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Abstract

Animal vocalizations encode rich biological information—such as age, sex,

behavioural context and emotional state—making bioacoustic analysis a prom-

ising non-invasive method for assessing welfare and population demography.

However, traditional bioacoustic approaches, which rely on manually defined

acoustic features, are time-consuming, require specialized expertise and may

introduce subjective bias. These constraints reduce the feasibility of analysing

increasingly large datasets generated by passive acoustic monitoring (PAM).

Transfer learning with Convolutional Neural Networks (CNNs) offers a scalable

alternative by enabling automatic acoustic feature extraction without predefined

criteria. Here, we applied four pre-trained CNNs—two general purpose models

(VGGish and YAMNet) and two avian bioacoustic models (Perch and Bird-

NET)—to African forest elephant (Loxodonta cyclotis) recordings. We used a

dimensionality reduction algorithm (UMAP) to represent the extracted acoustic

features in two dimensions and evaluated these representations across three key

tasks: (1) call-type classification (rumble, roar and trumpet), (2) rumble

sub-type identification and (3) behavioural and demographic analysis. A Ran-

dom Forest classifier trained on these features achieved near-perfect accuracy

for rumbles, with Perch attaining the highest average accuracy (0.85) across all

call types. Clustering the reduced features identified biologically meaningful

rumble sub-types—such as adult female calls linked to logistics—and provided

clearer groupings than manual classification. Statistical analyses showed that

factors including age and behavioural context significantly influenced call varia-

tion (P < 0.001), with additional comparisons revealing clear differences among

contexts (e.g. nursing, competition, separation), sexes and multiple age classes.

Perch and BirdNET consistently outperformed general purpose models when

dealing with complex or ambiguous calls. These findings demonstrate that

transfer learning enables scalable, reproducible bioacoustic workflows capable of

detecting biologically meaningful acoustic variation. Integrating this approach

into PAM pipelines can enhance the non-invasive assessment of population

dynamics, behaviour and welfare in acoustically active species.

Introduction

The acoustic structure of animal vocalizations encodes a

wide array of biological information about a caller’s iden-

tity, sex, age, body size, emotional state and behavioural

context (Briefer et al., 2022; Liao et al., 2018; McCordic

et al., 2016; Schwartz et al., 2022). The analysis of vocali-

zations therefore offers a highly promising avenue for the

non-invasive assessment of animal welfare and monitor-

ing of population demographics (Boissy & Lee, 2014;

Gibb et al., 2019; Mcloughlin et al., 2019). Passive acous-

tic monitoring (PAM) is a non-invasive bioacoustic
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approach that uses continuous, long-term audio record-

ings collected in natural habitats to monitor wildlife pres-

ence, behaviour and ecosystem dynamics (Wrege

et al., 2017). PAM uses automated detection algorithms

to identify and count vocalizations, providing estimates of

population sizes and tracking changes in species activity

across time and space. While extracting biological infor-

mation from the acoustic structure of recorded signals

can increase the breadth of insights gained from PAM

(Wood et al., 2021), scalability issues remain a significant

challenge, particularly as data volumes increase (Gibb

et al., 2019; Napier et al., 2024), thereby limiting the

scope of application of PAM.

Traditional bioacoustic methods typically involve man-

ually defining and measuring acoustic features (Erbe &

Thomas, 2022). These features, such as frequency, dura-

tion and amplitude, have been successfully used to estab-

lish species-specific call repertoires (e.g. Orcinus orca—
Selbmann et al., 2023; Gorilla gorilla—Salmi et al., 2013)

and to correlate call types with biological variables like

age, sex, behaviour and emotion (Marler, 1976). However,

the manual nature of feature selection is time-consuming,

prone to subjective interpretation and limits the ability to

process larger datasets (Brown et al., 2018; Janik, 1999;

Nguyen Hong Duc et al., 2021). This reliance on manual

processes also necessitates specialized bioacoustic exper-

tise, slowing the speed and accessibility of data analysis

(Hasan, 2022). Furthermore, disagreements over the clas-

sification and definition of features can undermine repro-

ducibility and generalizability (Nguyen Hong Duc

et al., 2021; Rekdahl et al., 2013). As a result, these tradi-

tional methods are not well suited to the growing

demands of large-scale bioacoustic research, particularly

in PAM workflows.

Machine learning methods are increasingly used to ana-

lyse animal vocalizations. For example, supervised deep

learning, in which neural networks are trained to map

input data to known output labels, has been used to

automatically identify Orcinus orca calls (Bergler

et al., 2019). Convolutional Neural Networks (CNNs), a

specialized class of supervised deep learning, excel in these

tasks by automatically learning and extracting features

from visual data like audio spectrograms or image pixels

(Goffinet et al., 2021). CNNs trained on extensive audio

datasets learn to identify and extract audio features from

this larger dataset, and these learned acoustic traits can be

applied to different audio datasets in a process known as

transfer learning (Dufourq et al., 2022; Sethi et al., 2020).

Transfer learning using pre-trained CNNs offers several

advantages over training custom CNNs from scratch,

including reduced computational costs, faster implemen-

tation and improved performance on small datasets

(Weiss et al., 2016; Yosinski et al., 2014). Pre-trained

CNNs also provide deterministic outputs when given the

same input, enabling reproducible results (Decuyper

et al., 2018). The unsupervised extraction of acoustic fea-

tures using transfer learning avoids the subjective selec-

tion of features required in manual approaches, which

can limit analyses to pre-defined traits. Instead, transfer

learning uses rich representations learned from diverse

datasets to automatically capture complex and subtle

acoustic patterns, enhancing the scalability, objectivity

and reproducibility of bioacoustic analyses (Sethi

et al., 2020; Stowell, 2022). Acoustic features are often

numerous and high-dimensional, necessitating dimension-

ality reduction for efficient analysis and visualization (Jia

et al., 2022). Unsupervised dimensionality reduction tech-

niques can simplify data while preserving complex,

non-linear relationships, retaining both local and global

structures (Ayesha et al., 2020; McInnes et al., 2020).

Together, these approaches minimize observer bias in

manual methods and improve the scalability and automa-

tion of bioacoustic workflows.

Elephant vocalizations are an excellent example of a

complex vocal communication system, with all three spe-

cies displaying a range of calls including the characteristic

and most commonly used vocalization—the rumble—as

well as a range of broadband vocalizations, such as roars,

and trumpets (de Silva, 2010; Hedwig et al., 2019;

Poole, 2011). Rumbles are tonal, harmonically rich and

often feature fundamental frequencies in the infrasound

range (Poole, 2011). In contrast, roars and nasally pro-

duced trumpets are higher-frequency broadband calls

with noisy but sometimes tonal components (Poole, 2011).

Elephants also produce combinatorial calls, where rum-

bles are combined with broadband calls (mainly roars,

but also barks and cries) (Hedwig & Kohlberg, 2024;

Pardo et al., 2019). Research on elephant vocalizations

has primarily focused on rumbles using traditional bio-

acoustic methods, producing diverse call-type and

sub-type classifications (Leong et al., 2003; Hedwig

et al., 2019; Hedwig et al., 2021; Nair et al., 2009; Stoeger

et al., 2012, 2021; Wood et al., 2005). The highly graded

structural variation in rumbles complicates classification

and has been associated with a wide range of biological

contexts, including age, sex, behaviour and emotional

state (de Silva, 2010; Hedwig et al., 2021; Leong

et al., 2003; Nair et al., 2009; Poole, 2011; Stoeger, 2021;

Stoeger & de Silva, 2014). Key questions remain about

the structure and context of elephant vocalizations, such

as the existence of meaningful rumble sub-types. A study

using manual feature selection, principal component anal-

ysis, and model-based clustering identified eight rumble

sub-types, though these sub-types exhibited substantial

overlap, underscoring the difficulty of distinguishing clear

categories within graded vocalizations (Hedwig
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et al., 2021). Addressing these gaps would enhance inter-

pretative understanding of elephant calls, enabling more

effective non-invasive monitoring of populations and wel-

fare as well as improved demographic assessments for

conservation planning based on PAM (Brickson

et al., 2023; Wrege et al., 2017).

In this study, we use a transfer learning workflow with

four different CNNs to extract acoustic features from

African forest elephant (Loxodonta cyclotis) vocalizations

and evaluate how well these features capture call structure

and context. Our methodology involves two stages. First,

we separately use the CNNs to automatically extract

acoustic features from the vocalizations, generating rich

acoustic embeddings for the same dataset. We include

both general-purpose (VGGish, YAMNet) and specialized

bioacoustic (Perch, BirdNET) CNNs to test whether

models trained on broad versus domain-specific datasets

yield comparable or distinct insights. Second, we apply

dimensionality reduction to these embeddings using Uni-

form Manifold Approximation and Projection (UMAP),

enabling the projection of the embeddings without prior

labelling. We then evaluate the effectiveness of the pro-

jected acoustic embeddings through three analyses: (1)

classification of different call types (roars, rumbles and

trumpets), (2) identification of structural variations

within rumbles to distinguish sub-types and (3) interpre-

tation of differences in rumbles related to behavioural

and demographic factors such as age, sex, behaviour or

distress. By comparing the outputs from the different

CNN models, we assess the consistency of the embeddings

and compare overall model performance. This process

enables us to determine whether transfer learning-based

feature extraction offers an automatable, standardizable

and scalable approach to extracting biologically relevant

information from bioacoustic data.

Methods

All code was written in Python (version 3.12.4).

Data collation

We used a labelled dataset of 787 forest elephant (L.

cyclotis) vocalizations from Hedwig et al. (2021) recorded

at Dzanga-Bai in Dzanga-Ndoki National Park (2.963° N,

16.365° E), Central African Republic, between September

2018 and April 2019. Recordings were made with an

Earthworks omnidirectional microphone at 48,000 Hz

and downsampled to 4,000 Hz for manageability. This

preserved relevant frequencies, as most elephant vocaliza-

tion energy falls below 4 kHz (Poole, 2011). File dura-

tions ranged from 0.5 to 39 seconds and typically

contained a single call type (rumble, roar, trumpet) or

combination calls (e.g. rumble–roar–rumble). Contextual

metadata, including the caller’s age, sex, behavioural con-

text and distress status, were recorded during visual

observations (Hedwig et al., 2021).

The start and end times and frequency ranges of each

vocalization were manually annotated using Whombat

(Mart�ınez Balvanera et al., 2025). Combination calls were

separated into their individual components for call-type

classification based on the typically abrupt frequency

shifts between roar and rumble components. For example,

in rumble-roar-rumble sequences, bounding boxes were

drawn manually to define the start and end times and fre-

quency ranges of the rumble and roar segments, which

were then relabelled according to their respective call

types. This segmentation increased the sample size for

each call type. The final dataset contained 1,254 vocaliza-

tions: rumbles (n = 779), roars (n = 424) and trumpets

(n = 51).

The sound files were labelled by Hedwig et al. (2021)

and contained the following contextual labels: sex—
female (n = 207), male (n = 107); age—adult (n = 96),

infant (n = 14), juvenile (n = 89), sub-adult (n = 129);

behaviour context—affiliation (n = 59), competition

(n = 79), logistics (n = 15), nursing (n = 24), separation

(n = 146) and distress context—distress (n = 45), no dis-

tress (n = 96), other (n = 218). The other values for dis-

tress comprised both unknown labels—where the distress

status could not be determined—and not applicable

labels, which referred to contexts where distress could not

occur due to the nature of the behaviour. These were

retained to maintain sample size and to provide a con-

trast to the categories of interest: distress and no distress.

Audio pre-processing

Audio files were converted into mel-spectrograms

(Fig. 1A) using the librosa package (version 0.10.2)

(McFee et al., 2015). A Butterworth bandpass filter was

applied to each vocalization using SciPy (version 1.14.0)

to remove frequencies outside annotated ranges (Fig. 1B).

We extracted only the relevant time periods of each

vocalization (Fig. 1C) and added periods of silence (zero-

padding) to each vocalization to ensure it met the CNN

input window size (Fig. 1D). The peak amplitude was

normalized to a 0–1 scale to avoid amplitude-based

biases, such as caller distance to microphone (Fig. 1E). A

final bandpass filter removed artefacts introduced during

pre-processing (Fig. 1F).

CNN feature extraction

We extracted acoustic features using four pre-trained

CNNs: VGGish, YAMNet (Gemmeke et al., 2017; Hershey
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et al., 2017), Perch (Google Research, 2023) and BirdNET

(Kahl et al., 2021). VGGish and YAMNet are

general-purpose audio models, both trained on AudioSet

—a large-scale dataset comprising over 2 million

10-second audio clips from diverse sources such as You-

Tube, containing speech, music, environmental sounds

and some animal vocalizations (Gemmeke et al., 2017).

VGGish, based on the VGG architecture with stacked

convolutional layers, was designed to generate broad

audio representations for a range of tasks such as music

and speech detection, environmental sound recognition,

and anomaly detection in audio streams (Hershey

et al., 2017). YAMNet (‘Yet another Audio Mobilenet

Network’) is a lightweight model with a

MobileNet-inspired architecture optimized for environ-

mental sound recognition, such as detecting birdsong,

thunderstorms and ambient noises, making it suitable for

real-time applications (Gemmeke et al., 2017).

Figure 1. Example mel-spectrogram representations of a single audio file after each audio pre-processing step is applied for the VGGish model.

Shading represents amplitude (dB). White dashed bounding box indicates the vocalization. (A) Convert audio into mel-spectrogram, (B) apply

bandpass filter, (C) extract relevant time period, (D) zero pad to input window size and centre, (E) normalize amplitude, (F) re-apply bandpass

filter.
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Perch and BirdNET, by contrast, were trained on exten-

sive avian bioacoustic datasets, including the Xeno-Canto

and Macaulay Library collections (Ghani et al., 2023; Kahl

et al., 2021) making them specialized for bird vocalization

detection. Perch processes longer audio windows to capture

detailed acoustic patterns, reflecting its architecture’s

emphasis on temporal context (Ghani et al., 2023). Bird-

NET uses a ResNet-inspired architecture designed for

large-scale species-level bird identification with high accu-

racy (Kahl et al., 2021). Despite their avian focus, Perch

and BirdNET have demonstrated strong performance in

cross-taxa bioacoustic classification tasks (Ghani

et al., 2023). This contrast between general-purpose CNNs,

designed to extract broad audio features across multiple

domains, and bioacoustic-specific CNNs, optimized for

detecting detailed acoustic patterns in complex wildlife

soundscapes, enabled us to evaluate whether a general or

domain-specific model more effectively captured biologically

relevant features in elephant vocalizations.

VGGish and YAMNet process 0.96-second spectrogram

inputs sampled at 16,000 Hz. To match this input format,

we time-expanded the original 4,000 Hz recordings such

that 3.84 seconds corresponded to 0.96 seconds at the

expanded rate. VGGish outputs 128-dimensional (128D)

feature embeddings, while YAMNet outputs 1,024-

dimensional (1024D) embeddings. Perch and BirdNET

require 5-second and 3-second audio inputs sampled at

32,000 Hz and 48,000 Hz, respectively. Maintaining the

original 4,000 Hz sampling rate, we time-expanded the

recordings so that the 5-second and 3-second inputs cor-

responded to 40 seconds and 36 seconds at the expanded

rate for Perch and BirdNET, respectively. Perch produces

1,280-dimensional (1280D) embeddings, whereas Bird-

NET produces 1,024-dimensional (1024D) embeddings.

For vocalizations exceeding the input windows, we split

the audio into multiple windows, generated individual

embeddings for each segment, and averaged these into a

single embedding per call. As call duration has been

shown to encode biological information (Hedwig

et al., 2019; Soltis et al., 2011), we manually reintegrated

this information as an additional feature. The final

embedding dimensions were 129D (VGGish), 1025D

(YAMNet and BirdNET) and 1281D (Perch).

Dimensionality reduction

We applied Uniform Manifold Approximation and Projec-

tion (UMAP) for non-linear dimensionality reduction, pro-

jecting these high-dimensional embeddings into two

dimensions (2D) (McInnes et al., 2020). UMAP was chosen

for its superior ability to preserve both local and global

structures compared to t-SNE (Becht et al., 2019) and for

its faster processing times (Pal & Sharma, 2020).

Embeddings were normalized (mean: 0, standard deviation:

1) and projected into 2D using the umap-learn package

(version 0.2.0), with cosine distance selected due to its bet-

ter suitability for high-dimensional data (Ert€oz et al., 2003).

For behavioural and demographic analyses, we further

reduced the 2D UMAP projections to a single dimension

using principal component analysis (PCA) via scikit-learn

(version 1.5.2). We selected PCA for this step because it

preserves the variance captured by UMAP’s non-linear

projections while reducing dimensionality through an

optimal linear transformation (Jolliffe & Cadima, 2016).

Importantly, the use of PCA addresses the challenge of

small sample sizes, as fitting more complex models to 2D

embeddings would risk overfitting. The resulting single

principal component serves as an acoustic index, repre-

senting the primary variation in acoustic features for each

rumble vocalization in a simplified yet informative way.

Modelling

Call-type classification

We assessed how well the 2D UMAP projections retained

call-type information by evaluating clustering with silhou-

ette scores and training a random forest (RF) classifier to

predict the call types. Silhouette scores quantify cluster sep-

aration by comparing the mean distance between points

within the same cluster (a) to points in the nearest cluster

(b) Rousseeuw (1987). Overall and per-call-type scores were

calculated, with ≥0.5 indicating good clustering and ≥0.7
indicating strong clustering (Dalmaijer et al., 2022). To sup-

port interpretability, we visualized the 2D UMAP projec-

tions and generated spectrograms from a subsample of the

projections for the best-performing model as an example of

the acoustic differences between call types, following the

approach described by Sainburg et al. (2020).

The RF model was optimized using GridSearchCV

(scikit-learn, version 1.5.2) to tune class weights, tree depth,

minimum leaf and split samples and estimators, balancing

complexity and overfitting risks (Probst et al., 2019).

Minority classes were oversampled using RandomOverSam-

pler (imblearn, version 0.12.3). Nested cross-validation

(CV) minimized tuning bias by using inner CV loops for

parameter optimization and outer CV loops for error esti-

mation (Varma & Simon, 2006). Performance was evalu-

ated using macro average accuracy and F1 scores, which

reflect balanced performance across classes and capture the

trade-off between precision and recall (Powers, 2020).

Call sub-type identification

To identify rumble subtypes, we used Affinity Propaga-

tion Clustering (APC) on the 2D UMAP projections.
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Unlike traditional clustering algorithms that require the

user to specify the number of clusters beforehand, APC

identifies exemplars within the data based on similarity

measures and iteratively updates cluster assignments until

convergence (Frey & Dueck, 2007). This allows APC to

automatically determine the number of clusters and cap-

ture complex data structures with varying cluster sizes

and densities. We used the AffinityPropagation package

in scikit-learn (version 1.5.1) with preference parameters

set to �90 (to avoid exemplar bias) and damping to 0.95

(to stabilize convergence) (Frey & Dueck, 2007). Silhou-

ette scores were used to assess clustering performance,

consistent with the call-type analysis. To characterize each

cluster, we calculated the proportions of levels within

each category (e.g. age categories: adult, juvenile and

infant) for each cluster and model. This allowed us to

identify which levels (e.g. adult age class) were dominant

within a cluster, enabling visual inspection of the key

demographic and behavioural patterns.

Behavioural and demographic analysis

We fitted generalized linear models (GLMs) with normal

error structures and identity link functions (statsmodels,

version 0.14.0) to test for differences in acoustic embed-

dings across age, sex, behavioural context and distress sta-

tus. The dependent variable was the 1D PCA projection

of the acoustic embeddings for each model, representing

the primary dimension of acoustic variation. Predictor

variables included age (adult, sub-adult, juvenile, infant),

sex (male, female), behavioural context (affiliation, com-

petition, logistics, nursing and separation) and distress

status (yes, no and other). GLM fit was assessed using

standard performance metrics: the coefficient of determi-

nation (R2) for explanatory power, mean absolute error

(MAE) for average deviation from true values and root

mean squared error (RMSE) to emphasize larger predic-

tion errors. The significance of each predictor category

was assessed using likelihood ratio tests (LRTs), compar-

ing the full model to reduced models excluding each pre-

dictor category one at a time. Tukey post hoc pairwise

comparisons (SciPy, version 1.14.0) were conducted to

determine which specific levels of the predictor variables

differed significantly (P < 0.05), controlling for multiple

comparisons.

Results

Call-type clustering and classification

Silhouette scores across all models exceeded the 0.5

threshold, indicating effective call-type clustering

(Table 1). BirdNET achieved the highest silhouette score

(0.59), demonstrating the strongest overall clustering per-

formance (Fig. 2). It performed particularly well for rum-

bles, achieving a silhouette score of 0.89. In contrast,

trumpets exhibited weaker clustering (0.35), and roars

were poorly clustered, with BirdNET achieving a silhou-

ette score of only 0.08. Other models showed slightly

lower overall silhouette scores: Perch and VGGish scored

0.57, while YAMNet scored 0.55 (Table 1; Fig. S1). Rum-

bles clustered strongly across all models, with silhouette

scores ranging from 0.82 (VGGish, YAMNet) to 0.89

(BirdNET). Trumpets displayed greater variability, with

Perch achieving a silhouette score of 0.37 and VGGish

scoring just 0.01. Roars consistently showed weak cluster-

ing, with scores ranging from 0.08 (BirdNET, YAMNet)

to 0.18 (VGGish).

Random forest classifiers demonstrated strong macro

average accuracy (MAA) across the CNN models. Perch

achieved the highest MAA (0.85), followed by BirdNET

and VGGish (0.84 each), and YAMNet (0.81). Rumbles

were classified with near-perfect accuracy across all

models (F1 score: 1.0). Roars achieved high F1 scores

ranging from 0.94 (YAMNet) to 0.96 (Perch). Trumpets

remained the most challenging call type, with F1 scores

between 0.50 (YAMNet) and 0.59 (Perch) (Table 1).

Call sub-type identification

The affinity propagation unsupervised clustering identi-

fied between 5 and 6 rumble sub-types across the four

CNN models, with silhouette scores indicating moderate

clustering performance (range: 0.46–0.51) (see Fig. S2).

YAMNet achieved the highest silhouette score (0.51) and

identified 5 clusters, with VGGish, and Perch also identi-

fying 5 clusters with lower average silhouette scores of

0.50 and 0.46, respectively. BirdNET identified 6 clusters

with an average silhouette score of 0.50. There was insuf-

ficient data to perform statistical tests to determine the

Table 1. Call-type clustering and classification results comparing the

four CNNs.

VGGish Perch YAMNet BirdNET

Call-type clustering

Rumble—Silhouette score 0.82 0.84 0.82 0.89

Roar—Silhouette score 0.18 0.10 0.08 0.08

Trumpet—Silhouette score 0.01 0.37 0.25 0.35

Overall—Silhouette score 0.57 0.57 0.55 0.59

Call-type classification

Rumble—F1 score 1 1 1 1

Roar—F1 score 0.95 0.96 0.94 0.95

Trumpet—F1 score 0.57 0.59 0.50 0.56

Overall accuracy 0.96 0.97 0.96 0.97

Macro average accuracy 0.84 0.85 0.81 0.84
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composition of the clusters by biological category; how-

ever, visual inspection of the distribution of category pro-

portions within the clusters suggests biologically relevant

differences (Fig. 3).

For example, YAMNet produced a cluster (cluster 3)

containing a high proportion of adult female calls associ-

ated with the logistics context (53% of all adult vocaliza-

tions, 28% of female vocalizations, and 30% of

logistics-related calls) and another cluster (cluster 4)

predominantly comprising juvenile male calls associated

with nursing (43% juvenile, 37% male and 52%

nursing-related calls).

Corresponding clusters were observed across the other

models, indicating consistency across CNN architectures

(Fig. S3). For the putative adult female logistics cluster

identified by YAMNet, VGGish produced a corresponding

Figure 2. UMAP projections of acoustic features of elephant call types into 2D space using BirdNET CNN. 2D UMAP projections of the acoustic

embeddings for forest elephant roars, rumbles and trumpets for the best-performing CNN for call-type clustering, BirdNET. Each point represents

a single vocalization. Colour indicates call type. Silhouette scores are shown per call type in the legend. Sample points show underlying

spectrogram images of vocalizations.
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cluster (cluster 3) with 62% adult, 33% female and 35%

logistics-related calls, while Perch identified a similar clus-

ter (cluster 4) with 52% adult, 28% female and 40%

logistics calls. Similarly, for the tentative juvenile male

nursing cluster identified by YAMNet (cluster 4), VGGish

identified a corresponding cluster (cluster 2) with 38%

juvenile, 36% male and 63% nursing-related calls, while

Perch identified cluster 3 with 47% juvenile, 47% male

and 70% nursing calls.

Behavioural and demographic analysis

Results from the GLMs showed that Perch had the best

fit to the data, with the lowest mean absolute error

(MAE: 1.34) and the highest R2 value (0.47), indicating

strong explanatory power (Table 2). BirdNET also per-

formed well (MAE: 1.38, R2: 0.42), whereas YAMNet

(MAE: 1.41, R2: 0.38) and VGGish (MAE: 1.58, R2: 0.34)

showed more moderate performances.

Behaviour and age were both significant predictors

across all models (P < 0.001), indicating that the acoustic

features of rumbles varied significantly across both con-

texts (Table 2 and see Supporting Information, Table S1

for full GLM model coefficients for each CNN). Distress

was a significant predictor for VGGish (P < 0.001), Perch

and YAMNet (P < 0.01), but not for BirdNET

(P = 0.1394). Sex was only significant for BirdNET

(P < 0.05), though post hoc pairwise comparisons

Figure 3. Bar chart of rumbles with biological labels and cluster classification for YAMNet CNN. X-axis shows cluster number, and y-axis shows

percentage proportion of a category label (e.g. ‘Infant’) distributed across all clusters. Quadrants represent different categories: age, sex,

behaviour, distress).

Table 2. Summary table of GLMs per CNN comparing model performance and predictor category impact on elephant rumble vocalizations.

Model MAE RMSE R2 Behaviour Distress Age Sex

VGGish 1.58 1.92 0.34 0.0000*** 0.0002*** 0.0000*** 0.5828

Perch 1.34 1.75 0.47 0.0000*** 0.0018** 0.0000*** 0.1972

YAMNet 1.41 1.76 0.38 0.0000*** 0.0049** 0.0000*** 0.0601

BirdNET 1.38 1.71 0.42 0.0000*** 0.1394 0.0000*** 0.0309*

P-value significance codes: *P < 0.05, **P < 0.01, ***P < 0.001.
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showed distinctions between male and female calls for all

models.

The Tukey post hoc pairwise comparisons provided

further detail on the significant differences between beha-

vioural categories (Fig. 4). Competition calls were signifi-

cantly different from all other behavioural contexts across

all models (P < 0.01), except for nursing, and nursing

calls were significantly different from all other contexts

(P < 0.001) except for competition. VGGish was the only

model to detect differences between nursing and competi-

tion (P < 0.05). Perch and BirdNET distinguished calls

made in a logistics context from separation (P < 0.05).

For age, all models identified significant differences

between adult vocalizations and all other age classes

(P < 0.001). Perch, YAMNet and BirdNET further distin-

guished sub-adults from juveniles (P < 0.001) and

sub-adults from infants (Perch and BirdNET P < 0.01;

YAMNet P < 0.05). VGGish and YAMNet were the only

models to detect differences between distress and

non-distress contexts (P < 0.05). For sex, significant dif-

ferences between male and female calls were detected

across all models (P < 0.001) (Fig. 4).

Discussion

The manual bioacoustic analysis of animal vocalizations

poses several practical challenges, including time-

consuming processing, subjective interpretation and

limited scalability (Brown et al., 2018; Janik, 1999;

Nguyen Hong Duc et al., 2021). These challenges, particu-

larly in feature extraction, highlight the importance of

developing scalable, automated workflows in bioacoustic

research, especially for large-scale passive acoustic moni-

toring (PAM). By applying transfer learning methods to

African forest elephant vocalizations, we established a

robust, modular workflow encompassing audio pre-

processing, CNN feature extraction, dimensionality reduc-

tion and classification of acoustic outputs. Our workflow

provides valuable insights into age and sex differences,

behavioural contexts and distress levels, improving our

ability to interpret social dynamics and potential stress

responses. Its scalability and reproducibility make it well

suited for large-scale PAM, enabling more efficient track-

ing of demographic trends and welfare indicators in forest

elephants and other species.

Call-type classification

All CNNs demonstrated strong agreement in distinguish-

ing call types, particularly for rumbles, which clustered

consistently across all models. This shows that

CNN-based embeddings effectively captured the defining

acoustic features of rumbles, even when derived from

different training backgrounds. However, performance

varied for more ambiguous call types. Trumpets were

more challenging to classify, with bioacoustic CNNs

(BirdNET and Perch) outperforming general-purpose

models in identifying key acoustic patterns. The overall

classification performance for forest elephant calls com-

pares favourably with other bioacoustic studies. For

example, our RF classifier achieved a best overall accuracy

of 0.97 (BirdNET and Perch), which exceeds the 0.83

accuracy reported for a comparable classifier used to cate-

gorise Asian elephant call types (Lokhandwala

et al., 2023). These findings highlight the potential of

CNN-based embeddings to robustly classify complex vocal

repertoires and support the efficient identification of for-

est elephant call types from passive acoustic

monitoring data.

Call sub-type identification

In the unsupervised clustering of rumbles, the CNN

models identified 5–6 sub-types, with silhouette scores

indicating moderate clustering performance. YAMNet

achieved the highest silhouette score (0.51) and three

models (VGGish, Perch and YAMNet) consistently identi-

fied clusters with biological relevance, such as those asso-

ciated with adult female logistics calls and juvenile male

nursing calls. These findings suggest that the models cap-

tured meaningful variations in vocalizations linked to

demographic and behavioural factors. However, it is

important to note that these are tentative initial descrip-

tions and are based on differentiating clusters through

proportions of context. Furthermore, some categories

such as separation are present in all clusters and sample

sizes for several levels are small.

The performance of the transfer learning approach in

identifying rumble sub-types also outperformed tradi-

tional clustering methods. Hedwig et al. (2019) identified

eight rumble sub-types using a combination of manual

feature selection, principal component analysis and

model-based clustering, with average silhouette coeffi-

cients below 0.34. In contrast, our overall silhouette

scores (range 0.46–0.51) indicate a more robust separa-

tion of sub-types, demonstrating the potential of auto-

mated feature extraction methods to provide meaningful

acoustic clustering without requiring domain-specific

manual feature selection.

Behavioural and demographic analysis

The GLM analysis confirmed that behavioural context

and age were significant predictors of acoustic variation

across all models. This is consistent with previous find-

ings that competition and nursing contexts produce
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distinctive acoustic signatures (Hedwig et al., 2021).

Distress-related differences, however, were detected incon-

sistently across models. Only VGGish and YAMNet reli-

ably distinguished distress from non-distress calls, with

BirdNET appearing less suited to detecting distress-related

differences. These results suggest that the models vary in

their sensitivity to subtle acoustic variations associated

with emotional states. For sex, BirdNET was the only

model to identify this category as a significant predictor

of acoustic variation. Post hoc comparisons revealed sig-

nificant differences between male and female vocalizations

across all CNNs.

The ability of the models to extract age and beha-

vioural information aligns with findings from previous

studies using manual acoustic analysis. For example, Stoe-

ger et al. (2014) demonstrated that frequency-based fea-

tures could distinguish between adult and juvenile

vocalizations in African elephants, whereas Hedwig

et al. (2021) showed that rumbles produced in competi-

tion and nursing contexts had shorter durations than

those in other behavioural contexts. Our findings show

that CNN-based embeddings can autonomously differen-

tiate many of the same categories identified in manual

analyses, without the need for feature pre-selection. This

highlights the potential for CNNs to offer more flexible

and scalable alternatives to manual approaches.

Limitations and future directions

The developed workflow involved manually annotating

sound events in audio files to match observed behaviour

with the acoustic structure of recorded vocalizations—an

inherently labour-intensive and time-consuming process.

In PAM studies, this step is increasingly streamlined using

semi-automated approaches that apply detection algo-

rithms followed by manual verification (Bjorck

et al., 2019; Mcloughlin et al., 2019). While these

semi-automated approaches still require human input,

they do not demand expert-level knowledge of vocal pro-

duction or acoustic analysis. Instead, verification can be

performed by trained non-experts, making the process

more efficient, with the more complex and specialized

task of acoustic feature extraction being fully automated

within our workflow. However, the need for manual or

semi-automated annotation remains a key limitation.

Developing fully automated solutions for this task is

currently constrained by the scarcity of high-quality

labelled datasets for training and validation. For many

species, annotated audio data with precise behavioural

labels is limited, creating bottlenecks in optimizing detec-

tion and classification models for PAM workflows.

Expanding datasets to include richer annotations—such

as behavioural context and combinatorial vocal sequences

—would improve the accuracy and robustness of auto-

mated approaches across diverse environments and

populations.

Beyond the challenge of dataset expansion, analysing

individual calls in isolation limits the ability to capture

the full complexity of communication. Combinatorial

sequences can convey nuanced information in social con-

texts (Hedwig & Kohlberg, 2024) and reveal patterns that

single calls cannot. Sequence-based deep learning models

—such as Recurrent Neural Networks (RNNs), Long

Short-Term Memory (LSTM) networks and attention-

based transformers—are well suited for analysing these

temporal structures and could significantly improve inter-

pretations of combinatorial vocal sequences (Vaswani

et al., 2017).

Although there was strong consensus among the four

models for most tasks, minor yet noteworthy differences

emerged that appear linked to each model’s training cor-

pus. BirdNET and Perch, both trained on avian datasets,

performed best at broad call-type classification and identi-

fying behavioural or demographic cues, likely because

their filters capture harmonic or temporal structures

shared by many bird and elephant calls (Elemans

et al., 2015; Ghani et al., 2023). In contrast, VGGish and

YAMNet—exposed to more varied audio sources—
showed a heightened ability to detect subtle rumble dis-

tress signals, potentially reflecting a stronger emphasis on

fine-grained acoustic modulations. These findings suggest

that even small domain mismatches may confer special-

ized advantages or limitations. As a result, researchers

should carefully consider the alignment between their tar-

get sounds and the model’s training data when selecting a

CNN for transfer learning.

Broader implications

PAM approaches have been successfully used to estimate

population sizes and activity patterns from acoustic data,

with particular success for cryptic species such as forest

Figure 4. Tukey Honestly significant difference (HSD) pairwise tests between all category levels. Each row represents a pair within a category

(e.g. Adult vs. Juvenile) and each column is a model, with the fifth column summing how many models identified a significant (P < 0.05) Tukey

HSD between the paired calls. P-value and asterisk labelled for each pair and model, with bubble size indicating significance (larger

bubbles = lower P-value). The colours represent the four categories. P-value significance codes: *P < 0.05, **P < 0.01, ***P < 0.001.
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elephants (Swider, 2023; Verahrami, 2023; Wrege et al.,

2017). Scalable bioacoustic methods to extract biological

information from recorded vocalizations would enable

widening the scope of PAM applications, with the poten-

tial to improve how we monitor populations and behav-

iour of elusive but acoustically conspicuous species. These

results demonstrate that biologically relevant information

can be derived from vocalizations using CNN-based

embeddings in an automatable, standardizable and scal-

able way. In particular, the transfer learning approach

employed here automated the extraction of features that

distinguish adults from juveniles, males from females, dis-

tress from non-distress and competition from other beha-

vioural contexts. This automation substantially reduces

the manual workload of acoustic analysis, enabling the

more efficient processing of large datasets. Applied at a

landscape scale, these techniques could facilitate monitor-

ing demographic changes, indirectly track reproductive

rates and evaluate the impact of activities such as logging

on stress levels. These findings have important implica-

tions for evidence-based conservation, as scalable PAM

workflows that capture nuanced acoustic information can

inform management decisions, improve welfare monitor-

ing, and support long-term conservation efforts for acous-

tically active species.
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Figure S1. UMAP Projections of acoustic features of ele-

phant call-types into 2D space. 2D UMAP projections of

the acoustic embeddings for forest elephant roars, rum-

bles, and trumpets for each CNN (VGGish, Perch, YAM-

Net, and BirdNET). Each point represents a single

vocalisation. Colour indicates call-type. Silhouette scores

shown per call-type in legend and overall per model in

heading.

Figure S2. UMAP Projections of clustered acoustic fea-

tures of elephant rumble vocalisations in 2D space. 2D

UMAP projections of the acoustic embeddings for forest

elephant rumbles for each CNN (VGGish, Perch, YAM-

Net, and BirdNET). Each point represents a single vocali-

sation. Colour indicates Affinity Propagation identified

cluster. Silhouette scores shown overall per model in

heading.
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Figure S3. Bar chart of rumbles with biological labels and

cluster classification per model. x-axis shows cluster num-

ber and y-axis shows percentage proportion of a category

label (e.g., ‘Infant’) distributed across all clusters. One bar

chart per CNN model per category. Quadrants represent

different categories: (a) age, (b) sex, (c) behaviour, (d)

distress.

Table S1. GLM coefficients for each CNN model. Rumble

acoustic features as dependent variable. Reference for each

predictor category shown in italics across 4 predictor cat-

egories. P-value significance codes: *P < 0.05, **P < 0.01,

***P < 0.001.
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