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Abstract—This letter considers a fluid antenna system (FAS)-
aided secure and covert communication system, where the trans-
mitter adjusts multiple fluid antennas’ positions to achieve secure
and covert transmission under the threat of an eavesdropper
and the detection of a warden. This letter aims to maximize the
secrecy rate while satisfying the covertness constraint. Unfortu-
nately, the optimization problem is non-convex due to the coupled
variables. To tackle this, we propose an alternating optimization
(AO) algorithm to alternatively optimize the optimization vari-
ables in an iterative manner. In particular, we use a penalty-based
method and the majorization-minimization (MM) algorithm to
optimize the transmit beamforming and fluid antennas’ positions,
respectively. Simulation results show that FAS can significantly
improve the performance of secrecy and covertness compared to
the fixed-position antenna (FPA)-based schemes.

Index Terms—Alternating optimization (AO), covert commu-
nication, fluid antenna system (FAS), secrecy.

I. INTRODUCTION

W ITH THE development of internet-of-things (IoT) net-
works, wireless communication has brought great con-

venience to our lives [1]. However, the broadcasting nature of
wireless signals raises significant security concerns, making
it vulnerable to eavesdropping. To tackle this issue, physical
layer security (PLS) has emerged as an effective technique
to prevent legitimate information from being intercepted by
eavesdroppers [2], [3]. In addition to eavesdropping concerns,
another critical challenge is the need for covert communica-
tion, where the transmission behavior itself must be concealed
from detection [4], [5]. Covert communication aims to ensure
that the transmission remains undetectable to wardens. As a
result, researchers have extensively explored and investigated
secure and covert communication techniques in different wire-
less systems, e.g., [6], [7], [8], to name a few.

Nevertheless, the aforementioned works primarily focus on
transceivers equipped with fixed-position antennas (FPAs) that
limit their ability to fully exploit spatial diversity gains. To
overcome this limitation, fluid antenna systems (FASs) have
emerged as a promising solution [9], [10], [11]. Specifically,
FAS can reconfigure antenna positions dynamically, selecting
the optimal locations in real-time to provide higher degrees
of freedom (DoFs) and maximize spatial resource utilization.
Inspired by these capabilities, FAS has been adopted for many
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applications, including channel estimation [12], beamforming
[13], [14], and resource allocation [15], [16], [17], [18].

Encouraged by these advantages, integrating FAS into se-
cure and covert communication systems can offer great secu-
rity benefits. A FAS-enabled transmitter can engineer channel
conditions across all links by adjusting the positions of the
antennas, for not only reducing the probability of detection by
potential wardens but improving the secrecy rate for legitimate
users. Nonetheless, the impact of FAS on secure, covert com-
munication systems is not known. Effectively leveraging FAS
requires addressing challenging optimization problems, such
as obtaining the optimal antenna positions and beamforming
vectors to maximize secrecy rate while under covert.

Motivated by the above, this letter considers the adoption
of FAS at the transmitter in secure and covert communication
systems, in which the transmitter sends signals to a legitimate
user under the threat of a potential eavesdropper and detection
of a warden. Our goal is to maximize the secrecy rate of the
legitimate user while satisfying the detection error probability
(DEP) constraints of the warden and limiting the transmitter’s
power consumption. The optimization problem is non-convex
due to the coupled optimizing variables. To solve it efficiently,
we propose an alternating optimization (AO) approach. Specif-
ically, for the transmit beamforming problem, we utilize a
penalty-based scheme to manage the rank-one constraint while
ensuring convergence. For the antenna position optimization
sub-problem, we employ the majorization-minimization (MM)
algorithm. Simulation results demonstrate that the proposed
scheme significantly outperforms existing benchmarks in terms
of secure and covert communication performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a FAS-aided secure and covert communication
system, where a transmitter (Alice) equipped with N(N ≥ 2)
fluid antennas transmits signals to the legitimate user (Bob)
equipped with a single FPA, an eavesdropper (Eve) equipped
with a single FPA overhears the signals, and a warden (Willie)
equipped with a single FPA tries to detect if a transmission
from Alice exists. Alice adjusts the positions of fluid antennas,
which are connected to N radio frequency (RF) chains via
integrated waveguides [19] or flexible cables, in a finite range
St to achieve secure and covert communications. We adopt the
planar far-field response model to express the channels. In this
case, adjusting the antennas positions will change the phase
of path response coefficients, while not influencing the angles
of arrival/departure (AoAs/AoDs), and the amplitude of path
response coefficients for each channel path component [18].
Denote the n-th fluid antenna’s position as tn = [xn, yn]T ,
and the positions set in Alice is t̄ = [t1, . . . , tN ].

We assume that the number of transmit paths in Alice-Bob
link, Alice-Eve link, and Alice-Willie link are Ltb, L

t
e and Ltw,
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respectively. For the two links, the propagation distance differ-
ence between the n-th fluid antenna and the reference origin
in the l-th transmit path as ρk,l(tn) = xtn sin θtk,l cosϕtk,l +
ytn cos θtk,l, where k ∈ {b, e, w}, l ∈ L = {1, . . . , L},
θtk,l ∈ [0, π] and ϕtk,l ∈ [0, π] represent the elevation and
azimuth angles of the l-th path, respectively. Thus, the transmit
field response vectors of the n-th fluid antenna in the Alice-
Bob link, Alice-Eve link, and Alice-Willie link are given by

fk(tn) =
[
ej

2π
λ ρk,1(tn), . . . , e

j 2π
λ ρk,Lt

k
(tn)
]T

(1)
for k ∈ {b, e, w}, where λ is the carrier wavelength. Thus, the
transmit field response matrices of the Alice-Bob link, Alice-
Eve link, and Alice-Willie link are expressed as

Fk (̄t) = [fk(t1), fk(t2), . . . , fk(tN )] , k ∈ {b, e, w}, (2)
Furthermore, we define the path response matrices Σb ∈

CLrb×Ltb , Σe ∈ CLre×Lte , and Σw ∈ CLrw×Ltw as the path
responses of the Alice-Bob link, Alice-Eve link, and Alice-
Willie link, respectively. Considering that a single FPA exists
in Bob, Eve, and Willie, the channel of the Alice-Bob link
and Alice-Willie link can be written as

hHk =1HΣkFk (̄t) ∈ C1×N , k ∈ {b, e, w}. (3)
Alice transmits the signal x with E

(
|x|2
)

= 1 to Bob and
the signal-to-noise ratios (SNRs) of Bob and Eve are found as

γk = Tr (HkV) /σ2, k ∈ {b, e}, (4)
where Hk = hkh

H
k , V = vvH , v ∈ CN×1 is the transmit

beamforming vector, σ2 represents the noise power. As such,
the secrecy rate under weak secrecy conditions is given by

Rs = log2 (1 + γb)− log2 (1 + γe) . (5)
From the perspective of Willie, the received signal at Willie

can be expressed as

yw =

{
nw, H0,
gHvx+ nw, H1,

(6)

where H0 denotes the null hypothesis that no transmission has
occurred, H1 represents the alternative hypothesis that Alice
has transmitted, and nw ∼ CN (0, σ2) is the complex additive
white Gaussian noise (AWGN) at Willie.

Denoting p0(yw) = f(yw|H0) and p1(yw) = f(yw|H1) as
the likelihood functions of yw under H0 and H1, we have

pi(yw) =
1

πδi
exp(−|yw|2/δi), i ∈ {0, 1}, (7)

where δ0 = σ2, δ1 = Tr (HwV)+σ2, and Hw = hwhHw . The
priori probabilities of the hypotheses are assumed equal.

For Willie, the detection performance, i.e., DEP, can be
found as ε = P(D1|H0)+P(D0|H1), where D0 indicates that
Alice dose not transmit signals, D1 denotes the other case, and
P(D1|H0) and P(D0|H1) are the false alarm probability and
the miss detection probability, respectively.

Due to the fact that the computation of ε is intractable,
we obtain a tractable lower bound of ε by using Pinsker’s
inequality [4], which is given by ε ≥ 1−

√
1
2D(p0‖p1), where

D(p0‖p1) denotes the Kullback-Leibler divergence from p0 to
p1, and its exact expression is D(p0‖p1) = ln σ1

σ0
+ σ0

σ1
− 1.

Given a predetermined tolerated detection coefficient ε ∈
[0, 1], to ensure successful covert transmission, D(p0‖p1)
should satisfy the following condition [5]:

D(p0‖p1) ≤ 2ε2. (8)
Defining a , δ1/δ0, (8) can be reformulated as f(a) , ln a+
1
a ≤ 1 + 2ε2. By introducing a1 and a2 as the two roots of

f(a) = 1+2ε2, we can obtain the range of a, i.e., a1 ≤ a ≤ a2,
where a1 = exp(W−1(− exp(−(1 + 2ε2))) + 1 + 2ε2), a2 =
exp(W0(− exp(−(1 + 2ε2))) + 1 + 2ε2), and W(z) denotes
the Lambert W function. Since a = 1 + Tr (HwV) /σ2 > 1,
we have

Tr (HwV) ≤ σ2(a2 − 1). (9)
We aim to maximize the secrecy rate of Bob while satisfying

the constraints on Alice’ transmit power, the fluid antennas’
positions, and the covertness requirement. After removing the
log due to monotonicity, the optimization problem becomes

max
t̄,V

1 + γb
1 + γe

(10a)

s.t. t ∈ St, (10b)
||tn − tv||2 ≥ D, n, v ∈ N , n 6= v, (10c)
Tr(V) ≤ Pmax, (10d)
rank(V) = 1, (10e)
(9), (10f)

where (10c) corresponds to the minimum distance requirement
between any two antennas within the transmit region, (10d)
denotes the maximum transmit power constraint of Alice, and
(10e) is the rank-one constraint of V. Due to the objective
function and constraints being non-convex, (10) is non-convex.
To proceed, we introduce two auxiliary variables, i.e., β1 and
β2, and Problem (10) can be relaxed to

max
t̄,V,β1>,β2>0

β1 (11a)

s.t. σ2 + Tr (HbV) ≥ β1β2, (11b)

β2 ≥ σ2 + Tr (HeV) , (11c)
(9), (10c)–(10e). (11d)

As Problem (11) is still non-convex, in the subsequent section,
we employ an AO algorithm to tackle this problem.

III. AO ALGORITHM

In this section, we use the AO algorithm to decompose Prob-
lem (11) into N + 1 sub-problems, and alternately optimize
these sub-problems to obtain a locally optimal solution.

A. Alice’s Transmit Beamforming Optimization

Given t̄, Problem (11) can be reexpressed as
max

V,β1>0,β2>0
β1 s.t. (9), (10d), (10e), (11b), (11c), (12)

which is still a non-convex optimization problem due to the
non-convex constraints (10e) and (11b).

For the non-convex rank-one constraint (10e), we propose
a penalty-based algorithm to overcome this issue. Specifically,
for a positive semidefinite matrix V, its trace and the largest
eigenvalue satisfy Tr(V) − λmax (V) ≥ 0, and the equality
holds when rank(V) = 1. Furthermore, because λmax (V)
is not differentiable, we use uHmax,mVumax,m to approximate
λmax (V), where umax,m is the eigenvector corresponding to
the largest eigenvalue λmax

(
V(m)

)
in the m-th iteration.

For β1β2 in the constraint (11b), we have

β1β2 =
1

4
(β1 + β2)

2 − 1

4
(β1 − β2)

2
. (13)
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Note that 1
4 (β1 + β2)

2 and 1
4 (β1 − β2)

2 are convex on both
β1 and β2. Thus, we have the upper bound of β1β2 as

f(β1, β2;β
(m)
1 , β

(m)
2 ) =

1

4
(β1 + β2)

2− 1

4

(
β

(m)
1 − β(m)

2

)2

− 1

2

(
β

(m)
1 − β(m)

2

)(
β1 − β(m)

1 − β2 + β
(m)
2

)
. (14)

Accordingly, the constraint (11b) can be relaxed to
σ2 + Tr (HbV) ≥ f(β1, β2;β

(m)
1 , β

(m)
2 ). (15)

Therefore, Problem (12) can be reformulated as
max

V,β1>0,β2>0
β1 − η

(
Tr(V)− uHmax,mVumax,m

)
(16a)

s.t. (9), (10d), (11c), (15), (16b)
where η is a penalty factor. Now, (16) is convex and it can be
solved using the convex programming toolbox CVX [20].

B. The n-th Fluid Antenna’s Position Optimization

Given V and {tv}v 6=n, Problem (10) is formulated as
max

tn,β1>0,β2>0
β1 s.t. (9), (10b), (10c), (11b), (11c). (17)

Problem (17) is non-convex due to the non-convex constraints.
To solve {tm}m6=n, we first rewrite Tr (HkV) as

Tr
(
1HΣkFk (̄t)vvHFHk (̄t)ΣH

k 1
)

= αk + βb(tn) + 2R{fHk (tn)Ωk}, k ∈ {b, e, w}, (18)

where αk = Tr
(∑N

j 6=n fk(tj)v(j)
∑N
l 6=n vH(l)fHk (tl)Φk

)
,

βk(tn) = Tr
(
v(n)vH(n)fk(tn)fHk (tn)Φk

)
, Φk = ΣH

k Σk,
and Ωk = Φk

(∑N
j 6=n fk(tj)v(j)

)
vH(n).

Then we first obtain a lower bound of βk(tn) through the
first-order Taylor expansion at point fk(t

(m)
n ), which is

2R{fHk (t(m)
n )Ψkfk(tn)} − fHk (t(m)

n )Ψkfk(t(m)
n ), (19)

where t
(m)
n is tn at the m-th iteration, Ψk = Φkv(n)vH(n).

Now, we combine the third term in (18) with the first term in
(19), and thus have β̄k(tn) = 2R{fHk (tn)Υn

k}, where Υn
k =

ΨH
k fk(t

(m)
n ) + Ωk. We further use the second-order Taylor

expansion to construct a global lower bound of β̄k(tn) as

glk(tn) = β̄k(t(m)
n ) +∇β̄k(t(m)

n )T
(
tn − t(m)

n

)
− κnk

2

(
tn − t(m)

n

)T (
tn − t(m)

n

)
, (20)

where κnk = 16π2

λ2

∑Ltk
l=1|Υl

k|, and ∇β̄k(tn) is the gradient
vector of β̄k(tn), with detailed derivations given in Appendix
A. Therefore, a concave lower bound of Tr (HkV) is

f lk (tn) = glk(tn) + αk − fHk (t(m)
n )Ψkfk(t(m)

n ). (21)
Then we employ the MM algorithm to obtain the upper

bound of Tr (HkV) , k ∈ {b, e, w}. According to [18], for a
given fHk (t

(m)
n ), k ∈ {e, w}, the following inequality holds for

any feasible fHk (tn), i.e.,

βk(tn) ≤ fHk (tn)Θkfk(tn)+fHk (t(m)
n ) (Θk −Ψk) fk(t(m)

n )

− 2R
{

fHk (tn) (Θk −Ψk) fk(t(m)
n )

}
, (22)

where Θk = λkmaxILtk , and λkmax is the maximum eigenvalue
of Ψk. From (22), we know that fHk (tn)Θkfk(tn) = λkmaxL

t
k,

and the second term is constant. Then we define
ck(tn) , 2λkmaxL

t
k − fHk (t(m)

n )Ψkfk(t(m)
n ). (23)

The third term in (18) can be combined with the third term
in (22), and we get β̃k(tn) = 2R{fHk (tn)Πn

k}, where Πn
k =

Ωk − (Θk −Ψk) fk(t
(m)
n ). Then we also utilize the second-

order Taylor expansion to construct the upper bound of β̃k(tn),
which is given by

guk (tn) = β̃k(t(m)
n ) +∇β̃k(t(m)

n )T
(
tn − t(m)

n

)
+
κ̃nk
2

(
tn − t(m)

n

)T (
tn − t(m)

n

)
, (24)

where κ̃nk = 16π2

λ2

∑Ltk
l=1|Πl

k|, and ∇β̃k(t
(m)
n ) is similarly

obtained with the derivations in Appendix A. Therefore, we
can obtain the upper bound of Tr (HkV) as

fuk (tn) = guk (t(m)
n ) + αk + ck(tn). (25)

Based on the above-mentioned derivations, the constraint
(9), (11b), and (11c) can be relaxed as

fuw(tn) ≤σ2(a2 − 1), (26)

σ2 + f lb (tn) ≥f(β1, β2;β
(m)
1 , β

(m)
2 ), (27)

β2 ≥σ2 + fue (tn). (28)
For (10c), we can relax ‖tn−tv‖2 to be a concave function

of tn as its lower bound using the first-order Taylor expansion
at point t

(m)
n . Then the constraint (10c) can be written as

1

‖t(m)
n − tv‖2

(t(m)
n − tv)

T (tn − tv) ≥ D. (29)

Therefore, Problem (17) can be reformulated as
max

tn,β1>0,β2>0
β1 s.t. (10b), (26)–(29), (30)

which is convex, and can also be solved using CVX [20].

IV. SIMULATION RESULTS

In simulation, we consider a two-dimensional (2D) coordi-
nate system, where Alice, Bob, Eve, and Willie are located at
(0,0) m, (100,0) m, (150,5) m, and (150,-5) m, respectively. We
assume that the carrier frequency is 2.4 GHz with a wavelength
λ = 0.125 m, and a minimum inter-antenna distance is D = λ

2 .
We assume that the moving region of fluid antennas at Alice
is St =

[
−A2 ,

A
2

]
×
[
−A2 ,

A
2

]
, where A = 4λ. Besides, the

number of transmit paths equals to the number of receive
paths for all links, i.e., Ltk = Lrk = L = 4, k ∈ {b, e, w}.
The path response matrixes of all links are modeled as
Σk[l, l] ∼ CN (0, g0d

−α
k /L), l ∈ L, where dk is the distance,

g0 = −40 dB represents the average channel gain at the
reference distance 1 m and α = 2.8 is the path loss coefficient.
The maximum transmit power of Alice is Pmax = 20 dBm, the
noise power σ2 = −80 dBm, and the tolerated detection coef-
ficient is ε = 0.2. In the transmit beamforming optimization,
the initial penalty factor η = 1, and η → 1.5η in each interior
iteration. The convergence accuracy is 10−4.

In Fig. 1, we show the impact of Alice’s maximum transmit
power on the secrecy rate. In the legend, “Proposed” represents
our proposed FAS scheme, while “FPA” denotes the scheme
that N FPAs are spaced at an interval of λ/2. “RPA” is
the scheme that N antennas are randomly distributed within
the transmit region S, satisfying the constraint in (10c),
and “EAS” denotes N antennas are selected from 2N fixed
positions using an exhaustive search approach. From Fig. 1,
with the increasing of Pmax, the secrecy rate enhances for
all schemes. Furthermore, our proposed scheme consistently
outperforms other schemes.

In Fig. 2, we analyze the relationship between the toler-
ated detection coefficient ε and the secrecy rate. Our pro-
posed scheme consistently demonstrates superior performance
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Fig. 1. The maximum transmit power of Alice Pmax versus secrecy rate.
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Fig. 2. The tolerated detection coefficient ε versus secrecy rate.

compared to the benchmark schemes. As ε increases, the
secrecy rate also rises for all schemes. This is because a
higher ε relaxes the constraint in (9), allowing more spatial
resource to be allocated to enhance the secrecy rate. This
trend underscores the trade-off between the desired level of
covert communication and the achievable secrecy rate, with
our scheme effectively balancing both objectives.

V. CONCLUSION

In this letter, we studied a FAS-aided secure and covert com-
munication system, where Alice equipped with fluid antennas
sends signals to Bob while Willie detects the transmission
between them and the Eve overhears it. We maximized the
secrecy rate of Bob under the covertness requirement by
designing the transmit beamforming and antennas’ positions
of Alice. Simulation results verified that the superior impact
of FAS on the secure and covert communications.

APPENDIX A
DERIVATIONS OF ∇β̄k(tn)

In this section, we provide the detail derivations of
∇β̄k(tn). We have

β̄k(tn) = 2

 Ltk∑
l=1

|Υn
k | cos

(
χlk(tn)

) , k ∈ {b, e, w}, (31)

where χlk(tn) = 2π
λ ρk,l(tn)− ∠Υn

k .
The gradient vector of β̄k(tn) can be respresented as
∇β̄k(tn) =

[
∂β̄k(tn)
∂xtn

, ∂β̄k(tn)
∂ytn

]
, which details are presented

as follows:
∂β̄k(tn)

∂xtn
=
−4π

λ

Ltk∑
l=1

|Υn
k | sin θtk,l cosϕtk,l sin(χlk(tn)), (32)

∂β̄k(tn)

∂ytm
=
−4π

λ

Ltk∑
l=1

|Υn
k | cosφtk,l sin(χlk(tn)). (33)
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