efficiently. In [31] and [36], the details of

the Adam and L-BFGS algorithms (respectively) are given.

(c) Learned model with symbolic regression (SR)
Inferring mathematical expressions from the trained NN can provide insight into the under-

pinning mechanics of the system (as a nonparametric model is converted to an interpretable
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Figure 2. The model predictions with a4 = 0 are represented by the blue points, while the observations obtained from a
‘ground truth’model with additive Gaussian noise are represented by the red points.

expression), and can also occasionally improve extrapolations, i.e. making predictions beyond

the range of training data.

The sparse identification of nonlinear dynamics (SINDy) [37] and symbolic regression (SR) [38]

are two popular choices for inferring mathematical expressions from measurement data. In this

work, SR is used due to less prior knowledge requirements and its flexibility in learning more

complex functions.

SR requires a set of unary operators (e.g. sin, cos, exp, etc.) and a set of binary operators (e.g.

+, −, ×, ÷, etc.), specified by the user. Through a method known as genetic programming [38],

the function space defined by the unary and binary operators is searched in order to find the

expression that fits the data best. The fitness of each expression is determined by calculating an

error measure (such as MSE) between the dynamics predicted by that expression and the target

data. Through a series of processes known as mutations, crossovers, tournaments and migrations,

new expressions are generated and those that fit the data best are the ones that survive.

The input and target data for SR are the inputs and outputs of the trained neural network,

respectively. For a more detailed description of SR and its underpinning processes, see [39] and

[40]. In this work, the Python package (with Julia back-end) PySR [41] is used to implement SR.

4. Synthetic data study
Initially, we conducted a synthetic data study to assess how our methods can address the in-

adequacies of a nested model like the S.A. model introduced in §2. We used this same model,

referred to as the ‘ground truth’, with output s and inputs pH, PCO2, FMetHb, T and p, but spec-

ified a4 = 0.25 cos(2� ln(p)) − 0.55 in equation (2.4). The foetal haemoglobin (FHbF) is negligible

and usually not recorded for adult patients, therefore, we set FHbF to zero. To generate synthetic

observations, we incorporated measurement noise and conducted four experiments with varying

levels of additive Gaussian noise, set at 2, 5, 10 and 15% of the standard deviation of the data, to

check the robustness of our approaches. Figure 2 shows the synthetic observations in red and the

model output with a4 = 0 in blue, illustrating clearly that the model consistently underestimates s

values. Tomimic a real-world scenario in which patients with low SO2 values are rarely observed,

we have no data points with low values of s.

For this synthetic data study, we used 200 data points for training and 50 data points for val-

idation. When performing the black box method, we represent the model discrepancy term as
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Table 1. Learned expressions at each level of measurement noise added to the data. These are the outputs of SR. Note that
2� ≈ 6.2832. all numbers are rounded to four decimal places.

noise learned expression true expression

2% 0.2476 cos(6.2762 ln(p)) − 0.5477 0.25 cos(2� ln(p)) − 0.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5% 0.2435 cos(6.2717 ln(p)) − 0.5495
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10% 0.3074 cos(6.3021 ln(p)) − 0.5790
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15% 0.2638 cos(p − 1.4345) − 0.5659
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a zero-mean GP with the squared-exponential correlation function. To avoid the unphysical be-

haviour of the updated model, f (x) + �(x), in the region where s is close to 0 or close to 1, we

include our prior knowledge about the model discrepancy in our analysis, similar to [4]. In partic-

ular, we condition the process and its derivatives at pre-specified points, i.e. �(x) = 0 and �′(x) = 0

with input parameter values that correspond to low and high values of pwithin the pre-specified

range (see appendix (A.3.) for more information). These constraints reflect that �(x) tends to 0 for
small and large values of p, and is exactly zero at these extremes, which is in line with the clinical

understanding of how oxygen binds to haemoglobin detailed in §2. Alternatively, we could up-

date aGPmodel using the information about themodel discrepancy behaviour on the boundaries,

as proposed by [42] and [43]. We specify an Inverse-Gamma prior for �2 withmean 0.32 andmode

0.22. Similar to [44], we introduce stronger prior information for p by specifying �5 ∼Gamma(4, 4),
and a smoother prior for the remaining inputs, i.e. �i ∼Gamma(42, 9) for i= 1, … , 4. We also as-

sume that the observational error is fairly well known and choose an Inverse-Gamma prior for

�2
e with mean 0.0162 and mode 0.0152 [4]. We use CmdStanR (Command Stan R) [45] to obtain

maximum a posteriori (MAP) estimates for model parameters. We adopt the default optimizer,

the limited memory BFGS algorithm [46], to derive these hyperparameters’ values.

These synthetic data are also used to train the grey box model with a4 set to be governed by a

fully connected neural network with all 5 inputs, 2 hidden layers of 20 neurons each, and a single

output representing a4. The activation function used is a simplified form of the radial basis func-

tion (RBF), defined as RBF(x) = e−x
2
. SR was implemented, resulting in a learned mathematical

expression representing the trained NN. The model with the learned expression for a4 is referred

to as the learned model. The unary and binary operators chosen for SR were {sin, cos, ln, e} and
{+, −, ÷, ×}, respectively. The full set of hyper-parameters for the SR implementation are given in

table 2 in appendix (A.1.).

At each level of noise, we perform diagnostic checks by comparing the ground truth s values

against the predictions generated by the two methods. In addition, we select a patient from the

validation set in order to compare the corresponding ODCs obtained by these approaches across

the different noise levels. The 5 and 15% noise cases are shown for the black box model and the

grey box model together with the learned model in figures 3 and 4, respectively. The learned

expressions at each level of noise are shown in table 1.

From the left panel plots in figures 3 and 4, it can be seen that a4 is responsible for significant

changes in the ODC as the ground truth curve with a4 = 0.25 cos(2� ln(p)) − 0.55 (in black) is no-

tably different from the reference curve with a4 = 0 (in red). The black box and grey box models

(in blue) perform poorly for lower p values (generally weaker as noise increases), and produce

more accurate predictions thereafter. The correct expression structure for a4 is recovered for the

cases up to and including 10% noise, with deacreasing accuracy in the learned parameter values

as noise increases, as shown in table 1.As a result, the predictions of the learnedmodel (in green in

figure 4) for these cases are expectedly accurate, with small noticeable deviations from the ground

truth for the 10% noise case. For 15% noise, although the correct expression for a4 is not found,

the corresponding partially learned model outperforms the grey box model, but is still unable to

capture the high-frequency variations in the true ODC. This study emphasizes the added benefit
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Figure 3. Synthetic data study results. The left plots in Figures (a) and (b) show the ODC curves for a single patient
from the validation set, for 5 and 15% noise. Red curve: S.A. model with a4 = 0. Black curve: ground truth, where a4 =
0.25 cos(2� ln(p)) − 0.55. The blue curve and grey shaded region correspond to the predictions and two standard devia-
tion prediction intervals obtained with the black box approach. The right plots in figures (a) and (b) show the ground truth
s values, for 5 and 15% noise, against the mean predictions coloured by predictive standard deviations (normalized by their
maximum and minimum values).

of carrying out the inference step using SR, since it can often improve predictions by regulariz-

ing the learned model and ‘smoothing’ out oscillations introduced by the high-dimensional NN,

particularly in regions where the training data may be sparse (as in the 15% noise case). In this

synthetic data study, the reason SR is able to improve predictions to this extent is because the

form of the correct a4 expression is within the function space defined by the unary and binary

operators. Contrary to the grey box model and the learned model, the black box approach also

produces prediction intervals (grey shaded region), which indicate how confident (certain) we

are in the updated model’s predictions. We observe larger prediction intervals for low and high

values of p. These intervals can be quite informative and guide us to obtain more data points in

these regions to improve the model performance.

For the right panel plots in figures 3 and 4, the model performs well if the predicted values

closely align with the true values along the straight 45◦ line (in black). We plot the predictive

mean values against the ground truth s values coloured by normalized predictive standard devi-

ation values at 50 validation data points in figure 3. We observe consistently good performance

from the black box approach across all four noise levels considered in the synthetic data study

with a few exceptions in the region with low values of s. In figure 4, the grey box model gener-

ally predicts more accurately for higher s values, and the overall performance decreases as noise

increases. The corresponding learned model shows improvements if the correct expression struc-

ture is recovered. The results for the 2 and 10% noise cases are shown in figures 10 and 11 in

appendix (A.1.).
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Figure 4. The left plots in figures (a) and (b) show the ODC curves for a single patient from the validation set, for 5 and 15%
noise. Red curve: S.A.modelwith a4 = 0. Black curve: ground truth,where a4 = 0.25 cos(2� ln(p)) − 0.55. Blue curve: grey
box model, where a4 is defined as the trained neural network. Green curve: learned model, where a4 is defined as the corre-
sponding expression from table 1. The scatter points represent the predicted s values by each of the models. The right plots in
figures (a) and (b) show the ground truth s values, for 5 and 15% noise, against the predicted s values generated by the grey
box model (blue) and the learned model (green), for the validation set.

5. Applications to intensive care unit data
In this section, we proceed to consider the data from an adult ICU together with the haemoglobin-

dissociation curve model. Arterial blood gas data are available from 1000 consecutive patients

admitted to a single ICU, measured on an ABL90 Flex blood gas analyzer (Radiometer Medical

ApS, Denmark). Blood gas valueswere not corrected for patient body temperature. Despite a large

number of recorded values, not all of them contain temperature data, and only 259 records are

retained in the present study.

Before performing any model fitting, we apply the transformations given in equations (2.2)

and (2.3) to obtain p and s values from the patient’s recorded pO2 and SO2 values. Figure 5 de-

picts the difference between the observed SO2 and the SO2 produced by the mathematical model

from §2 with a4 = 0. The scatter plots highlight the variability in SO2 error under different physi-

ological conditions, in particular we tend to observe larger deviations in model predictions from

observations for lower values of p and pH.

Similar to the synthetic data study in §4, we consider the mathematical model of the

haemoglobin-dissociation curve with a single output s and the following inputs (pH, PCO2, T,

p, MetHb). To communicate the results more clearly in a clinical setting, we subsequently convert

the predicted s values to SO2 values. In this study, we specify a zero-mean GP with a squared
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Figure 5. The error in SO2 (% points), the difference between observed SO2 values and SO2 values produced by model with
a4 = 0, against all model inputs with smoothed conditional mean (in blue).

exponential covariance function to represent the model discrepancy term. The observational er-

ror is negligible in this study, since following the clinical expertise the patient’s records of SO2

are highly accurate. We use the MAPmethod with reference priors in the R package RobustGaSP

to obtain the model parameters [47]. For the grey box model, the a4 term is defined as an NN

with 5 inputs, 2 hidden layers of 64 neurons each and the exponential linear unit (ELU) activa-

tion function, defined in appendix (A.2.). To obtain the learned model, we use SR with the same

hyper-parameters as in §2. We perform 10-fold cross-validation to assess the performance of our

methods.

Figure 6 shows the predicted SO2 values against the measured (‘true’) SO2 values for the fold

10 validation set. The corresponding results for the remaining folds are shown in figures 12–20 in

appendix (A.2.). Figure 6a depicts the results for the grey box model and the learned model from

the SciML approach. The learned expression for a4 for this fold is 0.03346p × pH − 0.00592p × T −
0.1786, which is interesting since it is in line with the clinical understanding that the impact of 2,3-

DPG varies with changes in pH and temperature [28]. The learned expressions for all folds are

given in table 3 in appendix (A.2.), and we can see that pH and temperature are consistently se-

lected in the learned expression by SR. Figure 6b illustrates the results for the black box approach.

From figure 6a,b we can observe that all three approaches perform better for higher values of SO2

with predictions being closer to the observed value where more data are available. In general, this

is also true for the other folds with a few exceptions. For comparison, figure 6c shows the results

for the S.A. model with a4 = 0. Figure 7 shows the distribution of the absolute errors of each of the

models for the fold 10 validation set. All three approaches outperform the S.A. algorithm (where

a4 = 0) in terms of the lower median absolute error (in orange), with the grey box model being

the only one with a greater interquartile range than the S.A. model. For this particular fold, the

learned model performs the best when considering the outliers, however this is not always the

case. Box plots showing the absolute error distribution of the models for the remaining folds are

also shown in figures 12–20 in appendix (A.2.).

We also choose to demonstrate the ODCs obtained through our approaches. For each method,

we selected two observed records (patients) from the validation datasets across all folds, based on

the absolute improvements over the S.A. model with a4 = 0: one with a high score and one with

a low score. Figures 8 and 9 show the predicted ODC curves for two patients. From figure 8a,

we can observe that the predicted curve outperforms the S.A. model with predicted SO2 value

(mean: 57.2% and s.d.: 0.9%) close to the observed value (57%). The SO2 value reported by the

S.A. model is 66.8%. Figure 8b shows that the ODC curves obtained by the S.A. model and black

box approach overlap and produce SO2 values (mean: 53% and s.d.: 2.65% versus 51%)well below

the observed SO2 value (68.7%). Figure 9a shows the predicted curves for a patient with a high

improvement score, demonstrating how the predicted SO2 values by grey box model (94.4%) and

the learned model (93.2%) outperform the S.A. model (90.0%) to generate curves that are closer to

the observed SO2 value (92.9%). Figure 9b shows the predicted curves with a low improvement

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 A

pr
il 

20
25

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240213

.........................................................................................................................

Figure 6. Top left panel: predicted SO2 values against the true SO2measurements for grey boxmodel (blue) and learnedmodel
(green). Top right panel: predictivemean values of SO2 against the true SO2 measurements coloured by predictive standard de-
viations (normalized by theirmaximumandminimumvalues). Bottompanel: predicted SO2 values from the original S.A.model
with a4 = 0 against the true SO2 measurements.

score, which do not perform as well, highlighting the issue of the lack of data for low pO2 values.

The SO2 value generated by the S.A. model (43.2%) is closer to the observed value (38.3%) than

the SO2 values predicted by the grey box model (61.3%) and the learnedmodel (53.0%), which are

significantly higher.

6. Discussion
The aim of intensive care is to support patients during definitive treatment or recovery, with-

out causing additional harm. In the last 30 years, intensive care physicians have moved from a

paradigm of ‘normalizing to abnormal’ to supporting adaptive physiology, which largely aligns

with the principles of precisionmedicine. Part of this paradigm shift has evolved from the realiza-

tion that many intensive care interventions can cause harm with the adverse effects of overtreat-

mentwith oxygen being increasingly recognized [48]. Treatments targeting oxygen delivery could

be optimized by recognizing and responding to haemoglobin oxygen affinity in addition to the

measured SO2. The haemoglobin oxygen affinity is difficult to measure in practice, and in this

paper we considered the S.A algorithm, commonly used in ICU settings to provide affinity-based

estimates.
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Figure 7. Comparison of absolute error (in percentage points) across different model types.

Figure 8. ODC curve generated by the S.A. model (red), the blue curve and grey shaded region correspond to the predictions
and two standard deviation prediction intervals obtained with the black box approach for two patients from the test set of
different folds. The black scatter point shows the measured SO2 value and the coloured scatter points show the corresponding
predicted SO2 values by each model.

This mathematical model suffers frommodel inadequacy, and in this paper we have presented

methods from UQ and SciML to address this issue. We assessed the performance of these ap-

proaches with a synthetic data study, where SR showed an impressive capability of recovering

the true a4 expression for the cases up to and including 10% noise. The prediction intervals gener-

ated by the black box approach in this study can provide insights into the future data collection

process. For the clinical data study, while the grey box and learned models outperform the S.A.

algorithm the majority of the time, both approaches tend to occasionally underperform in the re-

gions with low pO2 and SO2 values, since most of the provided clinical data are in the arterial

range. To address this issue in future work, data from venous blood gases, which are measured

clinically, but less frequently than arterial blood gases, can be used in our analysis and may im-

prove our estimation of the lower part of the ODC. In addition, blood gases from those chronically

adapted to hypoxia, for example, those who live at high altitude, or those with cyanotic heart

disease may provide valuable information for this lower part of the ODC. While haemoglobin

oxygen affinity is difficult to measure, experimental set-ups can be used to directly measure this
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Figure 9. ODC curves generated by the S.A. model (red), grey box model (blue) and corresponding learned model (green) for
two patients from the test set of different folds. The black scatter point shows themeasured SO2 value and the coloured scatter
points show the corresponding predicted SO2 values by each model.

to validate our estimations of theODC. Recently, collaborators have described a set-up tomeasure

single red blood cell oxygen saturations, and the capacity for oxygen release [48]. We are aiming

to generate data from experiments with patient blood samples to emulate low oxygen conditions

and improve estimations of the whole ODC.

Traditionally, UQ methods have been developed for computationally expensive mathemati-

cal models in physical sciences and engineering [49]. Therefore, treating these models as black

box systems is common, with model discrepancy typically modelled as an additive, independent

term accounting for limitations in model representation of the physical process of interest. On the

contrary, the scientific machine learning approach allows the discrepancy arising from specific

model components to be targeted, while retaining the remaining equation structure, which can

significantly help modellers at the model development stage. Recovering mathematical expres-

sions for the targeted components via the SR step provides insight into the system, which can be

crucial in a clinical setting, where a clear understanding of a model output that may influence

treatment decisions is vital. While the ability of SR to learn interpretable expressions can be very

beneficial, its utility can be limited when modelling real-world phenomena, where data are noisy

and missing model components may not have simple closed forms. Despite this, the use of SR in

these settings is still good practice, given that mathematical equations that govern physical laws

are often parsimonious and very accurate in describing real-world phenomena. However, this ap-

proach does not account for the uncertainty in the model predictions, which is another important

metric to consider in clinical decision-making. Additionally, since the scientific machine learning

method targets specific components of a model, the remaining structure of the model is often as-

sumed to not contribute to the overall model uncertainty, as was also assumed in this work—a

potential limitation that should be considered when interpreting the results. Researchers in the

UQand SciMLfields could greatly benefit from close collaborations. In particular, when operating

with observational data and partially knownmathematical models, SciMLmethods could benefit

from careful treatment of major sources of uncertainties commonly studied in the UQ field, while

adding explainable ML approaches such as SR to the UQ arsenal could help with interpretability

of results.
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A. Appendix

A.1. Synthetic data study details

Figure 10. Synthetic data study results. The left plots in Figures (a) and (b) show the ODC curves for a single patient
from the validation set, for 2 and 10% noise. Red curve: S.A. model with a4 = 0. Black curve: ground truth, where a4 =
0.25 cos(2� ln(p)) − 0.55. Blue curve: grey boxmodel, where a4 is defined as the trained neural network. Green curve: par-
tially learned model, where a4 is defined as the corresponding expression from table 1. The right plots in Figures (a) and (b)
show the ground truth s values, for 2 and 10% noise, against the predicted s values generated by the grey box model (blue)
and the learned model (green), for the validation set.

A.2. Applications to intensive care unit data study
ELU activation function used in clinical data study with � = 1.0: figures 10 and 11, table 2.

ELU(x) =
⎧

⎨
⎩

x if x≥ 0,

�(exp(x) − 1) if x< 0,
(A 1)
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Figure 11. Synthetic data study results. The left plots in figures (a) and (b) show the ODC curves for a single patient
from the validation set, for 5 and 15% noise. Red curve: S.A. model with a4 = 0. Black curve: ground truth, where a4 =
0.25 cos(2� ln(p)) − 0.55. The blue curve and grey shaded region correspond to the predictions and two standard devia-
tion prediction intervals obtained with the black box approach. The right plots in figures (a) and (b) show the ground truth
s values, for 5 and 15% noise, against the mean predictions coloured by predictive standard deviations (normalized by their
maximum and minimum values).

Table 2. PySR hyper-parameters.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

unary operators {sin, cos, ln, e}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

binary operators {+, −, ÷, ×}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

functions per population 33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

populations 400
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iterations 200
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

performance metric MSE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.3. Constrained GP prior
We demonstrate how to incorporate prior knowledge about the model discrepancy in our analy-

sis. We note that the derivatives of the GP are also a GP [51]. For the first-order derivative of �(x),
a zero mean GP with squared exponential covariance function, defined in §3, we can write down:

table 3.

E
[)�(x)
)x(k)

]
= 0 (A 2)

ℂ[
)�(x)
)x(k)

, �(x′)] = k10(x, x′) = −�2
2(xk − x′

k
)

�2
k

exp { −
p∑

l=1

(
xl − x′

l

�l
)
2

} (A 3)

ℂ[
)�(x)
)x(k)

,
)�(x′)
)x′(k)

] = k11(x, x′) = 2�2

�2
k

exp { −
p∑

l=1

(
xl − x′

l

�l
)
2

} (1 − 2(
xk − x′

k

�k
)
2

), (A 4)

where k indicates which input the derivative is with respect to.
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Figure 12. Comparison of model performance on fold 1. Top row: predicted SO2 values against the true SO2 measurements for
grey box model (blue) and learned model (green) (left panel plot). The predictive mean and two standard deviation prediction
intervals produced by the black box approach are in black. The true SO2 measurements are in green if they lie within two stan-
dard deviation prediction intervals, or red otherwise (right panel plot). Bottom row: comparison of absolute error (in percentage
points) across different model types.

Table 3. Learned expressions for a4 via SR for each fold of the cross-validation. All numbers are rounded to four decimal places.

fold learneda4 expression
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0.3045pH − 0.0660T + 0.0292p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.3357pH − 0.0724T + 0.0289p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.0405pH − 0.0075p × T − 0.1291
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.3397pH − 0.0730T + 0.0290p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.3129pH − 0.0677T + 0.0288p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.2677pH − 0.0589T + 0.0294p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.3216pH − 0.0641T + 0.0009p2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.0999pH − 0.0238T + 0.02382p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.2979pH − 0.0648T + 0.0295p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.03346p × pH − 0.0059p × T − 0.1786
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the prior information about the model discrepancy � c = (�(S), �′(S)), where S is the

collection of input parameters of size m= 32, designed using a factorial design for four variables

(pH, PCO2, FMetHb and T), where each variable set to its respective minimum and maximum

values and with p set at values close to 0 and 20. We can write down the joint distribution for
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Figure 13. Comparison of model performance on fold 2.

observation vector z and � c as

⎛
⎜
⎝

z

� c

⎞
⎟
⎠
|�2

e , �2, 
 ∼N
⎡
⎢
⎣

⎛
⎜
⎝

F

0

⎞
⎟
⎠
,
⎛
⎜
⎝

�2
e I + K (K10)T

K10 K11

⎞
⎟
⎠

⎤
⎥
⎦
,

where F= (f (x1), … , f (xn)), I is an n × n identity matrix, and K is an n × n matrix with entries

Kij = k(xi, xj). In addition, we specify K10 as a 2m × nmatrix with entries:

K10
ij
=
⎧

⎨
⎩

k(si, xj), i= 1, 2, … ,m, j= 1, … ,n

k10(si−m, xj), i=m + 1, … , 2m, j= 1, … ,n,

and K11 as a 2m × 2m covariance matrix with entries:

K11
ij
=

⎧
⎪

⎨
⎪
⎩

k(si, sj), i= 1, 2, … ,m, j= 1, 2, … ,m

k11(si−m, sj−m), i=m + 1, … , 2m, j=m + 1, … , 2m

k10(si−m, sj), i=m + 1, … , 2m, j= 1, … ,m.

Byperforming the conditioning inmultivariate normal distribution,we can obtain the distribution

for z given � c and model parameters:

z|� c, �2
e , �2, 
 ∼N

[
F, �2

e I + K − (K10)T(K11)−1K10
]
, (A 5)

which we use as our model likelihood when performing Bayesian inference.
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Figure 14. Comparison of model performance on fold 3.

Figure 15. Comparison of model performance on fold 4.
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Figure 16. Comparison of model performance on fold 5.

Figure 17. Comparison of model performance on fold 6.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 A

pr
il 

20
25

 



21

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240213

.........................................................................................................................

Figure 18. Comparison of model performance on fold 7.

Figure 19. Comparison of model performance on fold 8.
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Figure 20. Comparison of model performance on fold 9.
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