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Dataset link: https://osf.io/hw8p9/ People’s probability judgments often appear to be probabilistically incoherent, as exemplified by the con-

junction fallacy. Recently, various sampling-based models have been proposed as an integrative account for

II\ZZK erCsLZm lin different biases and fallacies in probability judgments. In the current study, the novel Event Ranking Task
Prob ability_li)u d gg ments was used to investigate sampling-based models of probability judgments. On each trial of the Event Ranking

Task, participants were asked to provide a ranking for an event set consisting of four events, A, not-A, B,
and not-B, in terms of their perceived likelihoods. Qualitative predictions were formally derived by assuming
direct sampling from a fixed underlying probability distribution. Adding read-out noise in the sampling process
— as suggested in the Probability Theory plus Noise model (Costello and Watts, 2014) — did not change the
qualitative predictions. Two online experiments, where participants ranked twelve different event sets, yielded
results in line with the qualitative predictions, providing evidence for the idea that mental sampling underlies

Fallacies and biases
Cognitive model

probability judgments.

A widely observed phenomenon in psychology is that people’s prob-
ability judgments often violate the laws of probability. For example,
people tend to commit the conjunction fallacy in the task famously
known as the “Linda problem”, judging that the conjunction of two
events (e.g., “Linda is a bank teller and a feminist”.) is more likely than
the constituent marginal event (e.g., “Linda is a bank teller”.) (Tver-
sky & Kahneman, 1983). There has been an ongoing debate about
the explanation for such phenomena. The traditional view suggests
that systematic errors in people’s probability judgments, such as the
conjunction fallacy, result from cognitive processes that are not based
on probability theory but rather on alternative approaches such as
heuristics (Tversky & Kahneman, 1974) or configural-weighting-and-
adding (Juslin et al., 2009; Nilsson et al., 2009). However, recently,
the mental sampling framework proposed a view that the brain ap-
proximates probabilities (and probabilistic computations) via a process
of sampling (for an introduction, see Icard, 2016; Sanborn & Chater,
2016). Various models developed under this theoretical framework
demonstrated that cognitive processes in line with probability theory
can also lead to a range of apparently irrational effects in probability
judgments, including probability matching (Vul et al., 2014), conjunc-
tion and disjunction fallacy (Costello & Watts, 2017), and illusory
correlation (Bott et al., 2021).
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Sampling-based models entail the proposal that people inherently
hold coherent subjective probabilities; however, these underlying sub-
jective probabilities cannot be directly accessed. Instead, individuals
have to sample instances via either memory or mental simulation
to approximate their own underlying subjective probabilities. Such a
mental sampling process is analogous to the sampling method used
to approximate distributions in statistics, except that mental sampling
only utilizes small rather than large samples. According to the resource-
rational framework (Griffiths et al., 2015), using small samples allows
individuals to optimally allocate time and cognitive resources, as gen-
erating samples is presumably effortful and time-consuming. Yet, the
vulnerability of small sample sizes also leads individuals’ probability
judgments to be easily affected by sampling variability (Denison et al.,
2013; Vul et al.,, 2014) and algorithmic properties of the sampling
process such as the noise in the sampling processes (Costello & Watts,
2014), correlations of samples (Dasgupta et al., 2017; Lieder, Griffiths,
M. Huys, et al.,, 2018), and decision rules individuals used when
drawing samples (Lieder, Griffiths, & Hsu, 2018). Thus, according to
sampling-based models, biases and fallacies in probability judgments
are natural by-products of the sampling process instead of incoherent
underlying representations of probabilities.
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By explaining a wide range of biases and fallacies in probability
judgments, the mental sampling framework offers an integrative per-
spective of how people produce probability judgments (Chater et al.,
2020). However, so far most evidence for mental sampling comes from
a single task — the numerical estimation task (e.g., Costello & Watts,
2014, 2018; Howe & Costello, 2020; Huang et al., 2024; Zhu et al.,
2020). This situation limits the scope of the theoretical idea. If mental
sampling is a general cognitive process, it should be used not only to
produce numerical probability estimates but also in related situations
involving probabilistic events.

In the present study, we tested qualitative predictions from the
mental sampling framework using the novel Event Ranking Task. We
focused on a specific class of models, namely, direct sampling models
of probability judgments (i.e., Costello & Watts, 2014; Zhu et al., 2020).
Based on the core assumptions of these models, we used simulations to
derive qualitative predictions that were expected to emerge in partic-
ipants’ responses to the Event Ranking Task. Two online experiments
provided support for these predictions, and they offered direct evidence
for the idea that people use mental sampling when asked to make
judgments about probabilistic events.

This article begins with a brief overview of the direct sampling
models of probability judgments. Then, we describe the Event Ranking
Task, a model we developed for the task, and a simulation study to
derive qualitative predictions from the model. Finally, we present the
results of two experiments that tested the predictions and discuss their
implications.

1. Direct sampling models of probability judgments

The conceptually simplest method that the mind can use to ap-
proximate probabilities is arguably direct sampling. According to direct
sampling, each time people are asked to estimate the probability of
an event, they sample a subset of independent instances via memory
and/or a mental simulation to approximate the probability. People’s
probability judgments of the event are then based on identically and in-
dependently distributed (i.i.d.) samples obtained from mental sampling.
For instance, suppose people are assessing the probability of event A,
“There will be rain on a randomly selected day in Hamburg”. People
may infer the probability of this event by recalling past days they spent
in Hamburg and/or by imagining hypothetical days. Importantly, it is
assumed that people cannot exhaust the entire sample space but instead
can sample only a subset of random instances, that is, N days. Each
sampled day indicates either a day with or without rain. The probability
of event A can be estimated by counting the number of rainy days in
the N retrieved and/or imagined days.

Formally, such a sampling process can be understood as instantiat-
ing a binomial process — that is, N Bernoulli trials (see also Costello &
Watts, 2014; Howe & Costello, 2020; Zhu et al., 2020). Each sampled
instance indicates either an occurrence of the event being assessed
(i.e., rain on a random day in Hamburg) with probability P(A) or
a non-occurrence (i.e., NO rain on a random day in Hamburg) with
probability 1 — P(A). Hereafter, we will refer to P(A) as the underlying
probability of event A. The underlying probability of an event governs
the mental sampling process, as it is the probability that a randomly
sampled instance will indicate an occurrence of the event under eval-
uation. Mathematically, since the mental sampling process is modeled
as a binomial process, the underlying probability is equivalent to the
probability of success in a single Bernoulli trial.

The number of instances that indicate the occurrence of event A,
hereafter referred to as the number of occurrences of event A, and
denoted as O,, follows the binomial distribution, O, ~ Bin(N, P(A)).
Similarly, if people assess the probability of event A’s complementary
event, not-A (denoted as —A), the number of occurrences of this event
then follows O_, ~ Bin(N, P(—A)).

The direct sampling assumption underlies a number of popular
sampling-based models of probability judgments, including the prob-
ability theory plus noise (PT+N) model (Costello & Watts, 2014,
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2016, 2017, 2018; Howe & Costello, 2020) and the Bayesian sampler
model (Zhu et al., 2020). The PT+N model and the Bayesian sampler
model address how people rely on mental sampling to produce numer-
ical estimations of probabilities. Both models posit that the binomial
sampling process is used to evaluate different types of events, including
marginal, conjunctive, disjunctive, and conditional events. Addition-
ally, both models assume coherent underlying probabilities of related
events, such that the underlying probabilities of two complementary
events follow the complement rule (P(A) + P(=A) = 1).! However, the
PT+N model and the Bayesian sampler model take different approaches
to converting mental samples to probability estimates. Whereas the
PT+N model assumes that both mental sampling and response gen-
eration are perturbed by noise — captured in a catch-all parameter
d, the Bayesian sampler model assumes that people regularize their
probability estimates via a prior.

1.1. Evidence from the numerical estimation task

So far, the PT+N model (Costello & Watts, 2014, 2016, 2017; Howe
& Costello, 2020) and the Bayesian sampler model (Sundh et al., 2023;
Zhu et al., 2022, 2020) have been explored exclusively within the
context of the numerical estimation task. In the numerical estimation
task, participants are asked to estimate the probability of different
types of events, such as marginal and conjunctive events, on a scale
from 0% to 100%. Participants’ responses consistently exhibit well-
documented biases, including conjunction and disjunction fallacies as
well as response conservatism. The extent of these biases, however,
varies depending on the specific content and other contextual factors
employed in the task (Wedell & Moro, 2008).

One piece of evidence for sampling-based models of probability
judgments is that they offer a unified explanation for most of the
biases and fallacies observed in the numerical estimation task. For
example, the (occasional) occurrence of conjunction and disjunction
fallacies directly follows from the idea of mental sampling. If partici-
pants’ probability judgments are based on independent mental samples
with relatively small sample sizes, the randomness of the samples
is sufficient to expect that sometimes the estimated probability of a
single event is larger than the estimated probability of a conjunction
including this event. The mechanisms included in the models on top of
mental sampling — the noise parameter d in the PT+N model and the
prior in the Bayesian sampler model — provide additional explanatory
power. For example, both mechanisms provide quantitatively the same
explanation for response conservatism by assuming that extreme proba-
bility estimates are pushed toward 50%. Furthermore, these additional
mechanisms can explain subadditivity, binary complementarity, and
varying rates of conjunction and disjunction fallacies in the numerical
estimation task (Costello & Watts, 2014, 2017; Zhu et al., 2020).

In addition to being able to explain many of the existing biases
and fallacies, the PT+N model and the Bayesian sampler model make
specific predictions for people’s averaged probability estimates of re-
lated events that were confirmed by the data. Costello and colleagues
began this line of investigation by combining — adding and subtracting
— probability estimates of related events to cancel out or isolate the
effects of noise in the sampling process. Using a simple example to
illustrate, the expression “P(A) + P(—A)” has an expected value of 1
according to the PT+N model (i.e., the effects of noise term d cancel
out). Costello and colleagues (2014) developed a series of probabilistic
expressions based on this idea. In some of these expressions, the effects
of noise cancel out, and the expected values are in line with probability

! The PT+N model and the Bayesian sampler model conceptualize “un-
derlying probability” differently. According to the Bayesian sampler model,
underlying probabilities represent subjective beliefs. However, in the PT + N
model, the underlying probabilities are assumed to represent the “objective”
relative frequencies of events in memory.
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theory. In other expressions, the effects of noise do not cancel out,
and the expected values differ from what probability theory predicts.
Later, Zhu and colleagues (2020) showed that the Bayesian sampler
model makes identical predictions in terms of the expected value of
expressions that do not involve conditional probabilities. The predic-
tions for these probabilistic expressions were confirmed in a series of
experiments across different pairs of events (Costello & Watts, 2014,
2016, 2018; Zhu et al., 2020).

Taken together, both the PT+N model and the Bayesian sampler
model can explain many of the biases typically observed in people’s
numerical probability judgments, such as the conjunction fallacy and
response conservatism. In addition, both models make predictions for
the results of a number of probabilistic expressions that were generally
confirmed in the aggregated probability estimation data.

2. Testing direct sampling empirically with the Event Ranking
Task

The evidence for the mental sampling framework presented above
is constrained to the numerical estimation task. However, evidence
obtained from one specific experimental paradigm might be tied to
the specific features of the paradigm. One feature of the probability
estimation task is that it requires a high level of precision in mental
representations, as well as a high level of precision in reasoning when
responding on a probability scale from 0% to 100%. For example, Sun
et al. (2008) discovered people’s provided judgments were less coherent
when required to reason in a finer-grained manner, and people’s prob-
ability judgments were also clustered. The potential defects of relying
on a single theory-testing paradigm call for converging evidence based
on alternative methods (Meiser, 2011). Thus, we introduce the Event
Ranking Task as an alternative approach for testing sampling-based
accounts. In the task, participants need to rank four events according
to their perceived probabilities instead of providing numerical esti-
mates of probabilities. This response format relaxes the requirement
for precision in probabilistic reasoning.

2.1. Introduction to the Event Ranking Task

In each trial of the Event Ranking Task, participants are presented
with an event set consisting of four events, { A, ~A, B, ~B}. More specif-
ically, participants are presented with two event pairs, and each event
pair consists of two events that are complementary to each other. An
example of an event set is:

+ A: There will be rain on a randomly selected day in Hamburg.

» =A: There will be NO rain on a randomly selected day in Ham-
burg.

» B: A randomly selected person in Germany lives in a big city.

+ =B: A randomly selected person in Germany does NOT live in a
big city.

The event pair {A,—A} represents an event indicating A occurs
(denoted as event A) and a complementary event indicating A does
not occur (denoted as event —A). The same applies to the event pair
{ B,—~B}. Henceforth, we will refer to event A and event B as positive
events, and event —A and event —B as negative events, so that each
event pair consists of a positive and a negative event. When describing
any negative event in our study, we used the grammatical negative,
such as the word “NOT” or “NO” in capital letters. This was done to
make it clear that each event pair comprises two mutually exclusive
events.

The participants’ task is to simultaneously evaluate the probabilities
of the four events in a given event set and rank them based on their
perceived probabilities. The event(s) that the participant perceives to
be the most likely should receive the highest rank (i.e., Rank 1). The
event(s) perceived to be second most likely should receive the second

Cognition 263 (2025) 106125

highest rank (i.e., Rank 2), and so forth. For instance, a participant
might give a ranking such as P(A) > P(B) > P(=B) > P(-A),
indicating that event A has the highest perceived probability, event B
has the second highest perceived probability, event =B has the third
highest perceived probability, and event = A has the lowest perceived
probability.

2.1.1. Logical and illogical rankings

One important feature of the Event Ranking Task is its embedded
logical rule. When examining the responses to the task (i.e., rankings
of four events, A, =A, B, -B, by their perceived probabilities), we
can classify them as logical or illogical. A logical ranking conforms
to the complement rule; namely, the probabilities of an event and its
complement sum to 1, P(A)+ P(-~A) = P(B)+ P(-B) = 1. Consequently,
it is illogical to rank both events from the pair {A,—~A} above both
events from the pair {B,—B} because this suggests P(A) + P(-A) >
P(B) + P(—B). If P(A) < P(B), then it must follow that P(mA)(= 1 —
P(A)) > P(-B)(= 1 — P(B)). Conversely, if P(A) > P(B), then it must
follow that P(=A) < P(=B).

To illustrate the above statements with an example, suppose a per-
son is asked to rank the probabilities of four events: “rain in Hamburg”
(A), “NO rain in Hamburg” (-A), “a person lives in a big city” (B),
and “a person does NOT live in a big city” (-B), and they rank the
event “rain in Hamburg” (A) as the most probable among the four
events. Then, they must rank the event “NO rain in Hamburg” (-A)
to be the least probable event for the complement rule to hold. The
rank order of the two remaining events, a person lives/does NOT live
in a big city, does not matter as long as they are ranked to be more
probable than “No rain” and less probable than “rain”. Namely, when
A is the most probable event, rankings that follow the complement rule
should be one of the following three: P(A) > P(B) > P(~B) > P(-A) or
P(A) > P(=B) > P(B) > P(=A) or P(A) > P(-B) = P(B) > P(-A). In
contrast, suppose the person ranks the event “rain in Hamburg” (event
A) as more likely than the event “a person lives in a big city” (event B)
and consider these two events to be the most probable, while ranking
“NO rain in Hamburg” (event —A) to be more likely than the event
“a person does NOT live in a big city” (event - B) and considering
these two events to be the least probable. This ranking P(A) > P(B) >
P(=A) > P(-B) is illogical, as it simultaneously suggests P(A) > P(B)
and P(-A) > P(=B). Such illogical rankings frequently occurred in our
data.

The occurrence of such illogical rankings cannot be explained from a
strictly normative perspective. However, it can be anticipated from the
perspective of mental sampling if one assumes that people draw inde-
pendent samples for different events. Consider a hypothetical scenario
where a person draws two independent samples via memory/mental
simulation for events A and -4, each with a sample size of five
and underlying probabilities of 0.8 and 0.2, respectively. The samples
that perfectly match A and -A’s underlying probabilities are both
{A,A, A, A,—A}. Yet, in reality, samples rarely perfectly match their
underlying probabilities due to sampling variation. Over- and under-
representation happen often. For example, a person might sample
{A, A, A, A, A} for event A and {A, A, A,—A,—A} for event A by chance,
both over-representing the true underlying probabilities of A and -A.
Similarly, for events B and —B, each with a sample size of five and
underlying probabilities of 0.6 and 0.4, respectively, the person might
sample {B, B, B,—~B,-B} (perfect representation) and {B, B, B, B,~B}
(under-representation). Such a sampling result would lead the person
to erroneously rank P(A) > P(B) > P(~A) > P(-B) in the example
above.

It is important to stress that a sampling-based model can predict
illogical rankings in the Event Ranking Task only if it assumes that a
ranking is based on independent samples for each event. More specif-
ically, we need to assume that even for two complementary events
(e.g., A and —A), people draw independent samples and do not reuse
one sample. While this assumption first appears questionable from a



X. Liu et al

Table 1
Full response space and mapping to ranking category.
Category Ranking
Rank 1 Rank 2 Rank 3 Rank 4
1 A B -B -A
2 A -B B -A
3 —A B -B A
4 logical rankin A "B B A
5 8 8 B A -A -B
6 B -A A -B
7 -B A -A B
8 -B -A A B
9 A —A B -B
10 A -A -B B
11 -A A B -B
12 . . . —A A -B B
13 stacked-illogical ranking B B 4 A
14 B -B -A A
15 -B B A A
16 -B B -A A
17 A B -A -B
18 A -B —A B
19 -A B A -B
20 . . . -A -B A B
21 interlaced-illogical ranking A _B A
22 B -A -B A
23 -B A B -A
24 -B -A B A

Note. The table presents all possible responses in the ties-not-allowed condition of
the Event Ranking Task, along with their corresponding ranking categories. An event
assigned Rank 1 is perceived to be the most likely, Rank 2 as the second most likely,
Rank 3 as the third most likely, and Rank 4 as the least likely.

resource rational perspective, assuming otherwise that people reuse the
same sample for evaluating A and —=A would suggest when A is over-
represented, —A will always be under-represented. This means that the
scenario above where both A and —A are over-represented, which is
pivotal for the illogical ranking above to occur, would never happen.
The same holds for the event B and event —~B. Reusing any pairs of sam-
ples above (e.g., using two samples { A, A, A, A, A} and { B, B, B,~B, B}
for the four events or {A, A, A,~A,~A} and {B, B, B, B,~B}) would
lead to rankings that follow the complement rule. Consequently, no
illogical ranking can occur, which contradicts our data. In the General
Discussion section, we will discuss this point in more detail to explain
why assuming four independent samples for the four events in the
event set is essential and provides a parsimonious account of the data
presented in this paper. It remains to be seen whether our explanation
can eventually be incorporated into a resource rational account.

2.1.2. Handling rankings with ties

Another crucial aspect of the Event Ranking Task is whether to
allow participants to provide rankings with ties. When considering all
possible rankings of four events (4, A4, B, ~B), there are 75 potential
rankings. Of these, 24 are full orders without ties, where each event is
assigned a unique rank (e.g., P(A) > P(B) > P(~B)> P(~A)), while the
remaining 51 are partial orders that include ties, where some events
share the same rank (e.g., P(A) > P(B) = P(~B) > P(-A)).

In our experiments, we included both possibilities in a between-
subjects design. The ties-not-allowed condition was only allowed to
produce rankings without ties, while the ties-allowed condition was
permitted to produce rankings with ties. Predictions from the sampling-
based model for the Event Ranking Task can be derived separately for
both conditions and were qualitatively very similar. Because rankings
with ties were rare in the ties-allowed condition and results showed the
same patterns, we only focus on the simpler ties-not-allowed condition
in this paper. Full details regarding the ties-allowed condition - includ-
ing the task, model, simulation, and empirical investigations of model
predictions — are provided in Supplementary Material S2.
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2.1.3. Ranking categories

To facilitate a nuanced investigation of the sampling-based models
using the Event Ranking Task, we have classified responses into three
categories: logical rankings and two distinct types of illogical rankings.

Table 1 provides a comprehensive enumeration of the possible re-
sponses, along with the categorization of each response. The enumera-
tion and categorization of responses presented here apply exclusively to
the ties-not-allowed condition. For the enumeration and categorization
of the responses under the ties-allowed conditions, see Supplementary
Materials S2.1, where the same principles are applied with adjustments
for additional partial orders.

+ Logical Rankings: Logical rankings must obey the rule that one
event pair in a given event set occupies Ranks 1 and 4 while the
other pair occupies Ranks 2 and 3. Only these constellations are
compatible with the complement rule.

Stacked-Illogical Rankings: Both events in one event pair are simul-
taneously ranked higher than both events in the other event pair.
In other words, in a stacked-illogical ranking, Rank 1 and Rank 2
are assigned exclusively to a pair of complementary events.
Interlaced-Illogical Rankings: One pair occupies Ranks 1 and 3, the
other pair Ranks 2 and 4.

2.2. The Ranking Model

In this section, we present a cognitive model for the Event Ranking
Task based on direct sampling, the Ranking Model. We begin by out-
lining the basic model, the Basic Ranking Model, and then introduce
an extended version of it, the Ranking Model with Read-Out Noise,
which incorporates an additional assumption of read-out noise that
affects the mental sampling process. In the subsequent section, both the
basic model and the extended model will be used to derive qualitative
predictions, which will then be tested empirically.

To provide a preliminary overview, the Ranking Model calculates
the probability of each ranking given the comprehensive set of all
possible rankings for a given event set. In the basic model, the prob-
ability of each possible ranking is determined by three parameters
that characterize the mental sampling processes: P(A), P(B), and N.
The parameters P(A) and P(B) represent the underlying probabilities
that govern the sampling process. Because P(A) + P(-A) = 1 and
P(B) + P(-B) = 1, specifying only one parameter per event pair is
enough.

In the extended model, an additional assumption is introduced:
the sampling process is affected by read-out noise, denoted as d.
Specifically, there is a fixed probability d that a participant mistakenly
interprets an instance of an event as an instance of the event’s comple-
ment (i.e., reading an instance of event A as an instance of event —A,
or vice versa).

In this paper, we investigate participants’ responses only at the
level of the ranking categories (i.e., logical rankings, stacked-illogical
rankings, and interlaced-illogical rankings) rather than at the level of
individual rankings. Accordingly, we focus on the model predictions
at the ranking category level. We aggregate the model predictions for
the rankings that belong to the same ranking category to derive model
predictions.

Notably, the Ranking Model presented here is tailored to the ties-
not-allowed condition of the Event Ranking Task. While partial orders
are included in the ties-allowed condition - leading to differences
in how rankings are enumerated and probabilities calculated — the
Ranking Models for the ties-allowed and ties-not-allowed conditions
share core assumptions and produce very similar qualitative predic-
tions. Supplementary Materials S1.1 provides the equations for the
Ranking Model specific to the ties-allowed condition, S2.2 outlines the
assumptions, and S2.3 presents the derived predictions.



X. Liu et al

2.2.1. Basic Ranking Model

During a trial of the Event Ranking Task, participants rank the four
events, A, 7A, B, and - B, by their perceived probabilities. The Ranking
Model assumes that participants begin by drawing independent samples
for each of these four events. Imagine that in a trial, participants are
presented with the previous example event set {A: rain in Hamburg,
—A: NO rain in Hamburg, B: a person lives in a big city, -B: a
person does NOT live in a big city}. To evaluate event A, participants
recall/simulate a sample of N random days in Hamburg and count
the number of days with rain, denoted as O,. Similarly, independent
samples are drawn for the remaining three events, resulting in O_, 4 (for
event ~A), Op (for event B) and O_ (for event —B).

Consistent with previous literature (Costello & Watts, 2014; Howe
& Costello, 2020; Zhu et al., 2020), the sampling outcomes O are
distributed according to a binomial distribution, O ~ Bin(N, p), where
N represents the sample size used for the event under evaluation and
p is the underlying probability of the event under evaluation. Thus, the
sampling outcomes for A are modeled as O, ~ Bin(N4, P(A)). Because
the Ranking Model adheres to the complement rule, which states that
the probabilities of complementary events sum to 1, we can model O_ 4
as O, ~ Bin(IV_ 4, 1 — P(A)). The same reasoning applies to deriving the
binomial distributions for the sampling outcomes of event B and its
complement, —B. The probability mass function (PMF) of the binomial
distribution, f(i, N, p), is used to compute the probability of observing
O =i occurrences of the event in a sample of N instances:

PO=0)=fG.N.p)= <11.V)p[<1 - &
To derive the sampling outcome distribution for any of the four events
A, -A, B, and - B, we only need to substitute the parameters (i.e., the
underlying probability p and the sample size of mental sampling N).
For example, P(O = i) = f(i, N, P(4)) = ("*) P(A) (1 = P(A)N4~".

Importantly, the Ranking Model posits that, during a single trial of
the Event Ranking Task, participants use a constant sample size, N, to
evaluate all four events (A4,-A, B,~B) from the same event set. This
means that in any single trial, Ny = Ng = N_4, = N,z = N. After
obtaining mental samples for each event, the Ranking Model assumes
that participants derive a ranking by directly comparing the numbers
of occurrences (i.e., O, O_ 4, Og, O_p). Events with the largest number
of occurrences in the obtained samples are ranked highest, followed by
those with the second-largest number of occurrences, and so on. Both
the assumption of independent samples for each event and the use of
a constant sample size are central assumptions of the Ranking Model.
Without the constant sample size assumption, participants would be
unable to provide a ranking based solely on the binomial sampling
outcomes. Instead, additional assumptions, such as converting sampling
results into interim metrics (e.g., relative frequencies) before ranking,
would be required.

As an example to illustrate the proposed process, imagine a scenario
where a participant uses a sample size of 10 to assess the example event
set introduced above and obtains the following sampling results: for
event A, 5 out of 10 instances are rainy days (i.e., O, = 5); for event
-4, 7 out of 10 instances are non-rainy days (i.e., O_, = 7); for event
B, 2 out of 10 people live in a big city (i.e., Oy = 2); and for event
-B, 4 out of 10 people do not live in a big city (i.e., O_p = 4). Based
on these sampling outcomes, O_, > O, > O.p > Op, participants
would derive the following ranking: P(=A) > P(A) > P(-B) >
P(B). This ranking falls into the category of stacked-illogical rankings;
although the underlying probabilities adhere to the complement rule,
the sampling outcomes do not due to sampling variability.

To calculate the probability of obtaining the sampling outcomes
with the order O, > O, > O.p > Op, we need to enumerate all
possible combinations of O4, O_,, Op, and O_p that have this order.
Continuing with the previous hypothetical scenario, we consider all
possible sampling outcomes resulting from a sample size of 10. What
combinations of O4, O_ 4, Op, and O_p have the aforementioned order?
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Oy, as the smallest value, must be smaller than the other three numbers
of occurrences. Thus, Oy can take values ranging from 0 to 7 (= 10-3).
O_p must be larger than Oy, but its value cannot exceed the other two
numbers of occurrences. Thus, O_; can take values ranging from Op +1
to 8 (= 10— 2). Using the same reasoning, O, can take values ranging
from O_3+1to 9 (=10-1), and O_4 can take values ranging from
O, + 1 to 10. To generalize to sampling outcomes obtained using any
sample size, the probability of obtaining the sampling outcomes with
the aforementioned order is

P(O_4 >0, >0_p>0p)

N-3 N-2
= ) f(Op,N,P(B) Y f(O.N,P(-B)

0p=0 0_p=0p+1

N-1 N

Y, SOLN.PA) Y f(O.4 N, P(-A), @)
04=0-p+1 0,4=0,+1

where the function f(i, N, p) calculates the probability of obtaining i
occurrences in a mental sample of size N, as given by Eq. (1). Four
summations are calculated for O,, O_,, Op, and O_p, respectively
(eg., PO, €[04+ 1,N) =35 _o 11 /(O.4, N, P(A)) to give us the
probability of them falling into a range of values that allows the desired
order (e.g., O_4 > O,). Finally, using the product rule, we enumerate
all possible combinations of O,4, O_,, Op, and O_p that result in the
desired order.

One possible result, directly based on the sampling outcomes, is that
the numbers of occurrences for two or more events are equal (e.g., 04 =
O_, > O_p > Op). In the main text of the paper, we focus on the ties-
not-allowed condition of the Event Ranking Task, where participants
cannot provide a ranking with ties directly based on such sampling
results, producing a ranking such as P(A) = P(=A) > P(-=B) > P(B).
We assume that participants would instead randomly assign an order
to the tied events while maintaining the linear order suggested by the
sample outcomes. Specifically, participants would follow the orders
O, > O.p > Op and O,, > O. > Opg, but would randomly assign
an order for A and —A, with each event having a probability of 0.5 of
being ranked first. Consequently, participants would either produce the
ranking P(-=A) > P(A) > P(-B) > P(B) or P(A) > P(-A) > P(-B) >
P(B), with equal probability. The probability of arriving at either of
these two rankings is the probability of generating the original partial
ordering, P(A) = P(~A) > P(-B) > P(B) (given by Equation A27 in
Supplementary Material S1.1.1), multiplied by 0.5.?

As a consequence of ties being randomly assigned to generate a
ranking without ties, the ranking P(-=A) > P(A) > P(-B) > P(B) can
arise from a range of sampling outcomes. One possibility is that the
sampling outcomes follow the exact order without ties: O, > O, >
O_p > Op, with the probability of obtaining such outcomes given
by Equation A21 in Supplementary Material S1.1.1. Other possibilities
involve sampling outcomes with ties, which may follow the ordering
O_, > 04 > O_p > Op once ties are resolved. Ties can occur between
any two ranks, and there can be any number of ties. Equation B12
in Supplementary Material S1.2.1 calculates the probability of partici-
pants providing the ranking P(=A) > P(A) > P(-=B) > P(B) considering
all possible sampling outcomes with and without ties. Supplementary
Materials S1.2.1 provides equations that calculate the probabilities of
all 24 possible rankings.

2 If there are three (or four) ties in the sampling result, participants would
need to randomly decide among six (or twenty-four) potential full orders after
ordering the ties. The probability of reporting any of the six (or twenty-four)
orders would be the probability of obtaining the original sampling result with
ties, multiplied by é (or ﬁ).
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2.2.2. Ranking Model with Read-out Noise

In an extension to the Basic Ranking Model, we introduce read-out
noise, denoted by parameter d, into the sampling processes (i.e., the
model now has four parameters, P(A), P(B), N, and d). This read-out
noise, first proposed in the PT+N model (Costello & Watts, 2014), re-
gresses the underlying probabilities governing mental sampling toward
0.5. The rationale for this extension is twofold: first, to explore whether
the model’s predictions remain intact after considering the effect of
regressed underlying probabilities on sampling outcomes, and second,
to align the model more closely with established literature, where the
noise (or, alternatively, Bayesian belief updating) plays a central role
in explaining findings such as the probabilistic expressions in people’s
probability estimations of related events (Costello & Watts, 2014; Zhu
et al., 2020), and the varying rates of the occurrence of the conjunction
fallacy (Costello & Watts, 2017).

We modeled the “read-out noise” using the same approach as the
PT+N model. Under the influence of the read-out noise, each sampled
instance might be mistakenly read as its complement (A4 be identified as
—A or vice versa) at a constant rate. Each sampled instance for event A
has a probability P,,,(A) (instead of P(A)) of indicating the occurrence
of 4, and a probability 1 - P,,,(A) of indicating the occurrence of —~A.
The probability of obtaining a number of i occurrences in a sample of
N instances is given by the PMF of the binomial distribution (Eq. (1))
where p is replaced with the regressed underlying probability p,,,, with
Preg = (1 —2d)p + d. Furthermore, by replacing p with p,,, in Eq. (2)
(e.g., replacing P(A) with P, (A) = (1 — 2d)P(A) + d), we obtain the
equation for the sampling result O_, > O, > O_5 > Op according to
the Ranking Model with Read-Out Noise.

Although we followed the same modeling approach as the PT+N
model, the noise parameter d in the Ranking Model differs conceptually
from that in the PT+N model. In the PT+N model, d is treated as a
catch-all for multiple sources of errors in a continuous response task,
whereas in our model, d plays the more specific role of internal read-
out noise only, which disrupts the sampling process. Consequently, one
might expect the value of d in the Event Ranking Task to be smaller
compared to the value of d in numerical estimation tasks. However,
exploring this issue in detail falls outside the scope of the current paper.

3. Simulation study

In this section, we present a simulation study that generates quali-
tative predictions about the occurrence of different ranking categories
across various event sets in the Event Ranking Task. These response
patterns were examined using both the Basic Ranking Model and the
Ranking Model with Read-Out Noise. The same parameter settings
were applied to both models, except for the additional noise parameter
(d), which was only relevant to the Ranking Model with Read-Out
Noise. The simulation results show that the same qualitative pattern
is predicted to appear in the data, regardless of whether noise in the
sampling process is assumed. The simulation was implemented in the R
environment (R Core Team, 2024). The simulation code and the results
are available at the Open Science Framework (https://osf.io/hw8p9/).

The simulation study presented here was tailored to the ties-not-
allowed condition of the Event Ranking Task. Supplementary Materials
S$2.3 describes a comparable simulation study tailored to the ties-
allowed condition, using the same simulation settings as in the ties-
not-allowed condition. Both simulations yielded the same predictions
for ranking categories shared by both conditions.

3.1. Procedure

The Basic Ranking Model has three parameters: P(A), P(B), and
N. The Ranking Model with Read-Out Noise includes an additional
parameter, d, alongside these three parameters. P(A) and P(B) (and
their complementary probabilities, 1 — P(A) and 1 — P(B)) represent the
underlying probabilities of the four events that constitute an event set
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presented in a single trial of the Event Ranking Task. N represents the
sample size of mental sampling used for all four events in a given trial.
d represents a constant read-out noise that affects the mental sampling
process across all trials of the Event Ranking Task.

First, we systematically varied all parameters in the Basic Ranking
Model to assess their impact on the occurrence of ranking categories.
Our main focus in the simulation was on the underlying probabilities
of the events, for which we created three different types of event
sets with distinct underlying probabilities of the constituent events.
We derived qualitative predictions about the occurrence of different
ranking categories across different types of event sets, irrespective of
the sample size of mental sampling, N.

Second, we investigated whether the qualitative predictions would
hold when considering read-out noise in the sampling process. To
this end, we ran the simulation of the Ranking Model with Read-Out
Noise. We applied the same parameter values for N and the underlying
probabilities, P(A) and P(B). Additionally, we incorporated the read-
out noise parameter, d, setting it to a value near what we considered
its maximum plausible limit to explore whether the predictions of the
Basic Ranking Model would be distorted.

3.1.1. Basic Ranking Model

We varied P(A) and P(B) together to generate three different types
of event sets: edge-event sets, mid-event sets, and mixed sets. Recall
that each event set consists of two pairs of events, each consisting
of two complementary events. An edge-event set comprises two event
pairs whose constituent events have underlying probabilities close to 1
and 0, respectively (we term such pairs as edge-event pairs). For each
edge-event pair, the underlying probability of one constituent event is
determined by drawing a random value from a Beta(1, 10) distribution
(Fig. 1, left panel), and the underlying probability of the remaining
event is obtained by subtracting this value from 1. A mid-event set
comprises two event pairs whose constituent events have underlying
probabilities close to 0.5 (we term such pairs as mid-event pairs).
For each mid-event pair, the underlying probability of one constituent
event is determined by drawing a random value from a Beta(10, 10)
distribution (Fig. 1, right panel), and the underlying probability of
the remaining event is obtained by subtracting this value from 1. A
mixed set consists of one edge-event pair and one mid-event pair. The
realizations of different types of event sets are summarized in Table 2.

We varied the sample size N from 1 to 50 in a total of 26 levels. For
values of N from 1 to 20 we increased the sample size in steps of 1 and
for values of N from 20 to 50 in steps of 5. The reason for choosing
different step sizes across the range of N was that we expected more
changes in the qualitative pattern of predictions for small values of N
(i.e., N < 20) compared to the changes expected for larger values of N.
Ultimately, we wanted qualitative predictions that generalize across a
wide range of Ns, so we did not have to make questionable assumptions
about N in our experiments.

Taken together, the simulation of the Basic Ranking Model varied
two factors: event-set type (three levels) and sample size N (26 levels).
For each combination of factor levels, we performed 10,000 simulation
runs, which returned the predicted probabilities for three ranking cat-
egories as the output. Specifically, in each run, we generated an event
set and determined the constituent events’ underlying probabilities by
drawing from corresponding Beta distributions (see Table 2). Plugging
the underlying probabilities and sample sizes into the Basic Ranking
Model, we calculated the predicted probabilities of all 24 possible
rankings for each event set. Finally, we classified the rankings into three
categories as introduced in Section Ranking Categories and summed the
probabilities of the rankings within each ranking category.


https://osf.io/hw8p9/

X. Liu et al

Cognition 263 (2025) 106125

Beta(1, 10) Beta(10, 10)
10.0 1
3 -
7.54
= =
= =,
2 504 2
)] )]
a a
2.5 ]
0.0 1 04
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Underlying probability

Underlying probability

Fig. 1. Beta distributions used in the simulation study to generate the underlying probabilities.
The left panel shows the Beta(1, 10) distribution used to generate underlying probabilities for events in the edge-event pairs. The right panel shows the Beta(10, 10) distribution

to generate underlying probabilities for events in the mid-event pairs.

Table 2
Summary of realizations of event sets in the simulation.

Event-set type Definition Distributions for random value generation
Edge-event set A set consisting of two edge-event pairs with constituent events P(A) ~ Beta(l, 10), P(nA) =1 — P(A)
{A,-A, B,-B} having underlying probabilities near 1 and 0, respectively P(B) ~ Beta(1,10), P(-B) =1- P(B)
Mid-event set A set consisting of two mid-event pairs with constituent events P(A) ~ Beta(10, 10), P(mA) =1 - P(A)

{A,-A, B,~B} having underlying probabilities close to 0.5 P(B) ~ Beta(10,10), P(-B) =1— P(B)
Mixed set A set consisting of one edge-event pair P(A) ~ Beta(1,10), P(—A) =1- P(A)
{A,-A, B,~B} and one mid-event pair P(B) ~ Beta(10, 10), P(-B) =1 - P(B)

3.1.2. Ranking Model with Read-out Noise

In addition to the simulation of the Basic Ranking Model, we
explored the effect of read-out noise parameter d on the predicted
probabilities of different ranking categories by simulating the Ranking
Model with Read-out Noise. For the simulation of the Ranking Model
with Read-out Noise, we used the same parameter settings for P(A),
P(B) (across the same three levels), and N (across the same 26 levels)
as described above. Same as in the simulation of the Basic Ranking
Model, for each combination of event-set type and sample size, we per-
formed 10,000 simulation runs and generated 10,000 sets of predicted
responses. In all simulation runs, the additional parameter, read-out
noise d, was set at a fixed value of 0.3, which we consider to be a
reasonable approximation of its upper bound.

We determined the maximum value for the noise d based on its
empirically estimated and theoretical maximum values. For its empir-
ically estimated values, Costello and Watts (2016) reported that the
average rate of mistaking a sampled instance (as its complement) was
0.24.° The maximum theoretical value that the noise d can take is 0.5,
which regresses the probability that governs the sampling process to
0.5 regardless of the original underlying probability. Therefore, setting
d to a value of 0.3 allows us to investigate the effect of read-out noise
on the occurrence of ranking categories to a sufficient extent.

3.2. Results

Fig. 2 shows the mean predicted probabilities of participants’ re-
sponses falling into each ranking category as a function of the event-set
type, sample size, and whether read-out noise is present. A visual
inspection of Fig. 2 reveals qualitative differences among event sets
(columns) in the probability distribution of ranking categories. For

3 Costello and Watts (2016) estimated the average value of the read-out
noise, d, by using participants’ probability estimations about related events to
form probabilistic expressions.

4 To calculate the mean predictions, we averaged the simulation outputs
from 10,000 runs for each combination of the event-set type and sample size,
resulting in 3 x 26 (= 78) predicted probabilities. This averaging process was
done for the simulation of the Basic Ranking Model and the simulation of the
Ranking Model with Read-out noise, respectively.

instance, the predicted probability of logical rankings is smallest for the
mid-event sets, regardless of sample size N. Additionally, the predicted
probability of stacked-illogical rankings is largest for the mid-event sets,
also irrespective of sample size N. Notably, these qualitative differences
across event-set types remain consistent in the predictions derived from
both the Basic Ranking Model and the Ranking Model with Read-Out
Noise.

Since the predicted probabilities of providing different ranking cat-
egories are not independent and must sum to one, directly deriving
testable predictions from the full distribution shown in Fig. 2 is chal-
lenging. To circumvent this problem, we decomposed the distribution
of ranking categories into (conditional) probabilities of ranking cate-
gories, considering that the occurrence of different ranking categories
is mutually exclusive (this decomposition procedure is also known
as “nested dichotomies” in statistics; e.g., J. Fox, 2015). As a first
step, we examined the probability of participants giving a logical
ranking versus an illogical ranking. As a second step, we examined the
conditional probability of giving a stacked-illogical ranking versus an
interlaced-illogical ranking, given that the ranking was illogical.

Fig. 3 shows the decomposed probabilities of different ranking
categories. Note that the composition of the figure is different from that
of Fig. 2: While the two rows still correspond to the two models without
and with read-out noise and the x-axis still represents the sample size,
the columns now refer to the decomposed ranking categories and the
lines represent different event-set types. Fig. 3 now clearly shows the
effects of event-set types on the predicted (conditional) probabilities of
the ranking categories. Furthermore, the observed qualitative patterns
are very similar across both rows, indicating that the effect of read-out
noise d is negligible. Under mild conditions - specifically, assuming a
sample size greater than 3 for the Basic Ranking Model and greater than
10 for the Ranking Model with Read-Out Noise (where the noise term
d is set to its maximum value) - the following qualitative patterns con-
sistently emerge from predictions derived from both models, regardless
of the sample size N:

+ The probability of giving a logical ranking is highest for the mixed
sets, second highest for the edge-event sets, and lowest for the
mid-event sets;
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Fig. 2. Simulation results before decomposing the distribution of ranking categories.
Predicted response probabilities of different ranking categories as a function of event-set type and sample size N, derived from the Basic Ranking Model (first row) and the Ranking
Model with Read-Out Noise (second row). The probabilities of different ranking categories always sum to one for a given sample size and event set. The x-axis represents the
sample size N, columns refer to different types of event sets, and colors represent different ranking categories.
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Table 3
Examples of event pairs selected in the pilot study.
Event pair Ways of construction Constituent events Example
P(A)~ 1 Positive event A randomly selected person in Germany was born in a hospital.
Edge-event P(-A) ~ 0 Negative event A randomly selected person in Germany was NOT born in a hospital.
P(A) =0 Positive event In a randomly selected year, it will snow in Germany in June.
P(-A)~ 1 Negative event In a randomly selected year, it will NOT snow in Germany in June.
Mid-event P(A)~0.5 Positive event On a randomly selected day in Hamburg, there will be rain.
P(=A) = 0.5 Negative event On a randomly selected day in Hamburg, there will be NO rain.

The conditional probability of giving a stacked-illogical ranking,
given that participants do not give a logical ranking, is highest for
the mid-event sets, second highest for the mixed sets, and lowest
for the edge-event sets.

4. Overview of experiments

In the following, we aim to test the qualitative predictions derived
from the Ranking Model empirically. As a first step, we conducted a
pilot study to obtain normed event pairs for which people share com-
mon beliefs about their potential range of probabilities. The normed
event pairs were then used in Experiment 1 and Experiment 2 to
construct different types of event sets. Experiment 1 tested the qual-
itative predictions we derived for the mid-event and edge-event sets.
Experiment 2 tested the qualitative predictions we derived for the
mid-event, edge-event, and mixed sets.

In both Experiments 1 and 2, we investigated two conditions of
the Event Ranking Task, namely, the ties-allowed condition and the
ties-not-allowed condition, using a between-subjects design. To stream-
line the presentation, we report the ties-not-allowed condition in the
main text and defer the more complex ties-allowed condition, which
produced similar results, to the Supplementary Materials S2.

5. Pilot study

The goal of the pilot study was to generate normed edge-event
and mid-event pairs. Full details of the pilot study can be found in
Appendix A. Briefly, we first generated 200 event pairs, each of which
consisted of two events: a positive event (e.g., “On a randomly selected
day in Hamburg, there will be rain”.) and a complementary negative
event (e.g., “On a randomly selected day in Hamburg, there will be
NO rain”.). All of the event pairs were related to Germany, and all
participants in all experiments were located in Germany. Two hundred
event pairs were divided into four groups, each with 50 pairs. Each
participant was randomly assigned to one group and estimated the
probabilities of both positive and negative events for each pair on a
probability scale from 0% to 100% in steps of one percentage point.

To obtain a set of normed event pairs, we inspected the density
plots of participants’ probability estimates for each event pair. Based on
these density plots, we selected a set of 24 event pairs whose density
distributions visually resembled the shapes of the Beta distributions
used in the simulation and whose constituent events appeared to be
complementary to each other. The density plots for the selected event
pairs are shown in Fig. 4, examples are presented in Table 3, and the
full list of selected event pairs is given in Table A.1 in Appendix A.

6. Experiment 1

Experiment 1 tested the qualitative predictions derived from the
Ranking Model for the mid-event and edge-event sets. Specifically,
according to the simulation results, we expected the probability of
logical rankings versus illogical rankings to be larger for edge-event sets
compared to mid-event sets. Furthermore, we expected the conditional
probability of stacked-illogical rankings versus interlaced-illogical rank-
ings to be larger for mid-event sets compared to edge-event sets.
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Fig. 4. Density Plot of the probability estimates of the positive event (in red) and the
complementary estimates of the negative event (in blue) for each selected event pair.
The density plot of the complementary estimates of the negative event is constructed in
two steps. In the first step, the estimates provided by participants for a given negative
event were subtracted from 100%. In the second step, the density plots were drawn
using these complementary probability estimates. The upper panel shows six selected
edge-event pairs in which the constituent positive events have probabilities close to 0.
The middle panel shows six selected edge-event pairs in which the constituent positive
events have probabilities close to 1. The bottom panel shows twelve selected mid-event
pairs.
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Table 4
Event sets constructed for Experiment 1.

Event-set type Ways of creating the event set No.
P(A)~ 0, P(B)~ 0 2

fjge'jvegt Se; P(A)~ 1, P(B) =~ 1 2
o P(A)~ 0, P(B) ~ 1 2
Mid-event sets P(A)~ 0.5, P(B)~ 0.5 6

{4, -A, B, =B}

Note. Every time we constructed an event set, we randomly selected two
event pairs from the list of event pairs obtained in the pilot study that
had not been previously used. No. = number of sets created this way
for each participant.

6.1. Methods

6.1.1. Design

The experiment implemented a 2 x 2 mixed design with factors
event-set type and possibility of giving ties. Event-set type was a within-
subjects factor with two levels, mid-event sets and edge-event sets. Each
participant was asked to provide rankings for thirteen event sets: six
mid-event sets, six edge-event sets, and one set which was used as a
comprehension check item. For the comprehension check, participants
were asked to rank an event set with a clear ranking, as the events in
the set were widely recognized and their probabilities widely accepted.®

We manipulated between subjects if participants were allowed to
give ties in their provided rankings of events. In the ties-allowed con-
dition, participants were allowed to give ties (i.e., assign the same rank
to more than one event). In the ties-not-allowed condition, participants
were not allowed to give ties. Here, we only report the results from the
ties-not-allowed condition (See Supplementary Materials S2.5 for the
methods, results, and discussion of the ties-allowed condition).

6.1.2. Participants

186 participants located in Germany were recruited via Prolific
(www.prolific.co), among whom 8 were excluded because they did
not pass the comprehension check, and 1 was excluded because they
indicated that they were not proficient in German. Of the remaining
participants, 86 participants were assigned to the ties-not-allowed con-
dition (43 females, 41 males, and 2 others) with a mean age of 26.20
(SD = 8.26) years. 91 participants were randomly assigned to the ties-
allowed condition. Participants were compensated with £2 for their
participation.

6.1.3. Materials

We constructed two types of event sets: six edge-event sets and six
mid-event sets. Each event set was constructed by randomly selecting,
for each participant anew, two event pairs without replacement from
the 24 event pairs selected in the pilot study so that every event pair
was used and used only once. The different ways of constructing the
event sets are summarized in Table 4.

6.1.4. Procedure

The experiment was programmed in lab. js (Henninger et al.,
2022). It consisted of thirteen ranking trials. In each trial, participants
were presented with one event set consisting of two pairs of com-
plementary events, A, —A, B, —B. Participants were asked to create
a ranking of these events based on the perceived probabilities. The
order of the twelve event sets (i.e., six edge-event and six mid-event
sets) was randomized for each participant. After ranking six event sets,
on the seventh trial of the experiment, participants were presented
with a comprehension check item. Afterward, participants ranked the

5 Details about the comprehension check question can be found in the OSF
repository (https://osf.io/hw8p9/).
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remaining six event sets. At the end of the experiment, participants
were asked for their demographic information.

Fig. 5 shows one example trial of the Event Ranking Task (translated
to English). The four events from one event set were presented simulta-
neously on the right side of the screen, and the participants were asked
to create a ranking by dragging and dropping the events to the left
side of the screen. Participants in the condition presented here were
not allowed to give ties (see Supplementary Material S2.5.1.4 for an
example trial under the ties-allowed condition, in which participants
received instructions explicitly permitting ties).

6.1.5. Analysis

For the data analysis, we used a multinomial processing tree (MPT)
model (Riefer & Batchelder, 1988). Typically, MPT models are used
as cognitive measurement models that relate probabilities underlying
observed response frequencies to latent cognitive processes (Batchelder
& Riefer, 1999; Erdfelder et al., 2009; Schmidt et al., 2023; Singmann
et al.,, 2024). However, in the present study, we used an MPT model
purely as a statistical tool to map out and decompose the underlying
multinomial distribution of observed responses, in line with the decom-
position used in the simulation. The benefit of using this decomposition
also for the analysis is that it permits testing each prediction derived
from the simulation in a statistically independent manner.

We constructed the MPT model following the decomposition intro-
duced in the simulation section, as illustrated in Fig. 6. The first step
is to assess the logicality of the response; with probability / a logical
ranking is produced and with probability 1 —/ an illogical ranking is
produced. If a ranking is illogical, we take the second step to assess
what category of illogical rankings the ranking belongs to. Given that
the ranking is illogical, the conditional probability of it belonging to
the stacked- versus interlaced-illogical rankings is represented by the
parameter s. The MPT model is fully saturated and perfectly describes
any data pattern that can emerge in the Event Ranking Task. Further-
more, the model is globally identifiable, with each branch terminating
in a distinct ranking category.

We fitted the corresponding MPT model to the data from different
event-set conditions using a hierarchical-Bayesian approach (Klauer,
2010; Singmann et al., 2024). Two sets of group-level parameters 0
were estimated for two event-set conditions, with 0, for the edge-event
sets and 6, for the mid-event sets. The model fitting was implemented
via the R package TreeBUGS (Heck et al., 2018).

The relations between MPT parameters estimated for edge-event
and mid-event set conditions (/, vs. /,, and s, vs. s,,) should align with
the predictions of the Ranking Model:

1. The probability of logical rankings is greater when ranking
edge-event sets compared to when ranking mid-event sets: /, >
I

2. The conditional probability of stacked-illogical rankings (versus
interlaced-illogical rankings) is greater when ranking mid-event
sets compared to when ranking edge-event sets: s,, > s,.

To assess the difference between parameters estimated for different
event-set conditions, we calculated the posterior difference distribu-
tions for parameters / and s. For ease of interpretation, we always
subtracted the distribution of the expected smaller parameter esti-
mate from the distribution of the expected larger parameter estimate.®
Thus, results are in line with the predictions of the Ranking Model if
the difference distributions are positive. We considered there to be a
statistically meaningful difference between the group-level parameter
estimates obtained from two event-set conditions if more than 95% of
the probability mass of the difference distribution was above 0.

6 Specifically, for parameter /, we calculated /, - /,,. For parameter s, we
calculated s,, — s,.
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Fig. 5. Example trial of the Event Ranking Task.

| — logical ranking

s — stacked-illogical ranking

1-1
o — interlaced-illogical ranking

Fig. 6. MPT model for decomposing the rankings.

Multinomial processing tree (MPT) model that decomposes the ternary ranking category
into two independent and nested binomials. / = probability of giving a logical ranking;
s = conditional probability of giving a stacked-illogical ranking given that participants
did not give a logical ranking.

6.2. Results

The proportion of logical, stacked-illogical, and interlaced-illogical
rankings in participants’ responses can be found in Fig. 7. This figure
clearly shows that participants frequently provided illogical rankings.
Furthermore, the proportions with which participants provided differ-
ent ranking categories differed across event-set types. In line with the
prediction, the edge-event set condition produced more logical rankings
than the mid-event set condition, and the mid-event set condition
produced more stacked-illogical rankings than the edge-event set con-
dition. To statistically substantiate these results patterns, we performed
the MPT analysis in the following.

6.2.1. Model-based results

Table 5 provides the group-level estimates of MPT model parame-
ters. Fig. 8 shows the posterior difference distributions comparing the
group-level estimates across event-set types.

In line with the first prediction from the Ranking Model, parameter
I, representing the probability of providing a logical ranking, was
meaningfully larger for edge-event sets than for mid-event sets. In line
with the second prediction, parameter s, the conditional probability
of providing a stacked-illogical ranking versus an interlaced-illogical
ranking was meaningfully larger for mid-event sets than for edge-event
sets.
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Table 5
Parameter estimates of the MPT model in Experiment
1.

Parameter Edge-event sets Mid-event sets
l .79 [.74; .84] .52 [.46; 0.58]
s .05 [.01; .12] .34 [.24; 0.44]

Note. MPT parameter estimates for the edge-event set
and mid-event set conditions in Experiment 1. / =
probability of giving a logical ranking; s = conditional
probability of giving a stacked-illogical ranking given
that participants did not give a logical ranking. The
brackets indicate the 95% credibility intervals.

6.3. Discussion

When asked to rank two pairs of complementary events, participants
frequently produced illogical rankings, around 25% for edge-event sets
and 50% for mid-event sets. The Ranking Model, a sampling-based
model for ranking tasks, can not only explain the occurrence of illogical
rankings but also correctly predict the qualitative pattern of ranking
categories across event-set types.

Just as the simulation predicted, participants exhibited a greater
tendency to provide illogical rankings for mid-event sets. Additionally,
we observed that the conditional probability of participants provid-
ing stacked-illogical rankings (versus interlaced-illogical rankings) was
higher when ranking mid-event sets compared to edge-event sets. These
behavioral results provide evidence for the idea that mental sampling
underlies probability judgments.

7. Experiment 2

Experiment 2 aimed to offer a more stringent test of the Rank-
ing Model by assessing its predictions for mixed sets in addition to
those for mid-event and edge-event sets. Additionally, we intended to
replicate the findings from Experiment 1. We preregistered Experiment
2, including its sample size, hypotheses, design, and analysis. The
preregistration can be found in the Open Science Framework Registries
https://osf.io/hw8p9/.
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Fig. 7. Proportion of three ranking categories in Experiment 1.

Colors indicate the ranking categories. For edge-event sets, the proportions of logical, stacked-illogical, and interlaced-illogical are 0.78, 0.02, and 0.21, respectively. For mid-event

sets, the proportions are 0.52, 0.18, and 0.30, respectively.

Table 6
I S Event sets constructed for Experiment 2.
edge —mid mid — edge Event-set type Ways of creating the event set No.
1.041 : Edge-event sets B4~ 0, P(B) =0 !
i i (A —A, B, =B} P(A) =1, P(B)~ | 1
: : > P(A)~0, P(B)~ | 2
| 1 | 1 Mid-event sets{A, —A, B, =B} P(A)~ 0.5, P(B)~0.5 4
> 1 1
= : : Mixed sets P(A)~0, P(B)~0.5 2
8 0 541 1 {4, -A, B, B} P(A)~1, P(B)~0.5 2
1 1
8 1 1 Note. Every time we constructed an event set, we randomly selected two event pairs
: : from the list of normed event pairs that had not been used. No. = number of sets
! ! created this way for each participant.
1 1
1 1
4! L 1 e
0.04! i
0

2 4 6 0 2 4 .6
Difference in parameter estimates

Fig. 8. Posterior difference distributions comparing the MPT parameter estimates
across event-set types calculated for Experiment 1.

I and s are the specific MPT parameters being compared (see Table 5 for their estimated
values and interpretations). “edge — mid” and “mid — edge” specify how the event sets
were compared: “edge — mid” means the estimate for mid-event set was subtracted
from the estimate for the edge-event set, and “mid — edge” means the opposite. All
posterior difference distributions were expected to be positive, as the predicted smaller
estimate was subtracted from the predicted larger estimate when making comparisons.
A posterior with 95% of its probability mass greater than O indicates a credible
difference between event sets in line with the predictions of the Ranking Model. The
gray area shows the full posterior difference distribution. The black dot shows the
median. The red line shows the 95% credibility interval. The red number indicates the
proportion of probability mass of the difference distribution larger than 0.

7.1. Methods

The experiment used the same methods as Experiment 1, with the
sole difference that we included mixed sets in addition to mid-event
and edge-event sets.

7.1.1. Design

The experiment implemented a 3 x 2 mixed design with factors
event-set type and possibility of giving ties. Event-set type was a within-
subjects factor with three levels, mid-event sets, edge-event sets, and
mixed sets. As in Experiment 1, participants were asked to provide
rankings for thirteen event sets, four mid-event sets, four edge-event
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sets, four mixed sets, and one set which was the same comprehen-
sion check used in Experiment 1. We manipulated between subjects
if participants were allowed or not allowed to give ties in rankings.
Here, we only report the results obtained from the ties-not-allowed
condition (See Supplementary Materials S2.6 for the methods, results,
and discussion of the ties-allowed condition).

7.1.2. Participants

The target sample size was chosen in order to have roughly the
same number of observations from each event-set condition as we
had in Experiment 1. Therefore, 310 participants located in Germany
were recruited from Prolific (www.prolific.co), among whom 9 were
excluded because they did not pass the comprehension check. Of the
remaining participants, 151 participants were assigned to the ties-not-
allowed condition (69 females, 80 males, and 2 others) with a mean age
of 29.20 (SD = 10.25) years. 150 participants were randomly assigned
to the ties-allowed condition. Participants were compensated with £2
for their participation.

7.1.3. Materials

The materials were prepared in the same manner as those in Exper-
iment 1 based on the event sets selected in the Pilot Study. The mixed
set was constructed by randomly selecting one normed edge-event pair
and one normed mid-event pair. The edge-event sets and the mid-
event sets were constructed using the same method as in Experiment 1.
Table 6 summarizes the construction of the event sets, which was done
randomly for each participant.

7.1.4. Procedure
The procedure was the same as in Experiment 1.
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Table 7
Parameter estimates of the MPT models in Experiment 2.

Parameter Edge-event sets Mid-event sets Mixed sets
! .72 [.68; .77] .45 [.40; .50] .86 [.82; .90]
s .06 [.01; .12] .41 [.33; .48] .17 [.03; .31]

Note. MPT parameter estimates for the edge-event set, mid-event set and mixed set
conditions in Experiment 2. / = probability of giving a logical ranking; s = conditional
probability of giving a stacked-illogical ranking given that participants did not give a
logical ranking. The brackets indicate the 95% credibility intervals.

7.1.5. Analysis

We followed the same analysis steps as in Experiment 1, employing
the MPT model shown in Fig. 6. We estimated the MPT model jointly
for three different event-set conditions. Separate sets of group-level
parameters were estimated for three event-set conditions: one set 6, for
the edge-event set condition, one set 6,, for the mid-event set condition,
and one set 6, for the mixed set condition.

The ordinal relationships of MPT parameters estimated for different
event-set conditions should align with the qualitative predictions —
derived from the simulation — about the occurrence of different ranking
categories across different event sets as follows:

1. The probability of giving a logically possible ranking is highest
for mixed sets, second highest for the edge-event sets, and lowest
for the mid-event sets: I, > [, > [,,.

2. The conditional probability of giving a stacked-illogical ranking
(versus an interlaced-illogical ranking) is highest for mid-event
sets, second highest for the mixed sets, and lowest for the
edge-event sets: s, > 5, > 5,.

To compare the MPT parameter estimates for different event sets,
we calculated the posterior difference distributions for parameters /
and s. For each parameter, we made three pairwise comparisons and
computed three posterior difference distributions to fully test the pre-
dicted ordinal relationships (e.g., for parameter /, I, > I, > [,).
Specifically, we first compared the expected largest estimate and the
expected second largest estimate (e.g., /, and /,), then compared the
expected second largest with the expected smallest (e.g., I, and /,,).
Lastly, we compared the expected largest with the expected smallest
parameter (e.g., /, and /,). As in Experiment 1, we always subtracted
the distribution of the expected smaller parameter estimates from the
distribution of the expected larger parameter estimates. Hence, the
Ranking Model predicts a positive posterior difference distribution for
every MPT parameter comparison.

7.2. Results

The proportion of logical, stacked-illogical, and interlaced-illogical
rankings in participants’ responses can be found in Fig. 9. As in Ex-
periment 1, illogical rankings were produced frequently. Furthermore,
there were clear differences across event sets. In line with the predic-
tions of the Ranking Model, logical rankings were most common in
the mixed set condition, followed by the edge-event set condition, and
least common in the mid-event set condition. For the illogical rankings,
the pattern also appeared to be in line with the predictions; stacked-
illogical rankings were most common in the mid-event set condition,
followed by the mixed and edge-event set conditions. To statistically
substantiate these results patterns, we performed the MPT analysis.

7.2.1. Model-based results

Table 7 provides the group-level estimates of MPT model parame-
ters. Fig. 10 shows the posterior distributions of the differences between
the parameters estimated for different event-set conditions.

For parameter /, the probability of providing a logical ranking, the
predictions regarding the ordinal relationships among all three types of
event sets (i.e., mixed, mid-event, and edge-event sets) were strongly
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supported: | was largest for the mixed sets, second largest for the
mid-event sets, and smallest for the edge-event sets. This also implies
that we replicated the results for mid-event and edge-event sets from
Experiment 1.

The predictions for the parameter s, the conditional probability
of providing a stacked-illogical ranking versus an interlaced-illogical
ranking, were mostly supported by the MPT model. The predictions
are that s5,, > s, > s,. While the qualitative pattern supported the
predictions — all posterior medians and more than 90% of posterior
mass were positive — the 95% credibility interval for one posterior dif-
ference distribution included 0. Specifically, we replicated the ordinal
pattern for mid-event sets and edge events already observed in Exper-
iment 1. We also found that the conditional probability of providing
a stacked-illogical ranking versus an interlaced-illogical ranking was
meaningfully larger for mid-event sets than for mixed sets (s, > s,
was supported). However, the comparison between mixed sets and
edge-event sets did not reach our inference criterion (s, > s, was not
supported). Still, more than 90% of posterior mass in the distribution
for comparing the mixed and edge-event sets were positive, suggesting
that there is more evidence for the predicted ordinal relationship
holding than not.

7.3. Discussion

In Experiment 2, participants were asked to provide rankings for
mixed sets alongside mid-event and edge-event sets. As in Experiment
1, we again showed that participants frequently produced illogical
rankings. Furthermore, the frequency with which participants produced
illogical rankings across the three different types of event sets again
matched the predictions of the Ranking Model. Illogical rankings were
least likely for mixed sets (around 20%), more likely for edge-event sets
(around 30%), and most likely for mid-event sets (around 55%).

The Ranking Model also made specific predictions regarding the
frequency with which different types of illogical rankings should occur
across the three event sets. In total, we tested three predicted ordinal
relationships. Two of these ordinal relationships met our inference
criterion. However, the predicted ordinal relationship comparing the
edge-event and mixed sets, in terms of the conditional probability
providing stacked- versus interlaced-illogical rankings, did not meet
our pre-specified inference criterion. This appears to be a power issue
due to the low frequency of stacked-illogical rankings occurring under
both the edge-event set condition and the mixed set condition (around
3% of responses for edge-event sets and around 4% for mixed sets).
Notably, the Ranking Model predicts that the probability of partici-
pants providing stacked-illogical rankings for mid-event sets should be
relatively large, while the predicted probabilities for the edge-event
sets and for the mixed sets are small except in cases where read-
out noise is large and the mental sampling size is small (see Fig.
2). Additionally, the model predicts a relatively larger difference in
the conditional probability of providing stacked- versus interlaced-
illogical rankings when comparing edge-event and mid-event sets, as
well as when comparing mid-event and mixed sets. In contrast, the
model predicts a smaller difference for the comparison between mixed
and edge-event sets (see Fig. 3). Thus, the results for stacked-illogical
rankings seem to be entirely in line with the predictions from the
Ranking Model. Comparing the edge-event and mixed sets with a larger
sample size in order to detect a small difference in the conditional
probability of providing stacked- versus interlaced-illogical rankings
appears a promising direction for future research. Taken together, these
results provide further evidence for the idea that mental sampling
underlies probability judgments.
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Fig. 9. Proportion of three ranking categories in Experiment 2.
Colors indicate the ranking categories. For edge-event sets, the proportions of logical, stacked-illogical, and interlaced-illogical are 0.71, 0.03, and 0.25, respectively. For mid-event
sets, the proportions are 0.46, 0.25, and 0.30, respectively. For mixed sets, the proportions are 0.83, 0.04, and 0.13, respectively.
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Fig. 10. Posterior Difference distributions comparing the MPT parameter estimates across event-set types calculated for Experiment 2.

I and s are the specific MPT parameters being compared (see Table 7 for their estimated values and interpretations). “mixed — edge”, “edge — mid”, “mixed — mid”, “mid —
mixed”, “mixed — edge ” and “mid — edge” specify how the event sets were compared: the estimate for the latter event set was subtracted from the estimate for the former event
set. For example, “mixed — edge” means the estimate for the edge-event set was subtracted from the estimate for the mixed set. Three pairwise comparisons were conducted to
test the ordinal relationship mixed > edge > mid for the parameter /. Similarly, three pairwise comparisons were conducted to test the ordinal relationship mid > mixed > edge
for the parameter s. All posterior difference distributions were expected to be positive, as the predicted smaller estimate was subtracted from the predicted larger estimate when
making comparisons. A posterior with 95% of its probability mass greater than O indicates a credible difference between event sets in line with the predictions of the Ranking
Model. The gray area shows the full posterior difference distribution. The black dot shows the median. The red line shows the 95% credibility interval. The red number indicates
the proportion of probability mass of the difference distribution larger than 0.

8. General discussion Ranking Model - based on existing direct sampling models of probabil-
ity estimation (Costello & Watts, 2014; Zhu et al., 2020). The Ranking
Model makes novel predictions that when creating the rankings of
probabilities, people will violate the complement rule in a predictable
manner: the probability of providing illogical rankings, as well as the
occurrence of different types of illogical rankings, depend on the under-

Models developed under the mental sampling framework have been
successful in explaining observed effects in people’s probability judg-
ments and probabilistic reasoning. However, less effort has been de-

voted to empirical investigations of the fundamental ideas underlying lying probabilities that govern the sampling processes. Such predictions
the mental sampling framework. In this study, we set out to derive were derived from a simulation study where we varied the range of the
testable predictions from the mental sampling framework using the  underlying probability parameters in different event-set conditions. In
novel Event Ranking Task. We began our theory testing effort by two online experiments, we tested the qualitative predictions derived

developing a formal model tailored to the Event Ranking Task — the from the simulation using experimental manipulations that map the
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setting in the simulation. The predicted pattern that the occurrence
of different ranking categories changes across event-set conditions was
closely confirmed in these two online experiments (in both the ties-not-
allowed condition reported here as well as the ties-allowed condition
reported in Supplementary Material S2).

8.1. Complementarity in aggregated versus trial-level probability judgments

Our results appeared to conflict with binary complementarity (Tver-
sky & Koehler, 1994), which refers to the phenomenon that the aver-
aged estimates (or medians as shown by C. R. Fox, 1999) across trials
and participants for two complementary events roughly sum up to 1, in
line with the complement rule. However, the current study showed that
people violated the complement rule, providing illogical rankings in a
significant proportion of trials. This is because we were focusing on a
different level than previous studies: whereas previous studies focused
on probability estimations at an aggregated level, the present study
focused on the probability rankings at the trial level.

Mental sampling makes different predictions regarding the agree-
ment with the complement rule at the aggregated and the trial levels.
According to mental sampling, the underlying probabilities of two com-
plementary events sum up to one. Even though individual probability
estimates of an event based on a single sample are subject to sampling
variation, they are assumed to be distributed around the event’s un-
derlying probability. Along this line of reasoning, the expected sum of
probabilities of two complementary events is distributed around 1.7 At
the trial level, however, mental sampling posits that people draw only
a small sample to evaluate each event’s probability. For instance, in
the Event Ranking Task, the Ranking Model assumes that at each trial,
participants draw four independent samples to evaluate the four events
A, ~A, B, and - B - one sample for each event. Because each sample is
prone to random fluctuation, these one-time draws may not reflect the
true relationships among the events’ underlying probabilities. For ex-
ample, even if the underlying probability of event A is higher than that
of B, a single set of small samples might suggest the opposite ordering.
Furthermore, when different samples are drawn for two complementary
events, apparent violations of the complement rule can arise at the trial
level. The judgments at the trial level (e.g., individual rankings) are not
derived from expected values but rather from the specific outcomes of
individual sampling processes. Hence, the observed individual rankings
can deviate from what might be expected when the means of the
estimates are considered.

8.2. Comparing the Ranking Model and the direct sampling models of
probability estimations

Compared with the two most popular direct sampling models for the
probability estimation task (Costello & Watts, 2014; Zhu et al., 2020),
the Ranking Model has the advantage of specifying how participants
engage in the experimental task. Especially, the Ranking Model allows
us to derive predictions for the probability of every possible ranking for
any given set of parameters. The models for the probability estimation
task, however, cannot make predictions that cover the full response
space (e.g., the probability scale from 0 to 1). With a given value of
the sample size of mental sampling, the Bayesian sampler and the PT+N
model predict only a limited number of possible point estimates on the
probability scale. For instance, if the sample size of mental sampling is
3, then the PT+N model can only predict fractions with a denominator

7 Alternatively, according to the PT+N model, individual estimates are as-
sumed to be distributed around an expected value that depends on underlying
probabilities as well as noise in the sampling process. When combining/adding
up the expected values of the two complementary events together, the “noise”
will be canceled out, only leaving out the sum of the two complementary
events’ underlying probabilities.
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of 3 as possible estimates, because probability estimations are based on
the relative frequency of instances that support or do not support the
event under evaluation in the obtained sample. Therefore, the predicted
estimates can only be g, %, %, % However, infinite decimals like %
or % are impossible to give on the probability scale by participants.
Additionally, in the raw data of Costello and Watts (2014), prime
numbers such as 0.01 or 0.71 appeared frequently. If the model does
not introduce additional assumptions about how participants round
their estimates, estimates like 0.01 or 0.71 can only occur with a sample
size > 100. Using a sample size greater than 100 for a query appears
unlikely from a resource rational perspective (Griffiths et al., 2015). It,
therefore, appears more likely that participants incorporate a secondary
rounding process when responding on a probability scale from 0% to
100%. However, neither the PT+N model nor the Bayesian sampler
model specified the rounding process for probability estimation. The
Ranking Model can be treated as an experimental model (Kellen, 2019),
which removes the ambiguity regarding how participants would use the
response scale.

8.3. Necessity of model assumptions and possible alternatives

The Ranking Model is based on the binomial sampling process and
involves several important assumptions. Firstly, it assumes that people
draw independent samples to evaluate different events. Secondly, it
assumes that people use a fixed sample size to evaluate a given event
set and convert samples to a ranking based on the counts of events that
occur in the samples. In this section, we address possible critiques or
alternatives of these assumptions and argue that these assumptions are
supported by and provide a parsimonious account of the data.

First, as mentioned in the Introduction (the Logical and Illogical
Rankings section), the assumption that people draw independent sam-
ples for different events, even if they are complementary to each
other, seems implausible from a resource-rational perspective. How-
ever, we argue that the alternative assumption — people reusing the
same sample for complementary events — fails to account for the data
in this study. To examine how this alternative assumption impacts the
model predictions, we modify the Ranking Model by considering two
scenarios.

In the first scenario, we assume people evaluate a pair of comple-
mentary events based on a single sample and maintain the assumption
that people use a consistent sample size N for evaluating different event
pairs. Specifically, a sample of size N including x instances of A and
N — x instances of —A is drawn for the event pair {A4,~A}. A sample of
size N including y instances of B and N — y instances of - B is drawn
for the event pair { B,~B}. According to these sampling results, when
x (the number of occurrences of A, or 0,) > y (Op), it must follow
that N —x (O_-4) < N —y (O_p). The ranking, based on these sampling
results, would then always follow the complement rule and be logical,
which contradicts the data in which illogical rankings were common.

One might argue that illogical rankings might still occur if we fur-
ther relax the assumption that people use a constant sample size. Thus,
in the second scenario, we assume that people draw different sample
sizes for the two pairs of complementary events. This assumption also
cannot predict illogical rankings. The proof is as follows. Imagine that
people draw a sample of N instances to evaluate the event A, including
x instances of A and N —x instances of - A. People draw another sample
of M instances, including y instances of B and M — y instances of —B.
Since the sample sizes used for evaluating two pairs of complementary
events differ, we additionally assume that participants first convert the
instances into a relative frequency and then derive a ranking based on

relative frequencies, with % instances indicating the proportion of A,
N—x

indicating the proportion of -4, % indicating the proportion of
B, and 42
prove that when O, > Og; namely, %
N—x

indicating the proportion of —B. Mathematically, we can

X X - X i
" ZMJ\,/thenl NSL M.Thls
means that < T’V Recall that O_, = == and O_ = T’y, which
means that O_, < O_p follows O, > Oy directly.
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With the two scenarios above, we show that the illogical rankings
in our data cannot be predicted without assuming that participants
use independent samples for complementary events. Next, we move
on to discuss the necessity of the constant sample size assumption and
the assumption that people derive rankings directly by counting the
occurrence for each event. We do not think relaxing these assump-
tions offers any benefits compared to the models presented here, as
the Ranking Model can already fully predict the observed patterns.
Relaxing the constant sample size assumption would require three more
parameters; calculating relative frequencies for making comparisons
would require one more intermediary step compared to directly com-
paring counts. Surely, such more complex models could still predict
the data pattern that matches the observed data. However, whether
other model variants make the same predictions seems immaterial,
given that the current predictions already match the observed data.
In sum, the current model provides a parsimonious description. Given
that there is no empirical necessity for assuming that people do not
directly compare observed counts, the principle of parsimony suggests
that it is unnecessary at this time to explore more complicated model
variants with additional assumptions. If future work using the Event
Ranking Task finds empirical patterns that are not predicted by the
Ranking Model described here, it might be worthwhile to revisit these
assumptions.

8.4. Limitations and future directions

So far, one aspect that has been neglected is the individual differ-
ences between participants. We observed that around 7% participants
in the ties-not-allowed condition of Experiment 1 (N = 6) and around
5% participants in the ties-not-allowed condition of Experiment 2 (N =
8) produced no illogical rankings at all. Because participants in our
study had to produce 12 rankings in total, such an outcome is unlikely
to be solely the result of random sampling alone.® From the standpoint
of the sampling model, producing no illogical rankings consistently is
only possible when sampling an infinite number (or at least a very
large number) of instances. Instead of assuming that people use an
infinite/a very large number of instances, we hypothesize that these
individuals consistently applied logical rules (i.e., the complement rule)
when creating rankings. It suggests that there might be differences
between participants who rely on mental sampling alone and others
who also use logical rules. This raises important considerations for
the development of more comprehensive models. If logical-rule-based
reasoning indeed plays a part in the probability judgments for a group
of individuals, future iterations of sampling models might benefit from
incorporating this possibility explicitly. Such a model could account
for a mixture of rule-based and sampling-based reasoning across par-
ticipants, potentially offering a more complete understanding of the
cognitive mechanisms at play.

One might wonder why we did not fit the Ranking Model to inves-
tigate individual differences in parameter estimates and instead relied
solely on its qualitative predictions. Fitting the model at the individual
level is challenging. The Basic Ranking Model consists of 75 equa-
tions with three free parameters. For the ties-not-allowed condition
presented in the main text, these 75 equations are combined to generate
predictions for 24 full orders. A single set of parameters corresponds to
a probability distribution over these 24 possible responses. However,
for each set of parameters (characterizing a single trial of the Event
Ranking Task), we observe only one response out of the 24 possibilities.
Even when aggregating data across trials for each participant, we

8 For example, in Experiment 1, according to the simulation study (Fig.
2), the smallest probability of producing illogical rankings for edge-events
is .2, and for mid-events, it is .4. With these probabilities, the likelihood of
producing at least one illogical ranking across 12 trials (6 edge-event and 6
mid-event) is 1 — (1 —0.2)° x (1 — 0.4)°) = .988.
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obtain only 12 observed responses, which are insufficient to reliably
estimate the three parameters (N, P(A), and P(B)) for individual trials
or participants. The sparsity of data also prevents us from deriving
predictions for each of the 24 possible rankings. To address this lim-
itation, we categorized the rankings to generate predictions at the
level of ranking categories. Future research could explore alternative
categorizations to test new predictions.

In the current study, we focus on investigating the influence of
underlying probabilities on the occurrence of different ranking cate-
gories. However, the Ranking Model also predicts how other model
terms should influence the occurrence of different ranking categories.
For example, the model predicts that employing a larger N for drawing
mental samples would lead to a higher rate of logical rankings, holding
all other model terms constant. The model also predicts that having
a higher read-out noise d in the sampling processes would lead to
a lower rate of providing logical rankings, holding all other model
terms constant. These predictions warrant empirical investigation in
future research. One concrete approach could involve manipulating the
sample size N through task difficulty and thinking time, as demon-
strated by Hamrick et al. (2015). As for the noise parameter d, it could
be measured in the probability estimation task, using the approach
pursued by Costello and Watts (2018). The noise levels measured by
the probability estimation task can then be used to predict the task
performance in the Event Ranking Task. Additionally, there have been
limited efforts to ground the important sampling terms in a psycho-
logical context (but see Lloyd et al., 2019). Thus, another intriguing
line of research would be to see how individual differences in cognitive
abilities, such as fluid intelligence and working memory, correlate with
the model terms, especially the parameters N and d.

Finally, future research can extend the current Ranking Model to
evaluate if the sampling-based ranking process proposed in this pa-
per can explain how people rank not only marginal events, but also
more complex events, such as conjunctions and disjunctions. In fact,
the Linda problem introduced by Tversky and Kahneman (1983) is
essentially a ranking task. The Linda problem was presented as a two-
alternative forced-choice question in which participants ranked the
probabilities of the marginal event A and the conjunctive event A A B
(where A represents “and”). Variants of the Linda problem that involve
ranking complex events can provide materials for further empirical
investigations of the sampling-based ranking model.

Another important research question is whether the sampling-based
ranking model can replicate the observed patterns of conjunction falla-
cies as effectively as or more effectively than sampling-based probabil-
ity estimation models. For example, studies have shown that in some
cases, such as the Linda problem, participants exhibited a high conjunc-
tion fallacy rate (around 80%) (Tversky & Kahneman, 1983). Costello
and Watts (2017) demonstrated that this high rate can be explained
by assuming greater noise for conjunctive events and lower noise for
marginal events in the sampling process. Without this assumption, the
original PT+N model predicts a ceiling rate of 50%. An important
question is whether the ranking model, based on counts in mental
samples, also predicts a ceiling rate of 50% without assuming differ-
ent noise levels or if the ranking model can predict a high rate of
conjunction fallacy without additional assumptions. Costello and Watts
(2017) further illustrated that the sampling-based model of probability
estimation effectively explains variations in conjunction fallacy rates as
influenced by alterations in the underlying probabilities of individual
events (P(A), P(B), and P(A A B)). It is worthwhile to investigate
whether the ranking model can reproduce the same pattern.

In addition to explaining previously observed effects in conjunction
fallacy experiments, future research can generate new predictions for
situations that involve both marginal events and complex events. When
ranking the probabilities of the four events — two marginal events, their
conjunction, and their disjunction (P(A), P(B), P(A A B), P(A V B)) —
there are only two full orders and one partial order that do not violate
the conjunction and disjunction rules across all possible rankings of
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these four events. These three logical rankings are: P(A v B) > P(A) >
P(B) > P(AAB), P(LAV B) > P(B) > P(A) > P(AAB) or P(AV B) >
P(A) = P(B) > P(A A B). Future research can extend the current
Ranking Model and see whether the sampling-based ranking model
makes testable predictions regarding the occurrence of these logical
rankings.
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Appendix A. Pilot study

A.1. Methods

A.1.1. Participants

Two hundred participants located in Germany were recruited via
Prolific (www.prolific.co). Two participants were excluded for indicat-
ing they did not take the experiment seriously, and eight were excluded
for reporting inadequate German proficiency, as the experiment was
conducted in the German language. In order to avoid grossly careless
responding, we further excluded 33 participants based on their re-
sponses according to the following criterion: Participants were excluded
if the sum of the probability estimates they provided for two constituent
complementary events exceeded 125% in more than 1/4 of the event
pairs they evaluated. Participants received £4.5 for their participation.
The final sample included 157 participants (54 females, 102 males, and
1 other) with a mean age of 30.54 years (SD = 8.84).

A.1.2. Materials

The experiment was programmed in lab.js (Henninger et al., 2022).
Using our intuitions about the probabilities of everyday events in Ger-
many, we generated two hundred event pairs for selection, including
100 presumably mid-event and 100 presumably edge-event pairs. A
complete list of event pairs can be found in the OSF repository (https:
//osf.io/hw8p9/). We used two different ways to construct the edge-
event pairs: we generated 50 edge-event pairs with the probability
of the constituent positive event close to 0, and 50 edge-event pairs
with the probability of the constituent positive event close to 1. We
took the frequentist probability approach to define the probability of
the event with a clearly defined reference class to make our queries
of probabilities as unambiguous as possible. Specifically, we queried
about the occurrence and non-occurrence of the events that are reg-
ularly observed in everyday life in Germany, such as weather events.
Table 3 shows examples of two edge-event pairs constructed in two
different ways and a mid-event pair.
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A.1.3. Design

Among the 200 event pairs, participants were asked to rate 50 of
them, including a mix of edge-event and mid-event pairs. This enabled
us to avoid long experiments and encourage participants to use the
full probability scale. To this end, the generated event pairs were
divided into four groups: The mid-event and edge-event pairs were
divided equally (25 pairs per group). Moreover, we counter-balanced
different ways of constructing the edge-event pairs. Among the four
groups of event pairs, two groups have thirteen edge-event pairs with
the probability of the constituent positive event A close to 1 and twelve
edge-event pairs with the probability of the constituent positive event
A close to 0. The other two have twelve edge-event pairs with the
probability of the constituent positive event A close to 1 and thirteen
edge-event pairs with the probability of the constituent positive event
A close to 0.°

A.1.4. Procedure

Participants were randomly assigned to evaluate one of the four
groups of events, each consisting of 50 event pairs. The experiment
had two blocks. 25 of the 50 pairs had their positive events shown in
block one and negative events shown in block two, and the other 25
pairs had their positive events shown in block two and negative events
shown in block one. Therefore, participants were presented with an
equal number of positive and negative events (i.e., 25 positive events
and 25 negative events) in each block. The rationale for presenting
event pairs in separate blocks is to prevent events from the same pair
from being shown consecutively and to ensure independent judgments
for each event. For example, this approach prevents participants from
calculating the probability of one event based on its complementary
event. The order of blocks, as well as the order of events within a block,
was randomly determined for each participant.

A.2. Results

We created density plots of participants’ probability estimates for
the constituent positive and negative event, respectively, for each
event pair using R package ggridges (Wilke, 2024). To allow the
comparison of the probabilities of positive and negative events of the
same pair, we subtracted the estimates provided by participants from
100% for the negative events. The density plots for all event pairs can
be found in the OSF repository (https://osf.io/hw8p9/).

Fig. 4 shows the density plots of the event pairs that were finally
selected. To match the realizations of the edge-event and mid-event
pairs in the simulation, we selected the event pairs according to the
following criteria:

1. In the two density plots for an event pair, most of their probability
mass should fall between 0% and 30% or between 70% and 100% for
edge-event pairs and between 30% and 70% for mid-event pairs.

2. The two density plots should be peaked and centered around a
value close to 0% (or 100%) for the edge-event pairs and 50% for the
mid-event pairs.

3. The two density plots should show a large overlap.

Criteria 1 and 2 were adopted to approximate the shapes of the dis-
tributions we used in the simulation for modeling people’s underlying
probabilities of events in two types of event pairs (i.e., Beta(1, 10) and
Beta(10, 10) in edge-event and mid-event pairs respectively). Criterion
3 was adopted to identify event pairs in which the complementary
relationship is evident to participants. Table A.1 provides the complete
list of selected event pairs that meet these three criteria.

9 Due to programming errors, we collected probability estimates only for
the positive event for one event pair, thus, had to drop the data for this event
pair. Additionally, four event pairs were mistakenly presented twice, leading
to the collection of probability estimates for these event pairs from around
100 (instead of 50) participants.
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Table A.1

Event pairs used for constructing event sets in Experiment 1 and Experiment 2.
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Event pair type

Positive event

Negative event

Mid-event pair

A randomly selected person over the age of 30 in Germany is
married.
A randomly selected person aged between 20 and 25 in Germany is
studying at a university or college.
A randomly selected person in Germany lives in Bavaria,
Baden-Wiirttemberg, or North Rhine-Westphalia.
On a randomly selected day in Hamburg, there will be rain.

A randomly selected person in Germany will eventually die of
cardiovascular disease.
A randomly selected person over the age of 18 in Germany has an
office job.
A randomly selected person in Germany lives in a big city.

A randomly selected tree in Germany is a deciduous tree.
A randomly selected person in Germany is a fan of a football club.

A randomly selected car on the road in Germany was manufactured
in Germany.
On a randomly selected day of the year, the temperature in
Germany will be above 15 °C.
A randomly selected German is a member of the Christian church.

A randomly selected person over the age of 30 in Germany is
NOT married.
A randomly selected person aged between 20 and 25 in
Germany is NOT studying at a university or college.

A randomly selected person in Germany does NOT live in
Bavaria, Baden-Wiirttemberg, or North Rhine-Westphalia.
On a randomly selected day in Hamburg, there will NOT be
rain.

A randomly selected person in Germany will NOT eventually die
of cardiovascular disease.

A randomly selected person over the age of 18 in Germany does
NOT have an office job.

A randomly selected person in Germany does NOT live in a big
city.

A randomly selected tree in Germany is NOT a deciduous tree.
A randomly selected person in Germany is NOT a fan of a
football club.

A randomly selected car on the road in Germany was NOT
manufactured in Germany.

On a randomly selected day of the year, the temperature in
Germany will NOT be above 15 °C.

A randomly selected German is NOT a member of the Christian
church.

Edge-event pair
(in which positive event
has a probability close to 1)

A randomly selected student speaks English.
A randomly selected German adult can ride a bicycle.
In a randomly selected German household, at least one washing
machine can be found.
A randomly selected person in Germany walks more than 100 steps
a day.
A randomly selected person in Germany owns at least one device
that can connect to the Internet.
A randomly selected person in Germany was born in a hospital.

A randomly selected student does NOT speak English.

A randomly selected German adult can NOT ride a bicycle.
In a randomly selected German household, NO washing
machines can be found.

A randomly selected person in Germany does NOT walk more
than 100 steps a day.

A randomly selected person in Germany does NOT own a device
that can connect to the Internet.

A randomly selected person in Germany was NOT born in a
hospital.

Edge-event pair
(in which positive event
has a probability close to 0)

A randomly selected person in Germany has more than five siblings.
A randomly selected person in Germany plays volleyball every day.
In a randomly selected year, it will snow in Germany in June.

A randomly selected person in Germany can speak more than four
languages.

A randomly selected person in Germany lives in Saarland.

A randomly selected person in Germany will contract malaria in the
course of their life.

A randomly selected person in Germany does NOT have more
than five siblings.
A randomly selected person in Germany does NOT play
volleyball every day.
In a randomly selected year, it will NOT snow in Germany in
June.
A randomly selected person in Germany can NOT speak more
than four languages.
A randomly selected person in Germany does NOT live in
Saarland.
A randomly selected person in Germany will NOT contract
malaria in the course of their life.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cognition.2025.106125.

Availability of data and material

Data and scripts can be found on Open Science Framework (OSF):

https://osf.io/hw8p9/.
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