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SUMMARY
Whether non-avian dinosaurs were in decline prior to their extinction 66 million years ago remains a conten-
tious topic. This uncertainty arises from spatiotemporal sampling inconsistency and data absence, which
cause challenges in distinguishing between genuine biological trends and sampling artifacts. Consequently,
there is an inherent interest in better quantifying the quality of the data and concomitant biases of the dino-
saur fossil record. To elucidate the structure of this record and the nature of the biases impacting it, we inte-
grate paleoclimatic, geographic, and fossil data within a Bayesian occupancy modeling framework to simul-
taneously estimate the probability of dinosaurs occupying and being detected in sites across North America
throughout the latest Cretaceous for the first time. We find that apparent declines in occupancy generated
from the raw fossil record do not match modeled occupancy probability, which generally remained stable
throughout the latest Cretaceous. Instead, they coincide with decreased probability of detecting dinosaur
occurrences, despite high overall sampling during this interval. By incorporating model covariates, we addi-
tionally reveal that detection probability is directly and significantly influenced by the available area of
geological outcrop andmodern land cover. Our findings offer evidence that traditional comparisons of diver-
sity estimates between time intervals are likely inaccurate due to underlying structural issues in the geological
record operating at both local and regional scales. This study underscores the utility of occupancy modeling
as a novel approach in paleobiology for quantifying the impact of heterogeneous sampling on the available
fossil record.
INTRODUCTION

The mass extinction event at the Cretaceous/Paleogene (K/Pg)

boundary marks both the demise of the non-avian dinosaurs1,2

and a critical interval in vertebrate evolution.3,4 Although a bolide

impact is now widely accepted as the principal extinction mech-

anism, there has been intense debate regarding the trajectory of

dinosaur diversity and diversification patterns leading up to the

K/Pg boundary. In particular, this argument centers on whether

non-avian dinosaurs were already in long-term terminal decline

due to changes in global environmental conditions,2,5–15 with

many studies focused on the rich latest Cretaceous

(Campanian-Maastrichtian;�83.6–66 Ma) dinosaur fossil record

of North America.2,10,13,14,16–19 Approximately 50% of reported

latest Cretaceous global dinosaur occurrences are from the

North American continent,19 with the majority from the western
Current Biology 35, 1973–1988,
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margin of the Western Interior Basin (WIB), a foreland basin

flooded by an epeiric sea that divided North America into west-

ern (Laramidia) and eastern (Appalachia) subcontinents. Exhibit-

ing precise temporal constraints, high levels of sampling, and a

relatively continuous stratigraphic succession,14,19–22 the WIB

represents an unprecedented dataset for discerning patterns in

dinosaur macroecology and macroevolution prior to the mass

extinction.16,23 A literal interpretation of this rich fossil record

suggests a Campanian peak in dinosaur species richness, fol-

lowed by a decline in the Maastrichtian.11,14,16,18,19

However, a variety of authors have suggested that the apparent

decline in diversity in the latest Cretaceous in theWIBmight be an

artifact of spatiotemporal sampling biases in the fossil record—

specifically spatial and taphonomic shifts in the available sampling

window18,24—rather than a genuine reflection of biological pro-

cesses.18,19,24–29 Although the available fossil record provides
May 5, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1973
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an unprecedented archive of biological information, it is now well

established that heterogeneous sampling confounds our attempts

to reconstruct macroevolutionary and ecological patterns through

deep time.30–32 The known fossil record is not an accurate reflec-

tion of genuine biological patterns but instead a product of spatio-

temporal variation in underlying preservation potential as well as

biases introduced from resultant sampling of that remaining re-

cord.33,34 These factors arise from a complex web of geolog-

ical,30,35 environmental,36 and anthropogenic37 processes, which

vary across time,38 geography,39 depositional environment,33,40

and among taxa.41 In particular, spatial sampling heterogene-

ity—and, more broadly, spatial data absence—has increasingly

been recognized by paleontologists as a significant driver of

observed patterns in deep time and, more broadly, of our under-

standing of the fossil record.34,42–49 Changes in the underlying

sampling universe between time intervals, including the spatial

extent of available data and the environments and preservational

conditions associated with those data, leave the resulting record

incomplete and significantly impact our ability to accurately infer

a wide range of macroevolutionary patterns and processes.50

These issues have been suggested to particularly impact the

North American dinosaur record prior to the K/Pg extinction.

Chiarenza et al.18 hypothesized that the formation of the proto-

Rocky Mountains and subsequent retreat of the Western Interior

Seaway (WIS) in the Maastrichtian led to environmental and

geological conditions that were simultaneously geographically

restricted and less conducive for dinosaur preservation. Distinct

northern and southern peaks in sampling intensity have been

highlighted for the Campanian, whereas the Maastrichtian ex-

hibits a more latitudinally constrained band of sampling18,24;

these peaks emanate from geological formations with high pres-

ervation quality (including the Dinosaur Park Formation in Al-

berta, Canada) acting as hotspots of fossil recovery.18,51 Under

this scenario, reduced sediment fluxes and accommodation

space in the Maastrichtian also caused the progressive loss of

regions suitable for fossil preservation, such as coastlines and

inner shelf areas, reducing the burial potential and enhancing

the exhumation of newly accumulated sedimentary packages.18

This geographic and taphonomic restriction of the available

sampling window suggests that dinosaur preservation and sub-

sequent detection were comparatively reduced in theMaastrich-

tian record compared with the Campanian, which has potentially

skewed interpretations of dinosaur diversity dynamics.16

The impacts of this heterogeneous sampling are most evident

within studies using either occurrence-based10 or phyloge-

netic5–7,15 approaches to reconstructing diversification histories

for dinosaurs, which have reported variable outcomes as to

whether dinosaurs appeared to be in short-term10 or long-

term5 decline or were thriving until the end of the Cretaceous.6

Allen et al.15 showed that this variability of outcomes is partially

driven by assumptions made about sampling within the latest

Cretaceous: models assuming a relationship between species

richness dynamics and sampling frequency reported an increase

in diversification rates, whereas ones that assumed no relation-

ship reported an overall decline.15 It is therefore clear that at-

tempts to reconstruct the macroevolutionary patterns of North

American dinosaurs in the lead-up to the K/Pg boundary are hin-

dered without first understanding changes in the spatiotemporal

sampling of the fossil record.29 Accurately estimating sampling
1974 Current Biology 35, 1973–1988, May 5, 2025
variation through time52,53 and clarifying the structure of the lat-

est Cretaceous fossil record are critical to discern the relative

impact of sampling on our understanding of past life and, ulti-

mately, for resolving outstanding questions regarding dinosaur

macroevolution prior to their extinction.

Occupancy modeling, a hierarchical modeling approach

developed for population ecology and conservation, presents a

way to understand the structure of the fossil record by estimating

the detection probability of taxa through time while explicitly

incorporating their spatial distribution and data absence.54,55

This methodology provides the probability that a taxonomic

unit (e.g., a species) occupies a set of geospatial locations

(=sites), while simultaneously estimating and accounting for

imperfect detection of that taxon. Repeated attempts at

observing the taxonomic unit at these geospatial locations

(=visits) generate detection histories (i.e., how many times the

species has been detected or not detected). When integrated

within the occupancy modeling framework, these detection his-

tories provide independent estimates for the overall probability

of occupancy at those sites, as well as the probability that the

taxon is detected at those sites.55 Including covariates within

both subsections of the model can additionally reveal the factors

driving both the occupancy and detection probability for that

taxon. Occupancy modeling shares some similarity with cap-

ture-mark-recapture approaches,56 which have been applied

to the fossil record (e.g., Schachat et al.57), but is explicitly spatial

in nature, capturing an additional key element of bias for paleon-

tological studies.32 Although occupancy is an established metric

in palaeontology,58–60 and the potential for occupancy modeling

to address paleobiologic questions has been highlighted by

ecologists given its unique ability to directly infer the dominant

drivers on our detection of fauna in deep time,55 it has only

been sparingly applied to data from the fossil record.61–65 Recent

advances in occupancy modeling have also enabled a wider

range of occurrence-record datasets to be analyzed, including

citizen science66 and historical/collections-based data.67–70

These datasets closely mirror records obtained from large

occurrence-based paleontological datasets that are opportunis-

tically collected and lack a standardized data collection method-

ology. Occupancy modeling therefore represents a relevant and

flexible approach for quantifying variations in sampling probabil-

ity through time and the causes of apparent data absences in the

fossil record.

Here, we use variants of Bayesian occupancy models to eval-

uate the structure of the latest Cretaceous dinosaur fossil record.

By establishing estimates of occupancy and detection probabil-

ity across North America for four major clades (Ankylosauridae,

Hadrosauridae, Ceratopsidae, and Tyrannosauridae), these

models reveal how our ability to detect dinosaurs changed

throughout the latest Cretaceous and allow us to test the hypoth-

esis that detection probability decreased prior to the K/Pg mass

extinction due to environmental changes and shifts in spatiotem-

poral sampling. First, we compare estimates of occupancy and

detection probabilities produced from our models against naive

occupancy (i.e., the raw proportion of occupied sites versus total

available sites) through time to establish differences between

perceived and modeled patterns in the Campanian and Maas-

trichtian (Figure 1B) across four main time bins (Table S4). Sec-

ond, we run occupancy models that directly incorporate



Figure 1. Occupancy modeling process

and potential hypotheses

(A) Schematic describing the process for carrying

out occupancy modeling on paleontological data

from the Paleobiology Database (PBDB). The map

shows dinosaur collections grouped into 1� 3 1�

resolution grid cells, designated as ‘‘sites.’’ Within

each site are collections containing fossil occur-

rences (‘‘visits’’ under the occupancy framework).

Collections containing the taxon of choice (blue

boxes and dots) have a detection history of ‘‘1,’’

noting that the taxon has been detected. Collec-

tions without the taxon of choice (gray box and

dot) have a detection history of ‘‘0,’’ noting that the

taxon is undetected. Detection histories for all

collections within a site are then tallied and used

within the occupancy modeling framework.

(B) Schematic showing possible scenarios for

occupancy and detection patterns prior to the

Cretaceous/Paleogene (K/Pg) boundary. Naive

occupancy of hadrosaurids (left) is shown to

decrease throughout the latest Cretaceous. Sce-

nario 1 (S1) shows occupancy probability

decreasing, matching naive occupancy, and

suggesting occupancy genuinely did decrease

prior to the K/Pg boundary. Scenario 2 (S2) shows

occupancy remaining stable and detection prob-

ability decreasing, suggesting that detection

probability is driving observed occupancy pat-

terns. Hadrosauridae silhouette produced by

Matthew Dempsey, 2020, CC BY 3.0.
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spatiotemporally explicit anthropogenic, geologic, and environ-

mental covariates—including paleoclimatic model data, virtual

taphofacies,18 and present-day environmental and geographic

data—to establish the main drivers impacting the detection of

dinosaur fossil material across the latest Cretaceous. In assess-

ing the structure and quality of the latest Cretaceous dinosaur

fossil record under a unified framework, we endeavor to under-

stand the processes that lead to the observed fossil record

and which, in turn, influence our understanding of broadscale

macroevolutionary patterns.

RESULTS

Patterns in dinosaur families prior to the K/Pg mass
extinction
Our results show that dinosaur families that exhibit a decline in

naive occupancy (the raw proportion of sites occupied by a

taxon) through time do not report convergent patterns in mean

occupancy probability estimates (Figures 2 and 3). Ankylosauri-

dae, Hadrosauridae, and Tyrannosauridae show an overall

decline in naive occupancy through the latest Cretaceous be-

tween the first and last time bins (�8%,�9%, and�7%, respec-

tively, at 0.5� resolution; Figure 2, top row), although Hadrosaur-

idae and Tyrannosauridae show a slight increase directly before

the K/Pg boundary. By contrast, occupancy models optimized

for opportunistically collected biological recording data

(‘‘sparta’’ models; see ‘‘occupancy modeling’’ section of STAR

Methods for full details) show an overall increase for both clades

in mean occupancy probability through time (�13%, �3%,
and �9%, respectively, at 0.5� resolution, comparing first and

last bins; Figure 2, bottom row). Ceratopsidae shows an increase

in both naive occupancy (�30% at 0.5� resolution) and occu-

pancy probability (�9% at 0.5� resolution) between the first

and last bins, with overall trajectories that match one another

(Figure 2). Naive occupancy also severely underestimates occu-

pancy probability, with large average differences between naive

and probabilistic estimates for all clades (Ankylosauridae�56%,

Hadrosauridae �39%, Ceratopsidae �48%, and Tyrannosauri-

dae �59%; all at 0.5� resolution).
Conversely, we find a stronger relationship between naive oc-

cupancy and trends in mean detection probability through time

for clades in which naive occupancy decreases throughout the

latest Cretaceous. Detection probabilities of Ankylosauridae,

Hadrosauridae, and Tyrannosauridae show an overall decline to-

ward the end-Cretaceous (�5%, �20%, and �10%, respec-

tively, at 0.5� resolution, comparing first and last bins at list

length [LL] 4; Figure 2, bottom row), with Ankylosauridae and Ha-

drosauridae showing the largest decline prior to the K/Pg bound-

ary, although Tyrannosauridae exhibit their largest overall

decrease in the late Campanian. By contrast, detection probabil-

ity for Ceratopsidae trends to an end-Maastrichtian peak (�4%

overall average increase; Figure 2), while exhibiting a similar

late Campanian low as Tyrannosauridae. Broadly similar trends

in detection probability are also observed in results based on

the best-fitting models of our multi-season (through time)

spatially explicit occupancy models (‘‘spOccupancy’’ models;

see ‘‘occupancy modeling’’ section of STARMethods for full de-

tails). However, detection probability for Tyrannosauridae shows
Current Biology 35, 1973–1988, May 5, 2025 1975



Figure 2. Naive occupancy and results from sparta models

Naive occupancy, as well as occupancy and detection probability estimates throughout the latest Cretaceous for dinosaur clades, presented at both 0.5� 3 0.5�

and 1� 3 1� spatial resolution. Top row: naive occupancy estimate with associated trendline. Bottom: sparta estimated occupancy and detection probabilities,

including trendline for occupancy probability. LL, list length (the number of genera within a collection); LL1, a single genus within a collection; LL2, 2–3 genera

within a collection; LL4, 4+ genera within a collection. Shaded grey areas on the top and bottom rows represent the 95% confidence interval for trend lines.

Colored shaded areas on the bottom row indicate BCIs (95%) for occupancy and detection probability. Ankylosauridae silhouette produced by Andrew Farke,

2013, CC BY 3.0; Hadrosauridae and Tyrannosauridae silhouettes produced by Matthew Dempsey, 2020, CC BY 3.0; Ceratopsidae silhouette produced by Ivan

Iofrida, 2024, CC BY 4.0.

See also Figures S1–S4 and S6 and Table S7.
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a flat trajectory through time and Ankylosauridae shows both in-

creases and decreases in detection probability prior to the K/Pg,

depending on spatial resolution and the maximum number of

visits (collections) used in the model (Figure 3) (see STAR

Methods and Table S3 for further information).

These patterns in detection probability also remain broadly

consistent at differing temporal (four time bins; six time bins)

and spatial (0.5� 3 0.5�; 1� 3 1�) resolutions, and at different

numbers of total visits (collections) per site (10 or 40) when using

spatially explicit occupancy models (Figures 2, 3, and S1–S3).

Overlapping 95% Bayesian credible intervals (BCIs) and similar

trendlines indicate that varying spatiotemporal resolution does

not substantially impact results for either occupancy or detection

probability for any of the four clades in sparta models

(Figures S1–S3) or detection probability for spOccupancy

models (Figure 3). The 95% BCI also indicates that spatiotem-

poral resolution has a limited impact on precision, with lower

spatial and temporal resolutions only showing a slight reduction

in BCI width. Bayesian p values produced from posterior predic-

tive checks also indicated adequate model fit across families,

temporal binning scheme, spatial resolutions, and model types,

except for Hadrosauridae at 0.5� 3 0.5� resolution for formation

bins (six time bins) using the sparta model, as well as Ankylo-

sauridae at 0.5� 3 0.5� resolution with maximum visits capped

at 40 during the first time bin, Ceratopsidae at 1� 3 1� with
1976 Current Biology 35, 1973–1988, May 5, 2025
maximum visits capped at 40 during the second time bin, and

Tyrannosauridae at 1� 3 1� with maximum visits capped at 40

during the final time bin of the Maastrichtian, all using the spOc-

cupancy model.

The geospatial arrangement of sampling can be more clearly

examined within geographic projections of detection probability

for dinosaur families produced from best-fitting models of our

multi-season spatially explicit models (Figure 4). Projections

show heightened detection probability that matches previously

recognized hotspots of fossil recovery for certain clades and

time intervals.18,19,24 Detection probability is high within south-

ern Alberta, Canada, and Montana, USA, (�45�–55� latitude)

during the Campanian for Hadrosauridae and throughout the

available rock outcrop of the eastern WIB in the end-Maastrich-

tian for Ceratopsidae. Ankylosauridae and Tyrannosauridae

show no clear hotspots of increased detection probability across

any time interval, aside from isolated grid cells.

Our results also highlight clear differences between dinosaur

lineages. Under both modeling approaches, the average detec-

tion probability across all four time intervals is highest overall for

Hadrosauridae and lowest for Ankylosauridae (Figures 2 and 3).

Patterns can also be observed in detection LL, a measure of the

number of genera within sampled collections (Figure 2). A LL of

four or greater (LL4; >3 genera within a collection) consistently

shows the highest probability of detection, with a LL of 1 (a single



Figure 3. Detection probability from spOccupancy models

Detection probability for dinosaur clades throughout the latest Cretaceous generated from best-fitting models of multi-season spatially explicit Bayesian models

run using spOccupancy, presented at both 0.5� 3 0.5� and 1� 3 1� spatial resolution (top categories) and with the maximum number of visits capped at 10 and 40

(right-hand side categories). Shaded areas represent BCIs (95%). Ankylosauridae silhouette produced by Andrew Farke, 2013, CC BY 3.0; Hadrosauridae and

Tyrannosauridae silhouettes produced by Matthew Dempsey, 2020, CC BY 3.0; Ceratopsidae silhouette produced by Ivan Iofrida, 2024, CC BY 4.0.

See also Figure S6 and Table S8.
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genus within a collection) showing the lowest. There is only a

small difference in mean detection probability between LLs of

1 and 2 (2–3 genera within a collection) for Ankylosauridae, Ce-

ratopsidae, and Tyrannosauridae, with LL4 showing a distinctly

higher score (Figure 2). Hadrosauridae detection probability

shows more even differences between varying LLs (Figure S4).

Drivers of occupancy and detection
Several covariates representing geologic and geographic fac-

tors have statistically significant effects on the detection proba-

bility of dinosaur families within multi-season occupancy models

(Figures 5 and 6; Table 1; full results reported in Table S1).

Increased area of geological outcrop per grid cell impacts a total

of three clades, showing a positive effect on detection probabil-

ity at a variety of resolutions when visits to sites were capped at a

maximum of 40 (at 0.5� resolution: Ceratopsidae: b = 0.24, 95%

BCI = 0.061–0.417; Hadrosauridae: b = 0.288, 95%BCI = 0.141–

0.433; at 1� resolution: Ankylosauridae: b = 0.262, 95% BCI =

0.001– 0.528). Land cover also appears in the best-fittingmodels

of these three clades, showing a significant negative effect on

Ankylosauridae detection within present-day open terrain (10

max. visits, 0.5�: b = �0.989; 95% BCI = �1.757 to �0.258; 1�:
b = �1.303, BCI = �2.252 to �0.371), a significant negative ef-

fect for detection of Ceratopsidae in present-day forested terrain

(0.5�, 10 max. visits: b = �1.314; 95% BCI = �2.391 to �0.325;

40 max. visits: b = �1.289; 95% BCI = �2.444 to �0.234), and a

significant positive effect for detection of Hadrosauridae in
present-day forested terrain (1�, 10 max. visits: b = 0.742; 95%

BCI = 0.022–1.482). Time bin categories appear as a covariate

in the best-fitting models of Ankylosauridae, Ceratopsidae, and

Hadrosauridae, suggesting that detection probability signifi-

cantly changes between temporal intervals. Covariate b esti-

mates show similar patterns to the broader detection probabili-

ties previously observed with the sparta model; Ankylosauridae

and Hadrosauridae show increasingly reduced detection proba-

bility in later bins (e.g., Ankylosauridae, 0.5�, 10 max. visits: bin 4

[66.7 Ma]: b =�1.694; 95%BCI =�2.785 to�0.593; Hadrosaur-

idae, 0.5�, 40 max. visits: b = �0.849, 95% BCI = �1.34 to

�0.36), whereas Ceratopsidae show the opposite (e.g., 0.5�,
40 max. visits, bin 4 [66 Ma]: b = 1.006; 95% BCI = 0.366–

1.632). Higher modern rainfall negatively impacts the detection

of Ankylosauridae and Hadrosauridae at 1� resolution when the

maximum number of visits is capped at 10 (Ankylosauridae:

b = �0.694; 95% BCI = �1.574 to �0.02; Hadrosauridae:

b = �0.299; 95% BCI = �0.566 to �0.053). Increased distance

from roads positively impacts the detection of Ceratopsidae

within models using 40 maximum visits (0.5�: b = 0.196; 95%

BCI = 0.032 to 0.364; 1�: b = 0.221; 95% BCI = 0.074–0.378),

whereas increased sediment flux shows a negative impact

on their detection probability at 0.5� resolution (10 max. visits:

b = �0.441; 95% BCI = �0.734 to �0.146; 40 max. visits:

b = �0.461; 95% BCI = �0.787 to �0.142). The number of total

collections and maximum green vegetation fraction are present

in the best-fitting models of several families, but none have a
Current Biology 35, 1973–1988, May 5, 2025 1977



Figure 4. Spatial and temporal maps of detection probability

Maps showing average detection probability of dinosaur clades at a given site through time in North America, generated from best-fitting models of multi-season

spatially explicit Bayesian models run using spOccupancy at 1� 3 1� resolution and with the maximum number of visits capped at 40. Dark gray areas represent

geological outcrop for the respective time bin. Ankylosauridae silhouette produced by Andrew Farke, 2013, CC BY 3.0; Hadrosauridae and Tyrannosauridae

silhouettes produced by Matthew Dempsey, 2020, CC BY 3.0; Ceratopsidae silhouette produced by Ivan Iofrida, 2024, CC BY 4.0.

See also Figure S5 and Table S8.
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significant effect. Several other non-significant covariates ap-

pearing in best-fittingmodels havemoderate support for impact-

ing detection probability due to BCI values overlapping 0 by a

marginal amount and a high probability of the effect being

greater than 0 (Ankylosauridae: distance from roads [0.5�, 10
max. visits], outcrop area [0.5�, 40 max. visits; 1�, 10 max. visits];

Ceratopsidae: time bins [0.5�, 10 max. visits; 1�, 10 and 40 max.

visits]; Hadrosauridae: other land cover [1�, 10 max. visits]; see

Table S2 for complete list). Additionally, all best-fitting models

across clades feature the inclusion of a random effect varying

by site, indicating unmodeled heterogeneity in detection proba-

bility across space (removal of this introduces goodness-of-fit
1978 Current Biology 35, 1973–1988, May 5, 2025
issues to the models) (Figure S5). It should also be noted that Ty-

rannosauridae report no statistically significant covariates in any

of their best-fitting models and low probability of any effect size

being greater than 0. Results are broadly consistent between

different maximum numbers of visits, with magnitude and direc-

tion of covariate effects appearing similar (Figures 5 and 6).

For occupancy covariates, Ankylosauridae occupancy is signif-

icantly negatively affected by mean temperature of the hottest

quarter (0.5�, 10 max. visits: b = �2.502; 95% BCI = �4.499 to

�0.428). Ceratopsidae occupancy is negatively affected by

mean precipitation of the driest quarter at both spatial resolutions

and numbers of maximum visits (10 max. visits, 0.5�: b = �1.24;



Figure 5. Occupancy and detection covariates for multi-season models (spOccupancy), maximum visits capped at 40

Forest plots of covariate beta estimates and associated BCIs (95%) from best-fitting models of multi-season spatially explicit Bayesian models run using

spOccupancy at both 0.5� 3 0.5� and 1� 3 1� resolution, with maximum visits capped at 40. Covariates with solid fill indicate statistically significant results (BCIs

do not cross 0). Left-hand side shows detection covariates, whereas the right-hand side reports occupancy covariates. Distance: distance to nearest road for

each collection in the model. Land cover (2): open terrain. Land cover (3): forested terrain. Land cover (4): other. MGVF, maximum green vegetation fraction; REV,

random effect variance. Ankylosauridae silhouette produced by Andrew Farke, 2013, CC BY 3.0; Hadrosauridae and Tyrannosauridae silhouettes produced by

Matthew Dempsey, 2020, CC BY 3.0; Ceratopsidae silhouette produced by Ivan Iofrida, 2024, CC BY 4.0.

See also Figures S5 and S6 and Tables S1, S2, and S8.
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95% BCI =�2.315 to�0.074. 1�: b =�1.684; 95%BCI =�3.177

to�0.438; 40 max. visits, 0.5�: b = �1.454; 95% BCI = �2.653 to

�0.149, 1�: b =�2.013; 95% BCI =�3.431 to�0.671), as well as

annual mean temperature standard deviation at 1� resolution and

10 maximum visits (b = 1.668; 95% BCI = 0.079–3.315). Hadro-

sauridae occupancy is positively affected by mean annual tem-

perature standard deviation (1�, 40 max. visits: b = 1.718; 95%

BCI = 0.139–3.331). Only marginally significant coefficients are

observed for Tyrannosauridae (negative effect; mean temperature

of the hottest quarter).

DISCUSSION

Our results indicate that apparent declines in naive occupancy of

dinosaur clades observed in the North American fossil record are

a consequence of overall decreased detection probability in the
Maastrichtian rather than genuine reductions in occupancy, indi-

cating that mean occupancy probability either increased or re-

mained stable up to the K/Pg boundary (Figures 2 and 3; sup-

porting Figure 1B scenario 2). It is therefore our ability to

detect dinosaur occurrences that appears to be the dominant

control on their observable spatiotemporal distribution, rather

than this reflecting a true biological signal. This provides evi-

dence of the hypothesized shift in available samplingwindowbe-

tween the Campanian and Maastrichtian,18 indicating that our

understanding of Maastrichtian dinosaurs is inhibited by the

geological record. This finding is supported by examining the

drivers of detection probability of dinosaur families through

geological time. Although a variety of covariates contribute to

driving patterns of dinosaur detection probability, increased

outcrop area most consistently appears as a statistically signifi-

cant driver across clades (Figures 5 and 6), and, when it is
Current Biology 35, 1973–1988, May 5, 2025 1979



Figure 6. Occupancy and detection covariates for multi-season models (spOccupancy), maximum visits capped at 10

Forest plots of covariate beta estimates and associated BCIs (95%) from best-fitting models of multi-season spatially explicit Bayesian models run using

spOccupancy at both 0.5� 3 0.5� and 1� 3 1� resolution, with maximum visits capped at 10. Covariates with solid fill indicate statistically significant results (BCIs

do not cross 0). Left-hand side shows detection covariates, whereas the right-hand side reports occupancy covariates. Distance: distance to nearest road for

each collection in the model. Land cover (2): open terrain. Land cover (3): forested terrain. Land cover (4): other. MGVF, maximum green vegetation fraction; REV,

random effect variance. Ankylosauridae silhouette produced by Andrew Farke, 2013, CC BY 3.0; Hadrosauridae and Tyrannosauridae silhouettes produced by

Matthew Dempsey, 2020, CC BY 3.0; Ceratopsidae silhouette produced by Ivan Iofrida, 2024, CC BY 4.0.

See also Figures S5 and S6 and Tables S1, S2, and S8.
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missing from the best-fitting model, it consistently appears as a

covariate in at least one of the top three models with the lowest

widely applicable information criterion (WAIC) (see supplemental

information, results folder). Geological outcrop area in North

America has been reported to show a close relationship with

dinosaur diversity through time,18,71 but previous studies have

failed to find a direct impact of outcrop on the spatial distribution

of dinosaurs within the WIB.24 By intrinsically incorporating

spatial sampling heterogeneity, our models suggest that outcrop

availability has a direct and statistically significant impact on the

sampling of North American dinosaurs prior to their extinction.

As counts of sampling proxies (e.g., the number of collections

or the number of dinosaur-bearing formations) are approximately

equally high during the Campanian and the Maastrichtian, the

North American fossil record has been viewed as containing a
1980 Current Biology 35, 1973–1988, May 5, 2025
relatively accurate reflection of dinosaur dynamics in the lead-

up to the K/Pg boundary.72 Similarly, Condamine et al.10 found

that estimates of mean preservation rates of dinosaur occur-

rences calculated using PyRate showed an increase between

the Campanian and theMaastrichtian, implying that the fossil re-

cord could likely be fairly compared between the two time inter-

vals. However, our results indicate that the intensity of sampling

is not a dominant control on the detection of dinosaur clades

within the latest Cretaceous. The probability of detecting an

occurrence of the four clades in the present work does not follow

the trajectory of previous studies; only Ceratopsidae shows an

unambiguous increase in detection probability through the latest

Cretaceous (Figures 2 and 3), likely due to the relative overabun-

dance of the taxon Triceratops in the Lancian. Despite including

the number of collections as a potential covariate during model



Table 1. Best-fitting occupancy models for multi-season models

Res. Max. value Target Occupancy formula Detection formula elpd pD WsAIC

0.5 10 Ankylosauridae hot land cover (2) + land cover

(3) + land cover

(4) + distance + bin 2

(75 Ma) + bin 3 (69 Ma) +

bin 4 (66.7 Ma)

�181.78 19.39 402.33

0.5 10 Ceratopsidae wet + dry + hot sediment flux + land cover

(2) + land cover (3) + land cover

(4) + bin 2 (75 Ma) + bin 3

(69 Ma) + bin 4 (66.7 Ma)

�466.42 47.35 1,027.55

0.5 10 Hadrosauridae wet + Ann. bin 2 (75 Ma) + bin 3 (69 Ma) +

bin 4 (66.7 Ma)

�581.02 42.91 1,247.87

0.5 10 Tyrannosauridae hot collections �344.46 37.39 763.69

1 10 Ankylosauridae �1 outcrop area + rainfall +

land cover (2) + land cover

(3) + land cover (4)

�143.70 14.16 315.71

1 10 Ceratopsidae dry + hot + Ann bin 2 (75 Ma) + bin 3 (69 Ma) +

bin 4 (66.7 Ma)

�364.51 33.99 797.00

1 10 Hadrosauridae wet + hot rainfall + land cover (2) +

land cover (3) + land cover

(4) + bin 2 (75 Ma) + bin 3 (69 Ma) +

bin 4 (66.7 Ma)

�444.52 40.05 969.15

1 10 Tyrannosauridae Ann. �1 �279.11 18.95 596.11

0.5 40 Ankylosauridae hot outcrop area + sediment

flux + collections

�293.32 23.00 632.63

0.5 40 Ceratopsidae wet + dry + hot outcrop area + sediment flux +

MGVF + rainfall + land cover

(2) + land cover (3) + land cover

(4) + distance + bin 2 (75 Ma) +

bin 3 (69 Ma) + bin 4 (66.7 Ma)

�838.19 57.45 1,791.28

0.5 40 Hadrosauridae Ann. outcrop area + bin 2 (75 Ma) +

bin 3 (69 Ma) + bin 4 (66.7 Ma)

�989.25 62.65 2,103.79

0.5 40 Tyrannosauridae �1 rainfall + collections �603.87 49.86 1,307.46

1 40 Ankylosauridae hot outcrop area + sediment flux �265.86 21.23 574.18

1 40 Ceratopsidae dry + hot + Ann. MGVF + distance + bin 2 (75 Ma) +

bin 3 (69 Ma) + bin 4 (66.7 Ma)

�706.82 43.98 1,501.59

1 40 Hadrosauridae Ann. bin 2 (75 Ma) + bin 3 (69 Ma) +

bin 4 (66.7 Ma)

�835.15 46.18 1,762.66

1 40 Tyrannosauridae hot rainfall �515.15 38.72 1,107.73

Table showing the best-fittingmodels for each clade, at each spatial resolution andmaximumnumber of visits, for multi-season occupancymodels run

using spOccupancy. Res., resolution; Max. value, maximum number of collections used for each site; elpd, expected log point-wise predictive density;

pD, effective number of parameters; WAIC, widely applicable information criterion; Ann., mean annual temperature standard deviation; land cover (2),

open terrain; land cover (3), forested terrain; land cover (4), other; MGVF, maximum green vegetation fraction. See Tables S1, S2, and S8.
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selection, this variable fails to appear as a statistically significant

component of any best-fitting model (Figures 5 and 6). Further-

more, models run using a cap of 10 versus 40 maximum visits

(i.e., collections herein) per site show no significant difference in

the trajectory of detection probability through time or in the

magnitude of covariates within the best-fitting models for all

clades. Capping the maximum number of visits per site within

the occupancy modeling framework aims to reduce the possibil-

ity of preferential sampling at specific locations having an impact

on the estimated values of detection covariates73 (e.g., a site with

80 visits will have a comparatively larger impact on the estimated

values of detection covariates than sites with only 2 or 3 visits).
Broad consistency across our results therefore indicates that

sites with particularly high numbers of collections are not signifi-

cantly impacting estimates of detection probability. It is therefore

the spatial arrangement of data that is primarily driving estimates

of detection probability through time, supporting the hypothesis

that changes in the spatiotemporal sampling window have

impacted the detectability and recovery of dinosaur cladeswithin

theMaastrichtian. Combined, these factors show that it is not just

the intensity of sampling (e.g., the total number of fossiliferous

collections) that impacts our understanding of past macroeco-

logical patterns but also the physical constraints that the geolog-

ical record imposes on that sample.
Current Biology 35, 1973–1988, May 5, 2025 1981
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These results have knock-on implications for the ongoing

debate on whether non-avian dinosaurs were in decline prior

to their extinction at the K/Pg boundary. Allen et al.15 found

that assumptions regarding sampling strongly impacted esti-

mates of diversification rates when using phylodynamic models

and concluded that accurately modeling sampling biases is key

to resolving this issue. Our results align with Allen et al.15 in sug-

gesting that the discrepancy of sampling within the latest Creta-

ceous intrinsically hinders efforts to establish whether non-avian

dinosaurs were in decline. It is possible that overall poor detec-

tion probability could reduce the number of species we are able

to sample from theMaastrichtian, particularly for Hadrosauridae,

and thus deflate overall diversity estimates for these clades dur-

ing this interval; but, given that our estimates are taken at the

family level and do not directly estimate species richness, this

is not something our study has the power to resolve. However,

quantifying detection probability through time fulfills the goal of

more accurately modeling sampling biases and can facilitate

other approaches to produce realistic estimates of diversity

within the latest Cretaceous. DeepDive, a new diversity estima-

tion approach, uses a combination of mechanistic simulations

and deep learning to infer species richness while accounting

for spatial, temporal, and taxonomic variation in sampling.74

This approach requires inputs regarding the likelihood of clades

being sampled through both space and time74; estimates of

detectability included here could help inform such studies,

providing realistic estimates and associated confidence intervals

for the sampling of specific clades.

Our work also clarifies arguments about the distribution of di-

nosaurs within the Maastrichtian. Applying ecological niche

modeling, Chiarenza et al.18 reported consistent habitat suit-

ability for dinosaurs in North America throughout the latest

Cretaceous, suggesting that long-term climatic shifts did not in-

fluence their extinction. However, ecological niche modeling, by

definition, only identifies the potential areas that a taxon may

inhabit rather than their genuine biogeographic occupancy.75

As such, although suitable habitat area may have remained sta-

ble—or even shown a Campanian-to-Maastrichtian increase—it

has been argued that these areasmay not necessarily have been

inhabited by high numbers of dinosaur taxa due to historical,

biogeographic, or biotic constraints.75 By accounting for imper-

fect detection, we show that the mean occupancy probability of

North American dinosaurs remained stable up until the K/Pg

boundary, broadly tracking the available suitable habitat area

for these clades.18 Furthermore, occupancy—and, more

broadly, geographical distribution—is widely regarded as a

strong predictor of extinction risk within both modern and

ancient ecosystems, with low geographic occupancy resulting

in higher rates of extinction.60,76–79 Stable or increasing occu-

pancy trajectories for the dinosaur families studied here suggest

that populations were widespread and successful throughout

the latest Cretaceous, at least in North America, and therefore

unlikely to be at direct risk of extinction due to a restricted range

prior to bolide impact at the K/Pg boundary. Changes in detect-

ability through time also provide additional context for the inter-

pretation of macroevolutionary patterns. It is possible that

reduced detectability for Hadrosauridae in the Maastrichtian

could impact our ability to discover new species for this clade,

resulting in reduced apparent diversity prior to the K/Pg
1982 Current Biology 35, 1973–1988, May 5, 2025
boundary. Conversely, detection probability of Ceratopsidae in-

creases toward the end-Maastrichtian, despite the clade experi-

encing the strongest overall diversification decline out of the ma-

jor dinosaur clades in the study of Condamine et al.,10 which

might be interpreted as support for genuinely lower ceratopsid

diversity at the end-Cretaceous. Although our results do not

directly address changes in diversity, the combination of agents

discussed above indicates that the North American fossil record

of dinosaurs in the Maastrichtian is negatively influenced by

sampling biases, and, thus, diversity of the clade is potentially

higher than has been previously estimated.28 However, it should

also be noted that these findings can only be considered confi-

dently in light of the North American fossil record and global pat-

terns are likely to be regionally heterogeneous.47

Although our results allow for interpretation of the relative

importance of associated covariates, other underlying drivers

for changes in sampling between the Campanian andMaastrich-

tian18 are less clear. Clades exhibiting simultaneous declines in

detection probability show no common explanatory environ-

mental drivers. Furthermore, removing occurrences of small-

bodied taxa (Mammalia, Squamata, and Amphibia) produced

no significant variation in results (Figure S6), indicating that an

increased proportion of vertebrate microsites within the Maas-

trichtian is having no impact on large-bodied taxa showing

reduced detection probability prior to the K/Pg boundary. How-

ever, all models report relatively high values for random effects

varying by site and show poor goodness-of-fit without their in-

clusion, indicating a degree of unmodeled heterogeneity in

detection probability across space that is not accounted for by

present model covariates (Figures 5 and 6; Figure S5). Heteroge-

neity in detection probability often occurs in occupancy models

because of substantial variation in the abundance of the target

taxon between sites due to the increased probability of detecting

the taxon when there are more individuals to detect.80 As such,

there is a possibility that this unmodeled heterogeneity in detec-

tion probability is a result of local variation in fossil preservation

rate between sites. Although we chose a wide range of covari-

ates to cover potential sources of bias, themajority are regionally

scaled and attributed to sites (grid cells), rather than visits (col-

lections), within the occupancy framework, which by necessity

have relatively coarse spatial resolutions andmay be an abstrac-

tion from the intended sampling impacts. This is an indication

that geological factors at the locality or collection level are likely

to exert a strong additional control on preservation rate and sub-

sequently fossil recovery that is not covered by these more

regional proxies. These results show that the detectability of or-

ganisms in deep time is complex, withmultiple drivers at both the

local and continental scales. Future efforts to evaluate spatial

biases in the fossil record should aim to incorporate collec-

tions-level geological information alongside regional environ-

mental datasets.

The differences in detection probability trajectories between

families may indicate other taphonomic processes that control

our understanding of North American dinosaurs. Hadrosauridae

and Ceratopsidae show opposing trajectories of detection prob-

ability during the Maastrichtian, despite being megaherbivorous

lineages with similar preservation potentials.81,82 This difference

may reflect habitat preference; several authors have shown that

Ceratopsidae and Hadrosauridae show differential associations
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with specific lithologies and environments within the Creta-

ceous. Lyson and Longrich83 showed preferential preservation

of Ceratopsidae and Hadrosauridae within mudstones and

sandstones, respectively, in the Maastrichtian of North America,

which they inferred to be spatial niche partitioning between

floodplain and fluvial environments (although see Mallon84).

Similarly, Butler and Barrett85 found statistical support for Ha-

drosauridae to be associated with marine sediments and mar-

ginocephalians with terrestrial deposits. Contrast in detection

probability trajectory could therefore represent a change in the

broadscale proportion of exposed sandstones to mudstones

during the Maastrichtian, potentially as a result of the retreat of

the WIS and combined reduced sediment fluxes and enhanced

erosivity.18 This is also potentially supported by Ceratopsidae

detection probability showing a negative impact from increased

sediment flux at 0.5� 3 0.5� resolution (Figures 5 and 6), which is

not seen in Hadrosauridae. Hadrosauridae also shows the high-

est overall detection probability, as well as proportionally

increased detection in collections, with fewer genera compared

with the other lineages examined (Figures 2 and S4). This could

be an indication of high abundance of hadrosaurids within latest

Cretaceous ecosystems and/or that their remains are more

easily identifiable and recoverable than those of Ceratopsidae

and Tyrannosauridae. Detection probability is low within all

model results for Ankylosauridae and Tyrannosauridae, which

is likely due to data quality; these clades have the lowest number

of occurrences out of the four families examined and low overall

detections within the occupancy model (e.g., out of 1,601 visits

to sites within sparta model, run at 0.5� 3 0.5�, Ankylosauridae
report 108 detections and Tyrannosauridae report 166).

Although occupancy modeling has obvious applicability in pa-

laeontology,61,62,64,65 it is a ‘‘data-hungry’’ technique, and,

thus, consideration should be taken for the study system and

target taxon when applied to other areas of the fossil record. Oc-

cupancy modeling may not be an appropriate technique for

clades and systems where data, both in terms of fossils and co-

variates, are particularly sparse.

Occupancy modeling using paleontological occurrence data

is subject to the same limitations as neontological studies using

similar presence-only datasets to assess trends in occupancy

and detection probability through time. Reducing the spatial

and/or temporal resolution of sparse ecological data to enhance

model performance and precision is common practice in occu-

pancy modeling.69 Our results align with Jönsson et al.,69 indi-

cating that coarsening the spatiotemporal resolution hasminimal

impact on overall occupancy trends or model performance with

sparsely collected data and underscores the suitability of occu-

pancy modeling for opportunistically gathered paleontological

datasets.

Comprehending and constraining the impact of fossil record

biases is crucial for understanding past life, and it is now increas-

ingly seen as a critical step for studies using the fossil record to

provide context and baselines formodern conservation efforts.86

Spatial data absence and sampling heterogeneity have been

singled out as major contributors to fossil record bias, making

them a significant barrier to interrogating macroecological pat-

terns in both deep and shallow time.10,32,34,43,46,48,87 Here, we

show that by providing spatially explicit probabilistic estimates

of both occupation and detection, occupancy modeling
contributes to understanding the complex interplay between

spatial heterogeneity and the underlying structure of the fossil re-

cord. This ability to quantify imperfect detection and recognize

true absence within a spatial framework can facilitate an under-

standing of the ‘‘architecture’’ of the fossil record88—i.e., how

and why fossil record quality changes through both time and

space—which is, in turn, essential for drawing accurate compar-

ison between, and realistic conclusions about, organisms and

events in the deep past. Understanding the probable distribution

of taxa across space while accounting for absent data addition-

ally has potential in the field of conservation paleobiology, which

seeks to establish baselines in species occupancy through

time.86 Comparatively abundant Holocene records89 will also

combat the data-hungry nature of occupancy modeling. Our re-

sults demonstrate that occupancy models can be integrated

with occurrence-based records from large, opportunistically

collected datasets to extract meaningful information from the

relatively sparse vertebrate fossil record.
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R package sparta https://biologicalrecordscentre.github.io/sparta/index.html Version 0.2.19

R package spOccupancy https://cran.r-project.org/web/packages/spOccupancy/index.html Version 0.7.6

R package sf https://cran.r-project.org/web/packages/sf/index.html Version 1.0.17

R package sp https://cran.r-project.org/web/packages/sp/index.html Version 2.1.4

R package raster https://cran.r-project.org/web/packages/raster/index.html Version 3.6.26

R package stars https://cran.r-project.org/web/packages/stars/index.html Version 0.6.5

R package MCMCvis https://cran.r-project.org/web/packages/MCMCvis/index.html Version 0.16.3

R package R2jags https://cran.r-project.org/web/packages/R2jags/index.html Version 0.8.5

R package snowfall https://cran.r-project.org/web/packages/snowfall/index.html Version 1.84.6.3

R package palaeoverse https://palaeoverse.palaeoverse.org/index.html Version 1.3.0

R package deeptime https://cran.r-project.org/web/packages/deeptime/index.html Version 1.1.1

R package rphylopic https://cran.r-project.org/web/packages/rphylopic/index.html Version 1.4.0

R package car https://cran.r-project.org/web/packages/car/index.html Version 3.1.2

R package ggplot2 https://ggplot2.tidyverse.org/ Version 3.5.1

R package rnaturalearth https://cran.r-project.org/web/packages/rnaturalearth/index.html Version 1.0.1
METHOD DETAILS

Occurrence dataset and data preparation
Wedownloaded a comprehensive dataset (>9000) of latest Cretaceous (Campanian–Maastrichtian, 83.6–66million years before pre-

sent [Ma]) North American terrestrial tetrapod fossil occurrences from the Paleobiology Database (PBDB; http://paleobiodb.org) on

12/06/2024. Stratigraphic ageswere checked and standardised within the PBDB based on the recent literature. Occurrenceswithout

an associated stratigraphic formation and allochthonous occurrences were excluded prior to analysis, and ootaxa and ichnotaxa

were also removed due to differences in taphonomic windows for preservation in comparison to body fossils.90 We followed Chiar-

enza et al.18 and focused on occurrences from four abundant and well-distributed clades of non-avian dinosaurs present in the latest

Cretaceous of North America (Ankylosauridae, Ceratopsidae, Hadrosauridae, and Tyrannosauridae) which show relatively ecomor-

phologially comparable traits (e.g. body size, locomotion). Choosing families with abundant fossil material also ensured that there

would be a sufficient number of successful detections of each clade for occupancy modelling to produce viable results. Despite con-

cerns over the use of supra-specific taxonomic ranks within ecological niche modelling approaches,91 families can provide valuable

and informative data onmacroevolutionary patterns at large scales.18,91–93 The finalised dataset consists of 9186 total occurrences of

terrestrial tetrapods from 2414 collections (visits), of which 1959 total occurrences (detections) were of the four targeted families (An-

kylosauridae: 134; Ceratopsidae: 633; Hadrosauridae: 881; Tyrannosauridae: 311), found in 1374 total collections.

Occupancy modelling requires a site by observation matrix, with detection or non-detection of the target taxon being noted for

each observation (e.g. a repeat visit to the site). These records of detection/non-detection per site are known as ‘detection histories’.

To enable the use of palaeontological data in occupancy modelling, we followed the occupancy structure suggested by Liow61 and

adapted by Lawing et al.62 (Figure 1A) which uses palaeontological collections as visits, and the presence or absence of the target

taxon within that collection as a detection or non-detection respectively. Similar approaches using lists of taxa collected at specific

geographic coordinates have also been applied in studies utilising opportunistically collected data, such as for data gathered from
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museum collections.69,70,94,95 For those unfamiliar with occupancy modelling, we have provided a guide to some basic terms in

Table S3. First, we generated raster layers of the North American continent at varying resolutions (see section ‘temporal and spatial

resolution’ below for further information) to use individual grid cells of those layers as specific ‘sites’ within the occupancy modelling

framework. Collections within each grid cell (‘site’) of the raster were treated as replicate ‘visits’ to that ‘site’, with the detection or

non-detection of the targeted taxon within each collection being treated as the observation. ‘Visits’ are not inherently associated

with temporality within the occupancy model framework, and instead can be unique geographic points within a broader ‘site’96.

We opt to use this definition of ‘visits’, also known as the ‘space-for-time substitution’ in other occupancymodelling studies.96 Palae-

ontological collections in the PBDB should represent separate collecting events tied to a specific geological time frame and

geographic location,97 and so fit the criteria for this definition of occupancy modelling ‘visits’. We next had to convert our occur-

rence-based presence-only dataset into a presence/absence dataset suitable for occupancy modelling. To do this, we recorded

whether the target taxon was present (1) or absent (0) within each collection/‘visit’ at each site, which was entered into the site by

observation matrix. Note that using a dataset of all terrestrial tetrapod occurrences meant that we could record presences and ab-

sences of the target taxon in a larger number of ‘sites’ and associated ‘visits’ than if we were to just use a dataset of dinosaur oc-

currences. This approach is common-place when applying occupancy modelling to historic or citizen science data.70 When

completed, each ‘site’ contains a history of detections/non-detections for individual ‘visits’/collections at that ‘site’ (for example,

a site might have a detection history of 101, indicating the target taxon was observed in one collection, not observed in a second

collection, and then observed in a third collection). As we are only focussed on whether the target taxon is present or absent in a

collection/‘visit’, this approach also means that taxonomic identification is only important for the target taxon, and more broadly

for the chosen taxonomic rank of the target taxon. This significantly reduces the risk of taxonomic errors in the underlying dataset

impacting results. Occurrence data from the PBDB were converted into formats suitable for multiple forms of occupancy modelling

using newly devised custom functions in R (available in supplemental information).

Although occupancy models generally become more robust with a greater number of visits to sites (here, total number of collec-

tions per site) and sites do not need equal numbers of visits, datasets with a very large imbalance in the number of visits per site (e.g. a

case where one site may have 80 visits, but all others have a maximum of 3 visits) can end up overemphasising the importance of

highly visited sites when estimating the values of detection covariates, and can introduce potential bias from preferential sampling.73

The distribution of collections per cell in our data is right skewed, and so at all resolutions some cells would contain considerably

more collections than others. Other studies have attempted to counteract the impacts of unequal numbers of visits/collections in

opportunistically collected data by truncating the total number of visits/collections per site to a specific cap (e.g. 62,73). To resolve

this issue for our dataset, we implemented a subsampling approach for visits/collections within occupancy models run with spOc-

cupancy. We identified sites with a total number of visits/collections greater than a chosen maximum value, and then sampled visits

from those sites without replacement to that chosen maximum value. We ran our spOccupancy models using these prepared sets of

data to compare the impacts of this subsampling approach and varying numbers of visits on our results. We used 10 and 40 as the

maximum numbers of visits for thesemodels. These chosen values allow for comparison between a low limit that reduces the impact

of sites containingmany visits/collections but is also likely to show greater variability, versus amoderate limit that will be slightly more

weighted towards sites with many visits/collections but is likely to have reduced overall variability in model results. All data prepa-

ration and modelling approaches were carried out in R version 4.2.2.98

Temporal and spatial resolution
The majority of occurrences from the Campanian–Maastrichtian WIB have been dated to stratigraphic stage level within the PBDB,

which is a lower resolution than intended for use in this study. As such, we expanded on the formation dataset from Dean et al.19 to

more accurately assign temporal ranges to geological formations and their respective occurrences. Doing so reduced the possibility

of assigning occurrences to incorrect time bins. This formation dataset consists of formations from the Late Cretaceous of North

America, with associated maximum and minimum age, potential error of maximum and minimum age, depositional environment, in-

formation on methodology used to constrain ages, location, notes, and references for age constraints. Information was gathered

from the available literature as well as Macrostrat (https://macrostrat.org). Diachronous formations were assigned a single maximum

and minimum temporal limit. The finalised dataset consists of 122 total formations, with 58 from the WIB.

Occurrences were assignedmaximum andminimum ages according to their associated formations. To align with the digital eleva-

tion models (DEMs) and palaeoclimatic data for occupancy models utilising explicit model covariates (described below), we used

time bins based on the time intervals represented by the Scotese DEMs. These consist of four time bins, detailed in Table S4. For

sparta occupancy models which did not require palaeoclimatic covariate data and so were not constrained to using the ‘Scotese’

time bins, we additionally used higher resolution time bins generated using the ‘‘Formation Binning’’ method of Dean et al.19 This

approach uses the top and bottom ages of regional geological formations to assess the most suitable position for drawing interval

boundaries, which produces higher resolution bins than those from the international commission of stratigraphy that are largely

based on marine faunal turnover. It additionally allowed us to test how robust our results were to changes in bin length. We used

a temporal window of 2.5 million years, which generated six unique bins. Details of bin lengths/intervals used within this study are

available within Table S4. Occurrences were assigned to time bins using the ‘majority’ methodology of the bin_time() function

from the R package ‘palaeoverse’ ver. 1.2.1,99 and we removed any formations and associated occurrences that spanned across

3 or more bins to ensure that poorly-resolved occurrence didn’t induce systematic error.
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Occupancymodels require a delicate balance between the number of sites visited versus the number of repeat visits to those sites:

increased number of sites improves precision of occupancy estimates, but failure to conduct repeat surveys results in increased vari-

ance due to uncertainty around imperfect detection.55,100 As the data used in this study were not purposefully collected for occu-

pancy modelling, increasing the number of sites (in this case, increasing the resolution of grid cells which we used to generate

our sites) will actively decrease the number of collections per site. To test for the impact of varying resolutions on model results,

we generated grid cells according to two different resolutions: 0.5 degree and 1 degree (approximately 55.5 x 55.5 km, 111 x

111 km at the equator, respectively). In combination with the varying temporal resolutions, this approach allowed us to compare re-

sults and establish the optimal spatiotemporal resolution necessary for the study area (see ‘occupancy modelling’ section below for

further details). Details on numbers of sites/visits for each model can be found in Table S5.

Model covariates
We selected a total of five variables to use as covariates for occupancy and seven variables for use in the detection parts of the oc-

cupancy model. These variables were chosen as they were expected to be important in shaping the distribution of dinosaur records

across North America. Environmental layers were re-sampled to match the chosen resolution for the detection history data (see

‘spatial’ section above) and cropped to the chosen extent using the R package ‘raster’ ver. 3.6.26.101 Modern environmental variable

layers therefore were at a resolution of 0.5� or 1� and had an extent of 22.5–73�N and -155– -72�E. For present-day layers, covariate
data were extracted per raster grid cell. For palaeogeographic layers where modern grid cells would not align with the positions of

occurrences in deep time, fossil occurrences were palaeogeographically reconstructed using the ‘point’ method with the ‘PALEO-

MAP’ model available within the ‘palaeorotate’ function from the ‘palaeoverse’ package ver. 1.2.1.99 Covariate data were then ex-

tracted at each individual palaeogeographic locality, with the mean taken for all data within the same modern grid cell. Each variable

we assessed was standardised to have a mean of 0 and standard deviation of 1 for each site, ensuring that estimated effect size was

relative to the actual amount of variability in that covariate at that site.

Occupancy covariates

To explore the palaeoclimatic controls on dinosaur distributionwe utilised a newly updated version of a state-of-the-art paleo-general

circulation model. All palaeoclimate model simulations were carried out using a recent version of the UK MetOffice coupled

Atmosphere-Ocean General Circulation Model (AOGCM), HadCM3 (specifically HadCM3L-M2.1D, following the nomenclature of

Valdes et al.102 HadCM3L-M2.1D has a model resolution of 3.75� longitude 3 2.5� latitude in the atmosphere and ocean

(�417 km3 278 km grid squares in the tropics), with 19 hybrid levels in the atmosphere and 20 vertical levels in the ocean with equa-

tions solved on the Arakawa B-grid. This resolution is coarser than our chosen study resolutions of 0.5� x 0.5� and 1� x 1�; however,

this resolution represents the best readily available dataset for the chosen temporal resolution used in this study.Whilst this may have

influenced thewide Bayesian credible intervals seenwithin occupancy covariates (e.g. Figures 5 and 6), climatic variables are consis-

tently found as statistically significant covariates within our models, and as such are contributing important information to our models

and subsequent interpretations. Sub-grid scale processes such as cloud, convection and oceanic eddies are parameterised as they

cannot be resolved at the scales required (usually metres to several kilometres) of the model resolution. We use modern land surface

vegetation (broadleaf trees, deciduous trees, shrubs, C3 and C4 grasses) and a globally uniform distribution of a medium loam soil

characteristics in the model land surface scheme (MOSES 2.1) except for desert regions where the soil albedo is increased to that of

sand. MOSES 2.1 also includes evaporation from sub-grid scale lakes (prescribed as a lake fraction for each grid box where present).

We use a version of the model that includes the dynamical vegetation model TRIFFID (Top-Down Representation of Interactive Fo-

liage and Flora Including Dynamics). TRIFFID predicts vegetation distributions of broadleaf trees, deciduous trees, shrubs, C3 andC4

grasses, in other words, Plant Functional Types (PFT) in the form of fractional coverage (and thus PFT co-existence) within a grid-cell.

The fraction of each PFT is determined by competition equations based on their modern climate tolerances (predominantly temper-

ature and precipitation). Each simulation was initialised from an equilibrated pre-industrial state in the atmosphere and ocean, refer-

ring to CO2 at 280 ppm. Surface vegetation was uniformly set as shrub everywhere and then allowed to evolve via TRIFFID based on

the evolution of the local climate. The oceanmodel is based on themodel of Cox et al.103 and is a full primitive equation, three-dimen-

sional model of the ocean. Sea-ice is calculated on a zero-layer model with partial sea ice coverage possible with a consistent salinity

assumed for ice.

The model used in this study has a further critical improvement from that of Valdes et al.102 that raises higher latitude temperatures

without significantly changing tropical temperatures reducing the pole-to-equator temperature gradient in line with proxy observa-

tions.104,105 This update is also found to work under both hot, cool and icehouse conditions, as well as under pre-industrial boundary

conditions making it appropriate for use across modern and deep time. The tropospheric height in these simulations’ interactivity

modifies the ozone scheme (set at pre-industrial values that change seasonally as a function of latitude and height) as warmer cli-

mates have a higher tropopause allowing ozone concentrations to similarly track this rise leading to greater surface warming (see

Valdes et al.106).

Time-specific boundary conditions for four time intervals (80.8 Ma, 75.0 Ma, 69.0 Ma and 66.0 Ma; experiment codes teyeq, teyep,

teyeo, teyen respectively) were constructed. Palaeogeographies (land-sea distribution, orography and bathymetry) were provided as

part of the PALEOMAP project.107 Each time specific digital elevation models were interpolated from a native 1� x 1� grid onto the

HadCM3L 3.75� x 2.5� grid. ‘Realistic’ pCO2 concentrations for each simulation are based on a multi-proxy compilation of Foster

et al.108 Solar luminosity for each simulation was based on Gough.109 Orbital parameters and volcanic aerosol concentrations are

kept at pre-industrial values.
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To ensure each simulation has fully adjusted to the boundary conditions and is equilibrated, we follow a 3-stage spin-up protocol. i)

The globally and volume-integrated annual mean ocean temperature trend is less than 1�C per 1000 years, ii) trends in surface air

temperature are less than 0.3�C per 1000 years and iii) net energy balance at the top of the atmosphere, averaged over a

100-year period at the end of the simulation, is less than 0.25/W m2. Climate means (i.e. mean annual temperature [MAT], mean

annual precipitation [MAP], seasonal variation in temperature, and seasonal variation in precipitation) were produced from the last

100 years of the simulation.

Following the methodology of Chiarenza et al.,18 we included temperatures of the coldest and warmest quarters, precipitation of

the driest andwettest quarters, andmean annual temperature standard deviation as suitable climatic variables that capture elements

of seasonality. These measures were chosen due to being biologically meaningful and having previously (and subsequently110)

shown to be important in determining dinosaur distributions across North America during the latest Cretaceous.

Detection covariates

Collections. The number of collections has been recognised as an important proxy for establishing relative sampling effort of verte-

brate taxa in deep time, both temporally (e.g. Dean et al.111) and spatially (e.g. Dunne et al.112). To establish whether collection counts

influenced detection probability, we calculated the number of collections per grid cell for each time interval and spatial resolution.

This also allowed us to interrogate whether our models were impacted by uneven ‘visits’ per site (collections).

Distance from roads.Collecting fossils requires access to geological outcrop for both personnel and necessary equipment; conse-

quently, the distance from the nearest road has been suggested as a proxy for accessibility and recovery of fossils.113 To test this, we

downloaded a geospatial dataset of North American roads compiled by the U.S. Department of Transportation (https://data-usdot.

opendata.arcgis.com/datasets/usdot::north-american-roads/about) and used the ‘join attributes by nearest’ tool of QGIS to find the

distance from each collection from our dataset to the nearest road. This covariate was incorporated into the model as a site and sur-

vey-level variable, meaning that each collection contained an associated Distance value, rather than the site as a whole.

Maximum Green Vegetation Fraction (MGVF). Vegetative cover potentially prohibits the discovery of fossil material.24 To test this

we incorporated a continuous data set that represents the annual (rather than seasonal) maximum green vegetation fraction (0–

100%) of each grid cell for North America, based on MODIS-derived normalised difference vegetation index data from 2001 to

2012 at 30 arc sec (�1-km) resolution.114

Modern rainfall. Rainfall may increase the probability of fossil discovery due to increased exposure from elevated erosion caused

by surface runoff.36 To test for this, modern climatic data was downloaded from WorldClim (www.worldclim.org), which provides

average monthly climate data for minimum, mean, and maximum temperature and for precipitation for 1960–2000.115 Data were

downloaded for each month at a resolution of 30 arc seconds, and the mean taken across all months using the ‘raster’ package.

Land use. The composition of land cover within a given area could influence the potential to successfully recover fossil material. To

investigate the potential impact of land use on occupancy, we utilised a 1km-resolution land cover dataset.116 These data were orig-

inally partitioned into 25 land cover types (see Table S6 for further information); these were simplified into the following four cate-

gories: 1) human altered landscapes, 2) open terrain, 3) forested terrain, 4) other. These data were re-sampled to match the associ-

ated resolution using the ‘projectRaster’ function of the ‘raster’ package, with method set to nearest neighbour, which is

recommended for categorical variables.

Outcrop area. The available area of surficial geological outcrop that is both temporally relevant and fossil-bearing has been shown

to influence diversity estimates in deep time, and generally acts as a limit on fossil recovery.18,117 To test if outcrop area impacted

detection probability, we acquired shapefiles of relevant Cretaceous geological outcropmatching our list of formations by accessing

the Macrostrat API.118 These shapefiles were then assigned to our four time bins using the bin_time() function of the ‘palaeoverse’

package, using the associated temporal data from our formation list. Shapefiles for each time bin were combined within R and ras-

terized to the specified spatial resolution using the rasterize() function of the ‘raster’ package, with getCover set to TRUE to establish

the percentage of each grid cell covered by outcrop.

Sediment flux. Chiarenza et al.18 suggested that changes in sediment fluxes and surface run-off towards the end of the Cretaceous

could have influenced the sampling of dinosaur fauna. To test this hypothesis, we estimated palaeo-sediment fluxes for the fourmajor

time intervals in this study. We followed the methodology of Chiarenza et al.18 and Lyster et al.119 who used palaeogeographic DEMs

to reconstruct all catchments and associated palaeo-sediment fluxes across the entire North American continent. For each Scotese

DEM, we used flow routing algorithms in the ArcGIS hydrological toolbox to delineate river catchments. Specifically, we used a D8

algorithm to create a flow direction network and the Basins tool to delineate catchments based on topographic highs in DEMs.119 For

each reconstructed catchment, we used zonal statistics to extract catchment geometries including area and maximum relief.

Combining reconstructed catchments with HadCM3L GCM outputs, we also used zonal statistics to extract catchment-averaged

climate variables including mean annual temperature and mean annual precipitation. With constraints on catchment geometries

and catchment-averaged climate variables, we then used the BQART suspended sediment flux model120 to estimate catchment pa-

laeo-sediment fluxes.18,119,121 BQART is an empirically-derived model of long-term (>30 year) mean annual suspended sediment

fluxes120 and, when applied to deep time studies, provides first-order estimates of palaeo-sediment fluxes.119 BQART is particularly

useful for reconstructing relative changes in palaeo-sediment fluxes, both in space and in time.119 Full details of thismethodology can

be found in Lyster et al.,119 which includes discussion surrounding the sources and magnitudes of uncertainty in this methodology.

We used BQART to calculate palaeo-sediment fluxes for each catchment, and we then converted the resulting shapefiles to rasters

using the rasterize() function of the ‘raster’ package.
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RandomEffect. Covariates includedwithin ourmodel will not capture all potential factors influencing the detection of taxa, and thus

will not capture all the spatial heterogeneity in detection probability between sites. To account for this issue, we included a random

effect (intercept) varying by Site within the detection portion of our models (see below for further details).

QUANTIFICATION AND STATISTICAL ANALYSIS

Occupancy modelling
Occupancy modelling relies on sites within a geographic area being repeatedly sampled within a particular closed sampling window

(season). Records of detections and non-detections during each visit at each site are used within the occupancy modelling frame-

work to simultaneously estimate the probability of detection and the probability of occupancy, given the combination of detection

histories observed. Occupancy models can additionally include either site- or visit-specific covariates which may influence either

occupancy or detection parts of the model, and can be for an individual time frame (single-season) or span multiple time frames

to produce estimates of occupancy and detection probability through time (multi-season, used in this work). Occupancy modelling

is now commonplace in ecology and conservation, and thus specific details to the modelling process are not described here; further

details can be found inMackenzie et al.55 Silhouettes were added to covariate forest plots using the ‘rphylopic’ package ver. 1.3.0,122

and respective creators of the images are credited in said plots and in our acknowledgements.

Bayesian occupancy model

We first fit a multi-season (through time) Bayesian occupancy model framework based on Isaac et al.123 and Outhwaite et al.124 to

compare naive occupancy against modelled estimates of occupancy and detection probability through time. These types of model

have been shown to yield accurate and reliable species trends from presence-only records, even in situations with biased data, and

have thus been determined as the most appropriate methodology for handling bias within unstructured occurrence record data-

sets.123 The models were fitted using a Markov chain Monte Carlo (MCMC) algorithm in JAGS125 via the function ‘occDetFunc’

from the R package ‘sparta’ ver. 0.2.19,126 an R package containing various approaches for analysing unstructured occurrence re-

cords, and the package ‘R2Jags’ version 0.7.1.127 We ran two variants of the model. The first was run selecting the model-type

‘sparta’ with vague uninformative priors as specified by Isaac et al.123 and using the categorical specification of ‘list length’, a proxy

for sampling effort when modelling opportunistic biological records where detection probability is assumed to differ depending on

whether a genus was observed on a shorter or longer list of total observed genera123 (in this case, the total number of genera

observed within a single palaeontological collection). The second was run using ‘list length’ alongside the random walk half-Cauchy

prior approach of Outhwaite et al.,124 which improves occupancy estimates from datasets with lower number of records by sharing

information between the current and previous years. Parameters set for themodel included 40,000 iterations with a burn-in of 20,000,

a thinning rate of 3, and ‘n year’ as 2, indicating any sites with fewer than two years of data to be dropped from the dataset. We as-

sessed convergence of the parameter estimates from the MCMC chains using the Gelman–Rubin ‘R-hat’ statistic128; all parameters

converged atR-hat < 1.1. Species occupancy each year was calculated as a derived parameter within themodel as the proportion of

occupied sites. To assess whether our models were appropriately parameterized, we conducted posterior predictive checking, a

Bayesian approach that assesses how well a model reproduces features of a dataset.129 A data vector yrep is generated from the

model fitted to the set of observations y; if the data are appropriately parameterized, the values of y and yrep should be similar. These

checks should also provide assurance that the models have captured structures seen in the data and can be used reliably to make

inferences about changes in occupancy and detection through time. Due to the binary nature of detection-nondetection data used in

occupancymodels, raw valuesmust be binned and then amodel fit assessment can be performed on the binned values.We followed

the steps laid out in Outhwaite et al.94 to produce summaries for two such checks: 1) the mean proportion of sites with detection

records, averaged over all years; and 2) interannual variability, measured by the variance in the annual mean proportion of detections.

Bayesian p-values were then calculated to establish whether there was a significant difference between the fitted data and original

observations. These tests were implemented using custom script in R provided by Nick Isaac (pers. comms) and are provided within

the supplemental information. Bayesian p-values for all bin types, spatial resolutions and taxonomic groups were above and below

the threshold of significance (above 0.05 and below 0.95), indicating adequate model fit, except for hadrosauridae using formation

bins at 0.5� resolution (full results can be found in Table S7).

Spatially-explicit multi-season occupancy model

Weadditionally used spatially-explicit multi-season (through time) occupancymodels to assess the relative impacts of both fixed and

random effects on occupancy and detection probability through time for our taxonomic groups. We fit our models with the ‘spOc-

cupancy’ package130 version 0.7.2, which uses a Markov chain Monte Carlo algorithm as well as Pólya-Gamma data augmentation

for computational efficiency.131 Occupancy models run using this package have an advantage over other commonly used occu-

pancy modelling methods in that they can explicitly account for spatial autocorrelation and can include random effects within

both occupancy and detection portions of the model. All models were fit using the stPGOcc() function in ‘spOccupancy’, which in-

cludes a Nearest Neighbour Gaussian Process132 spatial random effect to account for spatial autocorrelation. Models additionally

incorporated an AR(1) temporal random effect to account for potential temporal dependence between seasons (time bins). For all

models run, parameter estimates were based on three chains, each with 20,000 iterations, a burn-in period of 10,000 iterations which

are discarded, and a thinning rate of 10. We again used the Gelman–Rubin ‘R-hat’ statistic128 to assess whether or not the chains

showed adequate convergence. We used the Widely Applicable Information Criterion133 (WAIC) to compare the performance of

the candidatemodels and determine themost supported predictors of occupancy and detection patterns. Covariates were assessed
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for multicollinearity prior to modelling using the vif() function of the ‘car’ package,134 with covariates exhibiting the largest variance

inflation factor removed until all values were below 10. Only the occupancy variable of temperature of the coldest quarter was

removed via this approach, which showed correlation with both temperature of the hottest quarter and mean annual temperature

standard deviation. Due to the potential number of covariates available, we first modelled all combinations of detection covariates,

holding occupancy constant using all potential covariates. The combination of detection covariates with the lowest WAIC was then

held constant for the next set of models that explored combinations of occupancy covariates. Covariates of all top-ranked models

were examined, and statistical significance was determined by comparing 95% credible intervals of the effect coefficients to zero.

Bayesian analysis additionally permits the user to derive the probability of an effect being greater than 0, rather than just a binary

significant/non-significant result. We carried out this approach for all models run and have highlighted traditionally non-significant

covariates which show a 90% or greater chance of having an effect size greater than 0 (Table S2). To assess model fits, we used

the posterior predictive checks included in the function ppcOcc() in the ‘spOccupancy’ package, grouping across both sites and

replicate visits, and reported Bayesian p-values. Grouping the data across sites can help reveal whether themodel fails to adequately

represent variation in occurrence and detection probability across space, while binning the data across replicates/visits can show

whether the model fails to adequately represent variation in detection probability across the different replicate visits (collections).We

assumed values within the threshold of significance (above 0.05 and below 0.95) and relatively close to 0.5 indicated an adequate fit.

Bayesian p-values for all families, resolutions and groupings were within this threshold indicating good model fit, except for Ankylo-

sauridae at 0.5� capped at 40 visits for time bin one (80.8 Ma), Ceratopsidae at 1� capped at 40 visits for time bin two (75 Ma), and

tyrannosauridae at 0.5� capped at 40 visits for time bin four (66.7 Ma), all when grouped across visits/collections (All results can be

found in Table S8). Best fittingmodels were then used to additionally calculate detection probability throughout space and time using

the fitted() function.

Spatiotemporal resolution tests

To test the impact of varying temporal and spatial resolution on our results, we ran a total of four models for each taxonomic grouping

using the Bayesian sparta model discussed above: 1) Scotese bins (4 time bins), 0.5� resolution; 2) formation bins (6 time bins), 0.5�

resolution; 3) Scotese bins (4 time bins), 1� resolution; 4) formation bins (6 time bins), 1� resolution. Tables reporting the number of

sites/observations for each resolution, time bin and modelling approach are available in Table S5. To evaluate model performance,

we followed the methodology of Jönsson et al.69 by visually assessing occupancy and detection probability trends.
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