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sQPEP: Global Optimal Solutions to
Scaled Quadratic Pose Estimation Problems

Bohuan Xue, Yilong Zhu, Tianyu Liu, Jin Wu, Jianhao Jiao, Yi Jiang,
Chengxi Zhang, Xinyu Jiang and Zhijian He

Abstract—State estimation encounters significant hurdles in
scale ambiguity, both when assimilating data from scale-
uninformed sources such as Structure from Motion (SfM) and
when handling normalized point clouds, each scenario demanding
robust solutions to achieve consistent scale and accurate esti-
mation. Addressing this critical issue, we propose the Scaled
Quadratic Pose Estimation Problem (sQPEP), a novel unified
framework designed to enhance scale estimation in various state
estimation algorithms. Our framework not only establishes a
globally optimal solution strategy for the precise estimation
of pose and scale factors but also systematically categorizes a
broad spectrum of pose estimation challenges. This is crucial for
advancing our theoretical understanding and the practical ap-
plication of these solutions. The sQPEP framework consolidates
a range of scale and pose estimation challenges into a unified
theoretical paradigm, thereby refining the methodology for these
estimations. By applying algebraic techniques, we have effectively
bifurcated the problem into two distinct categories. Subsequently,
we have deduced globally optimal solutions and unveiled two
robust solvers. These solvers are proficient in generating 80
and 81 solutions for their respective problem classes, featuring
elimination template dimensions of 664×744 and 521×602. Our
method’s efficacy has been rigorously confirmed through experi-
mental validation, which demonstrates its consistent performance
in degenerate conditions and its superior noise immunity. These
results bolster the framework’s applicability to intricate scenarios
encountered in real-world settings.

Index Terms—calibration, pose estimation, Gröbner basis,
polynomial
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INDUSTRIAL robotics employs pose estimation to enable
precise identification of position and orientation across

various applications [1]–[4]. In efforts to estimate pose, robotic
systems commonly utilize a suite of sensors, including cam-
eras, LiDAR, and IMUs. These sensors are pivotal in devel-
oping models for perspective projection, geometric alignment,
and spatial registration to enable accurate spatial localization
and orientation detection. Common pose estimation problems
include the Perspective-n-Point, hand-eye calibration prob-
lem, point-to-point, point-to-plane, and more, with numerous
specialized algorithms for similar problems, such as [5]–[8].
Subsequently, [9] formulated the optimization objectives as
quadratic terms of pose elements, thereby unifying them into
a Quadratic Pose Estimation Problem (QPEP) framework.

Accurate scale estimation is crucial in various applications.
In robotics, it affects the precision of a robotic arm’s in-
teractions with objects during hand-eye calibration. In 3D
reconstruction and AR/VR, it determines the alignment be-
tween virtual models and physical space, impacting user
experiences. Autonomous vehicles and medical imaging also
rely on precise scale factors for safe navigation and accurate
diagnoses, respectively.

However, various solutions assume known scale informa-
tion, i.e., 6DOF pose estimation. The importance of accu-
rate scale estimation is often overlooked in these solutions.
Nevertheless, there exist cases of 7DOF estimation where the
scale is unknown. This challenge is particularly evident in the
context of robotics and computer vision, where two of the
most common active sensors, cameras and LiDAR, often face
situations where effective scale information is missing.

Monocular cameras are inherently unable to provide scale
information [10], leading to the need for additional reference
objects [11], [12] or multiple sensors [13]–[16] to recover
scale. However, most of these methods are highly specialized
and tailored to specific tasks, which makes it challenging to
generalize them to other application scenarios. LiDAR sensors,
on the other hand, face scale drift due to factors such as
temperature and pressure variations, which affect the laser’s
wavelength and emission power [17]. Ignoring these scale
changes often leads to suboptimal point cloud registration even
with ground truth poses.

In light of the limitations of existing methods and the
importance of accurate scale estimation, we propose the Scaled
Quadratic Pose Estimation Problem (sQPEP) framework. Un-
like previous approaches that either assume known scale
or rely on additional information, our framework directly
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addresses the 7DOF pose estimation problem, jointly opti-
mizing the pose and scale. This unified approach not only
tackles a broader range of challenges but also provides a
more principled and efficient solution for scale-aware pose
estimation. Detailed derivations and the solvers are available
in the supplementary material at: https://github.com/
byronsit/sQPEP_Solver.

A. Challenges

Despite the central role of pose estimation in advancing
intelligent systems, achieving a universally applicable solu-
tion is hindered by several major challenges. Among these,
the diverse range of problem formulations is perhaps most
prominent. Custom-tailored to specific scenarios and scales,
these formulations have generated a fragmented landscape of
solutions, lacking the generalizability required for widespread
application. This fragmentation is exacerbated by the broad
solution spaces that emerge in the absence of prior knowledge
about scale factors, making the search for optimal solutions
increasingly complex.

Moreover, the numerical stability of algorithms becomes a
significant challenge when the scale variable is introduced. The
optimization process may amplify numerical errors due to the
scale factor, leading to instability in the final pose estimation.
Coupled with this is the issue of scale coupling, where the
scale factor is intertwined with rotation and translation. As a
result, adjustments to the scale factor can impact the optimal
rotation and translation, meaning that scale cannot always be
precomputed as with point matching problems [18].

B. Contributions

In the fields of computer vision and robotics, many tasks
are commonly defined in general terms without explicit resid-
ual formulations. Different types of residuals require distinct
optimization schemes, and the globally optimal computational
methods vary accordingly.

Heller et al. [19] utilize the inter-frame image registration
relationships and ϵ-epipolar constraints to transform the origi-
nal optimization objective into minimizing ||e||∞. They finally
employ Linear Programming to determine the bounding step
of the algorithm. Wu et al. [20] engage in complex symbolic
mathematical derivations, converting the original problem
into a sum of residuals involving rotation and translation:∑

tr(E⊤
i Ei) + v⊤

i v, which results in a polynomial of the
highest order of 15, and solve this complex polynomial using
the tool Mathematica. The residual form for the hand-eye
calibration problem as described in QPEP [9] directly utilizes
the Frobenius norm defined by ||AX − XB||, thus posing
the problem as a quadratic pose estimation problem. However,
QPEP do not provide a detailed derivation process, requiring
people to transform the problem case-by-case into a system of
polynomial equations that satisfy specific properties and solve
them using Groebner bases.

Our approach differs fundamentally from the aforemen-
tioned methods, particularly in our residual equation which
incorporates an additional scaling factor, thus altering the
residual formulation. Our method extends the content of

QPEP and bears similarities only with QPEP; other methods
show little resemblance. For hand-eye calibration problem,
We also use the Frobenius norm to define our residual as
||A(s)X − XB||. By interpreting the scale s differently in
various contexts, we categorize sQPEP into two types and
provide specific mathematical forms, enabling any reader to
directly verify if their problem falls under sQPEP, as detailed
in Supplementary Material. Our method allows us to derive
a general solver for all sQPEP problems, eliminating the
need, unlike QPEP, to derive solutions separately for different
tasks. Unlike previous methods that optimize over 6DOF, our
approach employs a 7DOF optimizer, a distinction that we
wish to emphasize.

The development of a comprehensive framework capable
of overcoming these obstacles is crucial. Such a framework
would enable standardized comparisons across various meth-
ods and adapt to different scales and conditions, thereby
markedly enhancing the robustness and adaptability of pose
estimation methodologies.

In this work, we introduce a generic framework for address-
ing the scaled Quadratic Pose Estimation Problem (sQPEP), a
challenging conundrum in many field. Our approach bifurcates
the problem into two distinct formulations. Utilizing mathe-
matical ingenuity, we delve into the nuances of each form,
eventually devising a globally optimal solution through the
application of Gröbner basis techniques.

This paper makes three main contributions:
• Mathematical Formulation: We introduce a definitive

mathematical formulation of QPEP and sQPEP, estab-
lishing a framework for new pose estimation problems.

• Algebraic Solver Development: By dissecting sQPEP’s
variants, we utilized algebraic methods and Gröbner bases
to develop two distinct solvers for sQPEP variations.

• Experimental Validation: Extensive testing confirms our
method’s robustness under degeneracy and noise, with the
added benefits of numerical stability and real-time per-
formance on limited memory, validating our approach’s
efficiency.

C. Outline

The structure of this paper is organized as follows: Section II
formulates the problem and introduces the solutions we pro-
pose. Section III details the experiments we have conducted to
evaluate our proposed solutions. Section IV summarizes our
results and suggests future research paths.

II. PROBLEM STATEMENT AND SOLUTIONS

A. Notations

In this section, we define the notations used within our
study: s represents the scale factor to be estimated. q =
[qx, qy, qz, qw]

⊤ denotes the quaternion of the pose that we
aim to estimate. t = [tx, ty, tz]

⊤ is the translation vector.
ts = [tx, ty, tz, s]

⊤, which combines the translation vector
with the scale factor. vec: The vec operator, as introduced
by Neudecker, arranges the elements of a matrix into a vector.
⊗: The Kronecker product. V p

a×b is a constant matrix with
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dimensions a × b, and Va is a constant vector of dimension
a×1. The superscript p is used to distinguish constant matrices
of the same dimensions. p may be omitted when the context is
clear. Each V represents a unique constant matrix or vector in
this paper. C stands for a constant term, each C in this paper
represents a unique constant. qd represents the vector formed
by the elements of q under the d-Veronese mapping.

B. Problem Statement and Derived Definition

As delineated in [9], the quadratic pose estimation problem
is expressed as the optimization task:

argmin
q,t

L(q, t), s.t. q⊤q = 1, t ∈ R3,

where the objective function L is not explicitly defined. To
advance our discussion and provide a precise formulation of
the function L, we leverage the property delineated in [9]: the
sum of two QPEP problems remains a QPEP. By aggregating
all problems possessing the QPEP property, we arrive at the
following equation:
L(q, t) = V ⊤

35q
4 + V ⊤

40vec(q
2 ⊗ t̃) + V ⊤

6 t2 + V ⊤
3 t+ C,

in which t̃ is the homogeneous translation such that t̃ =(
t⊤, 1

)⊤
. Based on the established framework, we are able to

articulate a definitive characterization of the scaled quadratic
pose estimation problem.

Similarly, we seek to establish a unified formalization of the
sQPEP problem for 7DOF pose estimation. Depending on the
placement of the scale factor, sQPEP can be divided into two
distinct categories: the first category involves the scale factor
applied to the translation component:

Ls1(q, t, s)=V ⊤
35q

4+V ⊤
30vec(q

2 ⊗ t)+s · V ⊤
10q

2+

V ⊤
6 t2+s · V ⊤

4 ts+V ⊤
4 ts+C

The second category involves the scale factor applied to the
rotation component:
Ls2(q, t, s)=s2 ·V ⊤

35q
4+s ·V ⊤

40vec(q
2⊗ t̃)+V ⊤

6 t2+V ⊤
3 t+C.

Depending on the characteristics of various problems, some
elements of the constant matrix V may be zero. Typically,
this simplifies the problem, so we will focus our discussion
on the most complex scenario where none of the elements of
V are zero. For a detailed derivation of the aforementioned
formula, refer to Appendix A.

C. Solution Strategies for Ls1

The method of Lagrange multipliers offers a powerful
solution for optimization problems with complex constraints,
where traditional methods may struggle. By introducing La-
grange multipliers, this technique transforms a constrained
problem into an unconstrained one, simplifying the solution
process.

With this in mind, we opt to employ the method of Lagrange
multipliers to study the optimization of the function Ls1 .
To commence, we define an auxiliary Lagrangian function
X1 that incorporates not only the original objective function
Ls1(q, t, s) but also a term associated with the constraint
q⊤q = 1 involving a Lagrange multiplier. Hence, our La-
grangian function can be expressed as:

X1 = Ls1(q, t, s)− 1/2 · λ(q⊤q − 1) (1)

Note that we introduce 1
2λ as the coefficient for the multi-

plier term to simplify the derivation process in subsequent cal-
culations. Next, we will seek the solution to the optimization
problem by setting the partial derivatives of X1 with respect
to q and λ to zero.

First, we consider the derivatives with respect to the trans-
lation: {

∂X1

∂ti
= V i⊤

4×1ts + V i⊤
10×1q

2 + Cti
∂X1

∂s = V ⊤
4×1ts + V ⊤

10×1q
2 + Cs,

(2)

where ti ∈ {tx, ty, tz}. By combining (2) we can derive ts =
V ⊤
4×10q

2. It is observed that ∂X1

∂qi
= V ⊤

20×1q
3 +V ⊤

4×1vec(q ⊗
s) +V12×1vec(q ⊗ t)− λqi, where qi denotes the quaternion
components. Combining with ts and after simplifying we can
get ∂X1

∂qi
= V x⊤

20×1q
3 − λqi.

Lemma 1: Let f(x1, x2, . . . , xm) = C
∏m

i=1 x
pi

i be a poly-
nomial function in m variables, where C is a constant and pi
are non-negative integers, and the sum

∑m
i=1 pi = n represents

the total degree of the polynomial, Let S = x1, x2, . . . , xm.
Define D(n) as the vector of all possible nth-order partial
derivatives of f , where the partial derivatives are arranged lex-
icographically, consistent with the arrangement of vec(S⊗n).
Then, the product of the nth-order partial derivatives of f with
respect to all its variables and vec(S⊗n) satisfies the following
relationship:

n! · f = D(n) · vec(S⊗n) (3)

The explicit form of D(n) is given by:

D(n) =

[
∂nf

∂xk1
1 ∂xk2

2 . . . ∂xkm
m

]
n=

∑m
i=1 ki, ki≥0

.

The lemma 1 illustrates a method of reinterpreting the dot
product as matrix multiplication, which, when combined (3)
with ∂X1

∂qi
and incorporating the additional elements of q, yields

the equation:
W4×64 · vec(q⊗3)64×1 = λq. (4)

W is assumed to be a constant matrix. (4) and q⊤q = 1 are
polynomial equations for which a Gröbner basis is an effective
tool for finding solutions [21]. The use of Gröbner bases
to solve systems of multivariate polynomials is a classical
approach, details of which can be found in [22] and [21].
Briefly, the process begins by computing the Gröbner basis
of the system, which consists of a set of polynomials that
generate the same ideal as the original system. Subsequently,
a set of monomials is selected as a basis, and the expression of
each basis element under the action of each polynomial in the
Gröbner basis is computed. This results in a multiplication
matrix that describes the multiplication relations among the
basis elements. Next, each polynomial in the original system
is simplified and expressed as a linear combination of the basis
elements. If the multiplication matrix is perfect, this linear
combination should precisely replicate the original polyno-
mial; however, typically, some error terms arise. These error
terms are represented as a linear combination of the original
equations, and the coefficients form an elimination matrix.
This matrix yields a new set of equations that hold within
the ideal generated by the original system. Adding these new
equations to the original system results in an elimination tem-
plate, which facilitates the simplification and acceleration of
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subsequent computations. This solver features an elimination
template with dimensions 664×744 and provides 80 distinct
solutions. By evaluating the residuals of all real solutions in
Ls1, the global optimum for this category of problems can
be determined. For more details, refer to our Supplementary
Material, which provides specific examples of how to use
the elimination template and extends the methodology to the
experimental section that follows.

D. Solution Strategies for Ls2

Similar to the formulation defined by Ls1 in (1), we can
establish

X2 = Ls2(q, t, s)− 1/2λ(q⊤q − 1). (5)
Taking the derivative with respect to the translation compo-
nents yields: ∂X2

∂ti
= V i⊤

3×1t + V i⊤
10×1 · q2 · s + Ci. How-

ever, when differentiating with respect to s, it emerges that
∂X2

∂s =
∑

j∈{x,y,z} V
j⊤
10×1 ·q2 · tj +V ⊤

35×1 ·q4 · s. This implies
that it is no longer possible to form equations in the style of
(2) and ts, due to the coupling of s with q. We can express t
as t = V3×4 · q2 · s+V3×1. Upon substituting the expression
from t into ∂X2

∂s , we obtain the following system of partial
derivatives:{

∂X2

∂s = V ⊤
10 · q2 + V ⊤

35 · q4 · s
∂X2

∂qi
= V ⊤

4 · q · s+ V ⊤
20 · q3 · s2 − λqi

(6)

However, employing the Gröbner basis to the system of
equations (6) results in an ideal with a Krull dimension of
2, denoting the solution space as two-dimensional with an
infinite number of solutions. Traditional solvers, which are
adept at handling finite, discrete sets of solutions, are hence
inadequate for directly deriving all solutions.

Subsequently, We intend to reformulate the expression of (6)
to continue leveraging the Gröbner basis approach for solution
determination, and to devise a solver capable of generating
specific solution forms.

By examining t and (6), we find that s is coupled ex-
clusively with q2, allowing us to express the quaternion as
q̃ =

√
sq using the following equation to represent the

quaternion, which enables us to reformulate X2 as

X̃2(q̃, t)=V ⊤
35 q̃

4+V ⊤
40vec(q̃

2⊗
[
t
1

]
)+V ⊤

6 t2+V ⊤
3 t+C. (7)

It is worth noting that unlike (5), X̃2 no longer requires the
Lagrange multiplier, λ, to constrain q, significantly reducing
the complexity of the problem.

Upon differentiating (7) with respect to the translation
components, we obtain ∂X̃2

∂ti
= V i⊤

3 · t + V i⊤
11 · q̃2 + Ci.

Through straightforward algebraic computation, we can de-
duce the expression for t as t = V3×11 ·vec(q̃2⊗ [t, 1]⊤). By
substituting it into (7) and differentiating with respect to q̃,
we derive ∂X̃2

∂q̃i
= V i⊤

4 · q̃ + V i⊤
20 · q̃3,. By combining it with

(3), we can obtain
W̃4×64 · vec(q̃⊗3)64×1 = Q4×4q̃ (8)

Here, the constant matrices W̃ and Q can be directly derived.
(8) is also a polynomial equation which, similarly to (4),
can be solved using a Gröbner basis. This yields a solver
with an elimination template of size 521×602 that has 81
solutions. With this, the problem of sQPEP is addressed. In the

Algorithm 1 Optimization Algorithm for sQPEP
Require: The initial optimization objective function.
Ensure: The globally optimal solution.

1: Construct the optimization objective function, and check
if it is a sQPEP which can be written as either Ls1 or
Ls2.

2: if it can be written as Ls1 then
3: Obtain matrices W according to (1)-(4).
4: else if it can be written as Ls2 then
5: Obtain W̃ and Q according to (5) and (7)-(8).
6: end if
7: Obtain all local minima of the problem by using a Solver.
8: if it is written as Ls1 then
9: Solve using the elimination template of size 664× 744

generated by (4).
10: else if it is written as Ls2 then
11: Solve using the elimination template of size 521× 602

generated by (8).
12: end if
13: Substitute all real solutions from the solver into the

original residual equations, and determine the globally
optimal solution by the smallest residual, discarding any
invalid solutions based on prior knowledge, such as the
sign of S

Fig. 1. What is hand-eye calibration? In this context, A(s) or A represents the
camera’s displacement in the world, typically expressed using a transformation
matrix. B denotes the displacement of the Robot End-Effector in the world,
also expressed using a transformation matrix. X defines the pose relationship
between the camera and the Robot End-Effector, which is a constant and the
target of our estimation. A(s) represents the camera’s motion trajectory, with
an unknown scale factor. If the calibration pattern does not provide effective
scale information (such as edge lengths), the scale s must be estimated. This
implies that in such cases, A(s) is used to express the camera’s motion
trajectory. For a more detailed explanation, see Supplement B.

following chapter, we will empirically evaluate our approach
through a series of experiments designed to test its efficacy
and robustness in various scenarios.

III. EXPERIMENTAL RESULTS

A. Overview

In this section, we demonstrate the applicability of our
proposed framework through two specific applications: hand-

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3540135

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on March 27,2025 at 15:16:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 5

Fig. 2. What is Point-to-Plane? Left: Original state of point cloud and
associated surfaces. The red lines indicate the correspondences between
matched points, while the multi-colored surfaces denote the directions of
different surface normals. The dark green points represent the points that
are to be matched. Right: Resultant configuration after computation with our
solver, showcasing the alignment of point correspondences and the orientation
of surface normals. We aim to estimate the pose relationship between the dark
green and the multicolored rabbits, characterized by rotation R, translation
t, and scale factor s. By enlarging the point cloud of the original dark green
rabbit, followed by rotation and translation, alignment with the multicolored
rabbit is achieved. The image on the right is an example where the points of
the dark green rabbit closely match the multicolored rabbit.

eye calibration and point-to-plane registration, both of which
are crucial for accurate robotic perception, manipulation and
computer vision. We compare the performance of our method
across various applications. Detailed explanations on how
these two applications are formulated as sQPEP and solved us-
ing our approach are provided in the Supplementary Material.
The algorithmic procedures are summarized in Algorithm 1.

Fig. 1 demonstrates the hand-eye calibration process. In this
context, we formulate an optimization problem to find the
transformation matrix X that minimizes the residual errors
between the robotic hand (manipulator) and the eye (camera).
The objective function is defined as:

argmin
q,t,s

N∑
i=1

tr
(
(AiX −XBi)

⊤(AiX −XBi)
)
,

where X denotes the sought transformation matrix. with X
representing the transformation matrix between the robotic
hand (manipulator) and the eye (camera). The matrix X is

given by: X =

(
R(q) t
03×1 1

)
where q is transformed into

a rotation matrix [23]. The parameters to estimate include
q, t, and s is the scale with the translation in Ai. Each
Ai is a homogeneous transformation matrix represented as:

Ai =

(
Rai s·tai
03×1 1

)
and Bi is another homogeneous trans-

formation matrix: Bi =

(
Rbi tbi
03×1 1

)
This setup constitutes

a first-class sQPEP problem where all constant vectors in Ls1

are non-zero. For a more detailed explanation of hand-eye
calibration and how it is transformed into Ls1, please refer
to our supplementary material.

Fig. 2 illustrates the point-to-plane registration problem.
This registration approach aims to minimize the squared
perpendicular distances between a set of points and planes.
The optimization problem is formulated as:

argmin
q,t,s

N∑
i=1

(
n⊤

i (sRxi + t− yi)
)2

,

where ni represents the normal vector to the plane at the i-th
point, R and t denote the rotation and translation components
of the transformation, respectively, and s is a scaling factor.

xi and yi are the corresponding points in the dataset and on
the plane, respectively. This is recognized as a second-class
sQPEP with no zero constants in Ls2.

The proposed algorithms were implemented in MATLAB
2023a on a computer with an i7 8700K CPU and 42GB
of RAM, ensuring robust computational capability for the
experiments. To objectively evaluate the performance of our
system, we defined three error metrics:

• Rotation Error: ϵr = arccos
(
1
2 (tr(R

⊤Rgt)−1)
)
, which

quantifies the angular difference between the estimated
and actual rotations.

• Translation Error: ϵt = ∥t− tgt∥2, which measures the
Euclidean distance error in translation estimations.

• Scale Error: ϵs=∥s−sgt∥2, which assesses the variance
in scale estimation relative to the ground truth.

µϵt and µϵr denote the mean translation and rotation errors,
while σ2

ϵt and σ2
ϵr represent their variances across multiple

experiments, providing a comprehensive evaluation of the
algorithm’s performance and consistency.

B. Experiments on Simulated Environments for Ls1

In industrial scenarios, it is often necessary to dynamically
calibrate cameras with other motion sensors, such as extrinsic
calibration between cameras and LiDAR, wheel odometry, or
GNSS, as well as extrinsic calibration of odometry generated
by LiDAR with partially inaccurate scales and other sensors. In
these situations, it is typically impossible to provide markers
with known scales. These problems fall under the category
of hand-eye calibration without scale, which requires estimat-
ing the 7DOF transformation between sensors. Unfortunately,
since the seminal work of [10], no new viable 7DOF es-
timation algorithms have emerged. As a result, in practical
applications, we are usually limited to comparing with other
6DOF estimation algorithms.

The dataset created for this investigation included a com-
prehensive array of transformations, employing two distinct
scaling factors, specifically 0.5 and 2.5, to cater to a broad
spectrum of motion magnitudes. These transformations were
subjected to Gaussian noise with a mean of zero and standard
deviations of 0.01, 0.05, and 0.1 to approximate real-world
measurement inaccuracies. The noise was infused directly into
the scaling and translational parameters, whereas rotational
disturbances were imparted to the 3 × 3 rotation matrices
within SO(3), with subsequent normalization to maintain
the orthogonality property of SO(3). To ensure statistical
significance and robustness of the results, each parameter
configuration was tested over 100 independent trials. The
method [10] was selected as the baseline for our comparative
work. Additionally, for comparative analysis, the Gauss New-
ton (GN) and Quasi-Newton (QN) methods were employed,
utilizing GT rotation and scale values as initial conditions, with
the translation vector set to zero. The convergence precision
was set to 10−12, and a maximum of 1000 iterations was
allowed.

In the preliminary experiment, translational components of
each pose were sampled from a Gaussian distribution with
zero mean and a standard deviation of one, while the rotational
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TABLE I
HAND-EYE CALIBRATION RESULTS ON SIMULATED DATA WITH

NOISE=0.01 AND SCALE=0.5

µϵr (deg) σ2
ϵr
(deg2) µϵt (m) σ2

ϵt
(m)2

ours 0.3308 0.2259 0.0223 0.0180
Andreff [10] 0.3081 0.2072 0.0221 0.0177

Gauss Newton 8.9753 9.2618 1.0937 0.7594
Quasi Newton 13.8109 11.1328 0.7509 0.5427

Liang [24] 0.2152 0.1264 1.5833 0.6802
Wu-4D [25] 0.3062 0.1679 1.6836 0.6952

QPEP [9] 2.8512 2.8546 1.5935 0.6852
Sarabandi [26] 1.9122 8.9833 1.5831 0.6797
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Fig. 3. Ls1 Experimental Results on a well-conditioned dataset for hand-eye
calibration
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Fig. 4. Ls1 Experimental Results on an ill-conditioned dataset for hand-eye
calibration. Top: Method by Andreff et al. [10], Bottom: Proposed sQPEP
method.

components were uniformly distributed over the SO(3) space.
This approach ensured a dataset with a broad and robust range
of motion, devoid of singularities and exhibiting sufficient
excitation in both rotational and translational aspects. The
performance of various algorithms is presented in Table I.
All 6DOF method fail to obtain reliable translation data,
which also implies an inability to correctly recover the scale.
Therefore, we focus more on the performance differences
compared to [10] in the subsequent analysis. The synthesized
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Fig. 5. Ls1 Experimental : Performance comparisons between our method
and Andreff’s method under various scales with noise level 0.05. The upper
figure shows an ill-conditioned dataset where Andreff’s method completely
fails, while the lower figure shows a well-conditioned dataset where both
methods exhibit distinct advantages.

dataset’s effectiveness in mirroring real calibration conditions
is illustrated in Fig. 3. Due to differences in the objective
functions, [10] achieved slightly better performance on the
well-conditioned dataset. However, subsequent experiments
revealed limitations in their algorithm. The GN and QN may
still converge to incorrect local optima even when initiated
at almost the true value positions. A detailed analysis of this
phenomenon is provided in the supplementary material.

Next, we introduced a variation in the dataset where each ro-
tation was based on the identity quaternion, with disturbances
in the quaternion parameters having a standard deviation of
0.01, followed by normalization to the SO(3) space. Under
these ill-conditioned conditions, the comparative performance,
as shown in Fig. 4. In light of the fact that Andreff’s method
does not achieve global optimality, it consistently yields
erroneous solutions. In practice, the proximity of multiple
local optima renders conventional techniques ineffective at
distinguishing the accurate solution. In contrast, our global
optimization approach, sQPEP, demonstrates a substantial
advantage when confronted with these types of challenges.

We next conduct comparisons on well-conditioned at var-
ious scales, with results presented in Fig. 5 and Fig. 6.
Increasing or decreasing the scale parameter effectively mag-
nifies the difference between two factors, thereby introducing
errors. Since the datasets are constructed based on a zero-
mean Gaussian distribution, when the scale parameter is set to
one, translation and rotation impacts are equivalently scaled,
enabling all algorithms to achieve optimal performance. As
the scale parameter increases, our method and the [10] show
different strengths in handling rotations and translations, re-
spectively. This variation is attributed to different optimization
goals and the unequal inherent weights assigned to translation
and rotation across algorithms. For a more detailed discussion,
readers are referred to [27] for additional insights.
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Fig. 6. Ls1 Experimental : Performance comparison of all hand-eye
calibration algorithms on well-conditioned datasets across different scales with
noise level 0.05.
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Fig. 7. Ls2 Experimental : Performance comparison of different algorithms
at varying scales with noise level 0.05. Note that our algorithm is represented
in blue and closely follows the x-axis.

TABLE II
RESULT OF SCALED POINT-TO-PLANE PROBLEM WITH NOISE=0.01 AND

SCALE=0.5

µϵr (deg) σ2
ϵr
(deg2) µϵt (m) σ2

ϵt
(m2)

ours 0.2339 0.0979 0.0011 0.0004
GICP [8](GT) 7.4063 4.9358 0.2678 0.0111

Fast-GICP [28]( GT) 6.8399 4.4320 0.2673 0.0109
QPEP [9] 4.3824 0.0985 0.2719 0.0053

GICP [8](Random) 10.6648 22.9984 0.2698 0.0196
Fast-GICP [28](Random) 12.8037 28.9876 0.2713 0.0249

C. Experiments on Simulated Environments for Ls2

Sensors such as LiDAR, which can acquire depth data,
might be utilized for scene localization purposes. In cases
where the device scale is imprecise, it is essential to conduct
7DOF pose estimation that incorporates scale.

To empirically validate our algorithm’s efficacy, we con-
ducted experiments using the Stanford bunny dataset1, a stan-
dard benchmark in the field of 3D geometry processing. Due
to the lack of comparable 7DOF scaled point-to-plane method,

1graphics.stanford.edu/∼mdfisher/Data/Meshes/bunny.obj

Fig. 8. Ls2 Experimental : Precision of point-to-plane matching using Ls2
under various noise levels.

the proposed method was evaluated against the 6DOF point-
to-plane algorithm. To reduce the complexity associated with
non-global optimal algorithms, both Ground Truth and random
values are employed as initial values for the GICP and FAST-
GICP(also called VGICP). Additionally, the available plane
normal information from GT is provided, thereby eliminating
the need for GICP and FAST-GICP to engage in the process of
nearest neighbor search and normal computation. We provide
GT correspondence for the algorithm, as well as point pairings
within the same plane and GT normal vectors for FAST-
GICP. This approach is taken because our focus is on whether
these algorithms can handle cases where the scale is not
equal to 1 and whether they can achieve the correct solutions.
Table II clearly demonstrates the superiority of the proposed
algorithm for the case of noise level 0.01 and scale factor
0.5. Similar to Ls1, algorithms for 6DOF are unable to handle
data involving scale even with minimal noise. Algorithms that
do not guarantee global optimality are notably susceptible to
convergence to local optima. As demonstrated in [8], [28],
even initializing with GT does not prevent the possibility of
converging to incorrect local optima, thereby compromising
the stability of the algorithm. A more fundamental issue is
that methods other than ours do not support scenarios where
the scale is not equal to 1. Readers are encouraged to refer to
the supplement and view the illustrations for a more intuitive
understanding of the data presented in the table.

We also tested different algorithms’ performance at various
scales with noise level 0.05, as shown in Fig. 7. Algorithms
unable to solve for scale fail to yield valid results when scale
is not equal to 1. In contrast, the error of our sQPEP algorithm
nearly aligns with the x-axis. The translational errors of GICP,
Fast-GICP, and QPEP can be attributed to their convergence to
a local optimum near the ground truth. As the scale increases,
their translational errors also grow linearly. For a more detailed
discussion, readers are referred to the supplementary material.
To better observe the error distribution of our algorithm, we
evaluated its performance under various noise conditions, as
shown in Fig. 8.

D. Experiments on Industrial Hand-Eye Calibration
We employ the UR10 industrial robot for experimental

validation. The apparatus requiring calibration of the camera
extrinsic from the camera to the end-effector is depicted in
Fig. 9. We conducted four sets of hand-eye calibration tasks
using this device.
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Fig. 9. Industrial Hand-Hye Calibration: Experimental setup and related
devices.

TABLE III
RESULT OF INDUSTRIAL SCALE HAND-EYE CALIBRATION

Case 1 Case 2 Case 3 Case 4

ours ϵr(deg) 0.6017 0.8101 0.0407 0.1086
ϵt(m) 0.0394 0.0098 0.0137 0.0307

Andreff [10] ϵr(deg) 0.2077 0.1690 0.1447 0.1275
ϵt(m) 0.0930 0.0069 0.0090 0.0190

Liang [24] ϵr(deg) 1.1319 0.8916 0.7079 0.4275
ϵt(m) 0.0636 0.0098 0.0138 0.0205

Wu-4D [25] ϵr(deg) 1.1724 0.9058 0.7161 0.4349
ϵt(m) 0.0665 0.0683 0.0694 0.0693

Sarabandi [26] ϵr(deg) 5.2984 1.5769 7.1550 3.0343
ϵt(m) 0.0501 0.0665 0.0575 0.0901

QPEP [9] ϵr(deg) 0.2829 0.1438 0.0832 0.1241
ϵt(m) 0.0677 0.0092 0.0093 0.0179

Our SfM process involved a systematic pipeline. We begin
with camera calibration [29] to determine the intrinsic param-
eters. Utilizing off-the-shelf COLMAP [30], [31] software, we
perform SfM to estimate relative camera poses and reconstruct
the 3D scene. We use the hand-eye calibration result from
perspective-n-points (PnP) as baseline. The reason is that using
the PnP absolute camera poses, we verify the baseline ground
truth has the reprojection error of less than 0.5 pixels, which is
satisfactory to be a reference. The qualitative result is shown
in Fig. 10. As the chessboard pattern used for calibration has
known square sizes, the obtained results are scale-consistent.
This allows for a fair comparison with 6DOF algorithms,
as both approaches utilize the same calibration target. The
final calibration results are summarized in Table III. As our
algorithm computes ts based on rotation, there is a slight loss
in translation accuracy. Nevertheless, our method still achieves
satisfactory precision when applied to real-world industrial
scenarios.

E. Experiments on EuRoc dataset

In practical industrial scenarios, monocular cameras lacking
scale data might require extrinsic calibration with additional
sensors installed on various platforms, including vehicles and
unmanned aerial vehicles (UAVs). We employ the EuRoC
dataset [32] as a benchmark to validate our approach in

Fig. 10. Industrial Hand-Hye Calibration : The SfM result by COLMAP
method [30]. The gray box denotes the initial camera pose as standard
reference.

scenarios that closely mimic real-world conditions. Our ex-
perimental setup comprises a stereo camera system. The left
camera executes vins-mono [13], capitalizing on IMU data. to
maintain scale information, whereas the right camera processes
imagery by employing ORB-SLAM3 [33] in a monocular
configuration. The trajectories generated by both cameras are
used to perform hand-eye calibration to determine the extrinsic
parameters between them. This calibrated relationship is then
benchmarked against the ground truth for accuracy validation.
To ensure a stable evaluation, especially given the challenges
associated with monocular odometry, our tests were confined
to the MH01-easy, MH02-easy, and V101-easy sequences from
the EuRoC dataset. Acknowledging that scale discrepancies
are inherently integrated into the systems’ translational and
rotational errors, our assessment focuses exclusively on these
two error metrics. The results, as delineated in Fig. 11, de-
lineate the calibration discrepancies in terms of rotation (deg)
and translation (m), providing a comprehensive view of the
calibration precision achieved in our experimental framework.

It is crucial to highlight that the method proposed by [10]
exhibits the same behavior as shown in Fig. 4. In VIO systems
with high noise levels, this method fails to operate robustly,
resulting in translation errors exceeding 70 meters and rotation
errors surpassing 30 degrees, rendering it completely unusable
in such scenarios. This underscores the significance of our
globally optimal solution, which demonstrates a remarkably
strong robustness against noise.

F. Runtime and Memory Evaluation

The core of our algorithm lies in the efficient computation
of the solver. This subsection details the memory footprint and
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Fig. 11. EuRoC Dataset: Calibration Results for Camera Extrinsic Parameters
Using the EuRoC Dataset with sequences MH02, MH01, and V101. Only our
method yields valid numerical results; other approaches fail due to the near
degeneracy of their data, rendering them ineffective.

TABLE IV
RESOURCE UTILIZATION

Runtime(ms) Peak Memory(MB)

Our Ls1 431 10.09
QPEP-HE [9] 1716 8.15
Andreff [10] 1654 1.25
Liang [24] 4505 1.43

Wu-4D [25] 46 8.55
Sarabandi [26] 20 4.05

Our Ls2 61 26.38
QPEP-P2P [9] 26 22.03

GICP [8] 46 0.27
Fast-GICP [28] 51 0.87

execution time during the operation of our solver, with results
presented in Table IV. We use case 1 data from Section III-D
for hand-eye calibration tests and data from Section III-C
for point-to-plane tests. In hand-eye calibration problems, our
method achieves faster speeds compared to globally optimal
algorithms primarily because our elimination template requires
fewer input elements and does not exhibit exponential runtime
increase with the problem size. The methods in [25] and [26]
are faster as they do not require computational resources
to explore additional solutions for optimality. Regarding the
point-to-plane scenario, the inclusion of scale in our elimi-
nation template results in a larger size compared to QPEP-
P2P [9], leading to a decrease in performance. Considering
our algorithm’s additional capability to estimate a scale factor,
it holds a distinct advantage. Memory usage is acceptable for
all algorithms on modern devices.

IV. CONCLUSION

In this paper, we rigorously formalize the mathematical
model for the Quadratic Pose Estimation Problem (QPEP) and
present, for the first time, the framework of Scaled Quadratic
Pose Estimation Problems (sQPEP), complete with precise
definitions. Considering the scaling effects on rotation and
translation, we delineate sQPEP into two distinct classes, pro-
viding global optimal solution for each. Experimental valida-
tion affirms our approach’s robust performance in degenerate,
ill-conditioned, and noisy scenarios, highlighting the inherent
benefits of global solvers. Remarkably, our method inherently

attains greater solution precision by improving numerical ac-
curacy, in contrast to iterative optimization-based methods that
depend on parameter settings for precision. Nonetheless, our
approach necessitates manual reduction to either Ls1 or Ls2,
and manual computation of the matrices W , W̃ , or Q, which
limits its scalability. Future research should aim to reduce
the solver’s elimination template size, thereby decreasing the
computational scale, and to broaden our method’s applicability
across various fields.

APPENDIX

A. Derivation of L(q, t)
According to [9], the Quadratic Pose Estimation Problem

addresses the estimation of 6DOF poses under the following
constraints: 

f(q4, λ) = 0

q⊤q = 1

t = τ (q2)
(9)

where t must be expressible as a linear combination of q2.
This necessitates that the partial derivatives of t only contain
terms up to t2 to avoid introducing terms of q5. Similarly, t
can only be directly multiplied by q2. After addressing the
constraints on q, we consider that the presence of q4 does
not alter the definition provided in (9). Since q represents a
rotation matrix, there are no odd powers of q. Combining these
terms, the variables of our function include q4, q2t, t, and t2,
potentially with varying coefficients and additional constants.
Thus, the expression for L(q, t) is given by:
L(q, t) = V ⊤

35q
4 + V ⊤

40vec(q
2 ⊗ t̃) + V ⊤

6 t2 + V ⊤
3 t+ C

B. Derivation of Ls1

Regarding the addition of a scale factor to the pose’s
translation vector, if we substitute t with t∗ = t·s, the problem
formulation remains unchanged, indicating that scale is not an
independent variable to be solved in this scenario.

For scenarios involving sensors with unknown scale (e.g.,
monocular cameras), the world coordinates lack scale and are
represented in a homogeneous 4× 1 vector format, where the
fourth dimension represents the scale factor s. Homogeneous
coordinates maintain their linear characteristics after transfor-
mations by any 4 × 4 matrix, hence the scale information
retains similar properties to other translation components: s =
τ s(q

2). Incorporating scale into (A) while maintaining the
highest power not exceeding four, we ensure the inheritance
of the QPEP properties, leading to:

Ls1(q, t, s)=V ⊤
35q

4+V ⊤
40vec(q

2 ⊗ t̃)+s · V ⊤
10q

2+

V ⊤
6 t2+s · V ⊤

4 ts+V ⊤
4 ts+C

C. Derivation of Ls2

If the scale factor is incorporated into the rotation matrix,
transforming it into a scaled rotation matrix, this change
has substantial physical implications. As previously discussed,
since q is derived from a rotation matrix, incorporating a scale
factor s affects every occurrence of q2. The derivation, based
on (9), involves multiplying each term involving q2 by s,
resulting in:
Ls2(q, t, s)=s2 ·V ⊤

35q
4+s ·V ⊤

40vec(q
2⊗ t̃)+V ⊤

6 t2+V ⊤
3 t+C.
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