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Abstract  
 

Heat networks (HN) have a key role in strategies proposed by the UK’s Committee on 

Climate Change, in support of which they recognise the requirement of proper standards. 

Collaboration across industry has culminated in technical standards, however, evidence has 

cast doubt on some of these. The diversity methods in the DS439, widely used in the UK, has 

been shown to overestimate peak capacities. Moreover, HN storage and its impact on peak 

demands and sizing, in which diversity plays a key role, is contested within industry. Thus, 

further study of the impact of storage and of the diversity methodology is required to inform 

the development of HNs.  

 

Considering this, the thesis aims to use real demand data to quantify the effect of 

domestic storage on HN demand. To do this, domestic hot water storage models and a 

distribution system model were built. The models were used to produce residual consumer 

demands for a sample of dwellings in a case study HN in the UK and to evaluate the impact 

of two storage scenarios, representing high and low diversity charging strategies, on the 

distribution pipe sizing and thermal loss from the stores as well as from the distribution 

network.  

 

 The results in this work can directly inform the district heat industry technical guidance 

and bring clarification to long standing industry debates. They include the recommendation 

of a sampling time for measuring demand for sizing HNs and an assessment of the 

overestimation of peak capacities in a real case study HN. Additionally, results show that 

although introducing storage reduces the thermal losses in the distribution network as 

expected, it doesn’t outweigh the increase in thermal losses from the stores themselves. 

Comparing storage scenarios showed the extent of the role that diversity plays in reducing 

peak demands across various points in the distribution network.  
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more care, and perhaps make their own measurements of demand when sizing their network.  

The findings regarding domestic storage brings much needed clarity to the ongoing 
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diversity. Whilst practitioners are commonly either highly opposed to or strongly in favour of 

domestic storage, the results suggest a different perspective altogether. Although domestic 

storage is shown not to bring about an overall savings of heat loss in the network, the 

difference is so small that it is entirely possible that savings may come about given a different 

topology or arrangement of storage. Thus, neither of the ‘for’ and ‘against’ camps can be said 

to be unequivocally correct. What can be said is that whatever the case may be, the difference 
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The findings regarding the oversizing of the case study heat network provide evidence to 

support the chorus of industry practitioners warning the industry about the impact of the use 

of design guidance not intended for use in the UK. The results, proving the existence of 

oversizing of heat networks distribution systems and documenting the impact on heat loss, 

are the first of its kind and should act as clear evidence for the need to revise the sizing 

methodologies found in technical design guidance.  
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such as this is timely and important. To increase the visibility and impact of the work, the 
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industry events, join relevant professional societies and working groups, partake in standards 

committees and submit evidence to government consultations. 
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1 Introduction  
 

1.1 Motivation for the Thesis 
 

In response to the Paris Agreement, a global agreement that sets temperature goals in light of 

the challenge of climate change, the UK's Committee on Climate Change (CCC) has 

developed strategies to enable the UK to reach net zero (CCC, 2020; Paris Agreement, 2015). 

Primary among the challenges to decarbonising the UK energy system is decarbonising heat 

to buildings. The CCC published the "Balanced Net Zero Pathway" setting out a detailed 

scenario through which the UK could reach its climate goals. Part of the package of solutions 

to address decarbonising heat to buildings is the roll-out of heat networks (HN), in addition to 

upgrading the supply sources of existing HNs to being low-carbon. HNs and electrifying heat 

through heat pumps, supported by an increase in energy efficiency in homes describes the 

general scenario for decarbonising heat to buildings. Low-carbon HNs are set to be built 

through 2020-2050, where scaling-up occurs through to 2028, at which point 0.5% of the 

total heat demand per year will be delivered through HNs (CCC, 2020). This will result in 

around a fifth of heat being distributed through HNs by 2050 (CCC, 2020).  

 

HNs are recognised globally as a technology that can aid the transition to a cleaner energy 

system, e.g., through the integration of renewable energy sources (RES) because of the 

potential for HNs to provide operational flexibility which can act to buffer the fluctuating 

nature of the RES supply (Luc et al., 2020). Countries leading in the use of cleaner heating 

technologies, such as Sweden, have energy systems that have developed based on HNs 

(Kavvadias et al., 2019). The UK, on the other hand, which has been historically reliant on 

natural gas and is heated primarily using gas boilers requires government action to leverage 

HNs into the market. This is being undertaken, for example, through the HNs Delivery Unit, 

which was formed to provide funding and support to local authorities, and through the HNs 

Investment Project, created to provide capital funding for HN projects. The Balanced Net 

Zero Pathway expects that by 2030, 19% of all low-carbon heat installation sales will be HNs 

(CCC, 2020).  

 

1.2 Research Gap 
 

The CCC recognise the enforcement of robust design standards being critical in enabling 

HNs to perform effectively in the climate strategies (CCC, 2020). Industry organisations have 

been working together to create such standards, guidelines and best practices. These efforts 

have culminated in the Code of Practice, a document that sets out guidelines and best 

practices for all the stages of HN development (CIBSE, 2014; CIBSE, 2020). Although the 

information in the document is the result of extensive collaboration across industry experts, 

there remain some points of contention which, if persisting, could create uncertainty for HN 

designers and developers.  

 

A key point of contention lies around the effect of diversity, the use of thermal energy storage 

(TES) and the combined effect of these on the demand of a HN (HWA, 2018; Smith, 2016). 

Diversity is used to describe the effect on the aggregate demand of a HN that results from the 

peak demands of individual users being unlikely to occur all at the same time. The peak 

aggregate demand is smaller than the sum of the individual peak demands, and it is as such to 

a degree that increases with the number of users connected to the network (Wang et al., 2020; 

Weissmann et al., 2017). Some studies on the impact of diversity on aggregate HN demand 
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have been conducted in European countries, however, few UK studies exist and fewer still 

are studies that use real data (Smith, 2016; Wang et al., 2020; Weissmann et al., 2017). 

Diversity is sensitive to the presence of DHW TES because it changes the shape of a demand 

profile. There is a significant amount of literature on storage in HNs, but none that focus on 

the relationship between diversity and storage (Borri et al., 2021; Guelpa and Verda, 2019; 

HWA, 2018). The limited understanding of the complex interplay between the effect of 

diversity and storage has prevented the establishment of best practices in this area. Adding 

further complexity to the matter is the uncertainty around accurately quantifying the effect of 

diversity using existing methods, as evidenced by the discrepancy between design values and 

real values of aggregate demand and peak flow rates, and the question of viability in applying 

standards outside of the country of origin (CIBSE, 2020, 2016; Jack et al., 2017; Fuentes et 

al., 2018; Kõiv and Toode, 2006). As it stands, HN designers commonly use the Danish 

standard of diversity, which is recommended in the Code of Practice (CIBSE, 2020). Being 

able to quantify the diversity effect is crucial to the design of efficient HNs. Underestimating 

the effect of diversity can lead to increased capital expenditure, for example through 

investment in oversized distribution pipes and peak power boilers, as well as resulting in 

increased thermal losses because of oversized network components (Weissmann et al., 2017). 

Thus, there is a strong need to understand the basis of the diversity estimation methods 

provided in existing technical standards and to assess their applicability outside the country 

of origin. There is a clear need to develop a family of diversity curves using real UK demand 

data (Open Data Institute, 2017; Smith, 2016).  

 

 

1.3 Aims 
 

Considering the above, the proposed study aims to inform the technical standards, 1. by 

characterising the real diversity effect of a HN and identifying influencing factors, and 2. by 

evaluating the impact of domestic hot water (DHW) TES on HN demand and design in the 

presence of diversity. The study will use real data from a large group of dwellings in a 

communal HN to determine individual and aggregate demand profiles, and then use the 

demand profiles to determine the real diversity effect and examine how it behaves across 

different levels of aggregation (over the number of dwellings and over time). Secondly, the 

individual demand profiles will be used to produce residual demands, i.e., the demand after 

storage installation, for each dwelling in the dwelling sample. The set of residual demands 

will then be used in assessing the impact of storage on demand and relevant aspects of the 

design of a HN.  

 

1.4 Thesis Layout 
 

The chapter that follows the current one is the Literature Review chapter in which a review of 

relevant research is presented. Following that, the Research Questions and Methodology 

chapter provides an outline of the research gaps identified in the literature review and 

summarises them by forming two research questions. The methods used in this work are 

given in the same chapter. Following that, the Data Collection chapter outlines the systems 

and methods of collecting the data and describes the data and its limitations. The results of 

the work are then presented in three results chapters: Results 1 – Generating Demand 

Profiles, Results 2 – Demand and Diversity, and finally, Results 3 – DHW Storage Impact on 

HN Design and Demand. The thesis concludes by summarising and discussing the key results 

and implications for the UK HNs industry in the Discussion and Conclusions chapters.  
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2 Literature Review  
 

2.1 Introduction  
 

This section starts by laying out the physical concepts most pertinent to this thesis. Following 

this, a literature review, conducted with the aim of laying out the existing research and 

debates that have shaped this study, is presented. The review considers the topics of energy 

demand in HNs and the physical and social factors that influence it, diversity of demand and 

relevant guidance and technical standards, and finally, thermal energy storage and its impact 

on HNs.  

 

The remainder of this section gives the context of the research area, describing the wider 

implications of the topic. Section 2.2 describes the structure of a HN and outlines the function 

of key components that make up a typical HN. Section 2.3 details the physical and social 

factors playing a part in DHW demand, space heat (SH) demand, and HN demand as a whole. 

Section 2.4 draws on key studies on demand diversity in the context of HNs and electricity 

networks as well as in stand-alone dwellings, presenting their findings and describing the 

various metrics used by each to describe diversity in demand. The relevant diversity guidance 

and technical standards and their origins are investigated and critiqued in their application in 

UK HNs in Section 2.5. Section 2.6 details the technical guidance and standards relating to 

pipe sizing. Section 2.7 presents other relevant HN design guidance. Section 2.8 explores 

thermal storage in HNs, presenting the various potential configurations and their merits and 

limitations. Finally, Section 2.9 summarises the key take-aways from the literature review 

and highlights the research gaps made evident. 

 

2.1.1 The Role of HNs in Decarbonisation 

 

The Paris Agreement is a global agreement that sets long-term temperature goals and aims to 

reduce global emissions to Net Zero by 2050 (Paris Agreement, 2015). In response to the 

agreement, the CCC have been developing strategies to enable the UK to reach these goals 

(CCC, 2020). The committee recognises one of the key challenges as being the 

decarbonisation of heat in buildings. In their recent publication, the "Balance Net Zero 

Pathway", the CCC propose that decarbonising heat to buildings could be achieved through a 

combination of electrifying heat through the widespread use of heat pumps, the roll-out of 

low-carbon HNs in heat-dense areas and shifting existing HNs that have combined heat and 

power (CHP) as their supply source to having low-carbon or waste heat sources (CCC, 2020). 

This shift is to be supported by an increase in the energy efficiency of homes, which acts to 

reduce the energy demand that needs to be met by the heating technologies (CCC, 2020). The 

CCC refer to HNs that deliver heat to both domestic, non-domestic and mixed areas, 

however, this thesis focusses on HNs that serve domestic buildings. In the long term, HNs 

bring other strategic benefits such as the facilitation of the deployment of large-scale thermal 

storage that contribute to the terawatt hours of energy storage required in future, partially or 

wholly, renewable energy systems (Cassarino and Barrett, 2022). 

 

2.1.2 A Brief History of the HN Market in the EU and UK 

 

Having had reliable access historically, the UK has grown reliant on natural gas resulting in 

the gas boiler being the dominant method by which the UK heats its homes. There are around 

20,000 HNs in the UK, comprising both communal HNs and district heating, connected to a 
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total of around half a million consumers (ADE; 2018; BEIS, 2019). Other EU countries, such 

as Denmark which has historically had limited access to fuel commodities like natural gas, 

have had to adapt to the limited availability of resources by developing highly efficient HNs 

that provide heat to consumers at reasonable prices (Kavvadias et al., 2019; Werner, 2017). 

The Balanced Net Zero Pathway predicts that low-carbon installation in homes will account 

for 80% of all heat sales, of which 19% will be low-carbon HNs (CCC, 2020). In the UK 

where the market is dominated by cheap gas, leveraging technologies like HNs into the 

market needs government support (ADE, 2018; BEIS, 2020a; BEIS, 2020b). As a response to 

the demand for growth in HNs, the UK government have created the HNs Delivery Unit 

(HNDU) to provide strategic funding and support to local authorities and the HN Investment 

Project (HNIP) to provide capital funding to HN projects in the UK (BEIS, 2020a).  

 

2.1.3 The Need for Robust Technical Standards 

 

The CCC views the "proper enforcement of standards" as being one of the key requirements 

needed for HNs to play an effective role in decarbonisation (CCC, 2020). Some industry 

bodies have already been working together to develop such standards and to set out how they 

can be met through guidelines and best practices, and other supporting entities, such as a 

voluntary standards body, have also been established (CIBSE, 2020: Heat Trust, 2021). The 

Association for Decentralised Energy (ADE) and the Chartered Institute for Buildings 

Service Engineers (CIBSE) together have published the Code of Practice (CP) which brings 

together the experience and expertise of a large number of individuals across both 

organisations (CIBSE, 2014; CIBSE, 2020). The second edition of this document, referred to 

as CP1.2, was published in 2020 given feedback from industry and researchers (CIBSE, 

2020). The document provides guidelines and best practices for all stages of HN 

development, from the feasibility stages to operation and maintenance stages. Even though 

significant progress has been made, there are still points of contention within the industry, 

leading to gaps in knowledge which create uncertainty for network designers and developers 

and, in turn, increases the risk of the development of poorly performing HNs (Smith, 2016).  

 

For example, it has been shown that the method recommended in CP1.2 for assessing peak 

aggregate heat demand, based on the Danish DS439 standard for determining design flow 

rates and therefore for distributing pipe sizing, overestimates values significantly (Open Data 

Institute, 2017: Dansk Standard, 2009). Studies have shown that using this method could 

potentially misinform the economic assessment for the construction of a HN because of 

overestimated capital costs (Smith, 2016). Other studies, focussed on apartment buildings, 

have shown that the DS439 has overestimated design flow rates and should it be used for this 

purpose in a HN, a likely outcome will be oversized pipes in the distribution system leading 

to additional heat losses (Jack et al., 2017; Weismann et al., 2016). Thus, there is concern 

within industry regarding the recommendation of this method and the implications that it 

could have for the performance of HNs, and, in light of this concern, there is recognition of 

the need for empirical studies to inform the standards, making them more robust in their 

application (Smith, 2016). Such empirical studies would need to be undertaken regularly 

enough to keep on top of evolving space heating and hot water patterns. 

 

With the advent of the internet-of-things type systems being used in HNs, making high-

frequency data collectable and accessible, there is a rich and growing source of data to 

support such studies (Heatweb Ltd., no date a). Thus, the available guidance information 

should be viewed as a work in development that stands to benefit significantly from on-going 
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research using real data, especially at this crucial juncture where HNs are being leveraged 

into the market.  

 

2.2 HN Physical Structure 
 

A HN is a centralised system that delivers heat to multiple buildings or dwellings from a 

central heat source. There are two main types of HNs. A communal HN (CHN) typically 

serves a smaller cluster of buildings or a single building. A district heating system (DHS) is a 

much larger HN often delivering heat to a neighbourhood, a town, or a city. It serves a 

diverse range of buildings, including residential, commercial and public properties. DHSs are 

commonly found in countries such as Denmark and Sweden, whereas CHNs are commonly 

found in the UK (ADE, 2018; BEIS, 2020a; Bøhm, 2013; Gadd, 2013a). This work is based 

on a CHN, and therefore, much of the material in the literature review focusses on CHNs. 

 

Figure 2.1 shows the typical structure of a HN where the heat plant is located in a different 

locale to the residential building that is served. The two are connected by distribution system 

whose secondary and tertiary parts are within the building and whose primary part connects 

the heat plant to the building. 

 

 
Figure 2.1: Shows the component parts of a HN connected to a residential building (CIBSE,2020) 

The typical structure of a HN will involve the following components. 

 

- Heat source: a central source where heat is generated, e.g., a CHP plant, a biomass 

boiler or a conventional natural gas boiler. The heat source generates heated fluid 

which is then transported through pipes in a distribution system. 
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- Distribution system: this is a network consisting of insulated pipes that transport the 

heat from the heat source to the building or dwellings. The pipes are often buried 

underground to reduce heat loss to surroundings.  

- Heat substations: substations, consisting of heat exchangers, can be found at points in 

the distribution system and act as interfaces between different parts of the network. 

They can be located in the basement of residential buildings for example, where they 

act as an interface between the primary network and the secondary network1 which is 

within the building. 

- Heat interface units: these are heat exchangers that act as the interface between the 

heating systems in individual dwellings and the distribution system (often the 

secondary or tertiary parts of the distribution network, depending on the network 

design) 

 

The heat interface unit (HIU) is the interface between the domestic SH and DHW circuits, 

and typically consists of two heat exchangers, one for each domestic circuit. The distribution 

pipes of the HN enter the HIU to meet the heat exchangers. Typically, there is one primary 

flow and return that is diverted either to the SH heat exchanger when there is SH demand or 

to the DHW heat exchanger when there is DHW demand. If DHW is given priority, the flow 

will divert to the DHW exchanger at all times of demand, regardless of a coincident demand 

for SH. A detailed schematic of a typical HIU is given in Section 5.2.2.1.  

 

2.3 Energy Demand  
 

Heat demand in dwellings derives either from the need for space heating or hot water, and 

both are driven by both social and physical factors. Social factors are based on the occupants 

of the dwelling and their behaviour such as the number of occupants, occupancy patterns, and 

the socio-economic and cultural backgrounds of the occupants (Marini et al., 2019: van den 

Brom et al., 2019). Physical factors include factors such as external temperature and climate, 

building design (e.g., building size, insulation levels, etc.), and heating system characteristics 

(Aragon et al., 2022). The total resulting demand profile is dependent on the occupant heating 

behaviour, the properties of the heating system and the building, and the external 

temperatures. The complete load profile of a dwelling is the result of the interaction between 

the social and physical factors and how that interaction drives the demand. In this section, the 

driving factors of DHW demand are described and the role that DHW demand plays in 

diversity is introduced. Secondly, the key factors that drive variation in domestic demand are 

also described and finally, the key components of HN demand in totality are laid out. 

 

2.3.1 DHW Demand  

 

Instantaneous DHW demand in dwellings is largely dependent on the set point temperature 

and the incoming cold-water temperature. When designing for the supply of DHW in HNs, 

DHW tends to be estimated using the factors of demand temperature, volume requirement per 

person and household size (DECC, 2019; Yao and Steemers, 2005). The Energy Savings 

Trust conducted a study, consisting of ~120 dwellings, of which one aim was to measure the 

volumetric consumption of DHW and the associated energy requirement (Energy Savings 

Trust, 2008). Measurements were taken to describe the hot water consumption, the hot water 

 
1 In this thesis, the terms ‘secondary network’ and ‘primary network’ will be used to refer to a specific section 
of the connected system of pipes between the heat plant and HIU whereas the terms ‘distribution system’ or 
‘network’ are used to refer to the connected system of pipes as a whole. 
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delivery temperature, and the cold-water inlet temperatures. The cold-water temperature 

distribution is shown in Figure 2.2. The mean of the cold-water temperatures measured was 

15.2˚C.  

 

 
Figure 2.2: The cold-water temperature distribution for a sample of dwellings (Energy Savings Trust, 2008) 

There is a small seasonality effect on DHW demand resulting from holiday taking and 

warmer cold inlet temperatures in the off-heating season. Figure 2.3 shows the volumetric hot 

water consumption by month for the sample of dwellings, indicating a reduction of 

consumption in the months of July and August, attributed to the absence of occupants due to 

holiday-taking (Energy Savings Trust, 2008). A study of apartments in an apartment building 

in Norway showed a similar pattern, shown in Figure 2.4, again attributed to holiday-taking 

(Ivanko et al., 2020). Similar findings are also presented in a study of DHW consumption in 

apartment buildings in other European countries (Grasmanis et al., 2015; Vámos and 

Horváth, 2022). In Figure 2.5 below, a marked seasonal variation in cold-water inlet 

temperatures is seen; however, the hot water delivery temperatures are seen to be constant 

through the year. The above suggests that there is a seasonal variation in DHW demand 

resulting from the increase in both cold-water inlet temperatures and periods of occupant 

absence in the off-heating season.  

 

 
Figure 2.3: Annual volumetric hot water consumption (Energy Savings Trust, 2008) 
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Figure 2.4: Mean monthly DHW consumption in sample of 49 dwellings (Ivanko et al, 2020) 

 
Figure 2.5: Annual hot water delivery and cold-water inlet temperatures (Energy Savings Trust, 2008) 

 

2.3.1.1 HN Demand and Diversity  

 

Due to the characteristic differences in SH and DHW demands, the diversity effect is 

different in each. There is a distinct lack of literature that explore these differences (Huang et 

al., 2020). Current design standards treat diversity in SH and DHW independently, 

instructing that diversified flow rates be calculated separately for SH and DHW and 

combined afterward (CIBSE, 2020). The DS439 is the basis for the DHW diversity, and 

another Danish curve is used for SH diversity. The curve recommended for the SH 

calculation was originally intended for calculations concerning SH and DHW together and 

therefore it is noted that further analyses using existing UK HNs is required (CIBSE, 2020). 

The diversity methods for DHW and SH are explored further in Section 2.5. 

 

Ultimately, there is little understanding of how the diversity effect is different in DHW 

demand and SH demand and how this may impact aggregate demands that need to be 

considered when sizing pipes in the distribution system. Expanding knowledge in these areas 
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would not only be useful in informing existing technical guidance but also in understanding 

the implications of evolving DHW and SH demands. For example, increasing building 

insulation, which reduces the demand for SH, means that DHW demand may become 

increasingly dominant (Bøhm, 2013; Marini et al., 2015; Marszal-Pomianowska et al., 2019). 

At present, DHW demand accounts for about 20-25% of the total demand of a dwelling, or 

40-45% in energy-efficient homes, however, as occupant demands evolve so too should 

technical guidance (Bøhm, 2013; Marini et al., 2015; Marszal-Pomianowska et al., 2019). 

Empirical studies with a focus on understanding the diversity effect in SH and DHW 

independently will aid such an aim. 

 

2.3.2 Variation in Domestic Demand 

 

Van den Brom et al. (2019) in their study of variance in residential heat consumption 

concluded that approximately half of the variation seen in demand is because of differences 

in occupant behaviour, the remaining half being because of differences in building 

characteristics. Furthermore, it was shown that the influence of the occupant is more 

significant in energy-efficient houses and vice versa (van den Brom et al., 2019). Thus, as 

dwellings become more energy-efficient in the future, it can be expected that the influence of 

occupants will become more significant. Patterns can be seen in how occupant behaviour 

affects heat demand; for example, working outside their homes means that those occupants 

will be absent for working hours, leading to many domestic demand profiles having a peak in 

the morning and a peak in the evening, where much of the energy demand occurs (Do Carmo 

et al., 2016; Summerfield et al., 2015). Although there are common patterns across domestic 

load profiles, there are also variations that result from the stochastic nature of occupant 

behaviour and the variation in the heating systems and building properties. These factors 

drive the diversity effect seen when individual demand aggregates to form network demand 

(Fischer et al., 2016; Weissmann et al., 2017; Yan et al., 2015).  

 

2.3.3 HN Demand and Drivers  

 

Gadd et al. (2013a) describe the heat load of a network as being the sum of the aggregate heat 

load and the heat losses occurring in the distribution system. They add that the heat load is 

controlled by four system components; the hot water taps and valves in the radiators, the 

control valves on the primary side of the substations, which are responsible for maintaining 

the supply temperatures using variable flow, the differential pressure control on the primary 

side, which maintains the differential pressure at the periphery of the system at a set point, 

and the supply temperatures on the primary side (Gadd et al., 2013a). The extent of losses 

from the distribution length depends on the physical properties of the pipes that make up the 

system, e.g., insulation levels, pipe surface area, piping length, etc, and on the temperature of 

the fluid and the external temperature (Guelpa, 2021; Hennessy et al., 2019). The aggregate 

consumer demand is driven largely by individual and collective heat demands where 

collective demands refer to the demand that results from collective behaviours such as 

uniform or harmonised working hours (Gadd et al., 2013a; Gadd et al., 2013b). HN load 

profiles usually present variation across seasons due to the significant shift in external 

temperatures and the resulting changes in collective heating behaviour (Gadd et al., 2013a; 

Gadd et al., 2013b; Pakere et al., 2016). Daily variation is driven by changes in external 

temperature too, as well as variation in solar radiation that is incident on the dwelling, and the 

behaviour of occupants (Noussan et al., 2017; Pakere et al., 2016).  
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2.4 Demand Diversity 
 

Diversity of the individual demand profiles that make up the aggregate demand profile means 

that the maximum aggregate demand will not to be higher than the sum of the individual 

maximum demands; thus, the effect of diversity is a key consideration when designing HNs 

(Chesser et al., 2020; Ramírez-Mendiola et al., 2017; Weissmann et al., 2017; Wang et al., 

2020). In addition to the variation across the individual demand profiles, features of the 

network itself can add to the diversity effect. For example, the return flow in a larger network 

will reach the central plant at more varied times compared with a smaller network, thereby 

adding to the diversity effect (Gadd et al., 2013a; Pakere et al., 2016). Furthermore, larger 

networks that use parts of the pipeline as temporary storage will also contribute a larger 

diversity effect (Guelpa, 2021). This effect is present for any HN because any distribution 

system will act as a store of sorts even though it may not be deliberately utilised as a store. 

The resulting diversified aggregate peak demand bring benefits such as reduced installed 

capacity, resulting in lower investment costs and lower operational and maintenance costs 

(Weissmann et al., 2017; Winter et al., 2001). Smaller peak demands also allow for smaller 

pipe sizing, thus reducing the heat losses from the distribution system (CIBSE, 2014; CIBSE, 

2020). 

 

2.4.1 Review of Diversity Metrics 

 

Diversity is referred to in the literature in many ways, and one can find a range of metrics 

being used to quantify diversity and related parameters. For example, Happle et al. (2020) 

defines it as being the "fundamental differences between buildings", thus suggesting that 

diversity is the differences in the physical and social characteristics of the buildings and their 

components. In some studies, on the subject of energy security, diversity is used to refer to 

the diversity in energy sources or energy suppliers (Skea, 2010; Stirling, 2010). The Diversity 

Factor is a metric defined as the ratio between the "sum of the peaks" (i.e., the sum of the 

peaks of the individual demand) and the "peak of the sum" (i.e., the peak of the aggregate 

load) (Happle et al., 2020; McKenna et al., 2016; Wang et al., 2020). The inverse of the 

Diversity Factor, referred to as the Simultaneity Factor or the Coincidence Factor, are also 

metrics that have been used in studies (Guan et al., 2016). Investigations based on the 

aggregate peak load have been seen to use the After Diversity Maximum Demand (ADMD) 

which describes the peak of the aggregate load per number of dwellings (Chesser et al., 2020; 

Wang et al., 2020). Winter et al. (2001) and Weissmann et al. (2017) refer to the metric of 

peak load ratio (PLR), which is similar to the Diversity Factor in that they are both calculated 

using the variables of the "peak of the sum" and the "sum of the peaks."  

 

2.4.2 Diversity in Electricity Networks 

 

Understanding diversity and its effects is crucial in designing any energy network, such as 

electricity grids (Gallo Cassarino et al., 2018; McKenna et al., 2016; Torriti, 2014) or multi-

energy systems (Good et al., 2015). Electricity has always been distributed through large 

networks and so there is a significant amount of literature that has looked at the diversity in 

electricity systems in the UK (Chesser et al., 2020; McKenna et al., 2016; Torriti, 2014). 

Since transitioning to cleaner energy systems has become a global priority there have been 

numerous studies published on the topic of diversity in electricity networks and how they are 

impacted in light of these new challenges. For instance, McKenna et al. (2016) conducted a 

study on the impact of electricity demand profiles and their diversity on residential buildings 
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in the context of low-carbon technology uptake. Chesser et al. (2020) investigated the impact 

on the ADMD in the context of uptake of Air Source Heat Pumps in residential households. 

Although diversity studies in the context of electricity demand are common, there is limited 

literature on the diversity in the context of heat demand in the UK, likely due to the recency 

of their emergence in the UK market. The impact of diversity is more important for HNs than 

gas or electricity networks where cost and losses are less of a function of peak demand and 

pipe/cable size. 

 

2.4.3 Drivers of HN Demand Diversity 

 

Weissmann et al. (2017) conducted a study that aims to identify the building and occupant 

related characteristics that have a significant influence on the demand profile of residential 

buildings and quantify their influence on the diversity effect, with a view to understanding 

how the effect of diversity may be leveraged to reduce the installed capacity of the central 

heat source. The study modelled a large number of diverse load profiles based on varying 

building properties, user profiles, temperature control, etc. The metric of PLR is used to 

describe diversity. PLR is defined as the difference between the sum of the individual peak 

demand and the central supply maximum as a fraction of the sum of the individual peak 

demand. The sum of the individual peak demands is also referred to as the "sum of the 

peaks." The central supply maximum demand is a theoretical figure that describes the 

maximum demand of the aggregate demand. This is sometimes referred to as the "peak of the 

sum." A higher PLR indicates an increased diversity effect.  

 

The first set of results suggests that certain features can have a larger impact on diversity than 

other features. For multi-family buildings with a higher occupant density, it was found that 

the diversity effect was especially sensitive to changes in the user profile. In contrast, in 

single-family homes with a lower occupant density, it was found that changing the insulation 

of the building envelope had the most significant impact on the diversity effect. The study 

also showed that the kinds of individual demand profiles that significantly add to the 

diversity effect are those of newly built buildings that have higher levels of insulation and 

thus the influence of hot water demand on the maximum load becomes primary. This 

suggests that DHW has a stronger influence on diversity than SH demand. This is an 

important consideration given that DHW demand is likely to become a more dominant part of 

total dwelling demand in the future. Control features such as temperature set-back can either 

increase or decrease PLR, depending on the start time of the heating up period. If the start 

time is different from other buildings in the district, the effect of diversity will increase. 

Considering the study’s aim to maximise the benefits gained from diversity and at the same 

time reduce the increased losses from the distribution system, the authors recommend that the 

HN connects as diverse a mix of profiles as possible given the constraint imposed by the 

supply temperature requirements of buildings in order to increase the benefits gained from 

the diversity effect. They specifically recommend a combination of buildings with different 

construction years, different temperature setback controls and different user profiles to 

increase the PLR.  

 

In the second part of the study the most diverse of the profiles were used as inputs in a district 

heat (DH) model of four types that vary in their location, in a city or a rural setting, and in the 

year in which the buildings in the district were built, 1960 or 2016. The study showed that 

supply temperatures were required to be around a couple of degrees higher in the district 

supply models in order to overcome the distribution losses. The results showed that the 1960s 
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scenarios had a diversified demand peak (the peak needed to be met by the central heat 

generator, thus including distribution losses) that was significantly higher than the aggregate 

individual supply load because of the higher supply temperatures required for space heating 

which led to high distribution losses. Moreover, in this scenario, the supply temperature is 

higher than the required hot water temperature of the buildings, which could lead to 

inefficiencies that would not present in an individual supply scenario in which the individual 

boilers can meet the two separate demands using different supply temperatures. Resultantly, 

in these scenarios, the reduced aggregate peak demand is outweighed by the distribution 

losses.  

 

The profile shape that is applied by a large number of suppliers in Germany is a synthetic 

profile that represents the mean demand from a multitude of buildings where the influence of 

single-building-related characteristics cannot be recognised, thus implying that using such 

synthetic profiles may lead to errors when estimating the aggregate peak demand of a HN 

because it fails to account for the effect of diversity. Because of the continued use of such 

synthetic profiles, the authors recommend that further work be done with the aim of 

enhancing the synthetic profiles so that they become a more accurate representation of 

reality, such as by including the use of the PLR-related results for analysing the diversity 

effect. The authors point out that their models are limited since they used static hot water 

demand profiles and thus did not capture the effect of stochastic occupant behaviour around 

hot water use on the diversity effect. They highlight that such inclusion is likely to have 

produced higher PLR values. Weissmann et al. (2017) also state the next steps for extending 

the model to be to include thermal storage.  

 

Happle et al. (2020) is a recently published study that investigated the impact of the diversity 

of occupancy profiles of commercial buildings of the same use-type and its impact on the 

energy demand in a case study district cooling system. The authors raise concern over the use 

of Urban Building Occupant Presence Models (UBOP) that are used to generate occupancy 

profiles for use in Urban Building Energy Modelling for HNs because such occupancy 

models account only for differences that result from building geometry and construction 

properties, whilst disregarding the differences that exist within buildings of the same use-

type. The authors describe the variability in occupancy profiles of buildings of the same use-

type as being a combination of diversity, stochasticity, and seasonality. Diversity, as referred 

to in this paper, describes the "fundamental difference between buildings of the same use-

type." Stochasticity is used to describe the "random variation in daily profiles of a specific 

building." Seasonality is used to describe "underlying behavioural trends influencing all types 

of buildings, such as the weather or holidays." Diversity in residential buildings or single 

dwelling homes could also be said to be contributed by these factors, as they are different 

buildings of the same use-type.  

 

The above study considers only how diverse occupant behaviour affects district energy 

demand. It does not account for the diversity that results from building system properties, for 

example. Similar to conclusions drawn about residential buildings in Weissmann et al. 

(2017), it was found that diversity effect is more important when occupant density is higher. 

Another key result of the study showed that using diverse urban occupancy profiles results in 

a diversity factor below 0.8 for the studied district. This leads the authors to warn that using 

uniform individual profiles in designing heat or cool networks may result to diversity factors 

that are above the threshold below which network development can go ahead. The threshold 

diversity factor of 0.8 is based on the operator experience of the operators of HNs in Hong 

Kong. The value of 0.8 is also the diversity factor value that is given for a number of district 
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cooling systems in the surrounding area, suggesting that it might be the accepted threshold 

value for what is a key parameter that is considered when deciding to develop a district 

energy system or not. This highlights the significant effect that simplistic UBOP models have 

on district energy demand estimation and, therefore, also on energy system planning 

decisions. Further work suggested by the authors is the use of probabilistic demand 

simulation in the design of heat or cool networks with high occupant densities, thus 

highlighting the need for the integration of the effect of variability in occupancy profiles and, 

therefore, also on the diversity effect of a district. Although there is little evidence for 

instances where HN plans have fallen short of the threshold, it is easy to imagine that such 

occurrences are going on unnoticed in urban and residential networks alike. The study also 

brings to light the prevalence of dependence on practitioner experience and the use of 'rules 

of thumb' when designing and constructing HNs. Applying experience-based techniques in 

the development of HNs could have unforeseen consequences because their generalisability 

is seldom studied or confirmed. Thus, there is a need to supplement using rules of thumb in 

HN design with studies based on real data in order to test and map the limits of the 

applicability of the rules of thumb.  

 

2.4.4 The Need for Empirical Diversity Studies 

 

The studies in the preceding sections have demonstrated how the use of simplistic models can 

have an adverse impact on HN development decision making and also potentially on their 

performance. The above modelling studies can only describe the isolated impact of a given 

factor on diversity, e.g., occupancy profiles, building properties, etc. These kinds of studies 

are useful in describing the sensitivity that diversity might have to any of these factors, but 

the approach of modelling cannot accurately describe the real impact of the combined effect 

of the factors. Modelling studies are complemented by studies that use real data because 

measured data have the capacity to capture the idiosyncratic behaviours that are not present 

in model simulations. This could be especially the case where stochasticity is a key 

component of the studied phenomena, and where the various factors at play, such as the 

physical building and network related factors, along with the social behaviour related factors, 

have a combined and complex impact.  

 

One study using real data from UK dwellings to understand diversity looked specifically at 

the ADMD, the aggregate load peak, and its dependence on the number of dwellings in order 

to understand the minimum number of dwellings required to accurately assess ADMD (Wang 

et al., 2020). Using smart meter data giving gas consumption over a period of a year which 

included two of the coldest days in recent UK weather history which is pertinent to 

understanding demand in extreme weather events. The ADMD was calculated for the two 

cold days and expressed as a function of the number of dwellings, revealing an asymptotic 

relationship that was used to identify the number of dwellings that are required to accurately 

assess the ADMD. This work is an important first step in understanding the effect of diversity 

in UK HNs, and it could be used to inform technical standards. However, limitations include 

that the findings cannot be generalised to networks with storage and since findings describe 

extreme cold day events, they may only be part of the picture. Furthermore, the data is not 

from dwellings on a HN. Thus, one has to consider whether the fact of being connected to a 

wider system would have an effect on aggregate peak load that would not be present in the 

analysis of disconnected dwelling demand. Understanding the ADMD is crucial in 

determining the size of the installed capacities and the distribution pipes. Likewise, 

understanding the aggregate peak load where the constituent loads are residual loads of 
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systems with storage will be crucial to sizing capacities and transmission pipes of networks 

with storage. The use of half-hourly data may have limited the size of the peaks, too.  

 

 

2.4.5 The Impact of Sampling Time on Individual and Aggregate Demand 

 

When delivering demand through any kind of energy network, it is important to consider the 

relationship between individual consumer demands and aggregate demands (Carpaneto, 

2006; Carpaneto, 2008; Sajjad, 2016). An important consideration when investigating 

individual and aggregate demands is the sampling time. A study investigating the impact of 

sampling time on load variation at different levels of aggregation for electricity networks, 

with the aim of determining the potential flexibility of residential demand, explicated the 

relationship between sampling time and aggregate demand in the following ways (Sajjad, 

2014). 

 

- There is a trend to losing the impact of single customers on the aggregate demand 

with increasing sampling time. 

- As aggregation increases the demand profile becomes more and more similar. 

- As sampling time increases, the diverse behaviour of aggregate profiles is 

increasingly ignored. 

 

Although these results refer to the specific set of customers studied in the paper, the general 

trends are expected to hold, with slight variations dependent on demographic and topology 

(Sajjad, 2014). These trends have also been noted in studies using real HN data to study 

diversity. Cosic (2017) used high-frequency DHW data collected for a group of dwellings by 

the Energy Savings Trust in order to inform the design standards and practices of UK HNs 

and thereby improve their performance. A key consideration in this effort was addressing HN 

oversizing resulting from the use of accepted design standards that overestimate DHW peak 

loads. The authors state the need for a national UK standard derived from primary data from 

a relevant sample of dwellings, which can be cited by consultants accepting a design liability. 

The DHW data were used to create individual load profiles for 40 homes. Demand 

distributions for the aggregate demand for 1, 5, 10, and 40 dwellings were presented. 

Table 2.3 summarise the key percentile values for the aggregate demand distribution for 40 

dwellings, 10 dwellings, and the demand distribution for individual demand respectively. The 

authors found that 5-second, 10-second, 30-second and 1-minute data led to nearly identical 

aggregate demand distribution at an aggregation level of 40 dwellings, and thus, 1-minute 

data would be acceptable for analysing HN demand at this scale. 5-minute data is said to be 

likely acceptable for analysing demand at this scale with an appropriate safety factor of 20-

30%, or where the demand of residents in the HN is as similar to each other as the sample of 

suburban dwellings used in the study. Hourly data is said to be indicative of the storage and 

the heating capacity that would be required to meet demand at the plant room. 1-second or 5-

second data at an aggregation level of 10 dwellings is deemed suitable for sizing pipework to 

individual HIUs where DHW is generated instantaneously. 30-second and 1-minute data 

could be used for the same with a safety factor of 10-20%. Sampling times higher than this 

are deemed unsuitable for sizing pipework directly connected to individual HIUs but may be 

used to size buffer vessels at the “riser” level of the network or for storage at the plant. The 

summary conclusions of the report are that 5 second or 10-second data is needed to fully 

capture the peaks of aggregate demands, whilst for fully capturing peaks in individual 

demands, higher sampling times are required. This conclusion is in alignment with findings 
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regarding electricity network loads presented above, where longer sampling time intervals are 

noted as leading to increasing loss of information at aggregate levels (Sajjad, 2014). 

 

 
Table 2.1: Percentile values for the demand distribution of the aggregate demand of 40 dwellings (Cosic, 2017) 

 
Table 2.2: Percentile values for the demand distribution of the aggregate demand of 10 dwellings (Cosic, 2017) 

 
Table 2.3: Percentile values for the demand distribution of individual demand (Cosic, 2017) 

 
 

2.5 Guidance and Standards for Diversity 

in HNs 

2.5.1 SH Diversity Factor 

 

For diversity in SH demand alone, CP1.2 calls for the use of operational data from a similar 

HN, or from modelling, to be used to derive a diversity curve. Failing this, a Danish 'rule of 

thumb' formula for a diversity factor as a function of the number of dwellings is given, 

reproduced below in Equation (2-1).  
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𝑆𝐻 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =  0.62 +
0.38

𝑁
 

( 2-1) 

The SH diversity curve is intended for district schemes in Denmark with both space and hot 

water needs; however, its use in determining SH capacities is considered valid provided that 

peak heating demand is calculated assuming heat losses to adjacent properties. No further 

clarifications are provided on this point; however, the need for further work analysing data 

from existing schemes for "more robust diversity calculations" is highlighted (CIBSE, 2020). 

Moreover, the individual impact of SH demand, separate to that of DHW demand, on 

diversity and therefore capacity estimations, has not been found to be the subject of any 

research literature. 

 

2.5.2 DS439: Pipe Sizing Method 

 

The most up to date guidance by CIBSE, given in CP1.2, calls for the use of the Danish 

diversity standards in diversifying peak demands where instantaneous DHW is being 

delivered. CP1.2 recommends that where data measured at intervals of one minute or less is 

available for dwellings of a similar type and occupancy it should be used to calculate a more 

empirical and specific diversity curve. When developing a diversity curve from the monitored 

data, the designer is instructed to consider the disaggregate demand for SH and DHW, the 

probability distribution of the measured diversified demand, and the variation in temperature 

of the cold feed-in water. The Distributing Pipe Sizing section in the DS439 (Section 2.3, 

DS439) provides the method that is used in CP1.2 for the calculation of the design local flow 

rate, a requirement for sizing the distributing pipes (any pipe that is connected to multiple 

outlets downstream of the system), 

 

𝑞𝑑 = 2𝑞𝑚 +  𝜃 (∑𝑞𝑓 − 2𝑞𝑚) + 𝐴√𝑞𝑚 ∙ 𝜃√∑𝑞𝑓 − 2𝑞𝑚 

( 2-2) 

where 𝑞𝑚 is the weighted mean water flow rate of all outlets connected to the distributing 

pipe, 𝑞𝑑 is the design water flow rate for randomly used outlets connected to the distributing 

pipe, ∑𝑞𝑓 is the sum of assumed water flow rates of randomly used connected outlets and 

where 𝐴 is a safety factor, and 𝜃 is the probability of draining 𝑞𝑚 at times of peak demand. 

These factors are to be elected by the designer depending on the levels of service that are 

required. Although the method was developed for centrally generated water systems, CP1.2 

justifies its use in sizing the distribution pipe sizes in HNs on the basis that flow rates in a 

secondary HN system are similar to flow rates where there is instantaneous hot water 

production (CIBSE, 2020). Figure 2.6 shows the diversity curve that corresponds to this 

method. 
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Figure 2.6: The diversity factor as taken from the DS439 (pipe sizing method) (CIBSE, 2020) 

 

2.5.2.1 The Origin of the DS439 Pipe Sizing Diversity Standard 

 

The basis for the analytical form of the sizing equation in the DS439 was built on probability 

arguments first proposed by Jonsson (1933). In its very earliest and most basic form, the 

formulation of the design flow rate, 𝑞, can be stated as a function of 𝑎, 𝑏 and 𝑐, where 𝑎 is 

the standard flow at a given outlet, 𝑏 is the mean of the other outlets, and 𝑐 is the risk factor 

which accounts for the random variation of the flow at the other outlets. 

 

 
Figure 2.7: a, b, and c are flow contributions that sum to give the design flow q. The function f(x) is the frequency function 
of the normal distribution (Holmberg, 1987) 

The probability arguments were taken by Rydberg (1945) and used to lay the theoretical basis 

for the analytical formulation that came to be used in Scandinavia (Holmberg, 1987). By 

1987, it had developed to be a formulation that is similar to the one used in the DS439 and in 

CP1.2. At the time, it was being used for dimensioning supply pipes and calculating the 

power requirement for hot water supplies (Holmberg, 1987). By 1997, the formulation shown 

in Figure 2.8 was being used for dimensioning DH substations (Wollerstrand, 1997). In 
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Wollerstrand (1997), it was critiqued, and a new formulation was proposed based on 

simulation results.  

 

 
Figure 2.8: The formulation of design flow that was in use at the time (Holmberg, 1987) 

Although the development of the formulation can be tracked some of the way, the evolution 

in its entirety that has led to the present formulation in the DS439 is unknown. Industry 

practitioners hold the belief that the formulation is based on empirical data from a Danish 

HN; however, no evidence has been found in support of this. Essentially, the extent to which 

empirical data has driven the evolution of the formulation seen in the DS439 in the present 

day, if any at all, is unknown.  

 

2.5.3 DS439: Heat Exchanger Sizing Method 

 

To further convolute matters, the DS439 has not one but two sections that have been 

interpreted by the UK HN industry as being useful in HN systems sizing, one being the sizing 

section intended for pipes (discussed in the previous section) and the other being the section 
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intended for sizing heat exchangers which are Sections 2.3 and 2.5 in the DS439 respectively 

(Dansk Standard, 2009).  

 

An empirical curve, developed by Guru Systems using real data from UK HNs, shown below 

in Figure 2.9, demonstrates oversizing by comparing the real capacities to the design 

capacities as determined using the Heat Exchanger Sizing method in the DS439 (Dansk 

Standard, 2009; Open Data Institute, 2017). The real demand in the graph below is the 

aggregate of individual demand; however, Guru Systems has done other work to show 

similar findings using real bulk meter readings (meter readings taken at substations), plant 

and building entry points (T. Noughton, personal communication, 2022). This shows that the 

oversizing that is indicated by the aggregate demand is confirmed using the real demand 

across the distribution network (the difference between aggregate demand and real demand is 

clarified in Section 2.5.4). The Guru curve shown below shows that for a scheme of 100 

customers, the real peak capacity would be 2.5 kW per customer, whereas the Danish curve 

estimates it to be 3.3 kW per customer. To produce the measured curve, Guru Systems, a 

HNs hardware and data-analytics company, analysed monitored operational data from a large 

number HNs. The curve is a result of 40 million real-time data readings from 2,000 dwellings 

(Open Data Institute, 2017; Smith, 2016). Moreover, the Guru Systems diversity curve 

considers both DHW and SH demand together, whereas the Danish curve is only for DHW 

demand, thus resulting in an overestimation that is even more severe (Open Data Institute, 

2017; Smith, 2016).  

 

 
Figure 2.9: Guru diversity curve for SH and DHW demand as compared with the DS439 curve (based on the heat exchanger 
sizing method) for DHW demand only (Open Data Institute, 2017; Smith, 2016) 

The other findings that demonstrate the potential oversizing of HNs resulting from the use of 

the DS439 standards (discussed in the following section) do not specify which part of the 

standards is being used. Thus, although it is accepted knowledge within the UK HN industry 

that the DS439 standards lead to pipe oversizing, limited efforts have been made to 

distinguish between the two relevant parts of the standard. Generally, there is no single 

accepted design standard being used for sizing HNs; designers will select what they deem to 

be suitable out of several different available standards, e.g., DS439 or SAV (as in SAV 

Systems (2013)). There have been accounts of designers misusing these standards, for 

example, by inappropriately scaling the diversity curves found in SAV Systems (2013) which 

are not intended to be scaled (Hanson-Graville, personal communication, January 2021). 
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The DS439 diversity curves were intended for use in specific settings, but there appears to be 

limited guidance or caveats in CP1.2 about their application in settings where conditions may 

vary. For example, the DHW diversity curve is intended for residential buildings, and there is 

no explicit guidance about determining diversity when designing networks composed of other 

kinds of buildings, apart from the guidance asking designers to develop their own empirical 

curves. This suggests that the development of empirical diversity curves for the most 

common kinds of HNs would be of value in the HN industry.  

 

2.5.4 DHW Technical Standards 

 

Kõiv and Toode (2006) conducted a study that assessed how DHW consumption had evolved 

over the last 30 years. Importantly, the study looked at how measured values of flow rates 

and DHW load compare with design values in the Estonian standards and other EU standards. 

The methodology for calculating design DHW flow rates in the Estonian standards are the 

same as those in the DS439. They found that measured flow rates are considerably lower than 

the design flow rates as calculated by methods provided in the standards. The authors also 

highlight that the discrepancy between measured and design heat load grows with an 

increasing number of dwellings. The paper contains limited discussion about the reasons why 

the methods in the technical standards lead to poor estimations; however, it is implied that it's 

related to the drastic changes in DHW consumption behaviour and systems in the past 

decades, suggesting that the Estonian standards and the DS439 are outdated (Kõiv and 

Toode, 2006; Kõiv and Toode, 2005). Methods in a number of other technical standards (e.g., 

Finland and Swedish) for estimating design DHW heat load were also shown to be 

considerably divergent from measured values, with the Estonian standards estimating values 

twice as high as measured values. The increasing extent of this divergence with an increasing 

number of dwellings suggests that assumptions made about diversity and the way in which it 

is represented in the technical standards' methodologies play a key role. The authors 

recommend creating new methodologies for "dimensioning instantaneous heat exchangers in 

apartment buildings" which include factoring in and being able to accurately represent the 

effect of diversity for different numbers of apartments. Further investigations could also 

attempt bringing to light what assumptions are being made in the methods in the technical 

standards that lead to design values that misrepresent real values.  

 

A similar, more recent study by Jack et al. (2017) aimed at addressing the widespread 

concern about the overestimation of design flow rates for residential buildings in the UK 

reviewed and categorised relevant technical standards according to their approaches. The 

study used the design estimates for a number of case study residential buildings to compare 

with measured values. Their key findings are shown in Figure 2.11. Resonant with what Kõiv 

and Toode (2006) implied, the authors state the reasons for overestimation as "the way in 

which appliance type, design, and usage patterns have changed significantly since the current 

probability-based method was first developed and adopted" (Jack et al., 2017). The DS439 

was among the studied standards, and results showed that it overestimates design flow rates 

for buildings with less than 100 apartments and significantly overestimates otherwise. The 

authors conclude that an empirical approach would be the most viable; however, they also 

point out that with more time, resources and data availability, other approaches, such as 

probabilistic or stochastic, may perform better (Ilha et al., 2008; Jack et al., 2017; Oliveira et 

al., 2013). Tindall and Pendle (2018) conducted a similar study, again comparing the 

measured flow rates with the design flow rates, showing that all investigated standards 

overestimate the design flow, as shown in Figure 2.10. 
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Figure 2.10: Comparison of measured flow rates and design standards (Tindall and Pendle, 2018) 

 

 
Figure 2.11: Comparison of a range of design standards relating to design flow rates (Jack et al, 2017) 

 

Fuentes et al. (2018) is a review of studies of DHW consumption in different types of 

buildings with the aim of estimating DHW consumption demand by synthesising the 

information found. Water consumption patterns in technical standards from a range of 

countries are also reviewed in order to identify influencing factors (e.g., climatic conditions, 

building type, seasonality, and socio-economic factors). The study shows variability in design 

flow rates of end-use devices given in the standards. The authors posit that this is likely due 

to the technological differences between countries. This raises concerns about the 

implications of applying national standards in countries outside the country of origin. 



 40 

Furthermore, it is shown that measured values of delivery temperatures are less than those 

commonly used in many technical standards (55˚C - 60˚C) (Fuentes et al., 2018). This 

reflects findings in other studies; the Energy Savings Trust UK conducted a field study that 

showed that hot water was delivered at mean temperatures of 52.9˚C for boilers and 49.5˚C 

for combi-boilers (Energy Savings Trust, 2008). The use of these temperatures can result in 

overestimating the energy use for DHW. 

 

Along with several other studies, Fuentes et al. (2018) call for further research to understand 

and characterise DHW consumption, specifically in terms of their profiles and their variance, 

and to go beyond metrics that describe mean consumption (Ivanko et al., 2020; Marszal-

Pomianowska et al., 2019; Weissmann et al., 2017). Research that produces characterisations 

of this level of resolution can be done with the use of high-frequency measured temperature 

and flow rate data, which gives information on profile shape at high resolution from which 

draw length and timings of draws can be calculated.  

 

 

2.5.5 Real Demand vs. Aggregate Demand in the Distribution System 

 

In this section, clarifications are made between the aggregate demand and the real demand at 

a given point in the distribution system. Consider a point immediately to the right of the 

energy centre shown in Figure 2.12, before the first junction in the distribution system. One 

could install sensors to measure the heat demand at this point and develop a heat demand 

profile using the measured data. This would be the real demand at that point. The aggregate 

demand, on the other hand, is the aggregate of the individual demands, individual demands 

being demands measured at each individual dwelling (denoted by the house icons in Figure 

2.12). The aggregate demand is not real in the sense that it is not measured directly; however, 

it is used to represent the real demand at varying points along the distribution system. The 

real demand will be driven by several physical principles acting in the distribution system 

and the demand of the individual dwellings; as a first approximation, the real demand at this 

point is the aggregate demand from the dwellings downstream of that point, with the added 

effects of the time lag and longitudinal mixing that occurs in the distribution system and the 

addition of the heat losses that occur in the distribution system. Longitudinal mixing can be 

described by imagining a cold plug of water in the return pipe that occurs because of a short 

tap draw at an HIU. This cold plug of water, starting out at a given temperature, through its 

journey will reduce in temperature. This is partly because of the longitudinal mixing that 

occurs as the cold plug travels down the pipe. The mixing occurs because fluid closer to the 

surface of the pipe travels slower due to the surface friction. Over time this leads to the water 

being mixed longitudinally. Thus, the temperatures are also mixed longitudinally. This would 

lead to a flatter demand profile higher upstream compared to at the point of demand.  

 

In most UK HN studies, concerning the sizing of the distribution system, the aggregate 

demand has been used in place of the real demand (Cosic, 2017; Open Data Institute, 2017; 

Smith, 2016; Wang et al., 2020). Limited work has been found that uses the real demand; 

only the work by Guru noted in the previous section (T. Noughton, personal communication, 

2022). This is likely due to the prohibitive costs required to implement such a study, as it 

would be heavily invasive and would require the installation of heat measurement equipment 

in hard-to-access places in the distribution system.  
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Figure 2.12: General structure of a HN 

 

2.6 Pipe Sizing and Guidance 
 

Pipe sizing is an important consideration in minimising heat losses from the distribution 

systems, and also minimising operational and capital costs. Pipe sizing in HNs needs to 

account for a number of factors to ensure high performance throughout a HN’s lifetime. 

Several institutes contribute to the body of guidance that exists for pipe sizing, including 

CIPHE, CIBSE, BSRIA, and ASHRAE, each taking their own individual approaches 

(ASHRAE, 1997; BSRIA, 2011; CIBSE Guide B1, 2019; CIPHE, 2002). Much like the 

diversity standards, the pipe sizing methodologies are evolving alongside the growth of HNs 

in the UK. Research on pipe sizing methodologies have been underway since as early as 2004 

(Bøhm and Larsen, 2005). Hlebnikov et al. (2007) published a comparison of heat losses in 

Danish and Estonian DHS, proposing that the optimisation of pipe diameters in Danish DHS 

design is required to minimise operational costs. In the UK, with the aim of providing further 

guidance to HN designers and reducing the risk of oversizing and resultant high heat loss, a 

study was conducted on optimally sizing pipes to minimise the operational energy required to 

deliver a given heat flow rate at peak load (Martin-Du Pan et al., 2019). However, the 

optimised velocities were found to be higher than those suggested in the CIBSE’s CP1 which 

states that it is important for flow velocities through a pipe to be maintained within velocity 

bounds in order to ensure that pipes are kept clean and performing well (CIBSE, 2014).  Flow 

velocities that are too low may lead to a build-up of debris and air which leads to pipe 

corrosion and biofouling, and velocities that are too high lead to vibration induced noise and 

erosion (CIBSE, 2014). The CIBSE CP1 recommends sizing pipes based on typical design 

velocities for each pipe size, which is an approach influenced by technical standards in the 

UK, such as Guide B1 (CIBSE, 2016). It is argued that although Guide B1 results in 

oversizing, it is appropriate for use in communal heating systems on the grounds that the 

extra heat loss resulting from over sizing are useful heat gains and that pumping energy 

required for larger pipes is less, thus saving electricity demand for pumping (Martin-Du Pan 

et al., 2019). When considering the merits of this argument, one must bear in mind the 

concerning accounts of communal space overheating and warmed cold-water temperatures in 

communal heating systems (Compton, 2015; Lowe, personal communication, March 11, 

2024; McBride, personal communication, December 16, 2022).  
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The second edition of The Code of Practice (CP1.2) takes into account the set of critiques and 

feedback received from the industry in response to the first edition. For instance, previous 

guidance on pipe sizing assumed a constant volume system; however, with the advent of 

variable volume control and variable speed pumps, the cost of pumping energy has been 

reduced allowing for higher velocities and smaller pipes to be more economic. Pipe erosion 

effects are also reduced with variable volume control because peak velocities and flow rates 

occur less frequently. The up-to-date CP1.2 guidance relevant to the sizing of the primary 

and secondary networks is summarised in the remainder of this section. Other guidance, 

relevant to network design but not specifically about sizing, is summarised in the following 

section. 

 

2.6.1 Primary Network Guidance  

 

2.6.1.1  Feasibility Stage Guidance 

 

In the guidance given in CP1.2 for the feasibility stage, the velocities outlined in the table 

below, which are based on Swedish guidelines, are presented for use in initial pipe sizing for 

the primary network (Svensk Fjärrvärme, 2007).  

 
Table 2.4: Typical flow velocities for steel pipes to BS EN 253, for use in feasibility-stage pipe sizing of primary network 
(CIBSE, 2020) 

  

Table 2.5: Typical flow velocities for PEX pipes to BS EN 15632 for feasibility-stage pipe sizing of primary network (CIBSE, 
2020) 
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2.6.1.2 Design Stage Guidance  

 

Pipe sizing should aim to minimise overall lifetime costs, considering pumping capital costs, 

capital costs, heat loss costs, and energy costs. Designers should consider a range of pipe 

materials and systems for each section of the network and assess the optimum based on 

capital costs, operational costs for the operating temperatures and pressures selected (CIBSE, 

2020).  

 

 

 

 
Figure 2.13: Optimisation of pipe diameter on a lifecycle costs basis (CIBSE, 2020) 

2.6.2 Secondary Network Guidance  

 

CIBSE Guide B1 states that pipe sizing should aim to minimise pumping energy costs; 

however, this approach has been critiqued for not accounting for the costs of thermal loss, 

which can be significant (CIBSE Guide B1, 2019; Hanson-Graville, personal communication, 

September 2020). The methodology used in CP1.2 Appendix D, however, instructs that the 

smallest pipe that can meet the flow velocity bounds should be selected, prioritising 

minimising thermal losses by minimising pipe surface area. CP1.2 states that the sizing of 
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pipes shall be based on realistic diversified demands (as discussed in Section 2.5.2), and an 

accurate estimation of expected flow and return temperatures expected under peak conditions 

(CIBSE, 2020).  

 

To keep heat losses to a minimum, care must be taken to avoid oversizing of pipes, taking 

into account that peak demands in final branches occur for short periods of time. Maximum 

diameters for final branches are set out: 20mm for steel pipework, 22mm for copper 

pipework, 25mm for PEX/PB (cross linked polyethylene) pipework, calculated using 

assumptions of 7kW/dwelling of SH, and 45kW/dwelling for DHW.  

 

CIBSE guidance states that all flow velocities in a HN should be a minimum of 0.5m/s, 

especially in HN flow pipes within a building (CIBSE Guide B1, 2019; CIBSE, 2020). This 

is reflected in the flow velocity limits for medium-grade steel given in CP1.2, summarised in 

the table below (CIBSE, 2020).  

 
Table 2.6: Velocity constraints for medium grade steel (CIBSE, 2020) 

 
 

Velocity limits are instructed for pipes in the following ways. 

 

- The velocity of flow must be kept low enough to prevent noise and erosion; the larger 

the pipe, the higher this maximum velocity.  

- The velocity of flow must be high enough to prevent debris and air bubble settling in 

pipes; the larger the pipe, the larger this minimum velocity.  

 

Altogether, in guidance related to primary network design, the main point of focus in the 

approach is minimising costs, whereas for the secondary network, there is an additional focus 

on minimising heat losses. Guidelines for the secondary network are accordingly focussed on 

preventing oversizing, discussed above, and the installation of adequate levels of insulation, 

summarised in the following section. For both primary and secondary networks, routes 

should be defined such that the total length of the network is minimised. 

 

2.7 Further Secondary Network Design 

Guidance  
 

A separate set of guidelines is provided for the secondary network and the primary network 

in CP1.2. Secondary networks typically lie inside residential buildings and being in a 

different environment, they involve a separate set of concerns. The heat losses from the 

small-diameter branches, those connected directly to HIUs within dwellings, are of primary 

importance because the total length of these pipes can be significant relative to other parts of 

the distribution system in CHNs. Overheating due to heat loss from the secondary network is 

a risk and therefore should be carefully considered from the outset. Although, in the winter, 

this heat loss can be considered as useful heat gains, it does pose the risk of uncontrolled 

overheating in the summer and increases costs to the consumer. There are several reasons 

why heat loss from a secondary network may be higher than an acceptable level as identified 

in CP1.2: 
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- Oversized pipes 

- Insulation not specified over valves, fitting, and pipe supports 

- Insulation thickness insufficient 

- HIUs operating in keep-warm modes (keeping flow rates and temperatures high)  

- Fixed bypasses that lead to high return temperatures under part-load  

- Length of network too large (potentially due to the use of horizontal runs in network 

design, illustrated in Figure 2.14) 

 
Figure 2.14: Illustration of the benefit of shared risers over horizontal runs for a typical flat layout (CIBSE, 2020) 

Minimum insulation thicknesses described in Table 2.7 below are dictated for use for all 

heating distribution pipes in the secondary network where practical. These thicknesses are 

greater than typical for other operations because the pipework in the secondary network is in 

continuous operation.  

 
Table 2.7: Minimum insulation thickness to be used in the secondary network (CIBSE, 2020)  

 
The total annual heat losses from the secondary system within the buildings are to be 

calculated and divided by the number of dwellings. This value is to be lower than 

876kWh/dwelling equivalent to 2.4kWh/dwelling/day. CP1.2 further provides a worked 

example for pipe sizing for a secondary network, where velocity constraints for each pipe 

diameter are sourced from the CIBSE Heating Guide B1 (CIBSE, 2016). 
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2.8 Thermal Energy Storage and Diversity  
 

Borri et al. (2021) conducted a thorough review of the subject of thermal energy storage in 

research. The review showed that publications on thermal energy storage as applied to 

districts started to rise sharply around the year 2014, and publications were mainly from 

Canada, Europe (most being from Italy, Germany, and Sweden), the US, and China. The 

results further showed that thermal energy storage in districts was usually studied at the 

system level, i.e. to understand incorporation into the wider heating system, rather than being 

studied to understand the impact of their material composition for example. Research at the 

system level fell into two main categories: use of solar energy through seasonal thermal 

energy storage (TES) and cogeneration, and management of energy in districts through 

demand-side management and artificial intelligence. The authors highlight the abundance of 

studies based on modelling, artificial intelligence, and numerical analyses and the lack of 

economic, techno-economic, and environmental studies. 

 

Many studies investigate the impact of storage in HNs (Guelpa et al., 2019; Hennessy et al., 

2018; Ma et al., 2020; Romanchenko et al., 2018; Vandermeulen et al., 2018). Using both 

models and real data from case studies, studies have investigated improving flexibility, 

system efficiency, cost implications, and environmental impacts in HNs through storage. 

Some studies investigate buildings integrated thermal storage, or network as storage, and 

others compare the two (Chen et al., 2014; Guelpa et al., 2017, 2021; Luc et al., 2020; Turski 

et al., 2018). Studies also focus on different storage materials as well as different periods of 

storage (Faraj et al., 2020; Rosato et al., 2020). Huang et al. (2020) and others have looked at 

operational strategies. Cai et al. (2018) studied demand-side management in order to manage 

the congestion and improve the efficiency of an urban network and evaluated the impact on 

peak reduction. Other kinds of studies focus on future HNs, focussing on the integration of 

renewable energy sources and the use of storage (Abokersh et al., 2020; Foteinaki et al., 

2020; Kensby et al., 2017; Rämä et al., 2018). The above studies consider the impact of 

storage on the demand of a HN, but none have been found that focus on the nexus between 

storage and diversity and how their interaction impacts network demand. 

 

2.8.1 Thermal Energy Storage in HNs 

 

Thermal energy storage is likely to be a key feature of future energy systems which are 

expected to be cleaner and to integrate renewables more readily (Abokersh et al., 2020; CCC, 

2020; Luc et al., 2020; Lund et al., 2018). Thermal energy storage incorporation benefits 

energy systems in a number of ways. Storing heat at times when demand is low and 

deploying the stored heat when demand is high has the effect of levelling the load and 

reducing the peak demands that need to be met by the heat generators (Gadd et al., 2013a; 

Gadd et al., 2013b; Guelpa et al., 2019; Pakere et al., 2016). Load levelling enables heat 

generators to operate for longer hours to meet the baseload, which reduces fuel consumption 

and overall production costs because such conditions allow the heat generators to perform at 

their most efficient mode (Borri et al., 2021; Guelpa et al., 2019). Reducing the peak demand 

can also remove the need for expensive peak power which reduces investment costs as well 

as operational costs (CIBSE, 2020). Storage can also enable generator starts and stops to be 

minimised (CIBSE, 2020). Furthermore, storage can act as a buffer to support intermittent 

supply from renewable sources and to increase the overall resilience of the supply system 

against breakdowns (Pakere et al., 2016). Thermal storage also has drawbacks that must be 

considered when designing it into any system, the primary being the heat losses which are 

dependent on the surface area and temperature of the store (CIBSE, 2020). Other 
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considerations, such as pasteurisation requirements that protect against Legionella, should 

also be considered (CIBSE, 2020). Depending on the location of the storage in the network, 

be it at the plant, midway in the distribution system, or in the dwellings, there will be a 

different set of benefits and drawbacks. 

 

2.8.2 The Impact of Distributed Thermal Energy Storage on HNs 

 

Storage in HNs can be centralised, meaning connected directly to or close to the main heat 

generators, or distributed, where stores can be installed midway between the heat plant and 

the consumer, or installed directly in the heating systems in the consumer buildings 

(Jebamalai et al., 2020; Schuchardt, 2016)2. Installing building-level storage has the effect of 

levelling the load profile of the building, and therefore reducing the peak demand in the 

system further upstream of the dwellings. Designing for reduced individual peak load allows 

the distribution pipes to be sized smaller which is beneficial because of lower heat losses that 

result from reduced pipe surface area (Hennessy et al., 2018). Having said this, the diversity 

effect in a network composed of dwellings with storage has not yet been characterised. This 

is to say that the effect that levelled individual loads, as compared to non-levelled individual 

loads, has on the aggregate peak demand at all points in the distribution system upstream of 

more than one dwelling is yet unknown. This means that although pipes directly connected to 

a consumer can be sized smaller, whether this can be said for pipes elsewhere has not been 

explicitly investigated. Furthermore, the aggregate peak demand of all dwellings on the 

network being unknown means that the effect on the required peak plant capacity is also 

unknown.  

 

The case for building-level storage is highly contested within the industry where practitioners 

hold contrasting opinions based on their individual experiences. This is reflected in the 

guidance information; although CP1.2 mentions a few points about why distributed storage 

would be beneficial, the information is limited and there is no recognition of the uncertainty 

around the effect of distributed storage on a network (CIBSE, 2020). The effect that 

distributed storage would have on the diversity and aggregate demand of a network is yet to 

be the subject of a formal study. Such a study could produce results that contribute to 

building the case for, or against, distributed storage and ultimately feed into the relevant parts 

of the guidance and standards information. 

 

2.8.3 Domestic Demand Storage 

 

Dwelling-level storage is commonly provided by hot water tanks; however, the advent of 

combi-boilers reduced the presence of hot water tanks in UK dwellings by enabling 

instantaneous hot water delivery (Guelpa et al., 2019). Despite their reducing popularity, hot 

water tanks or any other form of domestic storage is a viable option worth strongly 

considering when designing HNs because of its impact on pipe sizing and heat losses. The 

potential for the incorporation of domestic storage raises questions about the impact that it 

could have on HN design and performance. Huang et al. (2020) is a study on the operation of 

DHW tanks and its impact on network return temperatures that used real DHW load profiles 

and is one of the few studies that investigate the impact of domestic storage in peak 

reduction. The work in this thesis will focus on the impact of DHW storage. 

 
2 Note that the term building can apply to both a residential building (e.g., an apartment block) and a dwelling 
(e.g., an apartment), and similarly the term individual load can refer to both the demand of a residential 
building or to the demand of a single dwelling. 
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2.8.4 Instantaneous DHW Delivery vs. Stored DHW 

 

The benefits of storage are that it can reduce peak demands, allows a buffer against short 

term interruptions, enables intermittent heat supply and allows for scheduling that can be 

useful, for example, when the heat is generated using heat pumps. The reduction in peak 

demands comes with the added benefits of smaller service pipe sizes as well as smaller pipes 

further upstream (CIBSE, 2020; Gadd et al., 2013a; Hennessy et al., 2018). On the other 

hand, storage has downsides such as standing losses from the stores which add to the overall 

demand, temperature restrictions that need to account for Legionella risk, potentially higher 

return temperatures where an indirect coil is used in the hot water cylinder and space 

requirements for the stores (CIBSE, 2020; Hennessy et al., 2018). With instantaneous 

delivery, the benefits are that there is no extra space requirement, no limit to heat supply, 

lower thermal loss as there is no store and lower return temperatures are more likely to be 

achieved (CIBSE, 2020; Huang et al., 2020). The downsides are that higher flow rates are 

necessary, encourages the use of ‘keep hot’ function in network segments near the dwellings 

which can add to the thermal losses and there is no buffer in the case of short interruptions to 

supply.  

 

A key benefit of stored DHW is the reduction in peak demands, and although the impact on 

service pipes is clear, the impact on pipes further upstream is less defined. The key concept 

that comes into play is the diversity effect. Storage acts to flatten the demand, i.e., a reduced 

peak but longer acting demand. The effect of diversity is dependent on both the peak and the 

coincidence of the demands of dwellings. The coincidence describes how much dwelling 

demands overlap. Thus, storage introduces two effects that compete against each other 

through the diversity as they act on the aggregate peaks; the reduction in individual peak 

demands acts to reduce the aggregate peak demand but the increase in coincidence due to 

longer demands acts to reduce the diversity and therefore reduce the aggregate peak demand. 

There is a dearth of studies that look to directly compare stored DHW and instantaneous 

DHW supply and what the role of diversity plays in this as well as how it impacts HN 

demand and design. This work aims to address this gap. 

 

2.9 Summary and Research Gaps 
 

The literature review was introduced by outlining the role of HNs in the decarbonisation of 

the UK energy system and the HN market in Europe and the UK, highlighting the ability of 

HNs to enable the use of low-carbon heat sources, especially in population-dense areas. The 

introduction section then went on to describe the requirement of robust technical standards in 

developing high-performing HNs whilst bringing forth the issue of uncertainty around 

distribution system sizing methods that mitigate this aim. The widespread concern in the HN 

industry on this issue has hitherto not been addressed formally in academia or within 

industry, and if left overlooked, may have a significant detrimental impact on the growing 

UK HNs industry. The following section of the literature review described the key 

components of a HN and the ways in which they are structured together. The third section 

delved into energy demand, detailing the drivers of SH and DHW demand on a dwelling 

level and at a HN level. The focus of the fourth section are pertinent findings from the body 

of literature investigating diversity of demand and its drivers. Additionally, diversity in 

electricity networks and diversity related metrics are discussed. The concluding subsections 

of this section provide arguments for the need for empirical diversity studies and discusses 

findings on the impact of sampling time on aggregate and individual demand. In the fifth 
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section, widely used technical design guidance is laid out, along with the likely origins of the 

mathematical formulation of the sizing methods therein. The section goes into detail on 

existing technical guidance relating to DHW and HN distribution pipe sizing. The sixth 

section of the literature review discusses heat storage in HNs, highlighting the lack of 

consideration of the role of diversity when explicating the relationship between storage, 

demand, and HN sizing.  

 

Overall, the literature review discussed the existing discrepancy between real DHW peak 

demands and those estimated using accepted technical standards and the resulting impact this 

has on the cost and performance of HNs. The lack of understanding about what is driving the 

discrepancy between real and estimated values and the absence of alternative guidance 

creates uncertainty for HN designers, which will be problematic for the performance of future 

HNs, especially at this critical juncture where rapid HN growth is expected. The 

overestimation of peak DHW demands may be caused by the invalid mathematical 

formulation of diversity and/or the overestimation of individual peak demands used in the 

estimation. To date, there has only been a handful of studies investigating the extent and 

impact of oversizing in HNs and the role that diversity plays in this. Of the studies that do, 

none have used dwellings from a real HN, and therefore may have missed crucial findings 

that could inform the design of future HNs. Pertinent to the issue of oversizing, is the 

inclusion of domestic storage in a HN. As the energy system transitions, many anticipate 

storage becoming a key component because of the increased need for flexibility to integrate 

an intermittent renewable supply. This transition will be reflected in HNs too, and the 

prospect of this has been the subject of many studies, including studies about the case for 

different storage configurations and identifying the unique set of benefits and drawbacks that 

each bring to a network. However, the existing studies fail to consider the impact that 

introducing storage would have on the demand diversity and distribution system sizing, and 

therefore overlook a key consideration affecting the cost and performance of future HNs. 

 

The research gaps that have been made evident are summarised in the following points. 

 

- Although there are accounts from the UK HN industry of the sizing methods in the 

DS439 leading to HN oversizing and a lack of understanding of the origins and 

therefore applicability of the methods, its use continues, potentially leading to the 

development of costly oversized HNs (Open Data Institute, 2017; Smith, 2016; 

Personal communication, T. Noughton, May 2022). 

- There is further uncertainty resulting from a failure in the literature and in industry 

reports to acknowledge the two different sizing methods in the DS439 that have both 

been either used or recommended for use in HN design (CIBSE, 2020). 

- Although there is an impetus towards the incorporation of heat storage in future HNs, 

there is no research that investigates the impact that storage has on demand diversity, 

and the combined impact of these on HN demand and therefore its sizing (Abokersh 

et al., 2020; CCC, 2020; Luc et al., 2020; Lund et al., 2018). 

- There is a dearth of studies investigating demand diversity using real demand, and 

even fewer using real demand data from dwellings on a real HN (Cosic, 2017; Wang 

et al, 2020). 

- There is a lack of empirical studies on the impact that sampling time has on individual 

and aggregate demand and therefore on HN sizing despite the clear impact of 

sampling time on peak demands (Cosic, 2017).  
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3 Research Questions and Methodology  
 

A set of research questions have been formed to address the research gaps identified in the 

literature review that can have a significant impact on HN development. They are presented 

in this chapter, along with the objectives that need to be achieved in order to produce findings 

that can appropriately answer each of the questions. The sections within this chapter describe 

the methods used in achieving the objectives.  

 

3.1 Research Aims, Questions and 

Objectives  
 

The aim of this thesis is to inform the development of HN design in the UK by characterising 

the real diversity effect in UK HNs and assessing the impact that DHW storage has on the 

demand of a network, and the role that diversity plays therein. To achieve the stated aim, 

research questions have been formed, and are each given with a corresponding set of 

objectives below. 

 

▪ What is the real diversity effect in UK HNs?  

• Estimate the individual demand profiles of dwellings on a real HN using 

measured data. 

• Analyse the impact that aggregation, over number of dwellings and over time, 

has on the demand. 

 

▪ What is the impact of DHW TES on HN demand and design in the presence of 

diversity? 

• Estimate the residual DHW demands that would result from DHW TES 

installation for the sample of dwellings. 

• Assess the impact that DHW TES has on the aggregate demand. 

• Assess the impact that DHW TES has on the distribution system pipe sizing 

and the resultant impact on thermal loss. 

 

3.2 Methodology  
 

The results of studies that are based on real data capture idiosyncratic phenomena that 

models, by their nature, are incapable of capturing (Flyvbjerg, 2006). However, there are 

instances where obtaining the real data required is an unreasonable pursuit given the resource 

and time constraints. The first of the research questions outlined in the previous section needs 

to be addressed using measured data; however, answering the second research question 

requires modelling because it would be too costly and resource-intensive to obtain data 

concerning the before and after of a real intervention, which in this case would be the 

installation of DHW TES in a large group of dwellings on a HN. The proposed study is 

therefore based on the quantitative analysis of real data together with models using the real 

data. The work in this thesis can be considered to be, in parts, a case study and a modelling 

study. A typical case study would take a handful of cases and investigate them in detail. This 

study is similar to a typical case study in that the data used is from dwellings on a single HN 

but is limited to only one HN, and thus the resultant findings may only provide information 

about this particular HN and should be generalised with care. Given that case studies where 

multiple cases are considered are critiqued for their lack of generalisability, it is only natural 

that this is the case to an even greater extent for a case study of just one case (Flyvbjerg, 
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2006). What is of value, however, is that the demand data is from dwellings on a real HN, 

even if it is just from one. This is because, to date, demand studies have only used demand 

data from a random sample of dwellings which are not on a HN.  

 

3.3 Overview of Methods 
 

The first research question concerns the characterisation of the real diversity effect in HN 

demand. In achieving the first objective, DHW demand profiles and total demand profiles 

will be estimated for each individual dwelling in the sample. The demand is then analysed 

with respect to varying levels of aggregation and varying sampling times.  

 

The case for DHW storage represents is contested in the UK HN industry because of the 

unknown impact on wider network performance and costs. Thus, simulating DHW storage 

can provide valuable and immediately applicable insights. As such, the second research 

question pertains to the impact that DHW storage has on pipe sizing and thermal loss in the 

presence of diversity. Additionally, as DHW demand peaks are substantially greater than SH 

demand peaks, it stands to have the greatest impact on network sizing. A key part of the 

method here is modelling domestic thermal stores for DHW. One of the models will be a 

stratified cylindrical hot water tank, where energy and mass transfers for each layer are 

considered, and the other a mixed heat store model, both of which are described in full in 

Section 3.6.2. The models are used to produce residual demand profiles under different 

storage scenarios outlined in Section 3.6.1. The approach taken in selecting the scenarios is 

based on the requirement that the storage scenarios that represent what is feasible in existing 

HNs or what is likely in near-future HNs is balanced against the requirement to explore 

maximally and minimally diverse demands. To evaluate the thermal losses from the 

distribution system, a distribution system is modelled, with pipe sizes being determined 

individually for each storage scenario. The distribution system that is modelled is described 

in full in Section 3.7. 

 

Finally, Sections 3.4 and 3.8 describe the case study HN from which data was collected, and 

the limitations of the methods and applicability of the results to the wider UK HN population 

respectively. 

 

3.3.1 Research Design 

 

The research design in this work is atypical because it was developed and iterated in response 

to the data as it was collected. The novel nature of the data meant that there was a process of 

discovery and grappling that had to take place for the author to get familiar with the data. 

This is different to the usual process of the researcher outlining their data needs and 

implementing data collection to meet those needs. The methods developed in tandem with the 

data discovery process and thus informed each other (the processes involved are outlined in 

Section 4.10, Section 4.13 and Section 5.2), underlined by the aim which was to address the 

issue of oversizing in UK HNs. Pertinent to this aim were the concepts of diversity and 

demand, the behaviour of which can be illuminated by investigating how demand evolves 

with aggregation over time and aggregation over number of dwellings. Objectives were 

adapted as blockers were encountered through the data collection process. One such instance 

was the failure to determine SH demand using the available data but instead being able to use 

total demand data to achieve the same aims. There is value in focussing on the behaviour and 

effects of DHW demand alone in the question of storage because DHW storage is already 

accepted in UK households. 
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Equally important was the concept of storage. Storage is key because it would fundamentally 

change the diversity effect by changing the shape of the demand resulting in changed 

aggregate peaks and a requirement to reconsider the design of the distribution system. The 

storage component of the thesis necessitated the construction of models to estimate residual 

demands as they were more fitting to the resource constraints than would be a physical 

intervention in a real case study for example. This part of the work was largely planned out 

before execution but nevertheless also had some real-time iteration. The storage related 

methods are explained in detail in Section 3.6. The aim was to determine the boundaries of 

all possible demand that would result from the installation of DHW TES in the dwellings.  

 

The analysis that followed the data collection, real demand estimation and residual demand 

estimation was conducted in a free and exploratory manner with the aim of informing the 

issue of distribution system oversizing and related aspects. The fundamentally exploratory 

nature of the work is a response to the dearth of relevant studies, which meant that directions 

for further study were ill-defined, and the novelty of the high-frequency data and a lack of 

accompanying tried and tested methods for analysing such data. 

 

3.4 Case Study HN  
 

The case study HN on which this research is based is a CHN with ~150 dwellings3 located in 

the Southeast of England, which was fully developed by 2018. Heat is generated in a series of 

boilers located in the basement of the building and is delivered through a distribution system 

with two main branches that feed one half of the dwellings in the building. A small-scale HN 

is one where the heat source is less than a few hundred meters away from the consumers. In a 

medium-scale HN the consumers would be 200-300 metres away, and a in a large-scale HN, 

the consumers would be > 300 meters away. The case study HN used in this work has a total 

network length of ~450 m, and the consumers and plant are in a single building, and thus the 

case study HN would likely be considered a small-scale HN. The design occupancy of 84 of 

the dwellings is 2 occupants (1 bed), 52 of the dwellings have a design occupancy of 4 

occupants (2 bed), 6 dwellings have an occupancy of 6 people (3 bed) and the final 5 have an 

occupancy of 3 occupants (2 bed), as summarised in Figure 3.1. The floor area of the 

dwellings has a range of 40 m2 to 129 m2, with a large proportion of dwellings having a floor 

area of 40-49 m2. 

 

 
3 To protect the anonymity of the case study HN and its occupants the exact number of dwellings is omitted. 
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Figure 3.1: The design occupancy (P) and number of bedrooms (B) for the sample of HIUs 

 

 

 
Figure 3.2: The floor area of dwellings in the case study HN 

 

3.5 Demand Aggregation 
 

In order to understand how diversity impacts demand, it is important to understand how 

demand behaves at increasing levels of aggregation over dwellings, as well as how 

resampling, meaning averaging over larger time intervals, comes into play at each level. This 

section specifies how the demand distributions were determined for varying levels of 

aggregation over the number of dwellings and over time.  

 

There are two kinds of aggregation that can be considered: aggregation over the number of 

dwellings and aggregation over time. When aggregating over the number of dwellings, 

demand profiles were created for k = 1, 5, 10, 35, and 60 dwellings. When creating a profile 

for any level of k, there are many unique combinations of k dwellings that can be selected 

from the total pool of N dwellings. The total number of unique combinations, T, for a k sized 

pool of N dwellings is given by the equation below. 

 

[m2] 
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𝑇 =  
𝑁!

𝑘! (𝑁 − 𝑘)!
 

(3-1) 

Equation (3-1) above shows that T can get extremely large. For example, where N = 81, k = 5 

results in T = 2.56e+7 and k = 35 results in T = 1.02e+23. The number of unique 

combinations of individual profiles for a given k and N used to generate aggregate profiles 

had to therefore be limited to 1,000 to work within the limits of the computational power that 

was available. It is important to note that where k is close to N in value, the resulting 

aggregate profiles are likely to be made up of more of the same individual profiles. The 

implications of this will be outlined in the results chapters. The second kind of aggregation, 

aggregation over time, was considered in the following way. The intention is that the raw 

demand profiles, measured at some sampling time, are averaged over larger time intervals 

such that the time elapsed between consecutive data points increases. Sampling times were 1, 

5, 10, 30 seconds and 1, 5, 10, and 30 minutes, and 1 hour for DHW demand. For the total 

demand, sampling times below 5 minutes could not be evaluated because the sampling time 

of the raw data was 5 minutes. Table 3.1 below summarises the total number of profiles 

created at each sampling time and for each level of aggregation over dwellings. 

 
Table 3.1: The total number of demand profiles used in evaluating the aggregate distributions for varying levels of 
aggregation and sampling times 

k Sampling Times 

 1s 5s 10s 30s 1m 5m 10m 30m 1hr 

1 115 115 115 115 115 115 115 115 115 

5 1000 1000 1000 1000 1000 1000 1000 1000 1000 

10 1000 1000 1000 1000 1000 1000 1000 1000 1000 

35 1000 1000 1000 1000 1000 1000 1000 1000 1000 

60 1000 1000 1000 1000 1000 1000 1000 1000 1000 

 

Although profiles for all k are generally referred to as aggregate profiles, at k = 1 the profiles 

are individual profiles. Similarly, all time intervals will be referred to as sampling times despite 

the distinction between the time intervals at which raw data was measured and the larger time 

intervals over which the data was averaged. If the latter needs referring to specifically, the term 

‘resampling’ will be used. 

 

3.6 Heat Store Model 
 

Two heat store models were built to produce the demand profiles of a dwelling with a DHW 

store installed, i.e., the residual demands, using the real DHW demand.  The store model is 

required to produce residuals for a large number of dwellings with relatively fast 

computational times such that the time constraints of the project could be met. Coupled with 

this is the requirement that the outputs of the model give a comprehensive picture of the real 

behaviour that could be expected. Given these requirements, two models were developed: a 

mixed thermal store and a stratified thermal store, which reflect two ideal thermal store 

behaviours and are therefore relatively straightforward to model. A real heat store would not 

be perfectly stratified, nor would it be perfectly mixed, but would be somewhere in between 

the two states. The real behaviour of a thermal store is therefore proposed to lie somewhere in 

between the set of results from the models.  
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This section describes the physical principles underpinning each model, the logic with which 

they are controlled, and the variables that they handle. Both models are used to produce 

demand profiles for all dwellings according to two HN-wide control strategies in which 

charging times are defined: the ‘Spaced Charging’ (SC) scenario and the ‘Coincident 

Charging’ (CC) scenario. These scenarios are outlined further in the section below. 

 

3.6.1 Storage Scenarios 

 

The main objective of introducing domestic storage here is to reduce the overall demand of a 

HN by producing a reduction in distribution system losses that outweighs the standing losses 

introduced by the stores. The distribution system losses are dependent on pipe sizing, which 

itself is dependent on the aggregate peak demand, which in turn is dependent on the diversity 

of the demand of the individual dwellings. Introducing domestic storage will reduce the 

diversity across the dwelling demand to varying degrees, depending on how the storage is 

implemented.  

 

The objectives of the second research question are designed to outline the bounding limits of 

the impact that storage can have on network demand. Higher diversity in individual demand 

profiles will lead to lower aggregate peak demands. Knowing this, one can then assert that 

taking the diversity to its minimum (or maximum) is likely to produce a maximum (or 

minimum) in the aggregate peak. Thus, implementing storage in such a way that diversity is 

maintained as high as possible will lead to the lowest aggregate peak demands, and vice 

versa. As a result, the full scope of the impact of storage on demand can be drawn out by 

considering two storage scenarios; one designed to produce residual demands, in which 

diversity is at a minimum, and the other where it is at a maximum. The third scenario that 

will be considered is the case study as it is, with no storage. The sizing of the distribution 

system in this scenario will therefore be based on the real, unbuffered demand of the case 

study. Results may show that the aggregate peak demands that result from the storage 

scenarios are not lower than they are for the real demand scenario, in which case the 

conclusion that storage does not reduce overall HN demand is likely. 

 

 

 
Figure 3.3: Conceptual diagram of the differences in diversity in the real DHW demand, the practicable storage scenarios, 
and the algorithmically optimised scenarios 

 

Storage control can be optimised algorithmically to deliver maximal and minimal diversity in 

the scenarios. However, it is significantly computationally demanding and, more importantly, 

SC scenario 
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unnecessary to scope out the impact to this extreme because it is very unlikely to be 

physically realisable for the reasons given below.  

 

When it comes to control of domestic hot water tanks (DHWT) in occupant dwellings, one 

must consider the level of control that an occupant would be comfortable with relinquishing 

to HN operators. It is distinguished from the case of storage within the distribution system or 

in the plant room, both of which are domains within which occupants do not typically assume 

or desire control, leaving the operator able to implement control strategies with more 

freedom. The potential for gaining control of DHWTs in a HN is limited because the 

occupants are unlikely to value the potential benefits afforded to them above the ability to 

have full control of an appliance in their home (Cao, 2014). This is, of course, assuming that 

they understand the proposition being made and that they trust the operators in the first place. 

The scenario of SC, which seeks to maximise diversity, has therefore been designed based on 

the following presumptions. 

 

▪ HN operators are likely only to leverage minimal, if any, control within the 

occupant’s domain. 

▪ If occupants relinquish control, it would likely be on the condition that storage control 

resembles a control regime that they are likely to implement themselves, and that all 

dwellings in the network are subject to similar control regimes such that treatment of 

all occupants is fair. 

 

The SC scenario, which has been designed to balance the above prerequisites with the 

objective of maximising diversity, dictates that charging times for the dwellings are spread 

evenly across the duration of the day. The SC scenario groups the dwellings in the HN and 

assigns each group two blocks of time within which they can charge their DHW stores in 

order to spread the charging times equally across all hours of the day. This is to say that 

dwellings in group A can charge their stores for a given window of time at 12 p.m. and 12 

a.m. every day, group B can do so at 2 p.m. and 2 a.m. and so on. The CC scenario is where 

all dwellings charge their stores within the same time blocks during the day, and thus, result 

in minimal demand diversity. The scenarios have been summarised in the table below. 

 

In summary, two storage scenarios were modelled to outline the bounding limits of the 

impact of storage on demand of what is physically realisable and practicably implementable 

by a HN operator given the socio-technical constraints that are likely to exist in HNs with 

domestic storage. Together the two scenarios will be used to map out the impact that storage 

can have on the demand and design of a HN and compared to the scenario where there is no 

storage. In addition to the two scenarios in which storage is present, two other scenarios, 

without storage, are considered. One of which is the ‘Real Design’ scenario where the design 

of the real case study HN as it exists is used. The second is the ‘Real Demand’ scenario 

where the distribution system is sized using the real demand of the case study HN. All four 

scenarios are outlined in Table 3.2 below. 

 
Table 3.2: Summary of the modelled storage scenarios 

Scenario Description Charging 

Time-Block 

Length 

Total 

Daily 

Charging 

Windows 

Daily Charging Times 
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CC 

(Coincident 

charging) 

Where all 

dwellings 

charge their 

stores 

together 

2 hours Twice 

daily 

All dwellings: 5-7 a.m., 3-5 p.m. 

SC (Spaced 

charging) 

Where the 

dwellings 

stagger the 

times in 

which they 

charge their 

stores 

2 hours Twice 

daily 

Dwellings grouped into 6 groups 

of equal size.  

Group 1: 12-2 a.m., 12-2 p.m. 

Group 2: 2-4 a.m., 2-4 p.m. 

Group 3: 4-6 a.m., 4-6 p.m. 

Group 4: 6-8 a.m., 6-8 p.m. 

Group 5: 8-10 a.m., 8-10 p.m. 

Group 6: 10-12 a.m., 10-12 p.m. 

Real Design Where the 

design of the 

real case 

study HN’s 

distribution 

system is 

used 

No thermal 

stores 

present 

- - 

Real 

Demand  

Where the 

distribution 

system is 

sized to the 

real demand 

of the case 

study HN  

No thermal 

stores 

present 

- - 

 

 

3.6.2 TES Model Principles 

 

DHWT sizes were obtained individually for each dwelling and presented in Figure 3.4 below. 

The capacity of an individual store is sized to accommodate the maximum daily demand 

present for the dwelling in the monitored period. To elaborate, the total demand of each day 

in the monitored period is calculated for a given dwelling and the maximum of these is taken 

to size the store. If dwelling B has a larger maximum daily demand than dwelling A, 

dwelling B will have a larger store. The dimensions of the heat store for an individual 

dwelling are calculated on the basis that the store is of a cylindrical shape with equal height 

and diameter (Figure 3.5). Stores are designed as such to keep surface area to a minimum and 

reduce heat losses. In reality, DHW storage tanks are sized based on rules of thumb relating 

to, typically, the number of occupants in a home and tend to have longer heights than 

diameters. The Hot Water Association recommends an allocation of between 35 L (0.035 m3) 

and 45 L (0.045 m3) per occupant with some high demand consumption being up to 70 L per 

occupant. In the case study’s sample of dwellings there is between 2 and 6 occupants in each 

dwelling. This would equate to a range of store sizes of between 0.07 m3 and 0.42 m3 if high 

demand consumption occupants are included (Hot Water Association, no date). The figure 

below gives a histogram of all store volumes obtained. Store volumes ranged from 0.05 m3 to 

just over 1.0 m3, however, many of the store volumes were between 0.05 m3 and 0.5 m3. 

Although the store size based on daily demand cannot be compared to the recommended 

sizing based on occupancy because demand data is not linked to occupancy data individually, 
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the range of demand-based store sizes is here shown to be similar to the range of 

recommended store sizing for the occupancies in the sample. 

 

The stores are based on external heat exchangers rather than indirect coils for simplicity of 

modelling. The charging power of the store is dependent on the type of model used. In the 

mixed store, the charging power is a function of varying temperature difference whereas in 

the stratified model, by its nature, the charging power will be a fixed constant. This means 

that the stratified store will tend to charge up quicker and stay at a full or close-to-full state 

for longer than the mixed store. A store may not use up the entire 2 hour charging window to 

charge up to full depending on the type of model it is and how full the store was at the start of 

the charging window. The stratified and mixed stores are explained in more detail in the 

coming sections.  

 

Generally, the larger the store and the longer the allowed heat up time, the lower the 

individual peaks can be. However, there is a limit to the sizing benefits this effect brings, 

especially further upstream of the dwellings, because of the increase in coincidence of the 

individual demands. As demands aggregate the now long and low individual demands will 

start to overlap each other (more than short, spikey demands would) which means that the 

aggregate demands would ‘stack up’ more quickly, reducing the diversity and negating the 

aggregate peak reduction. Note that although this work focusses on certain technical aspects 

of storage, practitioners would typically need to consider other factors such as cost, demands 

on space and occupant preferences when designing storage within a HN.  

 

 
Figure 3.4: Individual DHW heat store sizes 

[m3] 
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Figure 3.5: Cylindrical heat store dimensioned to have height equal to its diameter 

 

3.6.2.1 Key Parameters 

 

The models were built using parameters that described the physical character of the store and 

the environment within which the store sits. Key parameter values used in the model are 

given in Table 3.3. The heat loss factor (HLF) for the DHWT is set to 1 W/m2K as per field 

measurements conducted in Cruickshank et al (2010). Although lower HLFs can be achieved 

with adequate insulation, such as in larger stores, in the case of domestic stores, the extra 

space requirements and the relative high investment cost per volume mean that insulation is 

kept minimal (Guadalfajara, 2014). Sensitivity analyses are conducted for key parameters, 

including the HLF of the store, in order to investigate the impact that it has on the store 

losses, and therefore, the overall case for storage.  

 
Table 3.3: Parameters of the heat store model 

Parameter Unit Value Reference 

Heat loss factor W/m2K 1 (Zhang et al, 2021) 

Minimum store temperature ˚C 20 Assumption based on Huang et al. 

(2020) 

Maximum store temperature ˚C 50 Assumption based on Huang et al. 

(2020) 

Specific heat capacity of 

water 

kJ/kg˚C 4.182 (Allison et al., 2018; Holman et 

al, 1992) 

Density of Water kg/m3 997 (Holman et al, 1992) 

Ambient temperature ˚C 18 Assumption 

Charge/discharge efficiency % 100 Assumption based on Huebner et 

al. (2013) 

 

3.6.2.2 Control Logic 

 

Figure 3.6 and Figure 3.7 together describe the deterministic control logic applied to both the 

stratified and the mixed store models. 

𝐿

2
 

L 
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Figure 3.6: Flow chart describing the operation of the store. The chart is given in two parts (1/2). 

 
Figure 3.7: Flow chart describing the operation of the store. The chart is given in two parts (2/2). 

MID-LEVEL 
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3.6.2.3 Stratified Heat Store Physical Principles  

 

Stratified thermal stores have been previously modelled in studies to varying degrees of 

complexity (Cruickshank and Harrison, 2010). The modelled heat store is a DHWT 

consisting of two stratified zones. The zones are two bodies of water that are separated by a 

sharp thermocline boundary. The temperature of the water in each zone is homogenous; one 

contains heated water and the other contains cold mains water. The thermocline between the 

hot and cold water moves vertically down as the heat exchanger transfers heated water into 

the store and vertically up as the taps in the dwelling are opened and hot water is drawn. The 

temperature of the hot zone is assumed to be constant and corresponds to the modal supply 

temperature of the DHW in the case study HN (see Figure 5.13). The temperature of the cold 

zone is also assumed to be constant and to correspond to the temperature of the cold water 

from the mains. It is assumed that no heat transfer occurs across the thermocline. Legionella 

risk is mitigated because the water within the store is regularly changing in temperature. The 

idealised model does not take into account of conduction heat transfer and conduction 

through the cylinder wall. The stratified heat store model is illustrated in Figure 3.8 below.  

 

 

 
Figure 3.8: Stratified heat store connection to the DHW HEX in the HIU 

 

The status of the store as being ‘full’, ‘empty’ or ‘mid-level’ is based on the change in total 

energy input relative to the capacity of the store. ∆h is the change in height of the boundary 

that travels vertically up and down the store. If there is a net energy input, the ∆h is negative, 

and the boundary moves down. If there is a net energy output, such as when the demand on 

the store is higher than the demand being delivered to the store by the HIU, the ∆h is positive, 

and the boundary moves up. This is illustrated in Figure 3.9 below.  

 

 
Figure 3.9: Heat store diagram illustrating the movement of the thermocline boundary 

50°C 50°C 

10°C 10°C 
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The energy balance that drives the model is given below. 

 

𝑚̇𝐻𝐸𝑋,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∙ 𝑐 ∙ ∆𝑇𝐻𝐸𝑋,𝑑𝑒𝑠𝑖𝑔𝑛 =  𝜌 ∙ 𝑉 ∙ 𝑐 ∙ ∆𝑇𝑆𝑡𝑜𝑟𝑒 − 𝑄̇𝑡
𝐷𝐻𝑊 − 𝑘𝑆𝑡𝑜𝑟𝑒 ∙ 𝐴𝑒𝑥𝑡

𝑆𝑡𝑜𝑟𝑒,ℎ𝑜𝑡  
(3-2) 

Where volume, V is a function of the change in h over time, as described below. 

 

𝑉 =  𝜋 ∙ 𝑟2 ∙ (
ℎ𝑡 − ℎ𝑡−1

∆𝑡
) 

(3-3) 

The mass flow of fluid into the store from the HEX, 𝑚̇𝐻𝐸𝑋,𝑐𝑜𝑛𝑡𝑟𝑜𝑙, is controlled by the control 

logic described in Figure 3.6 and Figure 3.7 together. Both the stratified and mixed models 

connect in parallel to the DHW HEX.   

 

3.6.2.4 Mixed Heat Store Model Physical Principles 

 

In addition to the above model, a perfectly mixed heat store was modelled. The store is 

modelled as an ideally mixed volume of water with a homogenous temperature. This 

simplified storage model has been used since the 1980’s extensively in studies (Mosbech, 

1983; Collazos et al., 2009; Schütz et al, 2015). The mixed store model is illustrated in the 

schematic shown below, in Figure 3.10. The temperature of the store is dependent on the heat 

transfer into the store, from the heat exchanger, HEX, and out of the store, through losses and 

DHW demand. Fluid from the store is passed through the HEX, picking up heat on each pass, 

gradually charging the store up to its maximum capacity. The store’s temperature has the 

bounds of a lower temperature that is equal to the room temperature, and an upper bound that 

is equal to the maximum flow temperature of the HEX. The energy balance of the perfectly 

mixed store is as follows, 

 

, 
(3-4) 

where,  

 

𝑄̇𝑡
𝐻𝐸𝑋 =  𝑚̇𝐻𝐸𝑋,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∙ 𝑐 ∙ (𝑇𝑀𝑎𝑥 − 𝑇𝑡

𝑆𝑡𝑜𝑟𝑒). 
(3-5) 

The mass flow of fluid into the store from the HEX, 𝑚̇𝐻𝐸𝑋,𝑐𝑜𝑛𝑡𝑟𝑜𝑙, is controlled by the control 

logic described in Figure 3.6 and Figure 3.7 together, in the same way as the stratified model. 

 

 

 

Figure 3.10: Mixed heat store connection to the DHW HEX in the HIU 

𝑚𝑆𝑡𝑜 ∙ 𝑐 ∙
𝑇𝑡
𝑆𝑡𝑜𝑟𝑒 − 𝑇𝑡−1

∆𝑡
= 𝑄̇𝑡

𝐻𝐸𝑋 − 𝑄̇𝑡
𝐷𝐻𝑊 − 𝑘𝑆𝑡𝑜𝑟𝑒 ∙ 𝐴𝑆𝑡𝑜𝑟𝑒 ∙ (𝑇𝑡

𝑆𝑡𝑜𝑟𝑒 − 𝑇𝐸𝑛𝑣) 

10°C 

50°C 

10°C < T <50˚C 

10°C < 𝑇𝑡
𝑠𝑡𝑜< 50˚C 

10°C < T < 50˚C 
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3.7 Distribution System Model  
 

To assess the thermal losses from the distribution system for the storage scenarios, a model of 

the distribution system was built to represent the real distribution system as closely as 

possible, which has been sized according to the peak demands in each scenario. The tables 

below give the parameters, their values, and associated references for the heat store model 

and the distribution system model. 

 
Table 3.4: Key parameters of the distribution system model 

Parameter Unit Value Reference 

Flow temperature ˚C 62 (Hanson-Graville, personal communication, 

September 2019) 

Return temperature ˚C 30 (Hanson-Graville, personal communication, 

September 2019) 

Ambient 

temperature 

˚C 18 

 

- Assumption 

- Note: the range tested in the 

sensitivity analysis is 10˚C – 30˚C 

Thermal 

conductivity of 

pipe material 

(medium grade 

steel) 

kW/mK 0.03  Stated in Domestic Water Services Schematic 

for case study HN. Thermal conductivity 

value from (The Engineering ToolBox, 2005) 

Thermal 

conductivity of 

pipe insulation 

(phenolic foam) 

W/mK 0.018 - Stated in Domestic Water Services 

Schematic for case study HN. 

Thermal conductivity value from 

(Phenolic foam insulation, no date) 

- Note: the range tested in the 

sensitivity analysis is 0.005 W/mK – 

7.0 W/mK.  

- Insulation levels given in terms of 

thermal conductivity, k, because pipe 

insulation thickness varies across 

distribution system.  

- Pipe insulation thickness ranges from 

15mm to 25mm.  

- The range in U-value would be 0.3 

W/m2K – 2 W/m2K for a pipe 

insulation thickness of 15mm. 

 

The assumption in the distribution system model that the supply and return temperatures are 

maintained at their design set points is required because the demand data used in the model 

also corresponds to design day conditions, which is likely to lead to the supply and return 

temperatures reaching their design values. Furthermore, temperature control of the case study 

HN involved maintaining the supply temperature at the set point only (R. Hanson-Graville, 

personal communication, September 2019), as opposed to predictively adjusting temperatures 

(i.e., for nigh time set back) where temperature changes can be up to 10˚C (Guelpa, 20201), 

and thus the assumption of a constant supply temperature in this HN is a safe assumption as it 

is likely that the supply temperature fluctuated around the set point. The temperature can also 
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fluctuate naturally during the night-time due to the smaller demand and, thus, lower the mass 

flow rate to the extent that the thermal losses have a much larger impact. This effect is not 

considered in the distribution system model, as it would require modelling the distribution 

system as a thermo-fluid dynamic model where mass, momentum, and energy conservation 

equations are solved and where the interconnection of pipes is represented in a graph system 

of nodes and branches, which, on balance with other components of work in the thesis, would 

have been prohibitively time-consuming.  

 

3.7.1 Pipe Sizing Methodology 

 

Each pipe in the distribution system model was sized to meet the peak aggregate demand 

acting in that segment of the system. For example, a pipe serving 10 dwellings downstream 

of it would be sized to meet the peak aggregate demand of 10 dwellings. A set of flow rates, 

and therefore a set of flow velocities, are then derived based on the operating temperatures of 

the HN and the peak aggregate demand for a range of pipe diameters. The smallest 

practicable pipe diameter for which the flow velocity falls within the recommended ranges is 

then selected for that part of the distribution system. To reflect the real case study, medium 

grade steel pipes were selected in the models. In keeping with accepted guidance (discussed 

in Sections 2.5.2 and 2.6), the minimum flow velocities for pipes in the model are defined as 

being equal to 0.5 m/s, with the velocity upper bounds being 1.5 m/s for pipes smaller than 

DN50 and 3 m/s for pipes larger than DN50. Table 3.5 gives the flow velocity constraints 

that apply for each diameter of pipe required in the model (HardHat Engineer, 2023; 

Stevenson Plumbing, no date).  

 
Table 3.5: Flow velocity constraints for the range of pipe diameters used in the sizing methods 

Pipe Diameters (mm) Flow Velocity Bounds (m/s) 

6, 8, 10, 12, 15, 20, 25, 32, 40, 50 0.5 – 1.5 

65 0.5 – 3.0 

 

For an example, take a lateral transport pipe serving 30 dwellings. In order to determine the 

pipe sizing for such a pipe, the aggregate peak demand for 30 dwellings is required. Take the 

peak demand to be 73 kW (this is the real demand at this level of aggregation found in the 

case study HN). This demand value (𝑄), along with the operating temperatures of the HN 

(∆𝑇) are used to obtain a mass flow rate (𝑚̇) for that segment of pipe as described by the 

equation below.  

 

𝑄 = 𝑚̇𝑐∆𝑇 
(3-6) 

This mass flow rate is then used to determine a set of flow velocities that correspond to set of 

pipe diameters using the equations that follow where 𝑉̇ is the volume flow rate (kg/s), 𝜌 is the 

density of water, 𝐷 is the diameter of the pipe, 𝐴 is the area of a circle and 𝑣 is the flow 

velocity (m/s).  

 

𝑉̇ =  
𝑚̇

𝜌
 

(3-7) 
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𝐴 =
𝜋𝐷2

4
 

(3-8) 

 

𝑣 = 
𝑉̇

𝐴
 

 (3-9) 

Table 3.6 below gives the flow velocities obtained according to the above calculations for a 

set of pipe diameters. As shown in Table 3.6 below, the smallest pipe for which the velocity 

falls within the recommended velocity bounds is selected for the segment of the distribution 

system. In this example, a pipe of diameter 20 mm is chosen for the lateral transport pipe that 

needs to serve 30 dwellings. A full list of standard pipe sizes is given in Appendix D, Section 

14.1 and a full list of the pipe sizing results for all scenarios can be found in Appendix D, 

Section 14.2. 

 
Table 3.6: Selecting the smallest practicable pipe for an example pipe section 

Pipe Diameter 

(mm) 

Resulting Flow 

Velocity (m/s) 

Velocity Bounds 

for Pipe Diameter 

Within Bounds? 

6 19.5 0.5 – 1.5 No 

8 11.0 0.5 – 1.5 No 

10 7.0 0.5 – 1.5 No 

12 4.8 0.5 – 1.5 No 

15 3.1 0.5 – 1.5 No 

20 1.8 0.5 – 1.5 Yes 

 

The pipe thicknesses of each diameter of pipe are given in Appendix D, Section 14.1. Pipe 

thickness has been selected based on pipe diameter according to the Schedule 10. Insulation 

levels are dependent on pipe diameter and follows the criteria described in Table 3.7. The 

insulation levels in the model reflect the real insulations levels specified in the real HN 

design.  

 
Table 3.7: Pipe insulation thickness is dependent on the pipe diameters 

Pipe diameter (mm) Insulation thickness (mm) 

< 15 25 

15 - 22 30 

22- 42 35 

> 42 40 

 

Note that the pipe sizing is determined only for DHW demands rather than DHW and SH 

demands together. This is of course not how most real HNs are sized, nor should they be. 

This means that the results obtained, for example the reduced pipe sizing post storage 

installation which practitioners may view as something to aim for, are not intended to be 

taken as explicit recommendations or benchmarks without careful discernment. The driving 

force of this work is to understand the interplay between storage, diversity and demand and 

the extent to which that can impact design. In that same vein, the results are intended to be 

viewed as a guide that demonstrates what is possible. Having said this, there are certain 

conditions under which certain results could reasonably be taken as practical 
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recommendation, and these will be outlined and justified as they come up through the thesis. 

The full implications of the omission of SH demands are discussed in the Discussion Chapter 

in Section 8.3.2.  

 

3.7.2 Network Topology 

 

Figure 3.11 illustrates the layout of a floor, showing the relative locations of 1 and 2 bed 

dwellings, the staircase, and the riser cupboard. According to accepted guidance on HIU 

placement, the HIUs are located within the dwellings such that total pipe length is minimised. 

Figure 3.12 shows a close up of one segment of the floor plan in which HIU and pipe 

placement is shown. Figure 3.13 gives a plan view of the building and each of the six floors. 

The right-hand side of the network in the plan view corresponds to the segment of the floor 

plan shown to be vertical in Figure 3.11. Similarly, the left-hand side of the network shown in 

the plan view corresponds to the segment of the floor plan shown to be horizontal in Figure 

3.11. Note that only part of this case study HN will be modelled and used in the analyses. 

This is due to demand data of sufficient quality being available for 96 dwellings. Therefore, 

the part that will be modelled is a part containing 96 dwellings out of the ~150 dwellings on 

the HN. 

 

 

 
Figure 3.11: Floor plan showing dwellings, riser cupboard and stairs on one floor. This plan applies to all floors. 

. 
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Figure 3.12: Network connection between dwellings within a floor and across floor. Black and red circles indicate where 
pipe cross floors 

. 
 

 

 

 
Figure 3.13: Real distribution system and dwelling plan of the case study CHN, showing all 6 floors and the type of dwellings 
within each floor 

3.7.3 Distribution System Thermal Mass  

 

Studies have considered the incorporation of the thermal mass of a distribution system as 

storage in HNs (Guelpa and Verda, 2019; Hoshino et al, 2023; van Easteren, 2022). In large 

HNs the thermal mass of the distribution system is significant, and the possibility of using 

this mass to the benefit of the operation of the HN could be considered, as pointed out by 

Werner (2013). The case study network in this work is small and contained within a single 

building. Pipes in the case study HN are smaller than 54 mm in diameter across the network, 

compared to district scale networks where pipes can be larger than 0.2 m in diameter (Zhang 



 68 

et al, 2021). This is a reasonable size given the small scale of the network; one can compare it 

to the networks investigated by Zhang et al. (2021), where a HN serving 165 dwellings had a 

total volume of water of 2.2 m3 in its network. Based on the network layout and the design 

diameters of the real HN, the total volume of fluid within the modelled part of the case study 

network amounts to 0.66 m3. For diameters in the storage scenarios, the total volume will be 

less than 0.66 m3 as diameters will be smaller than design diameters. The total volume of 

DHW stores is 33.12 m3. Since the capacity of the network and the stores are based on 

similar temperature differences, the capacity of the network is relatively small compared to 

the capacity of the TES in the network.   

 

 

3.7.4 Distribution System Heat Loss 

 

Heat losses in the distribution pipes of a HN are influenced by insulation, the conditions of 

the surrounding environment, the pipe system dimensioning and layout, and the temperature 

of the fluid in the pipes (Keçebaş, 2011; Li et al., 2016). In the calculation of thermal losses 

from the distribution system, a constant temperature is assumed for the surrounding 

environment. The supply and return temperatures are also assumed to be constant. It is 

assumed that heated water is pumped through the distribution system at a constant velocity 

under steady-state steady-flow control volume conditions. The model does not include the 

impact of pressure drops resulting from flow friction or the heat gain due to friction.  

 

 

 
Figure 3.14: Schematic of pipe layers 

 

The heat loss through a meter of pipe, 𝑄𝑙𝑜𝑠𝑠 , can be expressed in terms of the fluid 

temperature, Tfluid, the temperature of the external environment, Text, and the overall heat 

transfer coefficient of the pipe and insulation layers, U, as described in Equation (3-).  

 

𝑄𝑙𝑜𝑠𝑠 = 𝜋𝐷2𝑈(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝑒𝑥𝑡) = 𝜋𝐷2𝑈∆𝑇 
(3-7) 

The diameters, 𝐷𝑖, of each layer of the insulated pipe is simply the double of the radius of 

each cylindrical layer as expressed in Equation (3-8), where 𝑖 = 0,1, and 2. The radii, 𝑟0, 𝑟1, 

    
r0 

r1 

r2 

Tfluid 

Text 

Insulation layer 

Pipe layer 

Heated fluid 
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and 𝑟2 represent the radii from the centre of the pipe to the three surrounding cylindrical 

layers as shown in Figure 3.14. 

 

𝐷𝑖 = 2𝑟𝑖 
(3-8) 

The overall heat transfer coefficient, U, is the inverse of the internal resistance of the 

insulated pipe, 𝑅𝑝,𝑖𝑛𝑠, as shown in Equation (3-7) below. 

 

𝑈 =
1

𝑅𝑝,𝑖𝑛𝑠
 

(3-9)  

The total internal resistance of an insulated pipe, a summation of the conductive and 

convective heat transfer, and surface resistance of the layers of the pipe, is described by 

Equation (3-) below. 

 

𝑅𝑝,𝑖𝑛𝑠 =
𝐷2
𝐷0ℎ𝑖

+
𝐷2𝑙𝑛 (

𝐷1
𝐷0
) 

2𝑘𝑝
+
𝐷2𝑙𝑛 (

𝐷2
𝐷1
) 

2𝑘𝑖𝑛𝑠
+

1

ℎ𝑎𝑖𝑟
 

(3-10)   

Where kp and kins are the thermal conductivity of the pipe layer and the layer of insulation 

material respectively. The two middle terms of Equation (3-) represent the conductive heat 

flow through the pipe and insulation layers respectively. The convective heat transfer 

coefficients of the inside and outside surfaces, hi and hair, are calculated as described in 

Equation (3-) where 𝑅𝑒 is the Reynold’s number and 𝑃𝑟 is the Prandtl number, and 

Equations (3-) - (3-19) respectively (Holman, 1992). 

 
ℎ𝑖𝐷

𝑘𝑖
=  0.023𝑅𝑒0.8𝑃𝑟0.4 

(3-11) 

The term above is typically negligible compared with the other terms in the total resistance of 

the insulated pipe equation, Equation (3-10), and thus will be ignored. The final term of the 

total resistance equation represents the convective and radiative heat loss from the surface of 

the insulation layer. Its calculation is described in Equations (3-12) -(3-19) where 𝑁𝑢 is the 

Nusselt number. 

 

ℎ𝑎𝑖𝑟 = ℎ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + ℎ𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 
(3-12) 

ℎ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =
𝜎𝜀(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

4 − 𝑇𝑒𝑥𝑡
4 )

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑒𝑥𝑡
 

(3-13) 

ℎ𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑁𝑢𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑘𝑎𝑖𝑟

𝑟2
 

(3-14) 

𝑁𝑢𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = (ℎ𝑓𝑜𝑟𝑐𝑒𝑑
4 + ℎ𝑓𝑟𝑒𝑒

4 )0.25    
 (3-15) 
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The radiative heat transfer coefficient, ℎ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛, is determined using the difference between 

the temperature of the external environment and the surface temperature of the insulation 

layer, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 , the Stefan-Boltzmann constant, 𝜎, and the surface emissivity, 𝜀, of the top 

surface of the insulation. The convective heat transfer coefficient, ℎ𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛, is made up of 

two components, ℎ𝑓𝑜𝑟𝑐𝑒𝑑  and ℎ𝑓𝑟𝑒𝑒, which represent forced and free convection respectively. 

They can be determined using the correlation by Churchill and Bernstein, and Churchill and 

Chu correlations respectively, as shown in Equations (3-) - (3-) given below (Bergman et al, 

2002). 

 

𝑁𝑢𝑓𝑜𝑟𝑐𝑒𝑑 = 0.3 +
0.62𝑅𝑒

1
2𝑃𝑟

1
3

[1 + (
0.4
𝑃𝑟)

2
3
]

1
4

(1 + (
𝑅𝑒

282,000
)

5
8
)

4
5

 

(3-16) 

 

 

ℎ𝑓𝑜𝑟𝑐𝑒𝑑 =
𝑁𝑢𝑓𝑜𝑟𝑐𝑒𝑑𝑘𝑎𝑖𝑟

𝑟2
 

(3-17) 

 

 

𝑁𝑢𝑓𝑟𝑒𝑒 =

{
  
 

  
 

0.6 + 
0.387𝑅𝑎

1
6

[1 + (
0.559
𝑃𝑟 )

9
16
]

8
27

}
  
 

  
 
2

 

(3-18) 

ℎ𝑓𝑟𝑒𝑒 =
𝑁𝑢𝑘𝑎𝑖𝑟
𝑟2

 

 (3-19) 

The ℎ𝑎𝑖𝑟 component was calculated by assuming a pipe with properties equal to the mean of 

all pipes in the distribution system. This value was then applied for all pipes in the 

distribution system. 

 

The heat loss through a meter of pipe, Qloss, can then be summarised by the following 

expression.  

 

 

𝑄𝑙𝑜𝑠𝑠 =
𝜋𝐷2∆𝑇

𝑅𝑝,𝑖𝑛𝑠
=  

𝜋𝐷2∆𝑇

𝐷2𝑙𝑛 (
𝐷1
𝐷0
) 

2𝑘𝑝
+
𝐷2𝑙𝑛 (

𝐷2
𝐷1
) 

2𝑘𝑖𝑛𝑠
+

1
ℎ𝑎𝑖𝑟

  

(3-20) 
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3.8 Applicability of Results and 

Limitations  
  

As of 2018 there were about 17,000 HNs across the UK, 11,500 of which were communal 

HNs (ADE, 2018; BEIS, 2017; BEIS 2020a). This amounts to 500,000 connected consumers, 

of which a large majority are domestic consumers. Of the domestic consumers, the majority 

are connections to small flats and maisonettes (ADE, 2018). Given that the case study HN 

from which data was collected is a residential building made up of flats, it is likely that the 

case study site represents the majority of HNs in the UK. Government surveys also found that 

consumers on networks were more likely to be renting from a local authority or housing 

association (BEIS, 2017). The consumers at the case study site represent the majority of HN 

consumers in this regard also given that their properties are rented; however, they may differ 

in terms of specific type of tenure. Equally, reports suggest that dwellings on networks are 

likely to have 0-1 bedrooms, whereas the studied dwellings have between 2 and 3 bedrooms 

and therefore may be larger than typical dwellings served by HNs (BEIS, 2017). Reports also 

found that consumers on networks lived in newer homes (BEIS, 2017). Building age 

information is unavailable for the dataset, and thus a comparison cannot be made. In the years 

since the report, HNs are likely to have seen some growth, and resultantly the characteristics 

of HNs today may have changed significantly from previously.  

 

 In order to understand the extent to which findings can inform the technical standards 

for future HNs, the extent to which the studied case represents future networks must be 

assessed. Future HNs do not yet exist, and thus their characteristics are unknown. A 

comparison to existing networks can be made instead on the basis that future networks are 

likely to share characteristics with existing ones, e.g., existing networks were found to be 

likely located in large urban areas such as London, and will likely evolve in predictable ways, 

e.g., operating temperatures reducing, space demands decreasing as dwellings become more 

thermally efficient, more integration with smart grids, and more storage integration to support 

the connection of renewable heat sources (BEIS, 2017; BEIS, 2020a). The preceding 

paragraph outlines similarities between existing networks and the case study site and shows a 

fair amount of representation; the case study is not atypical compared to other existing HNs. 

Taking this together with the study being designed such that a number of the aforementioned 

future outcomes are represented, it is likely that the findings from the study will have 

reasonable applicability to future HNs. Having said this, the findings will be more applicable 

to networks that are similar to the studied case, serving dwellings with similar design and 

occupancy characteristics.  

 

 The graphs relating to diversity and aggregate demands produced in this study use the 

individual heat demands of the case study HN and is therefore best used in designing 

networks that will serve dwellings with similar design and similar occupancy characteristics, 

i.e., communal HNs serving residential buildings with similar enclosed dwellings to those in 

the study. For example, the diversity curve may be used in determining the aggregate load at 

various points across the distribution system and therefore be used for sizing pipes, given that 

connected dwellings are similar to those in the study. Results will be less applicable to 

district HNs, which are likely to contain different kinds of heat demands (e.g., an anchor heat 

load like a hospital or a school) and may therefore have a characteristically different 

aggregate demand. In terms of informing standards, since this diversity curve will likely be 

one of the very first based on empirical data from UK dwellings, there may be a case to 

consider its use in the design process where the Danish curve, also based on data from a 

residential building but with the drawback of not being UK data, would usually be used. 
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When it comes to findings regarding storage, the results illustrate only the impact on this 

particular case and may be indicative of the impact that storage would have on any network, 

but this cannot be confirmed without further studies. Results will be more applicable where 

the storage has similar design, controls, and strategies to those modelled. For example, where 

other kinds of storage materials, storage control, or strategies are used, the resulting residual 

profiles will be different, as will the aggregate demand. Having said this, the storage 

scenarios were designed to represent likely future scenarios, and thus it is likely that the 

findings will be applicable to networks developed in the near future. Similarly, findings 

regarding the impact of storage on network design and performance illustrate only what is 

possible for one case. For example, using a different topology would affect the impact that 

storage has on design and performance. However, even though findings may not be directly 

applicable to systems with different topologies, dwelling designs, storage etc., they may 

provide a qualitative indication of the direction and magnitude of the effects of some design 

decisions. 

 

Data collection started during the COVID pandemic, which will have an impact on the 

findings of the study. For example, heat demand patterns will be different because of 

differences in occupancy patterns that result from the working from home guidelines from the 

UK government. This will have implications for the generalisability of findings in the study 

to periods when working from home guidelines are no longer in action.  
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4 Data Collection  
 

The Heatweb server is a server which was set up by Heatweb Ltd. to collect data from 100s 

of Heat Interface Units (HIU) across multiple HNs. Sensors installed in individual HIUs 

transmit data to a central server in an Internet-of-Things set-up, which can be connected to 

from a remote server in order to download the transmitted data. Although only certain 

variables are monitored by the sensors directly, some of which are shown in Table 4.1, 

measurements taken whilst commissioning the HIUs enable the practitioners at Heatweb Ltd. 

to estimate other variables as a function of the commissioning measurements and the 

monitored variables together. The estimated variable data is also transmitted across the 

server. This novel system enables the collection of a rich dataset, made up of dozens of 

variables collected at high frequency, that can describe in detail the operation of and the 

energy flows across the HIUs. Data collection started February 2021.  

 

Heatweb Ltd. set up and calibrated the data collection hardware and software. The author 

connected to the data server via their laptop, observed the data as it was being collected and 

helped maintain data quality by observing discrepancies or faults and reporting the details 

back to Heatweb Ltd. The monitoring and storage strategy and parts of the software used for 

directing the data from the server evolved as a result of discussions between the author and 

Heatweb Ltd. depending on the needs of the research and what was feasible within the 

system (e.g., due to memory constraints). The author cleaned the data independently once the 

data was collected. 

 
Table 4.1: Variables measured directly from sensors and heat meters in the HIU 

Measured Variables 

Flow rate to hot water (l/m) 

Network return from hot water (˚C) 

Primary hot supply temperature (˚C) 

SH valve positions (steps) 

DHW valve positions (steps) 

Heat meter flow rate (l/m) 

Heat meter power (kW) 

Heat meter volume (m3) 

Heat meter return temperature (˚C) 

Heat meter flow temperature (˚C) 

 

Altogether, the data collection system set up by Heatweb Ltd. is a combination of meters, 

sensors and other hardware from which data collection is supported by linked software 

programs. There are two sets of sensors in the HIU; the sensors that make up the heat meter 

and the remainder of sensors that are located outside of the heat meter. Each set is collected 

via two separate data collection systems. The data system was built to aid effective 

monitoring and control of the HN and has now been made available for academic research. 

At the time of writing, only the author had access to the data stream for the purposes of 

research. 

 

The section below describes the key parts of the hardware and connections. The section 

following that describes how data is collected through the hardware system and linked 

software. 
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The section is structured such that the process of data collection is laid out from start to 

finish, using the hardware as a reference to key points in the journey of the data in order to 

provide an intuitive understanding of the system and processes involved. However, a key 

piece of software must be explained first in order that the data system is understood. This is 

the Node-Red Software. 

 

4.1 Node-Red Software 
 

Node-red is a flow-based visual programming tool for connecting hardware devices 

supporting internet-of-things set-ups. Heatweb Ltd. use it as a logic controller to control the 

data flow through some parts of the data collection system.  

 

Note: when the terms upstream and downstream are used they refer to positions in the chain 

of data transmission. ‘Upstream’ refers to processes or hardware furthest away from the point 

of measurement (i.e., the sensors). Conversely, ‘downstream’ refers to points close to the 

point of measurement.  

 

4.2 Data Hardware 
 

4.2.1 Located in the HIUs 

 

4.2.1.1 Heat Meter 

 

As mentioned above, the data is transmitted from the sensors in the HIU via two separate 

networks. The heat meters record data at intervals of one second and continuously store these 

values in their own on-board persistent (meaning that no data is lost upon being turned off 

and on) memory. At every second it is also deriving variables such as power, total power 

consumed, etc.  

 

4.2.1.2 HIU Sensors 

 

Sensors installed in the HIU (not those of the heat meter), which will be referred to as the 

HIU sensors, are connected to the electronic controller in the HIU using wires. The HIU 

sensors also monitor on a secondly basis. Derived variables are calculated further upstream, 

not at the HIU.  

 

The electronic controller and the heat meter in each HIU are wired up, through an Ethernet 

and mains cable, respectively, to a Node-HIU Switch, which connects to 8 HIUs.  
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Figure 4.1: Shows connected key hardware and interconnections within the HIU (Heatweb Ltd., no date b) 

4.2.2 Located Externally to the HIUs 

 

4.2.2.1 Node-HIU Switch 

 

The Node-HIU Switch is a Raspberry Pi and other infrastructure connecting the Ethernet and 

mains cables from 8 HIUs to respective devices in the plant room. There are, therefore, a 

group of Node-HIU Switches installed throughout the site. The endpoints of the ethernet 

cables and mains cables will be described in the Plant Room Hardware section.  

 

Although both wires are housed in the same container, the Ethernet cables transferring HIU 

sensor data and the mains cables transferring heat meter data are on two separate wiring 

systems. The heat meter data is on an M-bus system, and the HIU sensor data is on what will 

be called a Node-HIU system. The separate systems and their impact on the data collection 

will be explained in detail in proceeding sections.  

 

The heat meters are connected via a series of terminal blocks (an insulated block that secures 

wires together) into a common-wire network, meaning every device shares the same two 

wires (Figure 4.2). The circuit topology is a mix of series and parallel. The network of wires 

connects all the heat meters to the M-Bus Master in the plant room. 

 

The Ethernet cables are connected via the Raspberry Pi in the Node-HIU Switch to the Power 

over Ethernet (PoE) Ethernet Switch. The Raspberry Pi runs Node-Red software enabling 

remote control of the data collection at the switches. The Switch is controlled to filter the 

large volumes of data it receives before sending it upstream. The Switch filters the data such 

that data is allowed through only if it is an update to the previous value. This is called 
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“reporting by exception”. Logic in the Switch also enables it to receive long strings of HIU 

sensor data as comma separated values to which it assigns variable names. The data is 

received with an HIU identifier for each HIU, such that the HIU to which the data belongs 

can be identified.  

 

 

 
Figure 4.2: Basic structure of the key hardware and interconnections across the communal network (Heatweb Ltd., no date 
b) 

 

4.2.2.2 Plant Room Hardware 

 

The plant room is where the main panel is located, pictured in Section 4.2.2.5. The panel 

contains a Raspberry Pi, which will be referred to as Plant Pi (on which MQTT Server and 

Node-Red software is running), an internet router, an M-Bus Master, and a PoE Switch.  

 

4.2.2.3 PoE Ethernet Switch 

 

The internet router provides the entire system with internet through the PoE Ethernet Switch. 

The Ethernet PoE Switch also provides power to the kit it is connected to, such as the Node-

HIU Switches, Plant Pi, and the M-Bus Master. 

 

4.2.2.4 M-Bus Master 

 

The M-Bus Master connects to all the heat meters on site. As previously mentioned, the M-

bus Master and the heat meters are connected into one circuit.  

 

4.2.2.5 Plant Pi 

 

The Plant Pi is the last destination reached by the HIU sensor data and the heat meter data 

before being transmitted to the MQTT Server.  
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Figure 4.3: The home of Plant Pi and other pieces of hardware- this kit is housed in the plant room (Heatweb Ltd., no date b) 

There data streams through several servers before reaching their end point. The purpose of 

each server is described in the following section.  

 

4.2.3 Software and Servers 

 

The MQTT server is a network protocol that enables message transports between devices. 

The hw1 server is the main server that subscribes to the data being published to the MQTT 

server to anonymise it. After anonymisation at the hw1 server, the data is sent to hw12, server 

ready for download by the author. Simple routing functions such as the function to put data in 

Dropbox is carried out at this server.  

 

4.2.4 Summary of the Data Collection System 

 

Figure 4.4 below illustrates the data collection hardware and how they connect to one 

another. The data collection will be summarised in the following points. Please refer to the 

diagram to supplement the information below. 

 

▪ All heat meters on site are connected in one circuit with the M-Bus Master located in 

the plant room. This means there are only two wires going into the Master on the heat 

meter side. 
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▪ The HIU sensors in all the HIUs are connected via the electronic controller in each 

HIU to a Node-HIU Switch. 

• The Node-HIU Switch holds wiring for 8 HIUs, both sensor data wiring and 

heat meter wiring. 

• The Node-HIU Switch also contains a Raspberry Pi running Node-Red 

software which allows HIU sensor data filtering. 

▪ Through the Node-HIU Switches, the heat meters and the HIU sensors connect to the 

M-Bus Master and the PoE Ethernet Switch respectively. 

▪ The PoE Ethernet Switch located in the plant room panel provides power and internet 

to the connected devices. 

▪ The Modem connected to the PoE Ethernet Switch provides it with an internet 

connection. 

▪ The M-Bus Master allows the heat meter data to be collected in the form of a report. 

▪ The Ethernet PoE Switch connects the Node-HIU Switches and the M-Bus Master to 

Plant Pi. 

▪ Plant Pi refers to the Raspberry Pi in the plant room panel running Node-red and 

connected to the MQTT Server. 

▪ Heat meter and HIU sensor data is sent though Plant Pi to the MQTT Server. 

 

 

 
Figure 4.4: Depicts the flow of data from the sensors and the heat meters in an HIU to the data receivers 
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4.3 Node-HIU System 
 

The Node-HIU Switches are connected by Ethernet cables to the Ethernet PoE Switch. 

Through this connection the filtered data is sent to the Plant Pi which runs MQTT Server and 

Node-red software. Thus, the filtered data, same as the meter data coming through the M-Bus 

system, is admitted to the MQTT server, ready for download. 

 

4.4 M-Bus System 
 

Via the Node-HIU Switches, all the heat meters are connected to the M-Bus Master in the 

plant room. The M-Bus Master communicates with the M-Bus slaves, in this instance, the 

heat meters, to receive meter data. The slave/master set-up of the M-Bus system means that 

the M-bus Master can only interface with one heat meter at a time. The M-Bus Master 

interfaces with one heat meter to receive a set of data, then moves on to the next to do the 

same.  

 

After one round of interfacing, the M-Bus Master posts the entire batch of meter data in the 

form of a report to the Plant Pi, in which the Node-Red and MQTT are running, via the 

Ethernet PoE Switch. The M-Bus Master can be controlled remotely using the M-Bus 

manufacturer’s (Elvaco) online control programs. The M-Bus master is set to send a batch of 

data every 5 minutes.  

 
Figure 4.5: The M-bus physical layer (M-bus, no date) 

 

4.5 The M-Bus Master  
 

The M-Bus Master, CMe3100, produced by manufacturer Elvaco, is configured to readout 

meter readings from the connected heat meters at a defined interval, compiling the readings 

into the required format, ready to send to a receiver. In this case, the Master is connected 

through the Ethernet to the Plant Pi. Through the Plant Pi, readings are sent to the MQTT 

server, and then from there sent to the hw1 server for anonymisation. These readings are then 

collected in csv format in Dropbox. 
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Figure 4.6: M-Bus Master (Meter Market, no date) 

The Master’s readout schedule and reporting schedule can be defined through manufacturer’s 

web interface, which will be referred to as the Elvaco interface. The readout schedule refers 

to the schedule at which the Master takes readings from the heat meters, through the 

slave/master system. To remind readers, slave/master system allows only one heat meter to 

be read at one time. The reporting schedule refers to the schedule of publishing for reports of 

the compiled readings to the designated reader, in this case, to the MQTT server. The web 

interface also enables the content of the reports to be defined. This will be explored in the 

proceeding section.  

 

No variables are derived at the M-bus Master. It acts as a middleman who receives data and 

then passes it on in a defined format and according to a defined schedule. 

 

4.6 The Elvaco Interface 
 

The Elvaco web program that can be used to control the M-Bus Master and the reports that it 

sends is pictured below in Figure 4.7 and Figure 4.8. 
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Figure 4.7: Elvaco interface showing the readout schedule 
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Figure 4.8: Elvaco interface showing push report settings 

 

The key settings, those that underpin the understanding of the uncertainty of time created by 

the M-Bus system, are the ‘Value Period,’ the “Value Interval,’ ‘Readout Schedule’ and the 

‘Report Schedule’. Readout Schedule gives the frequency at which meter values are stored in 

the M-Bus Master. The Report Schedule defines the interval at which the M-Bus sends 

reports to the MQTT server. The Value Period and the Value Interval define the content of 

the report. The Value Period defines the length for period back in time (before the time at 

which the report is sent), for which values should be included. It is given as a multiplier. Here 

it is set to 5 minutes, meaning values stored in the last 5 minutes will be sent. The Value 

Interval defines the interval between consecutive readings. The Value Interval determines the 

time between each reading in the reports. In this case, the Value Interval is set to 5 minutes.  

 

The time intervals for the setting variables Value Interval, Value Period, Readout Schedule, 

and Report Schedule were all set to 5 minutes enables a report to be sent every 5 minutes 

containing the batch of data collected in the last 5 minutes. The values being stored in the 

Master are 5-minutely as dictated by the Readout Schedule.  

 

 

4.7 Master Data Collection Impact on 

Timestamping of Meter Data 
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This section is a discussion of the time uncertainty in the data that is introduced by the 

various processes that are involved in the data collection done by the Master. To remind the 

readers, the data collection process is as follows. The Master connects to one heat meter at a 

time to collect data for all variables measured and derived by the heat meter. Once a batch 

(i.e., one round of data collection from the whole group of heat meters) is collected, it is 

stored in the Master. The Master then compiles a report using the stored data and sends it to 

the MQTT server. The data is then sent to the hw12 (through the hw1 server, which 

anonymises the data). The hw12 server routes the data into Dropbox. 

 

The time taken for the Master to collect a batch of data will be termed 𝑡𝑙𝑎𝑝. 𝑡𝑙𝑎𝑝 is dependent 

on the speed at which data travels through the wiring system and the error response 

mechanisms defined for the M-Bus system. The time between the start of a lap and when the 

Master contacts a given heat meter will be termed, 𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡,𝑛, where n references the specific 

HIU. The order in which the Master visits the heat meters does not change. Thus  𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡,1 

will always be shorter than 𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡,2, for example, but the values of 𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡,1 and 𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡,2 

itself may vary depending on the errors encountered. 

 

𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ  is the time between when the first datum of a batch is published (sent from the 

Master) and when the last datum of a batch arrives at a server to be timestamped. A subset of 

𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ  is the time taken for timestamps to be assigned to the entire batch. Timestamping 

occurs at the hw1 server. Timestamps are given to each reading value in the data as it comes 

through, resulting in a variance of around 2 seconds across the timestamps of one batch. 

 

𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ  is dependent purely on internet speeds that apply between the moment of publishing 

and moment of reception at the server. 𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ  will be taken to be negligible because the 

impact of internet speeds is likely only to be significant when dealing with datasets that are 

considerably larger than the batches collected by the Master.  

 

There are ~150 HIUs on site that are connected to the Master. The ‘missing’ heat meters may 

be because of faulty wiring leading to a subgroup of the heat meters being disconnected from 

the Master. Or it could be that  𝑡𝑙𝑎𝑝 is longer than the 5-minutely readout schedule, leading to 

the Master restarting the lap before all heat meters have been connected to. This will depend 

on the algorithms defined of the Master. A large number of HIUs for which the data collected 

was deemed of sufficient in volume and quality was selected (discussed in detail in Section 

5.2).  

 

 

4.8 Data Collection Locations  
 

Data for this study was downloaded in two ways. Any remote server can connect to the hw12 

server to collect data locally. The author’s secure laptop was set up to do so using the Node-

Red software. Data collection on the laptop was ongoing, collecting readings as and when 

they came through on the laptop. As a back-up, Heatweb Ltd. set up the hw12 server to save 

data to a secure Dropbox account as well. The hw12 server sends a batch of readings at 

midnight every day to a secure Dropbox account. The data analysis was carried out using the 

data collected on the Dropbox account as it was subject to fewer disruptions than the laptop; 

however, there was a major period of disruption which will be discussed in a proceeding 

section. 

 



 84 

4.9 Timestamping  
 

4.9.1 Heat Meter Data  

 

The heat meter data is time-stamped when it arrives at the hw1 server. The data is posted in 

5-minutely reports by the Master. All the data in a batch is assigned a timestamp within a 

space of 2 seconds, as detailed in the previous section. The variance in the timestamps in a 

batch are because of the time it takes for the datum to be timestamped one value at a time.   

 

4.9.2 HIU Sensor Data 

 

The HIU sensor data is not limited by the M-Bus slave master set up and is transferred 

through the hardware on site and to the hw12 server as and when a reading is taken. Thus, 

timestamps are assigned individually to each reading when it arrives at hw1.  

 

4.10 Data Quality Maintenance 
 

The data collection system was unprecedented because of its high frequency nature and 

because it collected data from all the HIUs in the HN. Existing BMS systems monitor data 

but, as far as the author is aware after visiting several DHS systems (Redhill, UCL, King’s 

Cross) and through what is documented in research literature and government literature, none 

monitor at the level that Heatweb Ltd. do. Moreover, the use of the collected data for demand 

research, or any research, is rare in the UK.  

 

The data sets being collected by Heatweb Ltd. are not monitored by them (the HN operators 

were monitoring the data for operational purposes; however, the author had no 

communication with them), and therefore they seldom caught faults or errors. Thus, the 

responsibility of maintaining data quality fell on the hands of the author, with the power of 

controlling the data collection system being accessible only through Heatweb Ltd. In 

practice, this meant that the continual process of maintaining data quality, i.e., identifying 

issues with data, reporting it to Heatweb Ltd., Heatweb Ltd. diagnosing the issue, and fixing 

it, was a slow one. The author collected data by connecting to the online server but had no 

access to or control of the system itself. When issues were spotted in the data, these were 

communicated to Heatweb Ltd. who made themselves available for support in such 

circumstances. Because the system was new and being used for the first time, there were 

several issues that affected data collection that will be discussed below. Improving data 

quality and maintaining it to a standard was difficult due to the complexity of the system, the 

involvement of various other third parties that had access to certain parts of the system who 

were unaware of the ongoing data collection and the author not having the power to solve 

issues immediately as they arose. 

 

Third parties having access to the data collection system meant that the data would need to be 

constantly monitored. The author decided the best way to approach this is to spend time 

visually inspecting data from the key variables each day for the previous day of data. The 

paragraphs below give examples of the kinds of data quality issues that were experienced. At 

the height of problems, for a period of about 4 months at the start of data collection, issues of 

varying nature and significance were faced weekly, and sometimes more frequently. Table 

4.2 below summarises the key events, including some of the major issues encountered along 

the way. Some of the major data issues include a major disruptive event when an important 
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piece of hardware, the modem in the plant room, was stolen and had to be replaced. The 

metering and billing company has access to the hardware, and on at least one occasion, 

changed settings on the main metering hardware which led to the sampling rate of the 

metered variables increasing. During the Christmas holidays in 2021, the memory of the SD 

cards on the modem ran out. This led to a period of almost a month of zero data collection. In 

another instance, meter data inexplicably had periodically larger sampling times; the reading 

that followed the reading that came through at approximately 42 minutes past each hour came 

through at closer to ten minutes later. This is significantly larger than the usual sampling time 

which is approximately 5 minutes. The presence of this peculiarity could have been down to 

a number of reasons, including the relationship between the settings of the M-Bus Master 

controller program, Elvaco. Experimentally changing the settings to test the impact on 

sampling time would have potentially led to a day’s worth of data with odd and inappropriate 

sampling times. Heatweb Ltd. are not able to diagnose errors that arise at the Master in the 

same way that they are able to diagnose their own Node-HIU system. Diagnosing errors that 

arise at the Master would require contacting the Master manufacturers, Elvaco who would 

charge a fee for any advice or input. Heatweb Ltd. were understandably reluctant to proceed 

with diagnosing Master errors beyond a certain point. Hence the periodically larger sampling 

time issue was left unresolved. After extensive discussions with Heatweb Ltd. about the 

source of the missing data, a conclusion was reached that the source cannot be known and 

was therefore not investigated further. 

 

In the 1st quarter of 2021, the data collection system at Heatweb Ltd. was introduced through 

an online demo provided by them. The demo proved that the data being provided could be 

useful for the research. The author used Node-Red to connect the cloud server to the sites to 

enable data collected from the sites to be stored. Initial sets of variables were selected for 

which data was to be collected for (through Node-Red) and an increasing number of 

dwellings slowly came online, as they were being connected up on site by Heatweb Ltd. By 

the end of the 1st quarter data was being collected for up to 300 dwellings; however, a 

continuous stream of snags on the collection system needed to be continuously resolved. In 

the second quarter, with the volume of data transferred being high, the local server ran out of 

space, and a second laptop was connected. Data collection was also set up in Dropbox by 

Heatweb Ltd. as a back-up location. Data quality checks for the Dropbox data were 

conducted to ensure that the data quality was the same as for the local server data. In the 3rd 

quarter of 2021, data cleaning started, and data continued to collect. In the 4th quarter, two 

major data loss issues were encountered: one resulting from the modem on site being stolen, 

resulting in data loss that affected 1.5 months, and the second data loss relating to an 

accidental overwriting of data on the local server that included data from most of Q3 and 

some of Q4. In the 1st quarter of 2022, M-Bus settings were set to send data for meter 

variables every 5 minutes ready for data collection in the coldest week of the data collection 

period. Table 4.2 summarises the data collection process from start to finish, including notes 

on the major data issues encountered. 
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Table 4.2: Table showing the key events and processes relating to the data collection 

Quar

ter-

Year 

Month Data Process Notes 

Q1- 

2021 

February - Scoping Heatweb Ltd. data 

collection system using their 

online demo. 

- Setting up connection to 

Heatweb Ltd. data system 

through Node-Red on local 

device (laptop) to begin data 

collection (initially for 2 

dwellings only). 

- Refining architecture of data 

collection (i.e., which variables 

and dwellings). 

- Data collection issue: on site 

SIM bandwidth which was 

initially restricting the 

volume of data being 

transferred was increased. 

- Data for an initial set of 

channels (or variables) were 

explored. 

 

March - 300 dwellings now connected 

(including from a second site). 

 

- Data collection issue: 16 

dwellings communication 

was found to be dead due to 

a cable issue and resolved 

before the end of the month. 

- Data consistency issue: A 

group of dwelling were 

providing only 4 data points 

a day.  

Q2 - 

2021 

May - Local device ran out of space, a second 

laptop is set up to collect data. 

  

- Setting up collection on Dropbox 

discussed. 

June - Dropbox data collection set up. 

 

 

 

- Dropbox data quality tested. 

- Data collection issue: Time 

zone issue of incorrect noted 

in Dropbox data and 

resolved in one month. 

Q3 - 

2021 

July - Occupancy and floor area data 

received in .csv files separately to the 

data collection system. 

 

September - Data collection continues, and quality 

checks are done periodically. 

- Data collection issue: Site visit 

revealed 40 dwellings had lost 

connection due to a power surge and 
resolved by connecting back up in 

weeks after issue was noted. 

Q4 - 

2021 

October - Data cleaning begins.  

November - Data cleaning continues. 

- Demand estimation methods 

testing begins. 

 

- Data loss issue: significant 

loss of data, including meter 

variables, (starting mid-

October) due to Modem 

being stolen. New modem 

installed at the end of this 

month. Data loss affected 1.5 

months. 

- Data loss issue: significant 

data loss on local device due 
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4.11 File Format of Collected Readings 
 

The readings are compiled into csv format files, one for each variable. The variables include 

measured variables (measured by the sensors installed in the HIU and the sensors of the heat 

meter) as well as derived variables. Data collection took place for all available variables 

although only a handful were required to estimate demand. This was done to make any 

additional analysis using the remaining variables possible if it were required at some point in 

the future, in the author’s own work but also for other researchers that would find the data 

valuable. The files divided the data into three columns: a date time column, an “id” column 

and a value column. The date time column gave the timestamp corresponding to the reading. 

The anonymous “id” column gave the id of the HIU. Finally, the value column contained the 

value for the variable in question. For both HIU sensor data and meter data, the file formats 

were identical and gave readings on an event basis.  

 

4.12 Measured Variables and Measurement 

Errors 
 

Decisions on which variables were measured were made by Heatweb Ltd. prior to any 

contact with the author and therefore was not influenced by what was required for the work 

in this thesis. As mentioned in the previous section, although both, the measured and derived, 

variables were extensive and could be valuable for other research, for the work in this thesis 

it was decided that the most appropriate variables to use would be a subset of the measured 

variables. Table 4.3 below gives the variables that were considered in the methods (described 

in full in Sections 5.2.2 and 5.2.4 which outline how the DHW demand and the total demand 

was determined), along with their sampling times and the tags they were given in the data 

collection system. Table 4.4 gives the measurements errors for some of the considered 

variables. Note that in some of the sections that follow in the thesis, the variables are referred 

to using their tags for clarity. 

 
Table 4.3: Key measured variables, their identifier tags and sampling times 

Measured Variable Sampling Time Unit Tag 

Instantaneous metered demand Approx. 5-

minutely 

kW meter_kw 

Cumulative metered demand  Approx. 5-

minutely 

kWh meter_kwh 

Cold water inlet temperature 1 second ˚C dat_tCo 

DHW flow rate 1 second l/m dat_fC 

to accidental overwriting. 

Data loss affected all data 

from June-September.  

December - Stolen modem restored. 

- Demand estimation methods 

testing continues. 

- Data loss issue: data loss due to 

memory card in hardware on site 

running out resulting in data loss 

affecting just under a month. 

Q1 - 

2022 

January - MBus setting adjusted to send meter 

variable readings at 5-minutely intervals 

(initially set to one hour). 

- Data from this period makes up the 

main set of data used in the study. 

February  - Data collection ceases.  
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Thermostat call (used in results 

for illustrative purposes only) 

1 second On/off dat_stat 

Primary hot water temperature 1 second ˚C dat_tH 

Primary return (from DHW 

heat exchanger) flow rate 

1 second l/m dat_fHDHW 

Primary return (from DHW 

heat exchanger) temperature 

1 second ˚C dat_tHoDHW 

Primary return (from SH heat 

exchanger) flow rate 

1 second l/m dat_fHCH 

Primary return (from SH heat 

exchanger) temperature 

1 second ˚C dat_tHoCH 

Metered flow rate Approx. 5-

minutely  

 meter_fR 

 
Table 4.4: Measurement errors of the key measured variables 

Variable Measurement Device Measurement Error 

dat_fC / cold mains 

flow rate  

Sika VTY10 (SIKA Systemtechnik, 

2023) 

Accuracy: +/-1% of range 

Range: 1-30 l/min 

Signal output: from 0.7 

l/min 

dat_tCo / DHW 

flow temperature 

Tasseron NTC sensor – short 

thermistor- type SNTC 10K3 A34 

(Tasseron, no date) 

Range: -20 - +105˚C 

Tolerance: 3% at 60˚C 

dat_tC / cold mains 

temperature  

Assumption  

dat_tHoDHW/ 

DHW return 

temperature 

Tasseron NTC sensor – short 

thermistor- type SNTC 10K3 A34 

(Tasseron, no date) 

Range: -20 - +105˚C 

Tolerance: 3% at 60˚C 

dat_xDHW/ DHW 

stepper motor 

position 

Valve: MUT VDE-ML (Mut Thermal 

Systems Solutions, 2023) 

Actuator: Sonceboz stepper motor 7217 

-4.0 (Sonceboz, no date) 

No measurement error 

dat_fHDHW/ 

DHW return flow 

rate 

Internal estimate Unquantified  

dat_tH/ primary 

hot water 

temperature 

Tasseron NTC sensor – short 

thermistor- type SNTC 10K3 A34 

(Tasseron, no date) 

Range: -20 - +105˚C 

Tolerance: 3% at 60˚C 

dat_xCH/ SH 

stepper motor 

position 

Valve: MUT VDE-ML (Mut Thermal 

Systems Solutions, 2023) 

Actuator: Sonceboz stepper motor 7217 

-4.0 (Sonceboz, no date) 

No measurement error 

dat_fHCH/ SH 

flow rate 

Internal estimate Unquantified  

dat_tHoCH/ SH 

return temperature 

Tasseron NTC sensor – short 

thermistor- type SNTC 10K3 A34 

(Tasseron, no date) 

Range: -20 - +105˚C 

Tolerance: 3% at 60˚C 
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4.13 Uncertainty in Meter Variables 
 

There are several sources that introduce complexity to the uncertainty in the metered 

variables, the key variable being the meter_kw variable. The uncertainties that apply to the 

meter_kw variable is described in the following points. 

 

▪ The meter_kw variable is derived from the flow and return temperatures, and the flow 

rate measured in the heat meters. These variables have a measurement error 

introduced by the physical limits of the flow and temperature sensors. However, the 

following was stated by the primary practitioner at Heatweb Ltd. about the 

uncertainty in the heat meters used at the case study site: "Heat meters have matched 

sensors and therefore have a different level of accuracy compared to sensors 

elsewhere; heat meter sensors are substantially more accurate. They also fall under a 

different category of standards because they are finance and billing related" (Hanson-

Graville, personal communication, September 2019). This suggests that the meter 

sensor measurement uncertainty is much smaller than for the other sensors in the 

system. 

▪ There is a time lag between when a meter_kw data point is collected from a heat 

meter by the Master and when that data point arrives in the server where 

timestamping occurs. This leads to a time lag between what shall be called the real 

timestamp and the given timestamp of a data point. 

 

The uncertainty referred to in the first point can be derived by treating the measurement 

errors as random errors and applying the appropriate error propagation rules. The background 

for understanding the uncertainty in time, referred to in the second point above, is given in 

Section 4.4 and Section 4.7, where the processes of meter data collection are described. To 

restate the relevant part, the time lag between when a datum is collected and when it is 

timestamped is dependent on how far into 𝑡𝑙𝑎𝑝, the time taken for the Master to complete one 

round of data collection from the HIUs, the datum was collected and 𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ , the time taken 

for that batch to be received at the ‘hw12’ server after being published by the Master. For 

example, the time lag may be larger if many errors were encountered in the data collection 

which would increase 𝑡𝑙𝑎𝑝 altogether. Thus, for a given HIU, if there were many errors 

encountered after its datum was collected, the lag time for that particular datum increases. 

Although  𝑡𝑙𝑎𝑝 and 𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ  are not directly quantifiable, they can be qualified in the 

following way. 

 

The primary practitioner at Heatweb Ltd. assured the author that 𝑡𝑙𝑎𝑝 is shorter than the 

readout schedule, the time interval between two batches of data being collected, which is 

equal to 5 minutes.4 Although there is a possibility that 𝑡𝑙𝑎𝑝 exceeds 5 minutes, such an event 

would be extremely rare (perhaps resulting from an inordinate amount of errors being 

encountered in the data collection), and thus, on the authority of Heatweb Ltd. it is assumed 

that 𝑡𝑙𝑎𝑝 is shorter than 5 minutes.5 Considering that  𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ  can be assumed to be negligible 

 
4 The report schedule, the time interval at which a batch of data is published, also comes into play, but can be 
considered as having no real effect when it is set to equal the readout schedule, which it was. 
5 One way in which quantifying 𝑡𝑝𝑢𝑏𝑙𝑖𝑠ℎ and 𝑡𝑙𝑎𝑝 could be attempted is by systematically changing the settings 

on Elvaco to change the report schedule and the report content. If 𝑡𝑙𝑎𝑝 is longer than the readout schedule it 

would mean that the Master is forced to publish the batch of data before completing data collection from all 
HIUs resulting in an incomplete batch of data being published. Thus, as a test, the readout schedule could be 
systematically changed to investigate the impact it has on the number of heat meters from which data is 
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due to it being dependent on internet speeds, it can be concluded that the real timestamps of 

the readings are in the 5 minutes prior to the time stamps being assigned. Thus, for a given 

reading, it can be said that the maximum lag between the real timestamp and the given 

timestamp is a maximum of 5 minutes. Given this, an upper bound of ~ 5 minutes can be 

defined for this uncertainty. Note that the order in which the M-Bus Master interfaces with 

the heat meters is the same every time it collects a batch of data, thus it is likely that the last 

HIU in the line-up will have the smallest uncertainty and vice versa, albeit all below 5 

minutes. 

 

  

 
collected. If increasing the readout schedule to 1 hour leads to data being collected for 170+ meters, it can be 
concluded that 𝑡𝑙𝑎𝑝 must lie somewhere between 5 minutes and 1 hour. However, doing so would mean that 

the resulting data would have a much larger sampling time of around 1 hour. Thus, although testing could 
inform the time uncertainties at play, it risks limiting the data and producing messy variance, which would in 
turn impact the analysis. For this reason, no such testing took place, and the data that resulted from the 
reporting schedule and content set by Heatweb Ltd. was deemed appropriate for the analysis that is required in 
this work.  
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5 Results 1 – Generating Demand Profiles  
 

5.1 Introduction and Relevant Objectives 
 

The key results of this chapter are the estimated demand profiles, which are presented along 

with an examination of the methods by which they were obtained. This chapter pertains to the 

research question and objective in bold below: 

 

▪ What is the real diversity effect in UK HNs?  

• Estimate the individual demand profiles of dwellings on a real HN using 

measured data. 

• Analyse the impact that aggregation, over number of dwellings and over time, 

has on the demand. 

 

This chapter begins by describing the earliest cleaning stages that the data were put through 

which involved assessing over 50 variables for their data volume and identifying the 

variables for which the data volume was sufficiently high. The chapter then goes on to assess 

the methods by which the identified variables could be used to determine the DHW demand 

and the total demand. The latter sections of the chapters present the demand estimations 

obtained using the selected methods. The chapter closes with a summary and discussion of 

the key results. 

 

5.2 Methods 
 

With the intention of making full use of the richness of the available multi-variate data, 

several variable option sets were investigated in order to determine demand. Considerable 

effort was focussed on generating comprehensive, reliable, and accurate demand profiles by 

considering each of the viable variable sets. The processes that this required can be broken 

down into the following stages: cleaning of the data set, selecting variables that are eligible 

for use in determining demand, defining the different routes through which the variables 

could be used to determine demand, and finally testing the routes. 

 

The following section describes the variable option sets, deriving the uncertainty associated 

with the use of each, and selection of the most appropriate given these findings.  

 

5.2.1 Data Quality and Cleaning 

 

This section gives an overview of the dataset and describes the earliest stages of cleaning by 

illustrating the range of variables (51 in total) and the variability between dwellings (337 in 

total) with regards to how much data was available for each variable. The period from which 

data was used was the month of October in 2021. The intended analysis focussed on the 

heating season and October was the most recent coldest month for which data was available 

at the time at which data cleaning began and was therefore used to indicate the quality of data 

for the rest of the heating season. As the data quality was being assessed, the data collection 

system was being adjusted to provide data in the format that was most appropriate for the 

research and being corrected for faults as they were being discovered (described in full in 

Section 4.10). For example, multiple days’ worth of data was missing for meter 

measurements due to the data collection system failing to connect to the server. As a result of 

these adjustments and fault corrections, the data quality of the data being collected after 
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October is significantly higher than it was in October. This improvement is expressed fully in 

Section 5.3. 

 

The diagrams below give a map of the reading count across all measured and derived 

variables and across dwellings for the two HNs for which there was data. Derived variables 

refer to those calculated internally in the data collection system. White spaces indicate that no 

readings of the given variable are present for the given dwelling. As can be seen, there are 

some variables for which many dwellings provide similar amounts of readings. To select a set 

of variables for which there was enough readings for each individual dwelling to be used in 

the key analyses, the variable set was put through a process of iterative cleaning, starting by 

removing the variables with 0 readings across all dwellings.  

 

Figure 5.1 gives the reading counts for all dwellings across both HN sites; the largely grey 

and largely pink blocks indicate the dwellings from each HN. The labels on the right-hand 

side (predominantly pink blocks) are dwellings from Site I, and the remaining labels are for 

Site W. This chart shows that there is more data available for a larger number of dwellings 

for Site W compared to Site I. Thus, for determining demand, data from Site W will be used.  

 

 

Figure 5.1: Reading count map for all variables and dwellings across both HNs. Note that x-axis markers are dwelling IDs 
and are provided only as an indication of the number of dwellings and are not meant to be legible. The y-axis gives the 
variables in their original tags. 

Figure 5.2 gives the reading counts for the subset of HIUs from Site W alone. Figure 5.2 also 

shows that there are some variables for which the majority of dwellings do not have any 

readings. To study diversity in demand, the size of the group of dwellings studied must be of 

a substantial enough size to capture the full effect. Therefore, the data was cleaned based on 

the criteria that a given variable must have data for more than 30 dwellings as a minimum. 

Further cleaning is done to remove variables that give duplicate information. For example, 

‘meter_kwh24’ gives the daily sum of ‘meter_kwh’ readings; the former can be calculated 

using the latter, and therefore, in essence, both of these variables give the same information. 

Variables such as these are removed. 
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Figure 5.2: Reading count map for all variables and the subset of dwellings from Site W. Note that x-axis markers are 
dwelling IDs and are provided only as an indication of the number of dwellings and are not meant to be legible. 

Figure 5.3 gives the reading counts for dwellings across both networks after variables with 

data for less than 30 dwellings were removed, as well as the variables giving duplicate 

information. Figure 5.4 gives the reading count for the subset of dwellings in Site W after the 

same cleaning processes. The remaining variables, 21 in total, show much fewer white 

spaces, although not completely zero. 

 

 
Figure 5.3: Reading count map of cleaned variables and dwellings across both HNs. Note that x-axis markers are dwelling 
IDs and are provided only as an indication of the number of dwellings and are not meant to be legible. 
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Figure 5.4: Reading count map of cleaned variables and the subset of dwellings in Site W. Note that x-axis markers are 
dwelling IDs and are provided only as an indication of the number of dwellings and are not meant to be legible. 

The cleaned subset of variables was investigated in order to determine which of these 

variables could be used to produce robust estimates of demand, for example, by taking into 

consideration the uncertainty in resulting demand. This process is described in full in Section 

5.2.2. 

 

 
Figure 5.5: Reading count map of subset variables and subset of dwellings. Note that x-axis markers are dwelling IDs and 
are provided only as an indication of the number of dwellings and are not meant to be legible. 
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The dwellings in Site W, of which there were ~200, were put through cleaning processes to 

identify a subset of dwellings of 115. Dwellings where there was an absence of occupants for 

one or multiple days were removed by identifying the dwellings where the DHW flow rate 

remained at 0 l/m for a whole day. This resulted in 190 remaining dwellings. From these 190, 

the dwellings were further selected for data presence across all desired variables at the 

required frequency and for the necessary period of time. This resulted in a subset of 115 

dwellings. 

 

Out of the total selected set of 115 dwellings, for which demand was determined, 96 were 

selected into a further subset. For the analysis of the impact of storage on demand and HN 

design, a section of the case study HN, consisting of 96 dwellings chosen at random, was 

modelled. 96 dwellings were chosen because the part of the case study HN for which the 

distribution system was modelled consisted of 96 dwellings. This part of the case study HN 

was chosen because it constituted a self-contained network topology that had the largest 

number of dwellings that did not exceed the sample size for which high-quality clean data 

was available. The data quality for the dwellings in this subset is shown below in Figure 5.5, 

and Figure 5.6 and Figure 5.7 give the design occupancy and the floor area respectively for 

the 96 selected dwellings. For the variable of return temperature on the primary side of the 

DHW heat exchanger, there is one dwelling that has provided a significantly large number of 

readings (red block). Although unusual, this is a possibility in a system that reads by 

exception (i.e., event-based reading). Regardless, this variable was not used in generating 

demand and so further investigation was not required. 

 

The design occupancy of 55 of the dwellings is 2 occupants (1 bed), 31 of the dwellings have 

a design occupancy of 4 occupants (2 bed), 6 dwellings have an occupancy of 6 people (3 

bed), and finally, 4 have an occupancy of 3 occupants (2 bed), as summarised in Figure 5.6. 

The floor area of the dwellings has a range from 47 m2 to 124 m2, with the most dwellings 

having a floor area of 40-49m2. 

 

 

 
Figure 5.6: The design occupancy (P) and number of bedrooms (B) for the sample of HIUs 
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Figure 5.7: The floor area of dwellings in the case study HN 

 

5.2.2  Determining DHW Demand 

 

5.2.2.1 Selecting Measured Variables 

 

The following section describes the variable option sets viable for use in determining demand 

and the uncertainty associated with using each. From the subset of variables that resulted 

after the cleaning stages, described in the previous section, the author identified the sets of 

variables with which demand profiles could be generated. In order to select the most viable 

set, the uncertainties in each set and the resulting uncertainty on demand were considered at 

length. The schematic shown in Figure 5.8 below gives the key sensor locations and denotes 

the variable measured at that location; shorthand tags are used to denote the measured 

variable. 
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Figure 5.8: Schematic of the HIU where the key measured variables considered in determining DHW demand and the rough 
positions of the corresponding sensors are denoted (Heatweb Ltd., no date c) 

 

In estimating the DHW demand, there are three sets of variables that can potentially be used; 

1. Primary flow temperature (denoted by the tag ‘tH’), primary return temperature 

(‘tHoDHW’), and estimated DHW circuit primary flow rate (‘fHDHW’), 

2. Secondary outlet temperature (‘tCo’) and secondary cold mains flow rate (‘fC’) 

with assumed mains cold temperature, 

3. Metered flow rate (monitored at heat meter- green box in Figure 5.8) and primary 

flow temperature (‘tH’), and primary return temperature (‘tHoDHW’). 

The primary flow rate of the DHW circuit (‘fHDHW’) is an internal estimate (further details 

in Appendix A, Section 11.1) that is based on the estimated differential pressure, the 

measured valve position (‘xDHW’), and the pressure loss curve for the valve. The logic used 

to estimate the differential pressure is dependent on several measured variables, as well as on 

an assumed cold mains inlet temperature. Its error is therefore a function of the error in the 

assumed cold inlet temperature and the error in the other determining parameters. The 

differential pressure estimate can be updated only during stable tap operation, resulting in an 

uncertainty that is higher still when assuming differential pressure for non-stable periods of 

operation, which is taken to be the value of differential pressure during the last stable period 

of operation. The flow rate estimation (‘fHDHW’), which carries forward the uncertainty in 

the differential pressure, therefore results in a complex uncertainty that is difficult to 

quantify. 

 

Metered flow rates, on the other hand, have a much lower uncertainty than the estimated flow 

rate because they are measured directly. Having said this, the 5-minute sampling period of 

the metered flow rates is lower than that of the estimated flow rate (‘fHDHW’). At a 
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sampling time of 5 minutes, the likelihood of capturing DHW events in full is significantly 

reduced as they occur over much shorter time periods. Due to this reason, metered flow rates 

will not be considered further. Since the sampling period of the meter flow rates render them 

inappropriate for use in capturing transient DHW events, variable set no. 3 will not be used in 

determining DHW demands. This leaves set 1 and set 2.  

 

Sets 1 and 2 both assume a cold-water inlet temperature, and thus, both have an error 

associated with this. However, in the use of set 2, this error is applied directly to the demand, 

whereas in the use of set 1, this error is applied indirectly and alongside numerous other 

errors through the complex logic used to determine the differential pressure and therefore 

also the flow rates. Based on the considerations, the second set of variables (‘tCo’, ‘fC’, and 

assumed cold water inlet temperature), whose uncertainty comes only from the cold mains 

temperature assumption and the error in the temperature and flow rate sensors, and which are 

monitored at a frequency high enough to capture transient DHW events, are used to estimate 

DHW demand. This results in a demand profile that captures all DHW activity and with a 

low uncertainty. The cold mains temperature is evidenced to be a stable figure that 

corresponds to the annual mean outside air temperature which, in the UK, is around 10˚C 

(Energy Savings Trust, 2008). The assumed cold inlet temperature is therefore taken to be 

10˚C. Figure 5.13 which shows the minimum hot water temperatures being ~10˚C supports 

that this may be the case in the case study HN. 

 

5.2.2.2 DHW Demand Calculation and the Associated Error 

 

The determinants of DHW demand in an individual dwelling for a given time, 𝑖, can be 

described by the equation below. 

 

𝑄𝑑ℎ𝑤,𝑖 =  𝑚̇𝑑ℎ𝑤,𝑖𝑐(𝑇𝑑ℎ𝑤,𝐻,𝑖 − 𝑇𝑑ℎ𝑤,𝐶,𝑖)  
( 5-1) 

 

The errors in the mass flow rate, 𝑚̇𝑖, and the temperature of hot water, 𝑇𝑑ℎ𝑤,ℎ,𝑖 are random 

measurement errors. 𝑇𝑑ℎ𝑤,𝑐,𝑖 is an assumed value with an assumed error. In the context of 

determining the DHW demand for a single dwelling, the error on 𝑇𝑑ℎ𝑤,𝑐,𝑖 can be treated as a 

random error.  

 

Thus, the resulting error on 𝑄𝑑ℎ𝑤,𝑖  can be derived by applying error propagation rules for 

random errors. 

𝛿(𝑇𝑑ℎ𝑤,𝐻,𝑖 − 𝑇𝑑ℎ𝑤,𝐶,𝑖) =  √(𝛿𝑇𝑑ℎ𝑤,𝐻,𝑖)
2
+ (𝛿𝑇𝑑ℎ𝑤,𝐶,𝑖)

2
 

( 5-2) 

 

𝛿𝑄𝑑ℎ𝑤,𝑖 = 𝑄𝑑ℎ𝑤,𝑖√(
𝛿(𝑇𝑑ℎ𝑤,𝐻,𝑖 − 𝑇𝑑ℎ𝑤,𝐶,𝑖)

𝑇𝑑ℎ𝑤,𝐻,𝑖 − 𝑇𝑑ℎ𝑤,𝐶,𝑖
)

2

+ (
𝛿𝑚̇𝑑ℎ𝑤,𝑖

𝑚̇𝑑ℎ𝑤,𝑖
)

2

 

( 5-3) 

 

5.2.2.3 Data Cleaning and Filling 
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Due to the sheer number of dwellings, and therefore the large volume of data (>100 of 

dwellings, >3 variables, secondly frequency) for which demand had to be estimated, the 

cleaning and filling processes for the raw data required a bespoke approach that balanced the 

need to produce robust demand estimates for each individual dwelling and the need to keep 

the time spent on doing so to a reasonable minimum such that the research project could be 

completed in a timely manner. With this in mind, the approach taken was to visually inspect 

the timeseries of the raw data for each measured variable in order to build an understanding 

of the physical context of the raw data and therefore how that data needed to be cleaned for 

an individual dwelling, one at a time. Once this process was completed for one dwelling, the 

process began for the next dwelling. The time taken to complete the process sped up with 

each dwelling because the heating systems were similar and therefore tended to present 

similar issues.  

 

The cleaning and filling issues that were present in the data are described below. 

 

▪ Missing readings at the stopping point of DHW events in the flow rate reading 

timeseries. 

 

The author identified one kind of missing data that was present in the flow rate 

measurements; the final measurement that should denote a flow rate of 0 l/m at the end of a 

DHW event. If left unaddressed, these missing readings would lead to the DHW demand 

appearing to have a low level ‘leak’ as a DHW event ended. An algorithm was built to 

identify and remove these phantom leaks. The missing readings were present across the 

majority of dwellings; it is expected that the data issue identified in one dwelling is likely to 

occur in another dwelling because the HIUs are identical and because they all share one data 

collection system. The algorithm was therefore applied to all dwellings. Finally, the 

timeseries for each dwelling was inspected visually to ensure that the missing values were 

addressed and that the ‘leaks’ were all successfully removed. 

 

▪ Anomalous readings where the exact causes are unknown were produced at random. 

 

This occurred rarely enough that the dwelling for which there were spurious readings could 

be removed entirely.  

 

Cold Water Inlet Flow Rate Data 

 

The timeseries of the raw data for the flow rate was forward filled and is justified as an 

appropriate filling method based on the data being ‘event-based’; readings are filtered at the 

Node-HIU Switch such that readings come through only if they are different to the previous 

reading that was allowed through. This results in an ‘event-based’ series that can be forward 

filled to reproduce the data points that were filtered out. Figure 5.9 and Figure 5.10 below 

give example profiles for a single dwelling showing both the raw and the filled flow rate data.  
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Figure 5.9: A timeseries for an individual dwelling showing the raw data for the flow rate of cold inlet water in the DHW 
circuit and how it is forward filled to produce a fuller timeseries 

 
Figure 5.10: Close-up of cold flow rate for one DHW event occurring after 19:30 

 

Flow Temperature Data 

 

Forward filling was applied to the flow temperature data as the raw data was event-based, 

like the cold-water flow rate data. Moreover, no significant kinds of missing readings were 

observable in the raw flow temperature data. Figure 5.11 and Figure 5.12 below give example 

profiles for a single dwelling showing both the raw and the filled flow temperature data 

corresponding to the same dwelling and event shown in Figure 5.9 and Figure 5.10. 

 

 
 
Figure 5.11: A timeseries of an individual dwelling showing the raw data for the flow temperature of the DHW and how it is 
forward filled to produce a fuller timeseries 

 
Figure 5.12: Close-up of DHW flow temperature for event occurring soon after 19:30 in Figure 5.11 
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Figure 5.13 shows a histogram plot for the hot water delivery temperatures across all 

dwellings. The mean temperature is 47.4 ˚C, with a maximum temperature of 60˚C. The 

histogram shows that there is a large range of hot water delivery temperatures with two 

distinct peaks, the larger of which is around 50˚C. An Energy Savings Trust report looking at 

the DHW consumption of UK dwellings found hot water temperatures between 52-54˚C to be 

the most common temperatures (Energy Savings Trust, 2008).  

 

 
Figure 5.13: Hot water delivery temperatures for the sample of dwellings 

 

Figure 5.14 below gives the mean daily volumetric DHW demand for each dwelling as a 

function of its floor area. The mean volumetric demand is 2.92 litres/m2, with a minimum and 

maximum of 0.43 and 9.1 litres/m2 respectively. The peak in the distribution between 2 and 3 

litres/m2 indicate that the majority of dwellings have a daily volumetric demand around that 

level. Ivanko et al. (2020) did a similar analysis and found daily volumetric demand in the 

month of January to be ~2.25 litres/m2, which aligns with the findings in this work. 

 

 
Figure 5.14: Mean daily volumetric DHW demand for the sample of dwellings 



 102 

 

5.2.3 DHW Demand  

 

Figure 5.15 and Figure 5.16 below give examples of DHW demand profiles for selected 

dwellings determined using the assumed cold water inlet temperature, the inlet flow rate and 

the flow temperature. Figure 5.15 gives the demand profile between 17:00 and 21:00 on a 

selected day for three example dwellings. A range of DHW events can be seen; substantial 

DHW draws likely to result from more demanding DHW events such as showers, for 

example, the event that occurs at 17:30 in the top-most profile, and smaller draws likely 

resulting from small tap draws, such as in the cluster occurring around 19:00 in the bottom-

most profile. 

 

Figure 5.16 gives the full daily profile of the selected day for the same dwellings; the peak 

times of demand in the morning and evenings are clearly seen in the profiles, with some 

demands in between and almost no demands in the night-time, in which occupants would be 

sleeping.  

 

 
Figure 5.15: Set of three examples of DHW demand profiles on a selected day between 17:00 and 21:00 
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Figure 5.16: Set of three examples of DHW demand profiles over the course of a selected day 

 

5.2.4 Determining Total Demand 

 

A process like that described in Section 5.2.2.1 where different sets of variables were 

assessed to select the most viable to use in estimating DHW demand, was carried out for SH. 

The result of this process, however, was that none of the options were deemed sufficient to 

produce robust estimates of SH demand. Thus, instead of SH demands, the total demands 

were estimated and used in the analyses. If some of the analysis and how the results are to be 

interpreted are adapted this would still allow the aims of the research to be achieved. 

 

The measurements at the heat meter taken at a sampling time of 5 minutes, denoted by the 

green box labelled ‘heat meter’ in Figure 5.8, is used to determine the instantaneous total 

demand. Readers are reminded that the collection of meter data is distinct from the HIU 

sensor data collection system which is used for determining DHW demand. The M-Bus 

system consists of the meters in each dwelling connected to the ‘base’ of the M-Bus system. 

They are connected in such a way that readings from each meter can be collected only one at 

a time and the M-Bus settings in the case study dictate that a batch of data, meaning one 

reading for each measured variable and each dwelling, is to be collected every 5 minutes 

(refer to Section 4.4 for more detail on the M Bus system function). The time uncertainty in 

the metered variables is laid out in Section 4.13. 

Time DD hh:mm 

Time DD hh:mm 
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5.2.5 Total Demand 

 

The meter data was backfilled to produce a timeseries profile of the total demand for each 

individual dwelling. Each timeseries was visually inspected to identify missing or spurious 

readings. The M-Bus system for data collecting, used by metering and billing companies, is 

highly reliable; minimal data issues were found. The demand profiles given in Figure 5.17 

below show the total demand for three example dwellings on a selected day along with their 

estimated DHW demands which have been resampled (averaged over larger time intervals) to 

match the sampling time of the total demand. Due to the smaller timescales on which DHW 

demands occur, they are not always captured in the instantaneous demand data and are 

therefore not always present in the total demand profiles. A few instances of ‘missed’ events 

can be seen in Figure 5.17, for example, the last DHW event occurring a short time after 9:00 

p.m. in the bottom most profile. Additionally, the offset in time resulting from the restrictions 

in the M-Bus data collection system can be seen when comparing the DHW profile to the 

total demand profile where DHW events in the DHW profile tend to occur a few minutes 

prior to those in the total demand profile. This occurs for all DHW events and is clearly 

visible whenever there is one in the profiles shown below. The offsets in time between the 

DHW demand profiles and the total demand profiles do not impact the results of the analysis 

because the analysis considers them separately and does not require them to be combined. 

The middle profile also clearly exemplifies the DHW priority function acting during the 

course of a SH demand event taking place between ~7:30 a.m. and ~3:00 p.m. Moreover, 

comparing the DHW events in the DHW demand profile to those in the total demand profile 

show that the events vary in magnitude. This variation is expected as the DHW demand 

estimates are determined using a constant assumed cold water inlet temperature. However, in 

reality, this temperature is likely to vary depending on the temperature conditions of the 

environment, thus leading to both overestimations, such as in the event occurring around 9:00 

a.m. in the top-most profile, or underestimations, such as that in the event occurring around 

midday in the middle profile.  
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Figure 5.17: Demand profiles of three example dwellings starting at midnight and extending past 21:00 on a chosen day, 
showing the total demand and the DHW demands 

As stated, the profiles above indicate that some DHW demands fail to be captured in the total 

demand profiles built using the instantaneous heat meter data. Figure 5.18 below shows the 

raw data points for instantaneous and cumulative demand over a period of 6 days for an 

example dwelling. Cumulative demand rises steadily with time as the total sum of energy 

used up to that point rises, whilst instantaneous demand rises and falls according to the power 

requirement at that instant. The difference between consecutive cumulative demand readings 

gives accurate information regarding the total energy use between the times of the readings. 

Cumulative demand readings therefore capture the real demand completely. Comparing the 

instantaneous demand data to the cumulative demand data can help quantify the extent to 

which the instantaneous demand profiles underestimate the real demand.  

 

 

Dwelling 1 

Dwelling 2 

Dwelling 3 
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Figure 5.18: Multiple-day profile of cumulative demand (kWh) and instantaneous demand (kW) for an example dwelling 

 

The total sum of energy used on a selected day (25th January 2022) was calculated for each 

dwelling using both the instantaneous demand measurements and the cumulative demand 

measurements. The integral of the instantaneous demand profile gives the sum of demand. 

The difference between the first and last cumulative demand reading of the day give the sum 

of energy use for that day. A regression analysis was done using the results to show the 

relationship between the daily sum of energy use calculated using the two different methods. 

Results are shown in Figure 5.19. Comparing the regression line to the ‘x=y’ line shows a 

close match indicating that the instantaneous demand measurements estimate the real 

demand, described using the cumulative demand, sufficiently well. Minor errors that exist at 

the level of the individual dwellings will cancel out as the demands are aggregated to produce 

the demand of the group of dwellings together, thus the impact of these errors on the final 

results, which are based on aggregate demands alone, will be small enough to neglect for 

most practical purposes.  

 

 
Figure 5.19: Relationship between daily demand using instantaneous data and daily demand using cumulative data; one 
day, all dwellings 
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5.3 Data Quality for the Selected Set of 

Variables 
 

Figure 5.20 below gives the reading count (i.e., total amount of data points) for each dwelling 

and variable combination available for use in determining the demand for the month of 

October 2021, which was the time at which the early stages of cleaning took place. As 

mentioned in Section 5.2.1, the data quality was expected to significantly improve after the 

early cleaning stages in October because of the data collection system adjustments that 

occurred in conjunction with the cleaning process. This included the M-Bus settings being 

adjusted on the 22nd of January 2022 to increase the frequency of data collection, resulting in 

a higher volume of data for the metered variables. Figure 5.21 gives the reading count for the 

coldest day. It shows that the data volume for this single day alone was far greater than the 

data volume for the whole month of October 2021, showing the positive impact of the system 

adjustments. For example, for most of the dwellings, both meter variables produced less than 

100 readings in total in the month of October, however on the coldest day, there were over 

100 readings for each of the dwellings. No meter data was received after the 6th of February 

2022.  

 

Since the key object of this study, the distribution system sizing, is based on the demands that 

occur in design day conditions where external temperatures are at their lowest, demand was 

determined for the week containing the coldest day in the monitored period. From the period 

where the volume and quality of data were deemed sufficient, 22/01/2022 to 06/02/2022, 

demand was determined for a selected roughly one-week period spanning 24/01/2022 to the 

01/02/2022. This decision was further underpinned by the need to keep computational times 

manageable. The following sections describe and characterise the DHW demand and the total 

demand estimates. 

 

 
Figure 5.20: Reading count map of each variable used in determining DHW and total demands for the month of October 
2021. Note that x-axis markers are dwelling IDs and are provided only as an indication of the number of dwellings and are 
not meant to be legible. 
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Figure 5.21: Reading count map of each variables used in determining DHW and total demand for the day of 25th of January 
2022 which was the coldest day in the monitored period, chosen to represent design day conditions. Note that x-axis 
markers are dwelling IDs and are provided only as an indication of the number of dwellings and are not meant to be legible. 

 

The key research objectives relate to the demand of a HN on design day conditions and to the 

design of HN. Accordingly, for objectives relating to HN design, data from the selected one-

week cold period in January containing the coldest day in the monitored period is sufficient 

as it captures the peak annual demands. Figure 5.22 below shows the daily mean external 

temperatures for the chosen period. The plot shows that on the coldest day in the cold period, 

the 25th of January, the mean daily temperature was as low as 2.5 ˚C. The highest daily 

temperature, occurring on the 29th of January, was 10.2 ˚C. Temperatures of around 1˚C were 

reached on some nights of the cold period. The location of the case study HN experienced 

colder temperatures than the mean for the UK that month, which was 4.7˚C (Met Office, 

2022). The monthly mean temperature across England for January 2022 was 0.2˚C above the 

monthly mean for January between the years 1991-2020 (Met Office, 2022). This indicates 

that the temperatures in the selected cold period are representative of the temperatures that 

England is likely to experience year on year. Thus, it is expected that the peak demands 

captured by the data closely represent the annual peak demands that the HN has experienced 

in previous years and will likely continue to experience year on year. 
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Figure 5.22: Mean daily external temperatures over the course of the selected cold period 

 

5.4 DHW Demand and Total Demand 
 

Figure 5.23 below shows the aggregate demand for DHW and the aggregate total demand 

(DHW and SH demand combined) of the dwelling sample (96 dwellings) over the selected 

cold period. The total demand profile has a sampling time of 5 minutes and the DHW 

demand profile has a sampling time of 5 seconds. Figure 5.24 shows the same profile as 

Figure 5.23; however, the DHW demand profile in Figure 5.24 has been resampled to 5-

minutes, matching the sampling time of the total demand profile. Comparing Figure 5.23 and 

Figure 5.24, it can be seen that the DHW demand is ‘peakier’, i.e., more variable in 

magnitude, at the smaller sampling time. This indicates that DHW demand fluctuates at time 

scales smaller than 5 minutes. Figure 5.24 shows that the minimum DHW demand reaches 0 

kW on some days, whereas for the total demand, the minimum demand remains above ~ 20 

kW on all days. The ‘troughs’ in both profiles occur around the very start of a day at 12 a.m. 

where occupants are likely to be inactive and therefore unlikely to be calling for demand. The 

minimum total demand staying above 25 kW even during these times suggests that there may 

still be a demand for SH through inactive hours in some or all of the dwellings. The total 

demand during the inactive hours of the coldest day (25/01/2022) being significantly higher 

than on the warmest day (29/01/2022) suggests a relationship between the demand during 

these hours and the external temperature, further supporting the claim that demand during 

inactive hours is demand for SH. Moreover, it is unlikely that during the inactive hours, 

occupants will be calling for DHW, thus it can be concluded that the demand during the 

night-time is likely to correspond largely to SH demand. However, it is important to note that 

the demand during inactive hours may also include a contribution by the demand requirement 

of the ‘keep-hot’ function which keeps the DHW circuit in the HIUs warm, the demand from 

which would be captured by the metered data on the primary side of the HIU but not the 

sensor data on the secondary side of the HIU. Figure 5.25 shows the DHW demand and total 

demand at a sampling time of half an hour which gives an indication of what the demand may 

look like at the plant if it were serving this sample of dwellings. 
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Figure 5.23: Aggregate DHW demand and total demand for the cold period at a sampling time of 5 seconds and 5 minutes 
respectively 

 
Figure 5.24: Aggregate DHW and total demand for the cold period, both at a sampling time of 5 minutes 
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Figure 5.25: Aggregate DHW and total demand for the cold period, both at a sampling time of 30 minutes 

 

To illustrate the range in demand across the cold period, Figure 5.26 and Figure 5.27 below 

show the aggregate DHW demand and aggregate total demand for the coldest and warmest 

days in the cold period respectively. The mean DHW demand of the cold day and warm day 

are 24.1 kW and 27.9 kW (15.8% higher than the cold day) respectively. The mean total 

demand on the cold day and warm day are 67.0 kW and 50.6 kW (24.5% lower than on the 

cold day) respectively. The maximum total demand on the cold day was 139.0 kW whereas 

on the warm day it was 105.7 kW. This suggests that DHW demand may be somewhat 

higher, and SH demand higher still, on days where the external temperature is lower. As is 

expected, this is because the SH demands are affected by external temperatures more than 

DHW demand because SH demands are coupled to the environmental conditions to a greater 

extent than DHW demands are (as described in the literature review chapter in Section 2.3).  

 

 

 
Figure 5.26: Aggregate DHW and total demand for the coldest day in the cold period 
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Figure 5.27: Aggregate DHW and total demand for the warmest day of the cold period 

Figure 5.28 shows the mean hourly 24-hour profile for the sample of dwellings for the DHW 

demand and the total demand for the selected cold period. This is determined by taking a 

mean of the set of 96 demand values for a given time step. Which is the same as taking the 

aggregate demand and dividing by the number of dwellings in the group (96). Both profiles 

show the expected typical demand peaks occurring in the morning and evening (Gianniou et 

al, 2018; Summerfield et al., 2015). The highest peak for the total demand occurs in the 

morning, whereas for DHW demand the highest peak occurs in the evening. The profiles 

show that the mean total demand is at least double the mean DHW demand. Other studies 

have noted DHW demand to be as low as 16%, between 20-25% and between 40-50% (in 

energy-efficient homes) of the annual total demand (Bøhm, 2013; Erhorn-Kluttig and Erhorn, 

2014; Marini et al., 2015; Marszal-Pomianowska et al., 2019; Yao and Steemers, 2005). They 

also point out that this proportion will rise with the trend of increasing levels of insulation. 

The findings here show that in the heating season, the proportion of DHW in the total 

demand is ~50%. This can be used to deduce that on the annual scale, which includes the off-

heating season where there is no demand for SH, the proportion of DHW demand in total 

demand would be higher than 50%. The residential building that the dwellings in the sample 

are in is a new build which is likely to have higher levels of insulation compared to the wider 

population of dwellings which are primarily older and would therefore likely have lower 

levels of insulation. The dwelling sample, which sit together in one residential building, 

would likely have a reduced need for SH demand compared to their stand-alone dwelling 

counterparts as a result of having fewer external walls, with little effect on the demand for 

DHW (Burzynski et al, 2012; Wang et al, 2021). The combined impact of these factors may 

explain the high proportion of DHW demand in the total demand. The morning hourly peak 

for the total demand is ~0.9 kW and the hourly evening peak for the total demand is ~ 0.85 

kW. For the DHW demand, the hourly morning peak is just above 0.4 kW, and the evening 

peak is higher at just under 0.5 kW, unlike for the total demand where the morning peak is 

higher. 
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Figure 5.28: Mean hourly 24-hour profile for the sample of dwellings for DHW demand and total demand for the cold period 

 

 
Figure 5.29: Mean hourly 24-hour profile of the total demand for the sample of dwellings for the weekend days and 
weekday days of the cold period 

 
Figure 5.30: Mean hourly 24-hour profile of the DHW demand for the sample of dwellings for the weekend days and 
weekday days of the cold period 

Figure 5.29 and Figure 5.30 above show the mean hourly 24-hour profile for the sample of 

dwellings for the total demand and the DHW demand respectively, both separated for the 

weekdays and the weekend days of the cold period. The total demand profile shows a 

morning peak that starts later in the day for weekends as compared with weekdays. The 

evening peak occurs at similar times for both the weekend and the weekdays; however, the 

magnitude of the peak is smaller on the weekend. The magnitude of the morning peak is 

smaller for the weekend as well. The delay in the morning peak on the weekend is likely 

explained by occupants having a slower start to the day in the absence of work commitments. 

The profile for the DHW demand shows that on the weekend, there is no sharply defined 

morning and evening peak. Instead, the demand fluctuates throughout the day after the initial 

rise in demand in the morning, which occurs later than it does in the weekdays, once again 
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reflecting the occupants’ slower start to the day. Conversely, on the weekdays, there is a 

defined morning and evening peak, which reflect the impact that working patterns may have 

on occupancy and therefore also on demand.  

 

 
Figure 5.31: Mean daily total demand per m2 of floor area 

 

 

 
Figure 5.32: Mean daily DHW demand per m2 of floor area 

 

Figure 5.31 and Figure 5.32 show histograms of the mean daily demand per m2 of floor area 

of the dwelling sample for the total demand and DHW demand respectively. The total daily 

demand for the dwelling sample varies between ~ 0 kWh/m2 and 0.87 kWh/m2, with a mean 

of 0.22 kWh/m2. Ignoring two of the dwellings which have significantly higher demand than 

the rest of the dwellings, the maximum would be ~0.55 kWh/m2. A study looking at annual 

demand data from 450 flats in the SE of England found that the annual demand for SH can 

vary between 0.6 -153.5 kWh/m2a1 for mid-floor flats, and between 5.8-101.6 kWh/m2a1 for 

top or ground floor level flats (Burzynski et al, 2012). Other studies, such as Aragon et al 

(2022), studied 462 social housing flats in the SE of England and found the median annual 
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energy demand, as calculated for cluster groups, to be 20-80 kWh/m2. The characteristics of 

the sample in Aragon et al (2022) and in Burzynski et al (2012) are similar to the sample used 

in this work; both contain only flats in the SE of England. However, only data from a very 

cold period of the heating season is used in this work, whereas in the Aragon et al (2022) and 

the Burzynski et al (2012) studies, annual data is used. Ignoring the differences between the 

off-heating and heating seasons, the findings in Burzynski et al (2012) would translate to a 

daily demand of between 0.002 – 0.42 kWh/m2 and 0.02 -0.28 kWh/m2 for mid-floor flats 

and top/ground flats respectively. The mean daily total demand found in this work falls 

within both of those ranges. Including the demand from days in the rest of the heating season, 

where temperatures would have been higher, may have resulted in the mean daily demand 

being lower and therefore more closely aligning with the results achieved by Burzynski et al 

(2012). The same study found DHW consumption to vary between 2-71 kWh/m2a1. This 

translates to a daily demand range of 0.005-0.19 kWh/m2 which closely aligns with the DHW 

demand in this work which is shown to vary between close to 0 kWh/m2 and 0.24 kWh/m2, 

with a mean of 0.09 kWh/m2. 

 

 

 
Figure 5.33: Box and whisker plot of the daily DHW demand for different dwelling occupancies where green triangles mark 
the mean. 
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Figure 5.34: Box and whisker plot of the daily total demand for different dwelling occupancies where green triangles mark 
the mean. 

Figure 5.33 shows the range of daily DHW demand for dwellings of different design 

occupancies. The mean daily DHW demand ranges from 5.66 kWh for the smallest design 

occupancy, 1 bed-2 people, to 8.69 kWh for the largest design occupancy, 3 bed-6 people. 

Figure 5.34 gives the daily total demand for dwellings of different design occupancies. The 

range for the mean total demand is 11.42 kWh to 22.80 kWh. The results show that the total 

daily demand is at least twice as much as the demand for DHW generally across all 

occupancy types. The sample mean for daily DHW demand was found to be 6.17 kWh, and 

for the total demand, the sample mean was 14.21 kWh. A report on hot water consumption by 

the Energy Savings Trust found a mean daily DHW demand of 16.8 MJ/day (4.6kWh/day) 

for their sample consisting of 112 dwellings with up to 8 occupants (Energy Savings Trust, 

2008).  In comparison, the mean DHW demand in this sample is higher, although not 

substantially. The DHW demand in the heating season has been noted as being greater than it 

is in the off-heating season due to holidays and slightly higher cold water inlet temperatures 

(as described in Section 2.3.1). The energy demand in this sample represents the energy 

demand of the selected cold period only. The DHW demand being higher in this sample 

compared to the sample in the Energy Savings Trust Report may be explained by the lack of 

data from the off-heating season. The lack of off-heating season data makes it challenging to 

compare demand results to other works which tend to use data on the annual scale (Burzynski 

et al, 2012). Another limitation that must be noted here is that the design occupancy may not 

reflect the real occupancy accurately and there may be dwellings where there are more or 

fewer occupants than the design intent. Furthermore, note the small sample sizes which may 

affect results, especially for the occupancy groups ‘2B3P’ and ‘3B6P’, which have a sample 

size of n <10.  

 

5.4.1 Power Temperature Gradient 

 

The Power Temperature Gradient (PTG) has been evaluated in previous studies, including for 

UK dwellings, using annual data from the Energy Demand Research Project (EDRP) smart 

meter field trials (Belussi and Danza, 2012; Leiria et al., 2021; Summerfield et al., 2014; 

Vámos and Horváth, 2023; Wang et al., 2020; Westermann et al., 2020). The PTG is a first-
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order empirical metric that describes the rate of heat loss, from ventilation losses, through the 

building fabric and losses associated with heating system inefficiency as a function of 

changing external temperature conditions. It is equal to the gradient of the linear regression 

analysis of the daily mean demand and external temperature. The PTG is typically used as an 

indication of technical performance which includes a socio-technical aspect as occupant 

heating practices and behaviours may change with changing external conditions.  

 

The PTG is assessed for the case study HN using data collected over the cold period between 

the 22nd of January 2022 and the 6th of February 2022 in the heating season (further details in 

Section 5.3). The data cleaning process for this analysis included removing HIUs that did not 

produce any meter readings at all, which amounted to 9 dwellings in total, out of a total 

sample of ~150 dwellings, thus leaving 138 dwellings in the sample. The number of 

dwellings where occupants were absent for extended periods of time (e.g., for holidays 

lasting one or more weeks) was limited and therefore not removed. The daily mean external 

temperature was obtained using temperature sensor data located outside the residential 

building. Ideally, the heat losses from the distribution system would be included as it is an 

important source of heat into the building however this data was not available. 

 

The aggregate demand of the case study HN was calculated by summing the demands of the 

dwelling sample at half-hourly time steps. This demand was then split off into individual 

days to determine the mean demand for each day which was then divided by the total number 

of dwellings to give the daily mean demand per dwelling. The PTG for the case study HN, 

equal to the gradient of the best fit line in the plot shown in Figure 5.35 below, was found to 

be 40W/K. 

 

 
Figure 5.35: Regression of the daily demand of dwellings and external temperature in the case study HN where R2 = 0.51 
and PTG = 40W/K 

In Summerfield et al. (2014), a PTG study based on a UK dwelling sample, the dwellings 

tended to have a PTG of between 200 and 330 W/K with a full range of between 0 and 1200 

W/K and in Wang et al. (2020), another similar study, the PTG was found to be 320 W/K. 

Both studies used gas data from dwellings collected over the period of at least 80 days by the 

energy provider EDF in one of the field trials in the EDRP. The data was collected for 591 

dwellings in total, 304 of which were used in Wang’s study, and 567 of which was used in 

Summerfield’s study. The datasets used in these studies had an underrepresentation of 

flats/maisonettes, making up only 3% of the dwellings in the dataset, thus these results 

largely represent dwellings that are standalone dwellings, i.e., not part of a residential 

building, such as detached or terraced houses. In Summerfield’s study, the mean PTG of the 
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flats/maisonettes was calculated separately and found to equal 260 W/K (Summerfield et al., 

2014). The PTG found for the dwellings in the case study HN, at 40 W/K, still low even 

when comparing like for like, against flats/maisonettes, may be explained by the fact that 

heating system efficiency is not taken into account in Summerfield et al. (2014) or Wang et 

al. (2020). The low heat loss is potentially also explained by the case study HN being a new-

build which is likely to have a lower building fabric U-value than the dwelling sample in the 

other studies which consist of dwellings built from before 1919 to 1980 (Wang et al., 2020). 

Moreover, the thermal losses from the distribution system acting as heat gains to the building, 

the demand of which is not considered in the PTG value, would act to further reduce the PTG 

of the case study HN. 
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6 Results 2 – Demand and Diversity  
 

6.1 Introduction and Relevant Objectives 
 

The research questions and objectives that pertain to this chapter are those that are stated in 

bold. 

 

▪ What is the real diversity effect in UK HNs?  

• Estimate the individual demand profiles of dwellings on a real HN using 

measured data. 

• Analyse the impact that aggregation, over number of dwellings and over 

time, has on the demand. 

 

In this chapter, a selection of DHW demand distributions is used to determine the minimum 

sampling time recommended when measuring individual dwelling demand to support the 

design of a HN such that it meets a given quality of service. 

 

6.2 Demand Distribution 
 

The demand distribution for DHW and total demand at varying levels of aggregation over 

number of dwellings and over time, as described in Section 3.5, are presented in this section. 

The period selected for analysis is the week (Mon-Sun) which contained the coldest day in 

the monitored period as is required for analysis regarding system design, as the coldest days 

represent the design day conditions in which demand will be at its highest. The number of 

dwellings whose demands were aggregated is denoted by the letter k, in reference to the 

equations presented in Section 3.5. 

 

The aims of this section are as follows. 

 

▪ Establish a minimum recommended sampling time appropriate for use in sizing a real 

HN similar to the case study to meet a defined quality of service criteria.  

▪ Characterise (i.e., SH or DHW, real occupant demand or transient demand) the demand 

events that make up the notable features in the demand distributions. 

▪ Define the extent to which findings on individual demand distribution hold for 

aggregate demand distributions. 

 

The first subsection lays out the individual demand distribution plots and corresponding 

summary tables for different levels of aggregation over time and over dwellings in full and 

the final subsection gives a higher-level view of the same by summarising these distributions 

into two key plots. 

 

6.2.1 Individual Demand Distributions 

 

Figure 6.1 shows the results of the demand distribution analysis for the total demand for 

individual demands (k =1) at sampling times of 5, 10, 30, and 60 minutes. Table 6.1 gives a 

summary of the percentile values of the distribution at each sampling time. The maximum 

demand (the 100th percentile) for a sampling time of 5 minutes and 10 minutes are exactly 

equal at 29.6 kW. At sampling times higher than 10 minutes, the maximum demand 

decreases; at 30 minutes it is 26.47 kW, and at an hour it is 21.44 kW. A similar pattern was 
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shown in a report by Cosic (2017) looking at the impact of sampling time on demand 

distribution; the maximum demand at sampling times equal to or lower than 10 minutes all 

had the same value at an individual demand level, as shown in Table 2.3 (Cosic, 2017). 

 

Figure 6.2, Figure 6.3, and Figure 6.4 give the distribution of DHW demand of individual 

dwellings for the sampling times of 1, 5, 30, and 60 seconds, and 5, 10, 30, and 60 minutes. 

Table 6.2 gives the summary of the percentile values of the distributions at these sampling 

times. At a sampling time of 5 minutes, the distribution starts to resemble the distribution of 

total demand presented in Figure 6.1, as is expected; maximum demands are almost identical 

at 28.95 kW for DHW and 29.6 kW for total demand. However, the DHW demand 

distribution does not include the peak at ~2 kW, which is present in the total demand 

distribution, which suggests that the peak is largely made up of SH demands. 

 

 

 
Figure 6.1: Demand distribution for the total demand at an individual demand (k=1) level showing the impact of increasing 
sampling times. Top-left: 5-minute; top-right: 10-minute; bottom-left: 30-minute; bottom-right: 1-hour. 
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Figure 6.2: Demand distribution for the DHW demand at an individual demand (k=1) level showing the impact of increasing 
sampling times. Top-left: 1-second; top-right: 5-second; bottom-left: 10-second; bottom-right: 30-second. 
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Figure 6.3: Demand distribution for the DHW demand at an individual demand (k=1) level showing the impact of increasing 
sampling times. Top-left: 60-second; top-right: 5-minute; bottom-left: 10-minute; bottom-right: 30-minute. 

 

 
Figure 6.4: Demand distribution for the DHW demand at an individual demand (k=1) level at a sampling time of 1 hour 
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Table 6.1: Summary of total demand distribution percentiles for k=1 expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 6.8 15.8 27.7 29.6 

10 minutes 6.05 14.9 27.3 29.6 

30 minutes 4.94 11.78 23.09 26.47 

1 hour 4.29 8.5 19.61 21.44 

     
Table 6.2: Summary of DHW demand distribution percentiles for k=1 expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 20.82 25.87 33.35 36.88 

5 seconds 20.51 25.6 33.04 36.43 

10 seconds 20.01 25.3 32.79 34.82 

30 seconds 18.98 24.34 30.58 31.72 

60 seconds 17.85 22.95 29.84 30.45 

5 minutes 14.06 18.6 28.1 28.95 

10 minutes 9.79 16.19 26.6 27.59 

30 minutes 4.9 8.65 16.97 17.35 

1 hour 3.03 5.58 11.08 12.23 

 

Table 6.3 - Table 6.10 below summarise the percentile values for the total demand and DHW 

demand distributions at levels of aggregation, k, of 5, 10, 35, and 60. At a high enough level 

of aggregation, the SH demand may start to dominate the peak demands. At a level of 

aggregation of k=35, the peak total demand at a sampling time of 5 minutes exceeds, 

although not substantially, the peak DHW demand, which may suggest that at this level the 

DHW demands stop dominating the peak. This is assuming that DHW demands have been 

estimated accurately and match the DHW demands inherent in the total demand. Table 6.1 

shows that for the total demand distribution, sampling up from 5 minutes to 10 minutes has 

no impact on the 100th percentile, both of which equal 29.6 kW. This suggests that at 

sampling times lower than 5 minutes, the maximum demand may remain at 29.6 kW. Thus, 

following the trend, we can say that at a sampling time of one second it may reasonably be 

expected that the 100th percentile of the total demand distribution is equal to 29.6 kW. 

Comparing this to the 100th percentile of the DHW demand distribution at a sampling time of 

one second, 36.88 kW, suggests that DHW demand may be generally overestimated. If this is 

true, then the cross-over point of k = 35 dwellings may be different. If the DHW demands are 

in fact lower than estimated, then the cross over point will likely also be lower than 35 

dwellings. 

 
Table 6.3: Summary of total demand distribution percentiles for k=5 expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 2.7 4.06 7.48 10.58 

10 minutes 2.54 3.92 7.16 9.81 

30 minutes 2.12 3.49 6.27 7.05 

1 hour 1.84 2.96 5.69 5.97 
 

Table 6.4: Summary of DHW demand distribution percentiles for k=5 expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 4.75 6.4 11.25 14.03 
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5 seconds 4.61 6.29 11.16 13.88 

10 seconds 4.5 6.18 10.99 13.67 

30 seconds 4.17 5.78 10.02 12.87 

60 seconds 3.87 5.41 9.52 12.67 

5 minutes 3.13 4.27 8.21 9.95 

10 minutes 2.45 3.67 7.18 8.86 

30 minutes 1.46 2.45 4.89 5.31 

1 hour 1.1 1.76 3.43 3.53 
 

Table 6.5:Summary of total demand distribution percentiles for k=10 expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 1.87 2.78 5.2 7.0 

10 minutes 1.81 2.68 4.86 6.46 

30 minutes 1.63 2.35 4.06 4.31 

1 hour 1.47 2.11 3.72 3.9 
 

Table 6.6: Summary of DHW demand distribution percentiles for k=10 expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 2.8 3.71 6.23 9.25 

5 seconds 2.73 3.65 6.16 9.15 

10 seconds 2.65 3.58 6.1 8.94 

30 seconds 2.42 3.4 5.77 8.43 

60 seconds 2.19 3.21 5.65 8.39 

5 minutes 1.74 2.58 4.87 5.86 

10 minutes 1.49 2.2 4.31 5.37 

30 minutes 1.01 1.59 2.78 3.46 

1 hour 0.82 1.22 1.99 2.0 
 

Table 6.7: Summary of total demand distribution percentiles for k=35 expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 1.29 1.7 2.76 3.7 

10 minutes 1.26 1.66 2.61 3.39 

30 minutes 1.2 1.52 2.17 2.49 

1 hour 1.14 1.4 1.95 2.01 
 

Table 6.8: Summary of DHW demand distribution percentiles for k=35 expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 1.21 1.65 2.64 3.58 

5 seconds 1.19 1.62 2.61 3.48 

10 seconds 1.16 1.6 2.58 3.4 

30 seconds 1.1 1.53 2.51 3.36 

60 seconds 1.04 1.47 2.41 3.16 

5 minutes 0.89 1.28 2.12 2.57 

10 minutes 0.81 1.17 1.91 2.2 
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30 minutes 0.68 0.92 1.38 1.65 

1 hour 0.6 0.78 1.19 1.42 
 

Table 6.9: Summary of total demand distribution percentiles for k=60 expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 1.16 1.46 2.3 2.55 

10 minutes 1.15 1.43 2.15 2.29 

30 minutes 1.11 1.32 1.72 1.77 

1 hour 1.06 1.25 1.51 1.52 
 

Table 6.10: Summary of DHW demand distribution percentiles for k=60 expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 0.93 1.24 1.91 2.56 

5 seconds 0.91 1.23 1.89 2.54 

10 seconds 0.9 1.21 1.87 2.44 

30 seconds 0.86 1.17 1.81 2.3 

60 seconds 0.83 1.13 1.76 2.03 

5 minutes 0.74 1.02 1.57 1.81 

10 minutes 0.7 0.95 1.47 1.59 

30 minutes 0.6 0.78 1.05 1.11 

1 hour 0.55 0.67 0.91 0.97 

 

Please find the demand distributions plots for higher levels of aggregation in Appendix B. 

 

6.2.2 Recommended Sampling Time 

 

At an individual demand level, DHW demand peaks dominate SH demand peaks, apart from 

at the hourly time scale and above. This domination is because the DHW draws need to get 

up to the set point temperature (if it is direct and no storage is involved) faster than is 

required for SH and therefore DHW requires more power. This can be enabled by the design 

of the HIUs which have bigger plate heat exchangers in the DHW circuit compared with the 

heat exchangers in the SH circuit. There is also a boost function (which involves a boost in 

flow rate) in the DHW circuit that enables the higher DHW power. Thus, at an individual 

level, the DHW dominates the peak. This can be seen in the demand profiles presented in the 

first results chapter, Chapter 5. Table 6.2 summarises the impact that sampling time has on 

the individual DHW demand distribution and shows a range of percentiles of the demand at a 

range of sampling times. For the following argument, assume that a sampling time of one 

second can be taken as being able to fully capture the real individual peak demand. This is a 

reasonable assumption to make as it is unlikely that the demand varies substantially at lower 

sampling times because significant demand events do not occur at time scales that small. 

Table 6.2 also shows that the 95th percentile of the individual demand distribution at a 

sampling time of one second is equal to 20.82 kW. This means that for 95% of the time the 

real demand is lower than 20.82 kW. Thus, for a quality-of-service criterion requiring the 

demand in a HN to be met 95% of the time, using a peak demand of 20.82 kW to size the 

pipes that connect directly to the HIUs would be appropriate. Equally, using any sampling 

time where the maximum demand (the 100th percentile) is either above or close to 20.82 kW 

would also be appropriate to use to size pipes directly connected to HIUs in order to achieve 
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a quality-of-service-criterion of 95%. For example, take a sampling time of 10 minutes where 

the maximum peak demand is 27.59 kW. The 95th percentile of the demand at a sampling 

time of one second, 20.82 kW, is less than the 100th percentile, or the maximum demand, of 

the demand at a sampling time of 10 minutes, 27.59 kW. Thus, a sampling time of 10 minutes 

or smaller is likely suitable for sizing the pipes directly connected to the HIUs in order that 

95% of demands are met. At a sampling time of 30 minutes, however, the 100th percentile is 

17.35 kW, which is substantially lower than 20.82 kW, which means that sizing the HN using 

data measured at a 30-minute sampling time won’t result in the quality-of-service criterion of 

95% being met. 

 

The plot in Figure 6.5 below shows the impact that increasing sampling time has on the 95th 

percentile of demand (the chosen quality-of-service criterion) at varying levels of aggregation 

over dwellings. The plot confirms that the peak demand is highest at a sampling time of one 

second at the individual demand level and that as sampling time increases, and as aggregation 

level over dwellings increases, the peak demand decreases. If the peak demand decreases 

with increasing levels of aggregation over dwellings, one can expect that a sampling time that 

can fully capture the peak at the individual level, when it is at its highest, will also capture the 

peak at higher levels of aggregation over dwellings, where the peak demand is smaller. Thus, 

the assertion that a 10-minute sampling time will deliver a 95% quality of service criterion 

holds for all levels of aggregation. Thus, in practice, this sampling time is appropriate for use 

in sizing all pipes across the entire distribution system, not just the pipes directly attached to 

HIUs. 

 

 
Figure 6.5:  The effect that sampling time has on the 95th percentile DHW demand for varying levels of aggregation over 
dwellings, k 

 

 

10 minutes 
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The above argument stands well for the service pipes where only individual demands are 

relevant but what about the rest of the distribution system where aggregate demands come 

into play? Since DHW demands dominate up until k = 35 dwellings, the above argument 

stands until that point. This is because if the 10-minute sampling time suffices to meet 95% 

of the individual DHW demand then it will also suffice to meet 95% of the demand for 

aggregation levels of up to 35 dwellings because of the effect of decreasing peak with 

increasing aggregation over dwelling described in the preceding paragraph. What about 

above k = 35 dwellings where the DHW demand ceases to dominate the peak? At this point, 

where the SH demand may begin to dominate the peak demand, using the 10-minutely 

sampling time may result in undersized pipes that may continue to meet DHW demands but 

fail to deliver SH demands on top. This limitation is discussed further Section 8.3.2. 

 

6.3 Total Demand Distribution 

Characteristics 
 

Figure 6.6 shows several example profiles of total demand from a range of dwellings, 

showing both SH and DHW demand events, depicting the characteristic differences between 

the two. For example, as expected, DHW demand events require much higher power than SH 

demand events, and SH demands last substantially longer than DHW demand events, again, 

as expected. In the topmost profile, the first SH demand event reaches 4 kW and lasts over 2 

hours. The second event in that same profile has a lower peak and lasts for the majority of the 

evening, likely because the thermal mass of the dwelling is charged up from the first heating 

event and/or heat gains from external sources such as solar gains. The SH events in the 

remaining profiles have a demand of around ~2 kW and last up to the duration of the whole 

day. 
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Figure 6.6: Example day-long profiles showing what could be SH, DHW and ambiguous demands which could be DHW or SH 
demands 

The sample of profiles given in Figure 6.6 shows that SH events tend to have a mean demand 

of about 2 kW for the dwellings shown. SH demands across all dwellings are likely to be at a 

similar level given that the dwellings share the same kinds of heating systems, building 

fabric, and insulation properties, although solar gains and ventilation practices may introduce 

variance. This suggests that the prominent peak at ~2 kW in Figure 6.7 is primarily made up 

 

MM-DD hh 
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of SH demand. As pointed out in Section 6.2.1, this is also suggested by the fact that the 

DHW demand distribution at this sampling time does not have a peak at ~2kW. The technical 

specification of the HIUs state that the maximum output for SH is 25 kW and the maximum 

for DHW is 65 kW (Heatweb Ltd., no date c). The measured demand distribution suggests 

that other constraints are in place in the system limiting demand to be below 35 kW. At 

higher demands in the distribution, the events making up that demand are likely to be made 

up mostly of DHW events due to them requiring a more intense load. These conclusions are 

summarised in Figure 6.7, which identify the parts of the distribution that are most likely to 

be made up of mostly SH events and mostly DHW events. The demand distribution, showing 

that the majority of higher demands are DHW demands, suggests that storing for DHW 

demand would greatly reduce the peak demands of the dwellings, allowing service pipes to 

be sized significantly smaller.  

 

 

 
Figure 6.7: Distribution of total demand at an individual dwelling level (k=1) and a sampling time of 5 minutes where 
sections of predominant SH demand and predominant DHW demands are highlighted 

 

6.4 DHW Demand Distribution 

Characteristic  
 

DHW demand events typically tend to present a similar shape; as exemplified in  

Figure 6.8, DHW events tend to have a peak at the start before plateauing off to a steadier 

demand. This general shape, where DHW demand starts with a peak and then plateaus to a 

steady demand, is seen across all dwellings. The “peak” part of the demand event is likely to 

represent a “charging up” of the thermal masses that make up the DHW systems and is 

therefore a transient part of the demand. Additionally, the mechanics of the DHW system 

may also contribute to the ‘squiggle’ seen just after the peak; the thermostatic valve inside the 

shower mixer initially opens wide to the hot side of the valve (to compensate for the water in 

the pipe between the HIU and shower mixer being cold) before throttling down as the hotter 

water from the HIU approaches the mixer. Figure 6.9 shows a ‘zoomed out’ view of what 

DHW demand events look like over the timescale of several days. Figure 6.10 shows the 

same over a shorter span of time. 

 
 

 

SH 

demands 

largely. 

DHW 

demands. 
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Figure 6.8: A shower DHW event, often starting with a spike and then levelling off to a constant power. More examples of 
this kind of event can be found in the appendix 

 

 
Figure 6.9: DHW demand profile spanning a number of days, showing the range of DHW events that could occur 

 
Figure 6.10: Profile showing two DHW demand events where “peak and plateau” is evident 

 

Figure 6.11 shows instances in example profiles where there are two consecutive DHW 

events in which the peak of the second event is not as extreme as it is in the first event 

because the DHW circuit has already warmed up. The larger of these peaks are the kind of 

peaks which are likely to make up the right-hand side tail of the DHW demand distributions 

shown in Figure 6.2. The “peak and plateau” shape is also present for SH demands, as seen in 

the topmost profile in Figure 6.6. Like DHW transient peaks, SH transient peaks also occur at 

the beginning of SH demand events if the system has cooled down below a given level. 

However, the level of demand required to meet occupant comfort for SH can be considered a 

‘moving target’ compared to the demand needed to meet comfort levels relating to DHW. 

This is because the of the highly variable context for providing SH because SH demand is 

coupled to external temperature, whereas DHW is not. Additionally, DHW circuits are 

relatively low volume compared to SH circuits and therefore can get ‘up to temperature’ 

faster.  
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Figure 6.11: Examples of DHW events where the first in which a transient peak is present is closely followed by a second 
event in which the peak is less extreme 

 

For DHW, the higher demand during the peak is also met through an increase in flow rate, as 

illustrated in Figure 6.12, through the boost function, which dictates that if the primary flow 

temperature is below a set point, the primary flow should be operating at a maximum (16 l/m) 

(R. Hanson-Graville, personal communication, September 2019). This is depicted in Figure 

6.13. For SH thermal mass that needs to be charged up will include not only the underfloor 

heating system but also the thermal mass of the dwelling fabric. 
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Figure 6.12: Series of plots showing the behaviour of DHW flow temperature and flow rate behaviour during a peak 
demand. The series increasingly zooms into the DHW peak event occurring around 17:29 

. 
 

 
Figure 6.13: DHW flow rate and primary flow rate behaviour during peak events- showing primary flow rate reaching 16 l/s 

 

Whilst peak demands are largely the result of the physical system (for example, by being 

limited by the size of the heat exchangers), the “plateau” part of the demand are steady state 

and are influenced largely by the requirements of the occupant and the conditions they call 

for during a particular event (for example, how hot do they want their shower to be). For 

example, the middle profile in Figure 6.11 shows that the real occupant demand would be 
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adequately represented by the steady demand at 15 kW. The shorter duration of the peak 

demands and the longer duration of the “plateau” demand are clearly visible in the demand 

profiles given in Figure 6.11. The large peak in the DHW demand distribution at a sampling 

time of one second centred at 15 kW, reproduced in Figure 6.14 below, accounts for a large 

proportion of the demand and is therefore likely to represent the real occupant demands that 

are steady and last much longer than the transient peaks. The peak of the DHW demand 

distribution is present for all sampling times lower than 5 minutes. The base of the peak starts 

at 2.5 kW and ends at 20 kW, highlighted in Figure 6.14 using a red arrow. This suggests that 

the “plateau”, or steady state, demands which represent real occupant demand in dwellings 

has a range between 2.5 kW and 20 kW and that they do not tend to last longer than 5 

minutes. The transient demands that are larger than the steady demands would therefore 

make up the right tail of the distribution (between 20 kW and 30 kW). This suggests that the 

transient peaks across the group of dwellings spans 20 – 30 kW.  

 

 
Figure 6.14: DHW demand distribution where red arrow denotes the large peak centred at 15 kW. Individual demands at a 
sampling time of one second. 

 

In addition to the ‘peak and plateau’ demands, there is another kind of demand that although 

is present across all dwellings, is largely inconsequential to the design of the HN. These are 

demands that occur for a few seconds as a short, sharp spike. Two examples of such demands 

are shown in Figure 6.15 below. Figure 6.2, which shows the difference between the demand 

distribution at a sampling time of 1 and 5 seconds, where the higher range remains 

unchanged (remaining at around 30 kW), suggests that the demands that occur on small time 

frames are not peak demands. Thus, information regarding such minor demands is unlikely to 

have any meaningful bearing on HN design, regardless of the intended quality-of-service 

criterion. 
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Figure 6.15: Two small demand events which often take the shape of a short, sharp spikey demand that tends to last less 
than 5 seconds 

The key conclusions from this section are summarised in the diagram in Figure 6.16 below. 

Note that the higher range of demand, between 20 kW and 30 kW, could also be due to real 

occupant demand peak resulting from multiple outlets running at once, e.g., tap and shower 

being used simultaneously; however, simultaneous demands like this would be rare but may 

affect occupant experience (R. Hanson-Graville, personal communication, February 2022). 

 

 

 
Figure 6.16: DHW demand distribution showing where the real occupant demands and transient demands are likely to be. 
Individual demands at a sampling time of one second. 

 

Does the nature of the higher demands make a difference to how small the pipes serving 

individual dwellings could potentially be sized? The current practice for sizing the pipes that 

are connected directly to the HIU is to size for max HIU output (M. Cosic, Personal 

communication, 2022). Where the demands between 20kW and 30kW are in fact real 

consumer demand, pipes sized for 15 kW would not be able to meet this demand effectively; 

on the rare occasion that there is a shower and tap, for example, running simultaneously, the 

occupant’s desired comfort levels would not be achieved. However, if the demand between 

 

 

 

Real, user 

demands 

Transient demand 

(result of physical 
system)  

 

Start time: 

11:26:32 
End time: 

11:26:36 

Start time: 

11:29:37 
End time: 

11:29:41 
 

D
H

W
 D

em
an

d
 [

k
W

] 

Time 



 135 

20 kW and 30 kW is made up of only transient heat demands (i.e., thermal mass charging up) 

then sizing the pipes for a peak demand of 20 kW may still preserve occupant comfort. To 

put another way, if the pipes were sized to 20 kW then generally, the occupants may have to 

wait a little longer for their water to heat up but the shower or tap draw would perform the 

same thereafter. Instances where two draws are happening simultaneously will, however, be 

affected more severely as will occupants that have real occupant demands that are above 20 

kW, which are rare but do exist (topmost profile in Figure 6.11). This is an interesting point 

to consider because if occupants were willing to make this compromise, the benefit of the 

trade-off, e.g., smaller pipes and therefore lower heat losses, may be worthwhile. Note that 

SH demands which tend to be lower than 5 kW, shown in Figure 6.7, would also comfortably 

be met. In practise there is some leeway allowed when delivering heat through pipes sized to 

a fixed demand because higher flow rates, and therefore higher demand, can still be delivered 

under the right pressure conditions. The above is an argument based on a fixed pressure 

assumption used to illustrate the general effects of reduced pipe sizing on demand and 

occupant comfort. In real conditions, the likely impact of undersized pipes will be dependent 

on the pressure conditions available and where there is an impact, it is the dwellings at the 

ends of branches where such effects of will be seen first. 

 

Additionally, this ties into the recommendation of a 10-minute sampling time for sizing the 

distribution system made in earlier sections. A quality-of-service criterion of 95% was the 

basis of this recommendation. This criterion was shown to correspond to a demand of 20.82 

kW. Given that the real occupant demands (both SH and DHW) were found to be 20 kW or 

lower, it can be said that the selected quality-of-service criterion is sufficient in meeting all 

real occupant demand. 
. 
 

6.5 Real Peak Demand 
 

Figure 6.17 shows the rate at which the dwelling per demand decreases as the number of 

dwellings increase for the DHW and total demand at a sampling time of 10 and 30 minutes. 

The curves were created by taking the maximum demand of 50 random combinations of 

dwellings at each level of aggregation. The half-hourly total demand curve in Figure 6.17 can 

be compared with a chart developed by Guru Systems, presented in Section 2.5.3 initially and 

reproduced here in Figure 6.18. Figure 6.18 shows the DS439 based capacity6 with the 

measured capacity which is equal to the 99.989th percentile of half-hourly instantaneous 

power meter readings from a ~1000 dwelling sample across several HNs7 (Personal 

communication, T. Noughton, May 2022). The Guru curve (SH and DHW) gives a value of 

2.5 kW per dwelling at 80 dwellings, whereas the total demand half-hourly curve in this work 

shows a demand requirement of 1.5 kW. For 60 dwellings, the peak demand per dwelling for 

the dwelling sample in this work is a little above 1.5 kW, whereas for the Guru Systems 

sample, it is ~ 2.5 kW. For 5 dwellings, the capacity in this work’s sample is ~6 kW, whereas 

in the Guru Systems study it was just below 10 kW. The peak demands for case study sample 

at all levels of aggregation are lower than they are in the Guru sample. Although it can’t be 

confirmed, it is likely that the HNs in the Guru sample included a wide range of HNs that 

 
6 Specifically, the heat exchanger sizing method, as opposed to the pipe sizing method, described in full in 
Section 2.5.3 in the literature review chapter. 
7 For each half hour time step, a histogram containing a reading from each of the dwellings was built and 
normalised, following which the demand distribution for a scheme of n flats by convolving this distribution n 
times. Each point on the curve is determined by summing the distributions for a given n, normalising this 
distribution to get the distribution for an entire year, taking the 99.989th percentile and dividing by n. 
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included but were not limited to CHNs. Thus, there may be a good proportion of standalone 

dwellings in the sample whose demands are notably higher than flats/apartments which make 

up this work’s sample in its entirety.   

 

The capacity, as determined using the DS439, is higher than both the capacity of the Guru 

Systems sample and the capacity for this sample, across all levels of aggregation. Although 

the assumptions underpinning the calculation of the DS439 capacity is unclear, a tentative 

comparison can be made. Note that the DS439 curve presented in Figure 6.18 is not the 

method recommended in CP1.2, it is instead the heat exchanger sizing method (Personal 

communication, T. Noughton, May 2022). Moreover, Section 2.5.5 in the literature review 

makes a distinction between the real demand, which is the demand measured at a certain 

point in the network, and the aggregate demand which is calculated by summing the 

measured individual demands at each time step. The measured curves presented in Figure 

6.17 and Figure 6.18 are aggregate demands. Guru Systems confirmed the oversizing 

indicated in Figure 6.18 by producing a similar graph using a large amount of bulk meter 

readings which are readings taken either at an energy centre or at a substations/ building entry 

point (Personal communication, T. Noughton, May 2022). Such a curve would be 

representative of the real demand since it comprises measurements taken directly from the 

distribution system. Although this does not confirm the relationship between aggregate and 

real demand, it does provide validation regarding oversizing claims based on aggregate 

demands. 

 

 
Figure 6.17: The demand per dwelling for the DHW demand and the total demand at a sampling time of 10 and 30 minutes 
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Figure 6.18: Guru diversity curve for space and DHW demand as compared with the DS439 curve (heat exchanger sizing) for 
DHW demand only (Smith, 2016) 

Figure 6.19 shows the design capacity for the total and DHW demands, as determined using 

the methods recommended in CP1.2, using its Annex D as a guide, next to their measured 

equivalents (CIBSE, 2020). To calculate the DHW and total demand design capacities, the 

SH diversity factor and diversified DHW flow rate equations, presented in Sections 2.5.1 and 

2.5.2, respectively were adapted and used. The design capacities are presented as ribbons 

showing a range of values whose calculative components are outlined in Section 13.1, 

Appendix C along with the adapted equations and supplementary plots. Figure 6.19 indicates 

that the measured peak demands are less than half of what is estimated for both DHW 

demand alone and for the total demand across all levels of aggregation up to and potentially 

beyond, 80 dwellings. Table 6.11 below specifies the design capacities, measured peak 

demands and the corresponding overestimation for 5, 15 and 35 dwellings showing that the 

overestimation remains substantial at this range. The figure also shows how closely the 

measured total demand and DHW demand curves follow each other. This is expected at the 

lower levels of aggregation where DHW peaks dominate, and thus where the peak of the total 

demand, which would be a DHW demand, will be equal to the peak DHW demand, but is not 

necessarily expected at higher levels of aggregation. The two curves slightly divert away 

from each other at around 5 dwellings and remain so past 80 dwellings. The difference 

between the two curves, at its highest at around 20 dwellings, is < 1 kW. The plot also shows 

that the peak demands at an individual level have a mean of ~15 kW which implies that with 

DHW systems, typically designed to deliver higher peaks, may often go underutilised. This 

may be the result of overestimated peak flow rates, as was found to be the case in other 

European countries (detailed in Section 2.5.4). The substantial discrepancy at the individual 

demand level also suggests that the smaller pipes, those serving a single dwelling, are where 

the most stands to be gained with respect to reducing pipe sizes and thermal loss savings. 

This will be further qualified in the following results chapter in the discussion around Figure 

7.24 which shows high thermal loss in smaller pipes.  
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Figure 6.19: Design total demand and DHW demand capacities with the measured DHW demand and total demand peaks 
(10- minute sampling time) 

 
Table 6.11: Comparison of design capacities compared with measured values for DHW and total demand 

Demand type Number of 

dwellings, N 

Design 

capacity (kW) 

Measured 

value (kW) 

Overestimation 

(%)  

DHW 5 9.35 - 10.91 5.01 87 – 118 % 

15 4.32 - 5.32 2.74 58 – 94 % 

35 2.57 -3.34 1.70 51 – 96 % 

Total 5 10.74 – 13.0 5.90 82 – 120 % 

15 5.61 – 7.26 3.30  70 - 120 % 

35 3.83 – 5.23 2.23 72 – 135 % 
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7 Results 3 – DHW Storage Impact on HN Design and Demand 
 

7.1 Introduction and Relevant Objectives 
 

This chapter pertains to the research question and objectives stated below: 

 

▪ What is the impact of DHW TES on HN demand and design in the presence of 

diversity? 

• Estimate the residual DHW demands that would result from DHW TES 

installation for the sample of dwellings. 

• Assess the impact that DHW TES has on the aggregate demand. 

• Assess the impact that DHW TES has on the distribution system pipe sizing 

and the resultant impact on thermal loss. 

 

 

7.2 Thermal Store Model Results 
 

7.2.1 Mixed Thermal Store Results  

 

The plots below show the residual demands (i.e., the modelled demand of a dwelling where 

storage is being utilised) obtained for an example dwelling using the mixed heat store model. 

The top profile in Figure 7.1 shows the residual demand and the DHW demand. The bottom 

profile shows the temperature of the store for the same period. The plots show that as the 

store starts to charge at 5 am, the temperature of the store starts to gradually increase, 

indicating that the store is charging up. The rate of charging slows as the temperature of the 

store rises, as indicated by the decreasing positive gradient of the store temperature and the 

decreasing negative gradient of the residual demand. When the store is full, and there is no 

DHW demand, like in the short period after the first charging time window ends, the store 

loses heat to its environment. This results in a gradual decrease in the store temperature. 

When there is a demand for DHW, there is a drop in temperature in the store proportional to 

the rate of demand. Figure 7.2 gives an example of a multi-day profile, showing the 

behaviour of the store model for a different dwelling. The maximum charging power in a 

mixed heat store model is defined such that the store can be fully charged in two hours (see 

Table 3.2 and Section 3.6.2). The maximum charging power varies from store to store 

because each store is sized according to the daily demand of a dwelling. If a dwelling has a 

larger daily demand, it requires a larger store to meet that demand. Hence, the maximum 

charging power of the store shown in Figure 7.1 is larger than the store in Figure 7.2 because 

the former dwelling has a larger daily demand. Although the maximum charging power is 

defined in this way, it does not necessarily mean a store will completely fill up in the two 

hour time window every time, hence the store temperatures not reaching 50 ˚C in certain 

instances such as the first charging window of the Figure 7.1. This is because the charging 

power is dynamic and does not remain at a fixed level as the store fills up. The maximum 

charging power was defined in this way as a first order approximation of the maximum 

charging power that would have led to a fully charged store in two-hour time window.  
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Figure 7.1: Residual demand and store temperature example profile for the mixed store model 

 

 
Figure 7.2: Example multiple day profile resulting from CC-mixed model 

Figure 7.3 and Figure 7.4 give the fraction of the real DHW demand met by the mixed model. 

In both scenarios, over 90% of the demand is met for the vast majority of the dwellings. 

There are no dwellings for which less than 75% of the demand is met. The unmet demand is 

unlikely to consist only of peak demands, thus, the sizing analysis is not affected. 
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Figure 7.3: Histogram of the fraction of the real DHW demand met in individual dwellings in the CC scenario using the mixed 
store model 

 
Figure 7.4: Histogram of the fraction of the real DHW demand met in individual dwellings in the SC scenario using the mixed 
store model 

 

7.2.2 Stratified Thermal Store Results 

 

Figure 7.5 shows the outputs of the stratified store model for an example dwelling. The 

residual demand (top profile) shows the store charging at a constant rate between 5 am and 7 

am. The thermocline position moves from 0.45 m to 0.0 m during this time, indicating that 

the store has completely charged in this time. The thermocline position gradually moves back 

towards 0.45 m as the store loses heat to its surrounding environment. At 3 p.m. the lost heat 

is replaced as the store charges up again. Once the store is fully charged, the HIU keeps the 

store topped up as the store loses heat to surroundings gradually. This results in the cycling 

type residual demand pattern. The store is finished charging at 6 p.m. Figure 7.6 gives a 

multi-day profile of the outputs of the stratified model for another example dwelling. The 

numerous DHW demand events occurring between 12 p.m. and 3 p.m. deplete the store of 

charge, indicated by the staggered rising of the thermocline position. The heat loss profile is a 

mirror image of the thermocline position because the heat loss is directly proportional to the 

surface area of the hot zone of the store. No heat loss occurs in the cold zone, because the 

cold-water temperature is equal to the temperature of the environment.  
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Figure 7.5: Residual and thermocline position profile of an example dwelling, obtained using the stratified store model. The 
height of the store is just above 0.4m. The thermocline at above 0.4 m indicates that the store is empty.  
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Figure 7.6: A multi-day profile for the residual demand, thermocline position and heat loss profile outputs of the stratified 
model. A high thermocline position indicates that the store is empty, while a thermocline position at 0.0m indicates that the 
store is full. 

Figure 7.7 and Figure 7.8 show the fraction of real DHW demand met by the stratified store 

model in both storage scenarios. The histograms show that over 95% of the demand was met 

for a vast majority of the dwellings, and there were no dwellings with less than 80% of the 

real demand being met.  

 

 
Figure 7.7: Histogram of the fraction of the real DHW demand met in individual dwellings in the CC scenario using the 
stratified store model 
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Figure 7.8: Histogram of the fraction of the real DHW demand met in individual dwellings in the SC using the stratified store 
model 

 

7.3 Thermal Store Model Validation 
 

Both, the stratified and the mixed models, were validated by setting the key input variables to 

quantities where the resulting outputs can be predicted, for example, setting the store 

temperature to 0˚C or a substantially large temperature value to test whether model outputs 

were as expected. Results of the validation are given in the Appendix A Section 11.2. The 

results of other similar validation exercises are presented in the remainder of this section. 

 

7.3.1 Mixed Thermal Store Model Validation 

 

To validate the heat store model, the result of adjusting selected parameters were checked 

against what is expected. Figure 7.9 and Figure 7.10 show the demand profile of an example 

store in which the heat loss factor was set to 1 W/m2K and 0 W/m2K respectively. The 

figures show that a heat loss factor 0 W/m2K leads to 0 heat losses as expected, and the 

temperature of the store thus varies only due to the heat drawn from the primary network and 

the heat output which meets the DHW demand. Whereas, where the heat loss factor is 1 

W/m2K, in the profile shown in Figure 7.9, the heat loss from the store is larger than zero and 

is a function of the difference in temperature of the store fluid and the external environment.  
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Figure 7.9: Example demand profile for a store where the heat loss factor is equal to 1 W/m2K and ambient temperature is 
set to 18˚C 

 

 

 

Time yyyy-mm-dd 

Time yyyy-mm-dd 

Time yyyy-mm-dd 
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Figure 7.10: Example demand profile for a store where the heat loss factor is equal to 0 W/m2K and ambient temperature is 
set to 18˚C 

 

Figure 7.11 below shows the same store with the ambient temperature adjusted from 18˚C, as 

it was in Figure 7.9, to 50˚C. Figure 7.11 shows that the resulting effect is that all heat loss is 

in the negative, indicating that there is a heat transfer from the store environment to the store. 

This is expected as because an ambient temperature of 50˚C will mean that the store 

temperature will be lower than or equal to the store environment at all times, thus creating a 

heat transfer that is the reverse of what typically occurs. The store temperature will then vary 

as a function of the net heat flow into the store which includes the heat flow from the 

environment to the store. 

Time yyyy-mm-dd 

Time yyyy-mm-dd 

Time yyyy-mm-dd 
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Figure 7.11: Example demand profile for a store where the heat loss factor is equal to 1 W/m2K and the ambient 
temperature is set to 50˚C 

 

7.3.2 Stratified Thermal Store Model Validation 

 

Figure 7.12 shows the demand profile of an example store of which the heat loss factor is 

1 W/m2K. Figure 7.13 shows the demand profile for the same store with the heat loss factor 

set to 0 W/m2K. As expected, this results in zero heat losses. The thermocline position moves 

as a function of the net heat flow, which comprises of only the heat drawn into the store from 

the primary network (defined in Section 2.2) and the heat output that meets the DHW 

demand. Furthermore, it can be seen that the start-stop behaviour of the store’s demand 

(visible in Figure 7.12 but not in Figure 7.13) ceases when the heat loss is adjusted to zero 

because of the absence of heat loss means that when the store is up to temperature it remains 

full until there is a DHW demand.  

 

Figure 7.14 shows the same store as in Figure 7.12, with the ambient temperature adjusted 

from 18˚C to 50˚C. The profile shows that heat loss falls to zero as a result of the temperature 

difference between the store fluid, which is held at a 50˚C, and the store environment falling 

to zero. As expected, with no temperature difference across the body of the store, there is no 

resultant heat loss to the store environment. The thermocline position thus moves as a 

function of the net heat flow, comprising only the heat drawn from the primary network and 

the heat output that meets the DHW demand. 

Time yyyy-mm-dd 

Time yyyy-mm-dd 

Time yyyy-mm-dd 
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Figure 7.12: Example demand profile for a store where the heat loss factor is equal to 1 W/m2K and ambient temperature is 
set to 18˚C 

Time yyyy-mm-dd 

Time yyyy-mm-dd 

Time yyyy-mm-dd 
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Figure 7.13: Example demand profile for a store where the heat loss factor is equal to 0 W/m2K and ambient temperature is 
set to 18˚C 

Time yyyy-mm-dd 

Time yyyy-mm-dd 

Time yyyy-mm-dd 
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Figure 7.14: Example demand profile for a store where the heat loss factor is equal to 1 W/m2K and ambient temperature is 
set to 50˚C 

 

7.4 Aggregate Demand 
 

Figure 7.15 below shows the demand for the SC scenario and the real DHW demand of the 

HN for an example day in the monitored period. The real aggregate demand shows a peak in 

the morning and evening, whereas the SC demand shows a peak once every two hours, 

reflecting the global charging strategy. The mixed store model produces an aggregate demand 

with minimal variation on the sub-minute scale compared to the aggregate demand produced 

by the results of the stratified store model. This is explained in part by the cycling behaviour 

present in the individual demand produced by the stratified model. The aggregate demand 

resulting from the stratified model has peaks that are consistently higher than the aggregate 

demand resulting from the mixed model. This is because the charge rates in the mixed model 

are a function of store temperature, whereas in the stratified model they are necessarily fixed 

at a maximum. This is to say that the initial charge rate in the mixed model is responsive to 

the state of charge of the store. If the store is completely empty, the charging will start at the 

maximum power. If it close to being up to temperature, the charging power will start off 

close to 0kW. The stratified model, which does not have this capability, has a charging rate 

equal to the maximum charge rate whenever it is being charged, and thus starts off every 

charge at the maximum charge rate, resulting in higher aggregate peaks than the mixed store 

results in.  

 

Time yyyy-mm-dd 

Time yyyy-mm-dd 

Time yyyy-mm-dd 
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Figure 7.15: Daily demand profile of the aggregate DHW demand in the SC scenario and the real (raw) DHW demand, 
comprising 96 dwellings. 

The daily demand profile below (Figure 7.16) shows the aggregate demand for the real DHW 

demand and the CC scenario. As expected, as a result of the coincident charging times of the 

individual domestic stores, the aggregate peak of this scenario far surpasses the aggregate 

peak of the real DHW demand. Therefore, if designers were to seriously consider a 

coincident charging regimen for their HN, it is important to consider what that would mean 

for the total capacity required at the plant and whether the plant, together with the distribution 

system, would be capable of delivering the high peak aggregate demand that would be 

required. As was explained in the previous section, the variation seen in the aggregate 

demand is a result of the start-stop behaviour that acts when a stratified store becomes full 

and is charged in short bursts in order to replace the standing losses.  

 

 
Figure 7.16: Daily demand profile of the aggregate DHW demand in the CC scenario and the real (raw) DHW demand, 
comprising 96 dwellings. 

 

7.5 ADMD and Diversity  
 

The ADMD curves shown in Figure 7.17 for the storage scenario are markedly flatter and 

remain lower than the ADMD curve for the real DHW demand scenario for all number of 

dwellings, as expected. This suggests that installing domestic storage in a network could 

result in lower distribution system losses owing to the reduction in pipe sizing required to 
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deliver the reduced peak demand. The ADMD curves for the storage scenarios remain 

relatively constant for all number of dwellings, reaching an asymptote early at around 5 

dwellings (by visual inspection). The real demand scenario, on the other hand, is a strongly 

defined curve where an asymptote is not definitively reached within the given bounds. The 

ADMD curve for the CC scenario is higher than that for the SC scenario, suggesting that 

pipes could potentially be sized smaller across the entire network if the SC charging strategy 

is used. To put another way, if storage in installed, at more than 5 dwellings, the charging 

strategy is pivotal in whether peak loads are reduced or made larger. As expected at the 

individual level, and at less than 5 dwellings, storage can reduce peak regardless of the 

charging strategy. The impact of this on the distribution system is investigated fully in the 

third and final results chapter. 

 

 

 
Figure 7.17: The ADMD curves for aggregate demand for both CC and SC scenarios, and for the original DHW demand 

The diversity factor curve is given in the figure below. It shows that the diversity effect in the 

storage scenario is lower than the real demand scenario at all levels of aggregation. This is 

expected as there is indeed less diversity in both storage scenarios than there is in the real 

scenario, where DHW demand follows the highly varied occupant behaviour across the group 

of dwellings. At all levels of aggregation, the stratified version of the CC scenario presents a 

diversity factor equal to one. This is an artefact of the charging power of the stores being a 

constant value for each store, whereas in the mixed store, the charging power is a function of 

varying temperature difference. This variation also leads to the variation in individual peak 

demands in each scenario, which, as will be shown in the coming sections, lead to variation 

in the pipe sizing of the pipes serving a single dwelling. 

 

 

SC mixed 

SC stratified 
CC mixed 

CC stratified 

Real demand 
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Figure 7.18: The diversity curves for the aggregate demand of both CC and SC scenarios, and for the original DHW demand 

 

As expected, the above plots suggest that the higher the diversity, the larger the decrease in 

ADMD as number of dwellings increases; the ADMD in the CC scenarios, which have lower 

diversity than the SC scenarios, reach their asymptotes quicker than the SC scenarios. Given 

that lower ADMD will necessarily lead to lower distribution system sizing, it can be 

concluded that even when installing domestic storage, HN operators should implement a 

diverse charging regimen or encourage occupants to vary charging their times relative to one 

another. The next section looks at quantifying this benefit in terms of thermal losses in the 

distribution system. 

 

 

7.6 Distribution System Sizing Results 
 

The bar chart below summarises the topology of the modelled distribution system. For 

example, it shows that pipes serving a single dwelling account for 111.72 metres of pipe in 

the distribution system. There is 72m of pipe for pipes serving 2, 3, 4, and 5 dwellings each. 

Generally, the lower the number of dwellings a pipe serves, the more of that size of pipe there 

is in the distribution system. 

 

 
Figure 7.19: Total length of pipe in the distribution system by the number of dwellings they serve 

 

SC mixed 

SC stratified 

CC mixed 

CC stratified  

Real demand 



 154 

The plot shown in Figure 7.20 gives the peak aggregate demand as a function of the number 

of dwellings that make up the aggregate group for each scenario. This peak value is used to 

size pipes for the distribution system using the method outlined in Section 3.7.1. This chart 

illustrates how the effect of diversity and the reduction of individual peaks introduced by 

introducing dwelling-level storage compete to produce the aggregate peak for different levels 

of aggregation. Take the aggregation at 60 dwellings; for example, the aggregate peak for the 

SC (stratified) scenario and the real demand scenario are similar. This is because although the 

real demand has much higher individual peaks, it also has a higher diversity that limits the 

aggregate peak at higher levels of aggregation. The CC scenarios however, where diversity is 

much lower, have substantially higher peaks at higher aggregate levels. The vertical blue 

lines indicate the number of dwellings that any single pipe in the distribution system serves. 

For above 5 dwellings, the CC scenario (both model types) has the highest peak demand. 

Below 5 dwellings, the real demand scenario has the highest peaks. This is because the 

individual peak demands in the real scenario are much higher than for either storage scenario. 

This suggests that the thermal loss from pipes serving less than 5 dwellings will be the largest 

in the real demand scenario, whereas for pipes serving more than 5 dwellings, the thermal 

loss will be highest in the CC scenario. The distribution system thermal loss overall for each 

scenario will depend on the thermal loss for a pipe of each size and the relative proportion of 

pipes of each size in the distribution system.   

 

 

 
Figure 7.20: Peak demand of the aggregate demand of each scenario given as a function of number of dwellings. Blue 
vertical lines mark the distinct number of dwellings served by any pipe in the distribution system 

 

Table 7.1 below gives the pipe sizes for pipes serving 4, 30 and 48 dwellings as examples. 

The real design of the HN (the design of the real case study as it was built) requires the 

largest sizes of pipe at all points across the distribution system compared with the storage 

scenarios. Both storage scenarios lead to smaller pipe sizes than the real sizing. Comparing 

the real design sizing to the sizing obtained using the real demand indicates the real 

oversizing of pipes; pipes serving 4 dwellings are oversized by 15 mm, pipes serving 30 and 
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48 dwellings are oversized by 29 mm. Find a full list of sizes of pipes in the distribution 

system for each scenario in Appendix D, Section 14.2. 

 
Table 7.1: Examples of the pipe diameters required to adequately deliver where pipes are serving 4, 30 and 48 dwellings 

Scenario k= 4 k= 30 k = 48 

Real (Design) 35 mm 54 mm 54 mm 

SC Mixed 8 mm 15 mm 20 mm 

SC Stratified 6 mm 12 mm 15 mm 

CC Mixed 12 mm 25 mm 32 mm 

CC Stratified 15 mm 40 mm 50 mm 

Real DHW Demand 20 mm 25 mm 25 mm 

 

The set of pie charts in Figure 7.21 show the relative proportions of pipes of each size in the 

distribution system for each storage scenario and for the real design scenario. The real 

demand and real design scenarios are compared in Section 7.8 to evaluate the real oversizing 

of the case study HN. The real design has the largest size of pipe, 54 mm, by far seen for any 

of the scenarios. Out of the remaining scenarios, the largest size of pipe is 40 mm (without 

counting the very small proportion of pipe of size 50 mm in the CC stratified scenario). The 

smallest size of pipe in the real design is 22 mm, whereas for the storage scenarios the 

smallest size goes down to 8.0 mm. This chart gives an overview of the size of the 

distribution system designed for each scenario and indicates the level of distribution system 

thermal loss savings that could be made with the use of DHW storage. To illustrate this point 

further, the plot given in Figure 7.26 gives the daily thermal losses from pipes in the 

distribution system for each scenario for the design day. A full list of pipe sizing results for 

all scenarios can be found in Appendix D, Section 14.2. 

 

 

 
Figure 7.21: Shows the proportion of pipes of a given diameter which all together make up the whole network for each 
scenario 
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Figure 7.22 shows the direct impact of sizing of pipe on heat loss; thermal losses per meter of 

pipe for pipes serving more dwellings are higher because of the larger surface area of the 

pipe. The thermal loss for pipes serving one dwelling is below 0.09 kWh/m for all storage 

scenarios, whereas for the real case, the thermal loss for this size of pipe is 0.11 kWh/m. For 

the group of pipes serving 48 dwellings, which is the largest size of pipe in the distribution 

system, the same general trend is seen; the thermal loss from the storage scenarios are all 

below 0.160 kWh/m whereas for the real case, the thermal loss is 0.168 kWh/m. Due to the 

lower aggregate peaks in the SC scenario, it achieves more thermal loss savings compared to 

the real design and the CC scenario for pipes of every kind. It can be concluded that the 

charging control of the domestic stores of a HN is a crucial factor in maximising the heat loss 

savings in the distribution system.  

 

 
Figure 7.22: Daily heat loss per meter for each size of pipe in the distribution system 

Figure 7.23 below shows the thermal loss of the storage scenarios as a percentage of the real 

case for different sizes of pipe in the distribution system. In the mixed SC scenario, for a pipe 

serving 1 dwelling, the thermal loss is reduced to 65% of that of the real design, and for a 

pipe serving 48 dwellings, thermal loss is reduced to 67% of that of the real design. For the 

CC scenarios, the percentage thermal loss savings generally increases with pipe size, 

although not linearly and not by much. For example, in the stratified CC scenario, for a pipe 

serving 1 dwelling, the thermal loss is reduced to 80% of the real design; however, for a pipe 

serving 48 dwellings, thermal loss is reduced to only 95%. Therefore, it can be surmised that 

for the SC scenario, where the diversity effect is higher, the percentage thermal loss savings 

per meter of pipe are comparable for smaller and larger pipes. On the other hand, for the CC 

scenario, where the diversity effect is lower, the larger pipes incur a smaller percentage of 

thermal loss savings compared to the smaller pipes. Thus, although introducing dwelling-

level storage leads to a reduction in thermal loss across pipes of all sizes, the effect will be 

greater for larger sizes of pipe if the charging strategy is diverse. This is to say that if a HN 

topology were to have a larger proportion of larger pipes, the diversity effect becomes more 

important. This may be the case for district-wide HNs, where the plant is in a completely 

different locale to the dwellings served and in which the largest size of pipe is likely of 

substantial length. 
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Figure 7.23: Thermal loss of pipes of a given size as a percentage of the thermal loss in the real design 

Figure 7.24 shows the daily thermal losses for the total length of pipes of a given size in the 

distribution system. It is a direct reflection of the change in the total surface area of pipes of a 

given size in the distribution system that can be brought about by storage installation. The 

plot shows that most of the heat loss comes from pipes serving fewer dwellings, i.e., those 

that are closer to the dwellings. This indicates that pipework local to dwellings have large 

potential for thermal loss savings. Cost wise, smaller pipes don’t reduce in cost with 

reduction in diameter as much as large pipes. In this topology, pipes that serve more than 6 

dwellings have significantly less thermal loss than the pipes serving less than 6 dwellings. 

This suggests that the pipes closer to the dwellings should be the focus when attempting to 

limit thermal loss when designing HNs with similar topologies. CHNs typically have a high 

proportion of pipes closer to the dwelling because the distribution system of a CHN is 

contained in its entirety in a single building, often with the plant situated at the basement 

level. For district-scale HNs, which may have their plant in a different locale from the 

dwellings served, pipes which are closer to the plant will be longer. This would mean that 

heat loss from pipes closer to the plant would account for a larger proportion of the total 

losses from the distribution system than they do in CHNs. 
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Figure 7.24: Daily thermal loss from the total length of pipes of a given size in the distribution system 

 

7.7 Design Day Thermal Loss 
 

The bar chart given below shows the storage and distribution system losses and the DHW 

demand across all scenarios. The distribution system losses for the real design scenario 

account for 8.81% of the total DHW demand, whereas for all storage scenarios the 

distribution system losses make up less of the DHW demand, all falling between ~ 4-6% of 

DHW demand. This shows that installing domestic storage will reduce distribution system 

losses by reducing pipe sizing although not substantially. However, taken together with the 

standing losses from the storage, the thermal losses in the storage scenarios are all higher 

than the thermal loss in the real design which comprises only distribution system losses. The 

storage scenarios result in a total thermal loss that make up ~17-23% of their total DHW 

demand. The storage losses are lower than the typical value of 1-2 kWh a day due to the 

optimised dimensioning and minimal surface area (CIBSE, 2020). The largest percentage of 

thermal loss is found in the CC scenario using the stratified model. The DHW demand is 

slightly different in each scenario because the DHW demand is equal to the demand of the 

store in the storage scenarios whereas in the real demand scenario it is the instantaneous 

DHW demand. Store demand can be higher than instantaneous demand depending on the 

interplay between the type of store, the charging strategy and the demand on the store. The 

extent of to which the store demand is higher than the instantaneous demand is therefore 

varied for each storage scenario. 
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Figure 7.25: Delivered DHW demand, store losses and distribution system losses in each storage scenario 

Table 7.2: Store and distribution system thermal losses given as a percentage of the DHW demand. Total losses for the 
coincident and spaced charging scenarios are given with the percentage difference from the real design scenario 

Scenario  Store losses (%) Distribution system 

losses (%) 

Total losses (%)  

Real design - 8.81 8.81 

SC mixed 12.38 4.98 17.36 

SC stratified 18.19 5.14 23.34 

CC mixed 11.45 5.73 17.17 

CC stratified 17.43 5.81 23.24 

 

The table shows that the CC scenario leads to higher distribution system losses than the SC 

scenarios due to the larger sizing of the pipes in the CC scenario. The storage losses in the SC 

scenario are slightly greater than in the CC scenario. This is because both the absolute storage 

losses are higher and because the demand in the SC scenario is lower than in the CC scenario, 

together leading to a higher fraction of store losses in the SC scenario. The absolute storage 

losses in the SC scenario are higher than in the CC scenario, likely because the charging 

times of a large number of dwellings are not aligned with the typical morning and evening 

peak demand times, thus leaving their stores fully charged and losing heat for the longer 

periods of time than in the CC scenario, where the charging times of all dwellings match up 

with the morning and evening peak demand times. The demand in the CC scenario being 

higher is likely because of the alignment of the charging times and peak demand times, which 

allows for more of the real DHW demand to be met. The total demand of the CC scenario is 

higher than the SC scenario due to the higher distribution system losses and the higher DHW 

demand. The storage loss of the stratified models is larger than that of the mixed models 

because by the nature of the stratified model the charging power is at a constant (unlike the 

mixed store where the charging power is a function of the temperature of the store) which 

leads to faster charge up times and therefore longer periods at close to full charge where 

thermal loss is higher. The start stop behaviour that results from the impetus of the stratified 

model to charge up to full when the store falls just below full means that the store is kept 

cycling between full and almost full, adding the above effect. 
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Due to the higher storage losses in the SC scenario and the higher distribution system losses 

in the CC scenario, the total thermal loss resulting in both scenarios is not significantly 

different. However, both are significantly higher than for the real design. Taking the mean 

between the stratified and mixed models for each scenario, the total thermal loss of both 

storage scenarios is ~2.7 times greater than for the real design.  

 

In summary, the above results show that incorporating storage into a HN design has the 

potential to reduce the thermal loss from the distribution system through pipe size reduction. 

The results also show that the extent of this reduction is dependent on the relative charging 

times of the dwellings; the more diverse the charging times, the greater potential for heat loss 

reduction. However, implementing diverse charging times is likely to lead to higher storage 

losses due to longer standing times. In this instance, the net effect is that the total thermal loss 

of the two charging scenarios ends up being almost equal. Moreover, the thermal loss of the 

storage scenarios compared to the real design are significantly higher due to the insufficient 

reduction of distribution system losses that fail to outweigh the increase in storage losses.  

 

7.7.1 Sensitivity Analyses 

 

To map the impact that the key parameters have on the storage model, the distribution system 

sizing and the distribution thermal loss model together, sensitivity analyses were carried out. 

In order to produce the plots, a testing range was defined for each of the tested variables. The 

distribution system loss and the store heat loss were calculated for three discrete values 

within this range. These results were then extrapolated to illustrate the impact on the total 

thermal loss for a wider range of values of the tested variable. The plots in this section show 

the impact that the ambient temperature of the building (the environment in which the 

distribution system lies), the ambient temperature in the dwellings, the thermal conductivities 

of the pipe insulation and the thermal conductivities of the domestic thermal stores have on 

the total thermal losses in design day conditions.  

 

 
Figure 7.26: Impact of varying building temperature parameter on thermal losses 

 

Figure 7.26 above shows the impact that increasing the temperature of the building has on the 

total losses in each scenario. Increasing the building temperature reduces the thermal losses 



 161 

from the pipes at a higher rate for the real design than for the storage scenarios. This is 

because the thermal losses from the pipes are the only component in the real design total 

losses, whereas storage losses are included in the total losses of the storage scenarios. The 

upper bound of the tested temperature range is 30˚C because of the high temperatures that 

can be reached in communal spaces due to overheating.  

 

Figure 7.27 below shows the impact of varying the thermal conductivity of the pipe 

insulation8. As expected, the plot shows that decreasing the thermal conductivity of the pipe 

insulation leads to lower losses. This effect is more pronounced in the real design where the 

pipe sizes are larger. The chart also shows that the charging control becomes more important 

at higher thermal conductivities. This is indicated by the increasing difference between the 

losses in the SC and CC scenarios as the thermal conductivity of the insulation increases. 

This is a result of the distribution system being sized larger for the CC scenario. For 

extremely low thermal conductivity, where k < 0.01W/mK, the total loss from the CC 

scenario is lower than for the SC scenario because at this point the storage losses of the SC 

scenario start to outweigh the losses from the pipes. Note that no existing insulation material 

have thermal conductivities in the range k < 0.01W/mK. The results will be evaluated as it 

relates to existing kinds of insulation in the following paragraphs. 

 

 

 
Figure 7.27: Impact of varying the thermal conductivity of the pipe insulation on thermal losses 

 

 

 
8 The heat loss of the pipes is given in terms of the fundamental property of thermal conductivity of the pipe 
insulation, k, rather than the heat loss factor, U. This is because the pipe thickness, which affect the U value, 
vary through the network. 
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Figure 7.28: Impact of varying dwelling temperature parameter on thermal losses, where the red line demarks network 
losses (design day) 

 

The dwelling temperature affects only thermal losses from the stores and thus only has an 

impact on the storage scenarios. The dwelling temperatures also affect heat loss from the 

HIU; however, these losses have not been included in the model. The plot given in Figure 

7.28 shows that the thermal losses of the storage scenarios are equal to those of the real 

design (denoted by the red line names NS network losses) at extremely high temperatures 

that exceed 35˚C, which are unlikely to occur in a typical dwelling. Typically, real dwelling 

temperatures remain within the range of 16 ˚C – 20 ˚C (Huebner et al., 2013). 

 

The plot in Figure 7.29 shows the impact that varying the insulation levels of the domestic 

thermal stores have on the overall thermal losses9. As expected, reducing the heat loss factor 

of the store insulation reduces the overall losses of the storage scenarios. For the overall 

losses from the best-case storage scenarios to be similar to the losses from the real design, 

heat loss factors of <0.25 W/ m2K need to be achieved. A heat loss factor, or the heat loss 

coefficient (U-value), of 0.25 W/m2K corresponds to an insulation thermal conductivity value 

of around ~0.0009 W/mK assuming an insulation thickness of 2 inches and a store diameter 

of between 0.4 m and 1.05 m10. The range of heat loss factors tested in the sensitivity 

analysis, 0.5 – 1.5 W/m2K, corresponds to a thermal conductivity range of 0.0086 – 0.026 

W/mK. Phenolic foam, a top-performance insulation material, has a thermal conductivity of 

between 0.018 W/mK and 0.023 W/mK given the same store and insulation dimension 

assumptions. Thus, for the overall thermal losses of the storage scenarios to be smaller than 

those of the real design, a material of thermal conductivity that is ~20 times (0.018/0.0009 

W/mK) better performing than the best-performing Phenolic foam is needed if the insulation 

thickness is to be no larger than 2 inches. Alternatively, if insulation thickness was larger, the 

 
9 The heat loss from the stores is given in terms of the heat loss factor, i.e., the U-value, instead of the thermal 
conductivity, k, of the insulation because the thickness of insulation across all stores are the same, and thus the 
a given k value results in the same U value across all stores. 
10 The heat loss factor, U, for a given thermal conductivity, k, does not vary significantly where the diameter of 
the thermal store has a range of 0.4 – 1.05 meters and a fixed insulation thickness of 2 inches. All stores in the 
modelled HN have a diameter of between 0.4 and 1.05 meters, thus the heat loss factor does not vary 
significantly across the thermal stores for a given thermal conductivity. 
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thermal conductivity of the insulation need not be as low. As there is no commercially viable 

insulation material that perform better than Phenolic foam, thickness of insulation will need 

to be increases. This is a viable option if it is factored into the design properly.  

 

 
Figure 7.29: Impact of varying the heat loss factor of the thermal store on overall thermal loss, where the red line demarks 
network losses (design day) 

Figure 7.30 below shows the impact that the thickness of Phenolic foam has on its heat loss 

factor. To achieve the required heat loss factor of 0.25 W/m2K, an insulation thickness of ~ 

0.13 m (or ~5.1 inches) is required. Thus, in order for the storage installation to result in a 

reduction of overall thermal loss, significantly high insulation levels may be required; 

phenolic foam insulation of greater than 5.1 inches thickness in this case. Thermal stores with 

insulation layers of greater thicknesses are available commercially but may be infeasible in 

domestic settings due to concerns about space. 

 

 
Figure 7.30: Variation in heat loss factor with increasing thickness of insulation material for a thermal conductivity of high 
performing Phenolic foam (k = 0.018W/mK) 

The results of this section have shown that the conditions required for the thermal loss in 

either of the storage scenarios to be comparable to the real design are conditions that are 
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unlikely to exist. The necessary conditions are also that which are detrimental to occupant 

comfort, such as extremely low building ambient temperatures or extremely high dwelling 

ambient temperatures, are conditions that go against fundamental design guidance, such as 

high pipe thermal conductivity, or are likely unfeasible due to significant increased demands 

on space, such as 5.1-inch-thick thermal store insulation. Even with these conditions, the 

thermal loss of the storage and real demand scenarios would only be at similar levels. It 

wouldn’t be the case that these conditions bring about a significant reduction in thermal loss 

in the storage scenarios. 

The results have shown that although the aggregate peak demands can be reduced 

substantially with the installation of storage, the resulting reduction of thermal loss from 

pipes is not large enough to outweigh the losses from the domestic stores. The limited extent 

to which pipe thermal losses are reduced are not a result of the pipe sizing methodology. The 

smallest diameter of pipe (6mm) was required only in the SC scenario. This indicates that the 

reduction of thermal loss was not limited by the minimum available pipe size.  

7.8 Oversizing of the Case Study HN 
Distribution System 

 

In this section the real oversizing of the case study network is investigated in order to 

understand the impact on thermal loss. In other words, the design of the HN as it exists, using 

its construction drawings that give pipe dimensions, is compared to sizing determined using 

the method outlined in Section 3.7.1 using the real demand of the sample of dwellings. Figure 

7.31 shows the daily heat loss from the pipes in the distribution system for the real design and 

the real demand scenarios. The pipes are presented on the x-axis in terms of the number of 

dwellings they serve. A pipe serving a given number of dwellings will be of a given size. The 

more dwellings served by a pipe, the larger the diameter of the pipes, and thus the pipe size 

increases with the increasing x-axis. The plot shows that all of the pipes in the distribution 

system could have been sized smaller and continue to meet the demand. Where the pipes are 

serving 2, 3, 4 and 5 dwellings are where there is a substantial potential reduction in heat 

loss.  

 

 
Figure 7.31: Daily heat loss from the total length of pipes of a kind (i.e., serving a given number of dwellings) in the 
distribution system for the real design and the real demand scenarios 
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Figure 7.32 below shows the proportions of pipes of a given size in the distribution system 

for the real design and the real demand scenarios. The real demand distribution system 

consists of pipes of only three different sizes, 15mm, 20mm, and 25mm. The real design 

consists of 5 pipe sizes, the smallest of which is 22mm, and the largest 54mm.  

 

 

 
Figure 7.32: Shows the proportion of pipes of a given diameter which all together make up the whole distribution system for 
each scenario 

In the real design the heat loss accounts for 9.7% of the daily DHW demand, whereas for the 

real demand scenario, the heat loss accounts for 8.2% of the DHW demand. The daily heat 

loss per meter of pipe for the real design scenario is 0.13 kWh/m and 0.09 kWh/m for the real 

demand scenario. Values reported for other case study HNs give the daily heat loss per meter 

of pipe as being between 0.63 kWh/m and 16.23 kWh/m (DECC, 2015). This suggests that 

the thermal loss in the case study HN falls on the lower end of existing HNs. This is due to 

the efficient design of the pipework that results in a low total pipework per dwelling. The 

pipework design follows the principles of CP1 and has been optimised to reduce pipe lengths 

(see Figure 2.14). CP1.2 states that the thermal loss from a HN must be lower than 2.4 

kWh/dwelling/day (CIBSE, 2020). All tested storage scenarios, as well as the real demand 

and real design scenarios, had thermal losses substantially lower than this benchmark due to 

the efficiently designed pipework. Note that the real design may have had other reasons for 

the chosen sizing that are unknown to the author, and thus, the statements made here are not 

meant to be taken as an evaluation of the overall performance of the case study HN. 
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8 Discussion 
 

 

8.1 Results 1 Summary and Discussion 
 

The first results chapter, Results 1 – Generating Demand Profiles, begins by describing the 

dataset that was available for the task of determining the demand for a group of 115 

dwellings being served by the case study HN. Although the dataset was rich, containing 

many variables and data from a large number of dwellings, it proved to be challenging with 

regards to the maintenance of data quality due to various data collection issues (explained in 

full in Section 4.10). The early stages of handling and cleaning this data involved identifying 

the variables and dwellings for which a sufficient amount of data existed such that high-

frequency analysis could be conducted. After the initial stages of cleaning, where the 

variables for which there was a sufficient volume of data were identified, a range of methods 

using different combinations of variables were assessed on their merit for determining the 

demand. The method that produced the results with the lowest uncertainty was used to 

determine the DHW demand and the total demand independently for each dwelling. To 

determine the DHW demand, data describing the hot water delivery temperature and the flow 

rate, with a sampling time of one second, was used alongside an assumed cold water inlet 

temperature. Data of a 5-minute sampling interval describing the instantaneous metered total 

demand was used to estimate the total demand. Demand profiles for the DHW demand and 

the total demand were produced for the coldest period in the year-long data monitoring and 

collection period for 115 dwellings with design occupancies of 2,3,4 and 6 occupants. These 

were then subject to detailed analysis. 

 

The key results from the first results chapter are summarised below. 

 

▪ The daily mean external temperatures of the selected cold period spanned 2.5 - 10˚C, 

with some hourly temperatures that dropped below 2˚C. 

▪ The daily mean aggregate DHW demand on the coldest and warmest days of the cold 

period were 24.1 kW and 27.9 kW respectively (15.8% higher on the cold day).  

▪ The daily mean aggregate total demand on the coldest and warmest days of the cold 

period were 67 kW and 50.6 kW respectively (24.5% higher on the cold day). 

▪ The hourly mean demand profiles for the DHW demand and the total demand present 

the typical morning and evening peaks (Gianniou et al., 2018). The morning and 

evening hourly peaks for the total demand are ~0.9 kW and ~0.85 kW respectively. 

For the DHW demand, the morning and evening peaks are ~0.4 kW and ~0.5 kW 

respectively. 

▪ The mean daily DHW demand was found to be 0.09 kWh/m2. 

▪ The mean daily total demand was found to be 0.22 kWh/m2. 

▪ The mean daily total demand for dwellings with the lowest design occupancy, an 

occupancy of 2 people, was 11.42 kWh, and for the highest occupancy, an occupancy 

of 6 people, it was 22.80 kWh. 

▪ The mean daily DHW demand for dwellings with the lowest design occupancy, an 

occupancy of 2 people, was 5.66 kWh and for the dwellings with the highest 

occupancy, an occupancy of 6 people, it was 8.69 kWh. 

▪ The mean hot water delivery temperature was found to be 47.4˚C with a range of 

between 11-60 ˚C. 
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The demand of the sample of dwellings in this study show similarities as well as differences 

when compared to samples of UK dwellings found in other demand studies. Some studies 

include samples with a more diverse population of dwellings, with variation in occupancy, 

age, heating system type and insulation levels. Whilst some other studies use samples similar 

to that of this work which are made up of flats in a single residential building unit located in 

the Southeast of England. Hot water delivery temperatures and the daily volumetric DHW 

consumption was found to be similar to those in studies that used a more diverse sample 

(Energy Savings Trust, 2008). Energy demand for DHW was lower in other studies although 

not by a significant amount and is likely explained by the lack of off-heating season data 

(Aragon et al., 2022; Burzynski et al., 2012). Taken together, the sample of dwellings in this 

work are found to have a similar demand compared to samples of the wider population of UK 

dwellings, and where differences are found, they can be explained by the difference in 

sample characteristics. The main limitations in the results include that the demand represents 

heating-season demand only and thus makes it difficult to compare like for like in other 

studies as other studies, where similar samples were used, evaluated the demand on an annual 

basis. Other limitations include that the design occupancy may not reflect the real occupancy 

in the dwellings. 

 

As was set out in the objectives stated at the beginning of the first results chapter, Results 1 – 

Generating Demand Profiles, the demand has been estimated for a group of 115 dwellings for 

the coldest period of one week in the monitored period. Demand for DHW and the total 

demand was estimated independently and align with demands found for UK dwellings in 

other studies; both kinds of demand have been characterised and found to align with other 

dwelling demand studies when comparing heating patterns and daily demand (Aragon et al., 

2022; Burzynski et al., 2012; Energy Savings Trust, 2008; Ivanko, 2020; Wang et al., 2021). 

The demand estimations were then used to investigate the impact that sampling time has on 

the ADMD of DHW demand and total demand, to estimate residual storage demand for the 

sample of dwellings, and to investigate the impact that storage has on the aggregate demand 

and HN distribution system sizing. 

 

8.2 Results 2 Summary and Discussion 
 

In the second results chapter, the demand estimated in the previous chapter was further 

validated by taking a whole HN perspective. The demand distributions for the total demand 

and the DHW demand were investigated in order to identify the key features and link it back 

to the socio-technical factors that they result from. In conjunction with individual demand 

profiles the demand distributions were used to distinguish the real occupant demand from the 

transient demands. By comparing the demand distribution for the total demand to that of the 

DHW demand, the level of influence of SH and DHW at different levels of aggregation were 

defined. The impact of sampling time on aggregate demand was investigated and used to 

assess the sampling time required to deliver demand at a defined quality-of-service criterion.  

 

The following points summarise the key results of this chapter. 

 

▪ The PTG for the case study HN was found to be 40 W/K. 

▪ The maximum demand in the total demand distribution at sampling times of 5 and 10 

minutes were exactly equal at 29.6 kW. The maximum demand in the DHW demand 

distribution at a sampling time of 5 minutes was 28.95 kW. This confirms that the 

DHW demand estimates are a reliable indication of the real demand as the total 

demand is derived from reliable metered data. 
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▪ The maximum demand (the 100th percentile) and the 95th percentile in the DHW 

demand distribution (Figure 6.2, top left) at a sampling time of one second were 36.88 

kW and 20.82 kW respectively. The maximum demand in the DHW demand 

distribution at a sampling time of 10 minutes was 27.59 kW. Given that this is higher 

than the 95th percentile of the demand at a sampling time of one second, a sampling 

time of 10 minutes would be sufficient to use in sizing a HN similar in demographic 

and topology to the case study HN to meet 95% of its demand. This is useful for HN 

designers that intend to make their own measurements of demand when sizing the 

distribution system pipes, as is recommended in CP1.2. 

▪ The total demand distribution (Figure 6.1, top left) presents a sharp peak at ~ 2 kW, 

and the DHW demand distribution (Figure 6.2, top left) presents a broad peak at 

~15 kW; demands in these ranges are those that occur more frequently and are 

therefore likely to be meaningful occupant demands. The DHW demand distribution 

does not have a peak at ~2 kW which is present in the total demand distribution. This 

suggests that the peak in the total demand likely represents the occupant SH demand 

alone. 

▪ The peak centred at ~15 kW in the DHW demand distribution (Figure 6.2, top left) is 

present at all sampling times lower than 5 minutes, which suggests that the real 

occupant demands tend to last no longer than 5 minutes. This peak starts at 2.5 kW 

and ends at 20 kW, suggesting that real occupant demand spans 2.5 – 20 kW.  

▪ The tail of the DHW demand distribution (Figure 6.2, top left), i.e., the higher 

demands, which are between 20 - 30 kW, are likely transient demands that are 

associated with the DHW system. Since the peak demand at a sampling time of 10 

minutes is 20.82 kW, sizing a system to this level would mean that all meaningful 

occupant demand can be met. 

▪ At an aggregation level, k, of around 35 and above, the total demand peak exceeds the 

DHW demand peaks, which suggests that SH demands begin to dominate the peak 

demands at these levels. 

▪ It is likely that the only information lost when using a sampling time of 5 seconds, 

compared to a sampling time of one second, is information relating to very minor 

demand that would have no meaningful bearing on HN design, regardless of the 

intended quality-of-service criterion. 

▪ Comparing the measured DHW and total demand peaks to the design capacities, 

determined using the DS439-based methods recommended in CP1.2, showed that the 

measured peaks were less than half of the design estimates across all levels of 

aggregation, up to and potentially beyond, 80 dwellings. 

 

The results in this chapter characterised the high frequency DHW and total demands of a 

sample of dwellings on a HN, which has been called for in previous studies (Fuentes et al., 

2018; Ivanko et al., 2020; Marszal-Pomianowska et al., 2019; Weissmann et al., 2017). 

Moreover, the results in this chapter have explicitly demonstrated the validity of using a 

given sampling time in the design of a HN with an intended quality-of-service criterion. 

Industry guidance has assumed that lower sampling times are unlikely to hold information 

that has a meaningful bearing on sizing but has not proven it explicitly. Thus, the results in 

this chapter demonstrating the validity of using a 10-minute sampling time is a novel result 

that can be used to inform the technical guidance that supports the growing UK HNs 

industry. Investigation of the individual demand profiles in conjunction with the aggregate 

demand distributions has been used to draw conclusions about the nature of the demands at 

different levels of aggregation and to make claims about the implications of these findings on 

the use of the selected sampling time in sizing a HN. The results in this chapter have focussed 
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on the relationship between the sampling time, the level of aggregation, and the peak 

demand, showing the rate at which, as the sampling time increases and the level of 

aggregation increases, the peak demand values decrease. By comparing the relationship 

between the total demand and the DHW demand with the aggregation level, it was clear that 

DHW demand dominates the peak demands up until a level of aggregation of around 35 

dwellings where SH begins to dominate. The individual impact of DHW demand on 

diversity, as separate to the impact of SH demand, has not been found to be the subject of any 

previous research literature, and thus the findings in this work are the first of its kind. 

Relevant industry guidance was used to compare to the real demand and to explicitly show 

where guidance was valid and where it could be further improved.  

 

8.2.1 Applicability 

 

The findings in this chapter have highlighted the importance of using real demand data from 

a sample of dwellings on a real HN to inform UK HN guidance in several important ways. 

Firstly, the demand estimates for the sample of dwellings were shown to be significantly 

lower than the demand for a sample of standalone dwellings in the wider population, likely 

owing to them being new-builds with fewer external walls (Summerfield et al., 2014; Wang 

et al., 2020). Hitherto, most studies related to the demand and the diversity of demand 

conducted with the aim of informing UK HN industry guidance have been based on demand 

data from standalone dwellings. In this work, the demand in the sample of dwellings, that all 

sit in a residential building together, was found to be lower than the demand in the wider 

population. CHNs make up a sizeable proportion of HN existing today and those to be 

developed in the future (Department for Energy Security and Net Zero, 2023). As described 

in Section 2.1 in the Literature Review chapter, CHNs are those that serve dwellings in a 

single residential building unit. Thus, the findings in this thesis are likely to be applicable to a 

significant proportion of future UK HNs. Larger HNs are likely to have a larger diversity 

effect, one reason being that in larger networks, the return flow takes longer to reach the 

plant. Thus, to inform the design of larger HNs, such as DHS, conducting a study similar to 

this with the use of a real district-wide HN is recommended. Furthermore, in larger networks, 

the occupant density is also likely to vary more significantly than in CHNs; Weismann et al. 

(2016) found that diversity is sensitive to changes in user profile when occupant density is 

higher. HNs could also be used to deliver heat to campus buildings such as student residences 

where the occupants are likely to have routines that are aligned to a greater extent than the 

wider population (CIBSE, 2020). Thus, the author recommends that similar studies be 

conducted for the different kinds of HNs expected to be developed in the UK, where key 

characteristics such as occupant density, size and occupancy type may vary. 

 

8.2.2 Sampling Time 

 

A sampling time of 10 minutes was deemed appropriate for use in sizing the distribution 

system of a HN similar in occupancy and topology to the case study HN to satisfy a quality-

of-service criterion calling for demand to be met 95% of the time. Typically, quality-of-

service criteria are higher than 95% in UK HNs and are defined based on annual demands 

which include off-heating season demands (Personal communication, T. Noughton, May 

2022). In this work, heating season demands from the coldest periods were used. This results 

in a stricter criterion than when using annual demands because lower demands are not 

included. Thus, if a HN were sized using a 10-minute sampling time, over 95% of the annual 

demand, including for the off-heating season, will likely be met.  
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The DHW demand distribution produced in a study conducted by Cosic (2017) using data 

from 40 dwellings over a period of 112 days covering the heating season differs from the 

results in this work in a few key ways (Cosic, 2017). Firstly, for the demand distribution of 

individual demand, the impact of sampling time on peak demand is significantly less than it 

was found to be here. In this work, the peak demand at 5 seconds and 1 hour is 36.43 kW and 

12.23 kW respectively, whereas in the Cosic report, the peak demands are 35.0 kW and 34.0 

kW respectively. The peak demand has reduced by less than 3% in their work, whereas here, 

there is a reduction of 66.4%. This is because the methods used in Cosic (2017) use a 

recasting calculation that takes demand data from dwellings not on HNs and recasts them, so 

that it fits within the constraints imposed within a HN. One of the constraints is a limit on 

demand of 35 kW. For example, if a measured demand event exceeds 35 kW that demand 

event is transformed in such a way that demand doesn’t exceed 35 kW, but the length of the 

event is increased such that the total energy consumed remains consistent. This forces an over 

representation of demand at the level of 35 kW, which may be the reason that sampling times 

of up to one hour still capture demands as high.  

 

Furthermore, in Cosic (2017) results, the demand distribution tends to have multiple peaks, 

whereas the distributions produced in this work had singular peaks. Figure 8.1 below shows 

an example distribution from the Cosic (2017) where multiple peaks can be seen.  

 

 

 
Figure 8.1: Demand distribution for the aggregate demand of 5 homes at a sampling time of 5 seconds (Cosic, 2017) 

 

Data in this work was collected from dwellings in one HN in a single residential building, 

whereas Cosic (2017) used the Energy Savings Trust data set, which covered a range of 

dwelling types and occupancy and from various locations. The presence of multiple peaks in 

their results, compared to the singular peak present in this work, is likely explained by the 

much wider range of occupancy, heating systems, and building of the Cosic (2017) sample. 

Occupancy behaviour may also vary as a result of adapting to the heating system; for 
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example, residents of flats in some residential buildings have learned that the cold water 

tends to be at a temperature that is high enough not to cause discomfort, and therefore, where 

they would usually use the hot water tap, they instead use the cold water tap (M. Cosic, 

Personal communication, 2022). The minimum hot water temperatures in the case study HN 

reached a minimum of 11˚C (as shown in Figure 5.13) which suggests that cold water 

temperatures can reach the temperatures typically expected of cold inlet water of around ~ 

10˚C as shown in Figure 2.2. 

 

When a quality-of-service criterion is defined, the basis of the definition must be on annual 

data. Although it is reasonable to assume that the demands in the cold periods are higher, and 

therefore, adding in off-heating season data may not necessarily alter the peak demand, the 

results in this section are best confirmed using annual data before it is used to inform design 

guidance. The results do, however, demonstrate the behaviour of HN demands using a novel 

dataset and uses the demands to highlight where the design guidance may have drawbacks. 

The results confirm previous findings deriving from other datasets. However, this work is the 

first to be based on data from a real HN.  

 

8.2.3 Validity of Technical Guidance  

 

The DS439 diversity methods have been critiqued relating to its application in the design of 

UK HNs because of the resulting oversizing (Smith, 2016). There are two sizing methods in 

the DS439, one intended for heat exchanger sizing and the other for pipe sizing. The heat 

exchanger sizing method was shown explicitly to oversize capacities in HNs (Open Data 

Institute, 2017; Smith, 2016). There have been no studies demonstrating oversizing as a result 

of using the pipe sizing method until this work (Section 6.5). CP1.2 refers to the pipe sizing 

method and caveats its use by recommending that data measured at a minutely sampling time 

be used where it is available to develop empirical diversity curves. Results in Section 6.2.2 

demonstrate that a sampling time of 10 minutes may be appropriately used for sizing to meet 

a quality-of-service criterion of 95%. 

 

There is no shortage of studies showing a discrepancy between measured DHW flow rates 

and those recommended across a range of European design standards. In these studies, the 

authors suggest that the reasons for the discrepancy may be the drastic changes in the DHW 

systems since the design standards were developed and changes in occupant consumption 

behaviour (Fuentes et al., 2018; Jack et al., 2017; Kõiv and Toode, 2005; Kõiv and Toode, 

2006). Additionally, the Energy Savings Trust (2008) showed that measured DHW 

temperatures are lower than those assumed in commonly used standards. These findings were 

supported by measured DHW temperatures in this work. Lower flow rates and lower 

temperatures than what is assumed in technical standards could lead to real peak demands at 

the individual level being significantly lower than estimated. Use of overestimated individual 

peak demands to estimate aggregate peak demands would lead to an overestimation despite 

the validity of the formulation of diversity. Recommendations for future work include 

considering how the pipe sizing method and heat exchanger method vary in their application 

in UK HN design (i.e., clarify the extent to which industry practitioners use each), evaluating 

the merits and demerits of each (including evaluating the extent to which each overestimates 

peak demands) and making suggestions as to how each could be treated such that resulting 

estimations could become more valid.  

 

Future work should aim to bring pumping costs into account in a cost-benefit study; although 

reduced pipe sizing reduces heat loss, it increases the pumping costs. Furthermore, the 
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difference in the cost of the pipes themselves should be considered even though they are 

unlikely to be substantial compared to pumping costs and costs due to heat loss. 

 

8.2.4 Distribution System Sizing 

 

At levels of aggregation higher than 35 dwellings, the peak demand was shown to be 

dominated by SH demand. This means that for all pipes serving 35 dwellings or less, the 

DHW demand is the key consideration in sizing. For pipes serving more than 35 dwellings, 

SH demands may be a more important consideration. The guidance found in CP1.2 does not 

make a distinction between using SH or DHW for sizing different parts of the distribution 

system, but instead suggests that SH and DHW diversity can be calculated for each pipe 

section independently and then combined in order to obtain a total flow rate. The findings in 

this chapter have shown the difference in the peak total demand compared with the peak 

DHW demand at aggregation levels above 35 dwellings are not substantially different. Below 

this level, the DHW peaks are higher than the total demand peaks. This suggests that for parts 

of the distribution system that are closer to the dwellings, sizing the distribution system for 

DHW demand alone will not restrict the delivery of SH. Thus, a sizing method based on 

DHW demand alone would be sufficient in sizing some parts of the distribution system to 

deliver both SH and DHW. A key limitation here is the distinction made in the literature 

review section (Section 2.5.5) between the real demand and aggregate demand. The 

assumption being made here is that the aggregate demand is accurately representing the real 

demand at a given point in the distribution system. In other words, it is being assumed that 

the aggregate demand for 10 dwellings, for example, is equal to the real demand measured at 

a section of pipe in the distribution system downstream of which there are 10 dwellings. To 

verify this assumption, measurement studies that collect flow data from different locations 

along the distribution system itself would be required. One would expect the real demand 

profiles to be ‘flatter’ than the aggregate demands due to mixing in the pipes resulting from 

non-uniform fluid velocity. 

 

8.3 Results 3 Summary and Discussion 
 

The aim of the third results chapter was to investigate the impact that DHW storage has on 

HN demand and on the sizing of the distribution system. To achieve this aim, domestic heat 

storage was modelled to take the real demand of an individual dwelling as inputs and produce 

a residual demand, i.e., the demand of the thermal store itself. Two kinds of heat store were 

modelled: a mixed heat store and a stratified heat store. The results of each act to bookend the 

possible behaviour of a real heat store. The residual demands were aggregated to give the HN 

demand. The ADMD and diversity curves for the different scenarios of storage and the 

resulting impact on distribution pipe sizing was analysed and compared. The thermal losses 

from the distribution system and the thermal stores for the different storage scenarios were 

calculated. For the design day, the thermal losses from the thermal stores and from the 

distribution system were compared to the DHW demand for each storage scenario. Sensitivity 

analysis allowed the mapping out of how key parameters of the thermal store and distribution 

system models affect the results. Additionally, the real oversizing of the case study HN was 

analysed, showing the potential for reduced sizing in the distribution system. The key 

findings in this chapter are summarised in point form below. 

 

▪ Generally, the ADMD of the storage scenarios is lower than for the real scenario at 

lower levels of aggregation, whereas at higher levels, the ADMD of the storage 

scenarios tended to be higher than for the real scenario. 
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▪ Analysis of the total lengths of pipes of a given size in the case study network showed 

that the longest total pipe length was for pipes serving a single dwelling. Generally, 

the more dwellings a pipe serves downstream of it, the less total length there is of that 

size of pipe in the distribution system.  

▪ Both the CC and the SC storage scenarios require smaller pipe sizing across the 

distribution system than the real sizing. For example, pipes serving 4 dwellings could 

be sized to a diameter of 6 mm with the installation of storage, whereas currently it 

has a diameter of 35 mm. Pipes serving 48 dwellings, could be sized to a diameter of 

15 mm with storage installation, which is 39 mm smaller than its current sizing. 

▪ Comparing the sizing for the real demand scenario against the real sizing of the 

distribution system shows that pipes could have been sized smaller across the 

distribution system. For example, pipes serving 30 dwellings could have been sized 

29 mm smaller.  

▪ Pipe sizing in the storage scenarios could be as low as 6 mm, whereas the smallest 

pipe in the real case was 22 mm. 

▪ Thermal loss results, evaluated in terms of thermal loss per meter of pipe, show that 

thermal losses from the real design were consistently higher than thermal loss for any 

of the storage scenarios for all sizes of pipe. For example, for the largest pipes in the 

distribution system, the pipe serving 48 dwellings, the thermal loss is lower than 

0.160 kWh/m for every storage scenario, whereas for the real case, the thermal loss is 

0.168 kWh/m. 

▪ Across all scenarios, pipes serving less than 6 dwellings are responsible for a large 

majority of the total heat loss from the distribution system. Pipes serving less than 6 

dwellings have a daily heat loss of above 6 kWh. Whereas for pipes serving 6 or more 

dwellings, the highest daily thermal loss is ~1 kWh. This suggests that the smaller but 

more numerous pipes, which are those that are closer to the dwellings, ought to be the 

focus of any attempts to reduce thermal loss in the distribution system when designing 

HNs where the topology is similar to that of that case study HN. 

▪ The distribution system losses in the real scenario make up 8.8% of the total DHW 

demand on the design day. For the storage scenarios, the thermal loss of the 

distribution system makes up ~4-6 % of the DHW demand. Thus, showing that 

installation of domestic storage will reduce the thermal losses of the distribution 

system.  

▪ However, the total thermal loss of any storage scenarios is higher than the thermal 

loss of the real design scenario which comprises only distribution system thermal loss.  

▪ The total thermal loss of the storage scenarios makes up ~17-23 % of their respective 

total DHW demand.  

▪ Sensitivity analyses of the domestic thermal store model and the distribution system 

model showed that the conditions required for the thermal loss in any storage scenario 

to be comparable to that of the real design are conditions that are prohibitively 

detrimental to occupant comfort (i.e., extremely low ambient temperatures) or are 

conditions which are infeasible due to increased demands on space (i.e., 15-inch-thick 

thermal store insulation) 

 

8.3.1 Implications for Design Guidance and Industry Practice 

 

In the earlier chapters of this thesis, the contention with the UK HNs industry regarding the 

benefit of domestic storage in reducing overall thermal loss and the role that diversity plays 

therein was made evident. The uncertainty was evident in personal communications that the 

author had with industry practitioners as well as in the conflicting official guidance within the 



 174 

industry. The results of the work in this thesis have brought about some clarity to the question 

that has remained unanswered hitherto; does DHW storage bring about an overall reduction 

in thermal loss? In short, no; although adding DHW storage will reduce thermal loss from the 

distribution system due to reduced pipe sizing, the additional losses from the stores 

themselves are too great to be able to bring an overall reduction in the total thermal loss. This 

was shown to be the result in all cases where conditions were those that could be reasonably 

expected, i.e., not unreasonably high ambient temperatures or overly thick insulation levels.  

 

Although neither of the storage scenarios resulted in a total reduction of thermal loss, the 

work in this chapter was able to quantify the impact of the diversity effect by modelling two 

different storage scenarios, bringing about clarity to the understanding of the role that 

diversity plays in reducing pipe sizing in different parts of the distribution system.  

Like for smaller pipes, the reduction of the size of larger pipes is brought about by reduction 

in individual demand, however, unlike to smaller pipes, reduction is furthered through the 

effect of diversity. This is partly why the SC scenario outperforms the CC scenario even 

though they both have comparable reductions to individual peaks; the increased diversity 

effect of the SC scenario decreases the sizes of the larger pipes further. The reduction of 

sizing of larger pipes resulting from a reduction in individual peak demands and increase in 

diversity has not been explicitly demonstrated hitherto and thus makes one of the novel 

findings of this work. If the UK HN industry were to build HNs with domestic storage it is of 

paramount importance that technical guidance specific to designing with domestic storage be 

developed. The work in this thesis could be a starting point for such guidance. The results in 

this chapter have shown that the collective charging times of domestic stores are able to have 

a marked impact on the aggregate demand because of impact it has on the diversity effect and 

therefore technical guidance would have to be specific to different charging times of the 

domestic stores.  

 

In terms of heat loss per meter of pipe, the pipes serving a single dwelling were responsible 

for the least amount of heat loss, however, taking the heat loss from the total length of pipes 

of a given size, they were responsible for the most amount of heat loss. To put another way, 

taking the distribution system as a whole, the smaller but more numerous pipes, brought 

about the most thermal loss savings of any size of pipe due to their having the greatest 

collective surface area. The smaller pipes should therefore also be the focus of any kind of 

thermal loss reduction efforts, such as through insulation. This is emphasized in the guidance 

in CP (Objective 3.9.1) (CIBSE, 2020). Moreover, although results have shown that pipes 

can be sized as small as 8 mm, the implications of having such small pipe sizes and the 

impact that these have on the distribution system need to be considered. Smaller pipes require 

more pumping energy and therefore higher costs for electricity. Small pipes are also 

mechanically weaker than larger pipes and their durability need to be taken into 

consideration. The difference in the thermal loss between smaller pipes and larger pipes are 

noted in a study by the Department and Energy and Climate Change (DECC) who published 

a report considered to have used the most comprehensive dataset characterising UK HNs at 

the time of publishing (DECC, 2015). The report looked at 14 HNs, all of network length 

>1,000 m and varying peak supply capacities. The relative heat loss in these HNs were found 

to range from 3% to 43%. The results show that there is a significant difference in heat loss in 

bulk schemes, where the mean relative heat loss is 6% and non-bulk schemes where the mean 

is 28%. Bulk schemes are where the main network operators deliver heat in bulk to the main 

distribution points but don’t have the responsibility for final delivery to end consumer. Thus, 

in bulk-schemes, the heat loss from internal pipes is not included in the distribution losses. 

Non-bulk schemes are where the network operators are responsible to the final delivery to 
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end consumer. The discrepancy in relative heat losses is attributed to poor pipe insulation, of 

which there have been more accounts of in non-bulk schemes. The heat loss in kWh/m of 

pipe length shows losses of orders of magnitude higher in non-bulk schemes. The ground 

pipes have stricter insulation standards than internal pipes, and thus it is likely that the high 

losses are largely due to the internal pipes. The report adds that internal losses will occur in 

all CHS (a system contained in a single building) regardless of whether it is connected to a 

wider HN or not, and that the issue of internal losses and poorer standards for internal pipe 

insulation should be considered a building services design and maintenance issue. Due to the 

longer pipe lengths in large scale HNs the heat loss is a significant consideration at the design 

stage. The case study HN used in this work, in which the consumers and plant are in a single 

building, and where the total network length is equal to ~450 m, would be considered a 

small-scale HN (detailed in Section 3.4). 

 

8.3.2 Limitations 

 

The assumption that store height is equal to diameter may not be ideal in terms of practical 

space considerations, however such a criterion was chosen in order to reduce the surface area 

and therefore determine the lowest possible thermal losses in order to understand the ’best 

case’ scenario. In the mixed model stores, the maximum charging power is defined as the 

fixed value of power required to fill up the store in 2 hours however, because in operation the 

charging power responds to the state of charge of the store, the store doesn’t fill up all the 

way in the given time. This means that the mixed store models don’t reach a ‘full’ level as 

much as the stratified stores which may results in lower thermal losses from the stores when 

comparing the mixed stores with the stratified stores. If the mixed stores were to fill up in the 

2 hours, they would require a maximum charging power that was higher than what has been 

defined. This means that the peak demands in the mixed models would have been higher. 

This would result most notably in the service pipes being sized larger to meet this higher 

peak demand. This in turn results in more thermal losses from the service pipes in the 

scenarios that use mixed stores. 

 

The distribution system thermal loss model is based on the assumption of constant return and 

flow temperatures which are equal to the operating temperatures required for delivering peak 

demands in the case study. In reality, the temperatures across a distribution system will not be 

spatially or temporally constant. For example, in the pipes serving a single dwelling the peak 

demands exist for shorter periods of time, and thus the operating temperatures will also only 

be reached for shorter periods of time, compared to the pipes closer to the plant. Having said 

this, some HNs have a keep hot function that prevents the final branches of a distribution 

system from dropping below a given temperature. This allows comfortable temperatures to be 

reached faster. The implication of this assumption on the results is that the difference in the 

thermal loss between the smaller pipes and the larger pipes may not be as pronounced as the 

results indicate. Moreover, the distribution system thermal loss savings in the storage 

scenarios is limited by the pipe sizing methodology used to size the pipes. An avenue of 

further study would be to incorporate an optimisation algorithm for pipe sizing. If pipe sizes 

are found to be reducible beyond what is allowed in existing sizing methodology, greater 

amounts of thermal loss savings are possible. Furthermore, storage would allow for the use of 

intermittent supply in the off-heating season which would lead to lower losses from the 

distribution system from local pipework being allowed to cool for periods of time. This was 

not captured in the model due to the use of constant flow and return temperatures. For 

simplicity, and because it was deemed unnecessary for studying thermal losses for the design 

day, which is a relatively short time scale, the effects of the thermal mass of the distribution 
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system were ignored in the distribution system model. To recapitulate: thermal mass acts like 

thermal storage within the distribution system itself however, the capacity of the distribution 

system as storage is negligible compared to the collective capacity of the DHW stores and 

was thus could reasonably be ignored in the distribution system model. Including the effects 

of the thermal mass of the distribution system would have necessitated the construction of a 

thermo-fluid dynamic model. Such a model would be more instructive than a steady state 

model on the time scale of a year, but less so when evaluating under the much stricter 

conditions of a design day, which is of shorter time scale and therefore where thermal 

conditions vary significantly less.  

 

Thermal losses may not always be wasted energy per se. They could also be useful heat gains 

depending on the time of year. During the heating season, storage losses could ideally 

contribute entirely to SH demand. In the shoulder months, the thermal losses may provide 

just the right amount of heat to prevent the activation of the SH system. The same could be 

said for thermal losses from the distribution system that enter the communal spaces and 

potentially permeate through the to the dwellings through warmed walls. These losses could 

also be considered a useful source of heat to dwellings. On the other hand, thermal losses into 

communal spaces have been shown to contribute to overheating in the summer periods. The 

evaluation of thermal loss in this work has been for the design day alone, which is a day that 

would naturally occur in the heating season and therefore where the thermal losses could 

appropriately be defined as useful internal heat gains that contribute to SH demand. Had this 

work defined storage losses as a contribution to the SH demand, the SH demand would have 

reduced, however the total demand would have remained unchanged because the demand 

from the store would go to either SH or DHW. Taking all the above into consideration, a 

potential avenue for further study could take a more holistic view and build a thermal model 

comprising the dwellings and the communal spaces and where useful heat gains and how 

they vary throughout a typical year are considered.  

 

The pipe in parts of the distribution system closer to the dwellings will have to be greater 

than a minimum set by the SH demand and the pipe in parts of the distribution system further 

away from the dwellings will have to be greater than a minimum determined by DHW 

demand depending on the design of the network. The distribution systems in the storage and 

real demand scenarios were sized based solely on DHW demand, rather than the total 

demand. For pipes closer to the dwellings, where DHW dominates the peak, using DHW 

demand-based sizing is appropriate. However, further upstream of the dwellings, where total 

demand peaks exceed DHW demand peaks (as shown in Figure 6.19) using DHW demand 

alone to size pipes may lead to undersized pipes. Due to limitations in SH demand data, this 

thesis considered DHW demand only when assessing storage and determining reduced pipe 

sizing. Despite this, from the available data on total demand, it can be shown that for the 

storage scenarios the SH demand can be met at least where service pipes are concerned. The 

smallest pipe diameter for a service pipe found in any scenario was 6 mm in the SC scenario 

with the mixed thermal store. This size of pipe was based on a demand of 4.34 kW. Figure 

6.7 shows that the vast majority of individual SH demands fall below ~5 kW. This suggests 

that at the service pipes, a 6 mm pipe sizing would likely be able to meet the DHW demand 

as well as a large majority of the SH demands. A similar yet more comprehensive study 

involving a modelled storage system that considers both DHW and SH demands and their 

respective ∆Ts at the heat exchangers would be required to state the above conclusion with 

more confidence as well as to determine sizing for pipes throughout the distribution system 

beyond the service pipes. Considering the time and resource constraints as well as limitations 

in the data, the work in this thesis has focussed on DHW demand in its aim to investigate the 
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effects of storage on the network demand and sizing. As such, the storage results should not 

be seen as a rigid benchmark when designing HNs. The results are intended rather to 

demonstrate the key design considerations that relate to the interaction between storage, 

demand and diversity so that designers are more informed in their decision making. Having 

said this, results that relate to parts of the distribution system nearer the dwellings are more 

valid due to the DHW dominance in that region. Future work should involve similar studies 

using both SH and DHW demands together to investigate how the effects of both combined, 

with and without storage, and what that could mean for network demand and design. The 

consideration of both SH and DHW demands may result in more readily practicable take-

aways for the design of all the entire distribution system rather than the parts closer to the 

dwellings. 

 

Evaluations of the real demand showed that DHW demand dominates the peak below levels 

of aggregation less than around 35 dwellings. If this claim holds for the storage scenarios, 

then it can be said that since much of the pipes in the distribution system serve less than 35 

dwellings, using the DHW demand alone would have been appropriate for a large portion of 

the distribution system; results relating to parts of the distribution system closer to the 

dwellings would be more valid than parts that are further away. Does the claim hold for the 

storage scenarios? This depends on how storage impacts DHW demand and SH demands 

independently of each other, which in turn depends on whether storage losses are treated as 

useful heat gains or not. If storage losses are taken to contribute to SH demand, the total 

demand remains unchanged. If storage losses are taken as not contributing to SH demand, the 

total demand increases. If the total demand increases, and the distribution system was sized 

using total demand, in the sections where DHW does not dominate the peak, pipes would 

have had to be sized larger. If the total demand remained unchanged, the pipe sizes would 

also remain unchanged. For the results obtained, which are based on the design day, which is 

in the heating season, one can reasonably assume that the storage losses contribute entirely to 

SH demands. Thus, total demand would have remained unchanged, as would have the pipe 

sizes in the distribution system where DHW does not dominate the peak. For the shoulder 

months and the off-heating seasons, the case would be different; the shoulder months, where 

storage losses would contribute to SH demand, would have meant that the total demand 

remains unchanged, and in the off-heating season, DHW demand peaks would have reduced, 

and sizing based on purely DHW demand would be appropriate since there is no SH demand.  

 

Higher velocities are allowed with instantaneous demand because the high velocities would 

only act for short periods of time. The guiding principles of the velocity bounds 

recommended in CP1.2 are not stated and thus it is not possible to know whether they were 

defined to be more liberal with the above in mind or not. If they were not, for the 

instantaneous demand scenario, the velocity bounds allowed could have been higher than for 

the storage scenarios, resulting in the pipe sizing for the real demand scenario being smaller. 

 

The temperatures in the distribution system are dynamic and respond to a number of factors 

including the demand on the network, state of the bypasses, as well as operational factors that 

may aim to reduce heat losses by letting the network go cold whilst still preventing 

Legionella growth. The temperatures of a distribution system will vary seasonally. In the 

winter months where SH demand is active, there is a more consistent demand on the network. 

Whereas in the summer, when only DHW demands acts, the demand on the network is less 

consistent. Adding domestic storage to a network not only impacts distribution system 

thermal losses through reduction in distribution system sizing but will impact losses through 

fundamental changes to the demand. For example, the CC scenario which allows DHW 
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demand charging at given time slots may allow the network to go cold in between the 

charging time slots in the summer when there is no SH demand, thus reducing the thermal 

losses significantly. To assess the full impact of storage, future work could extend to using 

annual DHW and SH demand as inputs in a dynamic thermal network model. Modelling the 

distribution system using node methodology would enable the determination of a temperature 

field across the network, which in turn could be used to give the demand profile of the key 

heat sources, as well as the profile of thermal losses from the distribution system. Knowing 

the impact on demand at the plant would be useful in achieving a full techno-economic 

analysis of the storage and real demand scenarios as well.  

 

There are many sources of energy losses in a HN, including efficiency losses, such as those 

in the heat generators, heat exchangers or pumps. These sources of thermal loss were not 

considered in the models in this work because compared to the effect that storage has on 

pipes, the effect that storage would have on these other thermal loss sources would be 

insignificant, however for a more holistic understanding of thermal loss a model would 

involve all sources of thermal loss, and thus future work could involve these sources. 

 

In drawing conclusions about the impact of storage on distribution system sizing it is 

assumed that the heating systems within the dwellings operate with DHW priority. In an 

instantaneous system, DHW priority is more acceptable because the demands are shorter. In a 

storage system however, the demands of the store last longer. This means that giving DHW 

priority leads to SH demands being interrupted for longer. In reality, occupants will likely 

control their stores so that SH service is not interrupted. However, in this study, the control of 

the stores is assumed to be set by the HN operator. Thus, there is a trade-off to consider 

between implementing a HN wide control strategy of stores and the occupants’ desire for 

their SH to not be interrupted. The 2-hour charging window was chosen with this in mind; in 

order to balance giving the store enough time to charge against having a short enough 

interruption to the SH service that occupants would not find unacceptable.  

 

8.3.3 Applicability of Results 

 

The results in this chapter pertain to a case study CHN with a specific network topology. 

There are 17,000 HNs in the UK, 11,500 of which are CHNs (ADE, 2018). The majority of 

existing HNs, and those likely to be built in the future in the UK will be CHNs. Thus, 

because of similar topologies, similar pipe environments, and the similar occupant demands 

that CHNs tend to have, the results will likely be instructive for a large proportion of UK 

HNs. However, care must be taken when making claims about HNs that have any 

characteristic differences to the case study. For example, where distribution system pipes are 

in different environments, say underground as opposed to in riser cupboards, thermal losses 

may be higher or lower than results indicate here due to different ambient temperatures. 

Similarly, if topological differences mean that the collective length of larger pipes are longer 

than that of shorter pipes, the thermal losses from the larger pipes could outweigh those of the 

smaller pipes. In such a case, leveraging the diversity effect to reduce the pipe sizes of the 

larger pipes would be of paramount importance. On the other hand, the pipes serving a single 

dwelling could be longer (this may be the case for particularly large dwellings), and thus 

have an even greater collective length. This would lead to an even greater discrepancy 

between the collective thermal loss of the small pipes and the large pipes. Moreover, the 

findings in this work relate to a CHN where the occupant demands are similar to one another. 

In district scale HNs that are likely to be mixed mode, where demands from different users 

will be more varied, the diversity effect at play will predictably be greater. Following the 
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measured data principles of this thesis, it is recommended that real demand data is collected 

from mixed mode users and used in a diversity study similar to that in this thesis. For 

example, at a district scale, it is likely that there are users that have long and steady demands 

compared to residential users such as hospitals or swimming pools. The diversity effect that 

acts when demands from users such as these get aggregated will be different to that found for 

residential occupants in this work. 

 

HNs of the future will become increasingly lower temperature, which means that losses from 

the distribution system will decrease, and therefore so will any potential thermal loss savings 

from pipe size reduction. With the growth of 4th and 5th generation HNs, where a core 

principle is reduced operating temperatures, and where there will be a need for other 

accompanying developments such as a requirement for a different configuration of storage 

and/or the installation of heat pumps for upgrading temperatures nearer the dwellings, the 

diversity effect at play and its impact on network sizing and thermal losses could look 

substantially different to the findings in this work. It is recommended that high-frequency 

demand data is collected from a 4th or 5th generation HN and studied using the methods used 

in this thesis to produce findings similar to those in this study but that relate to the 

characteristically different HN generations. This will enable standards to continue to be 

informed as the core principles driving HN design develop. 

 

8.3.3.1 Estimating Real Demand  

 

Heat demand at the taps or radiators in a dwelling would be met instantaneously by the HIU 

if there was no lag time or thermal inertia in the heating circuits. Lag time describes the time 

it takes for heated water to travel to a point where it can be experienced by consumers and is 

therefore dependent on the design and operation of the distribution system. Thermal inertia is 

also dependent on the design and operation of the heating system. The thermal inertia of a 

radiator system is a measure of how quickly it can get up to temperature and can be 

calculated using catalogue data, like was done by Karlsson and Fahlén (2008) in which a time 

constant of 23-26 minutes was used corresponding to the thermal inertia of a radiator system 

with a ∆T of 55/45˚C. They also use a lag time of 10 minutes estimated as a practical limit 

based on the length of piping of the radiator system in their study.  

 

The above describes how thermal inertia and lag time act in a domestic system. Thermal 

inertia and lag time also act across the distribution system of a HN, and therefore, when using 

the raw dwelling demand data to estimate the real demand elsewhere in the network, such as 

a point upstream in the distribution system or at the central plant, the thermal inertia and the 

lag time that acts between the relevant points must be accounted for. For example, because of 

the thermal inertia and lag in the system, demand at the dwellings is not experienced 

immediately at the central plant. Similar to the domestic heating circuits, the thermal inertia 

and lag in the distribution system depends on its operation and design. Thus, thermal inertia 

and lag time is an important consideration when using demand aggregate demand made up of 

individual demand at HIUs to represent the demand at a given point in the distribution 

system. To be clear, this would be using the aggregate of 10 individual demand profiles, 

measured at 10 different HIUs, to represent the demand though a pipe in the distribution 

system that serves 10 dwellings. To measure such a demand directly would require a 

prohibitively inordinate number of resources including expensive measuring equipment and 

access and rights to install such equipment in a case study HN that is likely to disrupt the 

service to occupants. Thus, the next best alternative is to use the aggregate demand of 

individual demand profiles.  
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In addition to the above, it is important to consider the added complexity that arises from the 

physical limits imposed by the sensing equipment itself, for example the finite time taken for 

a temperature sensor to warm up. There is also the process of digitisation which acts to 

further degrade the signal. Besides real distortions, equipment could also record readings that 

don’t correspond to any physical reality. However, it’s unlikely that any of the above 

distortions or uncertainties occur at time scales over the order of a second and thus are 

unlikely to have affected the demand profiles or related results. 
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9 Conclusions 
 

In this chapter, the key findings of this thesis are framed by the key questions and objectives 

that drove the research. This section concludes by outlining potential avenues for research 

that could build on the findings in this thesis. 

 

▪ What is the real diversity effect in UK HNs?  

• Estimate the individual demand profiles of dwellings on a real HN using 

measured data. 

• Analyse the impact that aggregation, over number of dwellings and over time, 

has on the demand. 

 

This objective above relates to estimating and understanding the individual demand profiles 

of a sample of dwellings in the case study CHN for which data was collected. The objectives 

here also relate to characterising the aggregate demands that could be built from the 

individual demand. In order to fulfil these objectives, high frequency, multivariate, measured 

data from 115 HIUs in a case study CHN in the Southeast of England was used to estimate 

the total and DHW demands for a mixed occupancy sample for the period of the coldest week 

in the heating season. The demands estimated in these objectives were used as inputs in the 

models built to achieve the remaining objectives, the main aim of which was to inform design 

guidance in the UK HN industry by removing uncertainty around the case for domestic 

storage, as well as informing guidance in other ways such as by setting a benchmark for the 

sampling times required when measuring demands. 

 

Evaluating the effect of sampling time of the aggregate demand showed that a 10-minute 

sampling time could be used to meet 95% quality-of-service criterion at all levels of 

aggregation. This finding is relevant to HN design guidance, specifically, where it is advised 

to use own empirical measurements when evaluating sizing of the distribution system and 

plant. Conventional industry guidance has operated on the assumption that shorter sampling 

intervals are unlikely to provide meaningful data for sizing, although it has not definitively 

confirmed the extent to which this is the case. The comparison of total demand and DHW 

demand at varying levels of aggregation showed that at an aggregation level of around 35 or 

more dwellings, the total demand peak exceeds the DHW demand peak, suggesting that SH 

may dominate the peak at these levels. The impact of DHW demand independent from SH 

demand on diversity has not been the subject of any previous research literature making the 

findings in this work the first of its kind. Lastly, many studies looking at diversity in UK HNs 

have used a sample of standalone dwellings (Summerfield et al., 2014; Wang et al., 2020). 

Thus, the work in this thesis is the first of its kind to use real data from dwellings on a real 

HN. The results pertaining to these objectives constitute novel findings pertinent to the HN 

industry and its design guidance.  

 

▪ What is the impact of DHW TES on HN demand and design in the presence of 

diversity? 

• Estimate the residual DHW demands that would result from DHW TES 

installation for the sample of dwellings. 

• Assess the impact that DHW TES has on the aggregate demand. 

• Assess the impact that DHW TES has on the distribution system pipe sizing 

and the resultant impact on thermal loss. 
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The second and final set of objectives were designed to answer the main question that the 

thesis centres on which is ‘does domestic storage bring an overall reduction in thermal loss?’ 

In order to answer this question, a number of storage scenarios were modelled using two 

types of storage model and compared to the real design of the case study HN and the scenario 

of the real demand of the case study HN. The scenarios were evaluated in terms of their 

diversity, their peak demands, the resultant required distribution system pipe sizing, and their 

thermal losses.  

 

The ADMD of the storage scenarios was found to be lower than for the real scenario at lower 

levels of aggregation. At higher levels of aggregation, the ADMD of the storage scenarios 

were found to be higher. Both storage scenarios allowed for pipes to be sized smaller than in 

the real design of the HN; for the storage scenarios some pipes could be sized as small as 6 

mm, whereas the smallest sizing of real pipe was 22 mm. Across all scenarios, pipes serving 

less than 6 dwellings were found to be producing the majority of the thermal loss in the 

distribution system. This suggests that when designing network topologies similar to the case 

study, efforts to minimise thermal loss in the distribution system should prioritise the smaller 

yet more numerous pipes located closer to the dwellings. Thermal loss evaluations showed 

that distribution system thermal loss for the storage scenarios was lower than for the real 

design. The distribution system losses in the real scenario are 8.81% of the DHW demand on 

the design day. For the storage scenarios, the thermal loss of the distribution system equal ~4-

6 % of the DHW demand. Considering the thermal loss from the distribution system together 

with those of the domestic thermal stores shows that total thermal loss is not reduced with the 

installation of storage. Sensitivity analyses of the domestic store model and the distribution 

system thermal loss model showed that the conditions required for the thermal loss in any 

storage scenario to be comparable to the real design are conditions that are nonoptimal for 

occupant comfort (i.e., extremely low ambient temperatures) or are conditions which are 

infeasible due to increased demands on space (i.e., 15 inch think thermal store insulation). 

 

No studies to date have attempted to evaluate the impact that storage has on the thermal 

losses of HN by modelling the impact on distribution system sizing. Thus, the results above 

constitute novel findings that can be used to inform the UK HN industry. Firstly, by 

producing an empirical ADMD curve using real data from a UK HN that may be used as a 

supplement to the sizing guidance in CP1.2. Secondly, by showing that storage is unlikely to 

bring about a substantial overall reduction in thermal loss in HNs similar to the case study 

CHN. Both above points, as well as the requirement of a validated sampling time for use 

when measuring demand for HN design, have been hitherto a point of contention within 

industry. With these novel findings, the design guidance can be clarified and made more 

robust in order that future HNs will be built to high standards and be able to be effective in 

their role in decarbonising heat in the UK. 

 

9.1.1 Future Research 

 

The case study HN used in this work was a CHN and thus the findings apply primarily to 

CHNs of similar topology and occupancy. Similar studies should be conducted for HNs that 

vary in size, topology and consumer sample. A further avenue of study could be to use an 

optimisation algorithm for pipe sizing. If pipe sizes are found to be reducible beyond what is 

allowed in existing sizing methodology, more thermal loss savings are possible. The use of a 

model that incorporates the effects of thermal mass and lag would enable an assessment of 

the annual thermal loss rather than thermal loss solely on the design day. An estimation of 



 183 

annual losses would provide insight into how the impact of storage may vary in the off-

heating seasons and the shoulder months, where the definition of ‘useful heat’ may vary. 
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11 Appendix A 
 

 

11.1 Internal Flow Rate Estimates  

The Heatweb Ltd. server produces internal estimates of the flow rates of the DHW and SH 

circuits on the primary side. To estimate these flow rates, the ∆P in the circuit, which is 

estimated during stable tap operation, is required. A stable period occurs when the measured 

output temperature of a running tap is within 1˚C of the target temperature. Values for ∆P 

during a stable tap operation are then used in the proceeding period of non-stable tap 

operation to determine flow rates at all times.  

This process of determining the internal flow rate estimates in the DHW and SH circuits are 

described in three main steps below. 

 

Figure 11.1: Key parameters used in determining the DHW flow rate 

1. Determining the primary side DHW flow rate at stable operation: 

Domestic side DHW power, QDHW_tap, is determined using an estimate of the inlet 

temperature, Tcold, (estimated by assuming that the measured primary return, TDHW_return, is 

around 3-5˚C above the cold inlet temperature), the outlet temperature (Thot, measured 

directly), and the measured domestic side flow rates, ṁDHW_cold. Tcold can be assumed to be 3-

5˚C below TDHW_return only during stable tap operation. 

Q
DHW_tap

 = ṁ
DHW_cold 

(T
hot 

–T
cold

)c 

(11-1) 

Equating the domestic side DHW power to the primary side DHW power, Q
DHW_primary, the 

measured primary flow, Tprimary_flow, and primary return temperatures, TDHW_return, can be used 

to estimate the flow rate on the primary side of the DHW heat exchanger, ṁ
DHW_primary

. 

Tprimary_flow 

TDHW_return 

𝑚̇DHW_primary 

 PDHW 

∆PSH 

Tcold 

𝑚̇DHW_cold 

Thot 

QDHW_tap 

QDHW_primary 
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Q
DHW_tap

 = Q
DHW_primary

 

(11-2) 

Q
DHW_primary

 = ṁ
DHW_primary

(T
primary_flow 

–T
DHW_return

)c 

(11-3) 

ṁ
DHW_primary 

= ṁ
DHW_cold

 
𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑

𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑓𝑙𝑜𝑤−𝑇𝐷𝐻𝑊_𝑟𝑒𝑡𝑢𝑟𝑛
 

(11-4) 

The mass flow on the primary side of the DHW heat exchanger, ṁ
DHW_primary

 , during stable 

tap operation is now obtained. This flow rate is used with the measured valve position and the 

valve's pressure loss curve to estimate the differential pressure across the DHW circuit, 

∆PDHW, during stable tap operation. 

The stable ∆PDHW is then used to determine the primary flow rates during the proceeding 

non-stable operation in the following way.  

2. Determining primary side DHW flow rates during non-stable operation using ∆PDHW: 

The ∆PDHW from the last stable operation period is assumed to hold for the proceeding non-

stable period and is used with the measured valve position (of stepper motor on DHW circuit) 

and the valve's pressure loss curve to determine the flow rates, ṁ
DHW_primary_non-stable

 during a 

non-stable operation period.  

3. Determining the SH circuit flow ∆PDHW and flow rates: 

The logic that estimates SH circuit flow rates (denoted by the tag ‘fHCH’) takes the DP to be 

equal to the DP during the last stable DHW tap operation.  
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11.2 Heat Store Model Validation 
 

The thermal heat stores were validated by adjusting the parameters to either 0 or infinite in 

order to check the output against an expected output. The results were the same for both 

stratified and mixed models and are given in the table below. 

 
Table 11.1: Thermal store model validation results 

Parameter Adjustment Expected Results Real Result 

Ambient room 

temperature(˚C) set to 

infinite 

Should result in no 

thermal loss from 

store because of the 

temperature of the 

environment being  

0.0 kW of thermal loss from store 

Specific heat capacity of 

water (kJ/kg˚C) set to 0 

Should result in no 

thermal storage being 

enabled 

No thermal storage resulted in the 

store 

Insulation thickness adjusted 

to infinity 

No thermal loss from 

store 

0.0 kW of thermal loss from store 

Setting maximum store 

temperature (˚C) to infinity 

(mixed model). 

Temperature of the 

store exceed 50˚C 

(previous maximum) 

and continue 

increasing in 

temperature until 

charging window 

closes. 

Store temperatures exceed 

previous maximum set 

temperature. 

 

 

11.3 Convective Heat Transfer Coefficient 
of the Insulation Layer  

 

The table below gives the key parameters used to determine the convective heat transfer 

coefficient of the insulation layer. 

 
Table 11.2:  Determining parameters for the convective heat transfer coefficient used in determining thermal loss from the 
network 

Parameter Value Notes 

Inner diameter, 𝒓𝟎 22mm Mean inner diameter of available pipe sizes 

Outside diameter of 

pipe, 𝒓𝟏 

24.1mm Assuming pipe thickness of 2.4mm, an mean pipe 

thickness. 

Fluid temperature, 

𝑻𝒇𝒍𝒖𝒊𝒅 

46˚C Mean temperature of flow and return temperature 

Ambient temperature, 

𝑻𝒆𝒙𝒕 
18˚C Assumed constant 

Wind speed 0.0m/s Negligible wind speeds in internal space 

Surface emissivity, 𝜺 0.03  Assumption for low emissivity foil on insulation 

material (Ballico et al, 2013) 

Insulation thickness 20mm Mean insulation thicknesses 
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Outside diameter of 

insulation, 𝒓𝟐 

64.1mm Adding insulation thickness to outside diameter 

of pipe 

Surface temperature, 

𝒕𝒔𝒖𝒓𝒇𝒂𝒄𝒆 

26.5˚C Estimated by assuming surface temperature equal 

to ambient temperature at first iteration and 

determining resultant effect of heat flow through 

pipe and insulation on surface temperature, until 

differences in iteration results become negligible. 

Thermal conductivity 

of air, 𝒌𝒂𝒊𝒓 
0.026W/mK (Bergman et al, 2002) 

Prandtl number, Pr 0.708 The Pr number is the ratio of momentum 

diffusivity to thermal diffusivity (Bergman et al, 

2002). Pr is a function of air temperature and 

pressure, for 18˚C and 1 bar of pressure (The 

Engineering Toolbox, 2018) 

Reynold’s number, Re 0.0 The Re number is the ratio of inertial forces to 

viscous forces occurring in a fluid and is used to 

determine whether flow is laminar or turbulent. 

Here, Re goes to 0 because of negligible wind 

speeds (Bergman et al, 2002). 

 

11.4 Validating the Network Thermal Loss 

Model 
 

To validate the network thermal loss model, the result of adjusting a fixed parameter is 

checked against the expected result.  

 
Table 11.3: Network thermal model validation results 

Parameter Adjustment Expected Results Real Result 

Pipe and insulation thermal 

conductivity, 𝒌𝒑𝒊𝒑𝒆 and 𝒌𝒊𝒏𝒔, 

respectively adjusted to 0 

kW/m2K 

No thermal loss from 

pipes. 

0.0 kWh/ dwelling daily thermal 

losses. 

Pipe and insulation thermal 

conductivity, 𝒌𝒑𝒊𝒑𝒆 and 𝒌𝒊𝒏𝒔, 

respectively adjusted to 

infinity kW/m2K 

Maximum thermal 

loss from network 

Infinite daily thermal loss. 

Pipe thickness adjusted to 

infinity 

No thermal loss from 

pipes 

0.0 kWh/ dwelling daily thermal 

losses. 

Insulation thickness adjusted 

to infinity 

No thermal loss from 

pipes 

0.0 kWh/ dwelling daily thermal 

losses. 

Flow and return 

temperatures adjusted to 

equal the external 

temperature 

No thermal loss from 

pipes 

0.0 kWh/ dwelling daily thermal 

losses. 
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12 Appendix B 
 

12.1 Total Demand Distributions at 
Aggregate Levels 

 

The results in this section give the demand distributions for the total demand at varying levels 

of aggregation over dwellings greater than k=1 and over time. 

 

 

 
Table 12.1: Demand distribution for the total demand showing the impact that sampling times has on demand at an 
aggregation level of k =5 dwellings. Top left: 5-minute; top-right: 10-minute; bottom-left: 30-minute; bottom-right:1-hour. 

Table 12.2: Summary of the demand distribution percentiles for the total demand at an aggregation level of k=5 dwellings 
expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 2.7 4.06 7.48 10.58 

10 minutes 2.54 3.92 7.16 9.81 

30 minutes 2.12 3.49 6.27 7.05 

1 hour 1.84 2.96 5.69 5.97 
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Figure 12.1: Demand distribution for the total demand showing the impact that sampling times has on demand at an 
aggregation level of k =10 dwellings. Top left: 5-minutes; top-right: 10-minutes; bottom-left: 30 minutes; bottom-right:1 
hour. 

 
Table 12.3: Summary of the demand distribution percentiles for the total demand at an aggregation level of k=10 dwellings 
expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 1.87 2.78 5.2 7.0 

10 minutes 1.81 2.68 4.86 6.46 

30 minutes 1.63 2.35 4.06 4.31 

1 hour 1.47 2.11 3.72 3.9 
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Figure 12.2: Demand distribution for the total demand showing the impact that sampling times has on demand at an 
aggregation level of k =35 dwellings. Top left: 5-minutes; top-right: 10-minutes; bottom-left: 30 minutes; bottom-right:1 
hour. 

 
Table 12.4: Summary of the demand distribution percentiles for the total demand at an aggregation level of k=35 dwellings 
expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 1.29 1.7 2.76 3.7 

10 minutes 1.26 1.66 2.61 3.39 

30 minutes 1.2 1.52 2.17 2.49 

1 hour 1.14 1.4 1.95 2.01 
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Figure 12.3: Demand distribution for the total demand showing the impact that sampling times has on demand at an 
aggregation level of k =60 dwellings. Top left: 5-minutes; top-right: 10-minutes; bottom-left: 30 minutes; bottom-right:1 
hour. 

 
Table 12.5: Summary of the demand distribution percentiles for the total demand at an aggregation level of k=60 dwellings 
expressed as demand per dwelling (kW) 

Sampling time 95th 99th 99.99th 100th  

5 minutes 1.16 1.46 2.3 2.55 

10 minutes 1.15 1.43 2.15 2.29 

30 minutes 1.11 1.32 1.72 1.77 

1 hour 1.06 1.25 1.51 1.52 

 

 

12.2 DHW Demand Distributions at 

Aggregate Levels 
 

This section gives the demand distributions for DHW demand across varying levels of 

aggregation over dwellings greater than k=1 and over time. 
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Figure 12.4: Demand distribution for the DHW demand showing the impact of increasing sampling times at an aggregation 
level of k = 5 dwellings. Top-left: 1-second; top-right: 5-second; bottom-left: 10-second; bottom-right: 30-second. 
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Figure 12.5: Demand distribution for the DHW demand showing the impact of increasing sampling times at an aggregation 
level of k = 5 dwellings. Top-left: 60-second; top-right: 5-minute; bottom-left: 10-minute; bottom-right: 30-minute. 

 

 
Figure 12.6: Demand distribution for the DHW demand at an aggregation level of k = 5 dwellings and a sampling time of 1 
hour. 
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Table 12.6: Summary of the demand distribution percentiles for DHW demand at an aggregation level of k=5 dwellings 
expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 4.75 6.4 11.25 14.03 

5 seconds 4.61 6.29 11.16 13.88 

10 seconds 4.5 6.18 10.99 13.67 

30 seconds 4.17 5.78 10.02 12.87 

60 seconds 3.87 5.41 9.52 12.67 

5 minutes 3.13 4.27 8.21 9.95 

10 minutes 2.45 3.67 7.18 8.86 

30 minutes 1.46 2.45 4.89 5.31 

1 hour 1.1 1.76 3.43 3.53 

 
 

 
Figure 12.7: Demand distribution for the DHW demand showing the impact of increasing sampling times at an aggregation 
level of k = 10 dwellings. Top-left: 1-second; top-right: 5-second; bottom-left: 10-second; bottom-right: 30-second. 
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Figure 12.8: Demand distribution for the DHW demand showing the impact of increasing sampling times at an aggregation 
level of k = 10 dwellings. Top-left: 60-second; top-right: 5-minute; bottom-left: 10-minute; bottom-right: 30-minute. 

 

 
Figure 12.9: Demand distribution for the DHW demand at an aggregation level of k = 10 dwellings and a sampling time of 1 
hour. 
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Table 12.7: Summary of the demand distribution percentiles for DHW demand at an aggregation level of k=10 dwellings 
expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 2.8 3.71 6.23 9.25 

5 seconds 2.73 3.65 6.16 9.15 

10 seconds 2.65 3.58 6.1 8.94 

30 seconds 2.42 3.4 5.77 8.43 

60 seconds 2.19 3.21 5.65 8.39 

5 minutes 1.74 2.58 4.87 5.86 

10 minutes 1.49 2.2 4.31 5.37 

30 minutes 1.01 1.59 2.78 3.46 

1 hour 0.82 1.22 1.99 2.0 

 

 

 
Figure 12.10: Demand distribution for the DHW demand showing the impact of increasing sampling times at an 
aggregation level of k = 35 dwellings. Top-left: 1-second; top-right: 5-second; bottom-left: 10-second; bottom-right: 30-
second. 
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Figure 12.11: Demand distribution for the DHW demand showing the impact of increasing sampling times at an 
aggregation level of k = 35 dwellings. Top-left: 60-second; top-right: 5-minute; bottom-left: 10-minute; bottom-right: 30-
minute. 

 

 
Figure 12.12: Demand distribution for the DHW demand at an aggregation level of k = 35 dwellings and a sampling time of 
1 hour. 
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Table 12.8: Summary of the demand distribution percentiles for DHW demand at an aggregation level of k=35 dwellings 
expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 1.21 1.65 2.64 3.58 

5 seconds 1.19 1.62 2.61 3.48 

10 seconds 1.16 1.6 2.58 3.4 

30 seconds 1.1 1.53 2.51 3.36 

60 seconds 1.04 1.47 2.41 3.16 

5 minutes 0.89 1.28 2.12 2.57 

10 minutes 0.81 1.17 1.91 2.2 

30 minutes 0.68 0.92 1.38 1.65 

1 hour 0.6 0.78 1.19 1.42 

 

 
Figure 12.13: Demand distribution for the DHW demand showing the impact of increasing sampling times at an 
aggregation level of k = 60 dwellings. Top-left: 1-second; top-right: 5-second; bottom-left: 10-second; bottom-right: 30-
second. 
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Figure 12.14: Demand distribution for the DHW demand showing the impact of increasing sampling times at an 
aggregation level of k = 60 dwellings. Top-left: 60-second; top-right: 5-minute; bottom-left: 10-minute; bottom-right: 30-
minute. 

 

 
Figure 12.15: Demand distribution for the DHW demand at an aggregation level of k = 60 dwellings and a sampling time of 
1 hour. 
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Table 12.9: Summary of the demand distribution percentiles for DHW demand at an aggregation level of k=60 dwellings 
expressed as demand per dwelling (kW) 

Sampling time  95th 99th 99.99th 100th  

1 second 0.93 1.24 1.91 2.56 

5 seconds 0.91 1.23 1.89 2.54 

10 seconds 0.9 1.21 1.87 2.44 

30 seconds 0.86 1.17 1.81 2.3 

60 seconds 0.83 1.13 1.76 2.03 

5 minutes 0.74 1.02 1.57 1.81 

10 minutes 0.7 0.95 1.47 1.59 

30 minutes 0.6 0.78 1.05 1.11 

1 hour 0.55 0.67 0.91 0.97 
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13 Appendix C 
 

13.1 DHW and Total Demand Capacity 
Calculation 

 

Equations (13-1) and (13-2) below are adapted from the diversity calculation equations in 

CP1.2 which are explained in detail in Sections 2.5.1 and 2.5.2. For DHW demand, the 

diversified flow rate is used with the temperature delta in the DHW circuit to determine the 

capacity required in a segment of the distribution system serving 𝑁 dwellings. For the SH 

demand, the diversity factor is used with an assumed SH demands for a single dwelling. The 

values used in the calculations are given in Table 13.1 below. 

 

𝑄𝑑ℎ𝑤 = (2𝑞𝑚 +  𝜃 (∑𝑞𝑓 − 2𝑞𝑚) + 𝐴√𝑞𝑚 ∙ 𝜃√∑𝑞𝑓 − 2𝑞𝑚) ∙ (𝑇𝑓𝑙𝑜𝑤
𝑑ℎ𝑤 − 𝑇𝑐𝑜𝑙𝑑

𝑑ℎ𝑤) ∙ 𝑐 

(13-1) 

𝑄𝑠ℎ  =  (0.62 +
0.38

𝑁
) ∙ 𝑁 ∙ 𝑄𝑠ℎ,𝑠𝑖𝑛𝑔𝑙𝑒  

(13-2) 

 
Table 13.1: Variables used in determining DHW and total demand capacities (CIBSE, 2020) 

Demand 

type 

Variable Symbol Value Notes and source 

DHW Weighted mean 

water flow rate (l/s) 

𝑞𝑚 0.1  Objective 3.2 and 

Annex D in CP1.2 

(CIBSE, 2020) 

Assumed water flow 

rate of randomly 

used outlets (l/s) 

𝑞𝑓 0.2 – 0.35  Table 9, Section 3.9.15 

in CP1.2 where the 

minimum is given to 

be 0.15 l/s, however, 

here it was adjusted in 

order to keep all 

equation components 

positive (CIBSE, 

2020). Measured 

maximum flow rates 

fall within this range, 

as shown in  

Figure 13.1 below. 

Safety factor 𝐴 3.1 Objective 3.2 and 

Annex D in CP1.2 

(CIBSE, 2020) 

Probability of 

draining 𝑞𝑚  at times 

of peak demand 

𝜃 0.015 Objective 3.2 and 

Annex D in CP1.2 

(CIBSE, 2020) 

Number of dwellings 𝑁 1-80 - 

Sum of assumed 

water flow rates (l/s) 
∑𝑞𝑓 Equal to 𝑁 × 𝑞𝑓 - 
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Flow temperature 

(˚C) 
𝑇𝑓𝑙𝑜𝑤
𝑑ℎ𝑤 45-60 Range given in HIU 

specification (Heatweb 

Ltd, 2023b). Measured 

values reflect this as 

shown in Figure 5.13. 

Cold water 

temperature (˚C) 
𝑇𝑐𝑜𝑙𝑑
𝑑ℎ𝑤 10 (Energy Savings Trust, 

2008) 

Specific heat 

capacity (kJ/kg˚C) 

𝑐 4.182 (Allison et al., 2018; 

Holman et al, 1992) 

SH Number of dwellings 𝑁 1-92  

SH demand of single 

dwelling (kW) 
𝑄𝑠ℎ,𝑠𝑖𝑛𝑔𝑙𝑒 2-3 Table 11, Annex D in 

CP1.2 (CIBSE, 2020) 

 

Figure 13.1: Measured DHW flow rates for the dwelling sample 
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14 Appendix D 
 

14.1 Pipe Sizing 
 

The table below gives the nominal pipe diameters and thicknesses that were used in 

determining thermal losses from the distribution system. 
 

Table 14.1: Nominal pipe diameters and thickness (HardHat Engineer, 2023) 

 
 

14.2 Distribution System Sizing for all 

Scenarios 
 

This section provides tables of the dimensions of the distribution system and related variables 

such as ADMD, aggregate peak demand and mass flow rates required to determine sizing 

across all storage scenarios. 
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Table 14.2: The aggregate peak demands (kW) needed to be met in the distribution system for the storage scenarios and 
the real demand scenario 

 

 
Table 14.3: Distribution system sizing of the real design of the case study HN 

Pipe type Pipe length 

(m) 

No. of pipes  No. of 

dwellings 

served 

Real pipe 

diameters (m) 

Service pipes 0.36 54 1 0.022 

Service pipes 0.69 18 1 0.022 

Service pipes 0.32 18 1 0.022 

Service pipes 0.35 6 1 0.022 

Cross floor 4.5 16 1 0.022 

Cross floor 4.5 16 2 0.028 

Cross floor 4.5 16 3 0.028 

Cross floor 4.5 16 4 0.035 

Cross floor 4.5 16 5 0.035 

Lateral 

transport 

0.81 1 48 0.054 

Lateral 

transport 

3.41 1 42 0.054 

Lateral 

transport 

3.37 1 36 0.054 

Lateral 

transport 

1.44 1 30 0.054 

Lateral 

transport 

2.07 1 24 0.042 

Lateral 

transport 

4.28 1 18 0.042 

Dwellings SC mixed SC stratified CC mixed CC stratified Real demand 

1 4.3 6 4.4 6 20.3 

2 5.4 7.7 7.1 10.9 24.9 

3 6.8 10.1 10.7 17.2 29.5 

4 7.4 11.2 13.5 22.2 32.9 

5 8.7 14.4 16.9 29.8 35.5 

6 10 16.3 19.8 34.1 37.6 

12 14.5 25 37.3 68.5 49.7 

18 18.5 33.3 55.5 103.7 60.2 

24 22.9 40.3 74.3 139.3 66.1 

30 25.8 47.4 91.3 174.1 73.4 

36 29.6 56 108.1 207.5 78.8 

42 33 63.6 127.1 245.6 85.4 

48 35.8 69.8 143.2 278.6 90.2 
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Lateral 

transport 

2.43 1 12 0.042 

Lateral 

transport 

5.98 1 6 0.035 

Lateral 

transport 

2.13 1 48 0.054 

Lateral 

transport 

2.96 1 42 0.054 

Lateral 

transport 

2.93 1 36 0.054 

Lateral 

transport 

0.16 1 30 0.054 

Lateral 

transport 

2.44 1 24 0.042 

Lateral 

transport 

0.3 1 18 0.042 

Lateral 

transport 

1.9 1 12 0.042 

Lateral 

transport 

0.82 1 6 0.035 

 

 
Table 14.4: Distribution system sizing and related variables for the SC mixed scenario 

Pipe type Pipe 

length 

(m) 

No. of 

pipes  

No. of 

dwellings 

served 

ADMD 

(kW) 

Mass 

flow rate 

(kg/s) 

Pipe 

diameter 

(m) 

Service pipes 0.36 54 1 4.34 0.032 0.006 

Service pipes 0.69 18 1 4.34 0.032 0.006 

Service pipes 0.32 18 1 4.34 0.032 0.006 

Service pipes 0.35 6 1 4.34 0.032 0.006 

Cross floor 4.5 16 1 4.34 0.032 0.006 

Cross floor 4.5 16 2 2.71 0.041 0.008 

Cross floor 4.5 16 3 2.26 0.051 0.008 

Cross floor 4.5 16 4 1.85 0.055 0.008 

Cross floor 4.5 16 5 1.73 0.065 0.008 

Lateral 

transport 

0.81 1 48 0.75 0.267 0.02 

Lateral 

transport 

3.41 1 42 0.79 0.247 0.015 

Lateral 

transport 

3.37 1 36 0.82 0.222 0.015 

Lateral 

transport 

1.44 1 30 0.86 0.193 0.015 

Lateral 

transport 

2.07 1 24 0.96 0.171 0.015 

Lateral 

transport 

4.28 1 18 1.03 0.138 0.012 
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Lateral 

transport 

2.43 1 12 1.21 0.109 0.01 

Lateral 

transport 

5.98 1 6 1.67 0.075 0.01 

Lateral 

transport 

2.13 1 48 0.75 0.267 0.02 

Lateral 

transport 

2.96 1 42 0.79 0.247 0.015 

Lateral 

transport 

2.93 1 36 0.82 0.222 0.015 

Lateral 

transport 

0.16 1 30 0.86 0.193 0.015 

Lateral 

transport 

2.44 1 24 0.96 0.171 0.015 

Lateral 

transport 

0.3 1 18 1.03 0.138 0.012 

Lateral 

transport 

1.9 1 12 1.21 0.109 0.01 

Lateral 

transport 

0.82 1 6 1.67 0.075 0.01 

 

 

 
Table 14.5: Distribution system sizing and related variables for SC stratified scenario 

Pipe type Pipe 

length (m) 

No. of 

pipes  

No. of 

dwellings 

served 

ADMD 

(kW) 

Mass 

flow rate 

(kg/s) 

Pipe 

diameter 

(m) 

Service pipes 0.36 54 1 5.95 0.044 0.008 

Service pipes 0.69 18 1 5.95 0.044 0.008 

Service pipes 0.32 18 1 5.95 0.044 0.008 

Service pipes 0.35 6 1 5.95 0.044 0.008 

Cross floor 4.5 16 1 5.95 0.044 0.008 

Cross floor 4.5 16 2 3.83 0.057 0.01 

Cross floor 4.5 16 3 3.37 0.076 0.01 

Cross floor 4.5 16 4 2.81 0.084 0.01 

Cross floor 4.5 16 5 2.89 0.108 0.012 

Lateral 

transport 

0.81 1 48 1.45 0.522 0.025 

Lateral 

transport 

3.41 1 42 1.51 0.475 0.025 

Lateral 

transport 

3.37 1 36 1.56 0.419 0.02 

Lateral 

transport 

1.44 1 30 1.58 0.354 0.02 

Lateral 

transport 

2.07 1 24 1.68 0.301 0.02 
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Lateral 

transport 

4.28 1 18 1.85 0.249 0.015 

Lateral 

transport 

2.43 1 12 2.08 0.187 0.015 

Lateral 

transport 

5.98 1 6 2.72 0.122 0.012 

Lateral 

transport 

2.13 1 48 1.45 0.522 0.025 

Lateral 

transport 

2.96 1 42 1.51 0.475 0.025 

Lateral 

transport 

2.93 1 36 1.56 0.419 0.02 

Lateral 

transport 

0.16 1 30 1.58 0.354 0.02 

Lateral 

transport 

2.44 1 24 1.68 0.301 0.02 

Lateral 

transport 

0.3 1 18 1.85 0.249 0.015 

Lateral 

transport 

1.9 1 12 2.08 0.187 0.015 

Lateral 

transport 

0.82 1 6 2.72 0.122 0.012 

 

 
Table 14.6: Distribution system sizing and related variables for the CC mixed scenario 

Pipe type Pipe 

length (m) 

No. of 

pipes  

No. of 

dwellings 

served 

ADMD 

(kW) 

Mass 

flow rate 

(kg/s) 

Pipe 

diameter 

(m) 

Service pipes 0.36 54 1 4.38 0.033 0.008 

Service pipes 0.69 18 1 4.38 0.033 0.008 

Service pipes 0.32 18 1 4.38 0.033 0.008 

Service pipes 0.35 6 1 4.38 0.033 0.008 

Cross floor 4.5 16 1 4.38 0.033 0.008 

Cross floor 4.5 16 2 3.57 0.053 0.01 

Cross floor 4.5 16 3 3.55 0.080 0.01 

Cross floor 4.5 16 4 3.36 0.101 0.012 

Cross floor 4.5 16 5 3.38 0.126 0.012 

Lateral 

transport 

0.81 1 48 2.98 1.070 0.032 

Lateral 

transport 

3.41 1 42 3.03 0.949 0.032 

Lateral 

transport 

3.37 1 36 3.00 0.808 0.032 

Lateral 

transport 

1.44 1 30 3.04 0.682 0.025 

Lateral 

transport 

2.07 1 24 3.10 0.555 0.025 
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Lateral 

transport 

4.28 1 18 3.08 0.415 0.02 

Lateral 

transport 

2.43 1 12 3.11 0.279 0.02 

Lateral 

transport 

5.98 1 6 3.29 0.148 0.015 

Lateral 

transport 

2.13 1 48 2.98 1.070 0.032 

Lateral 

transport 

2.96 1 42 3.03 0.949 0.032 

Lateral 

transport 

2.93 1 36 3.00 0.808 0.032 

Lateral 

transport 

0.16 1 30 3.04 0.682 0.025 

Lateral 

transport 

2.44 1 24 3.10 0.555 0.025 

Lateral 

transport 

0.3 1 18 3.08 0.415 0.02 

Lateral 

transport 

1.9 1 12 3.11 0.279 0.02 

Lateral 

transport 

0.82 1 6 3.29 0.148 0.015 

 

 
Table 14.7: The distribution system sizing and related variables for CC stratified scenario 

Pipe type Pipe 

length (m) 

No. of 

pipes  

No. of 

dwellings 

served 

ADMD 

(kW) 

Mass flow 

rate (kg/s) 

Pipe 

diameter 

(m) 

Service pipes 0.36 54 1 5.95 0.044 0.01 

Service pipes 0.69 18 1 5.95 0.044 0.01 

Service pipes 0.32 18 1 5.95 0.044 0.01 

Service pipes 0.35 6 1 5.95 0.044 0.01 

Cross floor 4.5 16 1 5.95 0.044 0.01 

Cross floor 4.5 16 2 5.44 0.081 0.012 

Cross floor 4.5 16 3 5.73 0.128 0.012 

Cross floor 4.5 16 4 5.55 0.166 0.015 

Cross floor 4.5 16 5 5.96 0.223 0.015 

Lateral 

transport 

0.81 1 48 5.80 2.082 0.05 

Lateral 

transport 

3.41 1 42 5.85 1.835 0.04 

Lateral 

transport 

3.37 1 36 5.76 1.551 0.04 

Lateral 

transport 

1.44 1 30 5.80 1.301 0.04 

Lateral 

transport 

2.07 1 24 5.81 1.041 0.032 
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Lateral 

transport 

4.28 1 18 5.76 0.775 0.032 

Lateral 

transport 

2.43 1 12 5.71 0.512 0.025 

Lateral 

transport 

5.98 1 6 5.69 0.255 0.02 

Lateral 

transport 

2.13 1 48 5.80 2.082 0.05 

Lateral 

transport 

2.96 1 42 5.85 1.835 0.04 

Lateral 

transport 

2.93 1 36 5.76 1.551 0.04 

Lateral 

transport 

0.16 1 30 5.80 1.301 0.04 

Lateral 

transport 

2.44 1 24 5.81 1.041 0.032 

Lateral 

transport 

0.3 1 18 5.76 0.775 0.032 

Lateral 

transport 

1.9 1 12 5.71 0.512 0.025 

Lateral 

transport 

0.82 1 6 5.69 0.255 0.02 

 

 
Table 14.8: Distribution system sizing and related variables for the real demand scenario 

Pipe type Pipe 

length (m) 

No. of 

pipes  

No. of 

dwellings 

served 

ADMD 

(kW) 

Mass flow 

rate (kg/s) 

Pipe 

diameter 

(m) 

Service pipes 0.36 54 1 20.27 0.151 0.015 

Service pipes 0.69 18 1 20.27 0.151 0.015 

Service pipes 0.32 18 1 20.27 0.151 0.015 

Service pipes 0.35 6 1 20.27 0.151 0.015 

Cross floor 4.5 16 1 20.27 0.151 0.015 

Cross floor 4.5 16 2 12.45 0.186 0.015 

Cross floor 4.5 16 3 9.85 0.221 0.015 

Cross floor 4.5 16 4 8.24 0.246 0.02 

Cross floor 4.5 16 5 7.11 0.266 0.02 

Lateral 

transport 

0.81 1 48 1.88 0.674 0.025 

Lateral 

transport 

3.41 1 42 2.03 0.638 0.025 

Lateral 

transport 

3.37 1 36 2.19 0.589 0.025 

Lateral 

transport 

1.44 1 30 2.45 0.548 0.025 

Lateral 

transport 

2.07 1 24 2.76 0.494 0.025 
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Lateral 

transport 

4.28 1 18 3.35 0.450 0.02 

Lateral 

transport 

2.43 1 12 4.14 0.371 0.02 

Lateral 

transport 

5.98 1 6 6.26 0.281 0.02 

Lateral 

transport 

2.13 1 48 1.88 0.674 0.025 

Lateral 

transport 

2.96 1 42 2.03 0.638 0.025 

Lateral 

transport 

2.93 1 36 2.19 0.589 0.025 

Lateral 

transport 

0.16 1 30 2.45 0.548 0.025 

Lateral 

transport 

2.44 1 24 2.76 0.494 0.025 

Lateral 

transport 

0.3 1 18 3.35 0.450 0.02 

Lateral 

transport 

1.9 1 12 4.14 0.371 0.02 

Lateral 

transport 

0.82 1 6 6.26 0.281 0.02 
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