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Predicting Aggregation Behavior of Nanoparticles in Liquid
Crystals via Automated Data-Driven Workflows

Yueyang Gao, Niamh Mac Fhionnlaoich, Max Besenhard, Arun Pankajakshan,

Federico Galvanin, and Stefan Guldin*

Gold nanoparticles (AuNPs) have gained prominence as versatile nanoscale
building blocks in chemical and biomedical research. Liquid crystals (LCs) offer
a promising composite matrix for fundamental research and in a variety of
applications. However, optimizing the solubility of AuNPs within the LC matrix
remains challenging due to the interplay of multiple experimental variables,
necessitating extensive combinatorial trials. In this study, an automated AuNP
synthesis platform combined with a Design of Experiment (DoE) framework
was employed to streamline the optimization process. A random forest model,
trained on a relatively small dataset, successfully predicted nanoparticle
aggregate classifications with high accuracy. Aggregate behavior was

further analyzed using UV-vis spectroscopy with automated data processing
for feature reduction. These steps enhanced the closed-loop optimization
workflow by iteratively constructing a generalized additive model for predicting

1. Introduction

Nanoparticles have garnered significant
interest across various technological and
medical fields. Functionalization with
chemical entities (e.g., thiol ligands) ren-
ders gold nanoparticles (AuNPs) a highly
versatile materials system,?] enabling tun-
able properties through co-assembly with
different ligands. Depending on the matrix,
AuNPs-based nanocomposites also show
notable potential in stability, biocompati-
bility, catalytic activity, and size-dependent
optical properties.>*] The tunable nature
of nanoparticle surface characteristics is a
key factor in their versatility as the ligand

spectral characteristics. AuNPs optimized for solubility were deployed

in subsequent experiments for temperature-induced hierarchical assembly
driven by the phase transition of the thermotropic LC. Computer vision
methods were used to quantify the reversibility of LC-AuNP composites during
self-assembly, utilizing entropy values derived from a pattern recognition
algorithm. This study highlights the benefits of integrating cross-disciplinary
approaches to refine analytical workflows, advancing the discovery

of nanomaterial systems with programmable and reconfigurable features.
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shell encompassing the surface not only
stabilizes the NP from aggregation but also
dictates their interaction with the surround-
ing environment. The composition of the
ligand shell, their spatial distribution, and
the completeness of surface coverage are
pivotal in determining the stability and
functionality of nanoparticles.®! These
factors are governed by the reaction condi-
tions during the functionalization and often
exhibit complex, non-linear relationships
that are challenging to decipher through
traditional experimental approaches. Tackling such a complex
and expansive parameter space presents a substantial experimen-
tal burden. Moreover, manual exploration of these conditions is
time-consuming and prone to reproducibility issues.

The advent of automation, including robotic platforms,
has revolutionized high-throughput experimentation, enabling
faster, less labor-intensive sample handling with enhanced
reproducibility,[®} leveraging automation a promising solution
to accelerate the AuNP functionalization within the high-
dimensional parameter space. As an application-independent
methodology which helps reduce the trial numbers,”-*) Design of
Experiment (DoE) can aid in as the initial guidance for construct-
ing the data set since conventional methods like OFAT (one-
factor-at-a-time) are inefficient during the screening analysis, es-
pecially in identifying complex intervariable effects.['®!!] There-
fore, systematic exploration of the functionalization conditions
can be carried out through data-driven approaches to identify the
key factors and interactions with minimal resource expenditure.

Integrating data-driven workflows with advanced model-
ing techniques provides deeper insights into the underlying
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behaviors of AuNPs, facilitating more effective optimization. Ma-
chine learning, especially cluster and pattern recognition algo-
rithms, have become powerful tools in scientific research for
analyzing complex data sets and solving problems involving
overwhelming resource consumption.l”*l The Random Forest
(RF) model has become one of the most well-established su-
pervised algorithms due to its generalizability and flexibility, in
handling both classification and regression problems, known for
good performance on general datasets, with minimal require-
ments on data type and feature correlation.[’>7] It has been
successfully used in many research areas such as monitoring
physiological processes in cells,['®] identifying diseases in serum
samples,”! and predicting structural motifs in spectroscopy.!'®!
During the tuning process of AuNPs functionalization, the high
dimensionality of the feature space normally restricts the con-
ventional analytic workflow for optimization. Therefore, imple-
menting RF model as a data-driven approach to identify opti-
mal experimental factor combinations would benefit the system-
atic investigation of AuNPs, especially for screening active ef-
fects during the functionalization. Since the nanoparticle sys-
tem has the size-dependent optical feature such as the signature
of the surface plasmon resonance (SPR) peak within the visible
range, UV-visible spectroscopy offers an effective tool for ana-
lyzing AuNPs.[23] The shift, location, and bandwidth of the peak
offers valuable information including size, aspect ratio, solubil-
ity, and aggregation.[?*2!l Considering the multiple factors dur-
ing the analysis of spectra characteristics, a generalized additive
model (GAM) is helpful since multivariate function can be rep-
resented as sums and compositions of univariate functions.!??!
Furthermore, the big advantage of GAM approach is their ability
to model nonlinear data while retaining interpretability, there-
fore greatly improving its versatility when multi-interaction ef-
fects need to be considered.?’]

AuNPs functionalized for solubility in a liquid crystal ma-
trix was employed here as a model system. Liquid crystals
(LCs) demonstrate unique properties between those of liquids
and solid crystals,**] known for the widespread application in
the display technology,!®®! also had various applications in op-
tics and colloidal assembly.?-28] However, the dense packing of
mesogens pose significant challenges when incorporating other
material,* such as nanoparticles, often leading to poor solubil-
ity or aggregation.3%32] A prominent approach to overcoming
this involves the functionalization of the AuNPs with a specifi-
cally tailored mixture of short spacer ligands and longer meso-
genic ligands.[*] The spacer ligands create pockets within the
ligand shell,*%T allowing the LC mesogens to permeate and inter-
act with the mesogenic ligands in order to promote the solubility.
This approach necessitates a balanced ratio of ligands as well as
complete and random surface coverage, all of which is subject to
the experimental factors during the functionalized reaction. The
complexity of this system and its sensitivity of the resulting sol-
ubility makes it an ideal model for assessing the effectiveness of
the automated data-driven workflow.

In this work, automated functionalization of AuNPs using a
robotic platform was leveraged to optimize the ligand exchange
functionalization. Additionally, an RF classification model was
developed to predict AuNPs aggregation behavior. Iterated con-
struction of the GAM approach was developed and aided by
the DoE screening, with batch auto-processing of the spectra
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data to help accelerate the optimization of soluble AuNPs seed.
This enabled further experimentation to target the regions within
the design space that did not cause aggregation. Thermotropic
liquid crystal 4’-pentyl-biphenyl-4-carbonitrile (5CB) was then
introduced as the matrix for LC-AuNPs composites to further
study the hierarchical self-assembly behavior of nanometer-sized
AuNPs into micrometer-sized agglomerates. Investigation re-
garding the self-assembly behavior and its reversibility was real-
ized via the computer vision-based methodology, with referenced
entropy and the nearest neighbor distance obtained from the al-
gorithm. This integrated approach opens new possibilities in an-
alyzing nanoparticles aggregation behavior with reversible self-
assembly features based on micrometer-sized periodicities in lig-
uid crystals. Moreover, it may serve as a blueprint for the design
and analysis of nanomaterial systems with applications of NPs in
programmable and switchable functional composites.

2. Results and Discussion

The robotic workstation was constructed with integrated mod-
ules, allowing the automated functionalization of soluble AuNPs
during the experimentation. The downstream analytic toolbox
was then developed to process UV-vis spectra and character-
ization images automatically, which helped analyze the huge
amount of data generated. Furthermore, three phases were pre-
sented for the modular investigation: 1) initial screening, 2) de-
tailed modelling, and 3) final validation. First, a DoE-based strat-
egy was used for an initial screening of the design space and the
results were trained with a random forest (RF) model to classify
aggregation behavior. The second phase involved refining the de-
sign space and developing a Generalized Additive Model (GAM)
to establish a detailed understanding of how experimental con-
ditions affect AuNP solubility in the LC. Finally, validation was
performed by thermocycling the optimized AuNP-LC composite
to confirm its fully reversible self-assembly, with quantification
evaluation based on computer vision analysis.

2.1. Automated Solutions for AuNPs Functionalization and
Data-Processing

To accelerate the sample handling during the functionalization of
AuNPs, an integrated robotic platform was developed as a dedi-
cated workstation. To realize the temperature-controlled reaction
and purified separation during functionalization, the integration
of different hardware modules was required, which is quite a
challenging problem. For instance, centrifugation is essential in
synthetic workflows of AuNPs while conventional devices are not
suitable for modular applications and crucially do not offer the
required control over sample positions.l*”] Herein, a smart cen-
trifuge (SC) with position control function was manufactured
based on our previous prototype.*®] Updated with an adaptive
plate for integration in versatile platforms, the compact and mod-
ular centrifugation facilitates the separation for automated lig-
and exchange procedure during AuNPs functionalization (Hard-
ware details can be found in Figure S7, Supporting Information,
Construction of Robotic Platform). As exhibited in Figure 1a, the
Opentrons robot (OT-2) was used as a foundation for the auto-
mated platform with integrated hardware modules, the general
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Figure 1. a) Schematic of the automated workstation including the OT-2 robot, customized modules, and a computer. b) Cross section view of the
functional AuNPs within LC matrix c) lllustration of the expansive parameter space for designing soluble functionalization of AuNPs. d) Schematic
representation of the automated workflow of fabrication, analysis, and optimization of AuNPs. e) Optimized deck layout of modules in the workstation
for efficient setup. f) Time comparison for manual and automated methods during functionalization procedures g) Automated solutions for downstream
data processing to realize high-throughput analysis. h) Time comparison for processing 50 spectra curves between manual method and different analytic
platforms. i) Automated analytic time of processing 900 images during phase transition for quantification results of information entropy under different
frame sampling steps, enabling good compatibility across operation systems among Mac OS, Win 10 and 11.

setup of this workstation and related software for protocol design-
ing was summarized in a mapping structure in Figure S8 (Sup-
porting Information). Different functional modules including a
thermoshaker with automated clamping system (TSAC) in con-
figuration allowing for reaction temperature and agitation con-
trol (Figure S9, Supporting Information), customized labware
and smart centrifuge were all integrated. To ensure the precise
pipetting process within integrated modules, calibrated coordi-
nates with customized design were programmed to the worksta-
tion (The demonstration can be found in Figure S10, Supporting
Information). Therefore, customized modules can be recognized
by the OT-2, enabling the automated pipetting work to be com-
pleted with high efficiency.

Adv. Funct. Mater. 2025, 2501657 2501657 (3 Of15)

Normally, the synthetic procedure for functionalized AuNPs
needs to replace the capping layer of the Oleylamine-capped
AuNPs (OAm-AuNPs) with specific ligand shell.?*) As demon-
strated in Figure 1b, short spacer ligands (1-hexanethiol, 1-
HT) and long mesogenic ligands (4" -(12-Mercaptododecyloxy)
Biphenyl-4-Carbonitrile, MDD-CBO) were used (molecular struc-
ture can be found in Figure S1, Supporting Information) as the
ligand shell to complete the surface functionalization of AuNPs
core for manipulating its solubility within the LC matrix (5-
CB). Since the ligand shell composition, spatial distribution, and
surface coverage are pivotal in determining the stability and
functionality of the AuNPs, related experimental factors during
the functionalization were considered and listed in Figure 1c,
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where X1-X3 were ligands mole ratio (1-HT to MDD-CBO), re-
action rotation speed, and total moles of ligands; X4-X6 repre-
sented reaction time, reaction temperature, and AuNP concen-
tration. Those key parameters were determined by the design of
the experiment (DoE) as initial guidance with subsequent itera-
tions based on the resulting solubility during the optimization.
The customized workstation realized the controlled reaction for
AuNPs functionalization with specific parameters; as the temper-
ature, rotation speed, and time can be programmed within the
TSAC, while concentration-related factors can be controlled by
the pipetting robot. Therefore, by leveraging lab automation, the
AuNP functionalization process was not only greatly accelerated
but also enabled the exploration of high-dimensional parameter
spaces.

Figure 1d illustrates the standard workflow for fabricating and
analyzing the functionalized AuNPs, following the DoE-based
initial investigation, combined with AuNPs preparation and pu-
rification based on integrated modules. By analyzing the UV-
vis spectrum, screening and characterization results of the sol-
ubility could then be evaluated for iterated new experimenta-
tion rounds. The automated workstation required the joint ap-
plication of several modules; therefore, the deck arrangement of
the platform was optimized to improve the efficiency of setup
(Figure 1e). Since the margin of customized modules could af-
fect nearby deck slots, employing the TSAC and centrifuge into
the left column as the current layout can minimize their space
influence while maintaining functionality during the function-
alization. Other customized labware including the SLA printed
stock, the acrylic and aluminum supporting plate were also man-
ufactured with the standard footprint to fit the deck via plug and
play, enabling great flexibility for automation purposes (Figures
S11-S14, Supporting Information). To evaluate the efficiency of
the integrated workstation, a typical operation cycle comparison
was made between conventional setup with manual experiment
and automation. As shown in Figure 1f, a total operation time
of 47 min was required for the manual step while similar proce-
dures by automation only took ~8 min, saving over 80% time over
the general operation. Specifically, due to the compact and effi-
cient layout of functional modules within the workstation, time
consumption for the device setup part was greatly reduced as the
manual method had to spend more time in constructing the reac-
tor, connecting the temperature controller, testing circulating lig-
uid, and so on, while the automated method only needs to wait for
the initialization of hardware modules. Furthermore, repetitive
pipetting and mixing work was another time-consuming process
for the sample preparation. Herein, automated preparing the re-
action solution with ligands as well as adjusting AuNPs concen-
tration with the dual channel pipetting robot (OT-2) was 5.4 times
faster than the manual process (13.6 min), let alone the precision
and reproducibility.

Since the automated workstation offered a feasible solution for
high-throughput experimentation, fast and efficient downstream
analytic approaches were also required to accelerate the whole
workflow. Aided by the workstation, liquid crystal cells with pla-
nar alignment were used to prepare the LC-AuNPs nanocom-
posite for further characterization. To efficiently investigate the
nanocomposite, a kinetic series of bright-field (BF) images were
automatically captured in real-time via a ZEISS optical micro-
scope system to observe the dynamic diffusion and assembly be-
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havior of AuNPs. Furthermore, the integration of a beam splitter
system within the microscope allowed for the simultaneous char-
acterization of the in situ UV-vis spectroscopy (The synchronized
characterization setup is shown in Figure S15, Supporting In-
formation). This customized procedure was realized with a fixed
sampling step agent, leveraging less labor-intensive loadings dur-
ing the characterization.

As exhibited in Figure 1g, UV-vis spectral curves contained
valuable information as the shift, location, and bandwidth of the
peak can be used to evaluate the AuNPs solubility. Besides, BF
images provided instant intuitive visual results during the dy-
namic assembly process. However, during the typical investi-
gation period, a large number of BF images and related spec-
tra curves would be generated simultaneously, resulting in file
sizes over GB level. Such a huge amount of input data with dif-
ferent formats during the analytic process is a big challengefor
the downstream workflow. First, manually extracting spectral fea-
tures is time-consuming and certainly not efficient. Besides, it is
impractical for humans to give unbiased quantification analysis
of thousands of images based on information entropy. Therefore,
an automated toolbox was developed for batch processing of spec-
tral curves for feature extraction along with quantification analy-
sis of images based on the computer vision methodology for ref-
erenced entropy (see Supporting Information for details, set up
of automated analytic platforms), enabling the reduction of data
dimensionality.

Figure 1h shows the processing time of 50 spectra curves
across different platforms, the analytic toolbox not only pro-
vides great compatibility in both Mac OS and Windows system,
but also has a notable speed compared with manual analysis.
For instance, in the M1 Pro (Mac OS) platform, the total time
consumption only takes 8.26 s (including loading files then pro-
cessing, and packing results), which is 3500 times faster than
the manual process, indicating less than 100 ms was spent on
each curve for actual extraction processing. Furthermore, the in-
stant image analytic process was also realized when an optimal
frame sampling step (FSS) was selected. Figure 1i summarizes
the time consumption of the typical quantification analysis of 900
images (GB level) during the phase transition process. consider-
ing the balance between performance and speed, aA fast and effi-
cient analytic process of 8.69 s was achieved on Win 10 platform
under FSS of 10, enabling the click and collect of the format-
ted quantification results in kB level. Therefore, the automated
toolbox for downstream data processing not only accelerated the
analytic procedure but also provided formatted results for fur-
ther data-driven workflow, enabling a robust foundation for high-
throughput analysis.

2.2. Predicting Aggregation Behavior of AuNPs Based on
Random Forest Model

An initial analytical workflow was developed to segment the de-
sign space into conditions causing or preventing AuNP aggre-
gation, enabling better capture of underlying experimental in-
teractions. To efficiently meet this, selecting a proper classifier
model based on machine learning at the screening step would
benefit the purpose of the prediction of aggregation behavior.
The proposed pipeline for training the model is demonstrated
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Figure 2. a) Working pipeline for training the Random Forest model with the automated platform for classified prediction of NP agglomerates. b) Visu-
alized comparison of the prediction outcome and confidence for classification results of different models. c) Prediction score as a function of training
set size. Each training set was tested by a five-fold cross-validation with outcome averaged from the five tasks in the respective subset. d) Feature im-
portances obtained from the RFC with different depth thresholds. e) The confusion matrix outcome of the RFC, with predicted label versus true label for
visualized comparison. f) The receiver operating characteristic curve comparison of RFC and LRC, with comparison to the chance level (dashed line).

in Figure 2a, with the robotic workstation enabling automated
experimentation for AuNPs functionalization. Since the AuNPs
solubility can be affected by many experimental factors, the de-
sign of experiment was applied to optimize the experimental bud-
get, hence improving the fabrication efficiency of the LC-AuNPs
composites as well. The online imaging system integrated with
the temperature stage was controlled by a program that set a
predefined temperature of 40 °C to get consistent results in the
isotropic phase, a kinetic series of images was captured auto-
matically via the sampling agent at a defined interval. It should
be noted that the loading of AuNPs in the LC matrix was fixed
(6 wt.%) to ensure the evaluation consistency. A comparison of
AuNP aggregation in the LC matrix is demonstrated in Figure S3
(Supporting Information).

Data-driven approaches, especially machine learning, offer
unique opportunities in the analysis of AuNPs functionaliza-
tion. To make the working pipeline more efficient, sampling

Adv. Funct. Mater. 2025, 2501657 2501657 (5 Of15)

of the predicted classification for aggregates needs to be con-
sidered first. Herein, the expansive parameter space of 6 reac-
tion conditions during functionalization were selected as the de-
sign region for the training input, where factors X1-X3 were
ligands mole ratio (1-Hexanethiol to MDD-CBO), reaction rota-
tion speed, and total moles of ligands; X4-X6 represented reac-
tion time, reaction temperature, and AuNP concentration. Ran-
dom Forest Classifier (RFC) was one of the ensembled learn-
ing models based on the bootstrap aggregating (bagging) algo-
rithm, where bootstrap sampling was performed to ensure a
number of equally sized subsets of a dataset are extracted with
replacement. The generated subsets could then be used to train
the parallel weak learners (Figure S2, Supporting Information).
Due to the integration of multiple decision trees, its prediction
result will be less prone to overfitting with better generaliza-
tion ability. Therefore, RFC was found to be good choice for
predicting the aggregation behavior of AuNPs helping to make
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initial classification as well as giving screening analysis for the
key factors.

To validate the baseline performance, the 6 reaction condi-
tions were selected as input features for the initial training step.
A benchmark test was performed among different classification
models to see which was the most suitable, including logistic re-
gression classifier (LRC), decision trees classifier (DTC), and arti-
ficial neuron network (ANN). The performance test was based on
the same training set with a size of 40. To ensure the rationality of
the validation, an external random test set size of 18 which con-
tains equal positive (aggregated) and negative (no aggregation)
samples was adopted (see Tables S1 and S2, Supporting Infor-
mation, Test Evaluation). As shown in Figure 2D, this yielded a
total of 160 runs of training and 72 runs of testing to complete
the evaluation. To better assess the performance, not only the ac-
curacy was considered but also the prediction confidence was as-
sessed for each test.

All the models made false predictions in round 3 except the
RFC. While the prediction confidence showed that the LRC
seemed less likely to make mistakes, it still did not achieve as high
accuracy as the RFC. The ANN model gave correct prediction in
77.8% of the cases with relatively small probability in false predic-
tions. Higher accuracy was achieved by the RFC model with an
overall score of 88.9%, leaving only two false prediction outcomes
on round 6 and 11. Though RFC and ANN both made wrong
classification on round 6, RFC demonstrated a lesser degree of
incorrectness (Tables S3-S6, Supporting Information, Prediction
probability). Furthermore, the overall score of the single decision
tree model was lower than the ensembled random forest, again
indicating a better generalization ability of the REC. In summary,
considering the training cost and dataset requirement, the RFC
was selected for the initial screening and classified aggregation
prediction. Apart from the classification results, it is important
to know the true label of each prediction as it can be used to eval-
uate the algorithm better. The four characteristics that are used to
define the measurement metrics of the RFC are summarized on
the top row of the figure as a reference with a brief explanation
listed below:

TP (True Positive) represents the LC-AuNPs samples which
have been properly classified as exhibiting aggregation under the
isotropic phase. TN (True Negative) represents the LC-AuNPs
samples which have been properly classified as not exhibiting
non-aggregation with AuNPs are soluble in the isotropic phase.
FP (False Positive) represents the misclassified LC-AuNPs sam-
ples that were predicted to exhibit aggregation, but no agglomer-
ates were observed. FN (False Negative) represents the misclassi-
fied LC-AuNPs samples that were not predicted to exhibit aggre-
gation, but agglomerates were found.

It was observed that the two false predictions of RFC were FN
(round 6) and FP (round 11). Therefore, the RFC demonstrated
the best prediction performance with a low false positive rate
(FPR) as well as a high true positive rate (TPR) compared with
prediction labels made by other models (Figure S4 and Table
S7, Supporting Information, Characteristic Labels Calculation).
To further validate the robustness of the RFC prediction score,
a five-fold cross validation (CV) test was conducted. As shown in
Figure 2c, after 5 runs of validation test on each model, an average
score could then be obtained to represent its overall performance.
With the increasing of training set size, the validation score was
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generally improved and approached a maximum of 86.4% with
38 samples. This was in line with the bootstrap aggregation algo-
rithm, as only a subset of samples was used for growing the deci-
sion tree which led to more diverse subsets due to the increased
training set size, providing a minimized out-of-bag (OOB) error
rate in testing against the out-of-bag samples.[***!] As a smaller
OOB error rate was directly translated into a higher prediction
score in validation runs with unknown samples,!'”) which aligned
with the RFC performance.

A built-in feature ranking method of the random forest model
was adopted to further investigate the best features based on their
contribution to the overall Gini coefficient decrease. Figure 2d
summarized the ranking results based on different depths of the
random forest after the grid search (Figure S5, Supporting Infor-
mation), where important features could be directly translated
into key factors related to the AuNPs aggregation. Since the op-
timized hyperparameters of the RFC were obtained under the
depth of 3 after the random selected test set of 19 rounds (Table
S8, Supporting Information), these feature values were taken as
reference. Not surprisingly, the ligands ratio of 1-HT to MDD-
CBO (X1) played a key role with an importance value of 0.31.
However, the reaction temperature (X5) had a more significant
contribution with a feature importance of 0.36 in the classified
prediction of AuNPs aggregation behavior, indicating the temper-
ature during the ligand exchange could result in different surface
arrangements which finally affects the solubility of functional-
ized AuNPs. Interestingly, the relative amount of ligands (X3),
as well as reaction time (X4), also have certain impacts on the
prediction accuracy under different depths of the random forest
model.

To better visualize the prediction performance of classified re-
sults, a confusion matrix with four basic characteristics men-
tioned above was summarized. As shown in Figure 2e, the opti-
mized model had a high TP rate as well as a relative low FP rate,
demonstrating its good performance in classifying the aggrega-
tion behavior of AuNPs. As an alternative metric, the F1 Score
(also known as F Measure) was used to assess the predictive skill
Dby evaluating its class-wise performance rather than an overall ac-
curacy value.[*?] This can be calculated by the following equation
(see Supporting Information, Characteristic labels calculation):

F1Score = Z*Prffc‘mon*Recall (1)
Precision + Recall

The precision measures is calculated by taking the TP values
and dividing them among both TP and FP values, while the re-
call measure is calculated similarly by taking the TP values and
dividing them among both TP and FN values.*}] The F1 Score
of the RFC was 0.869, representing its good performance in both
precision and recall, providing a reliable reference for the initial
screening phase. By analyzing the prediction outcomes associ-
ated with the aggregation probability, a series of threshold values
with TPR and FPR were calculated and presented via Receiver
Operating Characteristic (ROC) curve. The ROC curve can not
only be applied to assess the overall classification performance of
one test but also to compare the performance of two or more.[*]
For the two-class classification problem, a totally random classi-
fier’'s ROC points tend toward the diagonal line and divide the
ROC space, indicating a theoretical chance level of 50%. A brief
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comparison between the LRC and RFC within the ROC space is
summarized in Figure 2f. It should be noted that both models
showed better prediction expectations as ROC curves were above
the chance level under different cut-off values. However, the area
under curve (AUC) for the RFC (0.91) was still 15.2% higher
than that of the LRC, which was in line with a better predic-
tion accuracy., The ROC curve for perfect classification lies in the
upper-left corner or coordinate (0,1) with an AUC of 1.0, mean-
ing no false negatives and no false positives. Compared with the
LRC, the ROC curve of the RFC is closer to the upper-left cor-
ner, demonstrating better classification results. Further quantifi-
cation via the Kolmogorov—Smirnov (KS) score was used to as-
sess models; as a higher KS score represents better separation
performance between the positive and negative samples.[*] The
maximum difference of TPR and FPR at each threshold on the
ROC curves was calculated to obtain the respective KS value. The
KS score of LRC was 0.667 with a threshold of 70.4%, while a
higher KS score of 0.727 for RFC was obtained at the threshold
of 67.7% (Figure S6, Supporting Information), exhibiting a bet-
ter classification performance of RFC. In summary, based on the
multi-dimensional evaluation made above, the ensembled model
of RFC demonstrated satisfactory performance in the initial clas-
sification of AuNPs aggregation behavior, consolidating a good
baseline for the next step of investigation.

2.3. In-depth Optimization of Experimental Conditions with
Generalized Additive Model

To efficiently control the experimental budgets within the AuNPs
optimization, further analysis on experimental factors and their
relationships during functionalization needs to be investigated.
Asan application-independent methodology with a significant re-
duction on trial numbers,/”=! Design of Experiment (DoE) was
used for guidance in the optimization. As shown in Figure 3a,
all the factors were listed in a wind map, serving as the basis
for screening sources of effects (Detailed upper and lower lim-
its determined by DoE were summarized in Table S9, Support-
ing Information). Three total steps of DoE including 58 runs
of the experiment were part of the iteration for factors screen-
ing (see Tables S10-S12, Supporting Information, DoE Analy-
sis), namely the main effects, interaction effects, and high-order
effects, respectively. With acceleration from automated synthe-
sis and integrated devices, in situ UV-vis spectra could be ob-
tained with online-BF images simultaneously. Auto processing
of these spectroscopy greatly meets the purpose of feature re-
duction (see Supporting Information, Data Pre-Processing), as
the efficiency of extracting half width half maximum (HWHM)
and the peak location (44pg) for each curve improved drasti-
cally compared with manual operation. Since the peak loca-
tion is a critical feature for describing the aggregation behav-
ior of AuNPs, extracting this value accurately is essential. Fur-
thermore, automated pre-processing not only streamlines data
formatting but also enhances model construction and training,
ultimately facilitating the optimization of the AuNP synthesis
process.

The initial step of DoE phase was to screen the main active ef-
fects during the AuNPs functionalization, which were considered
to impact the response variables more than expected random
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variation. A list for the main single effect was evaluated by its sig-
nificance of p-value to help distinguish the active ones among all
factors (Figure S18, Supporting Information), the first round of
screening analysis based on the multiple linear regression model
(MLR) showed that the ligands ratio (A), rotation speed (B), and
the reaction temperature (E) were significant. Herein, MLR was
used as the baseline model (MO0) serving as a reference for evalu-
ation, which could be described as follows:

Y (x) =B, + Z B, 2)

where p; represents the coefficient of the respective factor x;, f,
is the constant which serves as the white noise (also known as
the intercept).

Not surprisingly, the fitting performance needed to be im-
proved by investigating other interaction effects. The second
round of screening based on the fractional factorial design (FFD)
gave a summary analysis of the complex interaction between
main effects which were obtained through the initial step. Apart
from the similar main effects distribution, Figure 3b showed that
multi-interaction effects also have certain extent of impacts, for
which large values correspond to greater significance. Since an-
other key factor in the miscibility of the functionalized AuNPs
with the LC was the reaction temperature (E), which may be
linked to nanoscale phase separation. A random distribution of
the two ligands in the ligand shell maximizes the free volume
and accessibility to each interaction site, promoting miscibility.
However, phase separation negatively impacts both free volume
and ligand accessibility, ultimately reducing overall solubility. Ex-
perimentally, higher temperatures have been demonstrated to
facilitate diffusion of ligands across the NP surface, potentially
promoting this phase separation of binary ligand mixtures.[47]
Besides, specific combination of interaction effects had different
significance for responses, which should also be considered dur-
ing the model construction. As illustrated in Figure 3¢, consid-
ering the complexity of the main effects combined with multi-
interaction effects in the first two steps, a general additive model
(GAM) together with DoE screening was integrated to realize the
iterated model construction from MO to M1. One key advantage
of adopting this GAM methodology is their ability to model non-
linear data while retaining interpretability, enabling simplified
structure compared with the response surface model, therefore
greatly improving its versatility.[?)] Furthermore, high-order ef-
fects among selected factors were also studied with comparison
to build the final model (Figures S19 and S20, Supporting Infor-
mation), with detailed description on their relationships in the
supporting information (GAM Construction). Therefore, a sim-
plified format of the GAM model which contains all mentioned
features could be written as:

Y= A ZH Al + 2 AT+ 0 (3)

where A; represents the main effects of ligands ratio, reaction
speed, and reaction temperature, respectively; A; are the binary
multi-interaction among the active effects; A?" is the high-order
effects interaction with a limited magnitude parameter to avoid
over fitting, ¢ is a constant accounting for the white noise.
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Figure 3. DoE analysis with generalized additive model (GAM) training from UV-vis spectra for optimization. a) Workflow for training the GAM with
acceleration from the auto data process to get the optimized NP seed. b) Summarized source of effects from the second phase of DoE analysis, exhibiting

the multi-interaction effects for different responses. c) Proposed iteration

s of the GAM, including DoE analysis, baseline choice, model construction

based on screening features. d) Adjusted R square values among different features in the construction of the GAM. e) Predicted HWHM value versus
actual HWHM value by training the GAM with the fitting of plots (dashed line) and validation. f) Predicted peak location (Aspg) versus actual peak
location (Agpg) by training the GAM with the fitting of plots (dashed line) and validation. g) Percentage errors associated with the predicted HWHM and

peak location (4spg) in the heat map showing the error distribution.

Figure 3d presents the training results for different features
based on the FFD datasets from rounds 2 and 3. It is important to
note that the iterated model was trained separately for each spec-
tral feature. The adjusted R? values for HWHM and peak location
were calculated individually to assess the respective performance
of the iterated models. The MLR baseline model (M0) could al-
ready reach a good prediction for HWHM, but it wasn’t accu-
rate enough to describe the response of peak location, as the ad-
justed R square was not satisfied due to high deviations from the
fitting result. Iterated model M1 with multi-interaction effects
which considered binary interaction of B and E showed improve-
ment in the two responses compared with the baseline model.
However, lack of high-order effects still restricts its interpreta-
tion ability. Besides, only one combination of multi-interaction
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effects may not cover enough features during the training pro-
cess although their significance may be close to the threshold.
Overall, after taking consideration of the potential binary com-
binations (A:B and A:E) and the second-order effects of A, the
final GAM model sufficiently described the data compared with
previous models, with adjusted R square for both responses in-
creased, especially the peak location got significantly better fitting
outcomes. These results highlight the non-linear dependence be-
tween the molar ratio of the two ligands (Factor A) and the char-
acteristics of the SPR peak. Miscibility between the AuNPs and
the LC depends on both enthalpic and entropic contributions.
Soulé et al presented a model describing this balance wherein the
enthalpic effects were directly proportional to the number of in-
teraction sites between the LC and the mesogenic ligands.[*44] In
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contrast, the entropic contribution depended on the free volume
available within the ligand shell; as a result, homoligand shells
exhibited minimal entropy, with a maximum entropy observed at
an intermediate mixture of the two ligands. This non-linear be-
havior was also confirmed experimentally in previous studies,**
and is reflected in the quadratic term for the molar ratio of the lig-
ands in Table S13 (Supporting Information) for GAM construc-
tion.

After the iterated process mentioned above, the constructed
ensembled GAM model was then trained with the entire facto-
rial dataset (excluding one center point) for further evaluation.
In general, the prediction results of HWHM showed good fit-
ness with the actual value (Figure 3e) based on the GAM model,
with evaluation metrics including the mean square error (RMSE)
as well as R square (0.946) confirmed its performance. External
validation set also showed a good prediction score with a low
RMSE of 4.63, exhibiting a consistent quantile distribution with
the residual error (Figure S21, Supporting Information). Simi-
larly, training results for the peak location were also summarized
in Figure 3f. Although the predicted values showed a fluctuation
tendency toward the higher wavenumber range, the overall per-
formance was still better compared with previous models, with
a high R square of 0.952 and low RMSE of 1.708 demonstrating
its improved fitness and interpretation. The heat map shown in
Figure 3g gave a visualization summary of the GAM model in
the percentage prediction error for both responses, with dashed
lines serving as the reference of zero. Both the percentage error
of prediction followed a normal distribution, with similar quan-
tile result summarized in Figure S22 (Supporting Information).
The distribution of prediction errors in the heat map also showed
that the GAM model could give more accurate results within the
fourth quadrant where it tends to overpredict the peak location
(Aspr) value when underpredicting the HWHM and vice versa.
More discrete prediction errors were found for the peak location
(Agpg) value compared with HWHM, especially in the third quad-
rant of the map. Nonetheless, the GAM model was able to pro-
vide prediction error for both responses within +10%. Since the
two-measurement metrics played an important role in describ-
ing the aggregation behavior of AuNPs within the LC matrix, op-
timal combination of experimental factors with description were
summarized in Table S14 (Supporting Information) based on the
predicted results via the GAM algorithm. Therefore, with the op-
timized reaction conditions for guidance of automated AuNPs
functionalization, the preparation of soluble AuNP seed could be
accelerated via the data-driven workflow, which then paved the
way for the further exploration of its reversible self-assembly be-
havior within the LC matrix.

2.4. Validation and Thermocycling of the Optimized AuNPs-LC
System

Based on the screening result via the data-driven workflow,
AuNPs optimized for solubility in LC matrix (LC-AuNPs) were
fabricated for thermocycling validation. As exhibited in Figure 4a,
the typical cooling dynamics of the LC phase transition and the
subsequent diffusion of AuNPs into the nematic phase were
recorded through bright field microscopy images with in situ
UV-vis spectroscopy. Herein, the LC-AuNPs composite was first
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heated to 50 °C for 60 min and then cooled to 25 °C at the rate of
1 °C min~!. During this process, the phase transition of the LC-
AuNPs composite was observed ~32.8 °C, which is in line with
previous studies that reported on the decrease of phase transition
temperature due to the existence of AuNPs.[3630]

The temperature-induced self-assembly exhibited two stages.
In the first 20 s, compartmentalization occurred, creating AuNP-
enriched and AuNP-depleted regions, with the enriched areas
displaying spinodal-type decomposition (Figure S23, Supporting
Information). By 30 s, these patterns evolved into distinct AuNP
agglomerates, marking the second stage. As randomly aligned
domains from the phase transition interacted with the LC cell
margins, uniformly aligned nematic domains began forming
post-isotropic-nematic transition. A zoomed-in view of a specific
area (dashed box) is shown at the 30s. The growth of these uni-
formly aligned nematic domains, facilitated by LC cell alignment,
led to AuNP segregation in gap regions, resulting in increased
AuNP concentration over time (Figure S24, Supporting Informa-
tion). These findings are consistent with our previous studies
on the microscale assembly of AuNPs.3*l In situ UV-vis spec-
troscopy effectively monitored AuNP behavior during the pro-
cess. As shown in Figure S25 (Supporting Information), trig-
gering the phase transition process #32.5 °C led to a sharp de-
crease in Abs, ., aligning with pattern changes in newly formed
nematic domains and indicating rapid partitioning of AuNP ag-
glomerates in less ordered regions. Utilizing an automated ana-
lytic toolbox, absorbance values were quantified from numerous
spectra during the dynamic process. (Figure S26, Supporting In-
formation).

The reversibility of the assembly process was further ex-
plored by the automated toolbox, where spectra features includ-
ing HWHM and peak intensity were extracted for evaluation.
Herein, the LC-AuNPs material was heated up from the room
temperature (1 °C min™!), further maintained at the terminal
temperature of 40 °C to validate the dissociation of the agglom-
erates when heated from the nematic to the isotropic phase.

As exhibited in Figure 4b, this reversible self-assembly during
heating process had a significant transformation during the first
305, as the patterns changed from isolated AuNP aggregations to
continuous merged margins during the phase transition period.
With increasing temperature (Figure 4c), the AuNP agglomerates
gradually redissolved into the LC matrix. Similarly, the spectra re-
sults did not exhibit any difference under the nematic phase un-
til the phase transition process was triggered ~33 °C (Figure 4d).
As the absorbance intensity increased drastically then gradually
dropped down until reached a steady state, with detailed results
in Figure S27 (Supporting Information). HWHM was then ex-
tracted from the UV-vis spectra via our automated analytic tool-
box to accelerate the solubility evaluation of the thermocycling
process. Figure 4e shows the variation of HWHM values dur-
ing a typical cycle of reversible test. The margin of clusters could
be classified as different phase regions where the value of dots
tended to accumulate in the higher space for nematic phase and
vice versa. Besides, a broadening ~10-15 nm of HWHM values
were observed from the isotropic region to nematic region, in-
dicating the occurrence of AuNPs agglomerates after the phase
transition period which was in line with previous studies which
reported that the aggregation would result in a broadening of the
SPR peak in the absorbance spectra.>152]
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Figure 4. The reversibility of the AuNPs agglomerates with self-assembly features during thermocycling. a) A typical kinetic series of bright field mi-
croscopy images of the LC-AuNPs composite during the cooling process, the images were captured from 33.4 °C (1°C min~"). b,c) BF images recorded
the reversible behavior of LC-AuNPs composite heated from 32.4 °C (1 °C min~'), a terminal temperature of 40.0 °C was maintained for an additional
20 min to exhibit its reversibility to the initial state. d) In situ UV-vis absorbance spectra were recorded during the heating process, exhibiting the typical
increase of absorbance value. e) Half width at half maximum (HWHM) was extracted during the cooling-heating cycle between the temperature range
of 25 to 40 °C, including the isotropic and nematic phase. f) Variation of SPR peak value and HWHM as a function of reversible cooling-heating cycle.

A series of cycling aging tests were conducted to test the ro-
bustness of reversibility. Typically, the composite was first heated
to 40 °C and maintained for 15 min and then cooled to 25 °C
(1 °C min™'), an extra duration of 15 min was maintained once
it reached the terminal point. Based on the fast feature extrac-
tion toolbox, the maximum absorbance (SPR peak value) under
different phases as well as the HWHM values were captured effi-
ciently and then summarized. As shown in Figure 4f, the typ-
ical responses from the absorbance spectra didn’t exhibit any
significant difference after 8 rounds of reversible cycling test. A
slight increase of SPR peak value was observed during the 6™ cy-
cling test but soon recovered to the initial state. Meanwhile, the
HWHM values exhibited robust performance without becoming
broader even after the whole 8 cycling rounds, especially under
the isotropic phase. It should be noted that the final responses
even had the same value as the initial state, indicating the good
reversibility and high robustness for the temperature-induced
self-assembly behavior, which could be important in the periodic-
ity application of microstructure features. Thus, compared with
manually locating the data point within the curve for calculating
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spectral features, the downstream analytic toolbox enabled high-
throughput analysis (HTA) based on large amounts of spectra
curves became feasible and efficient during the thermocycling
of the phase transition process.

2.5. CV-Based Methodology for Quantified Analysis of AuNPs-LC
System

In order to quantify the reversibility of agglomerate formation
during the self-assembly, i.e., whether the assembly would fi-
nally fully dissolve upon heating to the isotropic state at the re-
quired temperature, referenced information entropy was adopted
to assess the LC-AuNPs system. The information entropy (also
known as Shannon’s entropy) could serve as the basis for evalu-
ating the uniformity of a system, >3] thus it could be used here
for statistical analysis of pixel values in the images during the
self-assembly period. A previous study introduced this approach
successfully.>>] However, it required manual conversion of each
image into grids and lacked the capability for batch processing

© 2025 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 5. Computer vision based (CV) methodology for the image analysis of self-assembly behavior. a) Information entropy of the LC-AuNPs composite
during its heating from 32.5 °C with key frames extracted. b) Grayscale intensity distribution analysis at different temperatures. c) Grayscale intensity
distribution at the terminal temperature (40.0 °C), exhibiting its fully reversible features with a tendency to the normal distribution. d) IPO structure of
the analysis toolbox based on the CV methodology. e-g) Image recognition for NP aggregates under different cooling rates, with visualization results of
the closet pair distance shown by Matplotlib. h) Application of our toolbox for efficient analysis of information entropy at different cooling rates under
high resolution. i) Aggregation area results obtained from the toolbox. j) NND results obtained from the Divide & Conquer algorithm exhibiting the
reversible aggregate behavior of AuNPs.

of high-resolution files. Additionally, due to manual limitations,  ting close to 1. As the variation in absorbance for each pixel in-
it couldn’t display the dynamic range distribution of grayscale  creases, grayscale values show variation (from 0 to 255), thus
intensity within the images. To tackle the automated batch pro-  the referenced entropy will reduce. As shown in Figure 5a, the
cessing and further reveal the bottom-level reasons for informa-  quantified referenced entropy (Eg.) based on pixel-level HTA
tion entropy variation, the high-throughput analysis (HTA) of the =~ during the dynamic phase transition process was calculated
greyscale intensity in pixel level within images is required though ~ via the automated toolbox, along with fast extraction of key
challenging. Regarding its analytic unit was the pixel value, com-  frames among GB-level files. Detailed description can be found
puter vision (CV) methodology with imaging libraries of Pillow  in the supporting information (CV-based Algorithm for Entropy
and cv2 was used for the algorithm development. Calculation).

For a perfectly homogenous system, each pixel should have It can be found that during the typical reversibility test (heating
an equal grayscale value, resulting in a entropy per pixel get-  rate: 0.1 °C min~!) the referenced entropy of LC-AuNPs system
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was ~0.959 before the phase transition period as the existing NP
agglomerates formed during the nematic phase affected the uni-
formity of the grayscale distribution. However, the entropy value
dropped drastically to 0.867 per pixel at the onset of the transition
~33 °C, which was in line with the key frame as numerous small
aggregations could be observed during this period. After that,
the referenced entropy showed a continuous logistic increasing
tendency with the diffusion of AuNPs into the LC matrix at the
isotropic state, thus demonstrating homogeneity.

To further reveal the bottom-level reasons for the variation,
a detailed statistical HTA of grayscale information for all pixels
(resolution: 1936 x 1456p, N = 2.82 x 10°) during the dynamic
process was summarized in Figure 5b, which showed the under-
lying grayscale intensity distribution for those key frames. The
distribution of the grayscale intensity before the phase transition
period showed a broad trend across the range from 0 to 255, es-
pecially at the onset ~33 °C, as both the population in the high-
intensity range (224 to 255) and low-intensity range (0 to 64) in-
creased significantly, indicating a higher degree of disorder for
the grayscale intensity of all pixels, which was not only consis-
tent with the related keyframe but also the drastic decrease of the
referenced entropy.

Although further distribution after 35 °C showed little dif-
ference as the diffusion of AuNPs carried on continuously, the
grayscale intensity tended to converge into a narrower range
from 64 to 192. It should be noted that the final distribution of
grayscale intensity(t,, = 60 min) exhibited in Figure 5c even con-
verged within a smaller range of 32 (from 128 to 160) and fol-
lowed a Gaussian distribution after an extra period of 60 min at
the terminal temperature of 40 °C, indicating a quite uniform
state compared with the initial phase transition period, also in
line with the homogenous BF image. With the help of CV-based
methodology, the automated batch processing of quantification
entropy could not only greatly improve the working efficiency by
analyzing GB-level images but also demonstrate the underlying
causes from the statistical view in analyzing the reversible self-
assembly behavior of AuNPs via the HTA method in pixel level.

Apart from the global metrics of reversibility based on the ref-
erenced entropy, further investigation via pattern recognition was
also conducted to give a specific analysis of individual agglomer-
ate behavior. Since the size and distribution of AuNPs aggrega-
tion would also be affected by the temperate rate during the initial
phase decomposition (Figure S28, Supporting Information), the
distance between each agglomerate is important in describing its
assembly behavior. Therefore, geometry features calculation, as
well as Nearest Neighbor Distance (NND) value were included in
the evaluation metrics for the image recognition algorithm. Con-
ventional analytic methods often require manual marking within
each image for calibration of length scale, this time-consuming
and repetitive approach greatly restricts the investigation among
agglomerate systems. To tackle this challenging problem, pattern
recognition was also required in the downstream analytic process
for image files.

The summarized Input-Process-Output (IPO) model in
Figure 5d exhibits the workflow of our CV-based toolbox, the al-
gorithm could automatically realize the pattern recognition of
AuNPs agglomerates on CV analysis with batch of images as
the input source. Contours and coordinates of agglomerates were
then calculated and plotted for geometric features, along with the
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Divide & Conquer algorithm served as the solver for the NND
value (Detailed description can be found in Supporting Informa-
tion, Image Recognition for NND algorithm). A series of different
cooling rates were employed during the analysis of temperature-
induced self-assembly behavior of NP arrays. Figure 5e showed
the recognized contours (green margins) of the BF image cap-
tured under the nematic phase at 26 °C with a cooling rate (CR)
of 0.1 °C min~', with related geometric centers extracted into the
coordinate system scaled from the input image. Under the low
CR value (0.1 °C min~?!), NP agglomerate tends to disperse sep-
arately and are further spaced from each other, with a relatively
high NND value of 237.3 pm as well as a bigger aggregation area
of 1512.4 ym? obtained from the CV analysis. The closest pair
of NP agglomerates was marked with a red line in the pattern
recognition figure for guidance. With the increase of the cool-
ing rate (Figure 5f), the size of AuNP agglomerates tends to re-
duce while the number of aggregates increases drastically, espe-
cially in Figure 5g, as analyzing such a typical image is tough
and time-consuming for manual processing let alone numerous
BF images during the dynamic process. Accelerated by the ana-
Iytic toolbox, solving such kind of problems became feasible as a
clear comparison could be made between Figure 5g,e, where the
marked closest pair was quite close to each other at the cooling
rate of 2.0 °C min~!, indicating a significant lower NND value
along with more aggregates under the same scope.

Taking advantage of the batch processing performance, thou-
sands of BF images (10 GB-level) under different cooling rates via
high-throughput analysis were realized, with summarized curves
in Figure 5h for comparison. Similar to the reversibility test men-
tioned above, the referenced entropy showed a converse varia-
tion tendency. However, a temperature drift of the minimum E ¢
was observed (especially under higher cooling rates), this was
mainly caused by the interfacial thermal resistance (ITR) between
the LC cell and the temperature control stage, as a higher cool-
ing rate means more heat flux among the through-plane direc-
tion among the matting surfaces where interfacial micro-gaps
are filled with nonflowing air with very low thermal conductiv-
ity (0.026 W m~! K71),5% a thermal interface material (TIM)
might be considered. Herein, considering the application sce-
nario including the optical path, a transparent TIM along with
matched refractivity might be needed for future investigation. Al-
though a lower CR value means more accurate results, signifi-
cant time consumption was also generated. Thus, to reach a bal-
ance between the accuracy and efficiency, the optimal cooling rate
of 1.0 °C min~! was selected during the previous experimenta-
tion. Besides, the average aggregation area under different cool-
ing rates were also obtained via the CV-based toolbox. As shown
in Figure 5i, the average area values fitted well with the logis-
tic trend decrease, remaining a relative stable level ~100 um?.
Similar trend of results for the NND values was also found in
Figure 5j, where the distance for the closest pair of agglomer-
ates dropped drastically with the increase of cooling rate over
0.5 °C min™", further exhibiting a relative low level under 40 pm.
Overall, with the help of CV-based toolbox, quantified evalua-
tion for the LC-AuNPs was realized with the high-throughput
analysis in the downstream workflow where the aggregation be-
havior of NP agglomerates showed some regular patterns, as a
higher cooling rate (5 to 20 °C min™') would cause more ag-
gregates along with smaller size and spacing, while the average
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area and NND value would follow a logistic variation trend with
the cooling rate increase. Thanks to the image recognition algo-
rithm based on computer vision methodology, large number of
imaging files could be processed efficiently with our CV-based
toolbox while generating useful data library for quantification
analysis to better understand the aggregation behavior of AuNPs
during the self-assembly process. More importantly, the outlined
workflow with acceleration from CV-based approach has the po-
tential to be implemented in other nanomaterial systems (e.g.,
flow chemistry for iron oxide NPs, IONP), where continuous pro-
duction was generated for rapid analysis about its nucleation or
growth.

3. Conclusion

In this study, automated functionalization of AuNPs via the OT-2
platform, combined with a downstream analytic toolbox provided
the basis for an efficient data-driven workflow. A random forest
model was used to give classified prediction on AuNP aggregates
behavior. The ensembled RFC model could improve the feature
identification of agglomerates to facilitate the initial screening of
given factors. The implementation of the RFC workflow revealed
that on relatively small training sets of 40 groups, high accuracy
with prediction confidence could be achieved. More importantly,
feature importance during the construction of the random forest
also helps explain the experimental factors which can be of great
value in determining the aggregation behavior of AuNPs. Be-
sides, with the help of DoE screening, the total experimental bud-
get could be controlled under a relatively small scale, which accel-
erated the AuNP optimization procedure with iterated construc-
tion of the GAM algorithm. The combined workflow implied that
the analysis of AuNPs aggregation behavior does not require an
extensive set of synthetic factors to cover the full optimization
space. Instead, a smaller and rational experimental budget via
DoE can be used to train the model for the prediction of AuNP
aggregates behavior along with its spectral characteristics. The
optimized soluble AuNPs were efficiently evaluated under ther-
mocycling by the extracted spectral features from the automated
analytic toolbox. Combined with CV-based methodology, batch
processing of GB-level images was realized for analyzing refer-
enced entropy of the LC-AuNPs system during the self-assembly
process. Further revealing the underlying causes of the variation
from the greyscale intensity distribution on pixel-level via high-
throughput analysis. Pattern recognition algorithms were inte-
grated in analyzing AuNPs agglomerates for quantified NND val-
ues, which followed a logistic variation trend with the cooling rate
increase. Accelerated by the downstream analytic toolbox, the au-
tomated data-driven workflow can aid in the design and efficacy
improvement of soft nanomaterial systems that target function-
alized NPs for future applications toward programmable and re-
configurable materials.

4. Experimental Section

Materials: The gold salt, hydrogen tetrachloroaurate (IIl) hydrate
(HAuCl,-3H,0, 95%) was purchased from Fisher scientific (UK). The
dichloromethane (DCM), t-butylamine-borane complex (tBAB, 97%), and
oleylamine (OAm, with C18 content: 80%—-90%) were supplied by Sigma-
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Aldrich. The absolute ethyl alcohol (EtOH) was obtained from Fisher scien-
tific (UK). The n-Octane (99%) and 1-hexanethiol ligand (1-HT, 96%) were
purchased from thermos scientific. The long mesogenic ligand, 4 "-(12-
Mercaptododecyloxy) Biphenyl-4-Carbonitrile (MDD-CBO) was synthe-
sized following the adapted methodology of Milette et al.3* Oleylamine-
capped gold nanoparticles were obtained via a modular process, detailed
synthetic and analytic procedures could be found in the previous study.[’]
The liquid crystal of 4-cyano-4’-pentylbiphenyl (5-CB, 99.8%) came from
Synthon chemicals with a phase transition temperature of 34 °C. All
reagents were commercially purchased and used as received without fur-
ther purification.

Hardware Platform: Opentrons (OT-2) pipetting robot together with
the P1000 Gen2 and P50 Gen1 were used for liquid handling. An INHECO
thermoshake AC (TSAC) with single temperature control unit (STC) was
deployed to realize the automated reaction with rotary mixing and tem-
perature control. The program for controlling the home-made smart cen-
trifuge was written in C++ via Arduino IDE. Customized labware and ac-
cessories were constructed from a range of 3D printed (SLA), CNC, and
laser cut components. Detailed information and the assembly instruction
were summarized in the Supporting Information.

Automated AuNPs Functionalization: The ligand exchange (LE) pro-
cess for automatic protocols involves four steps: 1) solution mix, 2) re-
action quench, 3) solvent removal, and 4) centrifugation with purification.
The entire process was realized through the combined application of the
TSAC module and customized labware within the OT-2 platform. Dur-
ing the LE protocols, a customized well plate was used for the temporary
placement of reaction tubes. Specific reaction conditions were determined
by the DoE and subsequent experimentation. A detailed description for the
automated protocols along with proposed procedures can be found in the
Supporting Information.

Computational Module: ~ For model training, classification of the AuNP
aggregation behavior was achieved through the random forest model,
which was trained by the five-fold cross-validation approach. The RF clas-
sification model was implemented using the open sourced scikit-learn
library,138] with version of the CART algorithm for machine learning.[>°]
Besides, for classification models working on correlated neighbor factors,
the optimal feature-to-sample ratio could be approximated by k = v/m
selected in the final model, where m represented the total numbers of
features.[60.61] Therefore, at every node level in the RF, optimized features
via the bootstrap sampling is considered for partitioning with an ensem-
bled result for each decision tree summarized.[61:62] The criterion for par-
titioning the sample space (splitting principle) at each node level was eval-
uated according to the Gini coefficient. Detailed descriptions of the algo-
rithm about the feature selection, model training, and validation can be
found in the Supporting Information, along with the summary of train-
ing parameters of the classifier with evaluation metrics (Tables S7 and S8,
Figures S2 and S3, Supporting Information). Automated processing of the
UV-vis data focused on extracting key features, such as the half width half
maximum (HWHM) and the peak location (Agpg) from the spectra infor-
mation. The background signal was removed from the original spectra us-
ing the proprietary OceanView software provided with the UV-vis module
(Ocean Optics, QE Pro-65000). Since the in situ UV—vis measurements
were conducted using a liquid crystal cell, signal calibration was performed
for both light-field and dark-field backgrounds to ensure consistency and
minimize artefacts. Manually obtaining the peak location and width from
the spectra was time-consuming and could result in deviations due to hu-
man error or bias. The spectra of the LC-AuNP composite were obtained
from the visible range to near IR, with a sampling interval of 0.78 nm, rep-
resenting over 2000 data points. Therefore, the auto process and analysis
of the UV-vis data could not only simplify the spectra with key features
(see Supporting Information, Data Pre-Processing) but also greatly help
format the data library for machine learning. The regression model for
predicting spectral features of LC-AuNPs composites was based on the
multivariate linear regression (MLR) model, with iterated construction of
generalized additive model (GAM) algorithm. Three rounds of DoE anal-
ysis were carried out with iteration to build the GAM model including fea-
tures of the main effects, multi-interaction effects, and high-order effects
to obtain an optimal fitting performance. Detailed description of the model
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construction can be found in the Supporting Information, together with
the summary for the residual quantile distribution of different responses
(Figure S22, Supporting Information).

Image Recognition: Computer vision (CV) analysis for entropy was
mainly based on the Pillow imaging library (PIL), where the BF images
were first converted into the grayscale format for array analysis with statis-
tic counts. The sampling step was set as 1's, as shorter imaging intervals
(means high frames per second) resulted in undue computational costs
due to the high resolution of the pictures. The referenced entropy calcu-
lation algorithm for NP aggregations reversibility was based on the gray
value distribution from each pixel of the input image, with further intensity
calculation for summarized information entropy as well as normalization
to get the final referenced entropy. Detailed information can be found in
the Section S13 (Supporting Information). Besides, cv2 from the OpenCV
library was used for the pattern recognition during the processing of in-
put images,[%3] aiming to get contours information of agglomerates with
a general step of grayscale conversion followed by a Gaussian smooth-
ing. Thresholding was then applied to create a binary-based library of the
pixel information as well as the geometric features of each agglomerate.
Nearest Neighbor Distance (NND) calculation was based on the Divide &
Conquer algorithm to balance accuracy and efficiency, with a detailed de-
scription along with comparison of brute-force search approach summa-
rized in Supporting Information (Image Recognition for NND algorithm).

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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