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A B S T R A C T

Accurate prediction of future blood glucose (BG) levels can effectively improve BG management for people
living with type 1 or 2 diabetes, thereby reducing complications and improving quality of life. The state of the
art of BG prediction has been achieved by leveraging advanced deep learning methods to model multimodal
data, i.e., sensor data and self-reported event data, organized as multi-variate time series (MTS). However,
these methods are mostly regarded as ‘‘black boxes’’ and not entirely trusted by clinicians and patients. In this
paper, we propose interpretable graph attentive recurrent neural networks (GARNNs) to model MTS, explaining
variable contributions via summarizing variable importance and generating feature maps by graph attention
mechanisms instead of post-hoc analysis. We evaluate GARNNs on four datasets, representing diverse clinical
scenarios. Upon comparison with fifteen well-established baseline methods, GARNNs not only achieve the
best prediction accuracy but also provide high-quality temporal interpretability, in particular for postprandial
glucose levels as a result of corresponding meal intake and insulin injection. These findings underline the
potential of GARNN as a robust tool for improving diabetes care, bridging the gap between deep learning
technology and real-world healthcare solutions.
1. Introduction

Diabetes is directly responsible for over a million deaths world-
wide every year (WHO, 2023) due to complications arising from type
1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM).
The autoimmune reaction of people with T1DM destroys the cells in
the pancreas which produce endogenous insulin, while people with
T2DM predominantly have insulin resistance, which inhibits their abil-
ity to utilize insulin effectively. Difficulties to manage BG levels by
endogenous insulin leads to hypoglycemia and hyperglycemia, caus-
ing serious health problems (Bloomgarden, 2004; Mora, Roche, &
Rodríguez-Sánchez, 2023). Hence, effective self-management for BG
levels is the key to the treatment (Woldaregay et al., 2019), because
increased ‘‘Time in Range’’ has been shown to reduce the likelihood of
complications (Bezerra, Neves, Neves, & Carvalho, 2023).
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Continuous glucose monitoring (CGM) systems offer the ability to
track BG levels every few minutes, generating continuous BG trajec-
tories. BG level prediction (BGLP) based on CGM data (Cichosz, Kron-
borg, Jensen, & Hejlesen, 2021; Naumova, Pereverzyev, & Sivananthan,
2012; Plis, Bunescu, Marling, Shubrook, & Schwartz, 2014) allows
people with diabetes to avoid hypo- and hyperglycemia by taking
precautions in real-time. Recent work (Karim, Vassányi, & Kósa, 2020;
Nemat, Khadem, Elliott, & Benaissa, 2023; Zhu et al., 2023; Zhu, Li,
Herrero and Georgiou, 2023; Zhu et al., 2022) leverages multimodal
data by organizing it as MTS in BGLP. In this case, apart from CGM
data, the MTS input also includes sensor data, e.g., heart rate, and
self-reported events, e.g., the amount of carbohydrate intake and bolus
insulin injection. While these methods have the potential to further
improve BGLP by levaraging the rich hidden information of MTS,
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Fig. 1. Some feature maps of participant 1005 in ArisesT1DM. The bottom sub-figure is the visualization of a historical multivariate time serires, only showing ‘‘glucose_level
(continuous glucose monitoring)’’, ‘‘bolus’’, ‘‘meal’’ and ‘‘finger_stick (capillary blood glucose test)’’. The heat maps on the top are the feature maps of different methods. The
x-axis/y-axis of heatmaps is the timestep/variable. The value in the cell is the variable importance, scaled to [0, 1]. Abbr.: SHAP (SHapley Additive exPlanations, Lundberg and Lee
(2017)), LIME (Local Interpretable Model-agnostic Explanations, Ribeiro, Singh, and Guestrin (2016)), RETAIN (REverse Time AttentIoN, Choi et al. (2016)), ETN-ODE (Explainable
Tensorized Neural Ordinary Differential Equations, Gao, Yang, Zhang, Huang, and Goulermas (2023)), ATT-F-LSTM (ATTention of Feature before Long Short-Term Memory (Gandin,
Scagnetto, Romani, & Barbati, 2021)) and our proposed method ‘‘GATv2+GRU’’ (Graph Attention NeTworks version 2 by Brody, Alon, and Yahav (2022) and Gated Recurrent Unit
by Cho, van Merrienboer, Bahdanau, and Bengio (2014)).
the lack of interpretability makes them less trustworthy. It is vital to
understand how each variable contributes towards prediction rather
than solely improving prediction accuracy.

However, post-hoc analysis methods, e.g., gradient-based attribu-
tion methods (Ancona, Ceolini, Öztireli, & Gross, 2018), are compu-
tationally inefficient (Guo, Lin, & Antulov-Fantulin, 2019) and difficult
to be used by the researchers and clinicians without machine learning
knowledge. Shapley Additive exPlanations (SHAP) values, as dis-
cussed by Lundberg and Lee (2017), are utilized alongside Long Short-
Term Memory (LSTM, Hochreiter and Schmidhuber (1997)) models in
BGLP (Cappon et al., 2020; Prendin et al., 2023). It should be noted that
while they offer significant insights into the importance of a limited
number of variables, their scope in temporal variable importance is
somewhat restricted.

Comparably, attention-based recurrent neural networks (RNNs),
e.g., RETAIN (Choi et al., 2016), ETN-ODE (Gao et al., 2023) and
ATT-F-LSTM (Gandin et al., 2021), can inherently learn variable im-
portance by the attention mechanisms during training. Nevertheless,
the feature maps built on the variable importance are unhelpful to
understand BGLP. Hence, we aim to propose a novel attention-based
interpretable model that can rank variables in accordance with domain
knowledge and generate understandable feature maps. For instance,
Fig. 1 demonstrates the comparison of existing interpretable methods
in interpreting the time-dependent importance of self-reported events
for BG trajectories. Other interpretable methods fail to present their
correct focus on self-reported events, as shown in their feature maps.
On the contrary, our proposed method ‘‘GATv2+GRU’’ provides insights
into the importance of variables when valid observations are available
for those variables. For instance, in our feature map, the importance
of ‘‘bolus’’ suddenly increases from 0.27 to 0.68 at 𝑡 = 29, because
this participant administrated bolus insulin at this timestep. When
data is incomplete or invalid, like when missing points are filled with
average values, the importance of variables tends to become stable at
certain numbers. In such cases (𝑡 ≠ 29), the importance of ‘‘bolus’’
typically remains near 0.26, reflecting an average importance due to
this data padding. Besides, it can precisely capture the local maxima
and minima. When 𝑡 = 36, the ‘‘glucose_level’’ achieves its lowest local
minima, and its importance increases to 1.0.
2 
Both post-hoc analysis methods (SHAP and LIME) and attention-
based methods (RETAIN, ETN-ODE, and ATT-F-LSTM) fail to generate
significant feature maps for explaining future glucose predictions due
to the complex temporal dependencies in multivariate time series data.
SHAP and LIME, designed for independent and identically distributed
(i.i.d.) data, struggle with the sequential nature of time series. ETN-
ODE, which uses variable-wise temporal attention and variable at-
tention to summarize outputs from parallel GRUs, fails to capture
interactions among variables and introduces temporal biases. RETAIN,
despite using an attention mechanism to combine embeddings of MTS,
is influenced by RNN outputs. ATT-F-LSTM attempts to minimize RNN
influence by applying attention mechanisms prior to RNN layers but
fails to effectively capture useful information.

Comparatively, our proposed methods leverage graph attention net-
works to dynamically and explicitly model the correlations among
variables at each time step. In this framework, multiple variables are
treated as nodes, with their correlations represented by edges on the
graph. The weights on these edges are learnable and changeable at
different time steps. Variable importance, used for feature maps, is
derived by aggregating these weights through a series of operations.
Crucially, this importance is calculated before the data passes through
the RNN structure, avoiding biases introduced by RNNs. By reducing
temporal bias and explicitly modeling correlations among variables, our
proposed model can generate significant feature maps.

When compared with both non-interpretable and interpretable ap-
proaches, our proposed methods outperform others in BGLP. Addition-
ally, they offer effective explanations for MTS by inherently providing
detailed insights. To summarize, the contributions of this paper are as
follows:

• We propose Graph Attentive Recurrent Neural Networks, de-
noted as GARNNs, combining Graph Attention neTworks (GAT
by Velickovic et al. (2018) or GATv2 by Brody et al. (2022)), with
RNNs. We leverage GAT/GATv2 to explicitly model correlations
among various variables, resulting in the inherent learning of
temporal variable importance. Subsequently, RNNs are employed
to aggregate temporal features for the prediction of future BG
levels.
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• We propose a novel temporal variable importance for MTS based
on graph attention mechanisms. It can respectively summarize
and generate significant variable importance ranking and feature
maps in BGLP. We employ three properties and their correspond-
ing explanations to demonstrate the creation, characteristics, and
influence of temporal variable importance.

• Our methods, along with fifteen baseline approaches (thirteen for
prediction comparisons and ten for interpretability comparisons),
are assessed using four datasets. This evaluation focuses on the
accuracy of predictions and the significance of variable ranking
and feature maps. Not only do our methods exhibit outstanding
performance, but they also attribute medically justifiable signifi-
cance to crucial variables, including those with sparse signals like
insulin injections and meal intake.

2. Related work

Interpretable methods can be generally divided into post-hoc anal-
sis methods and attention-based methods.

Some temporal models (Shen, Wei, & Wang, 2023; Succetti, Rosato,
 Panella, 2023) possess strong predictive abilities yet fall short in

nterpretability. However, it is still possible to derive explanations via
post-hoc analysis methods, e.g., gradient-based analyzing (Bykov, Hed-
tröm, Nakajima, & Höhne, 2022; Shrikumar, Greenside, & Kundaje,

2017), variable contribution to the temporal shift of model (Tonekaboni,
Joshi, Campbell, Duvenaud, & Goldenberg, 2020), Local Interpretable
Model-agnostic Explanations (LIME, Ribeiro et al. (2016)). SHapley

dditive exPlanations (SHAP, Lundberg and Lee (2017)), shapley based
feature attributions (Kwon & Zou, 2022) and local rule based explana-
ion (Rajapaksha & Bergmeir, 2022).

However, considering the efficiency and the target to explain the
modeling of each MTS, the above methods are not considered in
BGLP. Instead, we focus on attention-based methods, where variable
importance based on attention is inherently learned during training.

Tensorized RNN methods (Aguiar, Santos, Watkinson, & Zhu, 2022;
Chu et al., 2020; Gao et al., 2023; Guo et al., 2019; Shamout, Zhu,
Sharma, Watkinson, & Clifton, 2020) leveraged parallel RNNs to model
MTS, where each time series was modeled by a certain RNN. Then,
they used attention to aggregate the outputs of parallel RNNs. In
this regard, IMV-TENSOR (Guo et al., 2019) leveraged variable-wised
temporal attention and variable attention to summarize all the outputs
of parallel LSTMs, where the attention was directly mapped from the
outputs of LSTMs by fully-connected layers. Similarly, instead of using
arallel RNNs, Hsieh, Wang, Sun, and Honavar (2021) utilized parallel
-dimensional convolution neural networks for modeling MTS aided by
ttention.

These parallel structures explicitly split the contribution of variables
n the prediction, but they ignored the interaction among the variables.
esides, extracting variable importance from the temporal attention
hich worked on the outputs of RNNs could cause temporal biases. For

xample, as shown in Fig. 1, we cannot infer the variable importance
f ‘‘meal’’ from the feature map of ETN-ODE, when 𝑡 = 29. This

is because some important content at 𝑡 = 29 is passed to the last
several timesteps by RNNs, and feature maps are built on the outputs
of RNNs. While RETAIN (Choi et al., 2016) and RAIM (Xu, Biswal,
Deshpande, Maher, & Sun, 2018) did not incorporate parallel structures
and utilized the attention mechanism to combine embeddings of MTS
instead of RNN outputs, their attention process was still influenced by
the outputs from RNNs. For instance, RETAIN employed two separate
RNNs to create attention at both the visit and variable levels. This RNN-
derived attention was then applied to aggregate the MTS embeddings.
Consequently, in RETAIN, the significance assigned to variables was
somewhat biased by the RNNs, as illustrated in Fig. 1.

Even though certain researchers had attempted to minimize the
influence of RNNs on the importance of temporal variables, the effec-
iveness of this importance remained uncertain. Gandin et al. (2021)
 t

3 
and Kaji et al. (2019) had implemented attention mechanisms prior to
the RNN layers, ensuring that the variable importance was not skewed
by the RNNs. However, this approach, which was directed either by
variable-wise temporal attention or time-wise variable attention, still
led their models to erroneously focus on some irrelevant data points,
particularly in the context of sparse signals. This issue is evident in
models like ATT-F-LSTM (Gandin et al., 2021), as showcased in Fig. 1.
Our approach leverages graph attention neural networks to explicitly

odel relationships among variables before applying RNNs, providing
 strong foundation for calculating variable importance. This enables us
o propose methods for generating high-quality variable rankings and

feature maps, which we consider the key contribution of this work.
On the other hand, a mechanistic model (Man et al., 2014) uses

known physical, biological, or chemical principles to describe and pre-
dict the behavior of a system through mathematical equations, such as
ordinary differential equations (ODEs). These models capture essential
mechanisms and offer interpretability and validation by adhering to
established equations. In the context of glucose dynamics, a mechanis-
tic model represents the physiological processes of insulin and glucose
interaction within the body. Specifically, this model uses ODEs to sim-
ulate the dynamics of plasma glucose and insulin, endogenous glucose
production, and glucose utilization, capturing the causal relationships
and dependencies within these physiological systems. Recently, studies
such as Miller, Foti, and Fox (2020), Wang, Levine, Shi, and Fox (2023)
and Zou, Levine, Zaharieva, Johari, and Fox (2024) have proposed
hybrid models that integrate the traditional UVA/Padova biomedical
simulator (Man et al., 2014) with deep learning methods. This integra-
ion allows mechanistic models to leverage real patient data patterns,
enerating more accurate glucose responses to insulin delivery or meal

consumption.
However, the interpretability provided by these mechanistic models

differs from our objectives in this paper. While mechanistic models
provide interpretability and validation by following established scien-
tific principles and theories, our goal is to provide interpretability by
alculating variable importance for each variable at each time step.
herefore, in our experiments, we can only compare the prediction
ccuracy of our methods with the latest mechanistic methods from Zou

et al. (2024).

3. Preliminaries

Given a directed graph  ≜ ( ,  ,𝐄), we assume that the graph
 has 𝑁 nodes, denoted as  ≜ {1,… , 𝑛,… , 𝑁}. Each node 𝑛 is
connected with its neighborhood  𝑛 ⊆  , through the edges of  .
Besides, the presentations of all the nodes are 𝐄 = [𝐞1 ... 𝐞𝑛 ... 𝐞𝑁 ] ∈
R𝐸×𝑁 , where the presentation of the node 𝑛 is 𝐞𝑛. Assuming that there
re multiple layers in Graph Attention neTworks (GATs), defined as
 ≜ {1,… , 𝑙 ,… , 𝐿}, each node 𝑛 in layer 𝑙 can receive and aggregate
eural messages from  𝑛. Then, one of the aggregation approaches is:

𝐞𝑛,𝑙+1 =
∑

𝑗∈ 𝑛

𝑠̃𝑛,𝑗 ,𝑙(𝐖𝑙𝐞𝑗 ,𝑙 + 𝐛𝑙), (1)

𝑠̃𝑛,𝑗 ,𝑙 = Sof t max(𝑠𝑛,𝑗 ,𝑙), (2)

where the neural message from node 𝑗 ∈  𝑛 is 𝐖𝑙𝐞𝑗 ,𝑙 + 𝐛𝑙; learnable
parameters are 𝐖𝑙 and 𝐛𝑙; the attention weight from 𝑗 to 𝑛 is 𝑠̃𝑛,𝑗 ,𝑙 ∈ R1.

We temporarily omit the superscript 𝑙 for simplicity. The attention
weight 𝑠̃𝑛,𝑗 is gotten by normalizing the score 𝑠𝑛,𝑗 . The score from node
𝑗 to node 𝑛 is 𝑠𝑛,𝑗 , as:

GAT ∶ 𝑠𝑛,𝑗 = Leak y ReLU(𝐚′⊤[𝐖𝐞𝑛 + 𝐛;𝐖𝐞𝑗 + 𝐛]), (3)

ATv2 ∶ 𝑠𝑛,𝑗 = 𝐚⊤Leak y ReLU(𝐖′[𝐞𝑛; 𝐞𝑗 ] + 𝐛), (4)

where 𝐚 ∈ R𝐴 and 𝐚′ ∈ R2𝐴 are learnable parameters; constant 𝐴
is a hyperparameter; the concatenation of vectors is [; ]. LeakyReLU
is the default activation function for both GAT and GATv2. According
to Velickovic et al. (2018), LeakyReLU introduces nonlinearity in the at-
ention mechanism, ensuring non-zero gradients for all inputs, efficient
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Fig. 2. Graph attentive recurrent neural networks (GARNNs). The observation of the variable 𝑛 ∈  ≜ {1,… , 𝑛,… , 𝑁} at timestep 𝑡 ∈ {1,… , 𝑡,… , 𝑇 } is 𝑥𝑛𝑡 . The total length of
the historical multivariate time series is 𝑇 . The attention score from 𝑗 to 𝑛 is 𝑠𝑛,𝑗𝑡 (𝑗 ∈  ) for aggregating neural messages at node 𝑛. The variable importance of 𝑗 is 𝑣𝑗𝑡 which is
gotten from 𝑠𝑗𝑡 . The hidden state is 𝐡𝑡.
(
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gradient propagation, and stable training dynamics.
The above score function can be rewritten as:

GAT ∶ 𝑠𝑛,𝑗 = f (𝐪𝑛,𝐤𝑗 ) = Leak y ReLU (

𝐚⊤1 𝐪
𝑛 + 𝐚⊤2 𝐤

𝑗) , (5)

GATv2 ∶ 𝑠𝑛,𝑗 = f (𝐪𝑛,𝐤𝑗 ) = 𝐚⊤Leak y ReLU(𝐪𝑛 + 𝐤𝑗 ), (6)

where 𝐚1, 𝐚2 ∈ R𝐴. The query 𝐪𝑛 is 𝐖1𝐞𝑛+𝐛1, and the key 𝐤𝑗 is 𝐖2𝐞𝑗+𝐛2.
As for Eq. (5), the learnable parameters {𝐖1,𝐛1} should be the same
as {𝐖2,𝐛2}.

Based on the findings presented by Brody et al. (2022), the scor-
ng mechanism in GAT and GATv2 differs, with GAT having a static
pproach and GATv2 featuring a dynamic one. As a result, GATv2
emonstrates greater expressiveness in modeling intricate features of
raphs, offering enhanced capabilities compared to its predecessor.
Static scoring: given queries {𝐪𝑛|𝑛 ∈  } and keys {𝐤𝑚|𝑚 ∈ }, it

olds f (𝐪𝑛,𝐤𝑚) ≤ f (𝐪𝑛,𝐤𝑚′=𝑚𝑚𝑎𝑥 ), where ∀𝑛 ∈  , ∀𝑚 ∈ , ∃𝑚′ ∈ ,
 ∶ R𝐴 × R𝐴 → R1.
Dynamic scoring: given queries {𝐪𝑛|𝑛 ∈  } and keys {𝐤𝑚|𝑚 ∈ },

it holds f (𝐪𝑛,𝐤𝑚) < f (𝐪𝑛,𝐤𝑚′=𝜙(𝑛)), where ∀𝑛 ∈  , ∃𝑚′ ∈ , ∀𝑚 ∈ 
and 𝑚 ≠ 𝜙(𝑛). Meanwhile, function 𝜙 ∶  →  and f ∶ R𝐴 ×R𝐴 → R1.

4. Proposed model

4.1. Problem definition

Blood glucose (BG) levels represent the amount of glucose present
in the blood. Glucose is a type of sugar and is the primary source of
energy for the body’s cells. BG levels are measured in milligrams of
glucose per deciliter of blood (mg/dL) or in millimoles of glucose per
liter of blood (mmol/L).

Blood glucose level prediction based on multivariate time se-
ies (BGLP-MTS): given the values of variables  from historical

timesteps  ≜ {1,… , 𝑡,… , 𝑇 }, i.e., 𝐗 = [𝐱1... 𝐱𝑡... 𝐱𝑇 ] ∈ R𝑁×𝑇 , predict
the BG level 𝑦𝑇+𝐻 . The vector 𝐱𝑡 = [𝑥1𝑡 ... 𝑥𝑛𝑡 ... 𝑥𝑁𝑡 ]⊤, and 𝐻 is a
prediction horizon. We let 𝑛 = 1 be the target variable, i.e., 𝑥1𝑡 = 𝑦𝑡.
The rest variables (𝑛 > 1) are exogenous variables when 𝑁 > 1.

4.2. Overview

Our proposed models, GARNNs, build a graph at each timestep and
se each node 𝑛 of the graph  to represent a variable 𝑛 of MTS,

assuming each graph is initially a complete graph (see Fig. 2). Then,
the input 𝐞𝑛𝑡 of Eq. (1) is
𝑛 𝑛 𝑛 𝑛
𝐞𝑡 = ReLU(𝐰 𝑥𝑡 + 𝐛 ), (7) R

4 
where learnable parameters 𝐰𝑛 ∈ R𝐸 . Then, we can use Eqs. (1)–
2) aided by Eq. (5) or Eq. (6) to update representations of 𝑛. Next,

we collect the latest representations 𝐞1∶𝑁𝑡 and concatenate them as
𝑡 = [𝐞1𝑡 ; ...; 𝐞𝑛𝑡 ; ...; 𝐞𝑁𝑡 ].

After explicitly modeling correlations of these variables, we collect
𝑡 of all timesteps, denoted as 𝐞1∶𝑇 . Then, we leverage RNN to aggregate
hem, as:

𝐡1∶𝑇 = RNN(𝐞1∶𝑇 ,𝐡0∶𝑇−1), (8)

where we utilize gated recurrent unit (GRU, Cho et al. (2014)) as
RNN(⋅) to aggregate temporal features in this paper.

The GRU is a type of RNN architecture introduced to address the
vanishing gradient problem in traditional RNNs. GRUs simplify the
LSTM architecture by combining the forget and input gates into a single
pdate gate, and merging the cell state and hidden state, making them
omputationally more efficient while maintaining performance. GRUs

are particularly effective in sequence modeling tasks such as time series
prediction and natural language processing. The structure of GRU is as
follows:

𝐫𝑡 = 𝜎(𝐖𝑟𝑒𝐞𝑡 + 𝐛𝑟𝑒 +𝐖𝑟ℎ𝐡𝑡−1 + 𝐛𝑟ℎ), (9)

𝑡 = 𝜎(𝐖𝑧𝑒𝐞𝑡 + 𝐛𝑧𝑒 +𝐖𝑧ℎ𝐡𝑡−1 + 𝐛𝑧ℎ), (10)

𝑡 = t anh(𝐖𝑛𝑒𝐞𝑡 + 𝐛𝑛𝑒 + 𝐫𝑡 ∗ (𝐖𝑛ℎ𝐡𝑡−1 + 𝐛𝑛ℎ)), (11)

𝑡 = (1 − 𝐳𝑡) ∗ 𝐧𝑡 + 𝐳𝑡 ∗ 𝐡𝑡−1, (12)

where 𝐖 and 𝐛 are learnable parameters, and ∗ is the element-wise
product; 𝜎 is the sigmoid activation function.

Finally, the prediction is 𝑦̂𝑇+𝐻 = MLP(𝐡𝑇 ), where MLP(⋅) consists of
fully connected neural networks.

Given training examples  ≜ {1,… , 𝑖,… , 𝐼}, the objective function
is:

𝐽 (𝜃) = 1
𝐼
∑

𝑖

(

𝑦̂𝑇+𝐻 (𝑖) − 𝑦𝑇+𝐻 (𝑖)
)2 + 𝜆

2
‖𝜃‖22, (13)

where 𝜃 are all the learnable parameters of our proposed model; 𝜆 is a
hyperparameter.

4.3. Interpretability

In this section, we introduce three key properties that establish
a robust framework for interpreting variable importance in GAT and
its variant, GATv2. Property 1 hypothesis the existence of a universal
interpretable variable importance for GAT and GATv2, inspired by the

ETAIN model (Choi et al., 2016) which uses attention mechanisms to
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weigh the contributions of variables. This property provides a unified
ethod for calculating variable importance based on learnable param-

eters and input, leveraging graph structures. Property 2 asserts that
variable importance is derived from static scoring, a concept adapted
from the work of Brody et al. (2022), highlighting that static scoring
offers more stable and self-contained variable importance measures
ompared to dynamic scoring, which varies with different interac-
ions. Lastly, Property 3 addresses the bounded differences between

prediction modeling and variable importance calculation, with bounds
ependent on the LeakyReLU parameter 𝛼, ensuring that these dif-
erences remain minimal and controlled. Together, these properties
nderscore the reliability, consistency, and interpretability of variable

importance in GAT and GATv2 models.

Property 1. There exists a universal interpretable variable importance of
AT and GATv2.

Explanation. In BGLP scenario, we assume each node 𝑛 connects with
all of the nodes of  . Then, as for the neighbor nodes  𝑛 of the node
𝑛, we have  𝑛 =  . Considering Eqs. (1)–(2) and Eqs. (5)–(6), for the
variable 𝑛, the higher the score 𝑠𝑛,𝑗𝑡 , the more important 𝑗 to 𝑛. The
mean of the scores from 𝑗 to all variables of  is denoted as:

𝑠𝑗𝑡 =
1
𝑁

∑

𝑛
𝑠𝑛,𝑗𝑡 . (14)

It is the impact of the variable 𝑗 on all the variables. Theoretically,
a higher level of importance assigned to variable 𝑗 corresponds to an
ncreased mean score 𝑠𝑗𝑡 . As a result, an enhanced amount of infor-
ation from 𝑗 is conveyed to and preserved within the embedding 𝐞𝑡

ollected from GAT/GATv2, thereby amplifying the contribution of 𝑗
n the prediction process.

However, we do not regard 𝑠𝑗𝑡 as the variable importance of 𝑗 at
imestep 𝑡. Instead, we extract its variable importance from 𝑠𝑗𝑡 by re-
oving irrelevant information. Specifically, considering that
eak y ReLU(𝑥) is monotonic with respect to 𝑥, we remove Leak y ReLU(⋅)

from Eq. (14). GAT and GATv2 can be organized in the same format,
s:

𝑠̂𝑗𝑡 =
1
𝑁

∑

𝑛
𝑠̂𝑛,𝑗𝑡 = 1

𝑁
∑

𝑛
(𝐚⊤1 𝐪

𝑛
𝑡 + 𝐚⊤2 𝐤

𝑗
𝑡 ), (15)

= 𝐚⊤2 𝐤
𝑗
𝑡

⏟⏟⏟
variable importance

+ 1
𝑁

∑

𝑛
𝐚⊤1 𝐪

𝑛
𝑡 (16)

where 𝐚1 is unequal and equal to 𝐚2 in GAT and GATv2 respectively.
Then, we define the variable importance 𝑣𝑗𝑡 by removing the irrelevant
item 1

𝑁
∑

𝑛 𝐚⊤1 𝐪
𝑛
𝑡 from 𝑠̂𝑗𝑡 :

𝑣𝑗𝑡 ≜ 𝐚⊤2 𝐤
𝑗
𝑡 = 𝐚⊤2𝐖2

⏟⏟⏟
variable contribution

𝐞𝑗𝑡
⏟⏟⏟

variable embedding

+ 𝐚⊤2 𝐛2
⏟⏟⏟

constant bias

. (17)

On the other hand, we can consider multiple layers of GAT or
GATv2, the variable importance 𝑣𝑗𝑡 is defined as:

𝑣𝑗𝑡 =
1
𝐿

∑

𝑙
𝑣𝑗 ,𝑙𝑡 , 𝑣𝑗 ,𝑙𝑡 ≜ 𝐚𝑙2

⊤𝐤𝑗 ,𝑙𝑡 . (18)

Given , the variable importance of 𝑣𝑗 over  is:

𝑣𝑗 () = 1
𝐼 𝑇

∑

𝑖,𝑡
𝑣𝑗𝑡 (𝑖), (19)

where 𝑣𝑗𝑡 (𝑖) is the variable importance of 𝑗 at timestep 𝑡 of the 𝑖th
ample; the total number of training examples is 𝐼 ; the length of the

MTS is 𝑇 . ■
As in Eq. (17), our proposed variable importance 𝑣𝑗𝑡 is fully un-

derstandable. It consists of a variable contribution 𝐚⊤2𝐖2, a variable
embedding 𝐞𝑗𝑡 and a constant bias 𝐚⊤2 𝐛2. The variable contribution and
constant bias are learnable, so 𝑣𝑗𝑡 is directly guided by the variable
embedding 𝐞𝑗𝑡 . When 𝐿 = 1, the variable importance 𝑣𝑗 () is only
affected by 𝑗. When 𝐿 > 1, the variable importance 𝑣𝑗 () considers

correlations of 𝑗 and other variables.

5 
Property 2. The variable importance 𝑣𝑗𝑡 is from static scoring.
Explanation. Considering that 𝑠̂𝑛,𝑗𝑡 = 𝐚⊤1 𝐪

𝑛
𝑡 +𝐚⊤2 𝐤

𝑗
𝑡 , when 𝑛 and 𝑡 is fixed,

⊤
1 𝐪

𝑛
𝑡 can be seen as a constant. 𝑠̂𝑛,𝑗𝑡 is largely affected by 𝐤𝑗𝑡 . There can

xist a 𝑗′ ∈  , making 𝑠̂𝑛,𝑗𝑡 ≤ 𝑠̂𝑛,𝑗
′=𝑗𝑚𝑎𝑥

𝑡 . This observation holds for any
if 𝑡 is fixed.

The variable importance 𝑣𝑗𝑡 is extracted from 𝑠̂𝑗𝑡 which is the mean
f 𝑠̂𝑛,𝑗𝑡 over 𝑛, so 𝑣𝑗𝑡 is from static scoring. ■

The use of static scoring for determining variable importance aligns
with our expectations, primarily because dynamic scoring does not
uarantee consistent significance of variables. For instance, in the case

of GATv2, if we arrange variable 𝑗 based on the value of 𝑠𝑛,𝑗𝑡 among
{𝑠𝑛,𝑗𝑡 |𝑗 ∈  }, the dynamic scoring leads to considerable fluctuations
in the ranking of 𝑗 within  as 𝑛 varies. Consequently, using 𝑠𝑗𝑡 from
GATv2 as a measure of variable importance becomes unreliable.

In contrast, the ranking of 𝑗 in  based on the value of 𝑠̂𝑛,𝑗𝑡 in
{𝑠̂𝑛,𝑗𝑡 |𝑗 ∈  } remains constant despite changes in 𝑛. Averaging 𝑠̂𝑛,𝑗𝑡 over

to reevaluate the ranking of 𝑗 does not alter its position, emphasizing
he necessity for static scoring in assessing variable importance. Fur-
hermore, eliminating 1

𝑁
∑

𝑛 𝐚⊤1 𝐪
𝑛
𝑡 from 𝑠̂𝑗𝑡 also maintains the ranking of

, supporting this approach.
Additionally, the implementation of variable importance based on

static scoring does not interfere with the dynamic scoring function
f GATv2 in mapping out variable correlations. This ensures that
ATv2 remains both effective in modeling and consistent in calculating
ariable importance.

Property 3. The difference between 𝑠̂𝑗𝑡 and 𝑠𝑗𝑡 is bounded by small values
epending on the slope 𝛼 ∈ [0, 1] of Leak y ReLU(⋅).
Explanation. In terms of GATv2 (see Eq. (6)), we have:

𝑠𝑗𝑡 =
1
𝑁

∑

𝑛
𝐚⊤ 𝐈̃𝑛,𝑗𝑡 (𝐪𝑛𝑡 + 𝐤𝑗𝑡 ) =

1
𝑁

∑

𝑛
𝐚⊤ 𝐈̃𝑛,𝑗𝑡 𝐦𝑛,𝑗

𝑡 , (20)

where 𝐈̃𝑛,𝑗𝑡 is an indicate diagonal matrix, as:
̃𝑛,𝑗
𝑡 = Diag(𝑖𝑛,𝑗𝑡,1 ,… , 𝑖𝑛,𝑗𝑡,𝑎 ,… , 𝑖𝑛,𝑗𝑡,𝐴),

𝑖𝑛,𝑗𝑡,𝑎 =

⎧

⎪

⎨

⎪

⎩

1, 𝑚𝑛,𝑗
𝑡,𝑎 ≥ 0

𝛼 , 𝑚𝑛,𝑗
𝑡,𝑎 < 0, 𝛼 ∈ [0, 1],

and 𝑚𝑛,𝑗
𝑡,𝑎 is the 𝑎th value of the vector 𝐦𝑛,𝑗

𝑡 .

𝑠𝑗𝑡 − 𝑠̂𝑗𝑡 =
1
𝑁

∑

𝑛
𝐚⊤ 𝐈̃𝑛𝑗𝑡 𝐦𝑛,𝑗

𝑡 − 1
𝑁

∑

𝑛
𝐚⊤𝐦𝑛,𝑗

𝑡 , (21)

= ‖𝐚‖2
‖

‖

‖

‖

‖

1
𝑁

∑

𝑛
(𝐈̃𝑛,𝑗𝑡 − 𝐈)𝐦𝑛,𝑗

𝑡

‖

‖

‖

‖

‖2
cos 𝛽 , (22)

where vetorial angle is 𝛽. The boundary of the difference between 𝑠̂𝑗𝑡
and 𝑠𝑗𝑡 is:

0 ≤ |𝑠𝑗𝑡 − 𝑠̂𝑗𝑡 | ≤ ‖𝐚‖2
‖

‖

‖

‖

‖

1
𝑁

∑

𝑛
(𝐈̃𝑛,𝑗𝑡 − 𝐈)𝐦𝑛,𝑗

𝑡

‖

‖

‖

‖

‖2
. (23)

Eq. (13) has a soft constraint for ‖𝜃‖2 < 𝜖. Based on the theory
of Lagrange multipliers, there exists a 𝜆 value that is equivalent to the
hard constraint for ‖𝜃‖2 < 𝜖, where 𝜖 is a small positive value. Then, for
a learnable parameter 𝑤, we can have |𝑤| < 𝜖 ,∀𝑤 ∈ 𝜃. We assume each
value of the input vector 𝐞𝑗 ,𝑙𝑡 of each GATv2 layer belongs to [−𝑐 , 𝑐].
Given that ‖𝐚‖2 <

√

𝐴𝜖 and ‖

‖

‖

1
𝑁

∑

𝑛(𝐈̃
𝑛,𝑗
𝑡 − 𝐈)𝐦𝑛,𝑗

𝑡
‖

‖

‖2
≤ (1 −𝛼)2

√

𝐴(𝐸 𝑐+ 1)𝜖,
e have:

0 ≤ |𝑠𝑗𝑡 − 𝑠̂𝑗𝑡 | ≤ (1 − 𝛼)2𝐴(𝐸 𝑐 + 1)𝜖2. (24)

Similarly, in terms of GAT, we have:

0 ≤ 𝑠𝑗𝑡 − 𝑠̂𝑗𝑡 ≤ (1 − 𝛼)2𝐴(𝐸 𝑐 + 1)𝜖2. ■ (25)

The bounds can be treated as the gaps between the modeling for
prediction and the calculation of variable importance. The gaps are
ffected by 𝛼. Nevertheless, changing 𝛼 has a slight impact on variable
mportance (see Fig. 4). Hence, we hold the view that the small gaps

between the prediction and the variable importance can be ignored.
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Table 1
The statistics of four datasets.

Demographic OhioT1DM ArisesT1DM ShanghaiT1DM ShanghaiT2DM

No. of participants (male/female) 12 (7/5) 12 (6/6) 12 (7/5) 100 (44/56)
Age (years) 20–60 30–49 37–73 22–97
Diabetes type T1DM T1DM T1DM T2DM
CGM Medtronic Enlite Empatica E4 FreeStyle Libre H FreeStyle Libre H
CGM sampling frequency (𝛿 𝑡) Every 5 min Every 5 min Every 15 min Every 15 min
No. of days of CGM data per patient 54 ± 2 49 ± 4 15 ± 9 12 ± 6
No. of CGM records per patient 13871 ± 1015 13324 ± 1081 1307 ± 849 1122 ± 580
Mean of CGM data (mg/dL) 159.35 ± 16.34 161.25 ± 26.02 166.51 ± 27.81 141.05 ± 29.70
Standard deviation of CGM data (mg/dL) 58.11 ± 6.15 57.06 ± 13.50 62.75 ± 11.95 40.89 ± 12.86
Time in range (%) 63.54 ± 9.70 63.29 ± 16.00 53.84 ± 12.26 77.74 ± 17.41
Time below range (%) 3.30 ± 2.25 2.92 ± 1.91 6.65 ± 6.45 2.54 ± 7.44
Time above range (%) 33.15 ± 10.71 33.78 ± 17.01 39.51 ± 16.40 19.72 ± 17.78
Coefficient of variation (%) 36.63 ± 3.70 35.14 ± 4.47 38.30 ± 7.16 28.89 ± 6.22
Low blood glucose index 0.88 ± 0.48 0.78 ± 0.46 1.63 ± 1.55 0.96 ± 1.97
High blood glucose index 7.15 ± 2.45 7.59 ± 4.17 8.87 ± 3.55 4.42 ± 3.72
Other variables Self-reported data; Sensor

band (Empatica or basis peak)
data

Self-reported data; Sensor
band (Empatica E4) data

Self-reported data Self-reported data;
e

e
i
t
p
e
v
a
t
O
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5. Experiments

Our experiments can be divided into two parts: evaluation of pre-
diction performance and evaluation of variable importance. Before
evaluating the methods, we first introduce the four datasets used in
our experiments in Section 5.1. Then, we describe the baseline methods
mployed in our experiments in Section 5.2, which include traditional

interpretable machine learning methods, post-hoc analysis methods,
attention-based methods, uninterpretable deep learning methods, and
eural network-based mechanism methods.

For the evaluation of prediction performance, excluding post-hoc
nalysis methods, we assess the prediction performance of all methods
n Section 5.4 using the metrics defined in Section 5.3. We also vary
ey hyperparameters of our proposed methods, such as the number
f GAT/GATv2 layers, to analyze their impact on prediction accuracy.
ifferent variations of our proposed methods are evaluated alongside

he selected baseline methods on four datasets.
Next, we evaluate the quality of variable importance by examin-

ing both instant variable importance (𝑣𝑗𝑡 ) and summarized variable
importance (𝑣𝑗 ()) for all interpretable methods, including variations
of our proposed methods and interpretable baseline methods. Summa-
rized variable importance, which can be used for ranking variables, is
evaluated based on medical knowledge and statistical data analysis in
Section 5.5. We also consider the impact of the 𝛼 parameter from our
proposed methods on variable importance.

Finally, the quality of instant variable importance, represented as
eature maps, is evaluated using three criteria: data validity, signal
mportance, and sparse signal detection in Section 5.6.

5.1. Datasets

We select four datasets containing multimodal data with high qual-
ity, where T1DM and T2DM groups in Shanghai dataset (Zhao et al.,
2023) are regarded as two datasets. All datasets used in the study, ex-
cept for ArisesT1DM (NCT ID: NCT03643692), are publicly accessible.
The ArisesT1DM dataset was gathered in full compliance with relevant
legal regulations. Consequently, ethical approval is not further required
for this research. Details of these four dataset are presented in Table 1.

OhioT1DM (Marling & Bunescu, 2020): it is developed to promote
and facilitate research in BGLP by providing eight weeks of CGM,
insulin, physiological sensor, and self-reported life-event data for 12
adults with T1DM. Participants reported insulin doses, meal times,
exercise, sleep, stress, and illness via a smartphone app. Data collection
involved Medtronic insulin pumps, CGM sensors, and fitness bands (Ba-

sis Peak and Empatica Embrace). The dataset, de-identified according

6 
to HIPAA guidelines, requires a Data Use Agreement (DUA) for access,
ensuring ethical use and protecting participant privacy.

ShanghaiT1DM and ShanghaiT2DM (Zhao et al., 2023):
it includes data from T1DM (n = 12) and T2DM (n = 100) pa-

tients in Shanghai, China. Data collection was conducted under real-
life conditions, capturing clinical characteristics, laboratory measure-
ments, medications, CGM readings, and daily dietary information. The
study was ethically approved by the Ethics Committee of Shanghai
Fourth People’s Hospital and Shanghai East Hospital, affiliated with
Tongji University, and informed consent was obtained from all par-
ticipants. This ensures the protection of sensitive patient information,
and data use is restricted to research purposes with appropriate ethical
considerations.

ArisesT1DM (Zhu et al., 2022): The study utilized a clinically
validated sensor wristband and CGM device under free-living con-
ditions, collecting data from 12 adult participants with T1D over a
six-week period. Participants were asked to log daily events such as
insulin doses, meal macronutrient composition, alcohol intake, stress,
illness, and exercise in a smartphone app. The study received ethi-
cal approval from the London - Fulham Research Ethics Committee
(trial protocol 18/LO/1096), and all participants provided informed
consent. The dataset included glucose and wristband data with specific
focus on the impact of non-invasive physiological data on predicting
glycemic events. In order to simplify the exhibition of experiment
results, we leverage abbreviations of variable names (Zhu et al., 2022),
.g., electrodermal activity (EDA).

In this study, different from Zeevi et al. (2015), we did not use an
xternal cohort to evaluate our proposed methods, because our focus
s on developing personalized models. Our approach involves fine-
uning each model using individual patient data, thereby generating
ersonalized models tailored to each patient’s unique behavior. For
valuation, we divided each patient’s data sequentially into training,
alidation, and test sets from different time periods. This approach
ligns with other mainstream glucose prediction methods, such as
hose described by Cappon et al. (2020) and Prendin et al. (2023).
hioT1DM has been originally divided into training data and testing
ata by time for each participant. We further split the training data

into the training part (80%) and validation part (20%). In terms of
the rest three datasets, we respectively split the data into training data
(60%), validation data (20%) and testing data (20%) by time for each
participant. We use sliding windows to generate examples (𝐗, 𝑦𝑇+𝐻 ),
i.e., 𝑇 = 48 and 𝐻 = 6 for 𝛿 𝑡 = 5 min, or 𝑇 = 16 and 𝐻 = 2 for
𝛿 𝑡 = 15 min. All the examples are normalized by standard normalization
and padded by zeros. We consider almost all the variables (see Fig. 3) in
each dataset. However, certain variables with poor data quality, such as
‘‘stressors’’ in the OhioT1DM dataset, were excluded from our analysis.
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Fig. 3. The variable importance 𝑣𝑗 (), scaled to [0, 1], of different methods, where 𝑗 is a variable from the variable set  , and  contains all training examples. The number of
graph layers is 𝐿. The x-axis/y-axis is variable/method. Brighter cell means higher 𝑣𝑗 (). The number in a cell is the ranking place of the variable ranked by 𝑣𝑗 (). Explanation
of methods can refer to Section 5.2. EDA: electrodermal activity; SCL: skin conductance level; SCR: skin conductance response; medianNNI: median value of NN intervals; ACC:
average 3D acceleration; SDNN: standard deviation of normal to normal (NN) intervals; pNNX: percentage of successive NN intervals greater than 50 ms; CVSD: coefficient of
variation of successive differences; LHR: low-/high-frequency power ratio; RMSSD: root mean square of successive differences between adjacent NNs; CVNNI: coefficient of variation
of NN intervals; HF: high frequency of heart rate in frequency domain; VLF: very high frequency of heart rate in frequency domain; LF: low frequency of heart rate in frequency
domain.
We selected a 30-min prediction horizon (PH) because, following
carbohydrate ingestion, BG levels typically begin to rise after 10 to
15 min (Tena, Garnica, Lanchares, & Hidalgo, 2021). Thus, a 30-min
PH is the minimum duration necessary to implement corrective actions
effectively (Balasooriya & Nanayakkara, 2020; Contador, Colmenar,
Garnica, Velasco, & Hidalgo, 2022).

5.2. Baselines

SHapley Additive exPlanations (SHAP, Lundberg and Lee (2017))
and Local Interpretable Model-agnostic Explanations (LIME,
Ribeiro et al. (2016)): they are model-agnostic methods, providing
variable importance for any methods. Given that our proposed methods
got the best predicting performance compared with all of baseline
methods, we leverage SHAP and LIME to explain our proposed methods
for comparisons. We directly treat the absolute value of the vari-
able importance provided by SHAP/LIME as 𝑣𝑗 , and 𝑣𝑗 () is gotten
by Eq. (19).

Linear Regression (LR): it is a linear method. We flatten the
input 𝐗 and use scikit-learn (Pedregosa et al., 2011) to fit models. We
aggregate the coefficients of the model as 𝑣𝑗 ().

eXtreme Gradient Boosting (XGBoost, Chen and Guestrin (2016)):
it is an optimized distributed gradient boosting approach. We flatten
the input 𝐗 to fit models. We regard the average gain as 𝑣𝑗 (), where
the gain is collected across all splits when using variables.

REverse Time AttentIoN (RETAIN, Choi et al. (2016)): it is an
interpretable RNN model. The variable importance is calculated by the
outputs of two RNNs, some learnable parameters and the input value
of a variable. We use the absolute value of the variable importance of
RETAIN as 𝑣𝑗 , and 𝑣𝑗 () is gotten by Eq. (19).
𝑡

7 
Interpretable Multi-Variable Long Short-Term Memories (IMV-
LSTMs, Guo et al. (2019)): both IMV-TENSOR and IMV-FULL are
interpretable LSTMs by generating variable importance and variable-
wise temporal importance. We directly average the variable importance
of IMV-LSTMs with  examples and regard the mean variable im-
portance as 𝑣𝑗 (). Meanwhile, we treat the variable-wise temporal
importance as 𝑣𝑗𝑡 .

Explainable Tensorized Neural Ordinary Differential Equations
(ETN-ODE, Gao et al. (2023)): it consists of: (1) Tensorized GRU; (2)
tandem attention; (3) ordinary differential equation network. Part 1
and 2 are for the interpretation, which is similar as IMV-TENSOR, and
part 3 is for the arbitrary-step prediction.

ATTention of Time series before Long Short-Term Memory
(ATT-T-LSTM, Kaji et al. (2019)): it separately adds temporal attention
for each variable before passing through LSTM. We regard the temporal
attention as 𝑣𝑗𝑡 , while 𝑣𝑗 () cannot be calculated by this method.

ATTention of Features before Long Short-Term Memory (ATT-F-
LSTM, Gandin et al. (2021)): it adds variable attention at each timestep
before LSTM. Hence, the attention weight of a variable 𝑗 at timestep 𝑡
is 𝑣𝑗𝑡 , and 𝑣𝑗 () is calculated via Eq. (19).

Neural Basis Expansion Analysis for Interpretable Time Se-
ries forecasting (N-BEATS, Oreshkin, Carpov, Chapados, and Bengio
(2020)): it is a non-interpretable deep learning model for univariate
time series modeling. It utilizes a stack of fully connected neural
network layers to model time series data, offering remarkable accuracy
and flexibility.

Neural Hierarchical Interpolation for Time Series forecasting
(NHiTS, Challu et al. (2023)): it is a non-interpretable deep learning
model for MTS modeling, extending the N-BEATS and performing better
in long-horizon prediction.

Latent Parameter dynamics (LP), LP + State Closure (LPSC) and
Mechanistic Neural ODE (MNODE) (Zou et al., 2024): LP augments a
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Fig. 4. The variable importance 𝑣𝑗 (), scaled to [0, 1], of ‘‘GAT+GRU’’ and ‘‘GATv2+GRU’’ changes with different 𝛼, where 𝛼 is a hyperparameter of Leak y ReLU(⋅). Two graph
layers are considered, and 𝑗 is a variable from the variable set  , and  contains all training examples. The x-axis/y-axis is variable/method. Brighter cell means higher 𝑣𝑗 (). The
number in a cell is the ranking place of the variable ranked by 𝑣𝑗 (). Explanation of methods can refer to Section 5.2. EDA: electrodermal activity; SCL: skin conductance level;
SCR: skin conductance response; medianNNI: median value of NN intervals; ACC: average 3D acceleration; SDNN: standard deviation of normal to normal (NN) intervals; pNNX:
percentage of successive NN intervals greater than 50 ms; CVSD: coefficient of variation of successive differences; LHR: low-/high-frequency power ratio; RMSSD: root mean square
of successive differences between adjacent NNs; CVNNI: coefficient of variation of NN intervals; HF: high frequency of heart rate in frequency domain; VLF: very high frequency
of heart rate in frequency domain; LF: low frequency of heart rate in frequency domain.
mechanistic model, UVA/Padova (Man et al., 2014), by incorporating
time-varying parameters governed by latent dynamics. This approach
enhances the model’s flexibility while retaining some of the underlying
mechanistic structure, allowing it to adapt to changing conditions
more effectively. LPSC extends the LP model by adding a state closure
mechanism, where state include variables such as BG levels and insulin
concentrations. This combines the flexibility of latent parameters with
a correction term that adjusts the state dynamics based on observed
residuals, thereby improving the model’s accuracy and robustness.
MNODE integrates mechanistic models with neural networks by using
adjacency matrices to maintain dependencies between states. This ap-
proach allows the model to learn state dynamics, i.e., insulin-glucose
dynamics, flexibly while preserving the causal relationships encoded
in the mechanistic framework.

Our proposed method Graph Attentive Recurrent Neural Networks
(GARNNs) are represented by Graph Attention neTworks (GAT by
Velickovic et al. (2018)) or GATv2 by Brody et al. (2022) and Gated Re-
current Unit (GRU, Cho et al. (2014)), i.e., ‘‘GAT+GRU’’ and
‘‘GATv2+GRU’’.

All the deep methods are implemented by PyTorch 1.11.0 following
their original codes on github and run with NVIDIA RTX 3090 Ti.
All the methods except LR are trained four times by changing the
random seed. In terms of XGBoost, we search for the learning rate in
{0.01, 0.1, 1.0}, n_estimators in {50, 100, 200}, max_depth in {3, 4, 5, 6, 7},
gamma in {0.5, 1, 1.5, 2, 5} and min_child_weight in {1, 5, 10}. For all the
deep methods, we search for the learning rate in {10−3, 10−4, 10−5}.
For IMV-LSTM and ETN-ODE, we find the variable-wise hidden state
size in {8, 16,… , 512∕𝑁}. In terms of the rest deep methods, we search
for hidden state size in {128, 256, 512}. Besides, we also find 𝜆 in
{10−4, 10−5, 10−6}. We choose hyperparameters by the performance of
8 
the validation data based on the metrics in the following subsec-
tion. Please refer to https://github.com/ChengzhePiao/garnn_public
for more details.

5.3. Metrics

Considering the root mean square error (RMSE), mean absolute
percentage error (MAPE) and mean absolute error (MAE), we also lever-
age the glucose-specific RMSE, denoted as gRMSE (Favero, Facchinetti,
& Cobelli, 2012; Zhu et al., 2022), to evaluate all the methods. The
gRMSE penalizes overestimation in hypoglycemia and underestimation
in hyperglycemia. These two conditions can cause severe consequences
to patients’ health. Besides, time lag is determined by analyzing the
correlation between the forecasted BG levels and the actual readings
from CGM.

On the other hand, we also introduce Clarke Error Grids (CEG,
Clarke, Cox, Gonder-Frederick, Carter, and Pohl (1987)) and Parkes Er-
ror Grids (PEG, Parkes, Slatin, Pardo, and Ginsberg (2000)) to evaluate
the prediction performance. The CEG categorizes the clinical signifi-
cance of differences between reference glucose values and predicted
values. Developed in the 1980s by clinicians, the CEG consists of five
zones. Zone A indicates clinically accurate results, while Zone B repre-
sents acceptable errors that lead to correct treatment decisions. Zones
C, D, and E represent increasing levels of severity in treatment deci-
sions, with Zone E indicating severely dangerous treatment decisions.
The PEG, developed later, incorporates a broader consensus, including
feedback from regulatory bodies, patients, and industry representatives,
and also consists of five zones with similar clinical implications. Hence,
for these two metrics, we aim for a higher percentage of predicted
results in Zone A.

https://github.com/ChengzhePiao/garnn_public
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Table 2
Prediction of blood glucose levels in OhioT1DM.

Method RMSE (mg/dL) MAPE (%) MAE (mg/dL) gRMSE (mg/dL) Time lag (min)

LR 22.19 ± 0.00(2.79)‡ 10.90 ± 0.00(2.13)‡ 15.92 ± 0.00(1.95)‡ 27.69 ± 0.00(3.72)‡ 8.34 ± 0.00(6.06)‡
XGBoost 22.51 ± 0.04(3.32)‡ 10.92 ± 0.04(2.24)‡ 16.08 ± 0.05(2.26)‡ 28.89 ± 0.08(4.77)‡ 9.36 ± 0.12(6.47)‡

RETAIN 20.30 ± 0.08(2.64)‡ 9.78 ± 0.04(1.81)‡ 14.41 ± 0.03(1.75)‡ 25.48 ± 0.16(3.47)‡ 7.39 ± 0.09(4.95)‡
IMV-FULL 21.61 ± 0.32(2.99)‡ 10.21 ± 0.18(1.79)‡ 15.18 ± 0.23(1.89)‡ 27.16 ± 0.40(4.16)‡ 6.42 ± 0.28(4.50)
IMV-TENSOR 20.15 ± 0.03(2.77)‡ 9.54 ± 0.02(1.82)‡ 14.00 ± 0.02(1.75)‡ 25.42 ± 0.07(3.79)‡ 7.57 ± 0.11(4.86)‡
ETN-ODE 21.00 ± 0.22(2.92)‡ 10.11 ± 0.13(1.95)‡ 14.78 ± 0.18(1.93)‡ 26.41 ± 0.32(3.94)‡ 8.64 ± 0.35(5.22)‡
ATT-T-LSTM 21.62 ± 0.45(2.98)‡ 10.46 ± 0.25(1.99)‡ 15.32 ± 0.39(1.96)‡ 27.08 ± 0.54(3.95)‡ 8.12 ± 0.36(5.36)‡
ATT-F-LSTM 20.31 ± 0.06(2.69)‡ 9.78 ± 0.04(1.81)‡ 14.29 ± 0.04(1.72)‡ 25.52 ± 0.09(3.67)‡ 7.48 ± 0.15(5.24)‡

N-BEATS 20.15 ± 0.05(2.56)‡ 9.62 ± 0.03(1.77)‡ 14.11 ± 0.04(1.68)‡ 25.31 ± 0.07(3.37)‡ 7.98 ± 0.12(5.23)‡
NHiTS 20.14 ± 0.03(2.47)‡ 9.60 ± 0.02(1.74)‡ 14.07 ± 0.02(1.61)‡ 25.24 ± 0.07(3.20)‡ 7.55 ± 0.23(4.61)‡

LP 20.45 ± 0.38(2.88)‡ 9.76 ± 0.24(1.89)‡ 14.35 ± 0.34(1.88)‡ 25.78 ± 0.49(3.89)‡ 7.63 ± 0.83(5.33)‡
LPSC 20.79 ± 0.48(2.87)‡ 10.01 ± 0.39(1.87)‡ 14.67 ± 0.49(1.87)‡ 26.03 ± 0.67(3.75)‡ 8.76 ± 0.87(5.88)‡
MNODE 20.01 ± 0.04(2.76)‡ 9.60 ± 0.03(1.82)‡ 14.04 ± 0.04(1.72)‡ 25.18 ± 0.07(3.71)‡ 7.62 ± 0.22(5.18)‡

GAT+GRU (L = 1) 19.03 ± 0.07(2.40) 9.10 ± 0.03(1.77) 13.37 ± 0.03(1.65) 23.75 ± 0.09(3.18) 6.24 ± 0.14(4.45)
GAT+GRU (L = 2) 19.08 ± 0.04(2.38) 9.08 ± 0.02(1.76) 13.37 ± 0.02(1.64) 23.82 ± 0.08(3.15)∗ 6.19 ± 0.25(4.51)
GATv2+GRU (L = 1) 18.97 ± 0.06(2.43) 9.07 ± 0.01(1.78) 13.34 ± 0.02(1.68) 23.65 ± 0.10(3.21) 6.19 ± 0.14(4.47)
GATv2+GRU (L = 2) 19.11 ± 0.15(2.45) 9.08 ± 0.03(1.78) 13.38 ± 0.06(1.68) 23.89 ± 0.22(3.29) 6.30 ± 0.14(4.75)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
Total historical timetamps is 𝑇 = 48; Prediction horizon is 𝐻 = 6; BG levels are sampled every 𝛿 𝑡 = 5 min;
RMSE: root mean square error; MAPE: mean absolute percentage error;
MAE: mean absolute error; gRMSE: glucose-specific RMSE;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Section 5.2.
Table 3
Prediction of blood glucose levels in ShanghaiT1DM.

Method RMSE (mg/dL) MAPE (%) MAE (mg/dL) gRMSE (mg/dL) Time lag (min)

LR 22.57 ± 0.00(23.53)‡ 11.47 ± 0.00(6.38)† 15.81 ± 0.00(13.32)‡ 26.33 ± 0.00(26.77)‡ 2.50 ± 0.00(5.59)
XGBoost 22.68 ± 0.14(12.65)‡ 17.19 ± 0.18(14.52)‡ 17.67 ± 0.07(10.86)‡ 29.01 ± 0.27(17.30)‡ 2.50 ± 0.00(5.59)

RETAIN 16.25 ± 0.94(5.93)‡ 10.77 ± 0.71(6.73)‡ 12.28 ± 0.57(5.06)‡ 20.00 ± 1.41(8.42)‡ 3.12 ± 0.62(6.04)∗
IMV-FULL 13.63 ± 0.10(2.48) 9.01 ± 0.18(3.45)∗ 10.57 ± 0.12(2.22) 16.65 ± 0.13(3.96) 2.50 ± 0.00(5.59)
IMV-TENSOR 13.88 ± 0.18(2.69) 9.26 ± 0.23(3.64)‡ 10.80 ± 0.17(2.45)‡ 16.91 ± 0.23(4.10)∗ 3.44 ± 0.54(6.27)∗
ETN-ODE 15.38 ± 0.23(3.35)‡ 10.19 ± 0.29(4.18)‡ 11.91 ± 0.21(3.04)‡ 19.15 ± 0.33(5.14)‡ 3.75 ± 0.00(6.50)∗
ATT-T-LSTM 14.03 ± 0.15(3.03) 9.15 ± 0.15(3.80)∗ 10.82 ± 0.14(2.77)∗ 16.94 ± 0.22(4.29)∗ 2.50 ± 0.00(5.59)
ATT-F-LSTM 14.31 ± 0.21(2.97)‡ 9.35 ± 0.23(3.78)‡ 10.95 ± 0.14(2.62)‡ 17.30 ± 0.28(4.17)‡ 1.56 ± 0.54(4.51)

N-BEATS 14.60 ± 0.27(3.01)‡ 9.53 ± 0.31(3.43)‡ 11.36 ± 0.26(2.61)‡ 17.59 ± 0.40(4.54)‡ 2.81 ± 0.54(5.82)
NHiTS 14.86 ± 0.53(3.23)‡ 9.56 ± 0.85(3.31)‡ 11.41 ± 0.55(2.68)‡ 18.00 ± 1.00(4.76)‡ 3.44 ± 0.54(6.27)∗

LP 17.49 ± 0.30(4.34)‡ 11.84 ± 0.43(5.09)‡ 13.59 ± 0.31(3.85)‡ 21.65 ± 0.46(6.38)‡ 3.75 ± 0.00(6.50)∗
LPSC 16.85 ± 0.46(3.96)‡ 11.10 ± 0.37(4.34)‡ 13.00 ± 0.39(3.37)‡ 20.66 ± 0.68(5.76)‡ 3.75 ± 0.00(6.50)∗
MNODE 13.92 ± 0.08(2.62)∗ 9.12 ± 0.17(3.42)‡ 10.76 ± 0.11(2.30)‡ 16.93 ± 0.18(4.01)∗ 2.81 ± 0.54(5.82)

GAT+GRU (L = 1) 13.80 ± 0.12(2.82) 8.93 ± 0.07(3.70) 10.53 ± 0.06(2.51) 16.69 ± 0.14(4.49) 1.25 ± 0.00(4.15)
GAT+GRU (L = 2) 14.01 ± 0.34(2.85) 9.11 ± 0.27(3.75)∗ 10.66 ± 0.22(2.47) 17.07 ± 0.47(4.56) 0.62 ± 0.62(2.07)∗
GATv2+GRU (L = 1) 13.62 ± 0.22(2.78) 8.74 ± 0.33(3.54) 10.38 ± 0.21(2.43) 16.44 ± 0.37(4.48) 1.88 ± 0.62(4.87)
GATv2+GRU (L = 2) 13.98 ± 0.34(2.95)∗ 8.97 ± 0.35(3.72) 10.60 ± 0.26(2.54) 16.90 ± 0.50(4.68) 1.25 ± 0.00(4.15)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
Total historical timetamps is 𝑇 = 16; Prediction horizon is 𝐻 = 2; BG levels are sampled every 𝛿 𝑡 = 15 min;
RMSE: root mean square error; MAPE: mean absolute percentage error;
MAE: mean absolute error; gRMSE: glucose-specific RMSE;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Section 5.2.
i

5.4. Comparison of prediction performance

In terms of RMSE, MAPE, MAE, gRMSE and time lag, the evaluation
of prediction is shown in Tables 2–5. We also leveraged Wilcoxon test
o evaluate the significance between ‘‘GATv2+GRU (𝐿 = 1)’’ and other

methods, where 𝑝 ≤ 0.05 means statistically significant. We have some
bservations based on these tables.

(1) Firstly, our proposed method, ‘‘GATv2+GRU (𝐿 = 1)’’, outper-
orms all the baselines, while LR and XGboost perform worst.
9 
(2) Deep methods perform better than non-deep methods. Non-
nterpretable methods (N-Beats and NHiTS) cannot promise better pre-

dicting performance compared with interpretable methods.
(3) Compared with ‘‘GAT+GRU’’, the dynamic scoring in

‘‘GATv2+GRU’’ can slightly improve the prediction performance in this
scenario. Hence, the modeling via dynamic scoring can bring limited
advantages to BGLP.

(4) Compared with neural network-based mechanistic methods (LP,
LPSC, and MNODE), our method still performs better. Among these
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Table 4
Prediction of blood glucose levels in ArisesT1DM.

Method RMSE (mg/dL) MAPE (%) MAE (mg/dL) gRMSE (mg/dL) Time lag (min)

LR 25.17 ± 0.00(7.54)‡ 12.14 ± 0.00(3.45)‡ 18.20 ± 0.00(5.01)‡ 31.93 ± 0.00(10.19)‡ 11.67 ± 0.00(6.32)‡
XGBoost 24.84 ± 0.02(5.63)‡ 12.07 ± 0.02(3.18)‡ 17.99 ± 0.02(3.85)‡ 32.32 ± 0.03(7.76)‡ 13.37 ± 0.32(7.24)‡

RETAIN 21.46 ± 0.11(4.35)‡ 10.41 ± 0.05(2.55)‡ 15.49 ± 0.07(2.97)‡ 27.27 ± 0.17(5.98)‡ 11.01 ± 0.13(6.37)‡
IMV-FULL 24.44 ± 0.34(5.58)‡ 11.93 ± 0.16(2.83)‡ 17.89 ± 0.28(3.89)‡ 30.89 ± 0.46(7.37)‡ 11.26 ± 0.38(6.68)‡
IMV-TENSOR 21.48 ± 0.23(4.57)‡ 10.31 ± 0.04(2.52)‡ 15.35 ± 0.09(2.95)‡ 27.41 ± 0.33(6.27)‡ 10.78 ± 0.09(6.35)‡
ETN-ODE 23.18 ± 0.26(5.33)‡ 10.99 ± 0.15(2.77)‡ 16.38 ± 0.23(3.35)‡ 29.75 ± 0.35(7.35)‡ 12.20 ± 0.66(6.74)‡
ATT-T-LSTM 25.60 ± 0.64(6.04)‡ 12.29 ± 0.26(2.85)‡ 18.56 ± 0.44(4.02)‡ 32.68 ± 0.82(8.31)‡ 13.08 ± 0.48(6.49)‡
ATT-F-LSTM 21.85 ± 0.18(5.06)‡ 10.49 ± 0.08(2.55)‡ 15.72 ± 0.12(3.27)‡ 27.75 ± 0.26(6.94)‡ 10.62 ± 0.18(6.18)‡

N-BEATS 21.76 ± 0.03(4.48)‡ 10.52 ± 0.02(2.57)‡ 15.64 ± 0.02(3.03)‡ 27.54 ± 0.04(6.11)‡ 11.28 ± 0.21(6.25)‡
NHiTS 21.85 ± 0.04(4.54)‡ 10.55 ± 0.02(2.61)‡ 15.66 ± 0.03(3.07)‡ 27.61 ± 0.05(6.17)‡ 11.41 ± 0.25(6.25)‡

LP 22.32 ± 0.70(4.80)‡ 10.68 ± 0.33(2.66)‡ 15.96 ± 0.49(3.12)‡ 28.52 ± 1.00(6.55)‡ 11.61 ± 0.43(6.41)‡
LPSC 22.83 ± 0.71(4.90)‡ 11.03 ± 0.47(2.66)‡ 16.38 ± 0.61(3.18)‡ 29.18 ± 1.26(6.76)‡ 12.16 ± 0.49(7.08)‡
MNODE 21.53 ± 0.05(4.80)‡ 10.30 ± 0.03(2.54)‡ 15.33 ± 0.03(3.01)‡ 27.39 ± 0.07(6.64)‡ 10.89 ± 0.17(6.43)‡

GAT+GRU (L = 1) 20.02 ± 0.12(3.94) 9.70 ± 0.05(2.30) 14.50 ± 0.07(2.70) 25.18 ± 0.15(5.35) 9.57 ± 0.45(5.22)
GAT+GRU (L = 2) 20.00 ± 0.11(3.91) 9.66 ± 0.05(2.29) 14.48 ± 0.07(2.67) 25.15 ± 0.14(5.28) 9.38 ± 0.48(5.61)
GATv2+GRU (L = 1) 19.97 ± 0.07(3.93) 9.68 ± 0.05(2.26) 14.47 ± 0.05(2.69) 25.11 ± 0.13(5.31) 9.53 ± 0.28(5.26)
GATv2+GRU (L = 2) 20.02 ± 0.11(3.81) 9.67 ± 0.05(2.28) 14.46 ± 0.08(2.61) 25.20 ± 0.13(5.18) 9.81 ± 0.08(5.95)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
Total historical timetamps is 𝑇 = 48; Prediction horizon is 𝐻 = 6; BG levels are sampled every 𝛿 𝑡 = 5 min;
RMSE: root mean square error; MAPE: mean absolute percentage error;
MAE: mean absolute error; gRMSE: glucose-specific RMSE;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Section 5.2.
Table 5
Prediction of blood glucose levels in ShanghaiT2DM.

Method RMSE (mg/dL) MAPE (%) MAE (mg/dL) gRMSE (mg/dL) Time lag (min)

LR 17.10 ± 0.00(13.04)‡ 9.34 ± 0.00(4.27)‡ 12.03 ± 0.00(7.64)‡ 19.62 ± 0.00(16.17)‡ 1.50 ± 0.00(4.50)‡
XGBoost 16.75 ± 0.02(5.64)‡ 11.09 ± 0.04(7.58)‡ 12.79 ± 0.03(5.22)‡ 20.12 ± 0.04(7.41)‡ 1.09 ± 0.06(4.43)

RETAIN 14.82 ± 0.42(13.45)‡ 7.79 ± 0.05(3.52)‡ 9.77 ± 0.11(4.44)‡ 17.10 ± 0.42(15.29)‡ 0.53 ± 0.48(8.11)
IMV-FULL 11.84 ± 0.05(3.04)† 6.97 ± 0.07(2.32) 8.66 ± 0.06(2.32)∗ 13.67 ± 0.07(3.91) 0.82 ± 0.13(3.41)
IMV-TENSOR 12.14 ± 0.13(3.15)‡ 7.29 ± 0.12(2.79)‡ 8.96 ± 0.08(2.48)‡ 14.11 ± 0.12(4.08)‡ 1.50 ± 0.00(4.50)‡
ETN-ODE 12.90 ± 0.30(3.58)‡ 7.66 ± 0.17(3.01)‡ 9.44 ± 0.20(2.71)‡ 15.03 ± 0.34(4.63)‡ 1.05 ± 0.18(3.81)†
ATT-T-LSTM 13.92 ± 0.58(11.99)‡ 7.41 ± 0.04(2.73)‡ 9.34 ± 0.11(4.09)‡ 15.91 ± 0.61(13.07)‡ 0.90 ± 0.00(3.85)
ATT-F-LSTM 12.76 ± 0.56(5.53)‡ 7.29 ± 0.01(2.59)‡ 9.08 ± 0.08(2.84)‡ 14.72 ± 0.53(6.37)‡ 1.05 ± 0.00(3.83)†

N-BEATS 12.15 ± 0.03(3.19)‡ 7.12 ± 0.05(2.09)‡ 8.90 ± 0.03(2.44)‡ 14.08 ± 0.05(4.06)‡ 1.35 ± 0.00(4.29)‡
NHiTS 12.12 ± 0.05(3.17)‡ 7.08 ± 0.08(2.09)‡ 8.85 ± 0.06(2.39)‡ 14.04 ± 0.09(4.03)‡ 1.35 ± 0.11(4.29)‡

LP 14.65 ± 0.11(3.87)‡ 8.64 ± 0.18(2.75)‡ 10.73 ± 0.16(2.90)‡ 17.27 ± 0.15(4.81)‡ 2.70 ± 0.00(6.14)‡
LPSC 14.73 ± 0.07(3.83)‡ 8.72 ± 0.15(2.74)‡ 10.85 ± 0.16(2.92)‡ 17.33 ± 0.11(4.79)‡ 2.78 ± 0.13(6.20)‡
MNODE 12.59 ± 0.13(3.34)‡ 7.27 ± 0.04(2.22)‡ 9.08 ± 0.02(2.41)‡ 14.51 ± 0.11(4.13)‡ 1.54 ± 0.06(4.55)‡

GAT+GRU (L = 1) 11.78 ± 0.05(3.10) 6.97 ± 0.05(2.36)‡ 8.63 ± 0.05(2.37)† 13.62 ± 0.06(3.96) 0.86 ± 0.06(3.49)
GAT+GRU (L = 2) 11.75 ± 0.04(3.07) 6.98 ± 0.04(2.47) 8.63 ± 0.02(2.38) 13.60 ± 0.06(3.93) 0.79 ± 0.12(3.33)
GATv2+GRU (L = 1) 11.72 ± 0.02(3.03) 6.93 ± 0.05(2.29) 8.59 ± 0.03(2.34) 13.55 ± 0.05(3.88) 0.79 ± 0.06(3.34)
GATv2+GRU (L = 2) 11.74 ± 0.04(3.03) 7.00 ± 0.05(2.60) 8.62 ± 0.04(2.36) 13.58 ± 0.04(3.87) 0.79 ± 0.06(3.34)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
Total historical timetamps is 𝑇 = 16; Prediction horizon is 𝐻 = 2; BG levels are sampled every 𝛿 𝑡 = 15 min;
RMSE: root mean square error; MAPE: mean absolute percentage error;
MAE: mean absolute error; gRMSE: glucose-specific RMSE;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Section 5.2.
t
L

three methods, MNODE primarily relies on neural networks, effectively
removing traditional ODE functions. Instead, it introduces causality in
its loss function and uses adjacency matrices to encode the depen-
encies between states. This further confirms that primarily neural

network-based models perform the best in BGLP.
Similarly, as shown in Tables 6–7, our proposed methods mostly

achieve the best performance. In terms of the percentage of BG predic-
tions in Zone A, representing accurate predictions, our methods achieve
ver 88% and 89% in CEG and PEG, respectively. For the combined

percentage of predictions in Zones A and B, indicating acceptable
redictions, our methods achieve over 98% and 99% in CEG and
 M

10 
PEG, respectively. Figs. 5–6 visualize the CEG and PEG results for
our method, ‘‘GATv2+GRU’’, showing that predictions are concentrated
within Zones A and B, consistent with the tables.

Furthermore, we separately recorded the time consumption of eval-
uation with all testing examples on four datasets (see Table 8). Re-
garding running efficiency, traditional machine learning methods (LR
and XGBoost) are the fastest, consuming the least amount of time.
Uninterpretable methods (N-BEATS and NHiTS) follow, running faster
han neural network-based interpretable methods (RETAIN to ATT-F-
STM and our proposed methods) and mechanistic methods (LP, LPSC,
NODE).
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Table 6
Percentage of blood glucose predictions in Zone A of the Clarke Error Grid (%).

Method OhioT1DM ArisesT1DM ShanghaiT1DM ShanghaiT2DM

LR 85.40 ± 0.00(5.33)‡ 82.71 ± 0.00(8.43)‡ 87.60 ± 0.00(8.29)† 91.25 ± 0.00(8.68)‡
XGBoost 85.59 ± 0.06(5.48)‡ 82.65 ± 0.09(7.64)‡ 79.01 ± 0.28(17.16)‡ 85.62 ± 0.28(16.58)‡

RETAIN 88.03 ± 0.13(4.35)‡ 86.07 ± 0.04(6.42)‡ 88.20 ± 0.51(12.95)‡ 94.30 ± 0.23(5.03)‡
IMV-FULL 87.26 ± 0.43(4.15)‡ 83.13 ± 0.53(6.82)‡ 90.24 ± 0.47(8.65) 95.46 ± 0.08(3.77)
IMV-TENSOR 88.63 ± 0.02(4.26)‡ 86.30 ± 0.09(6.58)‡ 89.11 ± 0.64(10.36)‡ 95.20 ± 0.31(4.60)∗
ETN-ODE 87.23 ± 0.28(4.72)‡ 84.68 ± 0.32(7.00)‡ 87.28 ± 0.62(10.70)‡ 94.12 ± 0.37(5.23)‡
ATT-T-LSTM 86.41 ± 0.63(4.84)‡ 81.82 ± 0.59(7.33)‡ 89.65 ± 0.59(10.49)† 95.01 ± 0.08(4.19)‡
ATT-F-LSTM 88.18 ± 0.11(4.23)‡ 86.26 ± 0.12(6.26)‡ 89.38 ± 0.43(10.15)‡ 95.05 ± 0.07(4.06)‡

N-BEATS 88.47 ± 0.05(4.21)‡ 85.67 ± 0.05(6.50)‡ 89.54 ± 1.02(7.76)‡ 95.12 ± 0.09(4.21)‡
NHiTS 88.59 ± 0.11(4.00)‡ 85.73 ± 0.18(6.41)‡ 89.76 ± 2.14(6.33)‡ 95.24 ± 0.05(4.14)‡

LP 88.33 ± 0.59(4.42)‡ 85.56 ± 0.87(6.72)‡ 84.26 ± 0.64(10.98)‡ 92.04 ± 0.35(5.93)‡
LPSC 87.74 ± 0.96(4.42)‡ 84.79 ± 1.12(6.66)‡ 85.22 ± 0.49(10.01)‡ 91.96 ± 0.25(5.89)‡
MNODE 88.76 ± 0.09(4.14)‡ 86.29 ± 0.11(6.57)‡ 89.84 ± 0.64(8.70)† 95.00 ± 0.06(4.10)‡

GAT+GRU (L = 1) 89.72 ± 0.09(3.98) 88.00 ± 0.23(5.62) 90.70 ± 0.35(8.54) 95.39 ± 0.12(3.96)
GAT+GRU (L = 2) 89.69 ± 0.02(3.91) 88.16 ± 0.13(5.49) 90.36 ± 0.65(8.43) 95.43 ± 0.07(3.99)
GATv2+GRU (L = 1) 89.74 ± 0.07(3.97) 88.06 ± 0.13(5.52) 91.24 ± 1.32(7.48) 95.51 ± 0.04(3.84)
GATv2+GRU (L = 2) 89.82 ± 0.12(3.97) 88.13 ± 0.10(5.49) 90.54 ± 0.87(8.48) 95.45 ± 0.14(3.94)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Section 5.2.
Table 7
Percentage of blood glucose predictions in Zone A of the Parkes Error Grid (%).

Method OhioT1DM ArisesT1DM ShanghaiT1DM ShanghaiT2DM

LR 87.48 ± 0.00(4.31)‡ 85.04 ± 0.00(6.82)‡ 90.83 ± 0.00(7.29)‡ 95.56 ± 0.00(5.33)‡
XGBoost 87.62 ± 0.09(4.47)‡ 84.89 ± 0.06(6.12)‡ 82.94 ± 0.14(17.10)‡ 96.13 ± 0.03(7.64)‡

RETAIN 89.58 ± 0.06(3.46)‡ 88.21 ± 0.12(4.86)‡ 90.81 ± 0.87(11.30)‡ 98.06 ± 0.05(2.11)‡
IMV-FULL 88.79 ± 0.34(3.42)‡ 85.14 ± 0.43(5.38)‡ 95.50 ± 0.24(3.37) 98.32 ± 0.05(1.79)∗
IMV-TENSOR 90.41 ± 0.05(3.19)‡ 88.52 ± 0.09(4.71)‡ 94.64 ± 0.91(4.51) 98.25 ± 0.05(1.88)‡
ETN-ODE 89.41 ± 0.23(3.54)‡ 87.09 ± 0.29(5.24)‡ 91.83 ± 0.29(7.03)‡ 98.03 ± 0.07(1.96)‡
ATT-T-LSTM 88.25 ± 0.54(3.91)‡ 83.95 ± 0.67(5.77)‡ 94.20 ± 0.75(5.52) 98.19 ± 0.05(1.83)‡
ATT-F-LSTM 90.03 ± 0.10(3.33)‡ 88.55 ± 0.14(4.72)‡ 93.95 ± 0.72(4.90)‡ 98.21 ± 0.05(1.91)‡

N-BEATS 90.02 ± 0.06(3.31)‡ 87.92 ± 0.08(4.92)‡ 94.33 ± 0.45(4.03)‡ 97.82 ± 0.03(2.22)‡
NHiTS 90.22 ± 0.06(3.20)‡ 87.82 ± 0.15(4.96)‡ 93.75 ± 1.08(4.12)‡ 97.86 ± 0.04(2.09)‡

LP 89.93 ± 0.42(3.40)‡ 87.59 ± 0.78(4.99)‡ 88.56 ± 0.92(9.16)‡ 97.31 ± 0.11(2.59)‡
LPSC 89.46 ± 0.71(3.53)‡ 87.06 ± 0.92(4.94)‡ 90.04 ± 1.35(6.79)‡ 97.22 ± 0.12(2.67)‡
MNODE 90.50 ± 0.05(3.31)‡ 88.65 ± 0.08(4.57)‡ 94.92 ± 0.33(3.24) 97.79 ± 0.15(2.05)‡

GAT+GRU (L = 1) 91.12 ± 0.09(3.08) 89.77 ± 0.12(4.44) 94.54 ± 0.55(4.30) 98.40 ± 0.03(1.68)
GAT+GRU (L = 2) 91.04 ± 0.10(3.06) 89.74 ± 0.17(4.38) 94.29 ± 0.82(4.38) 98.44 ± 0.04(1.66)
GATv2+GRU (L = 1) 91.13 ± 0.12(3.13) 89.82 ± 0.12(4.36) 95.07 ± 0.87(4.26) 98.42 ± 0.03(1.67)
GATv2+GRU (L = 2) 91.09 ± 0.03(3.11) 89.85 ± 0.09(4.32) 94.27 ± 1.08(4.76)∗ 98.41 ± 0.02(1.65)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Section 5.2.
t
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When comparing among the interpretable methods, taking
hioT1DM as an example, testing time on the OhioT1DM dataset varies

rom 2.105 s to 28.121 s, with most interpretable methods taking
etween 2 to 7 s. ETN-ODE has the longest testing time. Among the
ariations of our proposed methods, one layer of GAT/GATv2 consumes
ess than 7 s, while two layers of GAT/GATv2 double the testing time
onsumption.

Additionally, we provide the theoretical time complexity in Table 9.
The results in Table 9 are generally consistent with those in Table 8,
although differences in implementation can impact actual time con-
sumption. For instance, according to Table 9, IMV-TENSOR should
utperform IMV-FULL in terms of speed. However, Table 8 shows

that IMV-TENSOR is slightly slower. This discrepancy arises because
MV-TENSOR was implemented serially in our experiments, while a
arallel implementation would likely make it faster. As shown in

Table 9, excluding ETN-ODE, RNN-based methods (RETAIN, IMV-FULL,
MV-TENSOR, ATT-T-LSTM, ATT-F-LSTM, LP, LPSC, MNODE and our
roposed methods) are expected to have similar testing times, which is
 f

11 
confirmed by the results in Table 8. While ETN-ODE is also RNN-based,
the time consumption of the ODE solver makes it slower, as indicated
in Table 8. Additionally, LP, LPSC, and MNODE are RNN-based as well,
since they use LSTM to encode historical time series. Additionally, since
he results in Table 8 represent the total testing time for all examples

across each of the four datasets, as for our proposed methods, the time
required to test a single example is significantly less than one second,
making it negligible for daily use.

5.5. Interpretation of variable importance

After seeing the variable ranking lists w.r.t. 𝑣𝑗 () in four datasets in
Fig. 3, we have the observations as follows:

(1) The target variable, ‘‘glucose_level’’, should be the most im-
portant in BGLP (Bevan & Coenen, 2020; Zhu et al., 2022). GARNNs,

TT-F-LSTM, IMV-LSTMs, RETAIN, XGBoost and SHAP can consistently
ocus on the target variable, while the rest methods often lose focus.
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Fig. 5. Visualization of Clarke Error Grid by GATv2+GRU (𝐿 = 1).
Fig. 6. Visualization of Parkes Error Grid by GATv2+GRU (𝐿 = 1).
Table 8
Time consumption of evaluation with all testing examples (seconds)

Method OhioT1DM ArisesT1DM ShanghaiT1DM ShanghaiT2DM

LR 0.017 0.032 0.002 0.002
XGBoost 0.028 0.027 0.002 0.002

RETAIN 2.567 2.708 0.166 1.372
IMV-FULL 4.978 5.187 0.261 1.909
IMV-TENSOR 6.225 6.411 0.290 2.277
ETN-ODE 28.121 27.033 1.062 7.478
ATT-T-LSTM 2.105 2.345 0.150 1.234
ATT-F-LSTM 2.612 2.520 0.175 1.406

N-BEATS 0.901 1.011 0.112 0.771
NHiTS 1.425 1.447 0.138 1.219

LP 2.297 2.279 0.158 1.323
LPSC 4.487 4.633 0.221 1.702
MNODE 3.341 2.984 0.188 1.483

GAT+GRU (L = 1) 6.986 7.734 0.315 2.642
GAT+GRU (L = 2) 11.190 12.990 0.496 3.738
GATv2+GRU (L = 1) 5.691 6.348 0.316 2.267
GATv2+GRU (L = 2) 8.528 10.233 0.410 3.003

(2) GARNNs typically outperform baseline models by assigning
significant importance to ‘‘timestamp’’ in the rankings, particularly for
Shanghai T1DM and T2DM where the sample frequency of CGM is
relatively low. This characteristic aligns with clinical observations that
BG fluctuations are linked to personal lifestyles, exhibiting distinct
temporal patterns. It is significant that useful exogenous variables are
highlighted when lacking enough values from the target variable in
Shanghai datasets.

(3) Given that we predict the future BG of CGM instead of ‘‘fin-
ger_stick’’, i.e., capillary BG test, more difference between them may re-
duce the importance of ‘‘finger_stick’’. The MAE between
‘‘glucose_level’’ and ‘‘finger_stick’’ in OhioT1DM and AriseT1DM is
lower, i.e., 20.92 and 9.97 mg/dL, respectively. The MAE between
them in ShanghaiT1DM and ShanghaiT2DM are respectively 29.03
and 22.31 mg/dL. Hence, GARNNs give special highlights to ‘‘fin-
ger_stick’’ in OhioT1DM and AriseT1DM but less importance in Shang-
haiT1DM and ShanghaiT2DM because of the larger MAE, while the
variable importance ranking of other methods does not have similar
observations.

(4) Apart from ‘‘glucose_level’’, ‘‘finger_stick’’ and ‘‘timestamp’’,
both bolus insulin (‘‘bolus’’, ‘‘correction_bolus’’, ‘‘insulin_dose_sc’’ and
‘‘insulin_bolus’’) and carbohydrate intake (‘‘meal’’) should be important
variables as well, because they can rapidly affect the BG levels within
short periods. Basal insulin (‘‘basal’’), also called ‘‘background insulin’’,
steadily controls BG levels for long periods. Besides, ‘‘insulin_iv’’ is
an intravenous insulin infusion for super serious hyperglycemia under
12 
some extreme circumstances.
Therefore, in terms of daily cases, bolus insulin tends to be more

important than basal insulin in BGLP. GARNNs follow this knowl-
edge in four datasets, while other methods fail to do that. Besides,
in ArisesT1DM, GARNNs give ‘‘bolus’’ more importance than ‘‘cor-
rection_bolus’’, because the latter is an extra insulin taken during
hyperglycemia. The amount of the latter is much less than the former.

On the other hand, a predominant reason for T2DM is that cells re-
spond inactively to insulin. Hence, compared with the variable ranking
in ShanghaiT1DM, GARNNs reduce the importance of bolus insulin and
give more importance to ‘‘meal’’ and non-insulin hypoglycemic agents,
‘‘hypo_agents’’, in ShanghaiT2DM.

(5) In OhioT1DM, the self-reported events, i.e., ‘‘exercise’’ and
‘‘sleep’’, should be more important than the sensor data, e.g., ‘‘ba-
sis_heart_rate’’, ‘‘basis_gsr’’, etc. This is because both exercising and
sleeping can indirectly cause changes in BG levels. Unlike the other
methods, ‘‘GATv2+GRU’’ reflects this knowledge. Besides, ‘‘sleep’’ and
‘‘basis_sleep’’ are self-reported and sensor-detected, respectively, but
‘‘basis_sleep’’ misses 56.89% of the sleeping intensity data, so GARNNs
give more importance to ‘‘sleep’’.

(6) In the analysis of the number of layers 𝐿 in GAT or GATv2, it is
observed that this can slightly alter the ranking of variable importance
𝑣𝑗 (). For instance, different configurations like ‘‘GATv2+GRU(𝐿 =
2)’’ show varying importance rankings for variables like ‘‘sleep’’ and
‘‘work’’. This was further substantiated by a feature ablation study
in OhioT1DM (Piao & Li, 2023), indicating that ‘‘sleep’’ improves
prediction accuracy more than ‘‘work’’. The preference for ‘‘sleep’’
by ‘‘GATv2+GRU(𝐿 = 2)’’ seems more aligned with these findings,
suggesting that multiple layers in GATv2 might capture more detailed
interactions among variables. Similarly, there are subtle differences in
rankings between GAT and GATv2, with GAT-based methods favor-
ing ‘‘work’’ over ‘‘sleep’’. It is hypothesized that GAT’s slightly lesser
interpretability might be linked to its relatively weaker prediction
performance, as indicated in Tables 2–5.

Despite these variations, both models consistently classify variables
into categories like most important, very important, somewhat impor-
tant, and less important. For example, both models consistently identify
‘‘glucose_level’’ as the most important variable across all datasets. This
is followed by other closely related and significant variables that have
a direct impact on BG levels, such as carbohydrate intake, classified
as very important. Subsequently, both models also pay attention to
variables that indirectly affect BG levels, like exercise in the OhioT1DM
dataset. These are considered somewhat important variables. Finally,
both GAT and GATv2 place other less significant variables at the lower
end of the ranking.

(7) Based on Property 3, the gaps between the prediction and the
calculation of variable importance are affected by 𝛼. Fig. 4 shows the
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Table 9
Testing time complexity of methods.

Method Testing time complexity Comments

LR 𝑂(𝐼 𝑁 𝑇 ) 𝐼 : no. of data points; 𝑁 : no. of input variables; 𝑇 : sequence length.
XGBoost 𝑂(𝑟𝑑) 𝑟: no. of trees; 𝑑: maximum depth of the trees.

RETAIN 𝑂(𝑇 𝑁 𝐷 + 𝑇 𝐻 𝐷 + 𝑇 𝐻2) 𝐷: input size of RNN; 𝐻 : hidden size.
IMV-FULL 𝑂(𝑇 𝐻 𝑁 + 𝑇 𝐻2)
IMV-TENSOR 𝑂(𝑇 𝐻 + 𝑇 𝐻2∕𝑁)
ETN-ODE 𝑂(𝑇 𝐻 + 𝑇 𝐻2∕𝑁) + ODE Solver Time
ATT-T-LSTM 𝑂(𝑁 𝑇 2 + 𝑇 𝐻 𝐷 + 𝑇 𝐻2)
ATT-F-LSTM 𝑂(𝑇 𝑁2 + 𝑇 𝐻 𝐷 + 𝑇 𝐻2)

N-BEATS 𝑂(𝐵 𝑇 𝐻) 𝐵: no. of blocks.
NHiTS 𝑂(𝑇 𝐻(1 − 𝑏𝐵 )∕(1 − 𝑏)) 𝑏: expressivity ratios of NHiTS for reducing the amount of parameters for each layer.

LP 𝑂(𝑇 𝐻 𝑁 + 𝑇 𝐻2)
LPSC 𝑂(𝑇 𝐻 𝑁 + 𝑇 𝐻2)
MNODE 𝑂(𝑇 𝐻 𝑁 + 𝑇 𝐻2)

GAT+GRU 𝑂(𝑇 𝑁 𝐴𝐸 + 𝑇 𝑁2𝐴 + 𝑇 𝐻 𝑁 𝐸 + 𝑇 𝐻2) 𝐴: output size of embedding transformation; 𝐸: embedding size of each variable.
GATv2+GRU 𝑂(𝑇 𝑁 𝐴𝐸 + 𝑇 𝑁2𝐴 + 𝑇 𝐻 𝑁 𝐸 + 𝑇 𝐻2)
Fig. 7. The bottom sub-figure is the visualization of a historical multi-variate time series of the patient 591 in OhioT1DM, only showing ‘‘glucose_level’’, ‘‘bolus’’, ‘‘meal’’ and
‘‘finger_stick’’. The heatmaps on the top are the feature maps of interpretable baseline methods and our proposed methods (‘‘GAT+GRU’’ and ‘‘GATv2+GRU’’ with two graph layers).
The x-axis/y-axis is the timestep 𝑡 or variable name. The value in the cell is the variable importance 𝑣𝑗𝑡 , scaled to [0, 1]. Explanation of methods can refer to Section 5.2.
variable importance ranking of GARNNs when changing 𝛼. We find
that the gaps cannot significantly alter the variable importance, espe-
cially for ‘‘GATv2+RNN’’. Even with different gap sizes, the changes in
variable importance remain small but still acceptable.

5.6. Interpretation of feature maps

CGM might be inaccurate after being worn for a period, so cal-
ibration by ‘‘finger_stick’’ can make it back to normal. According to
the bottom sub-figure of Fig. 7, participant 591 finds the CGM is
unreliable, so this patient takes the first ‘‘finger_stick’’ at 𝑡 = 26. Then,
this patient calibrates ‘‘glucose_level’’ of CGM with ‘‘finger_stick’’, and
‘‘glucose_level’’ goes down and back to accurate measurements after
𝑡 = 27. Next, this patient has a meal at 𝑡 = 39; this patient takes ‘‘bolus’’
and another ‘‘finger_stick’’ at 𝑡 = 42.
13 
Hence, ‘‘glucose_level’’ (𝑡 > 27) should be more important than
‘‘glucose_level’’ (𝑡 ≤ 27). Based on the feature maps of the meth-
ods, GARNNs accurately highlight the importance of ‘‘glucose_level’’
(𝑡 > 27). Furthermore, GARNNs exactly capture the sparse signals,
i.e., ‘‘bolus’’, ‘‘meal’’ and ‘‘finger_stick’’, considering the related cells are
markedly brighter when 𝑡 = 26, 39 and 42. Besides, GARNNs precisely
focus on the lowest BG level, when 𝑡 = 44. However, the feature
maps of other methods are not quite informative. All of them cannot
explicitly show the usage of sparse signals. Meanwhile, they fail to focus
‘‘glucose_level’’ time series reasonably.

More feature maps are shown in Fig. 8. Note that the ‘‘meal’’ in
ShanghaiT1DM or ShanghaiT2DM means the amount of food intake
rather than carbohydrate intake. The variable importance is scaled to
[0, 1] as well. The observations still hold that GARNNs (𝐿 = 2) can
correctly focus the important values of ‘‘glucose_level’’, i.e., 𝑡 = 4 and
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Fig. 8. The bottom sub-figure is the visualization of a historical multi-variate time series of the patient 1001/2030 in ShanghaiT1DM/ShanghaiT2DM. The heatmaps on the top
are the feature maps of interpretable baseline methods and our proposed methods (‘‘GAT+GRU’’ and ‘‘GATv2+GRU’’ with two graph layers). The x-axis/y-axis is the timestep 𝑡 or
variable name. The value in the cell is the variable importance 𝑣𝑗𝑡 , scaled to [0, 1]. Explanation of methods can refer to Section 5.2.
𝑡 = 13 in Fig. 8a, and 𝑡 = 1 in Fig. 8b. Important sparse signals gain
more attention as well, i.e., 𝑡 = 14 in Fig. 8a, and 𝑡 = 15 in Fig. 8b.

6. Discussion

6.1. Research scope

Our study specifically focuses on blood glucose level prediction
(BGLP). This problem definition is stated in our work (see Section 4.1)
and aligns with the BGLP 2018 and 2020 challenge, as outlined
in Bach, Bunescu, Farri, Guo, Hasan, Ibrahim, Marling, Raffa, Rubin,
and Wu (2018) and Bach, Bunescu, Marling, and Wiratunga (2020).
In this challenge, deep learning-based methods achieved the best per-
formance, such as those by Bhimireddy, Sinha, Oluwalade, Gichoya,
and Purkayastha (2020), Daniels, Herrero, and Georgiou (2020) and
Rubin-Falcone, Fox, and Wiens (2020). This challenge focuses on
achieving high prediction accuracy rather than the interpretability of
BG predictions. Nevertheless, we have included N-BEATS (Oreshkin
et al., 2020) and NHiTS (Challu et al., 2023) in our experiments, as
the championship model (Rubin-Falcone et al., 2020) was based on
N-BEATS, and NHiTS serves as its upgraded version.

The target of personalized BGLP is to enhance the precision and
effectiveness of predictive models tailored to individual characteristics
by utilizing detailed personal data. This approach aims to create highly
accurate and reliable models for daily diabetes management for both
T1DM and T2DM patients, using data collected from wearable devices
and self-reports. These models are specifically customized to individual
needs and variations. This differs from models designed for specific
scenarios, such as predicting postprandial glucose for personalized
nutrition (Zeevi et al., 2015). Such models sometimes rely on data that
cannot be easily collected by patients, making them less suitable for
daily diabetes management.

Despite the excellent performance of deep learning methods in
BGLP, their main limitation is the lack of interpretability. Our aim is
14 
to introduce interpretability to deep learning models while maintaining
high prediction accuracy. While our proposed interpretable method is
not specifically designed to explain the impact of individual meals on
postprandial glucose levels like (Howard, Guo, & Hall, 2020), it offers
broader applications for various glucose prediction tasks. Specifically,
our method determines the relative importance of each variable (scaled
between 0 and 1). This variable importance can help clinicians infer
the contribution of a variable in glucose predictions compared to other
factors, potentially offering a versatile tool for personalized diabetes
management in various scenarios, such as night glucose dynamics and
the impact of exercise on glucose levels.

Meanwhile, even though we compared with mechanistic models
(LP, LPSC and MNODE), we do not extend this problem to artificial
pancreas or artificial beta cell projects, such as those by Albers et al.
(2017), Ha and Sherman (2020) and Sirlanci, Levine, Low Wang,
Albers, and Stuart (2023), or simulator models like (Miller et al.,
2020; Wang et al., 2023), but concentrate purely on BGLP. Mechanistic
models differ from the interpretable methods in this paper, which
demonstrate the contribution of each variable to the prediction by
providing variable importance. Traditional equation-based models are
interpretable by adhering to established scientific laws and theories,
emphasizing the glucose-insulin response, but they often have limited
performance due to higher modeling errors. These errors arise because
mathematical models primarily adjust parameters, resulting in lower
accuracy and flexibility compared to deep learning models. Traditional
models often struggle with the high variability in BG levels across
different individuals, influenced by factors such as diet, exercise, stress,
and other health conditions. Simply adjusting parameters in traditional
models is insufficient to address significant individual BG variances.

In contrast, deep learning models achieve higher accuracy and
personalization by incorporating various variables flexibly. They can
integrate a wide range of data inputs, such as CGM readings, insulin
dosages, meal information, physical activity, and even sleep patterns.
This holistic approach allows deep learning models to quickly and
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effectively capture the nuances of individual BG variations, providing
ore personalized predictions of glucose levels.

6.2. Multimodal data for glucose prediction

Multimodal data refers to data collected from multiple sources or
odalities, each capturing different aspects of the same phenomenon

(Mitri, Schneider, Specht, & Drachsler, 2018). In the context of BGLP,
his involves integrating self-reported data (e.g., insulin and meal in-

take) with sensor-based data (e.g., Continuous Glucose Monitoring or
GM). The inclusion of additional sensor data from wearable devices
e.g., heart rate) and more self-reported information (e.g., exercise and
leep) further exemplifies the multimodal nature of this data.

The advanced state of BG prediction using multimodal data is
emonstrated by the BGLP 2020 challenge championship
Rubin-Falcone et al., 2020). Recent studies highlight the potential

of AI-enabled wearable devices for noninvasive BG monitoring and
forecasting, indicating promising avenues for future development and
widespread adoption (Ahmed et al., 2023; Ahmed, Aziz, Qidwai, Abd-
Alrazaq & Sheikh, 2023). Research has also shown the effectiveness of
everaging multimodal data, including physiological data from mobile
evices, for managing both T1DM (Kuang et al., 2021; Zhu, Kuang

et al., 2023) and T2DM (Pai et al., 2024; Tsai, Li, Lam, Li, & Ho, 2019).
Recognizing the significant potential of multimodal data in BGLP,

ur methods provide explanations for each prediction by assessing
ariable importance, explaining the contribution of each variable to the

prediction. Additionally, variable importance can be averaged over the
training data to rank variables, indicating the most influential ones in
BGLP. Our approaches bridge the gap between leveraging multimodal
data and providing explanations in deep learning models.

6.3. Deep learning for clinical usage

Deep learning has been leveraged for medical applications. Esteva
et al. (2021) emphasizes the potential of AI techniques, particularly
deep learning, to extract valuable insights from medical data. Their
work summarizes the progress in convolutional neural networks and
their applications in medical imaging, medical video analysis, and
clinical deployment. Pati et al. (2023) presents GaNDLF, an open-source
eep learning framework designed to facilitate scalable end-to-end
linical workflows. GaNDLF aims to lower the barriers to developing,
raining, and deploying deep learning algorithms in the clinical and
cientific communities. It focuses on enhancing the stability, repro-
ucibility, interpretability, and scalability of these processes. Lee et al.

(2024) discusses the integration of a deep learning algorithm with
oint-of-care testing platforms, significantly reducing diagnostic assay
imes while maintaining high accuracy.

In the context of deep learning-based BGLP for clinical use, Kim
et al. (2020) utilized RNNs to predict glucose levels in hospital patients.
The study, led by clinician Dae-Yeon Kim, aimed to aid medical person-
nel in monitoring and controlling BG levels in hospitalized patients with
T2DM. Data was collected using a CGM device over a week from 20
patients, and three types of RNNs (simple RNN, GRU, and LSTM) were
tested. The GRU model outperformed the other variants, supporting our
ecision to incorporate GRU into our proposed method.

Meanwhile, Zale and Mathioudakis (2022) highlights the grow-
ng use of machine learning approaches to predict glucose trends in

hospitalized patients. Notably, most of the approaches reviewed are
interpretable machine learning algorithms such as XGBoost and Logistic
Regression, which predict discrete glucose levels. The preference for
these interpretable methods likely stems from their transparency and
ease of understanding, which are crucial in clinical settings. Apart
from Kim et al. (2020), there are fewer deep learning-based models
successfully leveraged in actual clinical applications for diabetes care.
This might be attributed to the opacity of most deep learning meth-
ods. In contrast, interpretable machine learning algorithms such as
15 
XGBoost and Logistic Regression are popular for clinical usage. This
also confirms that our proposed interpretable methods could enable
more deep learning methods to be actually leveraged for real clinical
applications. Our experiments have shown that our proposed methods
can provide more accurate predictions and significant explanations for
glucose prediction compared to traditional machine learning methods
such as XGBoost and Linear Regression.

6.4. Variable importance of BGLP models

In this paper, we present two types of variable importance in this pa-
per: instant variable importance and summarized variable importance.

• Instant Variable Importance (𝑣𝑗𝑡 ): This can be leveraged for gen-
erating feature maps for each prediction, which provide variable
importance at each historical time point 𝑡 (see Figs. 1, 7, 8). Given
that instant variable importance is provided for each variable 𝑗 at
each time point 𝑡 and scaled between [0, 1], it is also significant
to compare the variable importance for a specific prediction by
averaging the instant variable importance over time.

• Summarized Variable Importance (𝑣𝑗 ()): The summarized
variable importance is generated by aggregating all instant vari-
able importance values of the variable 𝑗 from the training set . It
can be leveraged for ranking variables effectively. (see Figs. 3–4)

Although existing research has explored variable importance, its ap-
plication to glucose prediction often falls short. Our proposed approach,
which includes both instant and summarized variable importance, of-
fers significant benefits.

The benefits of instant variable importance are numerous. For diet
ptimization, analyzing feature maps for each prediction can reveal
he variable importance of each meal, aiding in optimizing dietary

habits. For insulin dosing, understanding the importance of each insulin
ose through feature maps can help in fine-tuning dosing schedules
nd types, thereby improving glycemic control. In terms of exercise

planning, recognizing the impact of exercise intensity through feature
aps can guide patients in scheduling physical activities to minimize

lucose fluctuations. Feature maps are also especially useful when input
data is inaccurate or padded with imputed values, as they help focus
on valid readings, making predictions more reliable. Lastly, effective
self-management is enhanced by advising patients to monitor the most
impactful variables closely. For example, patients with T2DM who
cannot leverage insulin effectively might find non-insulin medications
and meal intake more crucial. Feature maps can help these patients
hoose suitable medicines and diets to stabilize their glucose levels.

Summarized variable importance provides a ranking list of vari-
ables, which is especially helpful when dealing with extensive physi-
ological data, such as heart rate. By focusing on the most influential
variables, healthcare providers can develop highly personalized treat-
ment plans, such as offering tailored nutritional advice to patients
whose glucose levels are highly sensitive to diet. Additionally, un-
derstanding variable importance aids in feature selection, potentially
reducing model complexity by eliminating less important variables
without sacrificing accuracy. In resource-constrained settings, such as
mobile applications, this focus ensures that efforts are concentrated on
collecting and ensuring the accuracy of the most critical variables, thus
optimizing resource use.

It is challenging to quantitatively evaluate variable importance
ecause explanations vary with different inputs, making it impractical

to invite experts to label each prediction. Therefore, we evaluated
variable importance from two perspectives. Firstly, for instant variable
importance (feature maps) in Figs. 1, 7 and 8, we compared the quality
of interpretability based on data validity, signal importance, and sparse
signal detection. For example, in Fig. 7, our methods excluded invalid
CGM readings, highlighted severe hypoglycemia points, and captured
sparse signals like bolus and meal data, outperforming baseline meth-
ods. Secondly, for summarized variable importance (Figs. 3–4), we
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Table 10
Root Mean Square Error (RMSE) of methods on four datasets.

Method OhioT1DM ArisesT1DM ShanghaiT1DM ShanghaiT2DM

LSTM 21.20 ± 0.13(2.84)‡ 23.46 ± 0.25(5.00)‡ 15.78 ± 1.10(3.97)‡ 11.86 ± 0.04(3.21)‡
GRU 19.88 ± 0.04(2.63)‡ 22.16 ± 0.02(4.43)‡ 14.42 ± 0.08(2.87)‡ 12.00 ± 0.14(3.57)‡
GaAN 19.89 ± 0.11(2.93)‡ 21.17 ± 0.09(4.65)‡ 14.42 ± 0.22(3.19)‡ 15.95 ± 2.13(25.18)‡
GATv2 19.72 ± 0.03(2.88)‡ 21.18 ± 0.10(4.66)‡ 14.28 ± 0.29(2.79)‡ 11.79 ± 0.03(3.10)‡
GaAN+LSTM 19.84 ± 0.22(2.71)‡ 20.27 ± 0.13(3.98)‡ 14.24 ± 0.82(3.35) 11.95 ± 0.16(3.34)‡
GaAN+GRU 19.50 ± 0.21(2.79)‡ 20.15 ± 0.15(3.87)‡ 13.63 ± 0.40(2.73) 11.96 ± 0.11(3.28)‡
GATv2+LSTM 19.25 ± 0.13(2.49)‡ 20.16 ± 0.09(4.10)‡ 14.39 ± 0.47(3.41)‡ 11.81 ± 0.03(3.10)
GATv2+GRU 18.97 ± 0.06(2.43) 19.97 ± 0.07(3.93) 13.62 ± 0.22(2.78) 11.72 ± 0.02(3.03)

∗ 𝑝 ≤ 0.05; †𝑝 ≤ 0.01; ‡𝑝 ≤ 0.005;
The result is formatted as ‘‘𝑚𝑒𝑎𝑛 ± 𝑠𝑑1(𝑠𝑑2)’’;
𝑠𝑑1 is the standard deviation after running the experiments four times by changing random seed;
𝑠𝑑2 is the standard deviation of the metric results across the participants.
Explanation of methods can refer to Sections 5.2 and 6.6.
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used medical knowledge and statistical analysis. For instance, our
ethods in ShanghaiT2DM reduce the importance of bolus insulin and

ncrease the importance of meals and non-insulin hypoglycemic agents
ompared to ShanghaiT1DM. In OhioT1DM, our methods prioritize self-
eported sleep over sensor-detected sleep due to significant missing
ata. The OhioT1DM dataset, widely used in research, supports our
ariable rankings. Butt, Khosa, and Iftikhar (2023) summarized input
eatures from 624 studies, confirming that CGM data is the most impor-
ant, followed by insulin and meal, with exercise being less important,
nd other features being even less so. It aligns with our findings, further
alidating our methods.

6.5. Graph attention mechanisms for BGLP

Graph attention focuses on learning attention coefficients for each
ode’s neighbors, allowing it to selectively emphasize important con-
ections and ignore less relevant ones. This approach is especially
seful in graph-based data where the relevance of connections can
ary significantly. Existing attention mechanisms, such as self-attention
Vaswani et al., 2017) and temporal attention (Luong, Pham, & Man-
ing, 2015), have also been applied to blood glucose level prediction

(BGLP) (Bevan & Coenen, 2020; Zhu et al., 2024).
Temporal attention is specifically designed for sequence data, focus-

ing on temporal relationships, and may not fully exploit the underlying
graph structure when used in a graph context. Self-attention, while also
designed for sequence data, can model the correlations of nodes in a
ompletely connected graph, where each node connects to all other
odes. Both self-attention and graph attention can be utilized in such
cenarios.

We choose graph attention over self-attention because graph atten-
tion does not require generating key, query, and value vectors from
ode embeddings to calculate node weights, as self-attention does.

Instead, node embeddings are directly leveraged with learnable param-
eters to generate edge weights. This simplified node weight generation
an potentially highlight variable importance by removing irrelevant

information, as demonstrated in this paper.
Regarding the specialties of graph attention, a multi-layer graph at-

tention mechanism can extract more complex features. However, based
n the prediction results in Tables 2–7, increasing the number of graph

attention layers does not further improve prediction performance. In
fact, GATv2+GRU (L = 1) generally performs the best. As shown
in Section 5.5(6), there is no significant difference in the quality of
ariable importance between using one and two graph attention layers.
herefore, we believe that more detailed features do not enhance model
erformance in terms of prediction capability and variable importance
uality. General features are sufficient in this scenario.

Regarding time consumption, a comparison between GARNNs and
xisting methods shows that one layer of GAT/GATv2 consumes less
han 7 s when tested on all examples across four datasets, similar
o most interpretable methods. However, two layers of GAT/GATv2

double the testing time consumption, affecting the model’s efficiency.
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Fortunately, for the BGLP problem, multiple layers of GAT/GATv2
re unnecessary. One layer of graph attention is sufficient, with time

consumption comparable to other interpretable methods.

6.6. Ablation study and module selection

The main objective of this work is to interpret predictions on BGLP
sing MTS models. Graph-based structures can explicitly model correla-
ions among different nodes (variables). This can provide possibility to
nterpret correlations among variables. Therefore, we aimed to combine
raph neural networks (GNNs) with RNNs, with the goal of making the
odel interpretable for MTS.

Since MTS data is inherently temporal, we believed it was important
that the graph structure should also vary over time. For this reason, we
did not focus on static graph models like Graph Convolutional Networks
(GCNs, Kipf and Welling (2017)), where the edge weights need to
be predefined by domain knowledge and remain fixed throughout
raining. In contrast, the edge weights in models like GAT/GATv2 are

learnable, allowing the graph weights to vary over time. This time-
varying property is crucial, as it enables us to leverage these varying

eights to extract the variable importance of each node, as discussed
n Section 4.3.

There are other attention-based GNNs, such as Gated Attention
Networks (GaAN, Zhang et al. (2018)), which do not require predefined
static graphs. However, we did not consider these models because
hey are less suitable for extracting variable importance. For example,
aAN relies on dot-product attention, where a query from one node

variable 𝑛) performs a dot product with the key from another node 𝑗,
enerating attention scores. Extracting variable importance based on
hese attention scores is challenging. In contrast, GAT/GATv2 intro-
uces a learnable vector 𝐚, which is used to perform a dot product with
he concatenation of a query and a key. This mechanism provides a
otential pathway for summarizing and extracting learnable variable
mportance, as explained in Section 4.3.

Interpretability is our primary concern, which is why we selected
GAT/GATv2 for this work. After addressing interpretability, we then
explored how to improve prediction performance. As shown in
Table 10, the combination of GATv2 and GRU, i.e., GATv2+GRU,
achieves the lowest RMSE on BGLP. Each component alone performs
worse, highlighting the success of this combination.

When we replaced GRU with other RNNs (e.g., GATv2+LSTM) or
replaced GATv2 with other GNNs (e.g., GaAN+GRU), these combina-
tions did not outperform GATv2+GRU. Other combinations, such as

aAN+LSTM, also showed similar trends, reinforcing that GATv2+GRU
chieved the best prediction performance on BGLP in our experiments.

However, the methods we propose for extracting variable impor-
ance from GAT/GATv2 are not limited to this specific combination
ith GRU. The RNN component in our framework can be replaced with
ther types of RNNs, and variable importance can still be calculated
ased on GAT/GATv2. Exploring other RNNs or time series models
ould be an avenue for future work, though this is outside the scope

of this paper, where interpretability remains the central focus.
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7. Conclusion and limitations

In this work, we propose GARNNs, novel interpretable models,
y incorporating graph attention networks and RNNs for BGLP. One

notable advantage of GARNNs is their ability to provide significant
variable importance for ranking variables and generating feature maps.
In experiments across four datasets, GARNNs demonstrated superior
erformance compared to fifteen baseline models. GARNNs outperform
he baselines in both the accuracy of predictions and the quality of
xplanations regarding the contribution of variables.

Then, GARNN can potentially be applied to both T1DM and T2DM.
As discussed in Section 5.5 (4), GARNNs can learn different patterns for
these two groups. However, we need to further validate this observation
with additional T2DM datasets in the future.

Once well-trained, GARNNs are capable of performing real-time
predictions. However, a limitation of this work is the absence of online
training capabilities in our algorithms. We plan to address this in future
work.

Another limitation of this work is its narrow focus, primarily con-
centrating on specific aspects of BG management without extensively
exploring other relevant scenarios, such as the development of inter-
retable models for insulin advice. Consequently, future work will aim
o expand the applicability of the proposed interpretable models across
 broader range of BG management scenarios.

CRediT authorship contribution statement

Chengzhe Piao: Writing – original draft, Software, Methodology,
nvestigation, Conceptualization. Taiyu Zhu: Writing – review &
diting, Validation, Formal analysis, Data curation. Stephanie E.
aldeweg: Writing – review & editing, Conceptualization. Paul
Taylor: Writing – review & editing, Resources. Pantelis Georgiou:
Writing – review & editing, Resources, Data curation. Jiahao Sun:
Writing – review & editing, Conceptualization. Jun Wang: Writing –
review & editing, Supervision, Conceptualization. Kezhi Li: Writing
– review & editing, Supervision, Resources, Project administration,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Chengzhe Piao reports financial support was provided by
K Research and Innovation. Kezhi Li reports financial support was
rovided by Rosetrees Trust. Kezhi Li reports financial support was
rovided by Great Ormond Street Hospital Children’s Charity. If
here are other authors, they declare that they have no known
ompeting financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

Acknowledgments

We thank the support from UKRI Center for Doctoral Training in
AI-enabled healthcare systems [EP/S021612/1] and University Col-
lege London Overseas Research Scholarships, United Kingdom. We
also appreciate the support from Rosetrees Trust, United Kingdom
(Grant number: UCL-IHE-2020\102) and Great Ormond Street Hospital,
United Kingdom (Charity ref. X12018). The study sponsors had no
study involvement.

Data availability

The OhioT1DM, ShanghaiT1DM and ShanghaiT2DM datasets are
publicly accessible online via their respective websites. However, the
ArisesT1DM dataset is confidential and needs authorization for access.
17 
References

Aguiar, H., Santos, M. D., Watkinson, P. J., & Zhu, T. (2022). Learning of cluster-
based feature importance for electronic health record time-series. In ICML’22 (pp.
161–179).

Ahmed, A., Aziz, S., Abd-Alrazaq, A., Farooq, F., Househ, M., & Sheikh, J. (2023). The
effectiveness of wearable devices using artificial intelligence for blood glucose level
forecasting or prediction: Systematic review. Journal of Medical Internet Research,
25, Article e40259.

Ahmed, A., Aziz, S., Qidwai, U., Abd-Alrazaq, A., & Sheikh, J. (2023). Performance
of artificial intelligence models in estimating blood glucose level among diabetic
patients using non-invasive wearable device data. Computer Methods and Programs
in Biomedicine Update, 3, Article 100094.

Albers, D. J., Levine, M., Gluckman, B., Ginsberg, H., Hripcsak, G., & Mamykina, L.
(2017). Personalized glucose forecasting for type 2 diabetes using data assimilation.
PLoS Computational Biology, 13(4), Article e1005232.

Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2018). Towards better understanding
of gradient-based attribution methods for deep neural networks. In ICLR’18.

Bach, K., Bunescu, R. C., Farri, O., Guo, A., Hasan, S. A., Ibrahim, Z. M., Marling, C.,
Raffa, J., Rubin, J., & Wu, H. (Eds.), (2018). CEUR workshop proceedings: vol. 2148,
Proceedings of the 3rd international workshop on knowledge discovery in healthcare
data co-located with the 27th international joint conference on artificial intelligence and
the 23rd European conference on artificial intelligence (IJCAI-ECAI 2018), Stockholm,
Schweden, July 13, 2018. CEUR-WS.org, URL: https://ceur-ws.org/Vol-2148.

Bach, K., Bunescu, R. C., Marling, C., & Wiratunga, N. (Eds.), (2020). CEUR workshop
proceedings: vol. 2675, Proceedings of the 5th international workshop on knowledge
discovery in healthcare data co-located with 24th European conference on artificial
intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, August
29-30, 2020. CEUR-WS.org, URL: https://ceur-ws.org/Vol-2675.

Balasooriya, K., & Nanayakkara, N. D. (2020). Predicting short-term changing blood
glucose level of diabetes patients using noninvasive data. In IEEE TENCON’20 (pp.
31–36). http://dx.doi.org/10.1109/TENCON50793.2020.9293823.

Bevan, R., & Coenen, F. (2020). Experiments in non-personalized future blood glucose
level prediction. In KDH@ECAI’20 (pp. 100–104).

Bezerra, M. F., Neves, C., Neves, J. S., & Carvalho, D. (2023). Time in range and
complications of diabetes: a cross-sectional analysis of patients with Type 1
diabetes. Diabetology & Metabolic Syndrome, 15(1), 244. http://dx.doi.org/10.1186/
s13098-023-01219-2.

Bhimireddy, A. R., Sinha, P., Oluwalade, B., Gichoya, J. W., & Purkayastha, S. (2020).
Blood glucose level prediction as time-series modeling using sequence-to-sequence
neural networks. In CEUR workshop proceedings: vol. 2675, KDH@ECAI’20 (pp.
125–130).

Bloomgarden, Z. T. (2004). Diabetes complications . Diabetes Care, 27(6), 1506–1514.
http://dx.doi.org/10.2337/diacare.27.6.1506.

Brody, S., Alon, U., & Yahav, E. (2022). How attentive are graph attention networks? In
ICLR’22.

Butt, H., Khosa, I., & Iftikhar, M. A. (2023). Feature transformation for efficient blood
glucose prediction in type 1 diabetes mellitus patients. Diagnostics, 13(3), 340.

Bykov, K., Hedström, A., Nakajima, S., & Höhne, M. M. (2022). NoiseGrad - enhancing
explanations by introducing stochasticity to model weights. In AAAI’22 (pp.
6132–6140). http://dx.doi.org/10.1609/AAAI.V36I6.20561.

Cappon, G., Meneghetti, L., Prendin, F., Pavan, J., Sparacino, G., Favero, S. D., et al.
(2020). A personalized and interpretable deep learning based approach to predict
blood glucose concentration in type 1 diabetes. In KDH@ECAI’20 (pp. 75–79).

Challu, C., Olivares, K. G., Oreshkin, B. N., Ramírez, F. G., Canseco, M. M., &
Dubrawski, A. (2023). NHITS: neural hierarchical interpolation for time series
forecasting. In AAAI’23 (pp. 6989–6997). http://dx.doi.org/10.1145/2939672.
2939778.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In ACM
KDD’16 (pp. 785–794). http://dx.doi.org/10.1145/2939672.2939785.

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of
neural machine translation: Encoder-decoder approaches. In SSST@EMNLP’14 (pp.
103–111). http://dx.doi.org/10.3115/V1/W14-4012.

Choi, E., Bahadori, M. T., Sun, J., Kulas, J., Schuetz, A., & Stewart, W. F. (2016).
RETAIN: an interpretable predictive model for healthcare using reverse time
attention mechanism. In NIPS’16 (pp. 3504–3512).

Chu, Y., Wang, X., Ma, J., Jia, K., Zhou, J., & Yang, H. (2020). Inductive granger causal
modeling for multivariate time series. In ICDM’20 (pp. 972–977).

Cichosz, S. L., Kronborg, T., Jensen, M. H., & Hejlesen, O. K. (2021). Penalty weighted
glucose prediction models could lead to better clinically usage. Computers in Biology
and Medicine, 138, Article 104865. http://dx.doi.org/10.1016/J.COMPBIOMED.
2021.104865.

Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987).
Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes
Care, 10(5), 622–628.

Contador, S., Colmenar, J. M., Garnica, O., Velasco, J. M., & Hidalgo, J. I. (2022).
Blood glucose prediction using multi-objective grammatical evolution: analysis of
the ‘‘agnostic’’ and ‘‘what-if’’ scenarios. Genetic Programming and Evolvable Machines,
1–32.

http://refhub.elsevier.com/S0893-6080(25)00108-X/sb1
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb1
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb1
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb1
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb1
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb3
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb4
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb4
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb4
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb4
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb4
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb5
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb5
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb5
https://ceur-ws.org/Vol-2148
https://ceur-ws.org/Vol-2675
http://dx.doi.org/10.1109/TENCON50793.2020.9293823
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb9
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb9
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb9
http://dx.doi.org/10.1186/s13098-023-01219-2
http://dx.doi.org/10.1186/s13098-023-01219-2
http://dx.doi.org/10.1186/s13098-023-01219-2
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb11
http://dx.doi.org/10.2337/diacare.27.6.1506
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb13
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb13
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb13
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb14
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb14
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb14
http://dx.doi.org/10.1609/AAAI.V36I6.20561
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb16
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb16
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb16
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb16
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb16
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.3115/V1/W14-4012
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb20
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb20
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb20
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb20
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb20
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb21
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb21
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb21
http://dx.doi.org/10.1016/J.COMPBIOMED.2021.104865
http://dx.doi.org/10.1016/J.COMPBIOMED.2021.104865
http://dx.doi.org/10.1016/J.COMPBIOMED.2021.104865
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb23
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb23
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb23
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb23
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb23
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb24


C. Piao et al. Neural Networks 185 (2025) 107229 
Daniels, J., Herrero, P., & Georgiou, P. (2020). Personalised glucose prediction via deep
multitask networks. In CEUR workshop proceedings: vol. 2675, KDH@ECAI’20 (pp.
110–114).

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., et al. (2021). Deep
learning-enabled medical computer vision. Npj Digital Medicine, 4(1), 5.

Favero, S. D., Facchinetti, A., & Cobelli, C. (2012). A glucose-specific metric to assess
predictors and identify models. IEEE Transactions on Biomedical Engineering, 59(5),
1281–1290. http://dx.doi.org/10.1109/TBME.2012.2185234.

Gandin, I., Scagnetto, A., Romani, S., & Barbati, G. (2021). Interpretability of time-series
deep learning models: A study in cardiovascular patients admitted to intensive care
unit. Journal of Biomedical Informatics, 121, Article 103876. http://dx.doi.org/10.
1016/j.jbi.2021.103876.

Gao, P., Yang, X., Zhang, R., Huang, K., & Goulermas, J. Y. (2023). Explainable
tensorized neural ordinary differential equations for arbitrary-step time series
prediction. IEEE Transactions on Knowledge and Data Engineering, 35(6), 5837–5850.
http://dx.doi.org/10.1109/TKDE.2022.3167536.

Guo, T., Lin, T., & Antulov-Fantulin, N. (2019). Exploring interpretable LSTM neural
networks over multi-variable data. In ICML’19 (pp. 2494–2504).

Ha, J., & Sherman, A. (2020). Type 2 diabetes: one disease, many pathways. American
Journal of Physiology-Endocrinology and Metabolism, 319(2), E410–E426.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780. http://dx.doi.org/10.1162/NECO.1997.9.8.1735.

Howard, R., Guo, J., & Hall, K. D. (2020). Imprecision nutrition? Different simultaneous
continuous glucose monitors provide discordant meal rankings for incremental
postprandial glucose in subjects without diabetes. The American Journal of Clinical
Nutrition, 112(4), 1114–1119.

Hsieh, T., Wang, S., Sun, Y., & Honavar, V. G. (2021). Explainable multivariate time
series classification: A deep neural network which learns to attend to important
variables as well as time intervals. In ACM WSDM’21 (pp. 607–615). http://dx.doi.
org/10.1145/3437963.3441815.

Kaji, D. A., Zech, J. R., Kim, J. S., Cho, S. K., Dangayach, N. S., Costa, A. B., et al.
(2019). An attention based deep learning model of clinical events in the intensive
care unit. PLoS One, 14(2), Article e0211057. http://dx.doi.org/10.1371/journal.
pone.0211057.

Karim, R. A. H., Vassányi, I., & Kósa, I. (2020). After-meal blood glucose level prediction
using an absorption model for neural network training. Computers in Biology and
Medicine, 125, Article 103956. http://dx.doi.org/10.1016/J.COMPBIOMED.2020.
103956.

Kim, D.-Y., Choi, D.-S., Kim, J., Chun, S. W., Gil, H.-W., Cho, N.-J., et al. (2020).
Developing an individual glucose prediction model using recurrent neural network.
Sensors, 20(22), 6460.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In ICLR’17.

Kuang, L., Zhu, T., Li, K., Daniels, J., Herrero, P., & Georgiou, P. (2021). Live
demonstration: an IoT wearable device for real-time blood glucose prediction with
edge AI. In IEEE BioCAS’21 (pp. 01–01).

Kwon, Y., & Zou, J. Y. (2022). WeightedSHAP: Analyzing and improving Shapley based
feature attributions. In NIPS’22 (pp. 34363–34376).

Lee, S., Park, J. S., Woo, H., Yoo, Y. K., Lee, D., Chung, S., et al. (2024).
Rapid deep learning-assisted predictive diagnostics for point-of-care testing. Nature
Communications, 15(1), 1695.

Lundberg, S. M., & Lee, S. (2017). A unified approach to interpreting model predictions.
In NIPS’17 (pp. 4765–4774).

Luong, T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. In EMNLP’15 (pp. 1412–1421). http://dx.doi.org/10.
18653/V1/D15-1166.

Man, C. D., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., & Cobelli, C. (2014). The
UVA/PADOVA type 1 diabetes simulator: new features. Journal of Diabetes Science
and Technology, 8(1), 26–34.

Marling, C., & Bunescu, R. C. (2020). The OhioT1DM dataset for blood glucose level
prediction: Update 2020. In KDH@ECAI’20 (pp. 71–74).

Miller, A. C., Foti, N. J., & Fox, E. (2020). Learning insulin-glucose dynamics in the
wild. In Machine learning for healthcare conference (pp. 172–197). PMLR.

Mitri, D. D., Schneider, J., Specht, M., & Drachsler, H. (2018). From signals to
knowledge: A conceptual model for multimodal learning analytics. Journal of
Computer-Assisted Learning, 34(4), 338–349. http://dx.doi.org/10.1111/JCAL.12288.

Mora, T., Roche, D., & Rodríguez-Sánchez, B. (2023). Predicting the onset of diabetes-
related complications after a diabetes diagnosis with machine learning algorithms.
Diabetes Research and Clinical Practice, 204, Article 110910. http://dx.doi.org/10.
1016/j.diabres.2023.110910.

Naumova, V., Pereverzyev, S. V., & Sivananthan, S. (2012). A meta-learning approach
to the regularized learning - Case study: Blood glucose prediction. Neural Networks,
33, 181–193. http://dx.doi.org/10.1016/J.NEUNET.2012.05.004.

Nemat, H., Khadem, H., Elliott, J., & Benaissa, M. (2023). Causality analysis in
type 1 diabetes mellitus with application to blood glucose level prediction.
Computers in Biology and Medicine, 153, Article 106535. http://dx.doi.org/10.1016/
J.COMPBIOMED.2022.106535.

Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting. In ICLR’20.
18 
Pai, A., Santiago, R., Glantz, N., Bevier, W., Barua, S., Sabharwal, A., et al. (2024).
Multimodal digital phenotyping of diet, physical activity, and glycemia in His-
panic/Latino adults with or at risk of type 2 diabetes. Npj Digital Medicine, 7(1),
7.

Parkes, J. L., Slatin, S. L., Pardo, S., & Ginsberg, B. H. (2000). A new consensus error
grid to evaluate the clinical significance of inaccuracies in the measurement of
blood glucose. Diabetes Care, 23(8), 1143–1148.

Pati, S., Thakur, S. P., Hamamcı, İ. E., Baid, U., Baheti, B., Bhalerao, M., et al. (2023).
GaNDLF: the generally nuanced deep learning framework for scalable end-to-end
clinical workflows. Communications Engineering, 2(1), 23.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et
al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830. http://dx.doi.org/10.5555/1953048.2078195.

Piao, C., & Li, K. (2023). Blood glucose level prediction: A graph-based explainable
method with federated learning. http://dx.doi.org/10.48550/ARXIV.2312.12541,
CoRR abs/2312.12541. arXiv:2312.12541.

Plis, K., Bunescu, R. C., Marling, C., Shubrook, J., & Schwartz, F. (2014). A machine
learning approach to predicting blood glucose levels for diabetes management. In
AAAI workshop’14.

Prendin, F., Pavan, J., Cappon, G., Del Favero, S., Sparacino, G., & Facchinetti, A.
(2023). The importance of interpreting machine learning models for blood glucose
prediction in diabetes: an analysis using SHAP. Scientific Reports, 13(1), 16865.
http://dx.doi.org/10.1038/s41598-023-44155-x.

Rajapaksha, D., & Bergmeir, C. (2022). LIMREF: local interpretable model agnostic
rule-based explanations for forecasting, with an application to electricity smart me-
ter data. In AAAI’22 (pp. 12098–12107). http://dx.doi.org/10.1609/AAAI.V36I11.
21469.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining
the predictions of any classifier. In ACM KDD’16 (pp. 1135–1144). http://dx.doi.
org/10.1145/2939672.2939778.

Rubin-Falcone, H., Fox, I., & Wiens, J. (2020). Deep residual time-series forecasting:
Application to blood glucose prediction. In CEUR workshop proceedings: vol. 2675,
KDH@ECAI’20 (pp. 105–109).

Shamout, F. E., Zhu, T., Sharma, P., Watkinson, P. J., & Clifton, D. A. (2020). Deep
interpretable early warning system for the detection of clinical deterioration. IEEE
Journal of Biomedical and Health Informatics, 24(2), 437–446. http://dx.doi.org/10.
1109/JBHI.2019.2937803.

Shen, L., Wei, Y., & Wang, Y. (2023). GBT: Two-stage transformer framework for non-
stationary time series forecasting. Neural Networks, 165, 953–970. http://dx.doi.
org/10.1016/J.NEUNET.2023.06.044.

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through
propagating activation differences. In ICML’17 (pp. 3145–3153).

Sirlanci, M., Levine, M. E., Low Wang, C. C., Albers, D. J., & Stuart, A. M. (2023). A
simple modeling framework for prediction in the human glucose–insulin system.
Chaos. An Interdisciplinary Journal of Nonlinear Science, 33(7).

Succetti, F., Rosato, A., & Panella, M. (2023). An adaptive embedding procedure for
time series forecasting with deep neural networks. Neural Networks, 167, 715–729.
http://dx.doi.org/10.1016/J.NEUNET.2023.08.051.

Tena, F., Garnica, O., Lanchares, J., & Hidalgo, J. I. (2021). Ensemble models of cutting-
edge deep neural networks for blood glucose prediction in patients with diabetes.
Sensors, 21(21), 7090.

Tonekaboni, S., Joshi, S., Campbell, K., Duvenaud, D. K., & Goldenberg, A. (2020). What
went wrong and when? Instance-wise feature importance for time-series black-box
models. In NIPS’20 (pp. 799–809).

Tsai, C.-W., Li, C.-H., Lam, R. W.-K., Li, C.-K., & Ho, S. (2019). Diabetes care in
motion: Blood glucose estimation using wearable devices. IEEE Consumer Electronics
Magazine, 9(1), 30–34.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. In NIPS’17 (pp. 5998–6008).

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).
Graph attention networks. In ICLR’18.

Wang, K. A., Levine, M. E., Shi, J., & Fox, E. B. (2023). Learning absorption rates in
glucose-insulin dynamics from meal covariates. http://dx.doi.org/10.48550/ARXIV.
2304.14300, CoRR abs/2304.14300. arXiv:2304.14300.

WHO (2023). Diabetes. https://www.who.int/health-topics/diabetes. (Accessed 19
December 2023).

Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D. J., Mamykina, L., Botsis, T.,
et al. (2019). Data-driven modeling and prediction of blood glucose dynamics:
Machine learning applications in type 1 diabetes. Artificial Intelligence in Medicine,
98, 109–134. http://dx.doi.org/10.1016/J.ARTMED.2019.07.007.

Xu, Y., Biswal, S., Deshpande, S. R., Maher, K. O., & Sun, J. (2018). RAIM: recurrent
attentive and intensive model of multimodal patient monitoring data. In ACM
KDD’18 (pp. 2565–2573). http://dx.doi.org/10.1145/3219819.3220051.

Zale, A., & Mathioudakis, N. (2022). Machine learning models for inpatient glucose
prediction. Current Diabetes Reports, 22(8), 353–364.

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., et al. (2015).
Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094.

Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D. (2018). GaAN: Gated attention
networks for learning on large and spatiotemporal graphs. In UAI’18 (pp. 339–349).

Zhao, Q., Zhu, J., Shen, X., Lin, C., Zhang, Y., Liang, Y., et al. (2023). Chinese
diabetes datasets for data-driven machine learning. Scientific Data, 10(1), 35. http:
//dx.doi.org/10.1038/s41597-023-01940-7.

http://refhub.elsevier.com/S0893-6080(25)00108-X/sb25
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb25
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb25
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb25
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb25
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb26
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb26
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb26
http://dx.doi.org/10.1109/TBME.2012.2185234
http://dx.doi.org/10.1016/j.jbi.2021.103876
http://dx.doi.org/10.1016/j.jbi.2021.103876
http://dx.doi.org/10.1016/j.jbi.2021.103876
http://dx.doi.org/10.1109/TKDE.2022.3167536
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb30
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb30
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb30
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb31
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb31
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb31
http://dx.doi.org/10.1162/NECO.1997.9.8.1735
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb33
http://dx.doi.org/10.1145/3437963.3441815
http://dx.doi.org/10.1145/3437963.3441815
http://dx.doi.org/10.1145/3437963.3441815
http://dx.doi.org/10.1371/journal.pone.0211057
http://dx.doi.org/10.1371/journal.pone.0211057
http://dx.doi.org/10.1371/journal.pone.0211057
http://dx.doi.org/10.1016/J.COMPBIOMED.2020.103956
http://dx.doi.org/10.1016/J.COMPBIOMED.2020.103956
http://dx.doi.org/10.1016/J.COMPBIOMED.2020.103956
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb37
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb37
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb37
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb37
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb37
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb38
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb38
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb38
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb39
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb39
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb39
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb39
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb39
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb40
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb40
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb40
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb41
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb41
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb41
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb41
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb41
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb42
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb42
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb42
http://dx.doi.org/10.18653/V1/D15-1166
http://dx.doi.org/10.18653/V1/D15-1166
http://dx.doi.org/10.18653/V1/D15-1166
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb44
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb44
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb44
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb44
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb44
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb45
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb45
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb45
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb46
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb46
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb46
http://dx.doi.org/10.1111/JCAL.12288
http://dx.doi.org/10.1016/j.diabres.2023.110910
http://dx.doi.org/10.1016/j.diabres.2023.110910
http://dx.doi.org/10.1016/j.diabres.2023.110910
http://dx.doi.org/10.1016/J.NEUNET.2012.05.004
http://dx.doi.org/10.1016/J.COMPBIOMED.2022.106535
http://dx.doi.org/10.1016/J.COMPBIOMED.2022.106535
http://dx.doi.org/10.1016/J.COMPBIOMED.2022.106535
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb51
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb51
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb51
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb52
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb53
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb53
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb53
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb53
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb53
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb54
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb54
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb54
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb54
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb54
http://dx.doi.org/10.5555/1953048.2078195
http://dx.doi.org/10.48550/ARXIV.2312.12541
http://arxiv.org/abs/2312.12541
http://arxiv.org/abs/2312.12541
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb57
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb57
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb57
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb57
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb57
http://dx.doi.org/10.1038/s41598-023-44155-x
http://dx.doi.org/10.1609/AAAI.V36I11.21469
http://dx.doi.org/10.1609/AAAI.V36I11.21469
http://dx.doi.org/10.1609/AAAI.V36I11.21469
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb61
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb61
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb61
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb61
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb61
http://dx.doi.org/10.1109/JBHI.2019.2937803
http://dx.doi.org/10.1109/JBHI.2019.2937803
http://dx.doi.org/10.1109/JBHI.2019.2937803
http://dx.doi.org/10.1016/J.NEUNET.2023.06.044
http://dx.doi.org/10.1016/J.NEUNET.2023.06.044
http://dx.doi.org/10.1016/J.NEUNET.2023.06.044
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb64
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb64
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb64
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb65
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb65
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb65
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb65
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb65
http://dx.doi.org/10.1016/J.NEUNET.2023.08.051
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb67
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb67
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb67
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb67
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb67
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb68
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb68
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb68
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb68
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb68
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb69
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb69
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb69
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb69
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb69
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb70
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb70
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb70
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb71
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb71
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb71
http://dx.doi.org/10.48550/ARXIV.2304.14300
http://dx.doi.org/10.48550/ARXIV.2304.14300
http://dx.doi.org/10.48550/ARXIV.2304.14300
http://arxiv.org/abs/2304.14300
http://arxiv.org/abs/2304.14300
https://www.who.int/health-topics/diabetes
http://dx.doi.org/10.1016/J.ARTMED.2019.07.007
http://dx.doi.org/10.1145/3219819.3220051
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb76
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb76
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb76
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb77
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb77
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb77
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb78
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb78
http://refhub.elsevier.com/S0893-6080(25)00108-X/sb78
http://dx.doi.org/10.1038/s41597-023-01940-7
http://dx.doi.org/10.1038/s41597-023-01940-7
http://dx.doi.org/10.1038/s41597-023-01940-7


C. Piao et al. Neural Networks 185 (2025) 107229 
Zhu, T., Kuang, L., Daniels, J., Herrero, P., Li, K., & Georgiou, P. (2023). IoMT-enabled
real-time blood glucose prediction with deep learning and edge computing. IEEE
Internet of Things Journal, 10(5), 3706–3719. http://dx.doi.org/10.1109/JIOT.2022.
3143375.

Zhu, T., Kuang, L., Piao, C., Zeng, J., Li, K., & Georgiou, P. (2024). Population-
specific glucose prediction in diabetes care with transformer-based deep learning
on the edge. IEEE Transactions on Biomedical Circuits and Systems, 18(2), 236–246.
http://dx.doi.org/10.1109/TBCAS.2023.3348844.
19 
Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2023). Personalized blood glucose
prediction for type 1 diabetes using evidential deep learning and meta-learning.
IEEE Transactions on Biomedical Engineering, 70(1), 193–204. http://dx.doi.org/10.
1109/TBME.2022.3187703.

Zhu, T., Uduku, C., Li, K., Herrero, P., Oliver, N., & Georgiou, P. (2022). Enhancing
self-management in type 1 diabetes with wearables and deep learning. Npj Digital
Medicine, 5(1), 78. http://dx.doi.org/10.1038/S41746-022-00626-5.

Zou, B. J., Levine, M. E., Zaharieva, D. P., Johari, R., & Fox, E. B. (2024). Hy-
brid square neural ODE causal modeling. http://dx.doi.org/10.48550/ARXIV.2402.
17233, CoRR abs/2402.17233. arXiv:2402.17233.

http://dx.doi.org/10.1109/JIOT.2022.3143375
http://dx.doi.org/10.1109/JIOT.2022.3143375
http://dx.doi.org/10.1109/JIOT.2022.3143375
http://dx.doi.org/10.1109/TBCAS.2023.3348844
http://dx.doi.org/10.1109/TBME.2022.3187703
http://dx.doi.org/10.1109/TBME.2022.3187703
http://dx.doi.org/10.1109/TBME.2022.3187703
http://dx.doi.org/10.1038/S41746-022-00626-5
http://dx.doi.org/10.48550/ARXIV.2402.17233
http://dx.doi.org/10.48550/ARXIV.2402.17233
http://dx.doi.org/10.48550/ARXIV.2402.17233
http://arxiv.org/abs/2402.17233
http://arxiv.org/abs/2402.17233

	GARNN: An interpretable graph attentive recurrent neural network for predicting blood glucose levels via multivariate time series
	Introduction
	Related Work
	Preliminaries
	Proposed model
	Problem definition
	Overview
	Interpretability

	Experiments
	Datasets
	Baselines
	Metrics
	Comparison of prediction performance
	Interpretation of variable importance
	Interpretation of feature maps

	Discussion
	Research Scope
	Multimodal Data for glucose Prediction
	Deep Learning for Clinical Usage
	Variable Importance of BGLP Models
	Graph Attention Mechanisms for BGLP
	Ablation Study and Module Selection

	Conclusion and Limitations
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


