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a b s t r a c t

Spatio-temporal information processing is fundamental in both brain functions and AI applications.
Current strategies for spatio-temporal pattern recognition usually involve explicit feature extraction
followed by feature aggregation, which requires a large amount of labeled data. In the present
study, motivated by the subcortical visual pathway and early stages of the auditory pathway for
motion and sound processing, we propose a novel brain-inspired computational model for generic
spatio-temporal pattern recognition. The model consists of two modules, a reservoir module and
a decision-making module. The former projects complex spatio-temporal patterns into spatially
separated neural representations via its recurrent dynamics, the latter reads out neural representations
via integrating information over time, and the two modules are linked together using known examples.
Using synthetic data, we demonstrate that the model can extract the frequency and order information
of temporal inputs. We apply the model to reproduce the looming pattern discrimination behavior
as observed in experiments successfully. Furthermore, we apply the model to the gait recognition
task, and demonstrate that our model accomplishes the recognition in an event-based manner and
outperforms deep learning counterparts when training data is limited.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Spatio-temporal pattern recognition is a fundamental task in
any AI applications. For instance, understanding video con-

ents, such as human actions, requires recognizing the spatio-
emporal patterns embedded in image sequences that define the
ontents (Laptev, 2005; Niyogi & Adelson, 1994; Xie, Sun, Huang,
u, & Murphy, 2018). Deep neural networks (DNNs) have made
reat success in static image recognition, whose performances are
ven better than that of humans in some large image sets (LeCun,
engio, & Hinton, 2015). However, for spatio-temporal pattern
ecognition, the field is still lacking promising methods (Herath,
arandi, & Porikli, 2017). There are two major challenges for rec-
gnizing complex spatio-temporal patterns. One is on extracting
epresentative features of spatio-temporal patterns. Unlike recog-
izing images, where a DNN can learn the representative features
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of objects via supervised learning from large data, in tasks such as
video analysis, the complexity of the representational space and
shortage of labeled data prevent us from adopting the same strat-
egy. The other challenge is on extracting the temporal structure,
in particular, the temporal order, of image sequences, which is
crucial for spatio-temporal recognition but remains unsolved yet.

The structures and functions of real neural systems can inspire
us to develop efficient computational models for AI applications,
for example, the hierarchical nature of information processing
in the ventral visual pathway has inspired the development of
DNNs (LeCun et al., 2015). Here, we delve into neural systems for
inspiration to develop a model for spatio-temporal pattern recog-
nition. A large volume of experiments has demonstrated that the
brain can discriminate movement and sound patterns extremely
fast. Therefore we turn to the visual and auditory neural pathways
and try to emulate the underlying neural mechanisms with a
canonical computational model. We find that the high efficiency
of spatio-temporal pattern processing in neural systems can be
largely attributed to the fact that the brain employs a pre-defined
circuitry to pre-process data, which can be modeled as a reservoir
network, followed by a decision-making circuitry to integrate

evidence over time.
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Fig. 1. The structure of RDMN. It consists of two modules, a reservoir network, and a decision-making network. A spatio-temporal pattern is first processed by the
eservoir module and then read out by the decision-making module. The reservoir module consists of several forwardly connected layers, with each layer having a
arge number of recurrently connected neurons. The decision-making module consists of several competing neurons, with each of them representing one category.
ach decision-making neuron receives inputs from the reservoir module and they compete with each other via mutual inhibition, with the winner reporting the
ecognition result.
b

w
d

With regards to the visual pathway, we note that in addition to
he ventral and dorsal cortical pathways, there exists a subcortical
athway from the retina to the superior colliculus (SC), which can
apidly recognize motion patterns (De Gelder et al., 2008; Ffytche,
uy, & Zeki, 1995; Wei et al., 2015; Zeki, 1998). In this shortcut
athway, as opposed to the ventral hierarchical one, no explicit
eature extraction occurs; rather it resembles the idea of reservoir
omputing (also called liquid state machines (Bertschinger &
atschläger, 2004) or echo state machines (Jaeger, 2001; Jaeger
Haas, 2004; Yildiz, Jaeger, & Kiebel, 2012)), where the retinal
etwork holds the memory trace of external visual inputs via
bundant recurrent connections among neurons, such that the
patio-temporal structure of a motion pattern is mapped into
specific state of the network; consequently, a linear network

n SC, specifically the superficial layer of SC which receives the
etina input directly, can read out the motion pattern. Notably,
ne of the four major types of cells in the superficial layer of SC
s the wide-field vertical cell (May, 2006), whose prominent mor-
hological characteristic is the huge dendritic tree that allows for
patial sampling and integration over a large retinal area (Gale &
urphy, 2014). The role of wide-field cells is to provide a function
f integrating the retinal input and feed them into downstream
reas. Also, wide-acting inhibition was observed between wide-
ield vertical cells (Gale & Murphy, 2014; May, 2006), possibly
ediating a winner-take-all computation for discriminating the
ategory of the input pattern.
With regards to the auditory pathway, the first two relays

re the inner ear and the cochlear nuclei. In the inner ear, inner
air cells are essential for converting mechanical energy into
hanges of membrane potentials. Inner hair cells provide 95% of
he input to spiral ganglion cells, which in turn yield the exclusive
utput fibers from the inner ear to the cochlear nuclei (Kiang,
ho, Northrop, Liberman, & Ryugo, 1982). Each spiral ganglion
ell receives input from only one inner hair cell, while each inner
air cell synapses on about 10 spiral ganglion neurites (Spoendlin,
974). This structure is reminiscent of the dimensionality expan-
ion observed in various parts of the brain, such as the cerebellum
nd the dentate gyrus of the hippocampal formation (Cayco-
ajic & Silver, 2019), as is often touted as a key component in
eservoir computing (Lukoševičius & Jaeger, 2009). In the cochlear
uclei, the octopus cell is one of the four principal cells with large
endritic trees that can receive inputs from many cochlear nerve
ibers, mirroring the wide-field vertical cell in SC. These neurons
re broadly tuned and respond to vowels, musical sounds, and the
nset of broadband sounds found in consonants or clicks (Levy &
ipke, 1997).
To sum up, we see that both the visual and auditory pathways

hare a canonical circuitry mechanism for fast spatio-temporal
attern recognition, which can be captured by a reservoir net-
ork followed by a decision-making circuitry. Motivated by this
bservation, we propose a brain-inspired computational model

or spatio-temporal pattern recognition. The model consists of n
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two modules, a reservoir module and a decision-making module.
(Buonomano & Maass, 2009; Rabinovich, Huerta, & Laurent, 2008)
The reservoir module features abundant recurrent connections,
serving as a substrate to hold the fading memory of external
inputs. The decision-making module extracts information from
the input-specific neuronal activities in the reservoir module and
carries out discrimination in an event-based manner.

2. The model

The basic structure of our model, referred to as Reservoir
Decision-making Network (RDMN) hereafter, is shown in Fig. 1.
The model consists of two modules, a reservoir network and a
decision-making network, which are introduced below.

2.1. The decision-making module

Decision-making is a fundamental function of neural systems
and has been observed in many areas of the brain. The standard
decision-making model was developed based on the recorded
neurophysiological data in LIP when monkeys were performing
a motion discrimination task (Shadlen & Newsome, 2001). In the
experiment, the monkey needed to accumulate evidence over
time to judge the coherent moving direction of random dots.
During this process, neuron groups representing different choices
receive cues from the visual input and compete with each other
via mutual inhibition to determine the final choice. We adopt
the mean-field decision-making model in Wong and Wang (2006)
but simplify it for the application of spatio-temporal pattern
discrimination.

As shown in Fig. 1, the decision-making module consists of
several competing neurons (Ndm = 3 is shown in the illus-
tration), with each of them representing one category. These
neurons receive inputs from the reservoir module and compete
with each other via mutual inhibition, with the winner reporting
the discrimination result. Denote xi the synaptic input received
y the ith neuron, ri the corresponding neuronal activity, and si

the synaptic current due to NMDA receptors. The dynamics of the
module is written as,

xi(t) = JEsi +
Ndm∑
j̸=i

JMsj + Ii, (1)

ri(t) =
β

γ
ln

[
1 + exp

(
xi − θ

α

)]
, (2)

τs
dsi
dt

= −si + γ (1 − si)ri, (3)

where the synaptic input xi consists of three components: (1) JEsi,
ith JE > 0, denotes the contribution of self-excitation (in a
etailed model, it represents the excitatory interactions between
eurons encoding the same category (Wong & Wang, 2006));
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Fig. 2. The mechanism of decision-making. (A-B) The phase diagram of the decision-making network for: (A) the feedforward input I0 vs. the mutual inhibition JM .
e fix JE = 8 in this case; (B) the feedforward input I0 vs. the self-excitation JE . We fix JM = −2 in this case. The stationary states of the network in different
arameter regimes are shown. The red lines denote the DM-boundary. (C) The network dynamics when the parameters are on the DM-boundary (at the point denoted
y the black circles in (A–B)). The red curve illustrates a typical example of the dynamics of decision-making neurons. (D) An example trial of discriminating two
emporal sequences. Upper panel: the time courses of neuronal responses. Lower panel: two temporal sequences with slightly different means corrupted by large
luctuations, which are I1 = 0.7+ 0.6ξ1(t) and I2 = 0.66+ 0.6ξ2(t), with ξ1(t) and ξ2(t) denoting independent Gaussian white noises of zero mean and unit variance.
The black dashed line denotes the pre-defined threshold, and a decision is made once a neuron’s activity crosses this threshold. Other parameters are: α = 1.5,

= 6, β = 4, γ = 0.1, τs = 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
2)
∑Ndm

j̸=i JMsj is the summed recurrent input from other decision-
aking neurons, with JM < 0 indicating mutual inhibition; (3) Ii

s the feedforward input from the reservoir module, whose form
s optimized through learning (see Section 2.3). The parameters
, γ , and α control the shape of the nonlinear active function of
eurons, and θ the threshold. Eq. (3) describes the slow dynamics
f the synaptic current due to the activity-dependent NMDA
eceptors, which play a crucial role in decision making (Wong
Wang, 2006). τs ≫ 1 is the time constant, which controls

he time window for integrating input information over time by
ecision-making neurons.

.1.1. The mechanism of decision-making
Although the dynamics of a decision-making network has

een analyzed previously for interpreting the neurophysiological
ata (Wong & Wang, 2006), to apply it to pattern recognition, we
till need to understand its working mechanism thoroughly, in
articular, to quantify its feasible parameter regime. Without loss
f generality, we consider a simple case that the decision-making
etwork has only two neurons, i.e., Ndm = 2 for discriminating
wo spatio-temporal patterns. The result can be straightforwardly
xtended to general cases of Ndm > 2 (See Appendix A).
The network dynamics is analyzed when both neurons receive

he same constant feedforward inputs, i.e., Ii = I0, for i = 1, 2. By
arying the parameters, we find that the decision-making module
an reach three types of stationary state: (1) Low active state
LAS), in which both neurons are at the same low-level activity;
2) Decision-making state (DMS), in which one neuron is at high
ctivity and the other at low activity; (3) Explosively active state
EAS), in which both neurons are at the same high-level activity.
pparently, only the parameter regime for DMS is suitable for
ecision-making.
Fig. 2A–B show the phase diagram of the network, which

uides us to set the parameters. For example, along the dashed
ertical (pink) lines in Fig. 2A–B (both JE and JM are fixed), we
ee that with the increase of the input I0, the network dynam-
cs experiences several bifurcations: from being stable only at
AS, to at both LAS and DMS, to at only DMS, to at both DMS

nd EAS, and eventually to at only EAS. The parameter regime
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for decision-making should be set at where the network holds
DMS as stable states. Further inspecting the network dynamics
suggests that the optimal regime should be at the bifurcation
boundary where LAS just loses its stability and DMS becomes the
only stable state of the network (indicated by the red lines in
Fig. 2A–B); hereafter, for convenience, we call this boundary the
decision-making boundary (DM-boundary). On the DM-boundary,
the network dynamics holds two appealing properties: (1) since
LAS is unstable, a feedforward input with a little bias (e.g., I1 > I2)
will drive the network to reach at one of DMS (e.g., neuron 1
becomes active while neuron 2 at the low activity state); (2) due
to supercritical pitchfork bifurcation, the relaxation dynamics of
the network is extremely slow, which endows the network with
the capacity of averaging out input fluctuations over time.

To elucidate the above properties clearly, we investigate the
network dynamics by setting the parameters on the DM-boundary
(the black circles in Fig. 2A–B). Fig. 2C draws the nullclines
of neuronal activities (for the variables si, for i = 1, 2), with
their intersecting points corresponding to the unstable LAS and
two stable DMSs, respectively. According to the characteristic of
supercritical pitchfork bifurcation, the typical trajectory of the
network state under the drive of a noisy input is as follows
(illustrated by the red curve in Fig. 2C): starting from silence,
the network state is attracted first by the stable manifold of LAS;
while approaching to LAS closely enough, the unstable manifold
of LAS starts to push the network state away, and this process
is extremely slow due to that, the eigenvalue of the unstable
manifold of LAS is close to zero at the supercritical pitchfork
bifurcation point; but once it is far enough from LAS, the network
state evolves rapidly to reach one of DMSs. Notably, due to the
slow evolving process, the state that the network eventually
arrives is determined by the integration of inputs over time,
rather than by instant fluctuations.

To confirm the above analysis, we perform a task of discrim-
inating two temporal sequences having slightly different means
but corrupted with strong noises. To accomplish this task, it is
necessary to integrate inputs over time, so that instant large
fluctuations are averaged out and the subtle difference between
means pops out. Fig. 2D presents a typical trial of the decision-

making process: initially, the activities of two neurons are both
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Fig. 3. Parameter setting in the decision-making module. The network performances are evaluated by the task of discriminating two temporal sequences given in
Fig. 2D. The discrimination accuracy is measured by the rate that the neuron receiving the larger input wins the competition. The decision speed is measured by
1/tres , where the decision-making time tres is measured as the moment when the activity of the winning neuron crosses the predefined threshold (Fig. 2D). (A) The
iscrimination accuracy vs. the self-excitation strength JE . The value of JE varies along the dashed horizontal green line in Fig. 2B, with JE = 8 at the black circle on
he DM-boundary. When JE is small on the horizontal axis, the network state will eventually reach LAS, i.e. all decision-making neurons are at resting states, which
s regarded as incorrect. (B-C) The speed–accuracy tradeoff of decision-making with respect to: (B) the mutual inhibition strength JM and (C) the time constant τs
(speed is evaluated for τs = 100). All results are obtained by averaging over 2000 trials. Other parameters are the same as in Fig. 2. Error bars represent standard
deviations.
t
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τ

low and intermingled with each other; as time goes on, due to
integration of inputs and competition via mutual inhibition, the
neuron receiving the larger mean input eventually wins.

To demonstrate that the optimal parameter regime is on the
DM-boundary, we compare network performances with varying
parameter values and observe that when the parameters are away
from the DM-boundary, the discrimination accuracy degrades
dramatically (Fig. 3A).

The above analysis reveals that the optimal parameter regime
for decision-making should be on the DM-boundary. Along this
boundary, there is still flexibility to select the time constant τs
and the mutual inhibition strength JM (the value of other pa-
rameters such as β , γ , α are chosen according to the unreduced
decision-making model (Wong & Wang, 2006)). We find that by
varying τs or JM along the DM-boundary, the network perfor-
mance exhibits a speed–accuracy trade-off (Fig. 3B-C). This is
intuitively understandable. With increasing τs while fixing other
parameters, neurons have a larger time window to average out
temporal fluctuations, which increases the discrimination accu-
racy but postpones the decision-making time. Similarly, with
increasing JM , since the mutual inhibition between neurons be-
comes larger, it tends to take a longer time for a neuron to win
over the competition, which postpones the decision-making time
but improves the accuracy. In practice, the values of τs and JM
should match the statistics of input noises.

The above analysis can be extended to general cases when
the decision-making module has Ndm > 2 number of neurons to
discriminate Ndm spatio-temporal patterns. We can calculate the
phase diagram of the network with a varying number of decision-
making neurons and obtain the optimal parameter regime ac-
cordingly (see Appendix A). The optimal parameter regime is
given by the DM-boundary in each case.

2.2. The reservoir module

The above analysis demonstrates that the decision-making
module can average out input fluctuations via its slow dynamics,
but this is not enough for discriminating complex spatio-temporal
patterns, e.g., to discriminate temporal sequences which are only
differentiable in oscillation frequencies, since the integration of
these input sequences gives the same mean value. We need to
induce a reservoir module to leverage the representation power
of the model (Fig. 1).

Reservoir computing has been proposed as a canonical
framework for neural information processing (Bertschinger &

Natschläger, 2004; Jaeger, 2001; Yildiz et al., 2012). Its key idea is
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to project external inputs of low dimension into activity patterns
of a large-size network. (Buonomano & Maass, 2009; Rabinovich
et al., 2008). Here, as a pre-processing step before decision-
making, we expect that the reservoir model can map different
spatio-temporal patterns into spatially separated neural activities,
so that the decision-making module can read out them.

The reservoir model we consider consists of L forwardly con-
nected layers, and neurons in each layer are connected recur-
rently (Fig. 1). In practice, the value of L will be set depending
on the temporal characteristics of spatio-temporal patterns to
be discriminated (see examples in Sections 3 & 4). Denote xli
he synaptic current received by neuron i in layer l, for i =

, . . . ,Nl; l = 1, . . . , L, and Nl the number of neurons in layer
. The dynamics of the reservoir module is written as,

l
dxli
dt

= −xli +
Nl−1∑
j=1

W l,l−1
i,j r l−1

j +

Nl∑
j̸=i

W l,l
i,j r

l
j +

Nin∑
j=1

W l,0
i,j I

ext
j δl,1, (4)

where r li = tanh(xli) is the neuronal activity, τl the time constant
of layer l, W l,l−1

i,j the forward connection from neuron j at layer
l−1 to neuron i at layer l, and W l,l

i,j the recurrent connection from
neurons j to i at layer l. Iextj represents the external input, with
Nin the input dimension and W l,0

i,j the input connection weight;
δl,1 = 1, for l = 1, and otherwise 0, indicating that only layer 1
receives the external input.

The optimal parameter regime for the reservoir module is
fixed by adjusting the dynamics of the reservoir module properly.
Specifically, we choose the parameters, so that each layer of the
module holds two good computational properties, which are:
(1) starting from different initial states, the same external input
will drive the network to reach the same stationary state, satis-
fying the so-called echo state property (Jaeger, 2001; Yildiz et al.,
2012); (2) in response to different external inputs, the network
states are also significantly different, realizing the so-called com-
puting at the edge of chaos (Bertschinger & Natschläger, 2004;
Bertschinger, Natschläger, & Legenstein, 2005).

The detailed procedure for parameter setting is as follows.
Firstly, we set both the feedforward connections between layers
and the recurrent connections in the same layer to be sparse and
random, such that neuronal responses are largely independent of
each other. Specifically, for the feedforward connectionsW 1,0

i,j and
W l,l−1

i,j , they only have a small probability of p = 10% to take
non-zero values randomly chosen from uniform distributions in
the ranges of [−w

1,0
ext , w

1,0
ext ] and [−w

l,l−1
f , w

l,l−1
f ], respectively,

where w
1,0 and w

l,l−1 are positive numbers controlling the overall
ext f
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Fig. 4. Representation capacity of the reservoir module. (A) Spectral analysis of neuronal responses across layers when a sequence of Gaussian white noises of zero
mean and unit variance is applied as the external input. (B) Separation of neural representations in the reservoir module for two temporal sequences of different
frequencies, which are Iext,1(t) = sin(20π t) + sin(200π t) + 0.1ξ1(t) and Iext,2(t) = sin(40π t) + sin(160π t) + 0.1ξ2(t), where ξ1(t) and ξ2(t) are Gaussian white noises
f zero mean and unit variance. Neural activities are projected onto their third and fourth principal components, which have the largest contributions on separating
he two temporal sequences. The parameters are: L = 3, N = [130, 130, 130], τ = [2.5, 10, 150], ρ = [1.1, 1.1, 1.1], w

1,0
ext = 1, w

2,1
f = 10, w

3,2
f = 25. The detail of

ata processing is described in Appendix B.
j
m
t
W
a
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E

onnection strengths. For the recurrent connection W l,l
i,j , it only

as a small probability of p = 10% to take a non-zero value
andomly chosen from a Gaussian distribution of zero mean
nd variance (wl,l

c )2, with wl,l
c a positive number controlling the

verall recurrent connection strengths at layer l. Note that since
l,l
i,j has equal properties to take positive and negative values,

he balanced condition is roughly satisfied. Secondly, we scale
he recurrent connection strengths properly, so that the largest
igenvalue of the matrix Ml

= (1−δt/τl)E+Wl,lδt/τl (Yildiz et al.,
012), referred to as ρ(Ml,l), is slightly larger than one. Here, E is
he identity diagonal matrix, and Wl,l the recurrent matrix whose
lements are W l,l

i,j . In practice, we find that when ρ(Ml,l) is in the
ange of (1.1, 1.3), the network has good performances.

.2.1. Neural representation in the reservoir module
We illustrate the representation capacity of the reservoir mod-

le using some simple examples. Fig. 4A presents the spectral
nalysis of neuronal responses in different layers when a se-
uence of Gaussian white noises is applied as the external input.
t shows that along the layer hierarchy, the dominating com-
onents of neuronal responses progress from high to low fre-
uencies, indicating that the frequency information of temporal
nputs is separated across layers. This implies that if two temporal
equences have different frequencies, they can be discriminated
gainst via neural activities across layers.
We also apply two temporal sequences to the reservoir mod-

le, which are: Iext,1(t) = sin(20π t) + sin(200π t) + 0.1ξ1(t) and
ext,2(t) = sin(40π t) + sin(160π t) + 0.1ξ2(t). Using principal
omponent analysis (PCA) to the neural activities at the reservoir
odule generated by the temporal patterns, we find that the

wo patterns are well separated (see Fig. 4B). Later, we further
emonstrate that the decision-making module can capture this
ifference (see Section 2.3).

.3. Integrating two modules

As shown in Fig. 1, the reservoir and decision-making modules
re integrated via a linear read-out matrix to carry out a discrimi-
ation task, where the read-out matrix is optimized using known
xamples.
Denote the input from the reservoir module to a decision-

aking neuron as,

i = I∗0 +

L∑
l=1

N l∑
j=1

W dm,i
lj r lj , (5)

here the summation runs over all neurons in the reservoir
odule, and W dm,i denotes the connection weight from neuron
lj
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in layer l of the reservoir network to neuron i in the decision-
aking module. I∗0 is the optimal feedforward input specified by

he DM-boundary (see Fig. 2), We optimize the read-out matrix
dm

= {W dm,i
lj } through minimizing the discrepancy between the

ctual inputs received by decision-making neurons and the target
nputs, which is written as,

=
1
2

Ndm∑
i=1

Nk∑
k=1

∫ T

0
dt

[
f ki (t) − Iki (t)

]2
, (6)

where Ndm is the number of spatio-temporal pattern categories,
i.e., the number of decision-making neurons, and Nk the number
of training patterns in each category. Iki (t) is the actual input to
the decision-making neuron i obtained by evolving the network
dynamics when a pattern k is presented (Eqs. (1)–(3)), and f ki (t)
is the target input function for the decision-making neuron i
in response to the spatio-temporal pattern k. According to the
response characteristics of decision-making neurons as observed
in the experiment (Shadlen & Newsome, 2001) and also in our
model (Fig. 2D), the target function f ki (t) for the decision-making
neuron representing the correct choice should be of the sigmoid-
shape over time. Therefore, we set the target function for k = i
to be f ki (t) = JE{tanh[b(t − T/2)] + 1}/2+ I∗0 , where T represents
the input duration, and the target function for k ̸= i to be
f ki (t) = JM + I∗0 . We optimize the read-out matrix Wdm by
minimizing the error function E using backpropagation through
time (BPTT) (Rumelhart, Hinton, & Williams, 1986). A biologically
more plausible method, FORCE learning (Sussillo & Abbott, 2009),
can also be used to get comparable results.

It has been demonstrated both in experiments and theoretical
studies that with appropriate learning rules, linear read-out neu-
rons are capable of decoding time-varying states from reservoir
networks (Buonomano & Maass, 2009; Hung, Kreiman, Poggio, &
DiCarlo, 2005; Mazor & Laurent, 2005; Nikolić, Häusler, Singer,
& Maass, 2009). To demonstrate this property, we inspect the
learned read-out matrix by considering the task of discriminating
two temporal sequences as given in Fig. 4B. We first combine
the neural response matrices under two temporal sequences R1(t)
and R2(t) into one matrix A. PCA is subsequently applied to the
combined neural activity matrix (see Appendix B for details).
We project the neural activity difference

[
R1(t) − R2(t)

]
on each

principal component (PC), and obtain the contribution of each
PC on separating the two sequences, which are given by: D1 =

0.32, D2 = 0.27, D3 = 3.75, D4 = 1.29 (the first four PCs
are considered). Here, PCs are calculated on the neural activity
vectors concatenated in the time dimension, with the larger the
absolute value of Di, the larger the contribution of the PC on
separating two temporal sequences. In this particular example,
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C3 and PC4 have the largest contributions (Fig. 4B) (this is due
o that PCA is performed on the combined matrix A, whereby
C1 and PC2 correspond to the intra-class variability, while PC3
nd PC4 correspond to the inter-class variability, and the latter is
nformative for pattern classification). To accomplish the recog-
ition task, the read-out matrix should have large overlaps with
hose PCs having large contributions on separating two temporal
equences (i.e. PC3 and PC4 in this example). To check whether
his is the case, for neuron 1, we compute the projections of the
ifference between two read-out vectors

[
Wdm,1(t) − Wdm,2(t)

]
on PCs, which gives C1 = 0.08, C2 = 0.05, C3 = 0.83, C4 =

0.26, showing that indeed the projections on PC3 and PC4 are
much larger than those on other PCs. This demonstrates that
through learning, the read-out matrix indeed captures the key
components of neural representations at the reservoir module
needed for discriminating the two temporal sequences.

3. Model analysis

In this section, using synthetic data, we analyze the computa-
tional properties of the model RDMN.

3.1. Extracting frequency information of temporal inputs

We consider the task of discriminating two temporal se-
quences that are different in either high or low frequencies (see
Table 1). To explore the influences of model parameters, we vary
the number of layers, the number of neurons in each layer, and
the time constant of each layer in the reservoir module, and the
way the decision-making module reading out information from
the reservoir module.

The results are summarized in Table 1, which shows that:
(1) with the same total number of neurons, reservoir modules
with 3 layers outperform ones with 1 layer. This is due to that
a reservoir module with more layers can encode a broader range
of frequency information (see also Fig. 4A); (2) reservoir modules
with increasing time constants along the hierarchy outperform
ones with invariant time constants, due to the same reason as
in (1); (3) the model performance increases with the number of
neurons in the reservoir module; (4) the decision-making module
integrating temporal information from all layers of the reservoir
module outperforms the one integrating information from only
the last layer. Overall, these results demonstrate that RDMN can
extract the frequency information of temporal patterns.

3.1.1. On the number of layers of the reservoir module
The number of reservoir layers in our model is an important

parameter that influences the model performance. Given that the
reservoir module aims to extract different frequency information
in the temporal input (Fig. 4 and Table 1), we want different
reservoir layers to cover different frequency bands. To this end,
we typically need to have some ideas about the frequency dis-
tribution of the input, which may be obtained through applying
Fourier Transform to the data. For example, signals in Table 1
are composed of three sine curves with different frequencies,
therefore the numbers of reservoir layers are set to 3, whereby
the temporal information in each sine curve can be represented in
each layer. When faced with realistic tasks, Fourier Transform can
be applied at first to find out the number of dominating frequency
bands, and then use this information to determine the number of
reservoir layers.
79
Table 1
Discriminating the frequency information of temporal patterns. Two se-
quences applied are: Iext1 (t) =

∑3
i=1 sin

[
2πa1i (t + ξ1)

]
/3 + 1, Iext2 (t) =

3
i=1 sin

[
2πa2i (t + ξ2)

]
/3 + 1, where ξ1 and ξ2 are random noises uniformly

istributed in the range of (0, 5). Task A: two patterns are different at low
requencies with a1 = [0.1, 20, 60] and a2 = [0.4, 20, 60]. Task B: two
atterns are different at high frequencies with a1 = [0.1, 20, 65] and a2 =

0.1, 20, 60]. The time constant τ in the single-layer case is chosen to have
he best performance. For readability, the actual time constant τ is set to be
c × 10−2 . The number of layers, the number of neurons in different layers,
nd the time constants of different layers in the reservoir module are varied,
nd their performances are compared. Parameters in the reservoir module:
(M l,l) = 1.1, for l = 1, 2, 3; w

2,1
f = 10, w

2,1
f = 25; w

1,0
ext = 1. Parameters

n the decision-making module are the same as in Fig. 2.
Task A Task B

1 Layer
N = 180

51.91%
τc = 1

69.47%
τc = 0.25

3 Layer
N = 60, 60, 60

61.90%
τc = 5, 5, 5

90.35%
τc = 0.25, 0.25, 0.25

3 Layers (Last)
N = 60, 60, 60

86.37%
τc = 0.25, 1, 12

91.43%
τc = 0.25, 1, 7

3 Layer (All)
N = 60, 60, 60

88.75%
τc = 0.25, 1, 12

97.25%
τc = 0.25, 1, 7

3 Layer (All)
N = 80, 80, 80

94.55%
τc = 0.25, 1, 12

99.62%
τc = 0.25, 1, 7

3 Layer (All)
N = 130, 130, 130

96.19%
τc = 0.25, 1, 12

99.75%
τc = 0.25, 1, 7

3 Layer (All)
N = 130, 130, 130

45.9%
τc = 12, 1, 0.25

40.35%
τc = 7, 1, 0.25

Table 2
Variations in the timescale parameters do not have a significant performance
impact. The first line in each row shows the model performances for two sets
of timescale parameters given in the second line.

Task A Task B

3 Layer (All)
N = 130, 130, 130

96.19%
τc = 0.25, 1, 12

99.75%
τc = 0.25, 1, 7

3 Layer (All)
N = 130, 130, 130

96.43%/96.70%
τc = 0.15/0.4, 1, 12

99.77%/97.30%
τc = 0.1/0.3, 1, 7

3 Layer (All)
N = 130, 130, 130

95.87%/95.20%
τc = 0.25, 0.75/6,
12

99.77%/98.37%
τc = 0.25, 0.25/7, 7

3 Layer (All)
N = 130, 130, 130

95.23%/95.37%
τc = 0.25, 1, 9/24

99.43%/98.47%
τc = 0.25, 1, 5/48

3.1.2. On the timescale parameters of the reservoir module
Timescale hierarchy is a prominent feature that characterizes

the information processing dynamics from sensory to association
cortices (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015;
Honey et al., 2012; Murray et al., 2014). While the reservoir
module in our model does not correspond to cortices, we note
that for each reservoir layer to extract different frequency bands,
the best practice is to set timescale parameters hierarchically
(Table 1). Nonetheless, since the hierarchical architecture of the
reservoir module already has the general property of extracting
increasing frequencies from shallow to deep layers, the timescale
parameters only need to loosely follow a hierarchical pattern. This
can be seen from Table 2, where the precise values of timescale
parameters are of little consequence. However, if the timescale
parameters are not chosen increasingly, the performance of the
model would severely degrade, as in the last row of Table 1
(note that the performance can be less than 50% because the
cases where all decision-making neuron activities are below the
threshold are regarded as failures).
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Fig. 5. Extracting the temporal order information of patterns. A. Four temporal patterns formed by two bumps in different configurations are given by I1(t) =

A(t) + IB(t − T/2), I2(t) = IB(t) + IA(t − T/2), I3(t) = IB(t) + IB(t − T/2), and I4(t) = IA(t) + IA(t − T/2), where T = 100, IA(x) = 0.5 sin [πx/(T/2)] for x ∈ [0, T/2]
nd otherwise IA(x) = 0, and IB(x) = sin [πx/(T/2)] for x ∈ [0, T/2] and otherwise IB(x) = 0. B. The activities of four neurons in the decision-making module when
ach pattern is presented. The four neurons learn to discriminate the four patterns successfully. The small black ticks indicate the moments when neuronal activities
tart to separate. Parameters in the reservoir module: L = 1, dt = 1, N = 100, τ = 20, ρ(Ml,l) = 1.1, w

1,0
ext = 1. Parameters in the decision-making module: JE = 10,

M = −6, τs = 10, I∗0 = 1.52.
Fig. 6. The input currents to decision-making neurons over time as in the task in Fig. 5. Pattern 1 is presented and decision-making neuron 1 is designated to encode
his pattern. A. The feedforward inputs. B. The inhibitory currents from other neurons due to mutual inhibition. C. The excitatory currents due to self-excitation. D.
he total inputs, the sum of all currents. The parameters are the same as in Fig. 5.
.2. Extracting order information of temporal inputs

Consider a task of differentiating four temporal sequences
s shown in Fig. 5A, where patterns 1 and 2 are formed by
wo bumps of different sizes in distinct orders. To avoid that
he model learns to differentiate them relying only on the first
ump, we add another two patterns 3 and 4 formed by same-
ized bumps. As shown in Fig. 5B, the model accomplishes the
ask, in terms of that when a temporal pattern is presented, the
orresponding neuron representing this pattern always generates
igher responses than others.
Remarkably, the neurons hierarchically make their decisions,

apturing the fact that the temporal differences between four
atterns are unfolded gradually over time. Take the top panel
n Fig. 5B as an example, where pattern 1 is presented to the
odel. It shows that: (1) around time step 30, which is the
oment when patterns 1 and 3 become sufficiently different

rom patterns 2 and 4 (see Fig. 5A), the activities of neurons
and 3 start to surpass those of neurons 2 and 4; (2) around

ime step 75, which is the moment when the accumulated infor-

ation is sufficient to judge the input pattern is 1, the activity

80
of neuron 1 starts to surpass that of neuron 3. This hierarchi-
cal decision-making process is also reflected in the amplitude
changes in the input currents received by different neurons (see
Fig. 6), where through the joint effects of feedforward connec-
tions and mutual inhibition, the total current received by the win-
ning neuron gradually surpasses those to other neurons, exhibit-
ing an event-based decision-making manner. This hierarchical
decision-making process agrees with the experimental finding,
which showed that monkeys were able to integrate information
in parallel for multiple decisions and during the information
integration, decisions influence each other such that incorrect
decisions gradually subside (Lorteije et al., 2015).

3.3. Flexible event-based pattern recognition

We have demonstrated so far two appealing properties of the
brain-inspired decision-making network, one is that by adjust-
ing the strengths of mutual inhibitions between neurons, the
model can achieve a speed–accuracy trade-off in decision-making
(Fig. 3B), which offers a valuable flexibility for pattern recognition
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n practice; the other is that the model can hierarchically discrim-
nate multiple patterns according to their similarities as shown
n Figs. 5–6. In addition to these two features, we find that our
odel has another appealing property, that is, it accomplishes
attern recognition in an event-based manner, in terms of that
he model can recognize an input pattern whenever it appears
ithout the need for applying signal detection beforehand. We
ill demonstrate this property using the gait recognition task
elow (see Fig. 10 in Section 4.3).

. Model application

In addition to synthetic data, we also apply our model to
eal-world problems. One is mimicking the looming pattern
xperiment where the subcortical visual pathway underlies fast
efensive behaviors and corresponds with our model, and the
ther is the gait recognition task, a typical scenario of spatio-
emporal pattern discrimination.

.1. Looming pattern discrimination

The cortical ventral and dorsal visual pathways are important
or visual perception (Milner & Goodale, 1995). However, they
re not the only pathways the brain relies on to process visual
ignals. The subcortical visual pathway also plays significant roles
n fear detections (Maior et al., 2011; Tamietto & De Gelder, 2010;
ei et al., 2015), particularly in the fast detection of expanding

hadows (looming patterns) from aerially approaching preda-
ors (De Franceschi, Vivattanasarn, Saleem, & Solomon, 2016;
ilmaz & Meister, 2013). Moreover, human patients with cortical
lindness could still navigate around obstacles (De Gelder et al.,
008; Ffytche et al., 1995; Zeki, 1998) or detect unconscious fear-
ul signals (Morris, DeGelder, Weiskrantz, & Dolan, 2001; Morris,
hman, & Dolan, 1999; Van den Stock et al., 2011), presumably
sing the subcortical visual pathway.
Looming patterns (dark expanding shadows) could elicit de-

ensive responses in animals, yet not every looming pattern can
nduce this behavior. Dark contracting shadows and white con-
racting/expanding disks are found to be unable to evoke similar
ehaviors (Kim, Shen, Hsiang, Johnson, & Kerschensteiner, 2020;
ilmaz & Meister, 2013). Mimicking the experimental protocol,
e construct looming patterns as follows. The size of the image

rame is 11 × 11, and a light spot is always at the center of the
rame. The pixel values for the light spot are 1 and for the back-
round are 0. To make the task more difficult, we add Gaussian
hite noises of zero mean and standard deviation of 0.1 to each

mage. Denote the radius of the light spot to be D, which increases
ver time from Dmin to Dmax. Dmin = 1 is used in the present study

and Dmax specifies the size of a looming pattern. Analogous to the
experimental setting, we choose the value of Dmax to be 2k+1, for
k = 0, 1, . . . , 5. For a given pattern of Dmax = 2k + 1, we divide
its time duration into k + 1 segments, and the size of light spot
in the ith segment is 2i − 1, for i = 1, . . . , k + 1. The speed of a
ooming pattern is controlled by the number of light spot of the
ame size presented in each segment, denoted as m, which gives
he time duration of the ith element to be m∆t , and the speed of
he looming pattern is quantified to be v = 1/m.

We construct three categories of looming patterns with vary-
ng sizes and speeds. They are: (1) looming patterns of appro-
riate sizes and speeds, with (Dmax, v) = (9, 0.167), (9, 0.2),
r (11, 0.2), respectively, and they trigger the innate response;
2) looming patterns of appropriate sizes but small or large
peeds, with (Dmax, v) = (9, 0.1), (11, 0.5), or (11, 1), respec-
ively, and they cannot trigger the innate response; (3) looming
atterns of appropriate speeds but small sizes, with (Dmax, v) =

1, 0.2), (3, 0.2) or (3, 0.25), respectively, and they cannot trigger
81
he innate response. 150 looming patterns are generated for each
lass. We use n of them for each case as training examples, and
he rest as test examples to evaluate the discrimination accuracy
f the model. The results for n = 1, 3, 5 are shown in Fig. 7.

A two-layer reservoir module is applied in this task, with the
timescales of the first and second layers set to accommodate the
fastest and slowest speeds of the expanding shadows (v = 1 and

= 0.1) respectively.
Notably, our model shows remarkable generalization ability

even when labeled sequences are scarce. This indicates that these
pre-defined network structures emerged from millions of years
of evolution serve the needs of fast learning of dangerous signals
to avoid predators timely. Moreover, our model corresponds well
to the subcortical visual pathway that underlies looming pattern
detection. The retina holds memory traces of the input optical
flow, acting as a reservoir network; while the superior colliculus
(SC) acts as a decision-making network. More specifically, VG3
amacrine cells in the retina respond robustly to looming patterns
and modulate downstream ganglion cells (Kim et al., 2020); the
wide-field vertical cells (May, 2006) in SC can thus integrate
information regarding looming patterns and send the information
to downstream areas regulating defensive behaviors, such as the
amygdala.

4.2. Gait recognition

For the gait recognition task, we collect a gait dataset con-
sisting of 100 subjects, and each subject has 50 gait sequences,
with each sequence lasting for 2 seconds and containing 50 image
frames.2 Three tasks of gait discrimination between 5, 10, or
15 people are performed. As in the typical application for gait
recognition, where the number of training examples is small, we
consider only 5 trials per person as training examples.

To avoid that recognition relies on some side information
of subjects, such as the height and shape of the subject, we
extract skeletons from the images and normalize them using
AlphaPose (Fang, Xie, Tai, & Lu, 2017). To further eliminate the
spatial location bias of skeletons, we place them at the center
of each frame (Fig. 8). This forces a classifier to carry out recog-
nition relying purely on the spatial–temporal structure of input
patterns. Each frame is reshaped to 48 × 30 before used as input.

We first compare our model with LSTMs and GRUs. The GRU
is a variant of the LSTM. LSTMs and GRUs consist of a recurrent
hidden layer and a linear readout. We also vary the size of the
hidden layer to see the influence of increasing the number of
parameters in LSTMs and GRUs. For example, LSTM(20) refers
to that the hidden layer in LSTM has 20 neurons and LSTM(50)
has 50 hidden neurons. In the 5-class classification scenario,
LSTM(20) has a structure of 1440-20-5.

During training, we randomly select 5, 10, or 15 subjects
from the dataset to construct tasks of discriminating 5, 10, or
15 people. For RDMN, only one layer (L = 1,N = 1000) is
used in the reservoir module, as the temporal frequencies of the
gaits of different subjects are not significantly different and a
single reservoir layer suffices to extract the temporal information.
RDMN is trained using Force Learning (Sussillo & Abbott, 2009).
Since Force Learning converges very fast, we set the training
epoch to 1 with a batch size of 1. On the other hand, LSTMs
and GRUs are trained using backpropagation through time (BPTT)
to minimize the cross-entropy loss with the ADAM optimizer
(learning rate of 0.01, gradient clip 1.0). The number of training
epochs for LSTMs and GRUs is 50 with a batch size of 16. The
cross-entropy loss is accumulated at every time step, as this gives
a better performance than minimizing the cross-entropy loss at

2 Dataset available online: https://tinyurl.com/usnsasr.

https://tinyurl.com/usnsasr
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Fig. 7. Looming pattern discrimination. (A) An example of a looming pattern. (B) The accuracies of discriminating three categories of looming patterns. #n means that
trials for each class are used as training examples. The results are obtained by averaging over 100 testing trials. The parameters are: Ndm = 3, L = 2, N = [200, 200],
= [10, 100], ρ = [1.1, 1.1], w

1,0
ext = 10, w

2,1
f = 25, α = 1.5, β = 4, θ = 5, γ = 0.1, JE = 8, JM = −3, I∗0 = 0.7, τs = 200. Error bars represent standard deviations.
Fig. 8. An example of the gait of a subject.
able 3
omparing gait recognition performances (%) of different methods. Three tasks
f discriminating 5,10 or 15 subjects are performed. 5 training examples per
ubject are used. LSTM(20) or GRU(50) refers to that the number of units in the
idden layer is 20 or 50, respectively. For RDMN, the reservoir module has one
ayer (L = 1) with N = 1000 neurons. The averaged neural activities over all
ime steps are used to calculate LSTM/GRU performance, as this practice gives
etter results.
Model 5 classes 10 classes 15 classes

LSTM(20) 92.4 ± 3.9 83.9 ± 3.3 79.5 ± 3.9
LSTM(50) 94.3 ± 2.0 85.7 ± 2.9 81.5 ± 3.1
LSTM(100) 90.6 ± 3.6 79.5 ± 3.2 76.6 ± 2.1
GRU(20) 92.4 ± 2.5 82.2 ± 3.7 81.3 ± 2.9
GRU(50) 95.4 ± 2.1 88.2 ± 3.2 85.7 ± 1.8
GRU(100) 96.4 ± 2.0 90.5 ± 2.1 89.7 ± 1.9
RDMN 98.3 ± 1.0 93.4 ± 2.2 92.4 ± 2.5

only t = 50. When testing, RDMN is evaluated by reporting the
neuron identity with the largest response. LSTMs and GRUs are
evaluated by averaging their choices over every time step, as this
gives slightly better results than only evaluating the last time step
results.

The number of examples used for training, validation, and
esting is 5, 15, and 30 respectively. Since the number of train-
ng examples is very small and over-fitting occurs easily, we
se validation examples to select the best-trained model. The
odel performances are obtained by averaging over 20 training
xperiments. The results are summarized in Table 3, which shows
ignificant performance improvement of our model compared to
STM/GRU, especially when the task gets harder.
It is also remarkable that our model contains much fewer

umbers of trainable parameters than LSTMs and GRUs. For ex-
mple, the number of trainable parameters in our model in the
ase of 5-class classification is 5000; whereas they are 123 385,
14 455, 87 765 and 223 905 for LSTM (20), LSTM (50), GRU (20)

and GRU (50), respectively (see Table 4). The parameters of RDMN
used in this study are summarized in Table 5. We also check
whether sparse connections can be adopted when reading-out
information from the reservoir module (as this decreases the
number of trainable parameters), but find that sparse connections

degrade the model performance dramatically (see Appendix C).
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Table 4
The number of trainable parameters in different methods.
Model 5 classes 10 classes 15 classes

LSTM-20 123,385 123,490 123,595
LSTM-50 314,455 314,710 314,965
LSTM-100 616,905 617,410 617,915
GRU-20 87,765 87,870 87,975
GRU-50 223,905 224,160 224,415
GRU-100 462,805 463,310 463,815
RDMN 5000 10,000 15,000

Table 5
The parameters of RDMN used for the gait recognition task. L is the number of
reservoir module layers. N is the number of units in the reservoir module layer.
The rest symbols are annotated in the text.

Hyper-params 5 Classes 10 Classes 15 Classes

Reservoir τ 3 3 3
parameters ρ 1.1 1.1 1.1

L 1 1 1
N 1000 1000 1000

Decision- τs 10 10 10
making β 4 4 4
parameters α 1.5 1.5 1.5

γ 0.1 0.1 0.1
θ 3 1 1
JE 4 6 8
JM −4 −4 −4
I∗0 1.6 2 4

Overall, we observe that our model works well for gait recog-
nition, in particular when the number of training examples is
small.

4.3. Event-based gait recognition

A key characteristic of biological decision-making is its event-
based nature, i.e., the neural system will automatically detect
and recognize the presence of an input pattern. This property
is appealing for real-world applications, as it saves the effort of
signal detection. We explore whether our model has this nice
property.
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Fig. 9. The event-based gait recognition task. The training patterns are the same
s in Fig. 8, while the testing patterns are padded gait sequences, in which the
tarting point of gait is randomized and the signal is corrupted with Gaussian
hite noises of zero mean and 0.1 standard deviation.

able 6
erformance comparison in the event-based gait recognition task (%). Three tasks
f discriminating 5,10 or 15 subjects are performed.
Model 5 classes 10 classes 15 classes

Linear 93.3 ± 3.0 79.6 ± 2.7 76.4 ± 2.5
RDMN 98.3 ± 0.7 93.2 ± 2.4 92.3 ± 2.7

To demonstrate this, we construct a new gait recognition
ask, in which the training patterns remain to be the same as
llustrated in Fig. 8, whereas, for testing patterns, we randomize
he starting moments of gaits and corrupt signals with Gaussian
hite noises. Specifically, we pad the original gait sequences of

ength T = 50 to T = 200 with gaits start at anytime between
[0, 150], and the whole sequence is corrupted with Gaussian
noises (see Fig. 9).

Since LSTMs and GRUs do not work in the event-based recog-
nition task, as they require the training and testing sequences
have the same structure, we construct an event-based linear clas-
sifier as a baseline method for performance comparison. Specif-
ically, we consider that the linear classifier makes decisions by
integrating information over a time interval of 50 (i.e., the length
of gait sequences) and reports results frequently using a sliding
time window. This linear classifier inherits some merits of RDMN
(i.e. moving-average, evidence-integration) but lacks mutual in-
hibition and self-excitation between neurons. For details of the
linear classifier, see Appendix D.

Examples of the decision-making process of RDMN are pre-
sented in Fig. 10. The recognition is accomplished whenever
the activity of a neuron crosses the threshold. We see that the
moment of neuronal firing agrees well with the appearance of
the gait, exhibiting the event-based nature. Table 6 compares the
performances of RDMN with that of the linear classifier, demon-
strating that RDMN outperforms the linear classifier significantly.

5. Conclusion and discussion

In this study, we have proposed a model of RDMN for spatio-
temporal pattern recognition, inspired by the structures and func-
tions of the subcortical visual pathway and early stages of the
auditory pathway. We showed that this model could potentially
explain the fast defensive behaviors in animals under looming
pattern presentations. We demonstrated that our model out-
performs LSTMs/GRUs when the number of training examples
is small, and this is achieved using a much fewer number of
trainable parameters. Furthermore, our model accomplishes pat-
tern recognition in an event-based manner. These advantages
make our model potentially applicable for spatio-temporal pat-
tern recognition in edge computing devices.

The RDMN model consists of two modules, a reservoir net-
work, and a decision-making network. Different from prevalent
feature extraction (followed by feature aggregation) methods,
features are not explicitly extracted in the reservoir network.
Rather, the reservoir module holds a fading memory of the in-
put via its recurrent transient dynamics, essentially mapping
entangled low dimensional inputs into a high dimensional activ-
ity space to be linearly separable. The decision-making network
83
aims to discriminate these patterns by integrating neural activ-
ities over time. We gave a detailed explanation of how the two
modules work jointly.

It is worth noting that it is well acknowledged that the brain
employs parallel computing strategies in both visual and au-
ditory pathways (Nassi & Callaway, 2009; Rauschecker, 1998;
Rauschecker, Tian, Pons, & Mishkin, 1997), with each pathway
serving different cognitive purposes. Thus, while the pathways
we modeled in this study do not extract input features explicitly,
spatio-temporal patterns are almost always processed by some
other feature-extraction pathways simultaneously. Evolutionally
speaking, these different pathways aim to serve different func-
tions under different circumstances. For example, the subcortical
visual pathway has been found to mediate fear response (Morris
et al., 1999; Shang et al., 2015; Wei et al., 2015), crucial for fast
response to predators and other dangers, whereas the ventral
and dorsal visual pathways are more suitable for fine-grained
visual information extraction. Surviving in nature requires ani-
mals to selectively take advantage of the processed information
from different pathways in different scenarios. Consequently, we
do not claim our model is better than LSTMs/GRUs in general
but emphasize that it performs better than these feature ex-
traction methods when training samples are limited, and it also
requires fewer trainable parameters. This is because millions of
years of evolutionary pressure have forced the brain to come up
with a pathway for fast and efficient spatio-temporal information
processing.

Although in our experiments, RDMN has demonstrated its
ability to memorize order information thanks to the recurrence
in the reservoir network, it does not explicitly encode order
information. This is a defect in both our model and deep learning
methods. The order of a spatio-temporal pattern contains impor-
tant cause–effect information and temporal correlations, which
we humans actively exploit to discriminate spatio-temporal pat-
terns. Thus, incorporating this prior knowledge into models
should significantly improve the performance of spatio-temporal
pattern discrimination tasks. Theoretically, order information can
be encoded by a neural trajectory visiting a set of saddle–nodes
in order (heteroclinic channels (Rabinovich et al., 2008)). It re-
mains unclear how to map spatio-temporal patterns onto these
heteroclinic channels, and this will be our future work direction.

5.1. Related works

Spatio-temporal patterns in the machine learning context usu-
ally refer to videos. In this domain, action recognition is one of
the most frequently considered tasks. Aided by deep learning,
current models for action recognition usually take a feature ex-
traction with a subsequent feature aggregation approach. Before
the booming of deep learning, features are usually obtained by
either using hand-crafted features (Dalal & Triggs, 2005; Lowe,
1999; Wang & Schmid, 2013) or via unsupervised learning (Hin-
ton, Osindero, & Teh, 2006; Le, Zou, Yeung, & Ng, 2011; Lee,
Battle, Raina, & Ng, 2007). Deep learning methods, on the other
hand, take advantage of a large amount of labeled data, and
train models in a supervised manner. These models either ex-
tract single frame features using convolutional neural networks
and later fuse them together (Jiang, Wu, Wang, Xue, & Chang,
2017; Karpathy et al., 2014; Yue-Hei Ng et al., 2015), or use 3D
convolution (Baccouche, Mamalet, Wolf, Garcia, & Baskurt, 2011;
Ji, Xu, Yang, & Yu, 2012; Tran, Bourdev, Fergus, Torresani, & Paluri,
2015), with the additional dimension accounting for the temporal
information. Some studies also use LSTM architecture for better
handling temporal structures of various lengths (Donahue et al.,
2015; Lee, Kim, Kang, & Lee, 2017; Wu, Wang, Jiang, Ye, & Xue,
2015).
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Fig. 10. The neural dynamics of the decision-making module in the event-based gait recognition task. The decision-making module integrates inputs from the
eservoir network nicely, such that when the gait of a subject appears, the corresponding neuron starts to integrate information and eventually fires. Left column:
he inputs from the reservoir module to the decision-making module. Right column: the responses of decision-making neurons.
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Several deep learning models are also brain-inspired. Karpathy
t al. (2014) used a multi-resolution stream the mimics the fovea
nd periphery vision to effectively reduce the number of param-
ters. Simonyan and Zisserman (2014) proposed a two stream ar-
hitecture consisting of a spatial stream to extract features of still
mages and a temporal stream to extract features of motion fields,
imicking the ventral and dorsal pathways in cortical visual
tream. Other deep learning methods mostly engineer their way
hrough combining 3D convolution with two-streammodels (Car-
eira & Zisserman, 2017) or improving performance by introduc-
ng more streams (Zhu, Lan, Newsam, & Hauptmann, 2018) or
ncorporating 3D convolution with more powerful network struc-
ures (Qiu, Yao, & Mei, 2017) or normalization techniques (Tran,
ang, Torresani, & Feiszli, 2019).
Our model does not extract features explicitly, rather it adopts
reservoir module to hold the temporal information of image

equences. While feature extraction methods tend to behave
etter when training data is abundant, methods such as ours are
ontrivial, in the sense that they partly explain the data-efficient
roperty of our brain thanks to millions of years of evolution. Our
odel follows the structure and function of the subcortical visual
athway and early stages of the auditory pathway, both are very
onservative under evolution. The brain arguably employs both
volutionarily tuned architecture with an experience-dependent
ine-tuning process to be data efficient.

There have been a lot of researches on reservoir networks
or spatio-temporal pattern processing, but these works typi-
ally considered very simple tasks on pattern discrimination or
attern generation, with a focus on exploring the biologically
lausible learning rules and/or the biological implications of
he models (DePasquale, Cueva, Rajan, Escola, & Abbott, 2018;
aeger, Lukoševičius, Popovici, & Siewert, 2007; Karmarkar &
uonomano, 2007; Kim & Chow, 2018; Laje & Buonomano, 2013;
aes, Barahona, & Clopath, 2020; Miconi, 2017; Rombouts, Bohte,
Roelfsema, 2015). They have not included a decision-making
odule to facilitate pattern discrimination as we do in this work,

et alone solving real-world problems. Decision-making networks
ave been widely used in the neuroscience community for inter-
reting experimental data (Shadlen & Newsome, 2001; Wong &
ang, 2006), but they have not been applied to spatio-temporal
attern recognition, nor introduced to the machine learning com-
unity. Kurikawa, Haga, Handa, Harukuni, and Fukai (2018) used
similar architecture with a reservoir network followed by a
ecision-making model trained with reinforcement learning to
xplain the individual variability in the decision-making process
f monkeys. However, their model is restricted to discriminating
etween 2 classes and aims at explaining experimental data.

o our knowledge, our model is the first one that integrates

84
reservoir computing and decision-making as a unified framework
for spatio-temporal pattern discrimination. We hope this work
can be a stepping stone for utilizing brain-inspired algorithms to
process spatio-temporal data in the future.
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Appendix A. The phase diagram of the decision-making mod-
ule with Ndm > 2 neurons

We calculate the phase diagrams of the network with a vary-
ng number of decision-making neurons (Ndm = 5, 10, 15, 20) as
shown in Fig. A.1. The optimal parameter regime in each case is
chosen under the same rationale as described in Section 2.1.1,
which is the DM-boundary in each case.

Appendix B. Data processing for neural representation analy-
sis in Fig. 4B

Consider two temporal sequences are in the time interval
(0, T ), we discretize time with bins of size ∆t . Denote Rk(m) a
vector representing the overall activity of the hierarchical reser-
voir module at moment t = m∆t in response to spatiotemporal
sequence k, for k = 1, 2, whose element is given by Rk

l (m) =
l
j (m), for j = 1, . . . ,Nl and l = 1, . . . , L, where L and Nl denote
he total number of layer and the total number of neurons in
ach layer, respectively. r lj (m) refers to the neuronal activity in
he time interval [(m − 1)∆t,m∆t]. The dimensionality of Rk(m)
s N , with N =

∑L
l=1 Nl. Combining the network activities at all

oments, we obtain a matrix Sk = {Rk
}, whose dimensionality
is N × M , with M = T/∆t . Define a variance matrix A =
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Fig. A.1. The phase diagrams of the decision-making module with varying number of neurons. The stationary states of the network in different parameter regimes
re shown. LAS: all neurons are at low-level activity states; DMS: only one neuron is at a high-level activity state; EAS: two or more than two neurons are at
igh-level activity states. The red lines denote the DM-boundary in each case. (A, C, E, G) the feedforward input I0 vs. the mutual inhibition JM . (B, D, F, H) the
eedforward input I0 vs. the self-excitation JE . The parameters are: (A–B) Ndm = 5, θ = 3, β = 3.2; (C–D) Ndm = 10, θ = 1, β = 1; (E-F) Ndm = 15, θ = −5, β = 0.8;
G–H) Ndm = 20, θ = −9, β = 0.5; (A) JE = 9; (B) JM = −5; (C) JE = 18; (D) JM = −11; (E) JE = 20; (F) JM = −20; (G) JE = 27; (H) JM = −27. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)
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2
k=1

(
Sk − ⟨S⟩

) (
Sk − ⟨S⟩

)T , where ⟨S⟩ is obtained by averaging
euronal activities over time and over two inputs.
We apply principle component analysis (PCA) to the variance

atrix A and obtain a set of eigenvectors with decreasing eigen-
alues. The eigenvalue of each component reflects the variability
f neural responses over time in that direction. By projecting the
etwork activities on a few chosen principle components, it helps
s to visualize whether neural representations for different inputs
re separated in the reservoir module.
To obtain Fig. 4B, we first use the network activities in re-

ponse to each temporal sequence in one trial to carry out PCA as
escribed above, and then we apply the obtained PCs to reduce
he dimensionality of neural representations in other trials. By
educing dimensionality, it means to project neural representa-
ions on the chosen PCs. In this particular example, we find that
y projecting network activities on the third and fourth PCs, the
85
wo temporal sequences are well separated. This indicates that
f the read-out matrix has large overlaps with these two PCs,
he decision-making module can discriminate between the two
emporal sequences, which is confirmed by our study.

ppendix C. The impact of sparse reading-out connections

The trainable parameters in our model contain solely the full
onnections from the reservoir module to the decision-making
odule. It is natural to ask whether adopting sparse connec-

ions could further decrease the number of trainable parameters.
e construct sparse connections from the reservoir to decision-
aking modules by randomly imposing a portion of the reading-
ut matrix to be zero. We find that sparse connections severely
egrade the model performance, as shown in Table A.1. This
uggests that for the size of the reservoir module we use, the
euronal information is not redundant.
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able A.1
he model performances under different sparsity of the reading-out matrix. FC
enotes full connections.
Sparsity 5 classes 10 classes 15 classes

1.0 (FC) 97.61 ± 1.88 92.37 ± 1.91 93.04 ± 1.32
0.8 86.99 ± 10.62 28.13 ± 13.69 12.62 ± 5.57
0.6 66.45 ± 19.38 18.33 ± 7.34 7.90 ± 2.69
0.4 51.20 ± 16.63 13.36 ± 4.36 7.34 ± 2.52
0.2 42.95 ± 13.23 14.25 ± 4.55 7.75 ± 2.20

Appendix D. The event-based linear classifier

The event-based linear classifier we constructed consists of a
eight matrix Wl of shape N × C with no bias vector, where
is the number of neurons in the reservoir module and C

s the number of subjects. During training, the linear classifier
s optimized, such that the inputs of the correct and wrong
dentities to the decision-making module are 0.1 and −0.1 re-
pectively. For instance, if the correct identity for an input se-
uence is the first neuron, we optimize Wl, such that WT

l r(t) =

0.1, −0.1, . . . ,−0.1]T at every time point t , where r(t) is a N×1
ector representing the activity of the reservoir module.
The linear classifier is evaluated by counting votes of all output

nits. Concretely, we treat the largest output at each time point as
vote for the corresponding identity. Whenever an identity has
0 more votes than other categories in a sliding time window
f length 50 (the length of a gait sequence), a gait event is
etected and the recognition is reported. The threshold 20 for the
inear classifier is set, since it gives the best performance on the
alidation set.

eferences

accouche, M., Mamalet, F., Wolf, C., Garcia, C., & Baskurt, A. (2011). Sequential
deep learning for human action recognition. In International Workshop on
Human Behavior Understanding (pp. 29–39). Springer.

ertschinger, N., & Natschläger, T. (2004). Real-time computation at the edge of
chaos in recurrent neural networks. Neural Computation, 16(7), 1413–1436.

ertschinger, N., Natschläger, T., & Legenstein, R. A. (2005). At the edge of chaos:
Real-time computations and self-organized criticality in recurrent neural
networks. In Advances in Neural Information Processing Systems (pp. 145–152).

uonomano, D. V., & Maass, W. (2009). State-dependent computations: spa-
tiotemporal processing in cortical networks. Nature Reviews Neuroscience,
10(2), 113–125.

arreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? a new model
and the kinetics dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 6299–6308).

ayco-Gajic, N. A., & Silver, R. A. (2019). Re-evaluating circuit mechanisms
underlying pattern separation. Neuron, 101(4), 584–602.

haudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., & Wang, X.-J. (2015). A
large-scale circuit mechanism for hierarchical dynamical processing in the
primate cortex. Neuron, 88(2), 419–431.

alal, N., & Triggs, B. (2005). Histograms of oriented gradients for human
detection. 1, In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) (pp. 886–893). IEEE.

e Franceschi, G., Vivattanasarn, T., Saleem, A. B., & Solomon, S. G. (2016). Vision
guides selection of freeze or flight defense strategies in mice. Current Biology,
26(16), 2150–2154.

e Gelder, B., Tamietto, M., Van Boxtel, G., Goebel, R., Sahraie, A., Van den
Stock, J., et al. (2008). Intact navigation skills after bilateral loss of striate
cortex. Current Biology, 18(24), R1128–R1129.

ePasquale, B., Cueva, C. J., Rajan, K., Escola, G. S., & Abbott, L. (2018). Full-FORCE:
A target-based method for training recurrent networks. PloS One, 13(2).

onahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K., et al. (2015). Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 2625–2634).

ang, H.-S., Xie, S., Tai, Y.-W., & Lu, C. (2017). RMPE: Regional multi-person pose
estimation. In ICCV.

fytche, D. H., Guy, C., & Zeki, S. (1995). The parallel visual motion inputs into
areas V1 and V5 of human cerebral cortex. Brain, 118(6), 1375–1394.

ale, S. D., & Murphy, G. J. (2014). Distinct representation and distribution
of visual information by specific cell types in mouse superficial superior
colliculus. Journal of Neuroscience, 34(40), 13458–13471.
86
erath, S., Harandi, M., & Porikli, F. (2017). Going deeper into action recognition:
A survey. Image and Vision Computing, 60, 4–21.

inton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18(7), 1527–1554.

Honey, C. J., Thesen, T., Donner, T. H., Silbert, L. J., Carlson, C. E., Devinsky, O.,
et al. (2012). Slow cortical dynamics and the accumulation of information
over long timescales. Neuron, 76(2), 423–434.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object
identity from macaque inferior temporal cortex. Science, 310(5749), 863–866.

Jaeger, H. (2001). The ‘‘echo state’’ approach to analysing and training recurrent
neural networks-with an erratum note, Vol. 148 (34), (p. 13). Bonn, Germany:
German National Research Center for Information Technology GMD Technical
Report.

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304(5667), 78–80.

Jaeger, H., Lukoševičius, M., Popovici, D., & Siewert, U. (2007). Optimization and
applications of echo state networks with leaky-integrator neurons. Neural
Networks, 20(3), 335–352.

Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural networks for
human action recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1), 221–231.

Jiang, Y.-G., Wu, Z., Wang, J., Xue, X., & Chang, S.-F. (2017). Exploiting feature
and class relationships in video categorization with regularized deep neural
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2),
352–364.

Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks:
encoding time in neural network states. Neuron, 53(3), 427–438.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014).
Large-scale video classification with convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(pp. 1725–1732).

Kiang, N., Rho, J., Northrop, C., Liberman, M., & Ryugo, D. K. (1982). Hair-cell
innervation by spiral ganglion cells in adult cats. Science, 217(4555), 175–177.

Kim, C. M., & Chow, C. C. (2018). Learning recurrent dynamics in spiking
networks. ELife, 7, Article e37124.

Kim, T., Shen, N., Hsiang, J.-C., Johnson, K., & Kerschensteiner, D. (2020). Dendritic
and parallel processing of visual threats in the retina control defensive
responses. Science Advances, 6(47), eabc9920.

Kurikawa, T., Haga, T., Handa, T., Harukuni, R., & Fukai, T. (2018). Neuronal sta-
bility in medial frontal cortex sets individual variability in decision-making.
Nature Neuroscience, 21(12), 1764–1773.

Laje, R., & Buonomano, D. V. (2013). Robust timing and motor patterns by taming
chaos in recurrent neural networks. Nature Neuroscience, 16(7), 925.

Laptev, I. (2005). On space-time interest points. International Journal of Computer
Vision, 64(2–3), 107–123.

Le, Q. V., Zou, W. Y., Yeung, S. Y., & Ng, A. Y. (2011). Learning hierarchical
invariant spatio-temporal features for action recognition with independent
subspace analysis. In CVPR 2011 (pp. 3361–3368). IEEE.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding algorithms.
In Advances in Neural Information Processing Systems (pp. 801–808).

Lee, I., Kim, D., Kang, S., & Lee, S. (2017). Ensemble deep learning for skeleton-
based action recognition using temporal sliding lstm networks. In Proceedings
of the IEEE International Conference on Computer Vision (pp. 1012–1020).

Levy, K. L., & Kipke, D. R. (1997). A computational model of the cochlear nucleus
octopus cell. The Journal of the Acoustical Society of America, 102(1), 391–402.

orteije, J. A., Zylberberg, A., Ouellette, B. G., De Zeeuw, C. I., Sigman, M., &
Roelfsema, P. R. (2015). The formation of hierarchical decisions in the visual
cortex. Neuron, 87(6), 1344–1356.

owe, D. G. (1999). Object recognition from local scale-invariant features. 2, In
Proceedings of the Seventh IEEE International Conference on Computer Vision
(pp. 1150–1157). Ieee.

ukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3), 127–149.

aes, A., Barahona, M., & Clopath, C. (2020). Learning spatiotemporal signals
using a recurrent spiking network that discretizes time. PLoS Computational
Biology, 16(1), Article e1007606.

aior, R. S., Hori, E., Barros, M., Teixeira, D. S., Tavares, M. C. H., Ono, T., et
al. (2011). Superior colliculus lesions impair threat responsiveness in infant
capuchin monkeys. Neuroscience Letters, 504(3), 257–260.

ay, P. J. (2006). The mammalian superior colliculus: laminar structure and
connections. Progress in Brain Research, 151, 321–378.

azor, O., & Laurent, G. (2005). Transient dynamics versus fixed points in odor
representations by locust antennal lobe projection neurons. Neuron, 48(4),
661–673.

iconi, T. (2017). Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks. Elife, 6, Article
e20899.

ilner, A., & Goodale, M. (1995). Oxford psychology series, No. 27. The visual brain
in action. Oxford University Press New York.

http://refhub.elsevier.com/S0893-6080(21)00211-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb14
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb14
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb14
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb19
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb19
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb19
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb21
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb21
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb21
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb46
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb46
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb46


X. Lin, X. Zou, Z. Ji et al. Neural Networks 143 (2021) 74–87

M

M

M

orris, J. S., DeGelder, B., Weiskrantz, L., & Dolan, R. J. (2001). Differential
extrageniculostriate and amygdala responses to presentation of emotional
faces in a cortically blind field. Brain, 124(6), 1241–1252.

orris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right
amygdala mediating ‘‘unseen’’ fear. Proceedings of the National Academy of
Sciences, 96(4), 1680–1685.

urray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X., et
al. (2014). A hierarchy of intrinsic timescales across primate cortex. Nature
Neuroscience, 17(12), 1661–1663.

Nassi, J. J., & Callaway, E. M. (2009). Parallel processing strategies of the primate
visual system. Nature Reviews Neuroscience, 10(5), 360–372.

Nikolić, D., Häusler, S., Singer, W., & Maass, W. (2009). Distributed fading
memory for stimulus properties in the primary visual cortex. PLoS Biology,
7(12), Article e1000260.

Niyogi, S. A., & Adelson, E. H. (1994). Analyzing gait with spatiotemporal surfaces.
In Proceedings of 1994 IEEE Workshop on Motion of Non-Rigid and Articulated
Objects (pp. 64–69). IEEE.

Qiu, Z., Yao, T., & Mei, T. (2017). Learning spatio-temporal representation
with pseudo-3d residual networks. In Proceedings of the IEEE International
Conference on Computer Vision (pp. 5533–5541).

Rabinovich, M., Huerta, R., & Laurent, G. (2008). Transient dynamics for neural
processing. Science, 48–50.

Rauschecker, J. P. (1998). Parallel processing in the auditory cortex of primates.
Audiology and Neurotology, 3(2–3), 86–103.

Rauschecker, J. P., Tian, B., Pons, T., & Mishkin, M. (1997). Serial and parallel pro-
cessing in rhesus monkey auditory cortex. Journal of Comparative Neurology,
382(1), 89–103.

Rombouts, J. O., Bohte, S. M., & Roelfsema, P. R. (2015). How attention can create
synaptic tags for the learning of working memories in sequential tasks. PLoS
Computational Biology, 11(3).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088), 533–536.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual de-
cision in the parietal cortex (area LIP) of the rhesus monkey. Journal of
Neurophysiology, 86(4), 1916–1936.

Shang, C., Liu, Z., Chen, Z., Shi, Y., Wang, Q., Liu, S., et al. (2015). A parvalbumin-
positive excitatory visual pathway to trigger fear responses in mice. Science,
348(6242), 1472–1477.

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for
action recognition in videos. In Advances in Neural Information Processing
Systems (pp. 568–576).

Spoendlin, H. (1974). Neuroanatomy of the cochlea. In Facts and Models in
Hearing (pp. 18–32). Springer.
87
Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557.

Tamietto, M., & De Gelder, B. (2010). Neural bases of the non-conscious
perception of emotional signals. Nature Reviews Neuroscience, 11(10),
697–709.

Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning
spatiotemporal features with 3d convolutional networks. In Proceedings of
the IEEE International Conference on Computer Vision (pp. 4489–4497).

Tran, D., Wang, H., Torresani, L., & Feiszli, M. (2019). Video classification
with channel-separated convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision (pp. 5552–5561).

Van den Stock, J., Tamietto, M., Sorger, B., Pichon, S., Grézes, J., & de Gelder, B.
(2011). Cortico-subcortical visual, somatosensory, and motor activations for
perceiving dynamic whole-body emotional expressions with and without
striate cortex (v1). Proceedings of the National Academy of Sciences, 108(39),
16188–16193.

Wang, H., & Schmid, C. (2013). Action recognition with improved trajectories.
In Proceedings of the IEEE International Conference on Computer Vision (pp.
3551–3558).

Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., et al. (2015). Processing of
visually evoked innate fear by a non-canonical thalamic pathway. Nature
Communications, 6(1), 1–13.

Wong, K.-F., & Wang, X.-J. (2006). A recurrent network mechanism of time
integration in perceptual decisions. Journal of Neuroscience, 26(4), 1314–1328.

Wu, Z., Wang, X., Jiang, Y.-G., Ye, H., & Xue, X. (2015). Modeling spatial-
temporal clues in a hybrid deep learning framework for video classification.
In Proceedings of the 23rd ACM International Conference on Multimedia (pp.
461–470).

Xie, S., Sun, C., Huang, J., Tu, Z., & Murphy, K. (2018). Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification.
In Proceedings of the European Conference on Computer Vision (ECCV) (pp.
305–321).

Yildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012). Re-visiting the echo state property.
Neural Networks, 35, 1–9.

Yilmaz, M., & Meister, M. (2013). Rapid innate defensive responses of mice to
looming visual stimuli. Current Biology, 23(20), 2011–2015.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
& Toderici, G. (2015). Beyond short snippets: Deep networks for video
classification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 4694–4702).

Zeki, S. (1998). Parallel processing, asynchronous perception, and a distributed
system of consciousness in vision. The Neuroscientist, 4(5), 365–372.

Zhu, Y., Lan, Z., Newsam, S., & Hauptmann, A. (2018). Hidden two-stream con-
volutional networks for action recognition. In Asian Conference on Computer
Vision (pp. 363–378). Springer.

http://refhub.elsevier.com/S0893-6080(21)00211-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb50
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb50
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb50
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb54
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb54
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb54
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb55
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb55
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb55
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb58
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb58
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb58
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb62
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb62
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb62
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb63
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb63
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb63
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb64
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb64
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb64
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb64
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb64
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb67
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb69
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb69
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb69
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb69
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb69
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb70
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb70
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb70
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb73
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb73
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb73
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb74
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb74
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb74
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb76
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb76
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb76
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb77
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb77
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb77
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb77
http://refhub.elsevier.com/S0893-6080(21)00211-2/sb77

	A brain-inspired computational model for spatio-temporal information processing
	Introduction
	The model
	The decision-making module
	The mechanism of decision-making

	The reservoir module
	Neural representation in the reservoir module

	Integrating two modules

	Model analysis
	Extracting frequency information of temporal inputs
	On the number of layers of the reservoir module
	On the timescale parameters of the reservoir module

	Extracting order information of temporal inputs
	Flexible event-based pattern recognition

	Model application
	Looming pattern discrimination
	Gait recognition
	Event-based gait recognition

	Conclusion and discussion
	Related works

	Declaration of competing interest
	Acknowledgments
	Appendix A. The phase diagram of the decision-making module with Ndm>2 neurons
	Appendix B. Data processing for neural representation analysis in Fig. 4B
	Appendix C. The impact of sparse reading-out connections
	Appendix D. The event-based linear classifier
	References


