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Recent advances in theoretical biology suggest that key definitions of
basal cognition and sentient behavior may arise as emergent properties
of in vitro cell cultures and neuronal networks. Such neuronal networks
reorganize activity to demonstrate structured behaviors when embod-
ied in structured information landscapes. In this article, we characterize
this kind of self-organization through the lens of the free energy princi-
ple, that is, as self-evidencing. We do this by first discussing the defini-
tions of reactive and sentient behavior in the setting of active inference,
which describes the behavior of agents that model the consequences of
their actions. We then introduce a formal account of intentional behavior
that describes agents as driven by a preferred end point or goal in la-
tent state-spaces. We then investigate these forms of (reactive, sentient,
and intentional) behavior using simulations. First, we simulate the in
vitro experiments, in which neuronal cultures modulated activity to im-
prove gameplay in a simplified version of Pong by implementing nested,
free energy minimizing processes. The simulations are then used to
deconstruct the ensuing predictive behavior, leading to the distinction
between merely reactive, sentient, and intentional behavior with the lat-
ter formalized in terms of inductive inference. This distinction is further
studied using simple machine learning benchmarks (navigation in a grid
world and the Tower of Hanoi problem) that show how quickly and ef-
ficiently adaptive behavior emerges under an inductive form of active
inference.
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668 K. Friston et al.

1 Introduction

In 2022, a paper was published that claimed to demonstrate sentient be-
havior in a neuronal culture grown in a dish (an in vitro neuronal network)
(Kagan et al., 2022). This work formally defined sentience as being “respon-
sive to sensory impressions through adapative internal processes” consis-
tent with prior literature (Friston et al., 2020; Trewavas et al., 2020). The
behavior in question was the elicited emergence of controlled movements
of a paddle to hit a ball—and thereby play Pong. This study has several
sources of inspiration that speak to the notion of basal cognition (Fields
et al., 2021; Levin, 2019; Manicka & Levin, 2019; and related work, e.g.,
Masumori et al., 2015). In particular, the hypothesis that adaptive and pre-
dictive behavior would emerge spontaneously was based on earlier work
showing that in vitro neuronal cultures could be described as minimizing
variational free energy (Isomura & Friston, 2018) and thereby evince ac-
tive inference and learning. This application of the free energy principle
(FEP) to neuronal cultures was subsequently validated empirically (Iso-
mura et al., 2023) in the sense that changes in neuronal activity and synaptic
efficacy—that underwrite learning—could be predicted quantitatively, as a
variational free energy minimizing process. So are these findings remark-
able, or were they predictable?

In one sense, these results were entirely predictable. Indeed, they were
predictable from the FEP, which states that any two networks—that are
coupled in a certain sparse fashion—will come to manifest a generalized
synchrony (Friston et al., 2021; Palacios et al., 2019). More formally, the
FEP states that if the probability density that underwrites the dynamics
of coupled random dynamical systems contains a Markov blanket—which
shields internal states from external states, given blanket (sensory and ac-
tive) states—then internal states will look as if they track the statistics of
external states—or, more precisely, as if they encode the parameters of a
variational density (or best guess about) external states beyond the blanket.
Empirically, this synchronization was observed when the neuronal cultures
learned to play Pong. However, the FEP goes further and says that the in-
ternal and active states (together, autonomous states) of either network can
be described as minimizing a variational free energy functional. This func-
tional is exactly the same used to optimize generative models in statistics
and machine learning (Winn & Bishop, 2005). On this reading, one can in-
terpret the autonomous states—of a network, particle, or person possessing
an internal state—as minimizing variational free energy or surprise (a.k.a.,
self-information) in the sensory information representing external states.
Equivalently this may be described as maximizing Bayesian model evi-
dence (a.k.a., the marginal likelihood of sensory states). This leads to an im-
plicit teleology, in the sense that one can describe self-organization in terms
of self-evidencing (Hohwy, 2016) that entails active inference and learn-
ing, planning, purpose, intentions, and, perhaps, sentience. The underlying
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Active Inference and Intentional Behavior 669

free energy–minimizing processes—and their teleological interpretation—
are the focus of this article.

The results reported in Kagan et al. (2022) were considered by some
to be unremarkable for a different reason: learning to play (Atari) games
like Pong was something that had been accomplished with machine learn-
ing systems years earlier using neural networks and both model-free and
model-based reinforcement learning (RL; Mnih et al., 2015; Schrittwieser
et al., 2019; Ye et al., 2021). So, what is remarkable about a neuronal net-
work reproducing a similar kind of behavior? It is remarkable because one
cannot use the RL paradigm to explain the emergence of self-evidencing be-
havior seen in vitro. This follows from the fact that rewarding or punishing
an in vitro neuronal network, in a behaviorist sense, is currently technically
infeasible. Even should a given in vitro neuronal network contain privi-
leged reward or punishment pathways, methods for identifying, accessing,
and interacting with these pathways have not been established, especially
in a reproducibly real-time, closed-loop fashion. However, the FEP theorist
knows exactly what a self-evidencing network finds aversive: surprise and
unpredictability. This was a rationale for delivering unpredictable noise to
the sensory electrodes of the cell culture (or restarting the game in an unpre-
dictable way), whenever the neuronal network failed to hit the ball (Kagan
et al., 2022). Some found the results reported in Kagan et al. (2022) remark-
able, but not in a good way: they disagreed with the claim that the behav-
ior could be described as “sentient” (Balci et al., 2023). Here, we hope to
make sense of the notion of sentient behavior in terms of Bayesian belief
updating, where “sentient behavior” denotes the capacity to generate ap-
propriate responses to sensory perturbations (as opposed to merely reactive
behavior; Kagan, Razi et al., 2023). We pursue the narrative established by
the cell culture experiments above to illustrate why Pong-playing behavior
was considered sentient under the definition used, as opposed to reactive.
In brief, we consider a bright line between actions based on the predictions
of a generative model that does, and does not, entail the consequences of
action.

Specifically, this article differentiates three kinds of behavior: reactive,
sentient, and intentional. Here, reactive behavior characterizes agents that
perform actions merely in response to an observation. Sentient behavior
can be read as planning actions under a generative model that includes the
long-term consequences of behavior, and intentional behavior as planning
according to an intended goal, where goals are specified as latent states
in the generative model. The first two have formulations that have been
extensively studied in the literature, under the framework of model-free
reinforcement learning (RL) the first, and model-based RL and active infer-
ence the second. In model-free RL, the system selects actions using either a
lookup table (Q-learning), or a neural network (deep Q-learning); in model-
based RL, an action is selected according to a specific value function over
policies, often explored via tree searches (Ha & Schmidhuber, 2018; Hafner
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670 K. Friston et al.

et al., 2019; Ye et al., 2021). In standard active inference, the action selection
depends on the expected free energy of policies (see equation 2.1), where
the expectation is over observations in the future that become random vari-
ables. This means that preferred outcomes—that subtend expected cost
and risk—are prior beliefs that constrain the implicit planning as inference
(Attias, 2003; Botvinick & Toussaint, 2012; Van Dijk & Polani, 2013). Things
that evince this kind of behavior can hence be described as planning their
actions, based on a generative model of the consequences of those actions
(Attias, 2003; Botvinick & Toussaint, 2012; Da Costa, Parr et al., 2020). It was
this sense in which the behavior of the cell cultures was considered sentient.
(For a more detailed explanation of the three kinds of behavior and concrete
examples that help distinguish among them, we refer to Figure 1.)

This article introduces the third kind of behavior based on inductive in-
ference. This form of sentient behavior—described in terms of Bayesian
mechanics (Friston, Da Costa, Sajid et al., 2023; Friston et al., 2022; Ram-
stead et al., 2023)—can be augmented with intended end points or goals.
This leads to a novel kind of sentient behavior that not only predicts the
consequences of its actions, but is also able to select them to reach a goal
state that may be many steps in the future. This kind of behavior, which
we call intentional behavior, generally requires some form of backward in-
duction (Camerer, 1997; Hure et al., 2020) of the kind found in dynamic
programming (Bellman, 1952; Da Costa, Sajid et al., 2020; Paul et al., 2023;
Sutton et al., 1999). In short, backward induction involves starting from the
intended goal state and working backward, inductively, to the current state
of affairs, in order to plan moves to that goal state. Backward induction
was applied to the partially observable setting and explored in the context
of active inference in Paul et al. (2023). In that work, dynamic programming
was shown to be more efficient than traditional planning methods in active
inference.

The focus of this work is to formally define a framework for intentional
behavior, where the agent minimizes a constrained form of expected free
energy—and to demonstrate this framework in silico. These constraints are
defined on a subset of latent states that represent the intended goals of the
agent and propagated to the agent via a form of backward induction. As a
result, states that do not allow the agent to make any progress toward one of
the intended goals are penalized, and so are actions that lead to such disfa-
vored states. This leads to a distinction between sentient and intentional be-
havior, where intentional behavior is equipped with inductive constraints.

In this treatment, the word inductive is used in several senses. First,
it distinguishes inductive inference from the abductive kind of inference
that usually arises in applications of Bayesian mechanics—that is, to dis-
tinguish between mere inference to the best explanation (abductive infer-
ence) and genuinely goal-directed inference (inductive inference) (Harman,
1965; Seth, 2015). Second, it is used with a nod to backward induction in
dynamic programming, where one starts from an intended end point and
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Active Inference and Intentional Behavior 671

works backward in time to the present to decide what to do next (Bellman,
1952; Da Costa, Sajid et al., 2020; Howard, 1960; Paul et al., 2023). Under
this naturalization of behaviors, a thermostat would not exhibit sentient
behavior, but insects might (i.e., thermostats exhibit merely reactive behav-
ior). Similarly, insects would not exhibit intentional behavior, but mammals
might (i.e., insects exhibit merely sentient behavior; Friedman et al., 2021).
The numerical analyses presented below suggest that in vitro neuronal cul-
tures may exhibit sentient behavior, but not intentional behavior. Crucially,
we show that intentional behavior cannot be explained by reinforcement
learning, as rewards can only be defined in terms of observable outcomes,
not in terms of (unobservable) latent states. In the experimental sections of
this work, we study and compare the performance of active inference agents
with and without intended goal states. For ease of reference, we call ac-
tive inference agents without goal states abductive agents and agents with
intended goals inductive agents.

This article has four sections. The first briefly rehearses active infer-
ence and learning—as a set of nested, free energy–minimizing processes—
applied to a generic generative model of exchange with some world or
environment. This model is a partially observed Markov decision process
that is conciliatory with canonical neural networks in machine learning and
likely to describe the self-evidencing of in vitro neuronal networks (Iso-
mura & Friston, 2018; Isomura et al., 2023). This section has a special fo-
cus on inductive inference and its relationship to expected free energy. The
subsequent sections use numerical studies to make a series of key points.
The second section reproduces the empirical behavior of in vitro neuronal
networks playing Pong. Crucially, this behavior emerges purely in terms
of free energy–minimizing processes, starting with a naive neuronal net-
work. This section illustrates the failure of a (simulated) abductive agent
when the game is made more difficult. This failure is used to illustrate the
role of inductive inference, which restores performance and underwrites
a fluent engagement with the sensorium. The final two sections illustrate
inductive inference using navigation in a maze and the Tower of Hanoi
problem, respectively. These numerical studies illustrate how the simple ap-
plication of inductive constraints to active inference allows tasks that would
be otherwise intractable in discrete state spaces to be solved efficiently. This
efficiency rests on the fact that distal goals can be reached by only plan-
ning a few steps in the future, thanks to constraints furnished by inductive
inference. Effectively, inductive inference takes the pressure off deep tree
searches by identifying blind alleys or dead ends.

1.1 Glossary of Definitions. Before introducing the inductive inference
algorithm, we frame our treatment by clarifying our use of some key terms
as semantic confusions have been highlighted as a major barrier to progress
in this field (Kagan, Gyngell et al., 2023). This framing is important, given
that the goal of our work here is not simply to describe a useful heuristic
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672 K. Friston et al.

Figure 1: Glossary. In this figure, we provide illustrative definitions of the three
kinds of behavior considered in this work in terms of examples, and mathe-
matical differences. Examples of agents with reactive behaviors are model-free
reinforcement learning and KL control schemes. In model-free reinforcement
learning methods, such as Q-learning, the agent makes use of a lookup table to
select actions (more generally, a state-action policy). In this table, rows corre-
spond to states, actions to columns, and every entry encodes the value of taking
a specific action (in this case: go up, right, down, left) when in state sτ . There
is no inference over policies, as for every state the agent automatically selects
the action with the highest value. In KL control (a.k.a., risk-sensitive control)
methods, that automatically select actions that minimise a KL divergence be-
tween anticipated and preferred states (where there is no uncertainty about the
current state). Sentient agents, on the other hand, plan by taking into account fu-
ture outcomes and their uncertainty, as they act by minimising an expected free
energy G, that includes risk and ambiguity terms. More details on this can be
found in equation 2.5. Finally, inductive agents add constraints (H in the figure)
in the action selection, by penalising actions that preclude an intended goal. For
a formal derivation of H, we refer to section 3.

for efficient inference (i.e., inductive inference) but to provide an account
of how a new form of decision making, characteristic of more complex
forms of agency, may be combined with, and folded into, a generic Bayesian
(active) inference scheme.

Figure 1 describes increasingly complex forms of behavior—from reac-
tive (merely responding to stimuli) to sentient (planning based on the sen-
sory consequences of actions), to intentional (planning in order to bring
about intended states)—and corresponding forms of decision making that
may underwrite such behavior.
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Active Inference and Intentional Behavior 673

Reactive behavior characterizes simple sensorimotor reflex arcs and the
mere realization of set points or trajectories (e.g., simple cases of homeosta-
sis and homeorhesis). This form of behavior can be accounted for acting in
a way that realizes predicted sensations, with no anticipation of the future
sensory consequences of action.

Sentient behavior characterizes the paradigmatic case of active infer-
ence, in which the influence of perception on action is mediated by the re-
sults of planning, with a distribution over policies derived from a model
endowed with counterfactual depth (i.e., beliefs about the future sensory
consequences of action pursuant to a policy). In this case, we may charac-
terize the form of inference over actions or policies as abductive—that is, as
an inference to the policy that best explains current and future observations
under a generative model (see below).

Intentional behavior is driven not simply by the generic imperative
to minimize sensory prediction error, present and future, but toward the
attainment of a particular future end point or goal state. This form of be-
havior can be subserved by backward induction or inductive inference, as
defined below, which supplies a specific form of constraint on the Bayesian
(abductive) inference characteristic of (mere) sentient behavior. In particu-
lar, it implies not merely beliefs about sensory consequences of actions but
rather beliefs about the inferred or latent causes of sensory input.

Note that words like sentient behavior and intentional behavior are
deliberately defined here such that they can be operationalized within the
framework of generative modelling, in which terms like state, belief, and con-
fidence have precise, if narrow, interpretations in terms of belief structures
of a mathematical sort (Ramstead et al., 2022). Work to define related terms
in a more general sense is currently underway elsewhere (Kagan, Gyngell
et al., 2023). Whether the phenomenology of (propositional or subjective)
beliefs—or sentience—could yield to the same naturalization remains to be
seen. See Clark et al. (2019), Sandved-Smith et al. (2021), and Smith et al.
(2022) for treatments in this direction. Note further that a key distinction be-
tween sentient and intentional behavior rests on the consequences of behav-
ior in (observable) outcome and (unobservable) latent spaces, respectively.

2 Active Inference

Here, we introduce the generative model used in the following sections,
which can be seen as a generalization of a partially observed Markov deci-
sion process (POMDP). The generalization in question covers trajectories,
narratives, or syntax—which may or may not be controllable—by equip-
ping a POMDP with random variables called paths. Paths effectively pick
out transitions among latent states. These models are designed to be com-
posed hierarchically in a way that speaks to a separation of temporal scales
in deep generative models. In other words, the number of transitions among
latent states at any given level is greater than the number of transitions at
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674 K. Friston et al.

the level above. This furnishes a unique specification of a hierarchy in which
the parents of any latent factor (associated with unique states and paths)
contextualize the dynamics of their children.

The variational inference scheme (Beal, 2003) used to invert these models
inherits from their application to online decision-making tasks. This means
that action selection rests primarily on current beliefs about latent states and
structures and expectations about future observations. In that sense, the be-
liefs are updated sequentially—and in an online fashion—with each new
action-outcome pair. This calls for Bayesian filtering (i.e., forward message
passing) during the active sampling of observations, followed by Bayesian
smoothing (i.e., forward and backward message passing) to revise poste-
rior beliefs about past states at the end of an epoch. The implicit Bayesian
smoothing ensures that the beliefs about latent states at any moment in the
past are informed by all available observations when updating model pa-
rameters (and latent states of parents in deep models).

In neurobiology, this combination of Bayesian filtering and smoothing
would correspond to evidence accumulation during active engagement
with the environment, followed by a replay before the next epoch (Buckner,
2010; Louie & Wilson, 2001; Penny et al., 2013; Pezzulo et al., 2014). From a
machine learning perspective, this can be regarded as a forward pass (be-
lief propagation) for online active inference, followed by a backward pass
(implemented with variational message passing) for active learning. The
implicit belief updates, pertaining to states, parameters, and structure, fore-
ground the conditional dependencies of active inference, learning, and se-
lection, respectively.

2.1 Generative Modeling. Active inference rests on a generative model
of observable outcomes (observations). This model is used to infer the most
likely causes of outcomes in terms of expected states of the world. These
states (and paths) are latent or hidden because they can only be inferred
through observations. Some paths are controllable in the sense they can be
realized through action. Therefore, certain observations depend on action
(e.g., where one is looking), which requires the generative model to enter-
tain expectations about outcomes under different combinations of actions
(i.e., policies).1

These expectations are optimized by minimizing the variational free en-
ergy, defined in equation 2.1. Variational free energy scores the discrepancy
between the data expected under the generative model and the actual data.
Crucially, the prior probability of a policy depends on its expected free en-
ergy. Expected free energy, described in more detail in equation 2.2, is a

1
Note that in this setting, a policy is not a sequence of actions but simply a combination

of paths, where each hidden factor has an associated state and path. This means there are,
potentially, as many policies as there are combinations of paths.
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Active Inference and Intentional Behavior 675

Figure 2: Generative models as agents. A generative model specifies the joint
probability of observable consequences and their hidden causes. Right: Legend
of distributions of a discrete agent, where Cat and Dir refer to categorical and
Dirichlet distributions, respectively, while the subscripts in this graphic pertain
to time. Right: A graphical representation of the generative model. Usually, the
model is expressed in terms of a likelihood (the probability of consequences given
their causes) and priors (over causes). When a prior depends upon a random
variable it is called an empirical prior. Here, the likelihood is specified by a tensor
A, encoding the probability of an outcome under every combination of states (s).
The empirical priors pertain to transitions among hidden states, B, that depend
upon paths (u), whose transition probabilities are encoded in C. To conclude, E
specifies the empirical prior probability of each path.

universal objective function that can be read as augmenting mutual infor-
mation with expected costs or constraints that need to be satisfied. Heuristi-
cally, it scores the free energy expected under each course of action. Having
evaluated the expected free energy of each policy, the most likely action can
be selected, and the perception-action cycle continues (Parr et al., 2022).

2.2 The Generative Model. Figure 2 provides a schematic overview of
the generative model used for the simulations considered in this article.
Outcomes at any particular time depend on hidden states, while transi-
tions among hidden states depend on paths. Note that paths are random
variables, in the sense that a particle can have both a position (i.e., a state)
and momentum (i.e., a path). Paths may or may not depend on action. The
resulting POMDP is specified by a set of tensors. The first set of parameters,
denoted A, maps from hidden states to outcome modalities—for example,
exteroceptive (e.g., visual) or proprioceptive (e.g., eye position) modalities.
These parameters encode the likelihood of an outcome given their hidden
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676 K. Friston et al.

causes. The second set, B, prescribes transitions among the hidden states
of a factor, under a particular path. Factors correspond to different kinds of
causes—for example, the location versus the class of an object. The remain-
ing tensors encode prior beliefs about paths C and initial states D.

The generative model in Figure 2 means that outcomes are generated as
follows. First, a policy is selected using a softmax function of expected free
energy. Sequences of hidden states are generated using the probability tran-
sitions specified by the selected combination of paths (i.e., policy). Finally,
these hidden states generate outcomes in one or more modalities. Percep-
tion or inference about hidden states (i.e., state estimation) corresponds to
inverting a generative model, given a sequence of outcomes, while learn-
ing corresponds to updating model parameters. Perception therefore corre-
sponds to updating beliefs about hidden states and paths, while learning
corresponds to accumulating knowledge in the form of Dirichlet counts.
The requisite expectations constitute the sufficient statistics (s, u, a) of pos-
terior beliefs Q(s, u, a) = Qs(s)Qu(u)Qa(a). The implicit factorization of this
approximate posterior effectively partitions model inversion into inference,
planning, and learning.

2.3 Variational Free Energy and Inference. In variational Bayesian in-
ference (a form of approximate Bayesian inference), model inversion entails
the minimization of variational free energy with respect to the sufficient
statistics of approximate posterior beliefs. This can be expressed as follows,
where, for clarity, we will deal with a single factor, such that the policy (i.e.,
combination of paths) becomes the path. Omitting dependencies on previ-
ous states, we have for model m,

Q (sτ , uτ , a) = arg min
Q

F

F = EQ[ln Q (sτ , uτ , a)
︸ ︷︷ ︸

posterior

− ln P (oτ | sτ , uτ , a)
︸ ︷︷ ︸

likelihood

− ln P (sτ , uτ , a)
︸ ︷︷ ︸

prior

]

= DKL [Q (sτ , uτ , a) ‖P (sτ , uτ , a | oτ )]
︸ ︷︷ ︸

divergence

− ln P (oτ | m)
︸ ︷︷ ︸

log evidence

= DKL [Q (sτ , uτ , a) ‖P (sτ , uτ , a)]
︸ ︷︷ ︸

complexity

−EQ [ln P (oτ | sτ , uτ , a)]
︸ ︷︷ ︸

accuracy

. (2.1)

Because the (KL) divergences cannot be less than zero, the penultimate
equality means that free energy is minimized when the (approximate) pos-
terior is equal to the true posterior. At this point, the free energy is equal to
the negative log evidence for the generative model (Beal, 2003). This means
minimizing free energy is mathematically equivalent to maximizing model
evidence, which is, in turn, equivalent to minimizing the complexity of ac-
curate explanations for observed outcomes.
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Active Inference and Intentional Behavior 677

Planning emerges under active inference by placing priors over (control-
lable) paths to minimize expected free energy (Friston et al., 2015):

G(u) = EQu [ln Q (sτ+1, a | u) − ln Q (sτ+1, a | oτ+1, u) − ln P (oτ+1 | c)] (2.2)

= −EQu [ln Q (a | sτ+1, oτ+1, u) − ln Q(a | sτ+1, u)]
︸ ︷︷ ︸

expected information gain (learning)

− EQu [ln Q (sτ+1 | oτ+1, u) − ln Q (sτ+1 | u)]
︸ ︷︷ ︸

expected information gain (inference)

−EQu [ln P (oτ+1 | c)]
︸ ︷︷ ︸

expected cost

(2.3)

= −EQu [DKL [Q (a | sτ+1, oτ+1, u) ‖Q(a | sτ+1, u)]]
︸ ︷︷ ︸

novelty

+ DKL [Q (oτ+1 | u) ‖P (oτ+1 | c)]
︸ ︷︷ ︸

risk

−EQu [ln Q (oτ+1 | sτ+1, u)]
︸ ︷︷ ︸

ambiguity

. (2.4)

The notation for the posterior predictive distribution Qu implies that all
random variables in the expression are conditioned on the path variable
u. When defined over parameters, hidden states, and outcomes at the next
time step, it is defined as

Qu = Q (oτ+1, sτ+1, a | u)

= P (oτ+1, sτ+1, a | u, o0, . . . , oτ )

= P (oτ+1 | sτ+1, a) Q (sτ+1, a | u) ,

although in some cases, this predictive density may only depend on the hid-
den states and outcomes at the next time step. One can also express the prior
over the parameters in terms of an expected free energy, where, marginal-
izing over paths,

P(a) = σ (−G)

G(a) = EQa [ln P(s | a) − ln P(s | o, a) − ln P(o | c)]

= −EQa [ln P(s | o, a) − ln P(s | a)]
︸ ︷︷ ︸

expected information gain

−EQa [ln P(o | c)]
︸ ︷︷ ︸

expected cost

= −EQa [DKL[P(o, s | a)‖P(o | a)P(s | a)]
︸ ︷︷ ︸

mutual information

−EQa [ln P(o | c)]
︸ ︷︷ ︸

expected cost

(2.5)

where Qa = P(o|s, a)P(s|a) = P(o, s|a) is the joint distribution over outcomes
and hidden states, encoded by the Dirichlet parameters, a, and σ (·) is the
softmax function. Note that the Dirichlet parameters encode the mutual in-
formation, in the sense that they implicitly encode the joint distribution over
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678 K. Friston et al.

outcomes and their hidden causes. When normalizing each column of the a
tensor, we recover the likelihood distribution (as in Figure 2); however, we
could normalize over every element to recover a joint distribution.

Expected free energy can be regarded as a universal objective function
that augments mutual information with expected costs or constraints. Con-
straints, parameterized by c, reflect the fact that we are dealing with open
systems with characteristic outcomes. This allows an optimal trade-off be-
tween exploration and exploitation, where the best policy is considered to
be the one that balances the need to reduce uncertainty (exploration) and
minimize expected cost (exploitation), where the balance is determined by
the variational objective (i.e., expected free energy). This derivation of ex-
pected costs and information (info) gain from first principles has the advan-
tage of placing expected cost in the same unit of measure as the info gain,
that is either in nats (if we are using natural logs) or bits (log in base 2). This
is important as it allows us to study utility in terms of information (gives
quantitative meaning to the value function). Hence, it allows quantification
of the trade-off between exploration and exploitation using a common cur-
rency. A key difference here, compared to RL schemes, is that it does not
place reward as the ultimate objective: in RL. If information seeking is con-
sidered, it is normally because this is felt to be useful in achieving greater
long-term reward. In active inference, reward is placed at the same level as
information, and both are considered to be valuable in their own right. Sit-
uations in which reward is prioritized can then be seen as special cases of a
more general principle in which there is limited (resolvable) uncertainty.

The exploration and exploitation trade-off under the expected free en-
ergy can be read as an expression of the constrained maximum entropy
principle that is dual to the free energy principle (Ramstead et al., 2023)
or, alternatively, as a constrained principle of maximum mutual informa-
tion or minimum redundancy (Ay et al., 2008; Barlow et al., 1961; Linsker,
1990; Olshausen & Field, 1996). In machine learning, this kind of objective
function underwrites disentanglement (Higgins et al., 2021; Sanchez et al.,
2020) and generally leads to sparse representations (Gros, 2009; Olshausen
& Field, 1996; Sakthivadivel, 2022; Tipping, 2001).

When comparing the expressions for expected free energy in equation 2.2
with variational free energy in equation 2.1, the expected divergence be-
comes expected information gain. Expected information gain about the
parameters and states is sometimes associated with distinct epistemic af-
fordances, namely, novelty and salience, respectively (Schwartenbeck et al.,
2019). Similarly, expected log evidence becomes expected value, where
value is the logarithm of prior preferences. The last equality in equation 2.2
provides a complementary interpretation in which the expected complexity
becomes risk, while expected inaccuracy becomes ambiguity.

There are many special cases of minimizing expected free energy. For
example, maximizing expected information gain maximizes (expected)
Bayesian surprise (Itti & Baldi, 2009), in accord with the principles of
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Active Inference and Intentional Behavior 679

optimal (Bayesian) experimental design (Lindley, 1956). This resolution of
uncertainty is related to artificial curiosity (Schmidhuber, 1991; Still & Pre-
cup, 2012) and speaks to the value of information (Howard, 1966).

Expected complexity or risk is the same quantity minimized in risk-
sensitive or KL control (Broek et al., 2012; Klyubin et al., 2005) and under-
pins (free energy) formulations of bounded rationality based on complex-
ity costs (Braun et al., 2011; Ortega & Braun, 2013) and related schemes in
machine learning such as Bayesian reinforcement learning (Ghavamzadeh
et al., 2015). More generally, minimizing expected cost subsumes Bayesian
decision theory (Berger, 2013). For a more detailed discussion on the above
notions, we refer to Friston, Da Costa, Tschantz et al. (2023).

3 Inductive Inference

What we call inductive inference—in this setting—recalls the notion
of backward induction in dynamic programming and related schemes
(Camerer et al., 2004; Da Costa, Sajid et al., 2020; Howard, 1960; Hure et al.,
2020; Paul et al., 2023; Sutton et al., 1999; Tervo et al., 2016). In this form
of inference, precise beliefs about state transitions are leveraged to rule out
actions that are inconsistent with the attainment of future goals, defined in
belief or state space as a final (or intended) state. This is a limiting case of in-
ductive (Bayesian) inference (Barlow, 1974; Hawthorne, 2021; Kiefer, 2017)
in which the very high precision of beliefs about final or intended states
allows one to use logical operators in place of tensor operations, thereby
vastly simplifying computations. In brief, we use this simplification to fur-
nish constraints on action selection that inherit from priors over intended
states in the future.

Active inference rests on priors that place constraints on paths or tra-
jectories through state space. For example, a sparse prior preference with
knowledge only about the final state warrants deep planning to demon-
strate intentional behavior (Paul et al., 2023). One can either specify these
constraints in terms of states that are unlikely to traversed or in terms of
the final state. In other words, the agent may a priori believe it will nav-
igate state space in a way that avoids unlikely or surprising outcomes or
that it will reach some final destination (in state space, not outcome space),
irrespective of the path taken. These are distinct kinds of constraints. The
first is implemented by c in terms of the cost or constraints that apply dur-
ing the entire path. We now introduce another prior or constraint h over the
final state. The priors d and h play reciprocal roles in the sense they specify
prior beliefs about the initial and final states, respectively. Backward induc-
tion now follows simply from this prior, provided it is specified sufficiently
precisely. We refer to these final states as intended states.2

2
While c, d, and h are usually hard-coded, they can be learnd very efficiently, for ex-

ample, using Z-learning for certain classes of MDPs (Paul et al., 2023; Todorov, 2006).
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680 K. Friston et al.

The basic idea is that although we may be uncertain about the next latent
state, we can be certain about which states cannot be accessed from the cur-
rent state. This means we can use induction to identify subsequent states
that cannot be on a path to an intended state, thereby rendering actions—
(i.e., state transitions) to those ineligible, dead-end states—highly unlikely
(assuming that we are on a path to an intended state). The requisite induc-
tion goes as follows:

Imagine that we know our current state and that we will be in a certain
(intended) state in the future. Imagine further that we know all possible
transitions, afforded by action, among states. This means we can identify
all the states from which the intended state is accessible. We can now re-
peat this and identify all the states from which the eligible states at the
penultimate time point can be accessed, and so on. We now repeat this
recursively—moving backward in time—until our current state becomes
eligible. At this point, we select an action that precludes ineligible states
at the preceding point in backward time (or next point in forward time),
bringing us one step closer to the intended state. We now repeat the back-
ward induction, until we arrive at the intended state via the shortest path.
This backward induction is computationally cheap because it entails logical
operations on a sparse logical tensor, encoding allowable state transitions.

Figure 3 provides a pseudocode and graphical abstraction based on the
Matlab scripts implementing this inductive logic. For clarity, we have as-
sumed a single factor and that there are no constraints on the paths other
than those specified by a 1-hot vector h, specifying the agent’s intended
states.3

Note that this is not vanilla backward induction. It is simply a way of
placing precise priors on paths that render certain paths—that cannot ac-
cess an intended state—highly unlikely. The requisite priors complement
expected free energy in the following sense (see Figure 3): inductive priors
over policies H are derived from priors over intended states h, while the pri-
ors over policies scored by expected free energy G inherit from priors over
preferred outcomes c. This distinction is important because it means that
this kind of reasoning—and intentional behavior—can only manifest un-
der precise beliefs about latent states. For example, a baby (or unexplainable
neural network) could not, by definition, act intentionally because he or she
does not have a precise generative model of latent states (or any mechanism

3
In our Matlab implementation of inductive inference, constraints due to prior pref-

erences in outcome space are accommodated by precluding transitions to costly states
during construction of the logical matrix encoding possible or true transitions. Further-
more, the implementation deals with multiple factors using appropriate tensor products.
Finally, when multiple intended states are supplied, the nearest state is chosen for induc-
tion; where nearest is defined in terms of the number of timesteps required to access an
intended state. For the pseudocode of the Python version, we refer to the supplementary
material.
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Active Inference and Intentional Behavior 681

Figure 3: Inductive Inference. This figure provides an overview of inductive
inference used in this article. The left panel provides the expressions used to
compute the penalty cost H that penalizes moving toward states that do not
contain paths to some intended end state h, here expressed as a 1-hot vector. The
middle panel illustrates this induction with a graphical example, where binary
vectors and matrices are shown in image format (black equals zero or false and
white equals one or true). Working down the equalities in the left panel, we
first initialize a logical vector of states I0 to the intended state h. Recursively, we
evaluate all the states from which the previous state can be accessed, where a
state can only be accessed if the probability of transitioning from an adjacent
state is larger than the threshold ε (here, B̃ is transposed because this recursive
induction works backward in time). This process leads to the computation of
each In (the column vectors in the central figure) that allows us to compute, for
every time step n, the probability pn of the (posterior beliefs on the) current state
being in In, that is, the probability of existence of a path of length n between the
current state and the goal state (top of the central panel). This allows computing
both the length of the shortest path to the intended state, which corresponds to
the smallest n such that pn = 1, and the immediate subsequent set of states to
which the agent must transition to in order to follow this shortest path. Trivially,
these states are those whose length of the shortest path to the goal state is one
less than that of our current state, and their indices correspond to the entries of Im

that are equal to one, where m is their distance to the goal state and corresponds
to the largest n such that pn = 0. In the example shown in the middle panel, the
agent is currently in state 20 (y-axes), which means that the shortest path to the
intended state (state 64) is 12 time steps (x-axes), as this is the smallest n such
that pn = 1. This tells us that if we are pursuing the shortest path, then there
are certain states we need to avoid, encoded as zeros in the logical vector Im,
with m = 11 (indicated by the dotted red line). The following equations, which
define the inductive cost H and its role in the policy selection, describe how
constraints on actions that would divert the agent from the shortest path are
enforced. In more detail, ineligible states are assigned a high cost (here, the log
of a small value) to evaluate the expected cost incurred by each policy, using
its predictive posterior over states (see Figure 2). Finally, we can supplement
the expected free energy, H of each policy with the ensuing inductive cost, H.
In principle, this guarantees the selection of paths or policies that lead to the
intended state, provided that state can be reached. The example shown on the
right is taken from the maze navigation task described later. For clarity, this
example only considers a single factor.
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682 K. Friston et al.

to specify intended states). We will return to prerequisites for inductive in-
ference in the discussion.

In summary, inductive inference propagates constraints backward in
time to provide empirical priors for planning as inference in the usual way.
This means that within the constraints afforded by such planning, actions
will still be chosen that maximize expected information gain and any con-
straints encoded by c. In this sense, the inductive part of this inference
scheme can be regarded as providing a constrained expected free energy,
which winnows trajectories through state space to paths of least action. An
equivalent and alternative perspective is that inductive inference furnishes
an empirical prior over policies.

When intended states are conditioned on some context—inferred by a
supraordinate (hierarchical) level—one has the opportunity to learn in-
tended states and, effectively, make planning habitual. In this setting, the
implicit Dirichlet counts in h, could be regarded as accumulating habitual
courses of action that are learned as empirical priors in hierarchical mod-
els. We will pursue this elsewhere. In what follows, we focus on the dis-
tinction between sentient behavior—based on expected free energy—and
intentional behavior—based on inductive priors.

4 Pong Revisited

In this section, we first simulate “mere” sentient behavior and then examine
the qualitative differences in behavior when adding inductive constraints.
Specifically, we simulate the in vitro experiments reported in (Kagan et al.,
2022), using both an abductive and an inductive agent. The first has no in-
tended goals and stands in for a naive neuronal culture; the second has a
set of intended states: the ones where the paddle hits upcoming balls. As
environments, we use Pong of two different sizes that reflect two different
difficulties: 5 × 6 (easy) and 8 × 4 (hard). The results show that while the
simulated in vitro agent that is using an abductive decision process (e.g.,
unconstrained expected free energy) is able to fluently play in the easy en-
vironment, it struggles in the harder one. The inductive agent can master
the harder environment in less than three minutes of (simulated) game time.

In the in vitro experiments, certain cells were stimulated depending on
the configuration of a virtual game of Pong, constituted by the position of
a paddle and a ball bouncing around a bounded box. Other recording elec-
trodes were used to drive the paddle, thereby closing the sparse coupling
between the neuronal network and the computer network simulating the
game of Pong (see Figure 4). Typically, in these experiments, after a few
minutes of exposure to the game, short rallies of ball returns emerge. To
emulate this setup, we created a generative process (i.e., a hard-coded repre-
sentation of the dynamics of external states) in which a ball bounced around
a box at 45 degrees. The lower boundary contained a paddle that could be
moved to the right or left. The size of the box was 5 × 6 units, where the
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Active Inference and Intentional Behavior 683

Figure 4: Learning the world of Pong. (A) Setup used in the simulations. In
brief, the generative process modeled a ball bouncing around inside a bounding
box, with a movable paddle on the lower boundary. The (5 × 6 =)30 locations or
pixels provided outputs with two states (black or white) that were subsequently
learned via a likelihood mapping to 40 latent states. The agent was equipped
with a precise transition prior where 40 latent states followed each other, with
circular boundary conditions. In addition, the agent was equipped with a sec-
ond factor that controlled the panel, moving it to the right, staying still, and
moving it to the left. (B) Graphical abstract (reproduced from Kagan et al., 2022;
permission from the authors) describing the in vitro empirical study in which
a closed loop system was used to record from—and stimulate—a network of
cultured neurons. The setup enabled the neurons to control a virtual paddle in
a simulated game of Pong. Sensory feedback reported the location of the ball
and paddle; enabling the neuronal preparation to learn how to play a rudimen-
tary form of Pong. (C) The transitions of the generative model, while panel D
shows the results of active learning—that is, accumulation of Dirichlet counts
in the likelihood tensor—after 512 time steps. Note that this is a precise likeli-
hood mapping due to the fact that the synthetic agent has precise, if generic,
transition priors. The likelihood mapping in panel D is shown in image format,
with each of the 30 likelihood tensors stacked on top of each other. Of note here
are certain latent states that produce ambiguous (i.e., unpredictable) outcomes.
The first three are labeled with small arrows over the likelihood matrix. These
ambiguous likelihood mappings appear as gray columns. This reflects the fact
that the agent has learned that states corresponding to “missing the ball” lead to
unpredictable and ambiguous stimulation. The implicit surprise and ambiguity
mean that the agent plans to avoid these states and look as if it is playing Pong—
by choosing paths or policies that are more likely to hit the ball. The emergence
of this behavior is described in the next figure.
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684 K. Friston et al.

ball moved one unit up or down (and right or left) at every time point. The
(one-unit-wide) paddle could be moved left or right by one unit at every
time point. In the in vitro experiments, whenever the agent missed the ball,
randomized white noise was applied to the sensory electrodes; otherwise,
the game remained in the play. We simulated this by supplying random in-
put to all sensory channels whenever the ball failed to contact the paddle
on the lower boundary.

The (sensory) outcomes of the POMDP ad 30 sensory channels that could
be on or off. These can be thought of as pixels in a simple Atari-like game.
The latent states were modeled as one long orbit by equipping the genera-
tive model with a transition matrix that moved from one state to the next
(with circular boundary conditions) for a suitably long sequence of state
transitions (here, 40). The generative model was equipped with a second
factor with three controllable paths. This factor moved the paddle one unit
to the right or left (or no movement). However, the (implicit) agent knew
nothing more about its world and, in particular, had no notion that the
second factor endowed it with control over the paddle. This was because
the likelihood tensors mapping from the two latent factors to the outcomes
were populated with small and uniform Dirichlet counts (i.e., concentration
parameters of 1/324). In other words, our naive generative model could, in
principle, model any given world (providing this world has a limited num-
ber of states that are revisited systematically). Figure 4 shows the setup of
this paradigm and the parameters of the generative model learned after 512
time steps.

To simulate the in vitro study, we exposed the synthetic neural network
to 512 observations—about two minutes of simulated time (i.e., a few sec-
onds of computer time). Figure 5 shows the results of this simulation. The
ensuing behavior reproduced that observed empirically: the emergence of
short rallies after a minute or so of exposure. The question is now: Can we
understand this in terms of free energy minimizing processes and their tele-
ological concomitants?

As time progresses, Dirichlet counts are accumulated in the likelihood
tensor to establish a precise mapping between each successive hidden state
and the outcomes observed in each modality. This accumulation is precise
because the agent has precise beliefs about state transitions. As the like-
lihood mapping is learned, it becomes apparent to the agent that certain
states produce ambiguous outputs. These are the states in which it fails to
hit the ball with the paddle. Because these ambiguous states have a high ex-
pected free energy—see equation 2.2—the agent considers that actions that

4
The 1/32 is just a small concentration parameter that regulates how stubborn an agent

is: when the concentration parameter is large, the agent needs to observe the same transi-
tion many times before there is a substantive change in the relative Dirichlet parameters.
When small, the agent “learns” a particular transition the first time it is observed. In short,
it can be thought of as an initial learning rate for transition probabilities.
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Active Inference and Intentional Behavior 685

Figure 5: The emergence of play. (A, B) The results of two simulations of 512
time steps (i.e., about two minutes of simulated time) under two configurations
of the Pong setup: an easy setup in panel A and a slightly more difficult setup
in panel B, in which the width of the bounding box was increased and its height
decreased (from 5 × 6 to 8 × 4). In both panels, the configuration of the game
is shown above three plots reporting fluctuations in various measures of be-
lief updating and accompanying behavior. The first graph plots the (negative)
variational free energy as a function of time (where each time step corresponds
roughly to 250 ms). The black dots mark time points when the ball was hit. It
can be seen that during accumulation of the likelihood Dirichlet counts, the ball
was missed until time step 150. After about a minute, the synthetic agent then
starts to emit short rallies of between one and seven consecutive hits. The emer-
gence of game play is accompanied by saltatory increases in negative variational
free energy (or evidence lower bound). These increases disappear whenever the
agent misses the ball, terminating little rallies. The second graph plots the aver-
age of the expected free energy under posterior beliefs about policies. This can
be read as the precision of policy beliefs or, more colloquially, the confidence
placed in policy selection. This illustrates that confident behavior emerges dur-
ing the first minute and is subsequently restricted to moments prior to hitting
the ball. Heuristically, this can be read as the agent realizing that it can avoid
ambiguity by moving in such a way as to catch the ball. The accompanying
posterior (Bayesian) beliefs about policies are shown in image format in the
bottom plot. This illustrates that precise or confident behavior entails precise
beliefs about what to do next: the three rows report a categorical distribution
over three actions as a function of time. As time goes on (left to right), we see
the emergence of a precise distribution that is due to learning. As one can see,
initially (on the left), the (prior) beliefs over actions are uniform. Panel B shows
exactly the same results but for a slightly more difficult game. Here, the ball
has more latitude to move horizontally and is returned more quickly due to the
reduced height of the bounding box. In consequence, learning a precise likeli-
hood mapping takes about twice the amount of time. And even when learned,
the rallies are shorter, ranging from one to four at most. We will use this more
difficult setup to look at the effect of inductive inference in the next figure.
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686 K. Friston et al.

bring about these states are unlikely and therefore tries to avoid missing the
ball. This is sufficient to support rallies of up to seven returns (see Figure 5).

However, because this agent does not look deep into the future, it can
only elude ambiguous states when they are imminent. In other words, al-
though this kind of behavior can be regarded as sentient—in the sense that
it rests on an acquired model of the consequences of its own action—it is
not equipped with intended states.

Note what has been simulated here does not rely on any notion of rein-
forcement learning: at no point was the agent rewarded (in the traditional
sense) for any behavior or outcome. This kind of self-organization—to a
synchronous exchange with the world—is an emergent property of the sys-
tem that simply rests on avoiding ambiguity or uncertainty of a particular
kind. The subtle distinction between a behaviorist (reinforcement learning)
account and this kind of self-evidencing rests on the imperatives for self-
organized behavior. In this in silico reproduction of in vitro experiments, be-
havior is a consequence of (planning as) inference, where inference is based
on what has been learned. What has been learned are just statistical regular-
ities (or unpredictable irregularities) in the environment. In this case, there
are certain states that lead to unpredictable outcomes. This gives the agent
a precise grip on the world and enables it to infer its most likely actions. Its
most likely actions are those that are characteristic of the thing it is, namely,
something that minimizes surprise, ambiguity, and free energy. This is dis-
tinct from learning a behavior in the sense of reinforcement learning (e.g., a
state-action mapping). The difference lies in the fact that behavior—of the
sort demonstrated above—rests on inference, under a learned model.

In the next section, we turn to a different kind of behavior that rests on
inductive inference, equipping the agent with foresight and eliciting antic-
ipatory behavior.

4.1 Inductive Inference. In this section, we repeat the simulations
above, but making the game more difficult by increasing the width of the
box. This means that to catch the ball, the agent has to anticipate outcomes
in the distal future in order to respond with preemptive movement of the
paddle. Note that this kind of behavior goes beyond the sort of behav-
ior predicted under perceptual control theory and related accounts of ball
catching (Gigerenzer & Brighton, 2009; Mansell, 2011). For example, one
way to model behavior in this paradigm would be to move the paddle so
that it was always underneath the ball. However, this is not the behavior
that emerges under self-evidencing. In what follows, we will see that avoid-
ing ambiguity is not sufficient for skilled performance of a more difficult
game of Pong. However, if we equip the agent with intentions to hit the
ball (i.e., as an intended state), it can use inductive inference to pursue a
never ending rally, and play the game skilfully.

Figure 5B reports performance over about two minutes of simulated time
of an abductive agent when increasing the width of the Pong box to eight
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Active Inference and Intentional Behavior 687

Figure 6: Inductive Inference. This figure follows the same format as Figure 5,
reporting the emergence of Pong-playing behavior under the more difficult
setup described in the previous figure. However, here, we include inductive
inference in the belief updating by specifying the agent’s intentions in terms of
priors over particular latent states—namely, states in which the agent hit the
ball. In realizing these intentions, the agent quickly learns a sufficiently pre-
cise likelihood mapping, evincing rallies of between four and six. after about a
minute (of simulated time). This is shown in panel A. Panel B shows the perfor-
mance during the subsequent two minutes. By about three minutes, the agent
has a precise grip on its world and realizes its intentions fluently. From a dy-
namical systems perspective, this can be read as the emergence of generalized
synchrony—or synchronization of chaos—as the joint system converges onto a
synchronization manifold: a manifold that contains the states the agent intends
to visit.

units (and decreasing its height to four units). This simple change precludes
sustained rallies, largely because the depth of planning is not sufficient to
support preemptive moves of the paddle.

The equivalent results under inductive inference are shown in Figure 6.
Here, active inference under inductive constraints produces intermittent
rallies within about a minute of simulated time—and skilled, and fluent
play after three minutes.

In this example, we simply specified the intended states as those states
corresponding to ball hits. This would be like instructing a child by telling
her what is (i.e., which states are) expected. The child can then work out
how to realize those states by using inductive inference and selecting the
most likely actions at each moment. Notice that there is no sense in which
this could be construed as reinforcement learning: no reward or cost is being
synchronized. Rather, the behavior is driven purely by the minimization of
uncertainty. A better metaphor would be instantiating some intentional set
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688 K. Friston et al.

by instilling intentions or prior beliefs about characteristic states that should
be realized.

From the perspective of the free energy principle, priors over intended
states can be cast as specifying a nonequilibrium steady state with a (pull-
back) attractor that contains intended or characteristic states. From a dy-
namical systems perspective, this is equivalent to specifying unstable fixed
points that characterize stable heteroclinic orbits (Afraimovich et al., 2008;
Rabinovich et al., 2008), which have been discussed in terms of sequential
behavior (Fonollosa et al., 2015). Intuitively, this means the agent has found
a free energy minimum that is characterized by generalized synchrony be-
tween the neuronal network and the process generating sensory inputs.

Given that this synchronization was never seen in the in vitro experi-
ments, one might argue that the in vitro behavior was sentient but not in-
tentional. Indeed, this interpretation accords with the finding that the in-
formation input to the in vitro cultures resulted in stark increases to the
level of critical dynamics present within these cultures (Habibollahi et al.,
2023). In this work, it was found that critical dynamics arose as a natural
consequence of a dynamic system being embodied within a structured in-
formation landscape. However, contrary to some other interpretations of
the role of neural criticality, here the critical dynamics could be seen to rep-
resent a basic response to the information input but were only necessary,
not sufficient, for any specific performance-based behavior that would in-
dicate intention. Taken together this would draw an important distinction
between sentience (as defined here) and intentionality. In the remaining sec-
tions, we briefly showcase inductive inference in two other paradigms to il-
lustrate the interaction between constraints—encoded by prior preferences
over outcomes and prior intentions, encoded by priors over latent states.

5 Navigation as Inductive Inference

In this section, we revisit a simple navigation problem addressed many
times in the literature (e.g., Baker et al., 2009; Dayan et al., 2006) and in
demonstrations of active inference (e.g., Friston et al., 2021; Kaplan & Fris-
ton, 2018). Here, the problem is to learn the structure of a two-dimensional
maze and then navigate to a target location based on what has been learned.
This features the dual problem of learning a world or generative model and
then using what has been learned for deep planning and navigation.

In detail, we constructed a simple maze, shown in Figure 7, for an agent
who has a myopic view of the world—namely, one output modality that
reported whether the agent was sitting on an allowable location (white
square) in the maze or a disallowed location (black square), which, a pri-
ori, it found surprising (e.g., experiencing a foot shock). A simple genera-
tive model was supplied to the agent in the form of a single factor encoding
each location or way-point, equipped with five paths. These were control-
lable paths that moved the agent up or down, or right or left (or staying
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Active Inference and Intentional Behavior 689

Figure 7: Navigation by induction. (A) This panel reports the exploration of an
agent that is building its likelihood mapping by exploring all the novel loca-
tions in a maze. Initially, the agent does not know where it can go in the sense
that it can only see its current location, which can be black or white. Therefore,
every unvisited location furnishes some novelty, that is, expected information
gain (about likelihood parameters). This compels the agent to explore all lo-
cations efficiently and uniformly with an effective inhibition of return until it
has become familiar with this particular maze layout. After learning, the agent
was given some intentions in terms of a specific location it believed, a priori, it
would visit. Panels B and C show the results of planning under mild and precise
preferences for being on white squares. In panel B, the agent takes a shortcut to
the target location (red dot), which involves a transgression of one black square.
This means that the cost of being on black squares is not sufficiently precise to
have constrained the transitions used in inductive inference. However, because
the agent is still trying to minimize expected cost (encoded by preferences for
white squares), it navigates fairly gracefully until it encounters a barrier. In con-
trast, panel C shows the same agent with precise costs, which preclude transi-
tions to black squares during inductive inference. This agent can swiftly induce
the requisite path to the target location without transgressing constraints on
outcomes.

still). The likelihood mapping was, as in the previous simulation, initial-
ized to small, uniform Dirichlet counts. This means the agent has no idea
about the structure of its world but simply knew that a latent state could
change in one of five ways. Learning this kind of environment is straight-
forward under active inference, due to the novelty or expected information
gain about parameters (see equation 2.2).

This means the agent chooses actions that resolve the greatest amount
of uncertainty in the likelihood mapping from each latent state to out-
comes. This ensures a Bayes optimal exploration of state space. Figure 7A
shows that the agent pursues a path that covers all locations in an efficient
fashion—that is, not revisiting experienced states or locations until it has
explored every location. The trajectory shown in Figure 7A corresponds to
256 time steps. After this exposure, the agent has learned a likelihood model
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that is sufficient to support inductive inference. Figures 7B and 7C show the
results of this inductive navigation, reaching a distal target (red dot) from
a starting location while avoiding surprises or black squares in the maze.
The two routes chosen are under imprecise and precise prior preferences
for avoiding black squares (i.e., a log odds ratio, encoded by c, of one and
four, respectively). Note that the path under precise preferences is about 20
steps, speaking to the depth of induction (here, 32 time steps, as in Figure 3).

This example highlights an interesting aspect of inductive inference as
defined here: the learned constraints on foraging act as constraints on inten-
tional behavior. These constraints enter the allowable transitions, so that the
paths that are induced respect the constraints due to prior preferences that
can be inferred after—and only after—learning the likelihood mapping. In
short, this example shows how it is possible to reach intended end points,
under constraints on the way one gets there. In the final section, we use
the same scheme to illustrate the efficiency of inductive inference in high-
dimensional problem spaces.

6 Inductive Problem Solving

This section considers a canonical problem-solving task: the Tower of Hanoi
(Donnarumma et al., 2016). In this problem, one has to rearrange a number
of balls over a number of towers to reach a target arrangement from any
given initial arrangement (see Figure 8). The problem can be made easier or
more difficult by manipulating the number of intervening rearrangements
between the initial and target (intended) configurations. We have previ-
ously shown that this problem can be learned from scratch using structure
learning (Friston, Da Costa, Tschantz et al., 2023). Here, we consider prob-
lem solving with and without inductive inference after learning the likeli-
hood model and allowable state transitions.

As above, implementing inductive inference simply means equipping
the agent with prior beliefs about a final (intended) state and then letting
it rearrange the balls until those intended states are realized. To solve this
problem using active inference, one usually supplies constraints in terms
of prior preferences that are mildly aversive for all but the target arrange-
ment. This means the agent will rearrange the balls in a state of mild sur-
prise until the preferred arrangement is found—and the agent rests in a low
free-energy state. Because constraints are only in outcome space, there are
certain arrangements that are less surprising because they are similar to the
target configuration (as defined in outcome space). This enables the agent
to solve fairly deep problems, even with a limited depth of planning (here,
one-step-ahead planning). However, problems requiring more than four or
five moves usually confound this kind of planning as inference. In contrast,
if the intended target is specified in state space, then it will invoke induc-
tive inference and, in principle, solve difficult problems, even with a limited
depth of planning.
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Active Inference and Intentional Behavior 691

Figure 8: Inductive inference and the Tower of Hanoi. (A) The particular game
used to illustrate inductive inference. Here, there are four balls on three tow-
ers. The problem is to rearrange the initial configuration (on the upper left) to
match the target configuration (lowest arrangement). In this example, it takes
five moves. Actions correspond to moving a ball from one pillar to another. The
generative model that supports this kind of problem solving is shown in terms
of the requisite likelihood and transition mappings in panel B. The likelihood
tensors have been stacked on top of each other (and unfolded) to illustrate the
mapping between the 360 latent states and the (4 × 3 × 5 =) 60 outcomes. The
accompanying transition parameters are shown in terms of allowable transi-
tions among latent states (as in Figure 3). This generative model can be learned
from scratch by presenting each arrangement—and then each rearrangement—
of the balls to accumulate the appropriate Dirichlet parameters. Of interest
here is the use of the ensuing parameters or knowledge to solve problems that
require deep planning. This problem is straightforward to solve using induc-
tive inference—namely, working backward from the target state using the pro-
tocol described in Figure 3. The ensuing performance is shown in the next
figure.

Figure 9 shows the performance of two agents on 100 problems, given
12 moves for each problem. The first (abductive) agent was equipped only
with constraints in outcome space, that is, prior preferences that led to
the target solution provided that solution was reasonably close in outcome
space. This agent failed to solve problems with five or more moves. In con-
trast, when specifying intentions in the form of the intended (target) state
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692 K. Friston et al.

Figure 9: Tower of Hanoi Performance. This figure reports the performance of
a generative model that has learned the Tower of Hanoi problem in terms of
transitions among different arrangements of balls. We presented the agent with
100 trials with different targets of greater and lesser difficulty (i.e., with vary-
ing numbers of moves from the initial and target arrangements). We presented
exactly the same problems to agents with and without inductive inference. The
right panel shows the incidence of trials in terms of the numbers of moves re-
quired until completion. The agent with inductive inference was able to solve
100% of trials successfully. In contrast, the agent that did not use inductive in-
ference was only able to complete problems of four moves or fewer. This is still
impressive because both the abductive and inductive agents only looked one
step ahead. In other words, even though the abductive agent could evaluate
only the quality of its next move, it was still able to work toward the final solu-
tion. This is possible because the prior preferences for the target outcomes mean
that certain outcomes are closer to the preferred outcomes than others. The 100
trials reported in this figure take less than 10 seconds to simulate.

or arrangement, the second (inductive) agent was able to solve problems of
eight moves or more almost instantaneously, without fail.

In these examples, the output space was a collection of (4 × 3 =)12 out-
come modalities—one for each location or pixel—with five levels (four
colored balls or an empty outcome). The state space encompassed 360
arrangements, producing large (360 × 360 × 5) transition tensors. However,
reducing these to logical matrices—used in inductive inference—means one
can effectively plan deep into the future (here, 64 moves) within millisec-
onds, using a one-step-ahead, active inference scheme.
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7 Discussion

This article has introduced a particular instance of backward induction to
active inference, as well as a more formal characterization of sentient and
intentional behavior. Induction in this setting appeals to a simple kind of
backward induction via logical operators, which is used to furnish con-
straints on the expected free energy and, hence, actions. Actions are then
selected in the usual way: actions that maximize expected information gain
and value, where value is scored by log prior preferences over outcomes.
The use of inductive priors lends planning a deep reach into the future
that rests on specifying final or intended end points. In turn, this differenti-
ates sentient from intentional behavior. To the extent that one can describe
Bayesian beliefs—about the ultimate consequences of plans—as intentions,
one could describe the behavior illustrated above as intentional with a well-
defined purpose or goal.

Inductive inference, as described here, can also be read as importing log-
ical or symbolic (i.e., deductive) reasoning into a probabilistic (i.e., induc-
tive, in the sense of inductive programming) framework. This speaks to
symbolic approaches to problem solving and planning (e.g., Colas et al.,
2010; Fox & Long, 2003; Gilead et al., 2019)—and a move toward the net-
work tensor computations found in quantum computing (e.g., Fields et al.,
2023; Knill & Laflamme, 1997). However, in so doing, one has to assume
precise priors over state transitions and intended states. In other words,
this kind of inductive inference is only likely when one has precisely stated
goals and knowledge about state transitions. Is this a reasonable assump-
tion for active inference? It could be argued that it is reasonable in the sense
that goal states or intended states are stipulatively precise (one cannot for-
mulate an intention to act without specifying the intended outcome with
a certain degree of precision) and the objective functions that underwrite
self-evidencing lead to precise likelihood and transition mappings. In other
words, to minimize expected free energy—via learning—is to maximize the
mutual information between latent states and their outcomes and between
successive latent states.

To conclude, inductive inference differs from previous approaches pro-
posed in both the reinforcement learning and active inference literature
due to the presence of intended goals defined in latent state space. In both
model-free and model-based reinforcement learning, goals are defined via
a reward function. In alternative but similar approaches, such as active
inference, rewards are received by the agent as privileged (usually pre-
cise but sparse) observations (Da Costa et al., 2023; Friston et al., 2015).
This influences the behavior of the agent, which learns to design and se-
lect policies that maximize expected future reward via either model-free
approaches, which assign values to state-action pairs, or model-based ap-
proaches, which select actions after simulating possible futures. Defining
preferences directly in the state space, however, induces a different kind
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694 K. Friston et al.

of behavior: the fast and frugal computation involved in inductive infer-
ence is now likely to more closely capture the efficiency of human-like
decision making, where indefinitely many possible paths, inconsistent with
intended states, are ruled out a priori—hence combining the ability of
agents to seek long-term goals, with the efficiency of short-term planning.

8 Conclusion

The aim of this article was to characterize the self-organization of adap-
tive behavior through the lens of the free energy principle, that is, as self-
evidencing. We did this by first discussing the definitions of reactive and
sentient behavior in active inference, where the latter describes the be-
havior of agents that are aware of the consequences of their actions. We
then introduced a formal account of intentional behavior, specified by in-
tended end points or goals, defined in state space rather than outcome
space, as in abductive forms of active inference. We then investigate these
forms of (reactive, sentient, and intentional) behavior using simulations.
First, we simulate the in vitro experiments, in which neuronal cultures
spontaneously learn to play Pong by implementing nested, free energy-
minimizing processes. We used these simulations to illustrate the ensuing
behavior—leveraging the distinction between merely reactive, sentient, and
intentional behavior. The requisite inductive inference was then further il-
lustrated using simple machine learning benchmarks (navigation in a grid
world and the Tower of Hanoi problem) that showed how quickly and ef-
ficiently adaptive behavior emerges under inductive constraints on active
inference.
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