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We study gravitational-wave emission by turbulent flows in accretion disks around spinning black holes
or neutron stars. We aim to understand how turbulence can stochastically excite black hole quasinormal
ringing and contribute to a stochastic gravitational-wave background from accretion disks around compact
objects. We employ general relativistic magnetohydrodynamic simulations and feed them as the source of
the Teukolsky master equation to evaluate the gravitational wave energy spectrum of a single source. The
stochastic gravitational wave background from accretion disks generated by the population of stellar-mass
compact objects is far below the sensitivity of third-generation ground-based detectors. In contrast, the
supermassive black hole population, in particular those actively accreting, could lead to Qgy ~ 1071 in the
microhertz. This signal remains well below the sensitivities of pulsar-timing arrays and LISA, making

2025)

direct observation infeasible.

DOI: 10.1103/PhysRevD.111.063048

I. INTRODUCTION

The remarkable detection of gravitational waves (GWs)
from the merger of two black holes (BHs) by the LIGO-
Virgo Scientific collaboration [1,2] inaugurated a new era
in physics [3—6]. The understanding of mechanisms for BH
formation and growth across cosmic time [4,5], of possible
phase transitions in the early Universe [7—14], or the nature
of dark matter are now within reach [15-32]. Even more
intriguing is the opportunity to test gravity in the strong-
field regime, particularly near BH horizons. Of particular
interest to us here are rotating BHs surrounded by an
accretion disk.

Accretion disks are interesting probes of strong gravi-
tational fields and of extreme astrophysical processes,
where the role of BH rotation, surrounding plasma and
magnetic fields is yet to be fully understood. The dynamics
of accretion disks are incredibly complex and rich. Among
others, one of the crucial factors is turbulence [33,34],
which breaks the axial symmetry of the system and leads to
the emission of light but also GWs, providing new avenues
for understanding the behavior of accretion disks. In the
same way that turbulence in the Sun drives the stochastic
excitation of its characteristic modes [35-37], it might be
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expected that turbulent accretion can excite modes of BHs,
but a precise calculation has not been done. An order of
magnitude estimate was attempted in the past [38], but
missed all the intricate features of astrophysical disks. The
formation mechanism of collapsar disks was recently
studied [39], with the conclusion that the resulting GW
emission could reach the sensitivities of current and future
ground-based detectors. This—the possible stochastic exci-
tation of quasinormal modes of BHs—was, in fact, our
original motivation to understand GW emission from
systems including a BH and an accretion disk.

The superposition of GW sources will form a stochastic
GW background (SGWB). The study of the SGWB
generated by accretion disks is instrumental in refining
our theoretical models of accretion physics and stellar
populations. As far as we know, there is little to no work
studying the SGWB generated by accretion disks. In this
paper, we address this problem. We adopt geometrical
units G = ¢ = 1.

II. NUMERICAL SETUP OF ACCRETION DISK

We consider a setup where a BH of mass M, and
dimensionless angular momentum y, is surrounded by an
accretion disk. We assume the disk backreacts weakly on
the background spacetime, such that for the purposes of
matter evolution the spacetime may be assumed to be

© 2025 American Physical Society
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Initial snapshots of the rest mass density (7, = p) of the accretion disk in our simulation, before rescaling. Left panel: cross-

sectional cut through the equatorial plane of the disk (z = 0). Right panel: two-dimensional cross section of the simulation in the x-z
plane, showing the extended, turbulent disk and low-density funnel regions both above and below the middle plane comprising the jets.

stationary and described by the Kerr metric. The simu-
lations of the matter around the BH are computed using the
BHAC code [40,41].

We focus on a Kerr BH with y = 0.94, adopting spherical
Kerr-Schild coordinates with a logarithmic radial coordi-
nate, i.e., x! = In r, focusing resolution in regions closer to
the event horizon. The simulation outer boundary is placed
at r = 2500M and the inner boundary is well within the
event horizon. The grid resolution is 384 x 192 x 192 in x’
(i = 1, 2, 3). The general relativistic magnetohydrodynam-
ics (GRMHD) simulation is initialized with a Fishbone-
Moncrief hydrodynamic equilibrium torus profile [42], with
Fin =20M and r. =40M. We employ an ideal gas
equation of state with relativistic adiabatic index I' = 4/3.
The equilibrium torus profile is then suffused with a single
weak magnetic field loop, with the radial distribution of the
magnetic field profile chosen to ensure sufficient magnetic
flux is deposited onto the BH, enabling the magnetically
arrested disc state to be reached [43,44]. The magnetorota-
tional instability inside the torus is triggered by applying 2%
of a random perturbation to the torus gas pressure. The
treatment of very low-density regions and regions of high
magnetization is performed in the conventional manner for
GRMHD simulations of BHs as follows (e.g., [45]). Floor
values are applied to the rest-mass density as ppgor =
1074772 and to the gas pressure as Pgo, = (1076/3)r72T,
These ensure that in all grid cells where p < ppoor OF
P < Pgoor, ONE S€tS P = ppoor and P = Py.. We also
introduce a ceiling within regions of high magnetization,
o, such that o,,,, = 100 for all grid cells where ¢ > 6,,..

In order to evaluate physical quantities, we begin with
the stress-energy tensor of a magnetized perfect fluid:

1
Tﬂy = (p +P + pe + bz)l/t”l/ly + <P +2b2>g;w - b/lbw

()

where p and P represent, respectively, the density and
pressure of the fluid, € is the internal energy density, g,,
denotes the metric tensor, u,, is the four velocity of the fluid,
and b?:= bﬂb", wherein bﬂ is the magnetic field four
vector. We work in Lorentz-Heaviside units, absorbing a
factor of v/4z into the definition of b,

After evolving the system for 10*M to reach a quasista-
tionary state, we extract T, with a time step of Az = 10M
for a duration of 2000M. In order to circumvent the high
memory and storage requirements, we uniformly down-
sample the GRMHD data by a factor of 2 (166 x 96 x 96)

when computing T, further restricting ourselves to the

domain r, < r < 1000M, where r, =M + VM? — a? is
the event horizon radius of the BH. An initial snapshot of
the energy density is shown in Fig. 1, where turbulentlike
features are apparent (spiral structures and uneven energy
density distribution along the polar directions, indicating
the presence of hydrodynamic turbulence).

To evaluate the SGWB from accretion disks, one needs to
consider disks with different masses and mass accretion
rates. These may be obtained by rescaling the simulation
code data, T,(ﬁf’de , to physical CGS units, as done in radiative
transfer postprocessing [46,47]. The simulation code density
scales as p(ee9) = punitj(code) Introducing the gravitational
radius r, = GM/c?, here p*™ = M/r} and M := M(r,/c)
is a physical rescaling factor set by the BH’s mass accretion
rate (M) and its mass. The stress-energy tensor of the fluid

then scales to physical units by a factor of ¢2pUnit

cgs MC2 code
T/(wg> - ( 3 >T/(w ! (2)
g

We parametrize the accretion rate of the central object as

M = fEddMEdda (3)
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where the Eddington ratio fryq is a free parameter that
characterizes the accretion rate of the central object in units of
the Eddington accretion rate Mgy [48]

\ M
Mpgq =2 x 1078 <M—> Mg yr=!. (4)
o

ITII. GRAVITATIONAL RADIATION

Once we have the time-varying stress-energy tensor of
the disk, GW emission can be computed by solving
Teukolsky’s master equation [49,50]. In this approach,
the radiative degrees of freedom of the gravitational field at
infinity are encoded in a master variable ¥ related to the
Newman-Penrose scalar W, via ¥ = (r — ia cos §)*¥, and
WV, is directly related to the GW polarizations via

1 (Ph, . Ph,
P, =~ <—+ - ) (5)

A

The Teukolsky master equation is shown in Appendix A.
We decompose in azimuthal components @,,

[&9)

P(t.r,.0.4)= > Pem™d,(t.r".0).  (6)

m=—0oo

Here, r, and (Z are the tortoise coordinates, which are
related to Boyer-Lindquist coordinates through

Pt 2Mr, i 2Mr_ lnr—r_,
ro—r_  2M  r.—-r_ 2M

~ a r—r

$=0+ In-—-. (7)
ro—r_ r—r_

with r, = M £ VM? — a®>. The source term T in the
Teukolsky equation is also decomposed into 7,, compo-
nents. We solve the Teukolsky equation numerically for
each m mode in the time domain using the two-step Lax-
Wendroff method described in [51-56] with second-order
finite differences.

IV. GWS FROM TURBULENTLY EXCITED BHS

The dominant, axially symmetric mode of the GW
emitted by the disk is shown in Fig. 2. The turbulent
gas flow excites stochastically the BH modes, which is
imprinted in the waveform. We find a frequency of order
M ~ 0.42 (estimated using the number of cycles within
the vertical dashed gray lines in the plot) in very good
agreement with the quadrupolar £ = 2, m = 0 quasinormal
mode, Mo = 0.416 — i0.0765 [57]. The “cross” polariza-
tion h, is about an order of magnitude smaller than the
“plus” h_ reflecting the fact that motion along the radial
direction dominates emission. One can expect excitation of
higher order modes (# > 2 modes), but these have larger
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FIG. 2. The m = 0 gravitational waveform generated by the
accretion disk. The signal is extracted at r**' = 500M. From the
time-domain data we estimate the frequency of the signal to be of
order Mw ~ 0.42, in good agreement (given our time resolution)
with the quadrupolar £ = 2, m = 0 quasinormal mode, Mw =
0.416 — i0.0765 [57].

frequencies. To correctly capture these modes we would
need prohibitively small (computationally expensive)
time steps.

Numerical solutions of the Teukolsky equation can
generate unphysical signals—*junk radiation”—as a con-
sequence of arbitrary initial data, which eventually decays
in time. We retain the physically meaningful data, for which
t —r, 2 300M, and use it to calculate the energy spectrum
of GWs. Figure 3 shows the GW energy spectrum for
different m modes. To a good accuracy, the spectrum peaks
at the lowest quasinormal frequency of the mode in
question [57,58], which is one more piece of evidence
that accretion disks are exciting BH ringdown. At higher
frequencies, the spectrum decays roughly as a power law. It
is tempting to conjecture that the spectrum falls off as
dE/df ~ f=>/3, corresponding to a Kolmogorov scaling
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FIG. 3. GW energy spectrum from accretion disk turbulence

with fgyq = 1, for several modes. The BH mass is M = M.
Inset shows the total energy loss of each m mode, E, /E,.

063048-3



YUAN, CARDOSO, DUQUE, and YOUNSI

PHYS. REV. D 111, 063048 (2025)

law [59-61]. The behavior of the energy spectrum at high
frequencies (around 10° Hz) closely resembles this
Kolmogorov scaling, also an indication of the energy
cascade. This suggests the possibility that a dissipative
region may exist due to the complex internal dynamics
within the accretion disk [59-61]. Our results are then
consistent with a turbulent accretion disk stochastically
exciting the modes of BHs. The energy spectrum exhibits
oscillatory behavior at high frequencies due to Nyquist
sampling. If we employ higher-order interpolation for the
source term when solving the Teukolsky equation, the
oscillatory behavior can be mitigated, leading to a power
spectrum that scales as f~/3 in the high-frequency band.
The inset of Fig. 3 shows the relative energy carried in
each m mode, E,,. The dominant mode is indeed the axial
symmetric m = 0 and the energy emitted quickly decreases
to zero (although, as we said, our simulation is unable to
resolve very high ms and these might be underestimated).
The quick decay of the power spectrum for higher modes is
consistent with Ref. [62], which employs an analytic power
series for the turbulent Newtonian potential of the disk.

V. STOCHASTIC GW BACKGROUND

A SGWB is the incoherent superposition of unresolvable
GWs. It is characterized by the energy spectrum (energy
density per logarithm frequency) normalized by the critical
energy:

1d
Qwlf) =% ®)

We consider three types of GW-generating disks:
(A) Accretion disks around supermassive BHs (SMBH).
Sgr A* observations suggest an accretion rate
107 <M <1077 (Mg/yr), corresponding to a low
ratio fgqq = 1077 [63—65]. However, a fraction of the
SMBHs in the Universe are known to be actively
accreting, i.e., with accretion rates close to the
Eddington limit. For example, observations on
J0529-4351 find fggq >~ 0.9 [66], and recently the
James Webb Space Telescope has discovered a
population of quasars at z = 6 [67]. Therefore, we
consider three different populations: one with
fEaa = 1077, one with a uniform distribution
fraa €[0,1] and super-Eddington accretion [68]
with fgqq €10, 10] for SMBHs at z > 3. the energy
spectrum of SGWB is evaluated as [69]
f dt dE,
Qonlf) =L [ ama: G Rum(c 00T O
where Ry(z, M) denotes the BH/NS (neutron
star)/SMBH formation rate per comoving volume
per mass and dE;/df, corresponds to the
energy spectrum of a single GW event in the source

frame. Here dt/dz is the derivative of the
look back time with respect to the redshift,
namely dt/dz = [HyE(z)(1 + z)]~!, where E(z)=
VO, (1+2)*4+Q,,(1+2)° +Q, H,=67.4 km/s/
Mpc the Hubble constant at present [70], Q,,
Q,, and Q, are the density parameters for radia-
tion, matter, and dark energy, respectively. For
Ry, We adopt the SMBH population model at
different z in Ref. [71].

(B) For an isolated NS (which we take to be described by
the Kerr metric [72]) or stellar-origin BH, fg4q is
supposed to be 1072 < fgqq < 1 or even beyond the
Eddington limit [73-77]. We adopt fgqq = 1 here.
The SGWB in such a case can also be calculated
using Eq. (9) where the computation of Ry, for NS
and BH can be found in Appendix B.

(C) Finally, we consider the scenario where the central
object is formed from the merger of binary neutron
stars (BNSs). Such mergers result in a short-lived
accretion disk of subsolar mass [78], corresponding
to an accretion rate of M ~ 10‘2Mo /s [39], con-
sistent with numeric simulations [78]. The corre-
sponding SGWB in this case is evaluated as [69]

dt dE.
—R(z, M, M,) —=,
dz (z. My, M) df,

(10)

QGw(f) :g/dMldM2dZ

and we follow [79,80] to obtain the merger rate
density,

Imax

R(Z’M1,M2>°</ Ruyirn (1(2) = 14, M)

Tmin

x Py(ts)P(M)P(My)dty,  (11)

with #(z) the age of the Universe at merger. The
function P,(t;) o 1/t, is the distribution of delay
time with 1., < f; < ta- Since the local merger rate
of BNS is much larger than the BH-NS binaries and
binary BHs [81], we only consider BNSs in the
following computation. For BNSs, 7., = 20 Myr
and 7, 1s the Hubble time. The NS mass function
has a uniform distribution between 1My to 2M
and we normalize the merger rate density so that
the local merger rate is given by [R(z=0,M,
M,)dM dM, = 1000 yr~' Gpc~ for BNSs [82,83].
On the other hand, the GRMHD simulation only covers a
limited time span, whereas the age of a real BH far exceeds
this value. Therefore, we rescale the amplitude of the GW
energy spectrum based on the duration time of the GWs,
estimated as follows for all three cases
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FIG. 4. The SGWB from turbulent accretion disks, compared
against the sensitivity curves of GW detectors, including Laser
Interferometer Space Antenna (LISA), International Pulsar Tim-
ing Array (IPTA), Five-hundred-meter Aperture Spherical radio
Telescope (FAST), Square Kilometre Array (SKA), Cosmic
Explorer (CE), and Einstein Telescope (ET).

M
At = min (to — tbirth(z)’ A(;Sk> ) (12)

where 1, is the age of the Universe and fiy(z) is the
formation time of the central object.

The power-law integrated sensitivity curves [84] of
various GW detectors are obtained assuming threshold
SNR to be SNR = 5 and total observation time of 4 yrs for
LISA [85], CE [86], and ET [87], and 30 yrs for IPTA [88],
FAST [89], and SKA [90]. We assume two coaligned and
colocated identical detectors for CE and ET while for LIGO
we use the overlap function [84]. For IPTA/FAST/SKA we
assume the pulsars are uniformly distributed in the sky. The
number of pulsars and the timing accuracy can be found in
Table 5 of [91].

The estimated SGWB, including all modes with |m| <5
is shown in Fig. 4. The SGWB generated by the short-lived
accretion disks around the remnant of BNSs and the SGWB
from isolated NSs/stellar-origin BHs are far below the
sensitivity of future ground-based GW detectors. On the
other hand, the SGWB from the SMBH population is
peaked around 107% Hz and it could reach Qg ~ 10713 for
a uniform distribution fgyq € [0, 1], while it is far below the
detection limit if the SMBH population has a small
accretion rate frqq = 1077 as Sgr A*. We also check that
the result for fggq =1 is only slightly larger than
fraa €[0,1] since the GW emission is dominated by
SMBHs with large accretion rate.

Although the GRMHD simulations are traditionally
employed for modeling accretion disks around SMBHEs,
we extend their application to systems involving stellar-
origin BHs and NSs. It is worth noting that the direct
application of the GRMHD simulations to stellar mass
objects may introduce uncertainties due to different physi-
cal conditions, such as differences in magnetic field
configurations.

VI. DISCUSSION

In this paper, we explore the contribution of turbulence in
accretion disks around BHs and NSs to the emission of GWs,
in particular to stochastic backgrounds. Feeding GRMHD
simulations as a source term to the Teukolsky equation, we
have quantified the GW energy spectrum from these systems.
The waveform and energy spectrum analysis indicate that
turbulent flows in accretion disks stochastically excite the
quasinormal modes of the BHs [92,93]. The energy spectrum
shows a power-law decay, which scales as the expected
Kolmogorov decay dE/df ~ f~5/3 for a turbulent system.
Our results indicate that the SGWB from accretion disks
around NSs, stellar-origin BHs and the remnants from
the merger of BNSs are undetectable due to their low
amplitudes. Note that Eq. (10) implies that we assume all
the BNS merger lead to short-lived accretion disks. However,
the SGWB is still far below the sensitivity curves, indicating
case 3 is of low interest despite of their large accretion rates.
We neglect differences between QNMs of NSs and those of
BHs [94]. However, as the SGWB from NSs and BNSs are far
below the sensitivity of future detectors, this simplification
will most likely not affect our overall conclusions. On the
other hand, accretion disks around SMBHs could generate an
SGWB at Qgw ~ 1071 in the microhertz frequencies. We
also explored the astrophysical implications of super-
Eddington accreting systems at z > 3. The resulting Qgw ~
10~'% might be an interesting prospect for future GW
detectors in this frequency band. Additionally, our findings
motivate multimessenger studies that link the GW signals
from accretion disk-induced mode excitation to electromag-
netic observations of accretion disks around compact objects.
This could provide a unique window into the dynamics of
accretion flows and the environments of SMBHs.
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APPENDIX A: THE TEUKOLSKY EQUATION

The Teukolsky equation expressed in Boyer-Lindquist coordinates reads

M(r* — a?)

A%9,(A7'0, ¥
r( r ) A

2, 2)2
1
- [(r—l—a) +ia cos 0|0, ¥ + w()g(sin 00,%¥)

- azsinze] 0, ¥ +4 {r -

dMar

1 & ~ M) icos
n [ “] 0¥ — 4 [a(r ) | foos ]aﬂ — (4cot?0 +2)¥ — 0P = —4n(r* + a’cos?0)T, (A1)

sin20 A A sin%@

where @ = My is the BH angular momentum, A = r> — 2Mr + a?, and T is a source term computed from the stress-energy
tensor. In Boyer-Lindquist coordinates the tetrad vectors are defined as

i (p[)(rZ—i—az)’_App,o’@), _,_ (=iasin®.0.1,—i cch), (A2)
2 2 2 V2(r — ia cos6)
where p~! = —(r — ia cos @) and a bar represents the complex conjugate. The Newman-Penrose operators are
~ d ~ _.d
A:n"@, 5:}7’!”@ (A3)
The source term of the Teukolsky equation can be expressed in a generic form such that
T =2(r — ia cos 0)*Ty,
Ty=A+3r-7+4u+n)(A+2y =27+ )Ty — (A 43y =7+ 4u+ i) (6 — 27+ 2a)T
(8—T4+p+3a+4n)(6 -7+ 2p+2a)T,, — (6 -7+ +47) (A + 2y + 20)T .- (A4)

The projected stress-energy tensor is defined as T, = n*n*T,,, T, = n*m*T,, and Ty, 5 = m"m"T,,. The Newmann-
Penrose scalars are given by (see, e.g., [95])

1 __cotd __iasin®
P="F PEypp T
iasinf A + r—m
T=— = - - =7 s - ="
e M T o =R
_ M
a=rx—p, TQZ_Fy (AS)
with I' = r + ia cos 0.
BHAC uses Kerr-Schild coordinates, with which the tetrad vectors become
1 1
= |—,——,0,0], A6
" [22’ 2w ] (A6)

where X = r? + a? cos® @ while 7 remains unchanged. The Newmann-Penrose scalars become

1 j 0 A
e=r—M, y:ﬂ:—im%, pz—(r+iacos€)g. (A7)

The rest of the quantities remain unchanged. Finally, the Newman-Penrose operator becomes

) d 1/d d
_ 4L (d_dy A8
a2z <dt dr> (A8)

while & remains unchanged.
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APPENDIX B: BLACK HOLE/NEUTRON STAR
FORMATION RATE

We follow Ref. [96] to compute the BH/NS formation
rate, which takes the form

Romy = / wlt = o(M.)p(M.)3(M. — g (M. 2))dM.
(B1)

where M, is the progenitor star mass and y/(z) is the star
formation rate, which takes the form

aexp[b(z—z,)]
a—>b+bexpla(z—1z,)]

w(z) =v (B2)

1.28,

1.1 4 0.2e(M.~1L0/40 _ (2 0 4 Z(z)/Z ) 4(M.~26.0)
M ={ min (33.35 + (4.75 + 1.252(2) / Zo) (M. — 34), M, —

1.8 +0.04 x (90 — M,),

1.8 +logo(M, —89),

and the parameters are given by v = 0.178 M, yr~! Mpc~3,
Zm =2.00,a =237,b =180 [97]. The lifetime of
the progenitor star in Eq. (B1), 7(M,) can be computed
as [98]

log,o7(M,) =9.785—3.759x + 1.413x*> - 0.186x>,  (B3)

with x = log,o(M/Mg). The initial mass function is given
by ¢(M,) x M7** for BHs [99] and we consider a
uniform distribution between 1M, and 2M for NSs.
The mass of a BH/NS remnant is related to the mass of
the progenitor star by M = g,.,(M,, z) and can be evalu-
ated as [100]

M, <11M4
1IMy <M,
30Mg <M,
S0Mg <M,
M, >90M

<30M
< 50M
< 90M

7(2)/Zo(1.3M, — 18.35)),

(B4)

where Z, = 0.0196 is metallicity of the Sun [101]. The metallicity of the progenitor star as a function of the redshift is

given by [102]

0.01387

logio Z(z) = 0.5 + logg (

b

2097.8 x 100y (7’
97.8 x 101%(2") /> (85)

: HE()(1+7)

where p, = 6.1 x 10°My Mpc™ and E(z) =

Ve, (1

+

Q,(142)°+Q,.
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