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 A B S T R A C T

People’s probability judgments often appear to be probabilistically incoherent, as exemplified by the con-
junction fallacy. Recently, various sampling-based models have been proposed as an integrative account for 
different biases and fallacies in probability judgments. In the current study, the novel Event Ranking Task 
was used to investigate sampling-based models of probability judgments. On each trial of the Event Ranking 
Task, participants were asked to provide a ranking for an event set consisting of four events, A, not-A, B, 
and not-B, in terms of their perceived likelihoods. Qualitative predictions were formally derived by assuming 
direct sampling from a fixed underlying probability distribution. Adding read-out noise in the sampling process 
– as suggested in the Probability Theory plus Noise model (Costello and Watts, 2014) – did not change the 
qualitative predictions. Two online experiments, where participants ranked twelve different event sets, yielded 
results in line with the qualitative predictions, providing evidence for the idea that mental sampling underlies 
probability judgments.
A widely observed phenomenon in psychology is that people’s prob-
ability judgments often violate the laws of probability. For example, 
people tend to commit the conjunction fallacy in the task famously 
known as the ‘‘Linda problem’’, judging that the conjunction of two 
events (e.g., ‘‘Linda is a bank teller and a feminist’’.) is more likely than 
the constituent marginal event (e.g., ‘‘Linda is a bank teller’’.) (Tver-
sky & Kahneman, 1983). There has been an ongoing debate about 
the explanation for such phenomena. The traditional view suggests 
that systematic errors in people’s probability judgments, such as the 
conjunction fallacy, result from cognitive processes that are not based 
on probability theory but rather on alternative approaches such as 
heuristics (Tversky & Kahneman, 1974) or configural-weighting-and-
adding (Juslin et al., 2009; Nilsson et al., 2009). However, recently, 
the mental sampling framework proposed a view that the brain ap-
proximates probabilities (and probabilistic computations) via a process 
of sampling (for an introduction, see Icard, 2016; Sanborn & Chater, 
2016). Various models developed under this theoretical framework 
demonstrated that cognitive processes in line with probability theory 
can also lead to a range of apparently irrational effects in probability 
judgments, including probability matching (Vul et al., 2014), conjunc-
tion and disjunction fallacy (Costello & Watts, 2017), and illusory 
correlation (Bott et al., 2021).

∗ Corresponding author.
E-mail address: liuxiaotong76@outlook.com (X. Liu).

Sampling-based models entail the proposal that people inherently 
hold coherent subjective probabilities; however, these underlying sub-
jective probabilities cannot be directly accessed. Instead, individuals 
have to sample instances via either memory or mental simulation 
to approximate their own underlying subjective probabilities. Such a 
mental sampling process is analogous to the sampling method used 
to approximate distributions in statistics, except that mental sampling 
only utilizes small rather than large samples. According to the resource-
rational framework (Griffiths et al., 2015), using small samples allows 
individuals to optimally allocate time and cognitive resources, as gen-
erating samples is presumably effortful and time-consuming. Yet, the 
vulnerability of small sample sizes also leads individuals’ probability 
judgments to be easily affected by sampling variability (Denison et al., 
2013; Vul et al., 2014) and algorithmic properties of the sampling 
process such as the noise in the sampling processes (Costello & Watts, 
2014), correlations of samples (Dasgupta et al., 2017; Lieder, Griffiths, 
M. Huys, et al., 2018), and decision rules individuals used when 
drawing samples (Lieder, Griffiths, & Hsu, 2018). Thus, according to 
sampling-based models, biases and fallacies in probability judgments 
are natural by-products of the sampling process instead of incoherent 
underlying representations of probabilities.
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By explaining a wide range of biases and fallacies in probability 
judgments, the mental sampling framework offers an integrative per-
spective of how people produce probability judgments (Chater et al., 
2020). However, so far most evidence for mental sampling comes from 
a single task – the numerical estimation task (e.g., Costello & Watts, 
2014, 2018; Howe & Costello, 2020; Huang et al., 2024; Zhu et al., 
2020). This situation limits the scope of the theoretical idea. If mental 
sampling is a general cognitive process, it should be used not only to 
produce numerical probability estimates but also in related situations 
involving probabilistic events.

In the present study, we tested qualitative predictions from the 
mental sampling framework using the novel Event Ranking Task. We 
focused on a specific class of models, namely, direct sampling models 
of probability judgments (i.e., Costello & Watts, 2014; Zhu et al., 2020). 
Based on the core assumptions of these models, we used simulations to 
derive qualitative predictions that were expected to emerge in partic-
ipants’ responses to the Event Ranking Task. Two online experiments 
provided support for these predictions, and they offered direct evidence 
for the idea that people use mental sampling when asked to make 
judgments about probabilistic events.

This article begins with a brief overview of the direct sampling 
models of probability judgments. Then, we describe the Event Ranking 
Task, a model we developed for the task, and a simulation study to 
derive qualitative predictions from the model. Finally, we present the 
results of two experiments that tested the predictions and discuss their 
implications.

1. Direct sampling models of probability judgments

The conceptually simplest method that the mind can use to ap-
proximate probabilities is arguably direct sampling. According to direct 
sampling, each time people are asked to estimate the probability of 
an event, they sample a subset of independent instances via memory 
and/or a mental simulation to approximate the probability. People’s 
probability judgments of the event are then based on identically and in-
dependently distributed (i.i.d.) samples obtained from mental sampling. 
For instance, suppose people are assessing the probability of event 𝐴, 
‘‘There will be rain on a randomly selected day in Hamburg’’. People 
may infer the probability of this event by recalling past days they spent 
in Hamburg and/or by imagining hypothetical days. Importantly, it is 
assumed that people cannot exhaust the entire sample space but instead 
can sample only a subset of random instances, that is, 𝑁 days. Each 
sampled day indicates either a day with or without rain. The probability 
of event 𝐴 can be estimated by counting the number of rainy days in 
the 𝑁 retrieved and/or imagined days.

Formally, such a sampling process can be understood as instantiat-
ing a binomial process – that is, 𝑁 Bernoulli trials (see also Costello & 
Watts, 2014; Howe & Costello, 2020; Zhu et al., 2020). Each sampled 
instance indicates either an occurrence of the event being assessed 
(i.e., rain on a random day in Hamburg) with probability 𝑃 (𝐴) or 
a non-occurrence (i.e., NO rain on a random day in Hamburg) with 
probability 1−𝑃 (𝐴). Hereafter, we will refer to 𝑃 (𝐴) as the underlying 
probability of event 𝐴. The underlying probability of an event governs 
the mental sampling process, as it is the probability that a randomly 
sampled instance will indicate an occurrence of the event under eval-
uation. Mathematically, since the mental sampling process is modeled 
as a binomial process, the underlying probability is equivalent to the 
probability of success in a single Bernoulli trial.

The number of instances that indicate the occurrence of event 𝐴, 
hereafter referred to as the number of occurrences of event 𝐴, and 
denoted as 𝑂𝐴, follows the binomial distribution, 𝑂𝐴 ∼ Bin(𝑁,𝑃 (𝐴)). 
Similarly, if people assess the probability of event 𝐴’s complementary 
event, not-A (denoted as ¬𝐴), the number of occurrences of this event 
then follows 𝑂¬𝐴 ∼ Bin(𝑁,𝑃 (¬𝐴)).

The direct sampling assumption underlies a number of popular 
sampling-based models of probability judgments, including the prob-
ability theory plus noise (PT+N) model (Costello & Watts, 2014, 
2 
2016, 2017, 2018; Howe & Costello, 2020) and the Bayesian sampler 
model (Zhu et al., 2020). The PT+N model and the Bayesian sampler 
model address how people rely on mental sampling to produce numer-
ical estimations of probabilities. Both models posit that the binomial 
sampling process is used to evaluate different types of events, including 
marginal, conjunctive, disjunctive, and conditional events. Addition-
ally, both models assume coherent underlying probabilities of related 
events, such that the underlying probabilities of two complementary 
events follow the complement rule (𝑃 (𝐴) + 𝑃 (¬𝐴) = 1).1 However, the 
PT+N model and the Bayesian sampler model take different approaches 
to converting mental samples to probability estimates. Whereas the 
PT+N model assumes that both mental sampling and response gen-
eration are perturbed by noise – captured in a catch-all parameter 
𝑑, the Bayesian sampler model assumes that people regularize their 
probability estimates via a prior.

1.1. Evidence from the numerical estimation task

So far, the PT+N model (Costello & Watts, 2014, 2016, 2017; Howe 
& Costello, 2020) and the Bayesian sampler model (Sundh et al., 2023; 
Zhu et al., 2022, 2020) have been explored exclusively within the 
context of the numerical estimation task. In the numerical estimation 
task, participants are asked to estimate the probability of different 
types of events, such as marginal and conjunctive events, on a scale 
from 0% to 100%. Participants’ responses consistently exhibit well-
documented biases, including conjunction and disjunction fallacies as 
well as response conservatism. The extent of these biases, however, 
varies depending on the specific content and other contextual factors 
employed in the task (Wedell & Moro, 2008).

One piece of evidence for sampling-based models of probability 
judgments is that they offer a unified explanation for most of the 
biases and fallacies observed in the numerical estimation task. For 
example, the (occasional) occurrence of conjunction and disjunction 
fallacies directly follows from the idea of mental sampling. If partici-
pants’ probability judgments are based on independent mental samples 
with relatively small sample sizes, the randomness of the samples 
is sufficient to expect that sometimes the estimated probability of a 
single event is larger than the estimated probability of a conjunction 
including this event. The mechanisms included in the models on top of 
mental sampling – the noise parameter 𝑑 in the PT+N model and the 
prior in the Bayesian sampler model – provide additional explanatory 
power. For example, both mechanisms provide quantitatively the same 
explanation for response conservatism by assuming that extreme proba-
bility estimates are pushed toward 50%. Furthermore, these additional 
mechanisms can explain subadditivity, binary complementarity, and 
varying rates of conjunction and disjunction fallacies in the numerical 
estimation task (Costello & Watts, 2014, 2017; Zhu et al., 2020).

In addition to being able to explain many of the existing biases 
and fallacies, the PT+N model and the Bayesian sampler model make 
specific predictions for people’s averaged probability estimates of re-
lated events that were confirmed by the data. Costello and colleagues 
began this line of investigation by combining – adding and subtracting 
– probability estimates of related events to cancel out or isolate the 
effects of noise in the sampling process. Using a simple example to 
illustrate, the expression ‘‘𝑃 (𝐴) + 𝑃 (¬𝐴)’’ has an expected value of 1 
according to the PT+N model (i.e., the effects of noise term 𝑑 cancel 
out). Costello and colleagues (2014) developed a series of probabilistic 
expressions based on this idea. In some of these expressions, the effects 
of noise cancel out, and the expected values are in line with probability 

1 The PT+N model and the Bayesian sampler model conceptualize ‘‘un-
derlying probability’’ differently. According to the Bayesian sampler model, 
underlying probabilities represent subjective beliefs. However, in the PT + 𝑁
model, the underlying probabilities are assumed to represent the ‘‘objective’’ 
relative frequencies of events in memory.
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theory. In other expressions, the effects of noise do not cancel out, 
and the expected values differ from what probability theory predicts. 
Later, Zhu and colleagues (2020) showed that the Bayesian sampler 
model makes identical predictions in terms of the expected value of 
expressions that do not involve conditional probabilities. The predic-
tions for these probabilistic expressions were confirmed in a series of 
experiments across different pairs of events (Costello & Watts, 2014, 
2016, 2018; Zhu et al., 2020).

Taken together, both the PT+N model and the Bayesian sampler 
model can explain many of the biases typically observed in people’s 
numerical probability judgments, such as the conjunction fallacy and 
response conservatism. In addition, both models make predictions for 
the results of a number of probabilistic expressions that were generally 
confirmed in the aggregated probability estimation data.

2. Testing direct sampling empirically with the Event Ranking 
Task

The evidence for the mental sampling framework presented above 
is constrained to the numerical estimation task. However, evidence 
obtained from one specific experimental paradigm might be tied to 
the specific features of the paradigm. One feature of the probability 
estimation task is that it requires a high level of precision in mental 
representations, as well as a high level of precision in reasoning when 
responding on a probability scale from 0% to 100%. For example, Sun 
et al. (2008) discovered people’s provided judgments were less coherent 
when required to reason in a finer-grained manner, and people’s prob-
ability judgments were also clustered. The potential defects of relying 
on a single theory-testing paradigm call for converging evidence based 
on alternative methods (Meiser, 2011). Thus, we introduce the Event 
Ranking Task as an alternative approach for testing sampling-based 
accounts. In the task, participants need to rank four events according 
to their perceived probabilities instead of providing numerical esti-
mates of probabilities. This response format relaxes the requirement 
for precision in probabilistic reasoning.

2.1. Introduction to the Event Ranking Task

In each trial of the Event Ranking Task, participants are presented 
with an event set consisting of four events, {𝐴,¬𝐴,𝐵,¬𝐵}. More specif-
ically, participants are presented with two event pairs, and each event 
pair consists of two events that are complementary to each other. An 
example of an event set is:

• 𝐴: There will be rain on a randomly selected day in Hamburg.
• ¬𝐴: There will be NO rain on a randomly selected day in Ham-
burg.

• 𝐵: A randomly selected person in Germany lives in a big city.
• ¬𝐵: A randomly selected person in Germany does NOT live in a 
big city.

The event pair {𝐴,¬𝐴} represents an event indicating 𝐴 occurs 
(denoted as event 𝐴) and a complementary event indicating 𝐴 does 
not occur (denoted as event ¬𝐴). The same applies to the event pair 
{𝐵,¬𝐵}. Henceforth, we will refer to event 𝐴 and event 𝐵 as positive 
events, and event ¬𝐴 and event ¬𝐵 as negative events, so that each 
event pair consists of a positive and a negative event. When describing 
any negative event in our study, we used the grammatical negative, 
such as the word ‘‘NOT’’ or ‘‘NO’’ in capital letters. This was done to 
make it clear that each event pair comprises two mutually exclusive 
events.

The participants’ task is to simultaneously evaluate the probabilities 
of the four events in a given event set and rank them based on their 
perceived probabilities. The event(s) that the participant perceives to 
be the most likely should receive the highest rank (i.e., Rank 1). The 
event(s) perceived to be second most likely should receive the second 
3 
highest rank (i.e., Rank 2), and so forth. For instance, a participant 
might give a ranking such as 𝑃 (𝐴) > 𝑃 (𝐵) > 𝑃 (¬𝐵) > 𝑃 (¬𝐴), 
indicating that event 𝐴 has the highest perceived probability, event 𝐵
has the second highest perceived probability, event ¬𝐵 has the third 
highest perceived probability, and event ¬𝐴 has the lowest perceived 
probability.

2.1.1. Logical and illogical rankings
One important feature of the Event Ranking Task is its embedded 

logical rule. When examining the responses to the task (i.e., rankings 
of four events, 𝐴, ¬𝐴, 𝐵, ¬𝐵, by their perceived probabilities), we 
can classify them as logical or illogical. A logical ranking conforms 
to the complement rule; namely, the probabilities of an event and its 
complement sum to 1, 𝑃 (𝐴)+𝑃 (¬𝐴) = 𝑃 (𝐵)+𝑃 (¬𝐵) = 1. Consequently, 
it is illogical to rank both events from the pair {𝐴,¬𝐴} above both 
events from the pair {𝐵,¬𝐵} because this suggests 𝑃 (𝐴) + 𝑃 (¬𝐴) >
𝑃 (𝐵) + 𝑃 (¬𝐵). If 𝑃 (𝐴) ≤ 𝑃 (𝐵), then it must follow that 𝑃 (¬𝐴)(= 1 −
𝑃 (𝐴)) ≥ 𝑃 (¬𝐵)(= 1 − 𝑃 (𝐵)). Conversely, if 𝑃 (𝐴) ≥ 𝑃 (𝐵), then it must 
follow that 𝑃 (¬𝐴) ≤ 𝑃 (¬𝐵).

To illustrate the above statements with an example, suppose a per-
son is asked to rank the probabilities of four events: ‘‘rain in Hamburg’’ 
(𝐴), ‘‘NO rain in Hamburg’’ (¬𝐴), ‘‘a person lives in a big city’’ (𝐵), 
and ‘‘a person does NOT live in a big city’’ (¬𝐵), and they rank the 
event ‘‘rain in Hamburg’’ (𝐴) as the most probable among the four 
events. Then, they must rank the event ‘‘NO rain in Hamburg’’ (¬𝐴) 
to be the least probable event for the complement rule to hold. The 
rank order of the two remaining events, a person lives/does NOT live 
in a big city, does not matter as long as they are ranked to be more 
probable than ‘‘No rain’’ and less probable than ‘‘rain’’. Namely, when 
𝐴 is the most probable event, rankings that follow the complement rule 
should be one of the following three: 𝑃 (𝐴) > 𝑃 (𝐵) > 𝑃 (¬𝐵) > 𝑃 (¬𝐴) or 
𝑃 (𝐴) > 𝑃 (¬𝐵) > 𝑃 (𝐵) > 𝑃 (¬𝐴) or 𝑃 (𝐴) > 𝑃 (¬𝐵) = 𝑃 (𝐵) > 𝑃 (¬𝐴). In 
contrast, suppose the person ranks the event ‘‘rain in Hamburg’’ (event 
𝐴) as more likely than the event ‘‘a person lives in a big city’’ (event 𝐵) 
and consider these two events to be the most probable, while ranking 
‘‘NO rain in Hamburg’’ (event ¬𝐴) to be more likely than the event 
‘‘a person does NOT live in a big city’’ (event ¬𝐵) and considering 
these two events to be the least probable. This ranking 𝑃 (𝐴) > 𝑃 (𝐵) >
𝑃 (¬𝐴) > 𝑃 (¬𝐵) is illogical, as it simultaneously suggests 𝑃 (𝐴) > 𝑃 (𝐵)
and 𝑃 (¬𝐴) > 𝑃 (¬𝐵). Such illogical rankings frequently occurred in our 
data.

The occurrence of such illogical rankings cannot be explained from a 
strictly normative perspective. However, it can be anticipated from the 
perspective of mental sampling if one assumes that people draw inde-
pendent samples for different events. Consider a hypothetical scenario 
where a person draws two independent samples via memory/mental 
simulation for events 𝐴 and ¬𝐴, each with a sample size of five 
and underlying probabilities of 0.8 and 0.2, respectively. The samples 
that perfectly match 𝐴 and ¬𝐴’s underlying probabilities are both 
{𝐴,𝐴,𝐴,𝐴,¬𝐴}. Yet, in reality, samples rarely perfectly match their 
underlying probabilities due to sampling variation. Over- and under-
representation happen often. For example, a person might sample 
{𝐴,𝐴,𝐴,𝐴,𝐴} for event 𝐴 and {𝐴,𝐴,𝐴,¬𝐴,¬𝐴} for event ¬𝐴 by chance, 
both over-representing the true underlying probabilities of 𝐴 and ¬𝐴. 
Similarly, for events 𝐵 and ¬𝐵, each with a sample size of five and 
underlying probabilities of 0.6 and 0.4, respectively, the person might 
sample {𝐵,𝐵, 𝐵,¬𝐵,¬𝐵} (perfect representation) and {𝐵,𝐵, 𝐵, 𝐵,¬𝐵}
(under-representation). Such a sampling result would lead the person 
to erroneously rank 𝑃 (𝐴) > 𝑃 (𝐵) > 𝑃 (¬𝐴) > 𝑃 (¬𝐵) in the example 
above.

It is important to stress that a sampling-based model can predict 
illogical rankings in the Event Ranking Task only if it assumes that a 
ranking is based on independent samples for each event. More specif-
ically, we need to assume that even for two complementary events 
(e.g., 𝐴 and ¬𝐴), people draw independent samples and do not reuse 
one sample. While this assumption first appears questionable from a 
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Table 1
Full response space and mapping to ranking category.
 Category Ranking

 Rank 1 Rank 2 Rank 3 Rank 4 
 1

logical ranking

𝐴 𝐵 ¬𝐵 ¬𝐴  
 2 𝐴 ¬𝐵 𝐵 ¬𝐴  
 3 ¬𝐴 𝐵 ¬𝐵 𝐴  
 4 ¬𝐴 ¬𝐵 𝐵 𝐴  
 5 𝐵 𝐴 ¬𝐴 ¬𝐵  
 6 𝐵 ¬𝐴 𝐴 ¬𝐵  
 7 ¬𝐵 𝐴 ¬𝐴 𝐵  
 8 ¬𝐵 ¬𝐴 𝐴 𝐵  
 9

stacked-illogical ranking

𝐴 ¬𝐴 𝐵 ¬𝐵  
 10 𝐴 ¬𝐴 ¬𝐵 𝐵  
 11 ¬𝐴 𝐴 𝐵 ¬𝐵  
 12 ¬𝐴 𝐴 ¬𝐵 𝐵  
 13 𝐵 ¬𝐵 𝐴 ¬𝐴  
 14 𝐵 ¬𝐵 ¬𝐴 𝐴  
 15 ¬𝐵 𝐵 𝐴 ¬𝐴  
 16 ¬𝐵 𝐵 ¬𝐴 𝐴  
 17

interlaced-illogical ranking

𝐴 𝐵 ¬𝐴 ¬𝐵  
 18 𝐴 ¬𝐵 ¬𝐴 𝐵  
 19 ¬𝐴 𝐵 𝐴 ¬𝐵  
 20 ¬𝐴 ¬𝐵 𝐴 𝐵  
 21 𝐵 𝐴 ¬𝐵 ¬𝐴  
 22 𝐵 ¬𝐴 ¬𝐵 𝐴  
 23 ¬𝐵 𝐴 𝐵 ¬𝐴  
 24 ¬𝐵 ¬𝐴 𝐵 𝐴  
Note. The table presents all possible responses in the ties-not-allowed condition of 
the Event Ranking Task, along with their corresponding ranking categories. An event 
assigned Rank 1 is perceived to be the most likely, Rank 2 as the second most likely, 
Rank 3 as the third most likely, and Rank 4 as the least likely.

resource rational perspective, assuming otherwise that people reuse the 
same sample for evaluating 𝐴 and ¬𝐴 would suggest when 𝐴 is over-
represented, ¬𝐴 will always be under-represented. This means that the 
scenario above where both 𝐴 and ¬𝐴 are over-represented, which is 
pivotal for the illogical ranking above to occur, would never happen. 
The same holds for the event 𝐵 and event ¬𝐵. Reusing any pairs of sam-
ples above (e.g., using two samples {𝐴,𝐴,𝐴,𝐴,𝐴} and {𝐵,𝐵, 𝐵,¬𝐵,¬𝐵}
for the four events or {𝐴,𝐴,𝐴,¬𝐴,¬𝐴} and {𝐵,𝐵, 𝐵, 𝐵,¬𝐵}) would 
lead to rankings that follow the complement rule. Consequently, no 
illogical ranking can occur, which contradicts our data. In the General 
Discussion section, we will discuss this point in more detail to explain 
why assuming four independent samples for the four events in the 
event set is essential and provides a parsimonious account of the data 
presented in this paper. It remains to be seen whether our explanation 
can eventually be incorporated into a resource rational account.

2.1.2. Handling rankings with ties
Another crucial aspect of the Event Ranking Task is whether to 

allow participants to provide rankings with ties. When considering all 
possible rankings of four events (𝐴, ¬𝐴, 𝐵, ¬𝐵), there are 75 potential 
rankings. Of these, 24 are full orders without ties, where each event is 
assigned a unique rank (e.g., 𝑃 (𝐴) > 𝑃 (𝐵) > 𝑃 (¬𝐵)> 𝑃 (¬𝐴)), while the 
remaining 51 are partial orders that include ties, where some events 
share the same rank (e.g., 𝑃 (𝐴) > 𝑃 (𝐵) = 𝑃 (¬𝐵) > 𝑃 (¬𝐴)).

In our experiments, we included both possibilities in a between-
subjects design. The ties-not-allowed condition was only allowed to 
produce rankings without ties, while the ties-allowed condition was 
permitted to produce rankings with ties. Predictions from the sampling-
based model for the Event Ranking Task can be derived separately for 
both conditions and were qualitatively very similar. Because rankings 
with ties were rare in the ties-allowed condition and results showed the 
same patterns, we only focus on the simpler ties-not-allowed condition 
in this paper. Full details regarding the ties-allowed condition – includ-
ing the task, model, simulation, and empirical investigations of model 
predictions – are provided in Supplementary Material S2.
4 
2.1.3. Ranking categories
To facilitate a nuanced investigation of the sampling-based models 

using the Event Ranking Task, we have classified responses into three 
categories: logical rankings and two distinct types of illogical rankings.

Table  1 provides a comprehensive enumeration of the possible re-
sponses, along with the categorization of each response. The enumera-
tion and categorization of responses presented here apply exclusively to 
the ties-not-allowed condition. For the enumeration and categorization 
of the responses under the ties-allowed conditions, see Supplementary 
Materials S2.1, where the same principles are applied with adjustments 
for additional partial orders.

• Logical Rankings: Logical rankings must obey the rule that one 
event pair in a given event set occupies Ranks 1 and 4 while the 
other pair occupies Ranks 2 and 3. Only these constellations are 
compatible with the complement rule.

• Stacked-Illogical Rankings: Both events in one event pair are simul-
taneously ranked higher than both events in the other event pair. 
In other words, in a stacked-illogical ranking, Rank 1 and Rank 2 
are assigned exclusively to a pair of complementary events.

• Interlaced-Illogical Rankings: One pair occupies Ranks 1 and 3, the 
other pair Ranks 2 and 4.

2.2. The Ranking Model

In this section, we present a cognitive model for the Event Ranking 
Task based on direct sampling, the Ranking Model. We begin by out-
lining the basic model, the Basic Ranking Model, and then introduce 
an extended version of it, the Ranking Model with Read-Out Noise, 
which incorporates an additional assumption of read-out noise that 
affects the mental sampling process. In the subsequent section, both the 
basic model and the extended model will be used to derive qualitative 
predictions, which will then be tested empirically.

To provide a preliminary overview, the Ranking Model calculates 
the probability of each ranking given the comprehensive set of all 
possible rankings for a given event set. In the basic model, the prob-
ability of each possible ranking is determined by three parameters 
that characterize the mental sampling processes: 𝑃 (𝐴), 𝑃 (𝐵), and 𝑁 . 
The parameters 𝑃 (𝐴) and 𝑃 (𝐵) represent the underlying probabilities 
that govern the sampling process. Because 𝑃 (𝐴) + 𝑃 (¬𝐴) = 1 and 
𝑃 (𝐵) + 𝑃 (¬𝐵) = 1, specifying only one parameter per event pair is 
enough.

In the extended model, an additional assumption is introduced: 
the sampling process is affected by read-out noise, denoted as 𝑑. 
Specifically, there is a fixed probability 𝑑 that a participant mistakenly 
interprets an instance of an event as an instance of the event’s comple-
ment (i.e., reading an instance of event 𝐴 as an instance of event ¬𝐴, 
or vice versa).

In this paper, we investigate participants’ responses only at the 
level of the ranking categories (i.e., logical rankings, stacked-illogical 
rankings, and interlaced-illogical rankings) rather than at the level of 
individual rankings. Accordingly, we focus on the model predictions 
at the ranking category level. We aggregate the model predictions for 
the rankings that belong to the same ranking category to derive model 
predictions.

Notably, the Ranking Model presented here is tailored to the ties-
not-allowed condition of the Event Ranking Task. While partial orders 
are included in the ties-allowed condition – leading to differences 
in how rankings are enumerated and probabilities calculated – the 
Ranking Models for the ties-allowed and ties-not-allowed conditions 
share core assumptions and produce very similar qualitative predic-
tions. Supplementary Materials S1.1 provides the equations for the 
Ranking Model specific to the ties-allowed condition, S2.2 outlines the 
assumptions, and S2.3 presents the derived predictions.
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2.2.1. Basic Ranking Model
During a trial of the Event Ranking Task, participants rank the four 

events, 𝐴, ¬𝐴, 𝐵, and ¬𝐵, by their perceived probabilities. The Ranking 
Model assumes that participants begin by drawing independent samples 
for each of these four events. Imagine that in a trial, participants are 
presented with the previous example event set {𝐴: rain in Hamburg, 
¬𝐴: NO rain in Hamburg, 𝐵: a person lives in a big city, ¬𝐵: a 
person does NOT live in a big city}. To evaluate event 𝐴, participants 
recall/simulate a sample of 𝑁 random days in Hamburg and count 
the number of days with rain, denoted as 𝑂𝐴. Similarly, independent 
samples are drawn for the remaining three events, resulting in 𝑂¬𝐴 (for 
event ¬𝐴), 𝑂𝐵 (for event 𝐵) and 𝑂¬𝐵 (for event ¬𝐵).

Consistent with previous literature (Costello & Watts, 2014; Howe 
& Costello, 2020; Zhu et al., 2020), the sampling outcomes 𝑂 are 
distributed according to a binomial distribution, 𝑂 ∼ Bin(𝑁, 𝑝), where 
𝑁 represents the sample size used for the event under evaluation and 
𝑝 is the underlying probability of the event under evaluation. Thus, the 
sampling outcomes for 𝐴 are modeled as 𝑂𝐴 ∼ Bin(𝑁𝐴, 𝑃 (𝐴)). Because 
the Ranking Model adheres to the complement rule, which states that 
the probabilities of complementary events sum to 1, we can model 𝑂¬𝐴
as 𝑂¬𝐴 ∼ Bin(𝑁¬𝐴, 1−𝑃 (𝐴)). The same reasoning applies to deriving the 
binomial distributions for the sampling outcomes of event 𝐵 and its 
complement, ¬𝐵. The probability mass function (PMF) of the binomial 
distribution, 𝑓 (𝑖,𝑁, 𝑝), is used to compute the probability of observing 
𝑂 = 𝑖 occurrences of the event in a sample of 𝑁 instances: 

𝑃 (𝑂 = 𝑖) = 𝑓 (𝑖,𝑁, 𝑝) =
(

𝑁
𝑖

)

𝑝𝑖(1 − 𝑝)𝑁−𝑖. (1)

To derive the sampling outcome distribution for any of the four events 
𝐴, ¬𝐴, 𝐵, and ¬𝐵, we only need to substitute the parameters (i.e., the 
underlying probability 𝑝 and the sample size of mental sampling 𝑁). 
For example, 𝑃 (𝑂𝐴 = 𝑖) = 𝑓 (𝑖,𝑁𝐴, 𝑃 (𝐴)) =

(𝑁𝐴
𝑖

)

𝑃 (𝐴)𝑖(1 − 𝑃 (𝐴))𝑁𝐴−𝑖.
Importantly, the Ranking Model posits that, during a single trial of 

the Event Ranking Task, participants use a constant sample size, 𝑁 , to 
evaluate all four events (𝐴,¬𝐴,𝐵,¬𝐵) from the same event set. This 
means that in any single trial, 𝑁𝐴 = 𝑁𝐵 = 𝑁¬𝐴 = 𝑁¬𝐵 = 𝑁 . After 
obtaining mental samples for each event, the Ranking Model assumes 
that participants derive a ranking by directly comparing the numbers 
of occurrences (i.e., 𝑂𝐴, 𝑂¬𝐴, 𝑂𝐵 , 𝑂¬𝐵). Events with the largest number 
of occurrences in the obtained samples are ranked highest, followed by 
those with the second-largest number of occurrences, and so on. Both 
the assumption of independent samples for each event and the use of 
a constant sample size are central assumptions of the Ranking Model. 
Without the constant sample size assumption, participants would be 
unable to provide a ranking based solely on the binomial sampling 
outcomes. Instead, additional assumptions, such as converting sampling 
results into interim metrics (e.g., relative frequencies) before ranking, 
would be required.

As an example to illustrate the proposed process, imagine a scenario 
where a participant uses a sample size of 10 to assess the example event 
set introduced above and obtains the following sampling results: for 
event 𝐴, 5 out of 10 instances are rainy days (i.e., 𝑂𝐴 = 5); for event 
¬𝐴, 7 out of 10 instances are non-rainy days (i.e., 𝑂¬𝐴 = 7); for event 
𝐵, 2 out of 10 people live in a big city (i.e., 𝑂𝐵 = 2); and for event 
¬𝐵, 4 out of 10 people do not live in a big city (i.e., 𝑂¬𝐵 = 4). Based 
on these sampling outcomes, 𝑂¬𝐴 > 𝑂𝐴 > 𝑂¬𝐵 > 𝑂𝐵 , participants 
would derive the following ranking: 𝑃 (¬𝐴) > 𝑃 (𝐴) > 𝑃 (¬𝐵) >
𝑃 (𝐵). This ranking falls into the category of stacked-illogical rankings; 
although the underlying probabilities adhere to the complement rule, 
the sampling outcomes do not due to sampling variability.

To calculate the probability of obtaining the sampling outcomes 
with the order 𝑂¬𝐴 > 𝑂𝐴 > 𝑂¬𝐵 > 𝑂𝐵 , we need to enumerate all 
possible combinations of 𝑂𝐴, 𝑂¬𝐴, 𝑂𝐵 , and 𝑂¬𝐵 that have this order. 
Continuing with the previous hypothetical scenario, we consider all 
possible sampling outcomes resulting from a sample size of 10. What 
combinations of 𝑂 , 𝑂 , 𝑂 , and 𝑂  have the aforementioned order? 
𝐴 ¬𝐴 𝐵 ¬𝐵

5 
𝑂𝐵 , as the smallest value, must be smaller than the other three numbers 
of occurrences. Thus, 𝑂𝐵 can take values ranging from 0 to 7 (= 10−3). 
𝑂¬𝐵 must be larger than 𝑂𝐵 , but its value cannot exceed the other two 
numbers of occurrences. Thus, 𝑂¬𝐵 can take values ranging from 𝑂𝐵+1
to 8 (= 10 − 2). Using the same reasoning, 𝑂𝐴 can take values ranging 
from 𝑂¬𝐵 + 1 to 9 (= 10 − 1), and 𝑂¬𝐴 can take values ranging from 
𝑂𝐴 + 1 to 10. To generalize to sampling outcomes obtained using any 
sample size, the probability of obtaining the sampling outcomes with 
the aforementioned order is

𝑃 (𝑂¬𝐴 > 𝑂𝐴 > 𝑂¬𝐵 > 𝑂𝐵)

=
𝑁−3
∑

𝑂𝐵=0
𝑓 (𝑂𝐵 , 𝑁, 𝑃 (𝐵))

𝑁−2
∑

𝑂¬𝐵=𝑂𝐵+1
𝑓 (𝑂¬𝐵 , 𝑁, 𝑃 (¬𝐵))

𝑁−1
∑

𝑂𝐴=𝑂¬𝐵+1
𝑓 (𝑂𝐴, 𝑁, 𝑃 (𝐴))

𝑁
∑

𝑂¬𝐴=𝑂𝐴+1
𝑓 (𝑂¬𝐴, 𝑁, 𝑃 (¬𝐴)), (2)

where the function 𝑓 (𝑖,𝑁, 𝑝) calculates the probability of obtaining 𝑖
occurrences in a mental sample of size 𝑁 , as given by Eq.  (1). Four 
summations are calculated for 𝑂𝐴, 𝑂¬𝐴, 𝑂𝐵 , and 𝑂¬𝐵 , respectively 
(e.g., 𝑃 (𝑂¬𝐴 ∈ [𝑂𝐴+1, 𝑁]) =

∑𝑁
𝑂¬𝐴=𝑂𝐴+1

𝑓 (𝑂¬𝐴, 𝑁, 𝑃 (𝐴))) to give us the 
probability of them falling into a range of values that allows the desired 
order (e.g., 𝑂¬𝐴 > 𝑂𝐴). Finally, using the product rule, we enumerate 
all possible combinations of 𝑂𝐴, 𝑂¬𝐴, 𝑂𝐵 , and 𝑂¬𝐵 that result in the 
desired order.

One possible result, directly based on the sampling outcomes, is that 
the numbers of occurrences for two or more events are equal (e.g., 𝑂𝐴 =
𝑂¬𝐴 > 𝑂¬𝐵 > 𝑂𝐵). In the main text of the paper, we focus on the ties-
not-allowed condition of the Event Ranking Task, where participants 
cannot provide a ranking with ties directly based on such sampling 
results, producing a ranking such as 𝑃 (𝐴) = 𝑃 (¬𝐴) > 𝑃 (¬𝐵) > 𝑃 (𝐵). 
We assume that participants would instead randomly assign an order 
to the tied events while maintaining the linear order suggested by the 
sample outcomes. Specifically, participants would follow the orders 
𝑂𝐴 > 𝑂¬𝐵 > 𝑂𝐵 and 𝑂¬𝐴 > 𝑂¬𝐵 > 𝑂𝐵 , but would randomly assign 
an order for 𝐴 and ¬𝐴, with each event having a probability of 0.5 of 
being ranked first. Consequently, participants would either produce the 
ranking 𝑃 (¬𝐴) > 𝑃 (𝐴) > 𝑃 (¬𝐵) > 𝑃 (𝐵) or 𝑃 (𝐴) > 𝑃 (¬𝐴) > 𝑃 (¬𝐵) >
𝑃 (𝐵), with equal probability. The probability of arriving at either of 
these two rankings is the probability of generating the original partial 
ordering, 𝑃 (𝐴) = 𝑃 (¬𝐴) > 𝑃 (¬𝐵) > 𝑃 (𝐵) (given by Equation A27 in 
Supplementary Material S1.1.1), multiplied by 0.5.2

As a consequence of ties being randomly assigned to generate a 
ranking without ties, the ranking 𝑃 (¬𝐴) > 𝑃 (𝐴) > 𝑃 (¬𝐵) > 𝑃 (𝐵) can 
arise from a range of sampling outcomes. One possibility is that the 
sampling outcomes follow the exact order without ties: 𝑂¬𝐴 > 𝑂𝐴 >
𝑂¬𝐵 > 𝑂𝐵 , with the probability of obtaining such outcomes given 
by Equation A21 in Supplementary Material S1.1.1. Other possibilities 
involve sampling outcomes with ties, which may follow the ordering 
𝑂¬𝐴 > 𝑂𝐴 > 𝑂¬𝐵 > 𝑂𝐵 once ties are resolved. Ties can occur between 
any two ranks, and there can be any number of ties. Equation B12 
in Supplementary Material S1.2.1 calculates the probability of partici-
pants providing the ranking 𝑃 (¬𝐴) > 𝑃 (𝐴) > 𝑃 (¬𝐵) > 𝑃 (𝐵) considering 
all possible sampling outcomes with and without ties. Supplementary 
Materials S1.2.1 provides equations that calculate the probabilities of 
all 24 possible rankings.

2 If there are three (or four) ties in the sampling result, participants would 
need to randomly decide among six (or twenty-four) potential full orders after 
ordering the ties. The probability of reporting any of the six (or twenty-four) 
orders would be the probability of obtaining the original sampling result with 
ties, multiplied by 1  (or 1 ).
6 24
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2.2.2. Ranking Model with Read-out Noise
In an extension to the Basic Ranking Model, we introduce read-out 

noise, denoted by parameter 𝑑, into the sampling processes (i.e., the 
model now has four parameters, 𝑃 (𝐴), 𝑃 (𝐵), 𝑁 , and 𝑑). This read-out 
noise, first proposed in the PT+N model (Costello & Watts, 2014), re-
gresses the underlying probabilities governing mental sampling toward 
0.5. The rationale for this extension is twofold: first, to explore whether 
the model’s predictions remain intact after considering the effect of 
regressed underlying probabilities on sampling outcomes, and second, 
to align the model more closely with established literature, where the 
noise (or, alternatively, Bayesian belief updating) plays a central role 
in explaining findings such as the probabilistic expressions in people’s 
probability estimations of related events (Costello & Watts, 2014; Zhu 
et al., 2020), and the varying rates of the occurrence of the conjunction 
fallacy (Costello & Watts, 2017).

We modeled the ‘‘read-out noise’’ using the same approach as the 
PT+N model. Under the influence of the read-out noise, each sampled 
instance might be mistakenly read as its complement (𝐴 be identified as 
¬𝐴 or vice versa) at a constant rate. Each sampled instance for event 𝐴
has a probability 𝑃𝑟𝑒𝑔(𝐴) (instead of 𝑃 (𝐴)) of indicating the occurrence 
of 𝐴, and a probability 1 − 𝑃𝑟𝑒𝑔(𝐴) of indicating the occurrence of ¬𝐴. 
The probability of obtaining a number of 𝑖 occurrences in a sample of 
𝑁 instances is given by the PMF of the binomial distribution (Eq.  (1)) 
where 𝑝 is replaced with the regressed underlying probability 𝑝𝑟𝑒𝑔 , with 
𝑝𝑟𝑒𝑔 = (1 − 2𝑑)𝑝 + 𝑑. Furthermore, by replacing 𝑝 with 𝑝𝑟𝑒𝑔 in Eq.  (2) 
(e.g., replacing 𝑃 (𝐴) with 𝑃𝑟𝑒𝑔(𝐴) = (1 − 2𝑑)𝑃 (𝐴) + 𝑑), we obtain the 
equation for the sampling result 𝑂¬𝐴 > 𝑂𝐴 > 𝑂¬𝐵 > 𝑂𝐵 according to 
the Ranking Model with Read-Out Noise.

Although we followed the same modeling approach as the PT+N 
model, the noise parameter 𝑑 in the Ranking Model differs conceptually 
from that in the PT+N model. In the PT+N model, 𝑑 is treated as a 
catch-all for multiple sources of errors in a continuous response task, 
whereas in our model, 𝑑 plays the more specific role of internal read-
out noise only, which disrupts the sampling process. Consequently, one 
might expect the value of 𝑑 in the Event Ranking Task to be smaller 
compared to the value of 𝑑 in numerical estimation tasks. However, 
exploring this issue in detail falls outside the scope of the current paper.

3. Simulation study

In this section, we present a simulation study that generates quali-
tative predictions about the occurrence of different ranking categories 
across various event sets in the Event Ranking Task. These response 
patterns were examined using both the Basic Ranking Model and the 
Ranking Model with Read-Out Noise. The same parameter settings 
were applied to both models, except for the additional noise parameter 
(𝑑), which was only relevant to the Ranking Model with Read-Out 
Noise. The simulation results show that the same qualitative pattern 
is predicted to appear in the data, regardless of whether noise in the 
sampling process is assumed. The simulation was implemented in the R 
environment (R Core Team, 2024). The simulation code and the results 
are available at the Open Science Framework (https://osf.io/hw8p9/).

The simulation study presented here was tailored to the ties-not-
allowed condition of the Event Ranking Task. Supplementary Materials 
S2.3 describes a comparable simulation study tailored to the ties-
allowed condition, using the same simulation settings as in the ties-
not-allowed condition. Both simulations yielded the same predictions 
for ranking categories shared by both conditions.

3.1. Procedure

The Basic Ranking Model has three parameters: 𝑃 (𝐴), 𝑃 (𝐵), and 
𝑁 . The Ranking Model with Read-Out Noise includes an additional 
parameter, 𝑑, alongside these three parameters. 𝑃 (𝐴) and 𝑃 (𝐵) (and 
their complementary probabilities, 1−𝑃 (𝐴) and 1−𝑃 (𝐵)) represent the 
underlying probabilities of the four events that constitute an event set 
6 
presented in a single trial of the Event Ranking Task. 𝑁 represents the 
sample size of mental sampling used for all four events in a given trial. 
𝑑 represents a constant read-out noise that affects the mental sampling 
process across all trials of the Event Ranking Task.

First, we systematically varied all parameters in the Basic Ranking 
Model to assess their impact on the occurrence of ranking categories. 
Our main focus in the simulation was on the underlying probabilities 
of the events, for which we created three different types of event 
sets with distinct underlying probabilities of the constituent events. 
We derived qualitative predictions about the occurrence of different 
ranking categories across different types of event sets, irrespective of 
the sample size of mental sampling, 𝑁 .

Second, we investigated whether the qualitative predictions would 
hold when considering read-out noise in the sampling process. To 
this end, we ran the simulation of the Ranking Model with Read-Out 
Noise. We applied the same parameter values for 𝑁 and the underlying 
probabilities, 𝑃 (𝐴) and 𝑃 (𝐵). Additionally, we incorporated the read-
out noise parameter, 𝑑, setting it to a value near what we considered 
its maximum plausible limit to explore whether the predictions of the 
Basic Ranking Model would be distorted.

3.1.1. Basic Ranking Model
We varied 𝑃 (𝐴) and 𝑃 (𝐵) together to generate three different types 

of event sets: edge-event sets, mid-event sets, and mixed sets. Recall 
that each event set consists of two pairs of events, each consisting 
of two complementary events. An edge-event set comprises two event 
pairs whose constituent events have underlying probabilities close to 1 
and 0, respectively (we term such pairs as edge-event pairs). For each 
edge-event pair, the underlying probability of one constituent event is 
determined by drawing a random value from a Beta(1, 10) distribution 
(Fig.  1, left panel), and the underlying probability of the remaining 
event is obtained by subtracting this value from 1. A mid-event set 
comprises two event pairs whose constituent events have underlying 
probabilities close to 0.5 (we term such pairs as mid-event pairs). 
For each mid-event pair, the underlying probability of one constituent 
event is determined by drawing a random value from a Beta(10, 10) 
distribution (Fig.  1, right panel), and the underlying probability of 
the remaining event is obtained by subtracting this value from 1. A 
mixed set consists of one edge-event pair and one mid-event pair. The 
realizations of different types of event sets are summarized in Table  2.

We varied the sample size 𝑁 from 1 to 50 in a total of 26 levels. For 
values of 𝑁 from 1 to 20 we increased the sample size in steps of 1 and 
for values of 𝑁 from 20 to 50 in steps of 5. The reason for choosing 
different step sizes across the range of 𝑁 was that we expected more 
changes in the qualitative pattern of predictions for small values of 𝑁
(i.e., 𝑁 < 20) compared to the changes expected for larger values of 𝑁 . 
Ultimately, we wanted qualitative predictions that generalize across a 
wide range of 𝑁s, so we did not have to make questionable assumptions 
about 𝑁 in our experiments.

Taken together, the simulation of the Basic Ranking Model varied 
two factors: event-set type (three levels) and sample size 𝑁 (26 levels). 
For each combination of factor levels, we performed 10,000 simulation 
runs, which returned the predicted probabilities for three ranking cat-
egories as the output. Specifically, in each run, we generated an event 
set and determined the constituent events’ underlying probabilities by 
drawing from corresponding Beta distributions (see Table  2). Plugging 
the underlying probabilities and sample sizes into the Basic Ranking 
Model, we calculated the predicted probabilities of all 24 possible 
rankings for each event set. Finally, we classified the rankings into three 
categories as introduced in Section Ranking Categories and summed the 
probabilities of the rankings within each ranking category.

https://osf.io/hw8p9/
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Fig. 1. Beta distributions used in the simulation study to generate the underlying probabilities.
The left panel shows the Beta(1, 10) distribution used to generate underlying probabilities for events in the edge-event pairs. The right panel shows the Beta(10, 10) distribution 
to generate underlying probabilities for events in the mid-event pairs.
Table 2
Summary of realizations of event sets in the simulation.
 Event-set type Definition Distributions for random value generation
 Edge-event set A set consisting of two edge-event pairs with constituent events 𝑃 (𝐴) ∼ Beta(1, 10), 𝑃 (¬𝐴) = 1 − 𝑃 (𝐴)  
 {𝐴,¬𝐴,𝐵,¬𝐵} having underlying probabilities near 1 and 0, respectively 𝑃 (𝐵) ∼ Beta(1, 10), 𝑃 (¬𝐵) = 1 − 𝑃 (𝐵)  
 Mid-event set A set consisting of two mid-event pairs with constituent events 𝑃 (𝐴) ∼ Beta(10, 10), 𝑃 (¬𝐴) = 1 − 𝑃 (𝐴)  
 {𝐴,¬𝐴,𝐵,¬𝐵} having underlying probabilities close to 0.5 𝑃 (𝐵) ∼ Beta(10, 10), 𝑃 (¬𝐵) = 1 − 𝑃 (𝐵)  
 Mixed set A set consisting of one edge-event pair 𝑃 (𝐴) ∼ Beta(1, 10), 𝑃 (¬𝐴) = 1 − 𝑃 (𝐴)  
 {𝐴,¬𝐴,𝐵,¬𝐵} and one mid-event pair 𝑃 (𝐵) ∼ Beta(10, 10), 𝑃 (¬𝐵) = 1 − 𝑃 (𝐵)  
3.1.2. Ranking Model with Read-out Noise
In addition to the simulation of the Basic Ranking Model, we 

explored the effect of read-out noise parameter 𝑑 on the predicted 
probabilities of different ranking categories by simulating the Ranking 
Model with Read-out Noise. For the simulation of the Ranking Model 
with Read-out Noise, we used the same parameter settings for 𝑃 (𝐴), 
𝑃 (𝐵) (across the same three levels), and 𝑁 (across the same 26 levels) 
as described above. Same as in the simulation of the Basic Ranking 
Model, for each combination of event-set type and sample size, we per-
formed 10,000 simulation runs and generated 10,000 sets of predicted 
responses. In all simulation runs, the additional parameter, read-out 
noise 𝑑, was set at a fixed value of 0.3, which we consider to be a 
reasonable approximation of its upper bound.

We determined the maximum value for the noise 𝑑 based on its 
empirically estimated and theoretical maximum values. For its empir-
ically estimated values, Costello and Watts (2016) reported that the 
average rate of mistaking a sampled instance (as its complement) was 
0.24.3 The maximum theoretical value that the noise 𝑑 can take is 0.5, 
which regresses the probability that governs the sampling process to 
0.5 regardless of the original underlying probability. Therefore, setting 
𝑑 to a value of 0.3 allows us to investigate the effect of read-out noise 
on the occurrence of ranking categories to a sufficient extent.

3.2. Results

Fig.  2 shows the mean predicted probabilities of participants’ re-
sponses falling into each ranking category as a function of the event-set 
type, sample size, and whether read-out noise is present.4 A visual 
inspection of Fig.  2 reveals qualitative differences among event sets 
(columns) in the probability distribution of ranking categories. For 

3 Costello and Watts (2016) estimated the average value of the read-out 
noise, 𝑑, by using participants’ probability estimations about related events to 
form probabilistic expressions.

4 To calculate the mean predictions, we averaged the simulation outputs 
from 10,000 runs for each combination of the event-set type and sample size, 
resulting in 3 × 26 (= 78) predicted probabilities. This averaging process was 
done for the simulation of the Basic Ranking Model and the simulation of the 
Ranking Model with Read-out noise, respectively.
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instance, the predicted probability of logical rankings is smallest for the 
mid-event sets, regardless of sample size 𝑁 . Additionally, the predicted 
probability of stacked-illogical rankings is largest for the mid-event sets, 
also irrespective of sample size 𝑁 . Notably, these qualitative differences 
across event-set types remain consistent in the predictions derived from 
both the Basic Ranking Model and the Ranking Model with Read-Out 
Noise.

Since the predicted probabilities of providing different ranking cat-
egories are not independent and must sum to one, directly deriving 
testable predictions from the full distribution shown in Fig.  2 is chal-
lenging. To circumvent this problem, we decomposed the distribution 
of ranking categories into (conditional) probabilities of ranking cate-
gories, considering that the occurrence of different ranking categories 
is mutually exclusive (this decomposition procedure is also known 
as ‘‘nested dichotomies’’ in statistics; e.g., J. Fox, 2015). As a first 
step, we examined the probability of participants giving a logical 
ranking versus an illogical ranking. As a second step, we examined the 
conditional probability of giving a stacked-illogical ranking versus an 
interlaced-illogical ranking, given that the ranking was illogical.

Fig.  3 shows the decomposed probabilities of different ranking 
categories. Note that the composition of the figure is different from that 
of Fig.  2: While the two rows still correspond to the two models without 
and with read-out noise and the 𝑥-axis still represents the sample size, 
the columns now refer to the decomposed ranking categories and the 
lines represent different event-set types. Fig.  3 now clearly shows the 
effects of event-set types on the predicted (conditional) probabilities of 
the ranking categories. Furthermore, the observed qualitative patterns 
are very similar across both rows, indicating that the effect of read-out 
noise 𝑑 is negligible. Under mild conditions – specifically, assuming a 
sample size greater than 3 for the Basic Ranking Model and greater than 
10 for the Ranking Model with Read-Out Noise (where the noise term 
𝑑 is set to its maximum value) – the following qualitative patterns con-
sistently emerge from predictions derived from both models, regardless 
of the sample size 𝑁 :

• The probability of giving a logical ranking is highest for the mixed 
sets, second highest for the edge-event sets, and lowest for the 
mid-event sets;
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Fig. 2. Simulation results before decomposing the distribution of ranking categories.
Predicted response probabilities of different ranking categories as a function of event-set type and sample size 𝑁 , derived from the Basic Ranking Model (first row) and the Ranking 
Model with Read-Out Noise (second row). The probabilities of different ranking categories always sum to one for a given sample size and event set. The 𝑥-axis represents the 
sample size 𝑁 , columns refer to different types of event sets, and colors represent different ranking categories.

Fig. 3. Simulation results after decomposing the distribution of ranking categories.
Predicted (conditional) probabilities of different ranking categories as a function of event-set type (lines) and sample size 𝑁 (x-axis), derived from the Basic Ranking Model (top 
row) and the Ranking Model with Read-Out Noise (bottom row). The predicted (conditional) probabilities for each plot are as follows. ‘‘Logical’’: probability of giving logical 
rankings versus all other rankings. ‘‘Stacked-illogical’’: conditional probability of giving stacked-illogical rankings versus interlaced-illogical rankings.

Cognition 263 (2025) 106125 
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Table 3
Examples of event pairs selected in the pilot study.
 Event pair Ways of construction Constituent events Example

 
Edge-event

𝑃 (𝐴) ≈ 1 Positive event A randomly selected person in Germany was born in a hospital.  
 𝑃 (¬𝐴) ≈ 0 Negative event A randomly selected person in Germany was NOT born in a hospital. 
 𝑃 (𝐴) ≈ 0 Positive event In a randomly selected year, it will snow in Germany in June.  
 𝑃 (¬𝐴) ≈ 1 Negative event In a randomly selected year, it will NOT snow in Germany in June.  
 Mid-event 𝑃 (𝐴) ≈ 0.5 Positive event On a randomly selected day in Hamburg, there will be rain.  
 𝑃 (¬𝐴) ≈ 0.5 Negative event On a randomly selected day in Hamburg, there will be NO rain.  
• The conditional probability of giving a stacked-illogical ranking, 
given that participants do not give a logical ranking, is highest for 
the mid-event sets, second highest for the mixed sets, and lowest 
for the edge-event sets.

4. Overview of experiments

In the following, we aim to test the qualitative predictions derived 
from the Ranking Model empirically. As a first step, we conducted a 
pilot study to obtain normed event pairs for which people share com-
mon beliefs about their potential range of probabilities. The normed 
event pairs were then used in Experiment 1 and Experiment 2 to 
construct different types of event sets. Experiment 1 tested the qual-
itative predictions we derived for the mid-event and edge-event sets. 
Experiment 2 tested the qualitative predictions we derived for the 
mid-event, edge-event, and mixed sets.

In both Experiments 1 and 2, we investigated two conditions of 
the Event Ranking Task, namely, the ties-allowed condition and the 
ties-not-allowed condition, using a between-subjects design. To stream-
line the presentation, we report the ties-not-allowed condition in the 
main text and defer the more complex ties-allowed condition, which 
produced similar results, to the Supplementary Materials S2.

5. Pilot study

The goal of the pilot study was to generate normed edge-event 
and mid-event pairs. Full details of the pilot study can be found in 
Appendix  A. Briefly, we first generated 200 event pairs, each of which 
consisted of two events: a positive event (e.g., ‘‘On a randomly selected 
day in Hamburg, there will be rain’’.) and a complementary negative 
event (e.g., ‘‘On a randomly selected day in Hamburg, there will be 
NO rain’’.). All of the event pairs were related to Germany, and all 
participants in all experiments were located in Germany. Two hundred 
event pairs were divided into four groups, each with 50 pairs. Each 
participant was randomly assigned to one group and estimated the 
probabilities of both positive and negative events for each pair on a 
probability scale from 0% to 100% in steps of one percentage point.

To obtain a set of normed event pairs, we inspected the density 
plots of participants’ probability estimates for each event pair. Based on 
these density plots, we selected a set of 24 event pairs whose density 
distributions visually resembled the shapes of the Beta distributions 
used in the simulation and whose constituent events appeared to be 
complementary to each other. The density plots for the selected event 
pairs are shown in Fig.  4, examples are presented in Table  3, and the 
full list of selected event pairs is given in Table  A.1 in Appendix  A.

6. Experiment 1

Experiment 1 tested the qualitative predictions derived from the 
Ranking Model for the mid-event and edge-event sets. Specifically, 
according to the simulation results, we expected the probability of 
logical rankings versus illogical rankings to be larger for edge-event sets 
compared to mid-event sets. Furthermore, we expected the conditional 
probability of stacked-illogical rankings versus interlaced-illogical rank-
ings to be larger for mid-event sets compared to edge-event sets.
9 
Fig. 4. Density Plot of the probability estimates of the positive event (in red) and the 
complementary estimates of the negative event (in blue) for each selected event pair.
The density plot of the complementary estimates of the negative event is constructed in 
two steps. In the first step, the estimates provided by participants for a given negative 
event were subtracted from 100%. In the second step, the density plots were drawn 
using these complementary probability estimates. The upper panel shows six selected 
edge-event pairs in which the constituent positive events have probabilities close to 0. 
The middle panel shows six selected edge-event pairs in which the constituent positive 
events have probabilities close to 1. The bottom panel shows twelve selected mid-event 
pairs.
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Table 4
Event sets constructed for Experiment 1.
Event-set type Ways of creating the event set No.

Edge-event sets
{𝐴, ¬𝐴, 𝐵, ¬𝐵}

𝑃 (𝐴) ≈ 0, 𝑃 (𝐵) ≈ 0 2
𝑃 (𝐴) ≈ 1, 𝑃 (𝐵) ≈ 1 2
𝑃 (𝐴) ≈ 0, 𝑃 (𝐵) ≈ 1 2

Mid-event sets
{𝐴, ¬𝐴, 𝐵, ¬𝐵}

𝑃 (𝐴) ≈ 0.5, 𝑃 (𝐵) ≈ 0.5 6

Note. Every time we constructed an event set, we randomly selected two 
event pairs from the list of event pairs obtained in the pilot study that 
had not been previously used. No. = number of sets created this way 
for each participant.

6.1. Methods

6.1.1. Design
The experiment implemented a 2 × 2 mixed design with factors 

event-set type and possibility of giving ties. Event-set type was a within-
subjects factor with two levels, mid-event sets and edge-event sets. Each 
participant was asked to provide rankings for thirteen event sets: six 
mid-event sets, six edge-event sets, and one set which was used as a 
comprehension check item. For the comprehension check, participants 
were asked to rank an event set with a clear ranking, as the events in 
the set were widely recognized and their probabilities widely accepted.5

We manipulated between subjects if participants were allowed to 
give ties in their provided rankings of events. In the ties-allowed con-
dition, participants were allowed to give ties (i.e., assign the same rank 
to more than one event). In the ties-not-allowed condition, participants 
were not allowed to give ties. Here, we only report the results from the 
ties-not-allowed condition (See Supplementary Materials S2.5 for the 
methods, results, and discussion of the ties-allowed condition).

6.1.2. Participants
186 participants located in Germany were recruited via Prolific 

(www.prolific.co), among whom 8 were excluded because they did 
not pass the comprehension check, and 1 was excluded because they 
indicated that they were not proficient in German. Of the remaining 
participants, 86 participants were assigned to the ties-not-allowed con-
dition (43 females, 41 males, and 2 others) with a mean age of 26.20 
(SD = 8.26) years. 91 participants were randomly assigned to the ties-
allowed condition. Participants were compensated with £2 for their 
participation.

6.1.3. Materials
We constructed two types of event sets: six edge-event sets and six 

mid-event sets. Each event set was constructed by randomly selecting, 
for each participant anew, two event pairs without replacement from 
the 24 event pairs selected in the pilot study so that every event pair 
was used and used only once. The different ways of constructing the 
event sets are summarized in Table  4.

6.1.4. Procedure
The experiment was programmed in lab.js (Henninger et al., 

2022). It consisted of thirteen ranking trials. In each trial, participants 
were presented with one event set consisting of two pairs of com-
plementary events, 𝐴, ¬𝐴, 𝐵, ¬𝐵. Participants were asked to create 
a ranking of these events based on the perceived probabilities. The 
order of the twelve event sets (i.e., six edge-event and six mid-event 
sets) was randomized for each participant. After ranking six event sets, 
on the seventh trial of the experiment, participants were presented 
with a comprehension check item. Afterward, participants ranked the 

5 Details about the comprehension check question can be found in the OSF 
repository (https://osf.io/hw8p9/).
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remaining six event sets. At the end of the experiment, participants 
were asked for their demographic information.

Fig.  5 shows one example trial of the Event Ranking Task (translated 
to English). The four events from one event set were presented simulta-
neously on the right side of the screen, and the participants were asked 
to create a ranking by dragging and dropping the events to the left 
side of the screen. Participants in the condition presented here were 
not allowed to give ties (see Supplementary Material S2.5.1.4 for an 
example trial under the ties-allowed condition, in which participants 
received instructions explicitly permitting ties).

6.1.5. Analysis
For the data analysis, we used a multinomial processing tree (MPT) 

model (Riefer & Batchelder, 1988). Typically, MPT models are used 
as cognitive measurement models that relate probabilities underlying 
observed response frequencies to latent cognitive processes (Batchelder 
& Riefer, 1999; Erdfelder et al., 2009; Schmidt et al., 2023; Singmann 
et al., 2024). However, in the present study, we used an MPT model 
purely as a statistical tool to map out and decompose the underlying 
multinomial distribution of observed responses, in line with the decom-
position used in the simulation. The benefit of using this decomposition 
also for the analysis is that it permits testing each prediction derived 
from the simulation in a statistically independent manner.

We constructed the MPT model following the decomposition intro-
duced in the simulation section, as illustrated in Fig.  6. The first step 
is to assess the logicality of the response; with probability 𝑙 a logical 
ranking is produced and with probability 1 − 𝑙 an illogical ranking is 
produced. If a ranking is illogical, we take the second step to assess 
what category of illogical rankings the ranking belongs to. Given that 
the ranking is illogical, the conditional probability of it belonging to 
the stacked- versus interlaced-illogical rankings is represented by the 
parameter 𝑠. The MPT model is fully saturated and perfectly describes 
any data pattern that can emerge in the Event Ranking Task. Further-
more, the model is globally identifiable, with each branch terminating 
in a distinct ranking category.

We fitted the corresponding MPT model to the data from different 
event-set conditions using a hierarchical-Bayesian approach (Klauer, 
2010; Singmann et al., 2024). Two sets of group-level parameters 𝜽
were estimated for two event-set conditions, with 𝜽𝑒 for the edge-event 
sets and 𝜽𝑚 for the mid-event sets. The model fitting was implemented 
via the R package TreeBUGS (Heck et al., 2018).

The relations between MPT parameters estimated for edge-event 
and mid-event set conditions (𝑙𝑒 vs. 𝑙𝑚 and 𝑠𝑒 vs. 𝑠𝑚) should align with 
the predictions of the Ranking Model:

1. The probability of logical rankings is greater when ranking 
edge-event sets compared to when ranking mid-event sets: 𝑙𝑒 >
𝑙𝑚.

2. The conditional probability of stacked-illogical rankings (versus 
interlaced-illogical rankings) is greater when ranking mid-event 
sets compared to when ranking edge-event sets: 𝑠𝑚 > 𝑠𝑒.

To assess the difference between parameters estimated for different 
event-set conditions, we calculated the posterior difference distribu-
tions for parameters 𝑙 and 𝑠. For ease of interpretation, we always 
subtracted the distribution of the expected smaller parameter esti-
mate from the distribution of the expected larger parameter estimate.6 
Thus, results are in line with the predictions of the Ranking Model if 
the difference distributions are positive. We considered there to be a 
statistically meaningful difference between the group-level parameter 
estimates obtained from two event-set conditions if more than 95% of 
the probability mass of the difference distribution was above 0.

6 Specifically, for parameter 𝑙, we calculated 𝑙𝑒 - 𝑙𝑚. For parameter 𝑠, we 
calculated 𝑠 − 𝑠 .
𝑚 𝑒

http://www.prolific.co
https://osf.io/hw8p9/
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Fig. 5. Example trial of the Event Ranking Task.
The original experiment was conducted in German. We translated the instructions and the materials shown in this screenshot from German to English.
Fig. 6. MPT model for decomposing the rankings.
Multinomial processing tree (MPT) model that decomposes the ternary ranking category 
into two independent and nested binomials. 𝑙 = probability of giving a logical ranking; 
𝑠 = conditional probability of giving a stacked-illogical ranking given that participants 
did not give a logical ranking.

6.2. Results

The proportion of logical, stacked-illogical, and interlaced-illogical 
rankings in participants’ responses can be found in Fig.  7. This figure 
clearly shows that participants frequently provided illogical rankings. 
Furthermore, the proportions with which participants provided differ-
ent ranking categories differed across event-set types. In line with the 
prediction, the edge-event set condition produced more logical rankings 
than the mid-event set condition, and the mid-event set condition 
produced more stacked-illogical rankings than the edge-event set con-
dition. To statistically substantiate these results patterns, we performed 
the MPT analysis in the following.

6.2.1. Model-based results
Table  5 provides the group-level estimates of MPT model parame-

ters. Fig.  8 shows the posterior difference distributions comparing the 
group-level estimates across event-set types.

In line with the first prediction from the Ranking Model, parameter 
𝑙, representing the probability of providing a logical ranking, was 
meaningfully larger for edge-event sets than for mid-event sets. In line 
with the second prediction, parameter 𝑠, the conditional probability 
of providing a stacked-illogical ranking versus an interlaced-illogical 
ranking was meaningfully larger for mid-event sets than for edge-event 
sets.
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Table 5
Parameter estimates of the MPT model in Experiment 
1.
 Parameter Edge-event sets Mid-event sets  
 𝑙 .79 [.74; .84] .52 [.46; 0.58] 
 𝑠 .05 [.01; .12] .34 [.24; 0.44] 
Note. MPT parameter estimates for the edge-event set 
and mid-event set conditions in Experiment 1. 𝑙 = 
probability of giving a logical ranking; 𝑠 = conditional 
probability of giving a stacked-illogical ranking given 
that participants did not give a logical ranking. The 
brackets indicate the 95% credibility intervals.

6.3. Discussion

When asked to rank two pairs of complementary events, participants 
frequently produced illogical rankings, around 25% for edge-event sets 
and 50% for mid-event sets. The Ranking Model, a sampling-based 
model for ranking tasks, can not only explain the occurrence of illogical 
rankings but also correctly predict the qualitative pattern of ranking 
categories across event-set types.

Just as the simulation predicted, participants exhibited a greater 
tendency to provide illogical rankings for mid-event sets. Additionally, 
we observed that the conditional probability of participants provid-
ing stacked-illogical rankings (versus interlaced-illogical rankings) was 
higher when ranking mid-event sets compared to edge-event sets. These 
behavioral results provide evidence for the idea that mental sampling 
underlies probability judgments.

7. Experiment 2

Experiment 2 aimed to offer a more stringent test of the Rank-
ing Model by assessing its predictions for mixed sets in addition to 
those for mid-event and edge-event sets. Additionally, we intended to 
replicate the findings from Experiment 1. We preregistered Experiment 
2, including its sample size, hypotheses, design, and analysis. The 
preregistration can be found in the Open Science Framework Registries 
https://osf.io/hw8p9/.

https://osf.io/hw8p9/
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Fig. 7. Proportion of three ranking categories in Experiment 1.
Colors indicate the ranking categories. For edge-event sets, the proportions of logical, stacked-illogical, and interlaced-illogical are 0.78, 0.02, and 0.21, respectively. For mid-event 
sets, the proportions are 0.52, 0.18, and 0.30, respectively.
� �

Fig. 8. Posterior difference distributions comparing the MPT parameter estimates 
across event-set types calculated for Experiment 1.
𝑙 and 𝑠 are the specific MPT parameters being compared (see Table  5 for their estimated 
values and interpretations). ‘‘edge − mid’’ and ‘‘mid − edge’’ specify how the event sets 
were compared: ‘‘edge − mid’’ means the estimate for mid-event set was subtracted 
from the estimate for the edge-event set, and ‘‘mid − edge’’ means the opposite. All 
posterior difference distributions were expected to be positive, as the predicted smaller 
estimate was subtracted from the predicted larger estimate when making comparisons. 
A posterior with 95% of its probability mass greater than 0 indicates a credible 
difference between event sets in line with the predictions of the Ranking Model. The 
gray area shows the full posterior difference distribution. The black dot shows the 
median. The red line shows the 95% credibility interval. The red number indicates the 
proportion of probability mass of the difference distribution larger than 0.

7.1. Methods

The experiment used the same methods as Experiment 1, with the 
sole difference that we included mixed sets in addition to mid-event 
and edge-event sets.

7.1.1. Design
The experiment implemented a 3 × 2 mixed design with factors 

event-set type and possibility of giving ties. Event-set type was a within-
subjects factor with three levels, mid-event sets, edge-event sets, and 
mixed sets. As in Experiment 1, participants were asked to provide 
rankings for thirteen event sets, four mid-event sets, four edge-event 
12 
Table 6
Event sets constructed for Experiment 2.
 Event-set type Ways of creating the event set No. 
 Edge-event sets
{𝐴, ¬𝐴, 𝐵, ¬𝐵}

𝑃 (𝐴) ≈ 0, 𝑃 (𝐵) ≈ 0 1  
 𝑃 (𝐴) ≈ 1, 𝑃 (𝐵) ≈ 1 1  
 𝑃 (𝐴) ≈ 0, 𝑃 (𝐵) ≈ 1 2  
 Mid-event sets{𝐴, ¬𝐴, 𝐵, ¬𝐵} 𝑃 (𝐴) ≈ 0.5, 𝑃 (𝐵) ≈ 0.5 4  
 Mixed sets
{𝐴, ¬𝐴, 𝐵, ¬𝐵}

𝑃 (𝐴) ≈ 0, 𝑃 (𝐵) ≈ 0.5 2  
 𝑃 (𝐴) ≈ 1, 𝑃 (𝐵) ≈ 0.5 2  
Note. Every time we constructed an event set, we randomly selected two event pairs 
from the list of normed event pairs that had not been used. No. = number of sets 
created this way for each participant.

sets, four mixed sets, and one set which was the same comprehen-
sion check used in Experiment 1. We manipulated between subjects 
if participants were allowed or not allowed to give ties in rankings. 
Here, we only report the results obtained from the ties-not-allowed 
condition (See Supplementary Materials S2.6 for the methods, results, 
and discussion of the ties-allowed condition).

7.1.2. Participants
The target sample size was chosen in order to have roughly the 

same number of observations from each event-set condition as we 
had in Experiment 1. Therefore, 310 participants located in Germany 
were recruited from Prolific (www.prolific.co), among whom 9 were 
excluded because they did not pass the comprehension check. Of the 
remaining participants, 151 participants were assigned to the ties-not-
allowed condition (69 females, 80 males, and 2 others) with a mean age 
of 29.20 (SD = 10.25) years. 150 participants were randomly assigned 
to the ties-allowed condition. Participants were compensated with £2 
for their participation.

7.1.3. Materials
The materials were prepared in the same manner as those in Exper-

iment 1 based on the event sets selected in the Pilot Study. The mixed 
set was constructed by randomly selecting one normed edge-event pair 
and one normed mid-event pair. The edge-event sets and the mid-
event sets were constructed using the same method as in Experiment 1. 
Table  6 summarizes the construction of the event sets, which was done 
randomly for each participant.

7.1.4. Procedure
The procedure was the same as in Experiment 1.

http://www.prolific.co
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Table 7
Parameter estimates of the MPT models in Experiment 2.
 Parameter Edge-event sets Mid-event sets Mixed sets  
 𝑙 .72 [.68; .77] .45 [.40; .50] .86 [.82; .90] 
 𝑠 .06 [.01; .12] .41 [.33; .48] .17 [.03; .31] 
Note. MPT parameter estimates for the edge-event set, mid-event set and mixed set 
conditions in Experiment 2. 𝑙 = probability of giving a logical ranking; 𝑠 = conditional 
probability of giving a stacked-illogical ranking given that participants did not give a 
logical ranking. The brackets indicate the 95% credibility intervals.

7.1.5. Analysis
We followed the same analysis steps as in Experiment 1, employing 

the MPT model shown in Fig.  6. We estimated the MPT model jointly 
for three different event-set conditions. Separate sets of group-level 
parameters were estimated for three event-set conditions: one set 𝜽𝑒 for 
the edge-event set condition, one set 𝜽𝑚 for the mid-event set condition, 
and one set 𝜽𝑥 for the mixed set condition.

The ordinal relationships of MPT parameters estimated for different 
event-set conditions should align with the qualitative predictions – 
derived from the simulation – about the occurrence of different ranking 
categories across different event sets as follows:

1. The probability of giving a logically possible ranking is highest 
for mixed sets, second highest for the edge-event sets, and lowest 
for the mid-event sets: 𝑙𝑥 > 𝑙𝑒 > 𝑙𝑚.

2. The conditional probability of giving a stacked-illogical ranking 
(versus an interlaced-illogical ranking) is highest for mid-event 
sets, second highest for the mixed sets, and lowest for the 
edge-event sets: 𝑠𝑚 > 𝑠𝑥 > 𝑠𝑒.

To compare the MPT parameter estimates for different event sets, 
we calculated the posterior difference distributions for parameters 𝑙
and 𝑠. For each parameter, we made three pairwise comparisons and 
computed three posterior difference distributions to fully test the pre-
dicted ordinal relationships (e.g., for parameter 𝑙, 𝑙𝑥 > 𝑙𝑒 > 𝑙𝑚). 
Specifically, we first compared the expected largest estimate and the 
expected second largest estimate (e.g., 𝑙𝑥 and 𝑙𝑒), then compared the 
expected second largest with the expected smallest (e.g., 𝑙𝑒 and 𝑙𝑚). 
Lastly, we compared the expected largest with the expected smallest 
parameter (e.g., 𝑙𝑥 and 𝑙𝑚). As in Experiment 1, we always subtracted 
the distribution of the expected smaller parameter estimates from the 
distribution of the expected larger parameter estimates. Hence, the 
Ranking Model predicts a positive posterior difference distribution for 
every MPT parameter comparison.

7.2. Results

The proportion of logical, stacked-illogical, and interlaced-illogical 
rankings in participants’ responses can be found in Fig.  9. As in Ex-
periment 1, illogical rankings were produced frequently. Furthermore, 
there were clear differences across event sets. In line with the predic-
tions of the Ranking Model, logical rankings were most common in 
the mixed set condition, followed by the edge-event set condition, and 
least common in the mid-event set condition. For the illogical rankings, 
the pattern also appeared to be in line with the predictions; stacked-
illogical rankings were most common in the mid-event set condition, 
followed by the mixed and edge-event set conditions. To statistically 
substantiate these results patterns, we performed the MPT analysis.

7.2.1. Model-based results
Table  7 provides the group-level estimates of MPT model parame-

ters. Fig.  10 shows the posterior distributions of the differences between 
the parameters estimated for different event-set conditions.

For parameter 𝑙, the probability of providing a logical ranking, the 
predictions regarding the ordinal relationships among all three types of 
event sets (i.e., mixed, mid-event, and edge-event sets) were strongly 
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supported: 𝑙 was largest for the mixed sets, second largest for the 
mid-event sets, and smallest for the edge-event sets. This also implies 
that we replicated the results for mid-event and edge-event sets from 
Experiment 1.

The predictions for the parameter 𝑠, the conditional probability 
of providing a stacked-illogical ranking versus an interlaced-illogical 
ranking, were mostly supported by the MPT model. The predictions 
are that 𝑠𝑚 > 𝑠𝑥 > 𝑠𝑒. While the qualitative pattern supported the 
predictions – all posterior medians and more than 90% of posterior 
mass were positive – the 95% credibility interval for one posterior dif-
ference distribution included 0. Specifically, we replicated the ordinal 
pattern for mid-event sets and edge events already observed in Exper-
iment 1. We also found that the conditional probability of providing 
a stacked-illogical ranking versus an interlaced-illogical ranking was 
meaningfully larger for mid-event sets than for mixed sets (𝑠𝑚 > 𝑠𝑥
was supported). However, the comparison between mixed sets and 
edge-event sets did not reach our inference criterion (𝑠𝑥 > 𝑠𝑒 was not 
supported). Still, more than 90% of posterior mass in the distribution 
for comparing the mixed and edge-event sets were positive, suggesting 
that there is more evidence for the predicted ordinal relationship 
holding than not.

7.3. Discussion

In Experiment 2, participants were asked to provide rankings for 
mixed sets alongside mid-event and edge-event sets. As in Experiment 
1, we again showed that participants frequently produced illogical 
rankings. Furthermore, the frequency with which participants produced 
illogical rankings across the three different types of event sets again 
matched the predictions of the Ranking Model. Illogical rankings were 
least likely for mixed sets (around 20%), more likely for edge-event sets 
(around 30%), and most likely for mid-event sets (around 55%).

The Ranking Model also made specific predictions regarding the 
frequency with which different types of illogical rankings should occur 
across the three event sets. In total, we tested three predicted ordinal 
relationships. Two of these ordinal relationships met our inference 
criterion. However, the predicted ordinal relationship comparing the 
edge-event and mixed sets, in terms of the conditional probability 
providing stacked- versus interlaced-illogical rankings, did not meet 
our pre-specified inference criterion. This appears to be a power issue 
due to the low frequency of stacked-illogical rankings occurring under 
both the edge-event set condition and the mixed set condition (around 
3% of responses for edge-event sets and around 4% for mixed sets). 
Notably, the Ranking Model predicts that the probability of partici-
pants providing stacked-illogical rankings for mid-event sets should be 
relatively large, while the predicted probabilities for the edge-event 
sets and for the mixed sets are small except in cases where read-
out noise is large and the mental sampling size is small (see Fig. 
2). Additionally, the model predicts a relatively larger difference in 
the conditional probability of providing stacked- versus interlaced-
illogical rankings when comparing edge-event and mid-event sets, as 
well as when comparing mid-event and mixed sets. In contrast, the 
model predicts a smaller difference for the comparison between mixed 
and edge-event sets (see Fig.  3). Thus, the results for stacked-illogical 
rankings seem to be entirely in line with the predictions from the 
Ranking Model. Comparing the edge-event and mixed sets with a larger 
sample size in order to detect a small difference in the conditional 
probability of providing stacked- versus interlaced-illogical rankings 
appears a promising direction for future research. Taken together, these 
results provide further evidence for the idea that mental sampling 
underlies probability judgments.
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Fig. 9. Proportion of three ranking categories in Experiment 2.
Colors indicate the ranking categories. For edge-event sets, the proportions of logical, stacked-illogical, and interlaced-illogical are 0.71, 0.03, and 0.25, respectively. For mid-event 
sets, the proportions are 0.46, 0.25, and 0.30, respectively. For mixed sets, the proportions are 0.83, 0.04, and 0.13, respectively.
� � �

� � �

Fig. 10. Posterior Difference distributions comparing the MPT parameter estimates across event-set types calculated for Experiment 2.
𝑙 and 𝑠 are the specific MPT parameters being compared (see Table  7 for their estimated values and interpretations). ‘‘mixed − edge’’, ‘‘edge − mid’’, ‘‘mixed − mid’’, ‘‘mid −
mixed’’, ‘‘mixed − edge ’’ and ‘‘mid − edge’’ specify how the event sets were compared: the estimate for the latter event set was subtracted from the estimate for the former event 
set. For example, ‘‘mixed − edge’’ means the estimate for the edge-event set was subtracted from the estimate for the mixed set. Three pairwise comparisons were conducted to 
test the ordinal relationship mixed > edge > mid for the parameter 𝑙. Similarly, three pairwise comparisons were conducted to test the ordinal relationship mid > mixed > edge 
for the parameter 𝑠. All posterior difference distributions were expected to be positive, as the predicted smaller estimate was subtracted from the predicted larger estimate when 
making comparisons. A posterior with 95% of its probability mass greater than 0 indicates a credible difference between event sets in line with the predictions of the Ranking 
Model. The gray area shows the full posterior difference distribution. The black dot shows the median. The red line shows the 95% credibility interval. The red number indicates 
the proportion of probability mass of the difference distribution larger than 0.
8. General discussion

Models developed under the mental sampling framework have been 
successful in explaining observed effects in people’s probability judg-
ments and probabilistic reasoning. However, less effort has been de-
voted to empirical investigations of the fundamental ideas underlying 
the mental sampling framework. In this study, we set out to derive 
testable predictions from the mental sampling framework using the 
novel Event Ranking Task. We began our theory testing effort by 
developing a formal model tailored to the Event Ranking Task – the 
14 
Ranking Model – based on existing direct sampling models of probabil-
ity estimation (Costello & Watts, 2014; Zhu et al., 2020). The Ranking 
Model makes novel predictions that when creating the rankings of 
probabilities, people will violate the complement rule in a predictable 
manner: the probability of providing illogical rankings, as well as the 
occurrence of different types of illogical rankings, depend on the under-
lying probabilities that govern the sampling processes. Such predictions 
were derived from a simulation study where we varied the range of the 
underlying probability parameters in different event-set conditions. In 
two online experiments, we tested the qualitative predictions derived 
from the simulation using experimental manipulations that map the 
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setting in the simulation. The predicted pattern that the occurrence 
of different ranking categories changes across event-set conditions was 
closely confirmed in these two online experiments (in both the ties-not-
allowed condition reported here as well as the ties-allowed condition 
reported in Supplementary Material S2).

8.1. Complementarity in aggregated versus trial-level probability judgments

Our results appeared to conflict with binary complementarity (Tver-
sky & Koehler, 1994), which refers to the phenomenon that the aver-
aged estimates (or medians as shown by C. R. Fox, 1999) across trials 
and participants for two complementary events roughly sum up to 1, in 
line with the complement rule. However, the current study showed that 
people violated the complement rule, providing illogical rankings in a 
significant proportion of trials. This is because we were focusing on a 
different level than previous studies: whereas previous studies focused 
on probability estimations at an aggregated level, the present study 
focused on the probability rankings at the trial level.

Mental sampling makes different predictions regarding the agree-
ment with the complement rule at the aggregated and the trial levels. 
According to mental sampling, the underlying probabilities of two com-
plementary events sum up to one. Even though individual probability 
estimates of an event based on a single sample are subject to sampling 
variation, they are assumed to be distributed around the event’s un-
derlying probability. Along this line of reasoning, the expected sum of 
probabilities of two complementary events is distributed around 1.7 At 
the trial level, however, mental sampling posits that people draw only 
a small sample to evaluate each event’s probability. For instance, in 
the Event Ranking Task, the Ranking Model assumes that at each trial, 
participants draw four independent samples to evaluate the four events 
𝐴, ¬𝐴, 𝐵, and ¬𝐵 – one sample for each event. Because each sample is 
prone to random fluctuation, these one-time draws may not reflect the 
true relationships among the events’ underlying probabilities. For ex-
ample, even if the underlying probability of event 𝐴 is higher than that 
of 𝐵, a single set of small samples might suggest the opposite ordering. 
Furthermore, when different samples are drawn for two complementary 
events, apparent violations of the complement rule can arise at the trial 
level. The judgments at the trial level (e.g., individual rankings) are not 
derived from expected values but rather from the specific outcomes of 
individual sampling processes. Hence, the observed individual rankings 
can deviate from what might be expected when the means of the 
estimates are considered.

8.2. Comparing the Ranking Model and the direct sampling models of 
probability estimations

Compared with the two most popular direct sampling models for the 
probability estimation task (Costello & Watts, 2014; Zhu et al., 2020), 
the Ranking Model has the advantage of specifying how participants 
engage in the experimental task. Especially, the Ranking Model allows 
us to derive predictions for the probability of every possible ranking for 
any given set of parameters. The models for the probability estimation 
task, however, cannot make predictions that cover the full response 
space (e.g., the probability scale from 0 to 1). With a given value of 
the sample size of mental sampling, the Bayesian sampler and the PT+N 
model predict only a limited number of possible point estimates on the 
probability scale. For instance, if the sample size of mental sampling is 
3, then the PT+N model can only predict fractions with a denominator 

7 Alternatively, according to the PT+N model, individual estimates are as-
sumed to be distributed around an expected value that depends on underlying 
probabilities as well as noise in the sampling process. When combining/adding 
up the expected values of the two complementary events together, the ‘‘noise’’ 
will be canceled out, only leaving out the sum of the two complementary 
events’ underlying probabilities.
15 
of 3 as possible estimates, because probability estimations are based on 
the relative frequency of instances that support or do not support the 
event under evaluation in the obtained sample. Therefore, the predicted 
estimates can only be 0

3 , 
1
3 , 

2
3 , 

3
3 . However, infinite decimals like 

1
3

or 2
3  are impossible to give on the probability scale by participants. 

Additionally, in the raw data of Costello and Watts (2014), prime 
numbers such as 0.01 or 0.71 appeared frequently. If the model does 
not introduce additional assumptions about how participants round 
their estimates, estimates like 0.01 or 0.71 can only occur with a sample 
size ≥ 100. Using a sample size greater than 100 for a query appears 
unlikely from a resource rational perspective (Griffiths et al., 2015). It, 
therefore, appears more likely that participants incorporate a secondary 
rounding process when responding on a probability scale from 0% to 
100%. However, neither the PT+N model nor the Bayesian sampler 
model specified the rounding process for probability estimation. The 
Ranking Model can be treated as an experimental model (Kellen, 2019), 
which removes the ambiguity regarding how participants would use the 
response scale.

8.3. Necessity of model assumptions and possible alternatives

The Ranking Model is based on the binomial sampling process and 
involves several important assumptions. Firstly, it assumes that people 
draw independent samples to evaluate different events. Secondly, it 
assumes that people use a fixed sample size to evaluate a given event 
set and convert samples to a ranking based on the counts of events that 
occur in the samples. In this section, we address possible critiques or 
alternatives of these assumptions and argue that these assumptions are 
supported by and provide a parsimonious account of the data.

First, as mentioned in the Introduction (the Logical and Illogical 
Rankings section), the assumption that people draw independent sam-
ples for different events, even if they are complementary to each 
other, seems implausible from a resource-rational perspective. How-
ever, we argue that the alternative assumption – people reusing the 
same sample for complementary events – fails to account for the data 
in this study. To examine how this alternative assumption impacts the 
model predictions, we modify the Ranking Model by considering two 
scenarios.

In the first scenario, we assume people evaluate a pair of comple-
mentary events based on a single sample and maintain the assumption 
that people use a consistent sample size 𝑁 for evaluating different event 
pairs. Specifically, a sample of size 𝑁 including 𝑥 instances of 𝐴 and 
𝑁 − 𝑥 instances of ¬𝐴 is drawn for the event pair {𝐴,¬𝐴}. A sample of 
size 𝑁 including 𝑦 instances of 𝐵 and 𝑁 − 𝑦 instances of ¬𝐵 is drawn 
for the event pair {𝐵,¬𝐵}. According to these sampling results, when 
𝑥 (the number of occurrences of 𝐴, or 𝑂𝐴) ≥ 𝑦 (𝑂𝐵), it must follow 
that 𝑁 − 𝑥 (𝑂¬𝐴) ≤ 𝑁 − 𝑦 (𝑂¬𝐵). The ranking, based on these sampling 
results, would then always follow the complement rule and be logical, 
which contradicts the data in which illogical rankings were common.

One might argue that illogical rankings might still occur if we fur-
ther relax the assumption that people use a constant sample size. Thus, 
in the second scenario, we assume that people draw different sample 
sizes for the two pairs of complementary events. This assumption also 
cannot predict illogical rankings. The proof is as follows. Imagine that 
people draw a sample of 𝑁 instances to evaluate the event 𝐴, including 
𝑥 instances of 𝐴 and 𝑁−𝑥 instances of ¬𝐴. People draw another sample 
of 𝑀 instances, including 𝑦 instances of 𝐵 and 𝑀 − 𝑦 instances of ¬𝐵. 
Since the sample sizes used for evaluating two pairs of complementary 
events differ, we additionally assume that participants first convert the 
instances into a relative frequency and then derive a ranking based on 
relative frequencies, with 𝑥

𝑁  instances indicating the proportion of 𝐴, 
𝑁−𝑥
𝑁  indicating the proportion of ¬𝐴, 𝑦

𝑀  indicating the proportion of 
𝐵, and 𝑀−𝑦

𝑀  indicating the proportion of ¬𝐵. Mathematically, we can 
prove that when 𝑂𝐴 ≥ 𝑂𝐵 ; namely, 𝑥

𝑁 ≥ 𝑦
𝑀 , then 1 − 𝑥

𝑁 ≤ 1 − 𝑦
𝑀 . This 

means that 𝑁−𝑥
𝑁 ≤ 𝑀−𝑦

𝑀 . Recall that 𝑂¬𝐴 = 𝑁−𝑥
𝑁  and 𝑂¬𝐵 = 𝑀−𝑦

𝑀 , which 
means that 𝑂 ≤ 𝑂  follows 𝑂 ≥ 𝑂  directly.
¬𝐴 ¬𝐵 𝐴 𝐵
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With the two scenarios above, we show that the illogical rankings 
in our data cannot be predicted without assuming that participants 
use independent samples for complementary events. Next, we move 
on to discuss the necessity of the constant sample size assumption and 
the assumption that people derive rankings directly by counting the 
occurrence for each event. We do not think relaxing these assump-
tions offers any benefits compared to the models presented here, as 
the Ranking Model can already fully predict the observed patterns. 
Relaxing the constant sample size assumption would require three more 
parameters; calculating relative frequencies for making comparisons 
would require one more intermediary step compared to directly com-
paring counts. Surely, such more complex models could still predict 
the data pattern that matches the observed data. However, whether 
other model variants make the same predictions seems immaterial, 
given that the current predictions already match the observed data. 
In sum, the current model provides a parsimonious description. Given 
that there is no empirical necessity for assuming that people do not 
directly compare observed counts, the principle of parsimony suggests 
that it is unnecessary at this time to explore more complicated model 
variants with additional assumptions. If future work using the Event 
Ranking Task finds empirical patterns that are not predicted by the 
Ranking Model described here, it might be worthwhile to revisit these 
assumptions.

8.4. Limitations and future directions

So far, one aspect that has been neglected is the individual differ-
ences between participants. We observed that around 7% participants 
in the ties-not-allowed condition of Experiment 1 (𝑁 = 6) and around 
5% participants in the ties-not-allowed condition of Experiment 2 (𝑁 =
8) produced no illogical rankings at all. Because participants in our 
study had to produce 12 rankings in total, such an outcome is unlikely 
to be solely the result of random sampling alone.8 From the standpoint 
of the sampling model, producing no illogical rankings consistently is 
only possible when sampling an infinite number (or at least a very 
large number) of instances. Instead of assuming that people use an 
infinite/a very large number of instances, we hypothesize that these 
individuals consistently applied logical rules (i.e., the complement rule) 
when creating rankings. It suggests that there might be differences 
between participants who rely on mental sampling alone and others 
who also use logical rules. This raises important considerations for 
the development of more comprehensive models. If logical-rule-based 
reasoning indeed plays a part in the probability judgments for a group 
of individuals, future iterations of sampling models might benefit from 
incorporating this possibility explicitly. Such a model could account 
for a mixture of rule-based and sampling-based reasoning across par-
ticipants, potentially offering a more complete understanding of the 
cognitive mechanisms at play.

One might wonder why we did not fit the Ranking Model to inves-
tigate individual differences in parameter estimates and instead relied 
solely on its qualitative predictions. Fitting the model at the individual 
level is challenging. The Basic Ranking Model consists of 75 equa-
tions with three free parameters. For the ties-not-allowed condition 
presented in the main text, these 75 equations are combined to generate 
predictions for 24 full orders. A single set of parameters corresponds to 
a probability distribution over these 24 possible responses. However, 
for each set of parameters (characterizing a single trial of the Event 
Ranking Task), we observe only one response out of the 24 possibilities. 
Even when aggregating data across trials for each participant, we 

8 For example, in Experiment 1, according to the simulation study (Fig. 
2), the smallest probability of producing illogical rankings for edge-events 
is .2, and for mid-events, it is .4. With these probabilities, the likelihood of 
producing at least one illogical ranking across 12 trials (6 edge-event and 6 
mid-event) is 1 − ((1 − 0.2)6 × (1 − 0.4)6) = .988.
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obtain only 12 observed responses, which are insufficient to reliably 
estimate the three parameters (𝑁 , 𝑃 (𝐴), and 𝑃 (𝐵)) for individual trials 
or participants. The sparsity of data also prevents us from deriving 
predictions for each of the 24 possible rankings. To address this lim-
itation, we categorized the rankings to generate predictions at the 
level of ranking categories. Future research could explore alternative 
categorizations to test new predictions.

In the current study, we focus on investigating the influence of 
underlying probabilities on the occurrence of different ranking cate-
gories. However, the Ranking Model also predicts how other model 
terms should influence the occurrence of different ranking categories. 
For example, the model predicts that employing a larger 𝑁 for drawing 
mental samples would lead to a higher rate of logical rankings, holding 
all other model terms constant. The model also predicts that having 
a higher read-out noise 𝑑 in the sampling processes would lead to 
a lower rate of providing logical rankings, holding all other model 
terms constant. These predictions warrant empirical investigation in 
future research. One concrete approach could involve manipulating the 
sample size 𝑁 through task difficulty and thinking time, as demon-
strated by Hamrick et al. (2015). As for the noise parameter 𝑑, it could 
be measured in the probability estimation task, using the approach 
pursued by Costello and Watts (2018). The noise levels measured by 
the probability estimation task can then be used to predict the task 
performance in the Event Ranking Task. Additionally, there have been 
limited efforts to ground the important sampling terms in a psycho-
logical context (but see Lloyd et al., 2019). Thus, another intriguing 
line of research would be to see how individual differences in cognitive 
abilities, such as fluid intelligence and working memory, correlate with 
the model terms, especially the parameters 𝑁 and 𝑑.

Finally, future research can extend the current Ranking Model to 
evaluate if the sampling-based ranking process proposed in this pa-
per can explain how people rank not only marginal events, but also 
more complex events, such as conjunctions and disjunctions. In fact, 
the Linda problem introduced by Tversky and Kahneman (1983) is 
essentially a ranking task. The Linda problem was presented as a two-
alternative forced-choice question in which participants ranked the 
probabilities of the marginal event 𝐴 and the conjunctive event 𝐴 ∧ 𝐵
(where ∧ represents ‘‘and’’). Variants of the Linda problem that involve 
ranking complex events can provide materials for further empirical 
investigations of the sampling-based ranking model.

Another important research question is whether the sampling-based 
ranking model can replicate the observed patterns of conjunction falla-
cies as effectively as or more effectively than sampling-based probabil-
ity estimation models. For example, studies have shown that in some 
cases, such as the Linda problem, participants exhibited a high conjunc-
tion fallacy rate (around 80%) (Tversky & Kahneman, 1983). Costello 
and Watts (2017) demonstrated that this high rate can be explained 
by assuming greater noise for conjunctive events and lower noise for 
marginal events in the sampling process. Without this assumption, the 
original PT+N model predicts a ceiling rate of 50%. An important 
question is whether the ranking model, based on counts in mental 
samples, also predicts a ceiling rate of 50% without assuming differ-
ent noise levels or if the ranking model can predict a high rate of 
conjunction fallacy without additional assumptions. Costello and Watts 
(2017) further illustrated that the sampling-based model of probability 
estimation effectively explains variations in conjunction fallacy rates as 
influenced by alterations in the underlying probabilities of individual 
events (𝑃 (𝐴), 𝑃 (𝐵), and 𝑃 (𝐴 ∧ 𝐵)). It is worthwhile to investigate 
whether the ranking model can reproduce the same pattern.

In addition to explaining previously observed effects in conjunction 
fallacy experiments, future research can generate new predictions for 
situations that involve both marginal events and complex events. When 
ranking the probabilities of the four events – two marginal events, their 
conjunction, and their disjunction (𝑃 (𝐴), 𝑃 (𝐵), 𝑃 (𝐴 ∧ 𝐵), 𝑃 (𝐴 ∨ 𝐵)) – 
there are only two full orders and one partial order that do not violate 
the conjunction and disjunction rules across all possible rankings of 
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these four events. These three logical rankings are: 𝑃 (𝐴 ∨ 𝐵) > 𝑃 (𝐴) >
𝑃 (𝐵) > 𝑃 (𝐴 ∧ 𝐵), 𝑃 (𝐴 ∨ 𝐵) > 𝑃 (𝐵) > 𝑃 (𝐴) > 𝑃 (𝐴 ∧ 𝐵) or 𝑃 (𝐴 ∨ 𝐵) >
𝑃 (𝐴) = 𝑃 (𝐵) > 𝑃 (𝐴 ∧ 𝐵). Future research can extend the current 
Ranking Model and see whether the sampling-based ranking model 
makes testable predictions regarding the occurrence of these logical 
rankings.
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Appendix A. Pilot study

A.1. Methods

A.1.1. Participants
Two hundred participants located in Germany were recruited via 

Prolific (www.prolific.co). Two participants were excluded for indicat-
ing they did not take the experiment seriously, and eight were excluded 
for reporting inadequate German proficiency, as the experiment was 
conducted in the German language. In order to avoid grossly careless 
responding, we further excluded 33 participants based on their re-
sponses according to the following criterion: Participants were excluded 
if the sum of the probability estimates they provided for two constituent 
complementary events exceeded 125% in more than 1/4 of the event 
pairs they evaluated. Participants received £4.5 for their participation. 
The final sample included 157 participants (54 females, 102 males, and 
1 other) with a mean age of 30.54 years (SD = 8.84).

A.1.2. Materials
The experiment was programmed in lab.js (Henninger et al., 2022). 

Using our intuitions about the probabilities of everyday events in Ger-
many, we generated two hundred event pairs for selection, including 
100 presumably mid-event and 100 presumably edge-event pairs. A 
complete list of event pairs can be found in the OSF repository (https:
//osf.io/hw8p9/). We used two different ways to construct the edge-
event pairs: we generated 50 edge-event pairs with the probability 
of the constituent positive event close to 0, and 50 edge-event pairs 
with the probability of the constituent positive event close to 1. We 
took the frequentist probability approach to define the probability of 
the event with a clearly defined reference class to make our queries 
of probabilities as unambiguous as possible. Specifically, we queried 
about the occurrence and non-occurrence of the events that are reg-
ularly observed in everyday life in Germany, such as weather events. 
Table  3 shows examples of two edge-event pairs constructed in two 
different ways and a mid-event pair.
17 
A.1.3. Design
Among the 200 event pairs, participants were asked to rate 50 of 

them, including a mix of edge-event and mid-event pairs. This enabled 
us to avoid long experiments and encourage participants to use the 
full probability scale. To this end, the generated event pairs were 
divided into four groups: The mid-event and edge-event pairs were 
divided equally (25 pairs per group). Moreover, we counter-balanced 
different ways of constructing the edge-event pairs. Among the four 
groups of event pairs, two groups have thirteen edge-event pairs with 
the probability of the constituent positive event 𝐴 close to 1 and twelve 
edge-event pairs with the probability of the constituent positive event 
𝐴 close to 0. The other two have twelve edge-event pairs with the 
probability of the constituent positive event 𝐴 close to 1 and thirteen 
edge-event pairs with the probability of the constituent positive event 
𝐴 close to 0.9

A.1.4. Procedure
Participants were randomly assigned to evaluate one of the four 

groups of events, each consisting of 50 event pairs. The experiment 
had two blocks. 25 of the 50 pairs had their positive events shown in 
block one and negative events shown in block two, and the other 25 
pairs had their positive events shown in block two and negative events 
shown in block one. Therefore, participants were presented with an 
equal number of positive and negative events (i.e., 25 positive events 
and 25 negative events) in each block. The rationale for presenting 
event pairs in separate blocks is to prevent events from the same pair 
from being shown consecutively and to ensure independent judgments 
for each event. For example, this approach prevents participants from 
calculating the probability of one event based on its complementary 
event. The order of blocks, as well as the order of events within a block, 
was randomly determined for each participant.

A.2. Results

We created density plots of participants’ probability estimates for 
the constituent positive and negative event, respectively, for each 
event pair using R package ggridges (Wilke, 2024). To allow the 
comparison of the probabilities of positive and negative events of the 
same pair, we subtracted the estimates provided by participants from 
100% for the negative events. The density plots for all event pairs can 
be found in the OSF repository (https://osf.io/hw8p9/).

Fig.  4 shows the density plots of the event pairs that were finally 
selected. To match the realizations of the edge-event and mid-event 
pairs in the simulation, we selected the event pairs according to the 
following criteria:

1. In the two density plots for an event pair, most of their probability 
mass should fall between 0% and 30% or between 70% and 100% for 
edge-event pairs and between 30% and 70% for mid-event pairs.

2. The two density plots should be peaked and centered around a 
value close to 0% (or 100%) for the edge-event pairs and 50% for the 
mid-event pairs.

3. The two density plots should show a large overlap.
Criteria 1 and 2 were adopted to approximate the shapes of the dis-

tributions we used in the simulation for modeling people’s underlying 
probabilities of events in two types of event pairs (i.e., Beta(1, 10) and 
Beta(10, 10) in edge-event and mid-event pairs respectively). Criterion 
3 was adopted to identify event pairs in which the complementary 
relationship is evident to participants. Table  A.1 provides the complete 
list of selected event pairs that meet these three criteria.

9 Due to programming errors, we collected probability estimates only for 
the positive event for one event pair, thus, had to drop the data for this event 
pair. Additionally, four event pairs were mistakenly presented twice, leading 
to the collection of probability estimates for these event pairs from around 
100 (instead of 50) participants.

http://www.prolific.co
https://osf.io/hw8p9/
https://osf.io/hw8p9/
https://osf.io/hw8p9/
https://osf.io/hw8p9/
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Table A.1
Event pairs used for constructing event sets in Experiment 1 and Experiment 2.

Event pair type Positive event Negative event

Mid-event pair

A randomly selected person over the age of 30 in Germany is 
married.

A randomly selected person over the age of 30 in Germany is 
NOT married.

A randomly selected person aged between 20 and 25 in Germany is 
studying at a university or college.

A randomly selected person aged between 20 and 25 in 
Germany is NOT studying at a university or college.

A randomly selected person in Germany lives in Bavaria, 
Baden-Württemberg, or North Rhine-Westphalia.

A randomly selected person in Germany does NOT live in 
Bavaria, Baden-Württemberg, or North Rhine-Westphalia.

On a randomly selected day in Hamburg, there will be rain. On a randomly selected day in Hamburg, there will NOT be 
rain.

A randomly selected person in Germany will eventually die of 
cardiovascular disease.

A randomly selected person in Germany will NOT eventually die 
of cardiovascular disease.

A randomly selected person over the age of 18 in Germany has an 
office job.

A randomly selected person over the age of 18 in Germany does 
NOT have an office job.

A randomly selected person in Germany lives in a big city. A randomly selected person in Germany does NOT live in a big 
city.

A randomly selected tree in Germany is a deciduous tree. A randomly selected tree in Germany is NOT a deciduous tree.
A randomly selected person in Germany is a fan of a football club. A randomly selected person in Germany is NOT a fan of a 

football club.
A randomly selected car on the road in Germany was manufactured 

in Germany.
A randomly selected car on the road in Germany was NOT 

manufactured in Germany.
On a randomly selected day of the year, the temperature in 

Germany will be above 15 ◦C.
On a randomly selected day of the year, the temperature in 

Germany will NOT be above 15 ◦C.
A randomly selected German is a member of the Christian church. A randomly selected German is NOT a member of the Christian 

church.

Edge-event pair
(in which positive event 
has a probability close to 1)

A randomly selected student speaks English. A randomly selected student does NOT speak English.
A randomly selected German adult can ride a bicycle. A randomly selected German adult can NOT ride a bicycle.

In a randomly selected German household, at least one washing 
machine can be found.

In a randomly selected German household, NO washing 
machines can be found.

A randomly selected person in Germany walks more than 100 steps 
a day.

A randomly selected person in Germany does NOT walk more 
than 100 steps a day.

A randomly selected person in Germany owns at least one device 
that can connect to the Internet.

A randomly selected person in Germany does NOT own a device 
that can connect to the Internet.

A randomly selected person in Germany was born in a hospital. A randomly selected person in Germany was NOT born in a 
hospital.

Edge-event pair
(in which positive event 
has a probability close to 0)

A randomly selected person in Germany has more than five siblings. A randomly selected person in Germany does NOT have more 
than five siblings.

A randomly selected person in Germany plays volleyball every day. A randomly selected person in Germany does NOT play 
volleyball every day.

In a randomly selected year, it will snow in Germany in June. In a randomly selected year, it will NOT snow in Germany in 
June.

A randomly selected person in Germany can speak more than four 
languages.

A randomly selected person in Germany can NOT speak more 
than four languages.

A randomly selected person in Germany lives in Saarland. A randomly selected person in Germany does NOT live in 
Saarland.

A randomly selected person in Germany will contract malaria in the 
course of their life.

A randomly selected person in Germany will NOT contract 
malaria in the course of their life.
Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.cognition.2025.106125.

Availability of data and material

Data and scripts can be found on Open Science Framework (OSF): 
https://osf.io/hw8p9/.
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