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Robotic Arm Platform for Multi-View Image
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Invasive Surgery
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Abstract—Minimally invasive surgery (MIS) offers significant
benefits, such as reduced recovery time and minimised patient
trauma, but poses challenges in visibility and access, making
accurate 3D reconstruction a significant tool in surgical planning
and navigation. This work introduces a robotic arm platform for
efficient multi-view image acquisition and precise 3D reconstruc-
tion in MIS settings. We adapted a laparoscope to a robotic
arm and captured ex-vivo images of several ovine organs across
varying lighting conditions (operating room and laparoscopic)
and trajectories (spherical and laparoscopic). We employed
recently released learning-based feature matchers combined with
COLMAP to produce our reconstructions. The reconstructions
were evaluated against high-precision laser scans for quantitative
evaluation. Our results show that whilst reconstructions suffer
most under realistic MIS lighting and trajectory, two matching
methods achieve close to sub-millimetre accuracy with 0.80 and
0.76mm Chamfer distances and 1.06 and 0.98mm RMSEs for
ALIKED and GIM respectively. Our best reconstruction results
occur with operating room lighting and spherical trajectories.
QOur robotic platform provides a tool for controlled, repeatable
multi-view data acquisition for 3D generation in MIS envi-
ronments, which can lead to new datasets necessary for novel
learning-based surgical models.

I. INTRODUCTION

Surgery has experienced remarkable evolution, particularly
with the rise of minimally invasive techniques like endoscopy
and laparoscopy. These methods have transformed modern
surgical practice by reducing patient recovery time and mini-
mizing tissue damage. However, they also present challenges,
such as limited visibility, reduced tactile feedback, and in-
creased cognitive demands on surgeons. As surgical techniques
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Fig. 1. This work creates 3D reconstructions from multi-view images
collected by our robotic arm platform. We use a laser scanner to obtain GT
data for comparison.

continue to advance, there is an increasing need for innovative
technologies to address these challenges, enhance precision,
and improve patient outcomes [1].

In minimally invasive surgery (MIS) and especially robot-
assisted minimally invasive surgery (RAMIS), endoscopy is
crucial for navigating the surgical field. Moreover, accurate
and reliable 3-dimensional (3D) reconstruction of organs
during surgery is vital for advancing downstream computer-
assisted tasks, such as Augmented Reality (AR) and Virtual
Reality (VR) [2], [3] and enhanced visualisation for surgical
navigation [4]. Tools accomplishing these downstream tasks
can augment the surgeon’s understanding of the operating field
and enable the identification of key structures such as blood
vessels and tumours, improving both safety and precision in
MIS and RAMIS [5]. However, the process of producing 3D
reconstructions is challenging owing to the complexity of the
surgical environment and the limited availability of image
data with adequate 3D Ground Truth (GT).

This work presents a robotic arm-based platform that
addresses these challenges by offering multi-view image
acquisition and 3D reconstruction in MIS environments. By
utilising a robotic arm we ensure more consistent, reliable
scanning enabling a direct comparison of different acquisition
settings as well as obtaining pose information. The system
is designed to accommodate various imaging modalities and
employs a laser scanner to capture highly accurate 3D GT,
allowing a comprehensive evaluation of the reconstruction
pipeline as seen in Figure 1. Our approach utilises state-of-
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TABLE I
COMPARISON OF PUBLICLY AVAILABLE SURGICAL DATASETS WITH THEIR GT PROPERTIES AND SIZE. GT AVAILABILITY IS INDICATED WITH CHECK
MARKS (v'). (MV) MULTI-VIEW, (CT) COMPUTED TOMOGRAPHY, (SL) STRUCTURED LIGHT,(MM) MULTI-MODALITY, (LS) LASER SCAN.

Dataset Type Scenes Subjects Frames Pose Depth 3D Model GT Type Platform
CV3D [6] Mono MV In-vivo Synthetic ~ 22 30073 v v v Phantom/Synthetic ~ Synthetic
SCARED [7] Stereo MV Ex-vivo Porcine 9 17607 v v SL (Keyframes) Da Vinci
SERV-CT (8] Stereo MV Ex-vivo Porcine 16 32 v v CT Da Vinci
StereoMIS [9] Stereo MV Porcine/Human 6 14804 v v Stereo Da Vinci
Ours Mono MV Ex-vivo Ovine 8 29806 v v LS Robot Arm

the-art feature matching methods, such as ALIKED [10] and
GIM [11], paired with LightGlue (LG) [12] for robust corre-
spondence across frames, and COLMAP [13], [14] for dense
3D reconstruction. The platform is validated by collecting and
processing multiple ex-vivo organ datasets and benchmarking
its performance against GT laser scans to demonstrate the
accuracy and robustness of the proposed system.

Our main contributions and 3D reconstruction pipeline for
surgery are summarised as follows:

o« We present a customisable robotic arm platform inte-
grated with a laparoscopic system for precise multi-view
data acquisition with 6-Degrees of Freedom (DoF) pose
data;

o« We demonstrate our acquisition protocol with different
design choices, such as trajectories and lighting, to ac-
count for high realism and adaptability to the medical
domain;

« We utilise a high-precision laser scanner for obtaining
high fidelity GT suitable for comprehensive evaluation
of 3D reconstruction pipelines;

o We demonstrate the use of multi-view images acquired
by the system to generate 3D reconstructions, providing
both qualitative and quantitative comparisons across es-
tablished algorithmic choices using relevant performance
metrics.

Our platform represents a step towards semi-automatic 3D
reconstruction of organs, which has the potential of being
translated to surgical vision enhancement such as registration
of pre-operative data such as MRI or PET, surgical measure-
ments and advanced visualisation and guidance to aid the
surgeon whereby improving patient outcome.

II. RELATED WORK
A. Datasets

The growing field of RAMIS aims to improve the safety,
ease, and effectiveness of procedures [15], [16], [17]. The
development of robust computer-assisted surgical systems and
3D reconstruction pipelines rely on high-quality datasets.
Notwithstanding, publicly available datasets with robot kine-
matics/poses and GT 3D information remain rare due to
logistical and ethical constraints.

Current datasets in RAMIS (see Table I) often suffer from
significant limitations in terms of size, realism and ground-
truth accuracy, leading to concerns around overfitting and
poor generalisability. In practice, the creation of datasets for
RAMIS involves many trade-offs. Human data is difficult to
obtain, so most works opt to use animal models such as pigs

[71, [8], [9] or synthetic data [6]. While these substitutions
are invaluable for prototyping, their generalisability to in-vivo
human applications can be limited [6]. The methods employed
to capture depth and 3D information also vary widely, each
presenting unique benefits and drawbacks. For instance, while
synthetic data generation provides reliable depth data at scale,
it suffers from a realism gap [6]. Structured light [7], CT
imaging [8] and stereo depth estimation [9], while computed
on real data, face challenges arising from calibration and time
synchronisation inaccuracies, tissue deformation, and visual
artefacts arising from phenomena such as specularity.

In creating a new platform for dataset acquisition, we aim to
address the significant complexity of creating a new surgical
3D dataset. Our platform allows for plug-and-play acquisition
using preplanned trajectories and a laser scanner.

B. 3D Reconstruction for Surgery

After collecting multi-frame surgical data, 3D reconstruc-
tion is essential to enhance the surgeon’s view and proceed
with downstream tasks. There are numerous 3D reconstruction
algorithms, including Structure from Motion (SfM), Simul-
taneous Localisation and Mapping (SLAM) and, if a stereo
endoscope is used, stereo reconstruction [18], [19]. These
algorithms rely on feature extraction and matching between
2-dimensional (2D) images for generating 3D point clouds,
which are used to estimate depth and camera pose. Tradi-
tional feature extraction and matching methods like SIFT [20]
have been widely used for this purpose. However, more
sophisticated methods can generate more accurate matching
in surgical environments, particularly when dealing with low-
texture organs.

In [21], the authors demonstrated that combinations of
ALIKED with LG and GIM with LG yielded the best re-
sults on out-of-domain data. Other learning-based detectorless
techniques, such as Dust3r [22] and Mast3r [23], process the
entire pipeline at once, making them highly computationally
intensive and impractical for large datasets on standard ma-
chines.

III. ROBOTIC PLATFORM FOR 3D GENERATION

This section outlines our robotic arm platform for multi-
view image acquisition and 3D reconstruction in MIS, as
seen in Figure 2. We describe the design of the robotic arm,
imaging and recording systems, introduce the various scanning
trajectories implemented using the robot and discuss our hand-
eye calibration method.
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Fig. 2. a) Annotated figure showing the robotic platform. The robot is attached to the table using a custom mount. The laparoscope optical system is attached
to the robot with 3D printed and laser-cut parts. An Intel NUC handles all trajectory control and data capture. b) Depiction of lighting conditions LapLS
and SurgLS and the three trajectories: TC, OC and OF. Additionally, the sampling points in 3D are depicted for both equal angle poses, where poses are
calculated by sequentially incrementing the azimuth and altitude angles by fixed amounts and Fibonacci sphere poses which are more even coverage over the

imaging sphere.

A. Robotic Arm

The platform utilises a Kinova Gen3 7-DoF robotic arm'

with a maximum reach of 902 mm and a maximum speed of
0.5 m/s. Unlike many other robotic arms, the actuators can
rotate infinitely, allowing more of the workspace to be covered
by the Kinova, making it ideal for our application of capturing
the different organs from different angles.

We interface with the robot using a modified version of ros2-
kortex package?. The platform uses the robotic manipulation
platform Movelt2? [24] for motion planning and kinematics
control. A custom moveit_config was created to suit our
robot-laparoscope configuration.

B. Imaging

Our imaging system uses a FLIR Blackfly S USB3 (BFS-
U3-50S5C-C, Teledyne FLIR, Wilsonville, Oregon, USA)
Red-Green-Blue (RGB) camera custom mounted to a (HOP-
KINS®Telescope 26003 AGA, Karl Storz SE & Co. KG,
Tuttlingen, Germany). This 5-megapixel camera has a res-
olution of 2448x2048, giving us optimal data for further
3D reconstructions. As seen in Figure 2, the laparoscope is
mounted directly to the Kinova robotic arm using 3D-printed
and laser-cut brackets.

We consider two different light source settings for our
study: the Storz laparoscopic light source (Storz D-LIGHT
C 201336 20) attached directly to the laparoscope by fibre
optic light cable (Storz 495 NCS), referred to as the LapLS
and the overhead ceiling-mounted surgical lights (Maquet
Volista Surgical Light, Maquet GmBH, Rastatt, Germany) in
combination with the laparoscopic light source at low intensity,
referred to as the SurgLS. The overhead surgical light source
evenly illuminates the image and eliminates vignetting effects

visible when using the laparoscopic light source only. Whilst

'www.kinovarobotics.com
Zhttps://github.com/Kinovarobotics/ros2_kortex
3https://moveit.ai

the combination of light sources is not realistic for MIS, it
gives an ideal set of lighting conditions for comparison.

C. Trajectories

The robot’s laparoscopic multi-view acquisition aims to
image the specimen organ from various angles, ensuring full
surface coverage at least once. We represent this acquisition
process as a sphere with the sample positioned at the centre.
In Figure 2.b, we depict this using two spherical scanning
trajectories: OC and OF. The key difference between them
is the variation in the distance to the specimen, where the

OC distance (dgff"faose) is shorter than the OF distance

). While this setup provides excellent coverage, it
is only suitable for open surgery without constraints on the
surgical field.

To achieve these spherical trajectories, we set a remote cen-
tre of motion (RCM) collinear but external to the laparoscope
and place it at the centre of these virtual spheres. Thus, the
tip of the laparoscope moves in a spherical trajectory around
the RCM, and all poses can be defined as an orientation of
the RCM.

In laparoscopic surgery, however, the endoscope’s access
is limited by the TC — a single entry point through the skin
surface. Therefore, we define a third trajectory, TC, to replicate
this scenario. This scenario is more clinically realistic but
also introduces significant challenges for organ imaging due
to reduced field of view (FoV).

Our platform relies on Movelt2, which utilises the Open
Motion Planning Library (OMPL) [25], [26] to plan these
constrained trajectories, specifically using the RRTConnect
planner, using the KDL solver. We change the kinematics
solver seed state to the current joint states to counteract
awkward solutions arising from non-unique solutions.

Open—Far
(dla

D. Pose Generation Using Fibonacci Sphere Sampling

Achieving an even distribution of points on a spherical
surface is essential for optimal coverage and accurate 3D
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reconstruction. Traditional methods, like uniformly sampling
azimuthal and altitude angles, often result in uneven distribu-
tions, causing point clustering near the poles leading to sam-
pling bias. To address this, we employed the Fibonacci sphere
sampling method to generate evenly distributed poses on a
spherical surface [27], which gave us a uniform distribution
of points across a sphere as seen in Figure 2.b.

To maintain focus on a region of interest, we limit the poses
for all three trajectories to those within a specified angular
range, defined by an angle limit 6,,,,. This ensures that only
points with an elevation angle greater than 90° — 6,,,,, are
included, thereby restricting poses to the top of the sphere.
For our data acquisition, 6,,,, was set to 40°.

E. Data Recording

We use our custom-developed Python app built on the FLIR
Spinnaker Software Development Kit (SDK) to preview and
capture data. Each video frame is saved as a numpy file, and
frame information such as exposure time and current framerate
is stored in a CSV frame log. The RCM and end-effector
positions of the robot are also saved for analysis.

F. Hand-Eye Calibration

An additional dataset was captured on a ChAruco board
using all three trajectories to ensure a good calibration. The
intrinsic calibration of the camera was obtained using OpenCV,
with a reprojection error of 0.88 pixels. The robot was then
hand-eye calibrated using a dual quaternion method [28] to
obtain the transform from the end-effector of the robotic arm
to the principal point of the camera.

IV. DATA ACQUISITION

For this work, we used a total of eight ex-vivo ovine organs:
six kidneys and two livers. RGB frames from each organ set
can be seen in Figure 3.a. Four of the kidneys were grouped
together to give a total of six organ sets. Each organ was placed
on a tray with a featured background to aid the SfM pipeline.
Three different trajectories were used to image each organ set
as visualised in Figure 2:

1) Trocar (TC): the RCM was placed ~120 mm above the
centre of the sample. This leaves the tip ~80 mm above
the sample, creating a realistic MIS scenario.

2) Open-Close (OC): the RCM is placed in the sample with
diap = 80 mm.

3) Open-Far (OF): the RCM is placed in the sample with
diap = 120 mm for a wider FoV.

The TC and OC trajectories took an average time of 126s
and the OF trajectory took 140s due to its increased travel
distance with the robot set to 10% of its maximum velocity
for safety. The organs were imaged with the two different light
source configurations: LapLS and SurgLS seen in Figure 2.
For the kidney datasets, each of the trajectories was performed
with both light source configurations, leading to six videos per
organ set and twenty-four total videos. For the liver sample sets
only the TC and OF trajectory were performed, because the
livers were larger the OC trajectory was skipped to minimise

the risk of collisions. This led to four videos per liver, eight
in total and an overall dataset size of thirty-two videos. There
were an average of 909 frames per video, each with pose
information and RGB images. The average number of frames
per trajectory was 886, 871 and 958 for the TC, OC and OF
trajectories, respectively.

In tackling issues with GT as detailed in our related work,
we implement a laser scanner to acquire highly accurate 3D
meshes and point clouds from our samples. We use the Nikon
H120 ModelMaker and MCAx S (Nikon Corporation, Tokyo,
Japan) for this approach. The laser scanning system has an
accuracy of down to 7um * giving us the ability for to
precisely evaluate our methods. This accuracy is greater than
both structured light and the Computed Tomography (CT) GTs
supplied by current datasets as structured light/stereo depth
estimation is limited by the resolution of the cameras and
feature matching algorithms and CT scanners have larger voxel
sizes and requires a segmentation step for a 3D model for
comparison that could introduce errors. A full 3D reconstruc-
tion GT allows evaluation of a whole pipeline in comparison
to solely depth maps, as projection from depth maps can
introduce errors. Depth maps can be extracted from a GT
point cloud provided camera poses and intrinsics, which does,
however, rely on good registration from laser scanner to point
cloud.

V. 3D RECONSTRUCTION

This section details our pipeline for 3D reconstructions from
our robotic arm pipeline as seen in Figure 3. To perform the 3D
reconstruction, we utilised two image feature extraction and
matching methods, GIM-LG and ALIKED-LG. GIM-LG uses
a handcrafted feature extractor and a retrained matching com-
ponent, LG, following the GIM training framework. ALIKED
is a lightweight CNN-based keypoint detector and descriptor
extractor that we paired with the LG matching component.
These models were chosen due to their performance in [21],
particularly in out-of-domain challenges. For comparison, we
also paired LG with SIFT [20], a commonly used feature
detector. All the data was processed on a workstation with
an AMD Ryzen Threadripper PRO 5975WX CPU and two
NVIDIA RTX A6000 GPUs.

1) Structure from Motion: The images are undistorted
using calibration data, and each video is sub-sampled to
100 frames to reduce computational complexity due to high
frame correlation. To generate a list of image pairs, we use
the method from [21] by pairing sequential frames using a
sliding window. We enhance the matching process by using
a pre-trained DINOv2-SALAD [29] model to generate extra
pairs. DINOV2 is employed for local feature extraction, while
SALAD aggregates these local features into clusters and uses
the optimal transport method to generate global features.
Following this approach resulted in an average of 1169 pairs
per dataset.

These pairs are processed by the external feature matchers
(ALIKED-LG, GIM-LG and SIFT-LG), and the resulting

“https://industry.nikon.com/en-us/products/3d-laser-scanners/
manual-3d-scanning/modelmaker-h120/



SAIKIA et al.: ROBOTIC ARM PLATFORM FOR MULTI-VIEW IMAGE ACQUISITION 5

=] (2]

Laparoscopic
RGB frames

DATA ACQUISITION
Robotic Laser
platform scanner
( 3DGT )
Poses

Pre-
processing

Registration

Estimated

]—:—[ Evaluation ]

poses
Feature
[ ma:ching H COLMAP .
' Post-
(I
3D RECONSTRUCTION RESULTS

Fig. 3. a) RGB frames from each of the 6 organ sample sets under the different lighting scenarios. Columns 1&2 show different kidney samples. In column 3,
we show a section of the two liver samples. Rows 1&3 show the organs under the LapLS and conversely, rows 2&4 display the SurgLS. b) Data acquisition:
A summary of all the data collected by our platform. 3D Reconstruction: Our 3D reconstruction pipeline for processing our data. Results: Evaluation of the

3D reconstructions by comparing to acquired GT data.

matches are imported into the COLMAP database’. COLMAP
is then used for geometric verification and triangulation via
RANSAC to produce sparse point clouds and camera
pose estimations. Dense 3D reconstruction is achieved in
a subsequent step using COLMAP’s Multi-View Stereo
functionality. The hand-eye calibrated poses were not used in
the pipeline as we use them to evaluate the predicted poses.

2) Post-processing: Prior to comparison, the dense point
clouds undergo a post-processing step. Due to our pipeline
returning relative point clouds, the point clouds are manually
registered to the laser scan GT using Open3D [30] by man-
ually selecting matching points in both point clouds before
undergoing iterative closest point (ICP) registration with the
laser scan to refine the registration.

Manually registered point clouds are downsampled to
0.5 mm and cleaned from statistical outliers using Open3D.
The mean distance to its k-nearest neighbours is calculated
using a KD-Tree for efficient neighbour queries for every
point. Subsequently, the global mean and standard deviation
are computed for all points. Points are considered outliers
if their mean neighbour displacements exceed a threshold
defined as the population mean plus a multiple of the standard
deviation. This method removes isolated noise while preserv-
ing the point cloud structure, making it suitable for denoising
in 3D reconstruction workflows. For this, we set k = 20
and std_ratio = 1.0 to maintain data quality and then
points more than 60 mm from the centroid are removed.
Finally, we use Open3D’s Point-to-Plane ICP registration [31]
to register our reconstruction with the GT with the default
Tukey Loss with k£ = 1. This uses the normals of the target
scan, obtained directly from the laser scanner, in its objective
function to increase the fidelity of the ICP algorithm.

Shttps://github.com/surgical-vision/colmap-match-converter

VI. RESULTS AND DISCUSSION
A. Qualitative Results

In this section, we present our qualitative results and find-
ings. In Figure 4, two representative cases are shown for a liver
and a kidney. The first case involves a kidney acquired using
the OF trajectory with SurgLS, processed using the ALIKED-
LG matcher. The second case involves a liver acquired using
the TC trajectory with LapLS, processed using the GIM-LG
matcher. Both methods resulted in visually accurate 3D re-
constructions despite the differences in acquisition trajectories
and lighting conditions.

While the overall reconstructions appear good, the presence
of minor gaps does not significantly affect how the 3D models
can be used, but they may slightly reduce the visual quality.
For improved visualisation, we used Poisson meshes, which
helped fill in some of the gaps and gave us cleaner-looking
models. By observing the location of these gaps, it appears that
one of the main challenges in the 3D pipeline is dealing with
the dark, smooth surfaces of the organ and specular highlights.
These surfaces, especially under laparoscopic lighting, made it
harder for the algorithms to detect enough matching features,
particularly when we used the limited perspectives of the TC
trajectory. With fewer camera angles, there were more in-
stances of occlusions and missing data compared to the wider
OC and OF trajectories, where the broader FoV provided a
clearer picture. Despite these difficulties with unreconstructed
surfaces, the registrations between our predicted models and
the GT laser scans appear to be visually well aligned with only
minor discrepancies as seen in the error maps in Figure 4.

B. 3D Reconstruction Results

1) Metrics: In evaluating the performance of point cloud
registration to a GT laser scan, we employed three widely used
distance metrics in millimetres: Chamfer distance, Hausdorff
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Fig. 4. 3D reconstructions of a kidney and liver obtained using different trajectories and lighting conditions. For the kidney (row 1), data was captured using
the OF trajectory under LapLS and processed with the ALIKED-LG image matcher. The liver (row 2) was captured using the TC trajectory under sls and
processed using the GIM-LG matcher. In both cases, the predicted 3D models (col 1&2) are compared to the GT laser scans (col 3) and the post-processed,
aligned reconstructions (col 4). Error maps (col 5) display a cross-sectional view of the registration where the GT is coloured grey and each reconstruction

point is coloured according to its individual error

distance, and Root Mean Squared Error (RMSE). Each metric
provides a different aspect of the registration quality: Chamfer
distance measures average minimum distances between points,
Hausdorff distance captures maximum deviations, and RMSE
reflects average point-wise errors. Together, they serve as
an comprehensive view of how closely our reconstructions
matched the GT. Due to incompleteness in some laser scans,
we excluded the top 5% of distances from the metric calcula-
tions. This step prevents artificially inflated errors from points
in the source cloud that are not covered by the target cloud.

Table II presents the quantitative evaluation of our point
cloud registrations against the GT laser scans. It compares
the performance of different methods across the two lighting
conditions averaged across all trajectories for both kidney
and liver datasets and conversely for the trajectories averaged
across the light source conditions.

2) Anomalies: Of 96 total reconstructions (from 32 se-
quences and 3 feature matchers), 12 failed and were ex-
cluded from metrics. ALIKED-LG and GIM-LG each had
one failure under MIS conditions with kidneys, while SIFT-
LG accounted for the remaining 10 failures due to insufficient
feature matching resulting in fewer than 50 points in the final
pointclouds.SIFT-LG failures were distributed evenly across
both lighting conditions and trajectories, indicating funda-
mental limitations in medical imaging rather than scenario-
specific issues. Furthermore, in liver reconstructions, where
SIFT-LG failed in 50% of attempts (4/8), while ALIKED-LG
and GIM-LG maintained perfect success rates, demonstrating
the superior ability of modern feature matching methods in
this domain.

3) Differences in Organ Reconstructions: Overall, the re-
construction results for the different organs and methods show
consistent findings as shown in table II, with ALIKED-LG
and GIM-LG consistently outperforming the SIFT-LG baseline
method. Only for the Kidney dataset under the SurgLS the

SIFT-LG shows better Chamfer results (-0.112) and RMSE
(-0.166) compared to the ALIKED-LG method. The sharper
transitions and irregularities at the kidney edges often make
accurate feature matching more complex, and ALIKED-LG
seems to struggle in these scenarios. The ALIKED-LG model
outperforms GIM-LG and SIFT-LG by a large margin on the
Liver dataset.

4) Lighting Conditions: Table II highlights the influence
of lighting conditions on registration metrics.SurgLS, offer-
ing broader and more even illumination, generally produced
better results, particularly with lower Chamfer, Hausdorff,
and RMSE values. In contrast, LapLS, more focused and
directional, led to slightly higher errors, especially in the
Hausdorff distance, likely due to the introduction of shad-
ows, uneven illumination, and pronounced vignetting. Despite
these differences, both GIM-LG and ALIKED-LG exhibited
strong performance across lighting conditions, with GIM-LG
performing slightly better overall, particularly in the Chamfer
(2.017 and 2.922) and RMSE (0.764 and 1.029) metrics on the
kidney dataset. These results confirm that both methods are
effective for 3D reconstruction in surgical environments, with
GIM-LG showing especially consistent performance, without
outliers, even in challenging lighting conditions.

5) Trajectories: The last three columns in Table II present
the average metrics for each trajectory. Due to the larger
size of the livers, no OC trajectory was recorded to avoid
collisions with the organ. The metric differences between
the OC and OF datasets highlight that the choice of dj4p
significantly impacts reconstruction quality, emphasizing the
need for careful parameter selection. Among the trajectories,
the TC trajectory, the most realistic, performed the worst,
likely due to the limited number of views.

6) Minimally Invasive Surgery Conditions: We compared
optimal conditions (OC trajectory for kidneys and OF trajec-
tory for livers, both with SurglLS) against clinically represen-
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TABLE 11
AVERAGE AND STANDARD DEVIATION METRICS IN MM OR SUCCESSES FOR LIGHTING AND TRAJECTORIES AGAINST EACH MATCHING METHOD.
Metric Method Light Source Trajectory
SurgLS LapLS TC ocC OF
Kidneys

SIFT-LG 0.760+0.346  0.983+0.519 | 0.974+0.633  0.78740.264  0.855+£0.419
Chamfer GIM-LG 0.605+0.163  0.78640.237 | 0.844+0.135 0.6694+0.284  0.581£0.124
ALIKED-LG | 0.872+0.573  0.86940.244 | 0.815+0.211  0.801+0.320  0.98140.631
SIFT-LG 2.626+1.119  3.783%1.895 | 3.363+2.097 3.158+1.547  3.093+£1.455
Hausdorff  GIM-LG 2.0174+0.482 2.922+1.184 | 2.8144+0.604 2.651£1.453  1.930+0.357
ALIKED-LG | 3.090+£2.200 3.261+0.982 | 2.97240.893  3.051+£1.283  3.45242.440
SIFT-LG 0.995+0.480  1.29440.658 | 1.246+0.810 1.0414+0.347  1.147+0.582
RMSE GIM-LG 0.764+0.208  1.02940.327 | 1.078+0.195  0.88240.398  0.735+£0.155
ALIKED-LG | 1.161+0.843  1.14640.341 | 1.059+0.313  1.0584+0.443  1.320£0.930

SIFT-LG 9/12 9/12 6/8 6/8 6/8

Success GIM-LG 12/12 11/12 7/8 8/8 8/8

ALIKED-LG 12/12 11/12 7/8 8/8 8/8

Livers

SIFT-LG 1.571+0.451 1.735 1.990 - 0.55040.320
Chamfer GIM-LG 0.686+0.106  1.225+1.154 | 0.757+0.117 - 1.17241.182
ALIKED-LG | 0.551+£0.088  0.588+0.179 | 0.69240.133 - 0.48340.037
SIFT-LG 5.43042.467 6.072 6.902 - 2.1124+1.578
Hausdorff  GIM-LG 2.49940.451  4.347+3.747 | 2.72140.499 - 4.181+3.840
ALIKED-LG | 2.030+£0.297  2.24440.526 | 2.39140.505 - 1.973+0.303
SIFT-LG 2.068+0.648 2.284 2.621 - 0.7201+0.681
RMSE GIM-LG 0.8924+0.132  1.588+1.471 | 0.969+0.158 - 1.530+1.502
ALIKED-LG | 0.7204+0.098 0.76940.212 | 0.876+0.171 - 0.653+0.069

Success SIFT-LG 3/4 1/4 1/4 - 3/4
TABLE III Camera Frustums (showing 20)

COMPARISON OF RECONSTRUCTION METRICS IN MM UNDER OPTIMAL
AND MIS CONDITIONS AND DEGRADATION IN ACCURACY (DIA)

Condition  Settings Chamfer () Hausdorff (]) RMSE (])
Kidneys

Optimal OC+SurgLS 0.567 1.953 0.720

MIS TC+LapLS 0.884 3.151 1.144

DiA (%) 55.9 61.3 58.9
Livers

Optimal OF+SurgLS 0.564 2.121 0.745

MIS TC+LapLS 0.722 2.559 0.920

DiA (%) 28.0 20.7 23.5

tative MIS conditions using the TC trajectory with LapLS.
For this analysis, we excluded SIFT-LG results to focus
on recent methods, particularly given its consistent failures,
especially under either the LapLS or the TC trajectory and
its performance deficit to recent methods. These results can
be seen in Table III. The only failed reconstructions for
the ALIKED-LG and GIM-LG were under MIS conditions.
The metrics indicate significant performance degradation when
moving from optimal to MIS conditions. Qualitatively, these
degradations arise from a more limited set of views and less
uniform lighting conditions. These results demonstrate that
even though current methods have performed well in this work,
they still face substantial challenges under MIS conditions,
suggesting the need for further research into domain-specific
improvements.

C. Pose Evaluation

We employed the Umeyama algorithm [32] to align our
predicted poses with the GT for comparison. Figure 5 illus-
trates a subsampled set of pose estimations from a kidney
dataset using an OC trajectory, with the ALIKED-LG feature

= Ground Truth Path
Predicted Path

— First Frame

— Last Frame

520

Fig. 5. A graph depicting a sub-sampled set of poses of the GT (blue)
and predicted (yellow) poses for a kidney dataset with the SurgLS and the
OF trajectory using the ALIKED-LG image matcher. The dotted red lines
represent the error between the prediction and the GT pose.

matching version of the pipeline. Overall, the poses were
accurate, with translation estimations appearing slightly better
than rotations. The relative pose error (RPE) for rotation was
0.0290, 0.0032 and 0.0161 radians using SIFT-LG, GIM-LG
and ALIKED-LG respectively. For translations, the RPEs were
0.285, 0.245 and 0.265 mm in the same order.

On average, 88.78% of frames were able to have predicted
poses, with a standard deviation of 27.85%, which can be
attributed to a few anomalous cases with fewer than 15 frames
having predicted poses. Across all datasets, 81.25% success-
fully predicted poses for all frames, with GIM-LG slightly
outperforming ALIKED-LG at 90.95% compared to 86.60%.
This highlights the robustness of both methods, especially
GIM-LG, in feature matching and pose prediction.
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VII. CONCLUSIONS

In this work, we introduced a robotic arm platform that
acquires multi-view image/video datasets and highly accurate
GT laser scans for surgical 3D reconstruction research. Our
results demonstrate that recent feature matching methods can
achieve nearly sub-millimetre performance on ex-vivo organ
data collected with our platform.

We show our platform is efficient stemming from our
automated trajectory planning and execution which eliminates
the need for manual camera positioning and ensures repeat-
able data collection across different trajectories and scenes.
Through use of the laser scanner, the platform does not suffer
from logistical issues with safety and setup that are present
in other GT acquisition methods such as CT that can cause
issues with efficiency both in effort and time spent.

We focused on a limited number of ex-vivo specimens under
controlled conditions, these do not fully capture the complex-
ity of in-vivo surgical environments with tissue deformation,
smoke, blood, and tool occlusions. Therefore further focus on
a wider variety and/or combination of organs, other connective
tissue present in surgery and tools would be beneficial to
address this limitation. The current pipeline also lacks real-
time processing capabilities, which is crucial for clinical use
but not a requirement for dataset creation. While our methods
perform well on ideal data, they degrade under realistic MIS
conditions, underscoring the need for more robust, surgery-
specific algorithms.

Beyond direct 3D reconstruction, the collected data can
serve as training material for feature detection, matching and
3D perception algorithms specifically designed for surgery.
These improved methods can, in turn, be integrated into
RAMIS, AR and assist surgeons with intraoperative decision-
making and guiding towards more data-driven surgical inter-
ventions.
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