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Abstract—Thanks to the advanced beamforming techniques,
the efficiency of wireless power transfer (WPT) in simultaneous
wireless information and power transfer (SWIPT) systems has
been considerably improved. However, the frequent channel state
information (CSI) feedback will decrease in the actual harvested
energy once the receiver is out of the stable quiescent state.
To address this challenge, we envision a novel sensing-assisted
SWIPT system where a hybrid access point (HAP) serves multiple
communication users (IUs) and a mobile energy user (MEU).
Especially, an extended Kalman filtering (EKF)-based tracking
framework is proposed to track the dynamic MEU by exploiting
echo signals. A real-time beamforming design problem is then
formulated and efficiently solved to maximize the real-time WPT
efficiency. Simulation results validate that the proposed scheme
can accurately track and achieve higher WPT efficiency than
benchmark schemes.

Index Terms—Simultaneous wireless information and power
transfer, integrated sensing and communication (ISAC), beam-
forming design, optimization.

I. INTRODUCTION

ITH the advent of the “Ubiquitous Internet of Things

(IoT)” concept, numerous emerging IoT application
scenarios, such as unmanned factories and smart homes, have
begun to capture public attention [1]. These scenarios ne-
cessitate many low-power sensors to enable sustainable envi-
ronmental monitoring, data collection, and intelligent control.
As a promising technology, SWIPT has emerged as one of
the most promising solutions, enabling base stations (BS) or
access points (APs) to provide information transmission and
wireless charging concurrently. Therefore, sensors can gain en-
ergy from remote sources via radio frequency (RF) to achieve
true wireless power supply, thus opening new avenues for
the widespread deployment and sustainable operation of IoT
devices [2]. Recently, significant attention has been devoted
to beamforming design in multi-antenna SWIPT systems,
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aiming to maximize energy harvesting efficiency through well-
designed precoding vectors [3]-[5]. With emerging low-power
applications such as asset tracking and small wearable devices,
dynamic WPT is becoming a promising technological direc-
tion [6]. However, the transmitter must continuously acquire
CSI to enable beamforming-based transmission. This process
activates energy-intensive hardware at the receiver, such as
processing units and power amplifiers, which can reduce
the actual harvested energy and present a notable challenge.
Balancing the additional resource consumption and energy loss
caused by CSI acquisition with WPT efficiency thus emerges
as a critical research direction.

Integrated Sensing and Communication (ISAC), which en-
ables BS to characterize environment through wireless sensing,
is emerging as a key technology in 6G networks. Specifically,
recent studies have demonstrated the potential of radar local-
izing to enhance high dynamic communication performance
[7]. The approach that leverages sensing capabilities to im-
prove the efficiency and reliability of wireless systems is also
commonly referred to as sensing-assisted ISAC. Subsequently,
the integration of sensing-assisted ISAC with various cutting-
edge communication technologies were studied. In [8], the
application of Reconfigurable Intelligent Surface (RIS)-aided
ISAC in vehicular networks was studied, utilizing sensing
information from the previous time slot to maximize com-
munication performance. In [9], an ISAC system integrating
air-space-ground communication with UAV assistance was
proposed, optimizing the system energy efficiency. In addition
to these efforts where user localization is sensed, some works
addressed secure communication by leveraging sensing to
detect eavesdroppers [10], [11].

With the increasing diversification of BS functionalities,
integrating sensing, wireless power transfer, and communi-
cation capabilities, i.e., combining ISAC with SWIPT, has
emerged as a novel research direction and gained considerable
attention [12]-[15]. In [12], a novel multiple-input multiple-
output (MIMO) system that integrates sensing, communi-
cation, and power transfer was investigated to reveal the
performance trade-offs and Pareto boundaries through transmit
covariance optimization. Additionally, a multi-user MIMO
system for integrated sensing, communication, and power
transfer (ISCPT) was proposed in [13], optimizing beam-
forming and power allocation to balance performance among
multiple users. Furthermore, a RIS-aided ISCPT system was
investigated in [14], where the received energy was maximized
by jointly optimizing transmit beamforming at both the BS
and RIS side. However, current works on the integration of
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Fig. 1: Illustration of a sensing-assisted SWIPT system.

ISAC and SWIPT primarily treat the sensing function as a
separate service. Moreover, existing studies focus primarily on
static energy users, paying limited attention to beamforming
strategies for dynamic low-power terminals. Given that MEUs
require sensing information akin to mobile communication
users, leveraging sensing capabilities to enhance SWIPT sys-
tems for simultaneous communication, power transfer, and
tracking has become a promising research direction. In [15],
although a system combining ISAC and SWIPT with mobile
energy terminals was studied, the sensing and charging ser-
vices were realized through time-division, which requires more
system resources. To the best of our knowledge, utilizing radar
sensing in SWIPT systems with moving energy devices to
realize tracking, energy harvesting and communication quality
remains an open problem.

To effectively address the aforementioned challenges, this
letter introduces a novel framework that leverages ISAC track-
ing to realize efficient WPT, constructing an online beam-
forming design problem. The contributions of this work are
summarized as follows: (1) A novel sensing-assisted SWIPT
system is developed, where reflected signal echoes are utilized
to track MEUs and facilitate efficient WPT. (2) An online
beamforming optimization framework is formulated, aiming to
maximize energy transfer efficiency while considering specific
tracking and transmission requirements. (3) The proposed
approach eliminates the need for uplink feedback from energy
receivers, thereby reducing system overhead and enhancing
energy efficiency. The effectiveness of the proposed framework
is verified through simulation results, which demonstrate en-
hanced energy transfer efficiency and improved overall system
performance compared to benchmark schemes.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a novel sensing-assisted
SWIPT system where a multi-antenna HAP transmits commu-
nication signals to K single-antenna IUs (indexed by k£ € K =
{1,..., K}). Meanwhile, the HAP provides wireless charging
for a point-like MEU that moves within a certain reachable
range. The HAP is equipped with uniform linear arrays
(ULAs) with M, transmit antennas and M, receive antennas.
The MEU is equipped with an RF energy harvesting module
and moves along a predetermined route that is unknown to
HAP within a total task time 7. ! The HAP and IUs are fixed
at q = [qg,qg]T, ql = [q,ﬁ,qz]T respectively. Without loss
of generality, we assume K < M;. In our proposed scheme,

'This could arise due to practical constraints such as limited communica-
tion, or security and privacy concerns restricting the sharing of route details
with HAP. Consequently, the HAP works without prior knowledge of the
MEU'’s trajectory.

service time 7 is divided into L frames with equal length &,
ie. T =167

A. Channel Model

The HAP-IU channel hj and time-varying HAP-MEU chan-
nel at [-th frame gg ;, are respectively given by

hy, = 1/ Bod; *al;, (¢k) (1)

gu1 (de1, op1) = £/ Bodgialy, (¢5.) 2

where [y denotes the channel gain at a reference distance,
dr and dp,; denote the Euclidean distances between HAP
and k-th IU, HAP and MEU, respectively. As this study
represents the first exploration of beamforming design in
dynamic SWIPT systems, we assume all links are primarily
dominated by line-of-sight (LoS) conditions to simplify the
analysis [16]. * Therefore, the transmit array steering vector
is modeled as ayy, (@) = (1, e 7mcos?, . e~dm(Mi=Dcose)
where ¢ = {yg, ¢r,} denotes the azimuth angle.

B. Communication & Powering Model

At the [-th frame, the downlink transmitted signal by HAP

is denoted by x; (t), which can be expressed as
i () = visg () + Y Wrusy (1) 3)

kEK

where wy,; and v; denote the beamforming vectors for k-th
IU and MEU, respectively. The information-bearing signals s},
are assumed to be s, ~ CAN(0,1),Vk, while the dedicated
energy-carrying signal sg are generated from an arbitrary
distribution with E{|so|2 = 1, since it does not convey
any communication information. The total transmit power
should not exceed the power budget of the system Pp,x, i.e.
Py = Y rer||Wiall®> + [[vil|* < Puax. The received signal

at IU k in lth frame is given by
Vit (1) = hpwpsh (8) + hevish () + 2 (1) ()
jEK
where z ~ CN(0,042) is the Additive White Gaussian noise
(AWGN) noise. The corresponding received SINR of IU £ is
then expressed as

2
|hywy
2
> hewi|” + o
Jj#k,jeK
In terms of energy charging for MEUs, the instantaneous
received RF power at the [-th frame can be formulated as

(&)

Vi (Wk,z) =

Ey (Wi, vi) = pugea | vivi + Z Wk,szH,l gg,z (6)
kEK
where p € (0,1) is the system energy conversion constant.
The WPT efficiency of the system is defined as the ratio
of harvested power E; by the MEU and the total power
consumption P;,; at the HAP in frame [, given by
Ey (w1, vi)

Pioti (Wi i, Vi)

TIWPT,l = @)

2We assume that the computation time consuming can be ignored with
advanced signal processing techniques.

3Short-range transmission is considered in the proposed system due to
the actual implementation of WPT, thus the strong Los-dominated channel
assumption is reasonable.

Authorized licensed use limited to: University College London. Downloaded on March 14,2025 at 11:04:55 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Wireless Communications Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LWC.2025.3545683

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

where Pyt = <P + Pc, < is the power amplifier efficiency
and Pg is the circuit power consumption.

C. Radar Sensing & EKF Tracking Model

The HAP is assumed to operate in full-duplex and while
transmitting downlink SWIPT signal, concurrent sensing is
carried out based on MEU echos, expressed as >

r (t) = eP?™itg i (t— 7)) + 200 (1) 8)
where v;, 7;, 2,; denote the echo’s Doppler shift, delay and
receiver noise, respectively. The round-trip channel is modeled

as @1 = by, (¢1)aky, (), where x = \/a(dnd?) 1
is the reflection coefficient and ~ is radar cross section
(RCS). Particularly, let vector O; = [@l,nml]T represents

the estimated parameters obtained by signal process methods

such as match filtering [17]. Then the corresponding estimation

variances, aiyl, ‘73,1’ ‘73,1’ are inversely proportional to the

received SNR, which can be given by

kB3 oM, [af;, (¢1) vi|”
167rd‘]‘3’la§

where ayr is the MF gain and a}% is the HAP receiver noise.

The MEU time-varying motion parameters are defined as
X, = [af,uf]", where of = [qf,q!]" uf = [uf,u}]”
denote the location and velocity of MEU, respectively. Thus,
the model of state transition from the current frame to the
next frame is given by X; = A - X;_; + z, , where
A = [Iax2,0 - Isx2;0242,Io42] denotes the linear state
transition matrix and z, is the process noise vector with
Zp| ~ CN (03 QZ)

An EKF-based framework is employed to achieve closed-
loop target tracking, as EKF filtering efficiently fuses multiple
data sources to minimize state estimation uncertainty and
error [18]. The radar observation model which characterizes
the relationship between estimated parameters and motion
parameters is given by O; = f(X;) + z4, where f(-)
is the non-linear observation operator, given by f(X;) =
()" +(at)" _ ofupaf

@@y
radar estimation noise with zy; ~ CN (0,Qg), where
Qs = diag(ail,ofl,azl). Recall the inverse relationship
between noise variance and the received SNR, we further
reformulate the estimation variances as o3, = GF—Q;‘, where
i £ {02,02,02} , and aq, is determined by system con-
figuration. The estimation covariance is then recast as Qg =
I, (v)) diag (aﬂaia age2, a9a3)~

The fusion steps of the estimated and predicted data are as
follows: At the beginning of each frame, state prediction is
performed as X”l,l = AX;_;, with prediction covariance
Ml|l_1 = AM,;_ ;A" 4+ Q. The Kalman filter gain is

. . -1
then calculated as K; = M;;_; FH (FlMl”_l FH ¢ Qs) ,

_ 9f .
where F; = 3 e=Ryis

Ly (vi) = )

vy 2 .
arctzm%7 and zg is the
l

denotes the Jacobian matrix of the

3signals reflected by other scatters are omitted here as they can be
effectively suppressed by existing clutter suppression techniques.

observation model. Therefore, the updated motion state and
covariance matrix are, respectively, formulated as

X =Xy + K (Ol —f (Xl|l71)) (10)

M; = (I, - KiFy) - My (11)

By iteratively performing the above steps and updating X,

and M;, HAP can realize the positioning and tracking of MEU,

which we call the sensing-assisted SWIPT method. In the next

section, we will focus on the real-time beamforming design

based on tracked vector X; during each frame iteration, and
guarantee reliable tracking of the MEU.

III. DYNAMIC WIRELESS POWERING VIA ONLINE
BEAMFORMING DESIGN

A. Problem Formulation

In this work, our goal is to maximize the real-time WPT
efficiency for each frame via online optimization of the trans-
mit beamforming, subject to system quality-of-service(QoS)
requirements, which includes the individual SINR demands
at each IU, the energy harvesting and sensing QoS at MEU.
Note that the trace of tracking covariance matrix represents
the posterior mean squared error (MSE) for MEU tracking,
thus we define the instantaneous tracking performance as S =
tr (M), which is implicitly a function of beamforming vector
v. For notation convenience, the frame index [ is omitted
in this section. The corresponding beamforming problem is
formulated as follows,

(PO) I‘E:ii’( Nwer (W, V) = Jm (12a)
s.t. P(wg, V) < P, (12b)
SINRE (Wk) > Ymin, (12¢)

E(Wg, V) > emin, (12d)

S(v) < Crnax. (12e)

where (12b) denotes the transmit power budget, (12c) guar-
antees the minimum SINR for IU. For the harvested energy
constraint (12d), E denotes the prediction energy at the time of
beamforming design and ep,; is the minimal power demand
at [th frame. The pre-defined parameter C,,x in (12e) denotes
the upper limit of tracking performance.

B. Proposed Solution

Note that problem PO is challenging to solve, due to the
fractional objective function and the non-convex constraints.
Thus in this subsection, we present the following algorithm to
tackle with the non-convexity and intractability.

To address the non-convex objective function, we apply
nonlinear fractional programming based on the Dinkelbach
method [19] where the corresponding subtractive form of
objective function (12a) is given by E (W, v) —1 Pyt (Wi, V).
It is well-proved that with the unique zero n*, we can recast
problem PO into the following equivalent form

(P)max F (W, V) — Pt (W, V) (13a)
st (12b), (12c), (12d), (12€). (13b)

To solve the problem efficiently, we then introduce auxiliary
variables W = ww¥ and V = vv¥ | with constraints W}, >
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Algorithm 1 The Proposed Overall Algorithm

Require: Initial point X, and M.
1: for/=1,2,3,... do

2 Compute prediction state X” ;—1 and 1\71” I—1-
3: Compute Jacobian matrix F; = % o=y, °
4

Solve the optimization problem (14) to obtain the
optimal predictive beamforming vector and
performs SWIPT and echo sensing.
5: Compute Kalman gain K; with Q, (V7).
6: Update state and covariance X; and M;.

* *
Wi Vi

7: return tracking results 5(1 and M; for all [.

0,V > 0, rank (Wy) = 1 and rank (V) = 1. Hence, the
aforementioned optimization problem is reformulated as

(P1) max E (Wy, V) —nPg (W, V) (14a)
Wi,V
S.t. Z tr (Wk) +tr (V) < Pmaxa (14b)
keK
tr (hf’h, W
r< kO k) Z Ymin s (14’0)
tr thhk Z Wj + O'}%
j#kjEK
1] (tr (87&V) + Z tr (gHng)> > Emin,
keK
(14d)
tr (Ml) S Cvmaxx, (146)
Wi >0, V>0, (14f)
rank (W) =1, rank(V)=1,Vk. (14g)

where g is the prediction BS-MEU channel. Problem (14),
however, is still non-convex owing to the rank-one constraints.
Fortunately, this nonconvexity can be addressed by the clas-
sical SDR [20] approach. Therefore, by dropping constraints
(14g), problem P1 is converted into an SDR programming,
which can be efficiently solved by standard solvers such as
CVX [21]. Note that the feasible rank-one solution of the
original problem can be obtained by eigenvalue decomposition
or Gaussian randomization procedure.

To sum up, by iteratively predicting and tracking, the HAP
can simultaneously sense targets, transmit energy and signals
at a low resource cost. The details for the proposed online
beamforming algorithm are summarized in Algorithm 1.

IV. SIMULATION RESULTS

In this section, numerical results are presented to demon-
strate the effectiveness of our proposed real-time beamform-
ing design. We set the HAP at (0,0) and equipped with
M; = 8, M, = 2 antennas to serve K = 3 single-antenna
IUs and one MEU. The locations of IUs are (2,6)m, (6,1)m
and (4,-6)m, the initial location of MEU is (-8,10)m. The
system operates at 5.5 GHz [22] and reference channel power
gain is calculated by free space propagation model. The
remaining simulation parameters are listed as follows [10]
[23]: Ymin = 5dB, emn = 1L.1uW, Chax = 5, 6 = 0.2s,
Pnax = 38dBm, 03 = —70dBm, 07 = —80dBm, ¢ = 1,

Pc = 0.8W, ag = [0.085,0.9 x 10%,45], apr = 104, k = 0.9,
n = 0.8.

In Fig. 2, we show the geometric distributions of IUs
and HAP, together with the real-time tracking results under
different motion patterns. In both cases, the MEU starts from
the same initial point with u® = [0.5,2]” m/s in Case 1 and
uf = [3,2]T m/s in Case 2. Specifically, Case 1 (single-
motion state) refers to a small process noise z,; for MEU,
whereas in Case 2 (multi-motion state) the MEU undergoes
changes such as deceleration and steering, which correspond
to considerably larger process noise. It can be observed that
the real-time tracked trajectories generally match the actual
curves in different motion cases, proving the good tracking
performance of our proposed scheme.

To further study the WPT performance and gain more
insight, we then follow the trajectory setup in Case 2 and
consider three baseline schemes: 1)Upper Bound (UB): HAP
has the perfect state X;, serving as an ideal case. 2)Time-
Division Sensing (TDS) [15]: Each frame is split into two
phases, where HAP senses X; within a;§ and transmits within
(1 — ay)d, ay = 0.3. 3)Dedicated Device Sensing (DDS) [8]:
HAP receives MEU’s previous state X;_; from the dedicated
sensing device (e.g., UBW) and then predicts the current state,
incurring additional power consumption Py = 1W. As shown
in Fig. 3, the MEU sensing error in each frame, defined as the
instantaneous tracking MSEs with respect to X; is presented.
In ‘PO design’, sensing error is generated directly from the
prediction state X” 1—1 without ISAC modification. As can be
observed, DDS scheme minimizes errors by leveraging addi-
tional sensing devices to capture and update the state vector
of the previous frame accurately, unlike EKF-based schemes,
which suffer from cumulative tracking errors. Nevertheless,
the proposed scheme can reduce tracking errors compared to
‘PO’ by effective sensing. Interestingly, this improvement is
particularly evident around the 25th and 50th frames, implying
the limitations of relying solely on the state transition model
to capture abrupt motion changes.

In Fig. 4, we depict the real-time WPT efficiency under
different tracking schemes during the whole service time. As
expected, the fluctuations reflect the MEU’s motion state, as
the RF signal strength decreases with increasing distance dg ;,
and the two peaks precisely correspond to the moments when
MEU reaches its closest proximity to the HAP. The proposed
scheme can approximate the ‘UB’ scheme in overall perfor-
mance, with the gap attributed to sensing errors introduced
by the predicted channel. In contrast, the other two schemes
exhibit the lowest WPT values due to the additional time and
power consumed by the sensing process. We illustrate the real-

(a) Case 1 (b) Case 2

Fig. 2: Tracking trajectories by proposed scheme
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Fig. 3: MEU sensing error of Case 2

versus frame index [ sus frame index [

time WPT efficiency with respect to the SINR requirements
Ymin 10 Fig. 5. The proposed scheme can closely approach
the performance of the ideal "UB’ and consistently achieves
higher WPT efficiency compared to DDS and TDS schemes.
The WPT efficiency remains relatively stable initially, but as
~Ymin continues to increase, the WPT of all schemes gradually
declines. This occurs because stricter communication require-
ments necessitate allocating more power to communication,
thereby reducing the efficiency of power transfer, which also
reveals the existence of a trade-off between communication
and energy transfer.

V. CONCLUSION

In this letter, we proposed a novel dynamic sensing-
assisted SWIPT system and investigated an EKF-based online
beamforming framework to realize efficient power transfer.
In particular, the beamforming design was formulated as a
WPT efficiency maximization problem, subject to the specific
QoS requirements for IUs and MEU. The original non-convex
optimization problem is simplified and effectively solved by
applying the Dinkelbach approach and SDR. Simulation re-
sults were provided to validate the proposed framework and
performance gain over benchmark schemes.
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