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Abstract 

Alzheimer’s disease (AD) is a complex neurodegenerative disorder driven by genetic 

and epigenetic changes. Genome-wide association studies (GWAS) have identified a 

network of AD risk genes, primarily expressed in microglia. However, short-read 

sequencing often fails to capture transcript diversity, isoform-level alterations, and 

alternative splicing, limiting understanding of how genetic risk variants regulate gene 

expression and contribute to disease progression. 

This thesis describes and presents the use of long-read RNA and DNA sequencing, 

which was performed as a part of this study, in the AppNL-G-F knock-in mouse model to 

address these limitations. By integrating transcriptional and epigenetic analyses, 

differential alternative splicing, novel transcript isoforms, and genome-wide DNA 

methylation patterns were investigated to uncover mechanisms underlying AD. 

Long-read RNA sequencing identified activation of microglial AD risk genes, such 

as Trem2, and novel isoforms in AD-associated genes. Isoform usage and alternative 

splicing were also observed in genes not previously linked to AD, 

including Syngr1 and Clta, which influence synaptic function. These findings highlight 

the importance of profiling splicing and isoform alterations across diverse brain cell 

types, including microglia, neurons, and oligodendrocytes. 

Genome-wide DNA methylation analysis revealed differentially methylated regions 

(DMRs) in AD-related genes such as App and Mapt. Many human AD risk genes and 

differentially spliced genes overlapped with DMRs. Strong correlations between 

methylation and gene expression were observed in Capg and Csf1, emphasizing the 

role of methylation in fine-tuning expression. Hypermethylated promoters were linked 

to RNA splicing and stem cell maintenance, while hypomethylated promoters were 

associated with immune activation and cell trafficking. DMRs extending into gene 

bodies and intergenic regions were enriched in inhibitory neurons, suggesting 

connections between synaptic regulation and microglial interactions during amyloid 

response. 
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This thesis demonstrates the utility of long-read sequencing in revealing AD 

mechanisms, providing insights into amyloid pathology and potential therapeutic 

targets. 
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Impact Statement 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized 

by the accumulation of amyloid plaques and tau tangles, which lead to the gradual 

decline of cognitive abilities and a diminished quality of life. Despite extensive research 

into the disease, AD remains incurable, and effective treatments are still lacking. This 

thesis aims to fill critical gaps in our understanding of AD by investigating the molecular 

mechanisms driving disease progression, with a specific focus on gene expression 

regulation. Using a well-established AD mouse model that mimics the preclinical 

stages of AD, this work offers a comprehensive analysis of the early molecular 

changes in AD, providing vital insights into its onset and identifying potential 

therapeutic targets. 

A major contribution of this research is the generation of high-quality, genome-wide 

transcriptomic and epigenetic datasets through the application of advanced long-read 

RNA and DNA sequencing technologies. These cutting-edge tools enabled the 

identification of genome-wide novel transcript isoforms, alternative splicing events, 

and methylation particularly in genes involved in immune response and synaptic 

function. Unlike short-read sequencing technologies, long-read RNA sequencing 

facilitated the detection of isoform usage patterns that were previously overlooked, 

advancing our understanding of how amyloid pathology disrupts gene regulation. 

These findings not only contribute to the molecular landscape of AD but also 

underscore the importance of isoform-level analyses in disease research, highlighting 

new pathways that could be targeted to understand and mitigate amyloid-driven 

neurodegeneration. 

In addition to transcriptomics, genome-wide DNA methylation analysis shed light on 

the epigenetic regulation of AD. By focusing on specific neuronal subtypes, particularly 

inhibitory neurons, this study uncovers differential DNA methylation patterns that may 

be implicated in the cellular dysfunction characteristic of AD. These results suggest 

that epigenetic changes, such as DNA methylation, play a significant role in regulating 

gene expression and influencing how neurons respond to amyloid pathology. These 

insights deepen our understanding of how non-genetic factors, such as epigenetic 
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modifications, contribute to AD progression and highlight their potential as biomarkers 

or therapeutic targets. 

A key aspect of this thesis is the emphasis on reproducibility and accessibility. Robust 

and reproducible pipelines for DNA methylation analysis and single-cell RNA 

sequencing re-analysis were developed to ensure that these methods can be adopted 

and extended by other researchers. Datasets and code generated from Chapters 2, 

3, and 4 will be shared publicly on platforms such as bioRxiv and GitHub for open and 

accessible to the broader scientific community. A manuscript based on the findings 

from Chapter 2 has already been submitted for publication, contributing to the wider 

dissemination of important results obtained by long-read RNA sequencing. 

In conclusion, this thesis makes significant strides in advancing our understanding of 

AD by identifying genome-wide novel transcript isoforms, alternative splicing events, 

and DNA methylation, in response to amyloid pathology. These findings provide fresh 

perspectives on the underlying molecular mechanisms of AD progression, and 

enhance our understanding of the disease's onset and advances the search for 

potential therapeutic targets. While further research is needed to translate these 

discoveries into clinical applications, the results presented in this work lay a strong 

foundation for the development of targeted therapeutic strategies, for example to 

control splicing in AD. Ultimately, this thesis aims to contribute to the growing body of 

knowledge on AD and support the advancement of more effective treatments for those 

affected by this devastating disease. 
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Chapter 1 

1 Introduction  
1.1 Genetics of Alzheimer’s Disease 
Alzheimer’s disease (AD) is a leading neurodegenerative disorder, accounting for the 

majority of dementia cases worldwide - an estimated 50 million cases, a number 

projected to surpass 152 million by 2050 (Nichols et al., 2022). Late-onset Alzheimer's 

disease (LOAD) typically progresses through a long, asymptomatic phase marked by 

the gradual build-up of amyloid, followed by tau pathology. The pathological 

progression of AD occurs across distinct cellular states, including neurons, glia, 

oligodendrocytes, and the vascular system (De Strooper & Karran, 2016a). 

 

In early-onset AD, the initial hallmark of AD, Aß plaques, are generated due to rare 

dominant gene variants in the amyloid precursor protein (APP), presenilin 1 (PSEN1) 

and presenilin 2 (PSEN2) which drive APP cleavage to amyloid-ß (Aß). The genetic 

pathways differ between early-onset and LOAD (Hartl et al., 2020; Karch & Goate, 

2015; Suh et al., 2013). Genome-wide association studies (GWAS) have shone a light 

onto the DNA variants in the human population associated with LOAD, showing the 

involvement of complex alterations in the innate immune system and lipid metabolism 

in response to the hallmark pathological features of LOAD (Aß plaques and tau 

tangles)(Bellenguez et al., 2022; De Strooper and Karran, 2016a; Efthymiou and 

Goate, 2017; Felsky et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Salih et al., 

2019).  

 

Gene expression network analyses in LOAD indicate that differentially expressed 

genes may not directly link to Aß generation (Cruchaga et al., 2014; Edwards et al., 

2019; Hong et al., 2016; Sala Frigerio et al., 2019; Salih et al., 2019). Instead, many 

risk are primarily expressed in microglial cells, forming a transcriptional network that 

influences AD pathology (Sala Frigerio et al., 2019; Salih et al., 2019; Sierksma et al., 

2020).  

 

Single nucleotide polymorphisms (SNPs) linked to AD are found in several genes, 

including  apolipoprotein E (APOE), triggering eeceptor expressed on myeloid Cells 2 
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(TREM2),  phosphatidylinositol binding clathrin assembly protein (PICALM), siglec-3 

(CD33), ABI family member 3 (ABI3), phospholipase C gamma 2 (PLCG2), 

and transcription factor PU.1 (SPI1) (Efthymiou & Goate, 2017; K. L. Huang et al., 

2017; W. Liu et al., 2020; Sims et al., 2017). Among these, APOE-ε4 is the strongest 

genetic risk factor for LOAD (Corder et al., 1993). The APOE-ε4 allele significantly 

increases the risk of developing LOAD and accelerates disease onset in a dose-

dependent manner. It affects Aß metabolism by promoting aggregation and impairing 

clearance, thereby contributing to a more extensive Aβ deposition in the brain 

compared to the ε2 and ε3 alleles (Castellano et al., 2011; Liu et al., 2015). 

Additionally, APOE-ε4 interacts with microglia, enhancing inflammatory responses 

that may further exacerbate AD pathology through immune dysregulation (Efthymiou 

& Goate, 2017; Pankiewicz et al., 2017; Salih et al., 2019; Weigand et al., 2021).  

1.2 Transcriptomic and cellular changes in AD mouse models  
Transcriptome studies using microarrays, bulk RNA-seq, and single-cell RNA-seq in 

AD mouse models have shown that amyloid plaques alone can drive the expression 

of microglial risk genes and induce microglial changes including proliferation and 

activation, indicating these AD risk genes and microglial adaptations may act at early 

stages of disease in humans to impact the onset of clinical symptoms (Matarin et al., 

2015; Salih et al., 2019; Shireby et al., 2022). Overt cognitive deficits in humans 

typically lead to diagnosis when a substantial level of neuronal loss occurs that starts 

approximately twenty years before the onset of the disease (Bateman et al., 2012; 

Liang et al., 2013). 

However, whether mouse models accurately replicate the complex features of human 

AD remains debated. AD mouse models do not exhibit the amyloid-dependent tau 

pathology that leads to neuronal degeneration (Lee et al., 2021; Leyns et al., 2019), 

raising questions about their relevance (Chen et al., 2023; Friedman et al., 2018; 

Holtzman et al., 2000). Amyloid-based mouse models, including AppNL-G-F, fail to 

develop tau pathology, likely due to the absence of human tau or the additional 

pathological triggers—such as aging, inflammation, or other cellular stressors—that 

drive tau hyperphosphorylation and neurofibrillary tangle formation in human AD 

(Dujardin et al., 2020; He et al., 2018). This absence of tau pathology limits the ability 

of amyloid models to fully replicate later-stage neurodegeneration. However, despite 
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these limitations, AD mouse models remain invaluable for dissecting disease 

mechanisms, particularly those that characterize early prodromal stages (Keren-Shaul 

et al., 2017; Sala Frigerio et al., 2019).  

The AppNL-G-F mouse model is a genetically engineered knock-in system that 

carries three familial AD mutations: Swedish (KM670/671NL), Iberian (I716F), and 

Arctic (E693G). Each mutation contributes to distinct aspects of  Aβ pathology. 

The Swedish mutation enhances β-secretase cleavage, leading to elevated Aβ 

production; the Iberian mutation increases the Aβ42/Aβ40 ratio, favoring the 

accumulation of more aggregation-prone Aβ42 species; and the Arctic 

mutation accelerates Aβ aggregation, promoting protofibril formation and plaque 

deposition (Saito et al., 2014).  

Unlike traditional transgenic models such as 5xFAD and APP/PS1, which rely on non-

physiological APP overexpression, AppNL-G-F preserves endogenous APP expression 

levels, providing a more biologically relevant system for studying amyloid pathology. 

To generate this model, the murine Aβ sequence was humanized, introducing 

the Swedish mutation into exon 16 and the Iberian and Arctic mutations into exon 17. 

These modifications were carried out using gene targeting in C57BL/6 embryonic stem 

(ES) cells, ensuring that regulatory elements and intronic architecture remained intact, 

thereby preserving normal APP transcription, splicing, and processing. Following gene 

targeting, heterozygous mutant mice were crossed with EIIa-Cre transgene to excise 

the pgk-neo selection cassette, eliminating any potential confounding effects from 

vector sequences (Saito et al., 2014). However, the Arctic mutation introduces an 

important caveat: it accelerates Aβ aggregation, yielding protofibrils with structural 

properties that differ from those in sporadic AD, where Aβ species are more 

heterogeneous and influenced by a broader range of pathological factors.  

Despite the limitations, the AppNL-G-F model provides a well-controlled system for 

studying amyloid-driven disease mechanisms, as it develops extensive Aβ plaque 

deposition without the artificial consequences of APP overexpression and its 

proteolytic fragments which are known to drive more aggressive amyloid pathology, 

potentially and introduce non-physiological effects that cab obscure downstream 

mechanisms (Oakley et al., 2006). In contrast to transgenic models, AppNL-G-F more 

accurately reflects endogenous APP expression levels, allowing for the study amyloid 
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response in a more physiologically relevant context. Other knock-in models, such as 

AppNL-F and AppNL-G, also lack tau pathology but exhibit differences in their Aβ42/Aβ40 

ratio and aggregation dynamics, which influence the trajectory of disease progression. 

While no single mouse model fully captures the complexity of human AD, the AppNL-G-

F model is a valuable system for investigating the early amyloid-driven mechanisms of 

AD. Unlike traditional transgenic models which rely on APP overexpression, knock-in 

models better preserve physiological APP processing, avoiding artificial 

overproduction of APP fragments that do not occur in human disease. This distinction 

is particularly relevant for studying crucial processes such as APP processing, 

amyloid-β plaque deposition, and microglial activation mediated by an increase in 

expression of a number of risk genes identified in human GWAS (Wood et al., 2022).  

GWAS have pinpointed nearly 100 loci associated with AD (Bellenguez et al., 2022; 

Kunkle et al., 2019; Lambert et al., 2013). While a causal gene is directly responsible 

for the development of the disease, where mutations can alter the function of the 

protein product, a gene with an expression quantitative trait loci (eQTL) variant may 

impact gene regulation by alternating expression and/or splicing patterns (Fan et al., 

2021; Raj & Blencowe, 2015; Takata et al., 2017; Wang et al., 2015). The identification 

of microglia-specific eQTLs provides insights into the gene regulatory mechanisms 

that may underlie AD pathology. In a study by Young et al. (2021), eQTLs were 

mapped to primary human microglia and revealing genetic variants that impact gene 

expression, which may influence AD pathology (Young et al., 2021).  

In parallel to eQTLs, splicing quantitative trait loci (sQTLs) have emerged as crucial 

determinants of alternative splicing and transcript isoform diversity. The regulation of 

alternative splicing is essential for generating functional protein diversity. Alternative 

transcript isoforms and splice-forms are pivotal mechanisms in gene expression, and 

errors in splicing can lead to regulatory dysfunctions (García-Ruiz et al., 2023; Gruijs 

da Silva et al., 2022; Jaffrey & Wilkinson, 2018; D. Li et al., 2021; Mills et al., 2013; 

Reyes & Huber, 2018; Simone et al., 2021). Alternative splicing plays a crucial role in 

protein function, particularly in neurological diseases (Marques-Coelho et al., 2021; 

Tollervey et al., 2011), and selection of specific mRNA isoforms is instrumental in 

driving various cellular pathways and functions (Chen PC et al., 2022; Darnell, 2013; 

B. Raj & Blencowe, 2015). Recent studies have highlighted the role of sQTLs in 



   
 

 29 

influencing splicing patterns, thereby impacting cellular processes that are vital for 

proper regulatory function (García-Ruiz et al., 2023; Kim-Hellmuth et al., 2020).  

 

Raj et al. (2018) conducted integrative transcriptome analyses that implicated altered 

splicing as a significant factor in AD susceptibility. Their study identified many 

alternatively spliced genes in the brain, and they associated these splicing events with 

pathological features of AD, such as neuritic plaques and neurofibrillary tangles (Raj 

et al., 2018). Zhang et al. emphasized the regional variation of sQTLs in the human 

brain, identifying specific SNPs that create binding sites for splicing factors, thereby 

influencing the splicing of genes like microtubule-associated protein tau (MAPT) 

(Zhang et al., 2020). The generation of diverse tau isoforms through alternative 

splicing is essential for neuronal health, and dysregulation of this process can lead to 

the accumulation of toxic tau aggregates characteristic of AD.  

Long-read RNA- and DNA-sequencing technologies are increasingly recognized for 

their potential to characterize the earliest molecular and cellular alterations in response 

to amyloid pathology in AD. These advanced sequencing methods provide unique 

advantages over traditional short-read sequencing, particularly in resolving complex 

genomic structures and transcriptomic profiles that are critical for understanding the 

pathogenesis of AD (Cogan et al., 2024). One of the significant benefits of long-read 

sequencing is its ability to capture full-length transcripts (Leung et al., 2021), which is 

essential for accurately assessing gene expression changes associated with amyloid 

pathology. For instance, Roeck et al. demonstrated that long-read cDNA sequencing 

could elucidate the complexities of ATP binding cassette subfamily A member 7 

(ABCA7) transcript variations in early-onset AD, revealing alternative splicing events 

that might escape detection by short-read methods (De Roeck et al., 2017). This 

capability is crucial, as the expression of genes involved in amyloid processing and 

clearance can be significantly altered in the presence of Aβ aggregates, affecting the 

overall cellular response to amyloid pathology. In summary, understanding these 

splicing events is crucial, as they may contribute to the pathophysiological 

mechanisms underlying amyloid pathology. 
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1.3 Epigenetic changes in AD brain  
AD results from the interplay of genetic and epigenetic factors, with the role of GWAS 

risk variants remains unclear. It is widely acknowledged that AD does not result from 

a single genetic mutation but rather from a multifaceted interaction between genetic 

predispositions and environmental influences. Within this complex network, epigenetic 

modifications, such as DNA methylation and histone modifications may play a critical 

role in regulating splicing or transcript or gene expression, thereby influencing disease 

progression(De Jager et al., 2014; Fodder et al., 2023; Klein et al., 2016; X. Liu et al., 

2018; Lunnon et al., 2014; Qazi et al., 2018; Shireby et al., 2022; Yokoyama et al., 

2017; L. Zhang et al., 2020).  

DNA methylation, the addition of a methyl group to cytosine residues in DNA (5-methyl 

cytosine), particularly at CpG sites, has gathered attention as a potential biomarker for 

AD. Technologies such as bisulfite sequencing and methylation arrays (e.g., Illumina 

450K or EPIC) have revealed methylation alterations occurring years before clinical 

onset, suggesting these epigenetic changes may contribute to AD 

pathogenesis(Altuna et al., 2019; Fodder et al., 2023; Gasparoni et al., 2018; 

Lardenoije et al., 2019; Lunnon et al., 2014; Shireby et al., 2022; R. G. Smith et al., 

2021). Lunnon et al. (2014) demonstrated methylation changes at genomic regions 

such as ANK1, and associated with AD pathology. The impact of DNA methylation on 

gene expression in AD was further explored via a large-scale epigenome-wide 

association study (EWAS) with Illumina Human Methylation Array on brain tissue from 

AD patients (De Jager et al., 2014; Lang et al., 2022; Piras et al., 2023; Wang et al., 

2023). Their findings indicated that differential methylation at key loci correlates with 

AD pathology, altering the expression of genes implicated in the disease and 

contributing to neurodegeneration. Consequently, DNA methylation, specifically at 

CpG sites is increasingly recognised as an important biomarker for AD, with alterations 

in methylation patterns detectable years before the clinical onset of dementia, as 

supported by several studies (Fransquet et al., 2020; Kobayashi et al., 2020; Madrid 

et al., 2018; Mitsumori et al., 2020; Roubroeks et al., 2020). Key examples include 

ankyrin 1 (ANK1) and rhomboid 5 homolog 2 (RHBDF2), which were found to be 

hypermethylated in AD brains, with ANK1 showing a particularly strong association 

with AD pathology (De Jager et al., 2014; Lunnon et al., 2014; Sanchez-Mut et al., 

2016; Semick et al., 2019). Additionally, bridging integrator 1 (BIN1) has been shown 
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to have methylation changes that may influence amyloid processing and immune 

responses within AD pathology (De Jager et al., 2014; Gasparoni et al., 2018; Semick 

et al., 2019; Shireby et al., 2022).  

Specific histone modifications, such as trimethylation at lysine 4 (H3K4me3), lysine 27 

(H3K27me3), or lysine 27 acethylation (H3K27ac), have been shown to correlate with 

gene expression changes in AD, indicating that chromatin state alterations may also 

be pivotal in the disease process (Marzi et al., 2018; Smith et al., 2021). Nott and 

colleagues (Nott et al., 2019), identified cell-type-specific cis-regulatory elements in 

AD by mapping regulatory regions associated with both AD and psychiatric disorders. 

They found that some AD-associated SNPs were primarily located within microglia-

specific enhancers. Importantly, deleting a microglia-specific enhancer harboring an 

AD-risk variant via CRISPR-Cas9 led to the loss of BIN1 expression specifically in 

microglia, without affecting neurons or astrocytes. This suggests that sequence 

polymorphisms in enhancer regions can disrupt regulatory elements, potentially 

altering histone modifications via transcription factor binding or chromatin accessibility, 

leading to gene expression changes seen in AD. In conclusion, the epigenetic 

landscape in AD is characterized by significant, cell-type-specific alterations in DNA 

modifications and chromatin states, underscoring the intricate regulatory mechanisms 

that drive the disease. 

Altuna et al. identifies a DNA methylation signature in the human hippocampus linked 

to neurogenesis, reporting differentially methylated genes that were found among the 

top-ranked genes in previous AD methylome studies conducted on various brain 

regions, including the frontal and temporal cortices (Altuna et al., 2019). They validated 

some of the differentially methylated positions using bisulfite cloning sequencing, 

observing differential methylation in genes such as RHOB, which showed a significant 

correlation with tau burden. RHOB is involved in cell-cell interaction and adhesion, 

essential processes for maintaining synaptic integrity and communication (McNair et 

al., 2010; Vega et al., 2015). This suggests that the methylation changes observed in 

the hippocampus may reflect broader patterns relevant to AD pathology.  

DNA methylation changes in AD also occur in a brain region-specific manner, 

reflecting the complex interplay between genetic risk factors, environmental 

influences, and amyloid pathology. Several studies have identified distinct DNA 
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methylation patterns in regions particularly vulnerable to amyloid plaque accumulation, 

emphasizing their role in disease progression. The middle temporal gyrus (MTG), 

heavily affected by amyloid deposition, shows significant DNA methylation changes 

linked to neurodegeneration and cognitive decline (Piras et al., 2023). The 

parahippocampal gyrus (PHG), another key region associated with neuritic amyloid 

plaques, exhibits specific methylation patterns indicative of early cognitive dysfunction 

(Wang et al., 2023). As a hub for memory and spatial navigation, these epigenetic 

changes may reflect its critical role during the early stages of AD pathology. In the later 

stages of AD, the prefrontal cortex (PFC)—essential for executive functions and 

higher-order cognition—shows pronounced methylation changes. These alterations 

strongly correlate with the burden of neuritic amyloid plaques, suggesting a 

progressive relationship between methylation, amyloid accumulation, and cognitive 

decline (De Jager et al., 2014). 

Iwata et al. reported that aberrant DNA methylation on AD-related genes such as, 

APP, MAPT, and glycogen synthase kinase 3 beta (GSK3B), is associated with AD 

(Iwata et al., 2014). Roubroeks et al. further indicated that differential methylation at 

specific loci within the HOXB6 gene correlates with cognitive dysfunction in AD 

patients (Roubroeks et al., 2020). In a comprehensive analysis, Semick et al. 

conducted an integrated study of DNA methylation and gene expression across 

multiple brain regions, implicating several novel genes contributing to AD. They found 

that differential methylation was enriched in genes associated with biological 

processes hypothesized to underlie AD pathology, such as cell adhesion and calcium 

ion homeostasis (Semick et al., 2019). This suggests that the methylation changes in 

these genes may play a role in the neurodegenerative processes characteristic of AD. 

Additionally, Watson et al. identified differentially methylated regions (DMRs) in the 

superior temporal gyrus, with the majority showing hypermethylation in AD cases 

compared to controls. This study emphasizes the complexity of methylation changes 

in AD and the potential for these DMRs to serve as biomarkers for the disease (Watson 

et al., 2016). Bakulski et al. also reported significant differences in DNA methylation 

between late-onset AD patients and cognitively normal controls, identifying specific 

genes that were differentially methylated in the frontal cortex, which is critical for 

cognitive functions (Bakulski et al., 2012).  
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The ability to detect these early methylation changes holds immense promise for the 

development of stage-specific biomarkers, which could improve the precision of 

diagnostic tools by identifying individuals at risk before clinical symptoms emerge. 

Targeting these epigenetic modifications could offer new avenues for therapeutic 

intervention, potentially slowing or even preventing the progression of Alzheimer's 

disease. Ultimately, this research could lead to more personalized approaches in both 

diagnosis and treatment, tailoring interventions to the molecular changes occurring at 

different stages of the disease. 

1.4 Application of long-read DNA sequencing to genome-wide 
methylation analysis in AD mouse models 

Long-read sequencing has potential to transform our understanding of the epigenetic 

landscape in AD. This technology enables the direct detection of  DNA modifications 

without the need for bisulfite treatment, which can introduce biases and artifacts (Lüth 

et al., 2021). Long-read sequencing, thus, offers a more accurate and genome-wide 

view of the methylation landscape without the biases associated with bisulfite 

treatment (Sigurpalsdottir et al., 2024). For instance, a single PromethION flow 

cell can generate up to 290 billion base pairs of sequencing data—more than enough 

to detect subtle, yet significant (Snajder et al., 2023).  

Beyond its role in epigenetics, long-read sequencing is transforming transcriptomic 

analysis, particularly in model systems where it provides unparalleled accuracy in 

isoform detection. One of the key advantages of model systems is the ability to work 

with biologically consistent experimental groups, allowing for robust identification of 

recurrent isoforms within the same disease or pathology context. This consistency not 

only reduces experimental variability but also enhances statistical power, leading to 

more reliable exon- and isoform-level expression measurements. In addition 

to facilitating the discovery of novel RNA isoforms and alternative splicing events, 

long-read sequencing enables cross-model validation, ensuring that observed 

transcriptomic changes are biologically meaningful and reproducible across different 

systems. Recent studies have demonstrated that long-read sequencing captures 

previously undetected transcriptomic complexity, revealing new isoforms and splicing 

patterns that may play critical roles in disease mechanisms (Gallo et al., 2024; Leung 

et al., 2021, 2023).  
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In this thesis, the AppNL-G-F knock-in mouse model was used at 9 months of age, 

representing an early prodromal stage of AD. This model incorporates three familial 

AD mutations (Swedish, Iberian, and Arctic) within the endogenous APP gene, leading 

to robust amyloid-β pathology without the confounding effects of transgene 

overexpression. Compared to traditional transgenic models, which often rely on 

supraphysiological APP expression, AppNL-G-F more accurately reflects physiological 

amyloid accumulation and its associated molecular changes. However, a key limitation 

of this model is its inability to fully recapitulate tau pathology, a defining feature of late-

stage AD. Additionally, the Arctic (G) mutation presents another constraint: while it 

enhances Aβ aggregation, the resulting Aβ sequence and conformation differ from 

those observed in sporadic AD cases. Despite this, it remains a powerful system for 

investigating early amyloid-driven disease mechanisms, particularly in the context of 

transcriptional and epigenetic alterations that precede neurodegeneration. 

We leveraged the long-read DNA sequencing to explore how adjacent CpG sites are 

methylated, investigating where methylation occurs in the genome within CpG sites. 

This fine-scale resolution of CpG methylation is correlated to the gene expression, to 

investigate whether epigenetic changes may potentially drive gene regulation and 

disease progression. We initially focused on characterising known and novel isoforms, 

differential RNA isoform usage and isoform switch, and finally alternative splicing in 

the AppNL-G-F mouse model, examining how these changes may relate to amyloid 

pathology. In parallel, we performed genome-wide DNA methylation analysis to 

identify differentially methylated regions (DMRs) associated with amyloid 

accumulation. Finally, by integrating transcriptomic and epigenomic data, this study 

aims to uncover methylation patterns and potential novel regulatory mechanisms 

relevant to AD progression. Additionally, we compared these molecular alterations 

between mouse models and human AD brains, to identify conserved pathways and 

candidate genes that could contribute to disease mechanisms and serve as potential 

biomarkers. 

1.5 Thesis aims  
To investigate the molecular mechanisms underlying early AD by focusing on 

transcriptomic and epigenomic changes in response to amyloid pathology. 

Specifically, it seeks to: 
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1. Characterize differential RNA isoform usage and alternative splicing in genes 

using long-read RNA sequencing in the AppNL-G-F mouse model, with an 

emphasis on understanding how these changes contribute to interactions 

between cell-types and cellular processes, including synaptic changes and 

microglial activation, during the early stages of amyloid pathology. 

2. Identify novel transcript isoforms and annotate genome-wide, absent from 

current catalogues, revealing previously uncharacterized mechanisms of gene 

regulation that may be critical in AD progression. 

3. Explore genome-wide DNA methylation patterns in the same mouse model 

using long-read DNA sequencing, identifying DMRs associated with amyloid 

pathology. 

4. Investigate the relationship between DNA methylation and expression,  and 

correlating these with changes in gene expression to uncover how epigenetic 

modifications may regulate transcriptomic changes in AD, potentially 

contributing to disease progression. 

5. Compare the new transcriptomic and DNA methylation between mouse models 

and human AD brains to identify common pathways and candidate genes that 

could serve as biomarkers or therapeutic targets. 
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Chapter 2 

2 Long-read transcriptomic identification of 
synaptic adaptation to amyloid pathology in the 
knock-in AppNL-G-F mouse model of the earliest 
phase of Alzheimer's disease  

2.1 Introduction 
Alternative splicing is a mechanism by which a single gene can produce multiple 

distinct mRNA transcripts, achieved by the selective inclusion or exclusion of exons 

during the processing of pre-mRNA (Frankish et al., 2012; Mudge et al., 2011). The 

composition of regulatory sequences in the mature mRNA can influence various 

properties of the transcript, such as its stability, efficiency of translation, and 

localization within the cell. For transcripts that are translated into proteins, alternative 

splicing can lead to differences in protein domains, variation in expression and protein 

levels, altered cellular localization, or the complete loss of a functional protein, as seen 

in cases involving nonsense-mediated decay.  

2.1.1 Aims and objectives  

The aim of chapter 2 is to investigate the transcriptomic changes, particularly focusing 

on alternative splicing and isoform usage, in response to amyloid pathology in the 

AppNL-G-F mouse model of AD. To elucidate how these molecular changes contribute 

to difference cellular processes during AD during the earliest phases of amyloid, 

following objectives were set: 

1. Identify differentially expressed genes and isoforms in response to amyloid 

pathology and obtain expected enrichment of microglia-expressed AD risk 

genes. Perform cell type enrichment analysis to understand whether isoform-

level expression is enriched in cell types other than immune cells.  

2. Examine alternative splicing events and isoform usage genome-wide and 

uncover novel mechanisms of transcript regulation in response to amyloid 

plaques. 
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3. Perform functional annotation and pathway enrichment analysis to explore the 

biological significance of gene and isoform level analysis, highlighting their 

potential contributions to AD. 

2.2 Methods 
2.2.1 Animal genetics and experimental design 

The AppNL-G-F mouse model (Apptm3.1Tcs, MGI:5637817)(Saito et al., 2014)  was 

maintained on a C57BL/6J genetic background as a heterozygous backcross. Cohorts 

of homozygous and WT controls were generated by heterozygous crosses. The study 

used App+/+ (WT allele homozygotes) male n=23, female n=21, and AppNL-G-F/NL-G-F 

(mutant allele homozygotes) male n=15, female n=24. Animals were housed under 

specific pathogen-free (SPF) conditions in individually ventilated cages at the Mary 

Lyon Centre, MRC Harwell Institute, with 3-5 animals per cage. Mice had access to a 

cardboard tunnel with bedding material and wood chips (grade 4 aspen) and were 

provided with water and RM3 chow ad libitum. To generate WT and homozygous 

AppNL-G-F animals, heterozygous AppNL-G-F animals were bred in an intercross. Animals 

were euthanized under sodium pentobarbitone (Euthatal) anaesthesia by terminal 

perfusion with 1X phosphate-buffered saline (PBS) in accordance with the Animals 

(Scientific Procedures) Act 1986 (United Kingdom). The right hemisphere of the brain 

was separated and fixed in 10% buffered formal saline, while the left hemisphere was 

dissected into cortex, hippocampus, and cerebellum, snap-frozen on dry ice, and 

stored at -70°C. 

A subset of these animals were used for long-read sequencing analysis App+/+ (WT 

allele) male n=3, female n=3, and AppNL-G-F/NL-G-F (homozygous for the mutant allele) 

male n=3, female n=3. A further subset of animals were used for biochemical amyloid-

β quantification App+/+ (WT allele) male n=6, female n=6, and AppNL-G-F/NL-G-F 

(homozygous for the mutant allele) male n=6, female n=6. At the time of the 

experiment, no long-read bulk RNA-seq datasets were available for AD mouse 

models, particularly for the diverse types of analyses conducted in this study, such as 

transcript-level differential gene expression and isoform usage. Consequently, the n=6 

sample size was selected based on established short-read bulk RNA-seq standards, 

where this number has been shown to provide sufficient power for detecting gene 

expression differences. Additionally, to mitigate potential confounding factors, groups 
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were sex-balanced, and samples were randomised across sequencing batches to 

control for gender and batch effects. 

2.2.2 DNA extraction and genotyping 

DNA was extracted from ear biopsy, isolated at postnatal day 14 using TaqMan 

Sample-to-SNP (Applied Biosystems). Mice were genotyped for the AppNL-G-F allele 

using TaqMan multiplexed qPCR for the NL mutant and WT App alleles and Dot1l 

reference allele; using the following primers (forward 5′-

GGAAGAGATCTCGGAAGTGAAGA-3′; reverse 5′- 

CAGTTTTTGATGGCGGACTTCAA-3′) and probes (5′-FAM- 

TGGATGCAGAATTCGGACATG-BHQ1-3′) for the App WT allele and the following 

forward 5′-CGGAAGAGATCTCGGAAGTGAATCT-3′; reverse 5′- 

ACCAGTTTTTGATGGTGGACTTCA-3′) and probes (5′- FAM- 

AGATGCAGAATTCAGACATGATTC-BHQ1-3′) for the AppNL mutant allele and Dot1l 

allele primers (forward 5′-TAGTTGGCATCCTTATGCTTCATC-3′; reverse 5′-

GCCCCAGCACGACCATT-3′) and probe (5′- VIC-CCAGCTCTCAAGTCG-MGBNFQ-

3′). G and F mutant and WT App alleles were genotyped using allelic discrimination 

assays; using the following primers for the App WT/G allele (forward 5′-

CGATGATGGCGCCTTTGTTC-3′; reverse 5′-GTTGCCTCTTGCGCTTACAG-3′) and 

probes (App-WT allele 5′-TET-ACCCACATCTTCAGCAA-BHQ1-3′ and App-mutant 

(G) allele 5′- FAM-CCACATCTCCAGCAAA-BHQ1-3′) and the following primers for the 

App WT/F allele (forward 5′-GTGGGCGGCGTTGTCA-3′; reverse 5′- 

CGCCATGATGGATGGATGTGTA -3′) and probes (App-WT allele 5′- FAM-

AGCAACCGTGATTGTCAT-BHQ1-3′ and App-mutant (F) allele 5′-TET-

AGCAACCGTGTTTGTC-BHQ1-3′).  

2.2.3 Tissue preparation 

Following perfusion with PBS (pH 7.4) brain samples were dissected and divided along 

the sagittal midline with one hemisphere immersion fixed in 10% NBF (neutral, 

phosphate buffered formalin) for a minimum of 48 hours prior to tissue processing and 

paraffin embedding. Once dissected, tissue samples were dehydrated, cleared, and 

processed into paraffin wax using a Tissue-Tek VIP 6 AI (Sakura) tissue processor 

and finally embedded into paraffin wax blocks using a HistoCore Arcadia (Leica). The 
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remaining hemisphere was further dissected into the hippocampal and cortex regions 

which were then placed into cryotubes and immediately snap frozen in liquid nitrogen. 

2.2.4 Immunohistochemistry of mouse brain 

The formalin-fixed paraffin-embedded (FFPE) blocks were trimmed dorsally to give a 

coronal section of either the ventral or dorsal hippocampus. For each FFPE block, two 

4 μm tissue sections (40 μm apart) were mounted onto SuperFrost Plus slides for 

subsequent staining and analysis. First, the tissue sections were deparaffinized and 

rehydrated in a Gemini AS Automated Stainer (Epredia) using xylene and a series of 

ethanol baths (100%, 95%, 85%) and washed with distilled water. The sections were 

then pretreated with 80% formic acid for 8 minutes. After pretreatment, a Ventana 

ULTRA automated stainer was used for the following; heat-induced epitope retrieval 

was performed for 16 minutes at 100oC in Tris boric acid EDTA buffer (Ventana 

Medical Systems, 06414575001); endogenous peroxidases were quenched with 

Inhibitor D (DABMap™, Ventana Medical System); the primary antibody incubation 

was performed using biotinylated mouse monoclonal IgG1 antibodies against Aß 

(82E1, IBL, 0.2 μg/ml) for 8 hours at room temperature; chromogen visualization was 

achieved using Ventana DABMap™ kit (Ventana Medical Systems); the sections were 

counterstained with Haematoxylin II (4 minutes, Ventana Medical Systems) and 

treated with a bluing agent (4 minutes, Ventana Medical Systems) for clearer imaging. 

Stained slides were washed with a mild detergent and dehydrated/cleared in a Gemini 

AS Automated Stainer using a series of ethanol baths (85%, 95%, 100%) and xylene. 

Stained slides were then mounted with coverslips using a ClearVue Coverslipper 

(Epredia) before slide scanning with the Zeiss Axio Scan Z1 slide scanner. 

Regions of interest (ROI) of cortex and hippocampus for each tissue section were 

selected from the scans using QuPath (Bankhead et al., 2017). Analysis of ROI 

images was conducted with an ImageJ macro (Abràmoff et al., 2004). Briefly, a 

standard threshold of pixel value was used to create a binarized mask (Binary Mask 

plugin) of all ROI images. Pixels above the threshold were identified as Aβ staining, 

while pixels below the threshold were identified as not containing Aβ staining. ImageJ 

quantified the percentage of the pixels within the ROI covered by the mask (Analyze 

Particles plugin), thus, positive for staining. 
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2.2.5 Tissue fractionation for amyloid-β MSD assay 

Total cortical proteins were fractionated based on the method in Shankar et al. (2009) 

(Shankar et al., 2009). Total cortex was homogenized in three volumes of the weight 

of the heaviest sample of ice-cold Tris-buffered saline (TBS) (50 mM Tris-HCl pH 8.0) 

plus complete protease and phosphatase inhibitors (Roche). Homogenates were 

centrifuged at 186 000 g at 4°C for 30 min, and the resultant supernatant (the soluble 

TBS fraction) was stored at −80°C. The resultant pellet was homogenized in three 

volumes times the heaviest sample of 1% Triton™ X-100 in TBS plus complete 

protease and phosphatase inhibitors (Roche) and centrifuged at 186 000 g at 4°C for 

30 minutes, and the resultant supernatant (the Triton soluble fraction) was stored at 

−80°C. The resultant pellet was homogenized in three volumes of 50 mM Tris-HCl 

buffer, pH 8.0, containing 5 M guanidine-HCl plus complete protease and phosphatase 

inhibitors (Roche). This resuspension (the guanidine HCl soluble fraction) was 

incubated at 4°C for a minimum of 14 hours with shaking and was stored at −80°C. 

Protein concentration was determined by Bradford assay (Bio-Rad). 

Samples were then analysed by human amyloid-β 6E10 Triplex (Meso Scale 

Discovery) following the manufacturer’s protocols. Briefly the TBS, Triton, and 

guanidine HCl soluble fractions were diluted into Diluent 35 (Meso Scale Discovery) 

and added to a precoated plate prior to addition of amyloid-β detection antibody and 

incubation overnight at 4°C (Meso Scale Discovery). After washing, Read Buffer 

(Meso Scale Discovery) was applied immediately prior to plate reading on a Meso 

Scale Discovery Sector Imager S600. Analyte data (pg/ml) was normalised to weight 

of brain region divided by total buffer homogenised in (mg/ml) to result in amount of 

amyloid-β analyte per brain weight (pg/mg). 

2.2.6 Long-read RNA-sequencing and data pre-processing 

Total RNA was extracted from tissue samples using the Monach Total RNA kit (NEB) 

and assessed for quality using RNA Integrity Number (RIN) values via Tapestation 

(Agilent). Libraries were prepared using the PCR-cDNA Barcoding kit (SQK-PCB109) 

from Oxford Nanopore Technologies, following the manufacturer's protocol. Briefly, 50 

ng of total RNA were converted into cDNA through reverse transcription using Maxima 

H Minus Reserve Transcriptase. A strand-switching primer was added to guarantee 

the selection of full transcripts. cDNAs were amplified and barcoded with a unique 

javascript:;
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barcode through a 15 cycle PCR with 7 minutes of extension time. Six pools composed 

of two samples each (thus two individual mice pooled, one mutant and one WT in each 

pool) were created and purified using Ampure XP beads. After adapter ligation, each 

pool was sequenced in a PromethION flow cell (FLO-PRO002) for 72 hours. Flow cells 

were refuelled when the translocation speed was low, and washed once and reloaded 

with another library aliquot. Base calling was performed in real time with the “High 

accuracy base calling” mode using Guppy 4.3.4. 

2.2.7 Pipeline 

Quality control was performed with fastQC (Simon Andrews, 2020) on the raw 

sequencing data. Around 30 million reads for each sample passed the initial QC step 

and the estimated N50, statistical measure of average length of a set of sequence, 

was found to be ~1kb. The pipeline from Oxford Nanopore Technologies, 

IsoformSwitchAnalyzer, and PSI-Sigma tools were used to obtain transcript assembly, 

differential isoform usage and splicing detection, respectively.  

2.2.8 Genomic alignment 

Raw reads obtained from Oxford Nanopore Technology (ONT) flow cells were aligned 

to the latest release of the GENCODE reference genome (GRCm39) with Minimap2 

(Li, 2018). The alignment parameters ‘-ax splice: hq -uf –secondary=no’ were used for 

the splice-aware alignment. The latest GENCODE annotation (GRCm39) was used 

for the junction information. The bam files were sorted with samtools (Li et al., 2009).  

2.2.9 Gene and isoform abundance estimation  

Assembly (gtf) files of each sample were used as an input list to the prepDE.py function 

according to the manual of StringTie (Pertea et al., 2015, 2016). For the quantification 

step, all gtf files were collapsed using Stringtie --merge option. The merged gtf file was 

used for the quantification of the isoforms. StringTie -eB parameters were used to 

obtain read-count data.   

2.2.10 Differential expression analysis with DESeq2 

Gene and isoform level differential expression analysis were performed with DESeq2 

(Anders et al., 2012; Love et al., 2014) with raw counts obtained from StringTie (Pertea 
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et al., 2016) as described in Pertea et al. (2016). Sex was included to the contrast 

design.  

2.2.11 Exon and isoform usage via DEXSeq  

Differential transcript usage (DTU) analysis between genotypes was performed using 

DEXSeq (Anders et al., 2012). For exon usage, the full experimental design formula 

used for this analysis was ~sample + exon + Sex:exon + Genotype:exon. To isolate 

the specific effects of genotype, the full model was compared to a reduced model 

(~sample + exon + Sex:exon). The statistical test for differential exon usage was 

carried out using the testForDEU function in DEXSeq, which compares the full model 

to the reduced model and identifies significant differences in exon usage attributed to 

genotype. 

For isoform usage, a similar approach was used, with the focus on detecting 

differential isoform usage across genotypes. This was tested separately from exon 

usage. Isoform-level differences were assessed by comparing the usage of specific 

transcript isoforms between the two genotype groups, using the same model design 

framework to control for sex and sample effects. Statistical significance for differential 

isoform usage was also determined using the testForDEU function. 

2.2.12 Functional annotation via two-stage tappAS analysis 

We conducted additional detailed analysis of isoform diversity and functional 

consequences using tappAS (De La Fuente et al., 2020), a Java Application that 

integrates various functional analyses of isoforms. We used several existing tools 

implemented in tappAS for our analysis. To generate a functionally annotated gtf file, 

we used IsoAnnotLite (https://isoannot.tappas.org/) with a SQANTI3 output (Tardaguila 

et al., 2018)  file obtained from abovementioned merged gtf file from StringTie to 

provide input to tappAS Application to perform the DTU analysis(De La Fuente et al., 

2020). The sqanti3_qc.py and sqanti3_filter.py functions were used with the merged 

gtf file from gffcompare (Pertea & Pertea, 2020). tappAS additionally outputs isoform 

usage and isoform switch, which was included in the GO annotations of the usage and 

switch analyses. 

https://isoannot.tappas.org/
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2.2.13 Isoform switch analysis and predicted functional 
consequences 

We performed isoform switch analysis using IsoformSwitchAnalyzer (Vitting-Seerup 

et al., 2019). Briefly, we identified isoform switches using the merged transcript 

assembly from StringTie (Pertea et al., 2015), and generated isoform-level count data 

using prepDE.py function. Next, we checked whether the transcripts of interest 

contained Open Reading Frames (ORF/CDS) (Vitting-Seerup et al., 2014; Vitting-

Seerup & Sandelin, 2017), as assesed by coding potential calculator version 2 (CPC2) 

(Y. J. Kang et al., 2017). We also evaluated whether the isoform switches resulted in 

any changes in protein domains using the protein family database (Pfam) (Mistry et 

al., 2021), idenfidied the presence of signal peptides and their cleavage sites using 

signal peptide prediction tool (SignalP) (Almagro Armenteros et al., 2019), and 

analysed intrinsically disordered regions using intrinsically disordered protein 

prediction tool version 2A (IUPred2A) (Mészáros et al., 2018). Finally, we performed 

Gene Ontology (GO) (Harris et al., 2004) and pathway enrichment analysis on the 

transcripts showing switch events. For isoform switch/usage overlap analysis with 

human AD data, short-read RNA-seq data from the Mayo Clinic, Mount Sinai Brain 

Bank (MSBB), and ROSMAP cohorts were incorporated (Marques-Coelho et al., 

2021). 

2.2.14 Alternative splicing analysis 

We used PSI-Sigma for comprehensive splicing detection for long-read RNA-seq (Lin 

& Krainer, 2019). Compared to other alternative splicing analyses methods, PSI-

Sigma has several advantages over short-read splicing detection tools such as 

covering important alternative splicing events, such as multiple-exon-skipping (MES) 

or more complex splicing events.  

2.2.15 Data Availability 

All data will be made available via GEO. The dataset for differential transcript usage 

comparisons across Mayo Clinic, Mount Sinai Brain Bank (MSBB), and ROSMAP 

cohorts (Marques-Coelho et al., 2021) is available at 

https://diegomscoelho.github.io/AD-IsoformSwitch/. 

 

https://diegomscoelho.github.io/AD-IsoformSwitch/
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2.2.16 Software and Algorithms 
 

Minimap2 (Li, 2018) Long-read aligner https://github.com/lh3/minimap2 

Pychopper Identifying, orienting and trimming 
full-length Nanopore cDNA reads https://github.com/epi2me-labs/pychopper 

StringTie (Pertea et al., 
2015) Transcriptome assembly https://github.com/gpertea/stringtie 

GffCompare (Pertea & 
Pertea, 2020) 

Comparing and annotating 
transcriptome annotations https://ccb.jhu.edu/ / stringtie/gffcompare.shtml 

clusterProfiler (Wu et al., 
2021; Yu et al., 2012) Gene set enrichment analysis https://bioconductor.org/packages/release/bioc/html/clusterProfiler.

html 

Snakemake (Köster & 
Rahmann, 2012) 

Workflow management system that 
helps build reproducible and 
scalable data analyses. 

https://snakemake.readthedocs.io/ 

Salmon (Patro et al., 2017) Used for quantifying gene 
expression from RNA-seq data https://salmon.readthedocs.io/. 

DESeq2 (Love et al., 2014) 
Statistical software package for 
differential expression analysis of 
RNA-seq data 

https://bioconductor.org/packages/release/bioc/html/DESeq2.html  

DEXSeq (Anders et al., 
2012; Tardaguila et al., 
2018) 

Used for analysis of differential 
exon usage in RNA-seq data https://bioconductor.org/packages/release/bioc/html/DEXSeq.html 

https://snakemake.readthedocs.io/
https://salmon.readthedocs.io/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DEXSeq.html
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CoExpNets (Botía et al., 
2017) 

Weighted Gene Co-expression 
Network Analysis with additional k-
means clustering  

https://github.com/juanbot/CoExpNets 

SQANTI3 (Tardaguila et al., 
2018) Transcriptome quality control https://github.com/ConesaLab/SQANTI 

stageR (Van den Berge et 
al., 2017) 

Statistical analysis of gene 
expression data https://bioconductor.org/packages/release/bioc/html/StageR.html 

tappAS (De La Fuente et al., 
2020; Van den Berge et al., 
2017) 

Computational framework for 
functional transcriptomics analysis https://App.tappas.org 

PSI-Sigma (Lin & Krainer, 
2019) Splicing detection method https://github.com/wososa/PSI-Sigma 

https://bioconductor.org/packages/release/bioc/html/StageR.html
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2.3 Results 
2.3.1 Gene-level expression changes confirm microglial proliferation and 

activation 

To investigate the impact of amyloid pathology on transcription isoforms and splicing 

of gene expression, we performed long-read RNA-seq on total cortical RNA of AppNL-

G-F knock-in mice and littermate C57BL/6J controls at 9 months of age. Initially amyloid 

accumulation was confirmed and shown to be similar to previous studies (Benitez et 

al., 2021; Saito et al., 2014) (Fig. 2.1., Fig. 2.2.). We analysed the long-read RNA-seq 

to determine differential gene-level expression, usage of individual transcript isoforms, 

exon switching, alternative splicing, alternative polyadenylation sequences and 

changes to the protein coding sequence, using DESeq2 (Love et al., 2014), DEXSeq 

(Anders et al., 2012), PSI-Sigma (Lin & Krainer, 2019; Vitting-Seerup et al., 2019), 

IsoformSwitchAnalyzer (Vitting-Seerup et al., 2019), and tappAS which is a part of the 

Functional Iso-Transcriptomics (FIT) framework (De La Fuente et al., 2020). 

 

 

Figure 2-1 Aß plaque coverage via immunohistochemistry in AppNL-G-F mice in 
dorsal hippocampus and cortex. 

(A) This figure illustrates the Aß plaque coverage in both female and male AppNL-G-F  

mice in dorsal hippocampus and cortex compared to WT controls. (B) Immunostained 
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brain sections from both AppNL-G-F   mice (left panels) and WT control mice (right 

panels) reveal Aβ plaque staining exclusively in AppNL-G-F   mice, highlighting the 

distinctive Aβ distribution. 

 

Figure 2-2 Aβ plaque coverage via immunohistochemistry in AppNL-G-F  mice 
mice in ventral hippocampus and cortex.  
(A) This figure presents Aβ coverage measured by immunohistochemistry assay in 

ventral hippocampus and cortex, categorized by gender AppNL-G-F mice compared to 

controls. (B) Immunostained brain sections in both AppNL-G-F mice and control mice 

show Aβ staining specifically in AppNL-G-F mice, emphasizing the unique Aβ 

distribution pattern in these mice.  

Our differential gene-level expression analysis using DESeq2 confirmed the expected 

gene-level changes at the age of 9 months in the cortex, as seen in previous studies 

with short read RNA-seq using the same mouse model (Sala Frigerio et al., 2019), 

and other mouse models with amyloid plaques (Keren-Shaul et al., 2017; Matarin et 

al., 2015; Salih et al., 2019). 

Our analysis identified 178 differentially expressed genes (176 upregulated and 2 

downregulated, |log2FC| > 0.5 and FDR < 0.05) in AppNL-G-F knock-in versus control 

mice (Fig. 2.3a; Supplementary Table 2.1.), showing a significant overlap with the 

amyloid-responsive microglia (ARM), also known as the disease-associated microglial 
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(DAM) gene cluster identified in previous literature using single-cell RNA-seq analysis 

(Fisher's exact test, p-value < 2.2e-16)(Keren-Shaul et al., 2017), including many well-

known genes such as Trem2, Tyrobp and Ctsd, and orthologues of many AD risk 

genes. Biological annotation of the differentially expressed genes highlighted terms 

associated with the expected immune system associated processes in AppNL-G-F mice 

(Fig. 2.3b), reflecting the proliferatiovn and activation of microglia. Network analysis to 

identify the co-expressed genes in response to amyloid produced a genetic network 

representing amyloid-responsive microglia, with Spi1 and Ctsd as hub genes, which 

are proposed to drive the observed transcriptional response to amyloid (Fig. 2.3c; 

Supplementary Table 2.2.). This amyloid-responsive microglial network was similar to 

those described previously by our group by short-read RNA-seq and microarrays in 

other mouse models with amyloid plaques (Matarin et al., 2015; Salih et al., 2019). 

We also investigated if changes in gene-expression were sex-dependent, but only a 

limited number of differentially expressed genes were observed to be dependent on 

sex at 9 months of age (6 differentially expressed genes; Supplementary Table 2.3.). 

These limited genes had no obvious enrichment for known biological annotations, and 

this indicated that sex-dependent changes in gene expression were limited at this 

relatively young age of 9 months.  
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Figure 2-3 Gene-level differential expression analysis in AppNL-G-F versus 
control mice at 9 months of age using long-read RNA-seq 

(A) The differential expression analysis confirms the microglial response to amyloid 

plaques, with many genes associated with ARM/DAM (e.g. Trem2, Tyrobp, Ctsd, 

C1qb), assessed by DESeq2 (FDR < 0.05). The analysis was performed on a cohort 

B 
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of n=6 mice for each genotype, with an equal representation of n=3 males and 3 

females per genotype. (B) Differentially expressed genes are enriched for immune cell 

activation pathways, indicating a microglial response to amyloid plaques. (C) The 

coexpression  analysis of gene-level expression using long-read RNA-seq reveals an 

overlap with the ARM/DAM response generated using short-read sequencing data 

(Keren-Shaul et al., 2017; Sala Frigerio et al., 2019). 

2.3.2 Isoform-level differential expression changes refine myeloid cell 
function 

A number of isoforms, such as  Ccl6-201, chemokine (C-C motif) ligand 6 (Fig. 2.4a; 

Supplementary Table 2.4.), displayed significant fold-expression changes at the 

transcript level as compared to whole gene expression level. Specific Trem2 isoforms 

(ENSMUST00000113237.3, log2FC = 2.75, FDR =  3.41e-118 

 and ENSMUST00000024791.14, log2FC = 2.28, FDR = 6.41e-42), an Apoe isoform 

(ENSMUST00000174064.8), and a Gfap isoform (ENSMUST00000067444.9, log2FC 

= 2.60, FDR = 4.38e-46), amongst others, were highly expressed in the cortex of 

AppNL-G-F mice compared to WT controls.  

This suggests that certain genes may exert effects via the transcript level, potentially 

driving specific microglial network functions, in response to the amyloid pathology (Fig 

2.4a). Our isoform-level annotation via GO terms revealed changes in chemokine 

activity, reduced endopeptidase activity, and signalling receptor regulation (Fig. 2.4b). 

The hub isoforms represented by gene names in Fig. 2.5 are likely to be major cellular 

drivers at the isoform-scale, which are not evident at the gene level, suggesting 

specific isoforms of genes may contribute to the early pathological changes. Our 

findings highlight the significance of isoform-level changes, which offer new insights 

into subtle yet significant cellular alterations that may go unnoticed at the gene level. 

This observation emphasizes the importance of considering isoform-level dynamics to 

fully comprehend the molecular mechanisms underlying the response to pathology. 

Moreover, the enrichment of genes with altered expression within the broader innate 

immune response pathway suggests that these genes may contribute to functional 

differences in the orchestrated immune response to pathology. These findings 

underscore the complex interplay between isoform-level regulation and the broader 

gene-level enrichment within the innate immune response pathway. 
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Figure 2-4 Transcript isoform-level expression analysis and enrichment of 
immune-related pathways. 

(A) Isoform-level expression analysis revealed that several transcripts, such as 

Tyrobp-201, Ccl6-201, exhibited greater fold-expression level changes at the 

transcript-level compared to the gene-level, assessed by DESeq2 (FDR < 0.05). This 

suggests strong preference bias of specific transcript isoforms in response to amyloid 

pathology (n=6 per genotype). (B) Enrichment analysis showed prominent enrichment 

of cytokine activity, membrane transport and metabolism. GO enrichments highlight 

the importance of isoform-level changes in understanding the cellular response to 

pathology and underscore the interplay between isoform-level regulation and the 

broader gene-level enrichment within various pathways encompassing the innate 

immune response pathway and membrane trafficking. 
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Figure 2-5 Microglial isoform-level coexpression network. 

This figure depicts the coexpression network of isoforms that are differentially 

expressed in response to amyloid pathology. For simplicity, isoforms are labeled by 

their corresponding gene names and are predominantly expressed in microglial cells. 

2.3.3 Novel transcript isoforms of familial AD genes and risk genes 

The use of genome-wide long-read RNA-seq enabled the identification of several 

transcript variants originating from the canonical dementia causative and risk genes. 

Notably, novel transcripts of Apoe, App, Mapt, and Oas1a were discovered, that were 

previously absent in the Ensembl catalogue (Supplementary Table 2.5.). Among 

these, compared to the reference annotation in Fig. 2.6a, we note a novel  Apoe anti-

sense transcript represented by StringTie identifier MSTRG.40715.1 (Fig 2.6b). While 

the various transcripts of these dementia causative and risk genes likely play distinct 

roles under specific conditions (e.g. during development), the changes in the levels of 

these isoforms at 9 months of age were not dependent on Aß. 
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Figure 2-6 Integrative Genomic Viewer visualization of all detected Apoe transcripts. 

(a) Canonical Apoe transcripts in reference annotation (NCBI Mus Musculus 109). The common Apoe-201 isoform is shown at 

bottom. (b) The isoforms detected via long-read RNA-seq represents two novel transcript variants of the Apoe gene. In addition to 

the canonical transcripts, our analysis uncovered two novel transcripts (MSTRG.40715.1, MSTRG.40714.3), including an antisense 

transcript aligned in the reverse direction of the reference genome. 
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2.3.4 Detecting genome-wide splicing patterns, isoform switching, and 
isoform/exon usage using long-reads 

We employed the DEXSeq analysis to investigate the intricate mechanisms underlying 

gene and transcript expression in AppNL-G-F mice compared to controls. This method 

utilizes a negative binomial distribution to model the feature counts of each gene, such 

as exons, and incorporates Generalized Linear Models with interaction terms to 

capture the interplay between different features within the same gene (Anders et al., 

2012; Love et al., 2018) (Supplementary Table 2.6). To gain further insights into the 

landscape of alternative splicing, we initially performed differential transcript usage 

(DTU) and differential exon usage (DEU) analyses, which are calculations based on 

isoform and exon fraction per sample. Changes in isoform usage provide additional 

clarity on instances where the proportional contribution of isoforms relative to the 

overall gene expression undergoes significant alterations between different genotypes 

(also known as isoform switching). Isoform switch detection and coding potential 

analysis, protein domain identification and external annotations of the novel and 

known isoforms have been performed via the IsoformSwitchAnalyzer tool (Vitting-

Seerup et al., 2019). To further elucidate the functional ramifications of altered 

transcript/exon use and alternative splicing, and their potential effects on changes at 

the protein level, we employed the tappAS tool which is a part of the Functional Iso-

transcriptomics Framework (De La Fuente et al., 2020), also accounting for differential 

polyadenylation usage of transcripts. In addition, we identified the genome-wide 

splicing profile using PSI-Sigma, a tool developed for detecting alternative splicing 

events in both short and long-read RNA-seq (Lin & Krainer, 2019). The combination 

of genome-wide gene- and isoform-level analyses, along with improved transcript 

detection and quantification, enabled us to validate and identify alternative splicing 

events while also predicting their potential functional consequences. Additionally, the 

preferential usage of specific transcript isoforms suggests that the selective 

expression of certain exons may play an important role in mRNA regulation, cellular 

trafficking, and potentially influence protein function by altering the protein sequence. 
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2.3.5 Selective transcript usage and exon usage  

Our genome-wide analysis using DEXSeq and tappAS revealed differential isoform 

usage events in response to amyloid plaques (Fig. 2.7a, Supplementary Table 2.6, 

and 2.7), including several genes associated with the ARM/DAM phenotype, such as 

Apoe (ENSMUST00000174064, FDR= 2.59e-03), Colony Stimulating Factor 1 (Csf1, 

ENSMUST00000120243, FDR = 4.22e-03), Synaptogyrin 1 (Syngr1, 

ENSMUST00000009728, FDR = 6.17e-34), Colony Stimulating Factor 2 Receptor 

Subunit Alpha (Csf2ra, ENSMUST00000235172, FDR = 4.20e-03), Cell Adhesion 

Molecule 2 (Cadm2, ENSMUST00000114548, FDR = 7.00e-03), and Insulin-like 

growth factor 1 (Igf1, ENSMUST00000121952, FDR = 5.20e-05). Strikingly, the GO 

annotations associated with these genes exhibiting transcript preference were 

predominantly enriched in post-synapse organization, microtubule cytoskeleton, 

regulation of MAPK cascade, interferon-γ production, and intracellular signal 

transduction; shedding light on their role on synaptic pathways in response to amyloid 

pathology (Fig. 2.7b). 
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Figure 2-7 Differential transcript usage analysis of genes in AppNL-G-F vs control 
mice at 9 months of age using long-read RNA-seq. 
(a) DEXSeq isoform usage analysis identified a total of 70 transcripts that exhibit 

preferential usage of specific isoforms in response to amyloid plaques (n=6). (b) 

Differentially used transcript isoforms are enriched in postsynaptic organisation, 

regulation of intracellular signal transduction and the MAPK cascade. These findings 

diverge notably from the outcomes observed in both gene-level and isoform-level 

expression analyses.  

The isoform switch results revealed several novel transcript variants  of Capping Actin 

Protein (Capg) in AppNL-G-F animals (denoted MSTRG.38755.8; Fig. 2.8a and 2.8b) 

(Supplementary Table 2.8.). There was a decreased in the usage of the Capg isoform 

ENSMUST00000071044.13, and increase in the  usage of 

ENSMUST000000114071.8 and MSTRG.38755.8 compared to controls. These three 

isoforms may exert different functional consequences, as  MSTRG.38755.8 is a coding 

isoform that lacks a protein domain between amino acid positions 31-107 (Fig 2.8c), 

which could influence the functional role of Capg.  
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Figure 2-8 Capg showed isoform switching and amino acid changes in the 
predicted protein sequences in its novel transcript variant. 
(A) The isoforms detected in the Capg gene. In addition to the canonical transcripts, 

three novel transcripts (MSTRG.38755.8, MSTRG.38755.7, MSTRG.38755.1) were 

found.  (B) Gene-level expression of Capg is increased with amyloid pathology (left 

panel), while isoform expression indicates individual isoforms upregulated in response 

to amyloid pathology (middle panel). Isoform usage analysis with 

IsoformSwitchAnalyzer revealed an isoform-switch pattern in proportional transcript 

use between ENSMUST00000071044.13, ENSMUST00000114071.8 and novel 

transcript variant MSTRG.38755.8 (right panel) (n=6) (C) The novel coding transcript 

(MSTRG.38755.8) lacks a full domain between 31-107 amino acids of the canonical 

isoform ENSMUST00000071044.13 (https://www.uniprot.org/uniprotkb/Q3TNN6).  
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Several other genes including amyloid-responsive microglial genes, Gusb 

(glucuronidase beta; Fig. 2.9a) and PTPRF interacting protein alpha 4 (Ppfia4; Fig. 

2.9b) showed significant isoform switch events, including usage of the novel variant 

MSTRG.2151.1 of Ppfia4.  Capg, transmembrane protein with EGF-like and two 

follistatin-like domains 1 (Tmeff1) and occludin (Ocln) underwent switching of their 

polyadenylation sites in response to amyloid plaques (Fig. 2.9c). Biological annotation 

of genes showing isoform switching indicated enrichment of pathways involving 

development, cytoskeletal protein binding, and cell junction (Fig 2.10b). 

 
Figure 2-9 ARM/DAM gene Gusb and trans-synaptic signalling gene, Ppfia4, 
are amongst alternatively spliced genes showing transcript usage and isoform 
switching 
(A) Gusb shows an isoform switch event in proportional transcript usage (FDR = 2.5e-

06) and single exon skipping event on Exon 3 of ENSMUST00000026613.14 (FDR = 

1.0e-03) and exon usage (FDR = 4.1e-02) in AppNL-G-F mice. (B) Ppfia4 shows an 

isoform switch event for MSTRG.2151.1 (FDR = 3.7e-07), and an exon skipping event 

on Exon 3 (FDR = 5.9e-04) which potentially increases overall isoform expression in 

response to the amyloid as found by IsoformSwitchAnalyzer. (C) tappAS analysis 
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shows altered polyadenylation sites within genes, including Capg, Tmeff, and Ocln, 

demonstrate a switch in polyadenylation patterns between AppNL-G-F and control 

samples (n=6).  

 

This observed change in differential alternative polyadenylation site usage is 

suggestive of alterations in mRNA stability, and RNA-protein binding indicating 

potential regulatory modifications at the post-transcriptional level (Edwalds-Gilbert et 

al., 1997; Kwan et al., 2008; Sheets et al., 1994).  

Furthermore, our analysis discovered multiple instances of exon usage differences in 

key genes such as Cathepsin D (Ctsd), Cathepsin B (Ctsb), Syngr1, BCL2 Related 

Protein A1 (Bcl2a1), App, and Clusterin (Clu) in response to amyloid (Supplementary 

Table 2.9.). Particularly intriguing is the alternative splicing of Clu, which is known to 

modulate β-amyloid metabolism and/or deposition (Raj et al., 2018).  

Changes in exon usage has the potential to lead to specific isoform preferences, as 

exemplified by the Syngr1 gene. We observed an increased usage of Exon 7, Exon 9, 

and Exon 10 (Stage-wise testing, FDR < 0.05), concomitant with decreased usage of 

Syngr1-201, and increased usage of Syngr1-202 isoforms in response to amyloid. This 

isoform switch (FDR = 1.21e-37) highlights the dynamic nature of alternative splicing 

and suggests a potential functional implication in the context of amyloid pathology.  

CYFIP2 has shown decreased protein expression and is associated with memory loss 

in late-stage human AD (Tiwari et al., 2016), our data showed changes in this mouse 

model of early AD, where Cyfip2-205 exhibited changes in usage (Stage-wise testing, 

FDR = 1.82e-05). This mechanistic insight might signify an early phase response to 

amyloid marked by preferential expression of specific mRNA isoforms, eventually 

culminating in the accumulation of tau tangles and transition to the later stages of the 

disease with neurodegeneration (Garcia-Esparcia et al., 2017; Ghosh et al., 2020; 

Ohno, 2018).  

Marques-Coelho et al. (2021) identified differential isoform switch/usage in temporal 

and frontal lobes in healthy and AD adult individuals; mining this data we found several 

genes showing isoform usage changes in mice in response to amyloid also showed 

isoform usage changes in late-stage AD brain. This comparison of short-read and 
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long-read RNA-seq between human and mouse, and between late-stage human AD 

and early amyloid pathology may indicate conservation of response to AD-related 

pathology via mechanisms involving isoform switch and transcript usage in 42 

common genes, including Cathepsin D (Ctsd), Cathepsin A (Ctsa) and clathrin light 

chain A (Clta) (Supplementary Table 2.10.)(Marques-Coelho et al., 2021).  

2.3.6 Alternative splicing analysis in response to amyloid plaques serves 
to adapt cellular cytoskeleton and metabolism 

To identify different alternative splicing events more directly, we used the PSI-Sigma 

software to classify splicing events into five standard types: single or multi-skipped 

exons (SES/MES, also known as cassette exons), alternative 5' and 3' splice sites 

(A5SS and A3SS), intron retention (IR), and mutually exclusive exons (MXE) (Lin & 

Krainer, 2019). We identified approximately one hundred genes (Supplementary Table 

2.11) displaying one of these classes of alternative splicing in response to amyloid 

(Supplementary Table 14). Interestingly, we identified single/multi-exon-skipping 

events in several ARM/DAM genes, including Ctsd, Ctsa, glycosylated type I 

transmembrane glycoprotein (Cd68), glucuronidase beta (Gusb), tumor protein D52 

(Tpd52), and cytokine receptor like factor 2 (Crlf2). Additionally, we found that Csf2ra 

and LYN proto-oncogene, Src family tyrosine kinase (Lyn) exhibited alternative 5' UTR 

splicing sites with amyloid pathology. Overall splicing increased with amyloid 

pathology, with a mean change in Percent Spliced-In (ΔPSI) of 1.76% for all significant 

splicing events (p < 0.01 and |ΔPSI| >= 5%) between AppNL-G-F and WT samples. The 

genes exhibiting alternative splicing in response to amyloid were found to be enriched 

for functions primarily associated with endomembrane system organisation, actin 

filament binding, actin cytoskeleton reorganisations and kinase binding as shown in 

Fig. 2.10a.  
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Figure 2-10 GO enrichment of genes undergoing splicing or isoform switching in response to amyloid pathology. 
(A) GO annotations of spliced genes from PSI-Sigma analysis, highlighting pathways such as endomembrane system organization. 

(B) Isoform-switching genes found by IsoformSwitchAnalyzer enriched in functions like tube development and cellular homeostasis 

(n=6). Dot size represents gene count, and colour gradient indicates adjusted p-value (p.adjust), with darker colours showing higher 

significance. A threshold of 0.05 was applied for the adjusted p-value.   
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2.3.7 Transcript variants and splicing reveals changes to numerous cell-
types including synaptic changes during early amyloid 
accumulation  

Our detailed analyses on transcript usage, exon usage and alternative splicing offer 

novel insights into the functional implications of transcript isoform switching during 

microglial activation, synaptic adaptation and a series of other cell type changes in 

response to amyloid plaques in models of early AD. Importantly, these transcript 

isoform changes exhibit widespread enrichment across various cell types present in 

the brain as illustrated in Fig. 2.11, including T cells, border associated cells, 

astrocytes, oligodendrocytes, and both excitatory and inhibitory neurons (Botía et al., 

2017; Cahoy et al., 2008; Miller et al., 2011; Zeisel et al., 2015). The enrichment 

analysis compares overlap directly between the gene inputs and marker sets using a 

simple probability model. Although, it is a limitation to represent isoforms via their gene 

names, a particularly intriguing aspect is the enrichment of genes with isoform-level 

changes associated with diverse synaptic pathways. This suggests concurrent 

alterations in synaptic physiology alongside the upregulation of AD risk genes 

occurring microglial proliferation and activation during the initial stages of disease 

progression, aligning with the earliest cognitive changes. These findings hold the 

potential to provide more precise isoform-specific indicators of disease stage for 

diagnostic tracking purposes, independent of the gene-level expression changes 

resulting from microglial cell proliferation/activation.  
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Figure 2-11 Heatmap of gene set overrepresentation analysis of gene and 
isoform level analyses. 
Gene-level differential expression analysis reveals an enrichment of genes and 

isoforms within those expressed by microglia and macrophages, primarily attributed 

to the heightened proliferation and activation in response to amyloid accumulation. 

Genes showing splicing events were predominantly expressed by oligodendrocytes. 

Isoform switching mainly occurred in genes expressed by neuronal subtypes, 

endothelial cells, mural cells, and astrocytes. Isoform usage changes occurred in 

genes expressed by interneurons, mural cells, neuron subtypes, endothelial cells, and 

astrocytes (Cahoy et al., 2008; Zeisel et al., 2015).  

We used EWCE to assess cell type-specific enrichment across our results, using the 

mouse reference dataset (Figure 2.12) (Zeisel et al., 2015) starting with 21,207 mouse 

genes, 16,482 remained after ortholog conversion (78%). EWCE accounts for 

expression bias (genes that are generally highly expressed across all cell types) by 
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using the bootstrap test. This provides a more accurate assessment of whether genes 

are specifically enriched in a particular cell type, not just highly expressed overall. 

 

For differential gene expression, 140 hit genes were retained, and enrichment tests 

across 48 cell types at annotation level 2 identified cell types with significant 

enrichment (q < 0.05) (Fig 2.12.), suggesting these genes may influence cell type-

specific expression patterns linked to disease. In the isoform expression analysis, 778 

hit genes were identified, with microglial subtypes (Mg1 and Mg2), perivascular 

macrophages (Pvm1 and Pvm2), and vascular endothelial cells (Vend1 and Vend2) 

showing significant enrichment (q < 0.05), indicating that isoform expression may vary 

across specific cell types. For splicing, 362 hit genes were evaluated, and for isoform 

switch analysis, there were 115 hit genes, no significant enrichment was found, 

indicating a potential lack of cell specificity (Fig. 2.12). Similarly, in the isoform usage 

analysis, no significant enrichment was found for the 95 hit genes tested, implying that 

isoform usage may be broadly shared across cell types rather than restricted to 

specific populations. 

 
Figure 2-12 Enrichment analysis across gene and isoform level analysis. 

Each panel row represents different types of analysis based on gene or isoform 

expression and splicing events. From top to bottom, the panels display differential 
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gene-level expression, where Microglia subtype-1(Mgl1) and Microglia subtype-2 

(Mgl2) cell types showed significantly elevated expression changes, as indicated by 

red bars. Asterisks (*) mark significance (q < 0.05). In the differential isoform 

expression panel, similar patterns were seen for Mgl1 and Mgl2, with additional 

significance noted for the Vascular endothelial subtype-2 (Vend2) cell type. The 

differentially spliced genes panel showed a wider distribution of expression of these 

genes across several cell types, although not significant. The isoform switching genes 

revealed expression of these genes for a few cell types. The isoform usage panel 

showed expression of these genes by various cell types such as Vend2 and 

Perivascular microglia (Pvm), although no overall enrichment.  

2.4 Discussion 
In this study, we employed long-read RNA-seq in the AppNL-G-F knock-in mouse models 

alongside WT controls to discern changes in transcript usage, splicing and novel 

transcript isoforms in response to amyloid.  By adopting an isoform-centric approach, 

we provide valuable insights into the changes in alternative splicing events (Zhang et 

al., 2013). Previous gene-level expression analyses lack the sensitivity needed to 

detect possible changes at the transcript level, such as alterations in splicing. To 

overcome this limitation, we employed differential transcript usage analysis to identify 

additional shifts in gene expression in the AppNL-G-F knock-in mouse model compared 

to controls. Our results reaffirm the significance and intricacy of known AD risk genes 

while also revealing novel splicing and potential regulatory patterns in these genes.  

Moreover, our analysis uncovers previously unidentified splicing events and transcript 

isoforms that were not previously discernible through gene-level and isoform-level 

expression analysis, particularly of the genes integral to synaptic physiology. Our 

analysis identified differential isoform usage in genes linked to pre- and post-synaptic 

functions which might implicate an association with synaptic resilience in AD (King et 

al., 2023). We have comprehensively annotated the novel using external databases 

and prediction tools, identified gene and isoform level alterations contributing to a 

deeper understanding of protein diversity and specific patterns of isoform changes that 

contribute to the disease. Such insights may prove valuable in detecting the earliest 

stages of disease. 
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2.4.1 Differentially expressed genes and transcripts in long-read RNA-
seq bulk experiments are mostly microglial  

Our gene-level expression analysis, employing long-read RNA-sequencing, 

corroborated short-read data from other mouse models, highlighting induction of 

Trem2, Tyrobp, and other genes associated with the ARM/DAM microglia cell-state 

and AD risk. The utility of long-read RNA-seq in capturing gene-level expression 

changes underscored microglial proliferation and activation in this mouse model of 

amyloid accumulation. Importantly, the behavioral analysis of our collaborators 

demonstrated that these gene-level expression changes coincide with early cognitive 

alterations, suggesting their relevance in disease progression from early stages 

(Yaman et al., 2024). Notably, several ARM/DAM genes were found to be upregulated, 

further supporting the involvement of microglia in the response to amyloid pathology.  

While gene-level changes provide insights into the amyloid-responsive genetic 

network expressed by microglia, our analysis reveals that specific microglial genes 

exhibit preferential selection of transcript isoforms in response to amyloid. 

Remarkably, these genes demonstrate notable disparities in fold-expression ranking 

and significance when compared at the gene-level versus the transcript level, as 

exemplified by genes such as Igf1. The differential usage of specific transcripts by 

these genes in the presence of amyloid plaques suggests their potential role in driving 

the cellular response to amyloid. It is worth noting that IGF1, one of the genes showing 

selective transcript usage, plays a crucial role as a mediator in the clearance and 

regulation of Aß in the brain, highlighting its relevance in the context of AD progression 

(Carro et al., 2002).  

A further important example is the distinction between the mouse Trem2 isoforms: we 

detect three isoforms of Trem2, the ENSMUST00000024791.14 isoform, encoding for 

full-length receptor, and the ENSMUST00000113237.3 isoform, lacking the 

transmembrane receptor, which are both induced by amyloid plaques in our analysis. 

In contrast, the ENSMUST00000132340.2 isoform which represents an intron-

retention event is not thought to produce protein and is not induced by amyloid. 

Focussing on specific isoforms is functionally important, the human TREM2 isoform 

ENST00000373113, responsible for encoding the full-length transmembrane domain, 

along with the alternatively spliced isoforms ENST00000373122 and 
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ENST00000338469, demonstrate a moderate increase in specific brain regions 

among individuals with AD (Moutinho et al., 2023). Alongside this, experimental 

findings from 7-month-old 5xFAD mouse model of Aß (Moutinho et al., 2023) 

expressing the human TREM2 gene, compared to control mice (B6hT2 and 

5xFADhT2), provide evidence that the alternatively spliced isoforms of TREM2 

undergo translation and secretion, leading to the formation of soluble TREM2 

(sTREM2), which has been used as a biomarker for late pre-symptomatic and early 

symptomatic stages of AD (Suárez-Calvet et al., 2016) . 

Beyond microglia, the most abundantly expressed Gfap isoform detected in our 

dataset, was also found to be major driver of the Gfap expression in a transgenic 

mouse model of tau pathology after long-read RNA-seq analysis (Leung et al., 2023), 

suggesting that the role of this isoform in the role of the astrocyte response in AD may 

warrant further investigation. Thus, identifying specific transcript isoforms provide new 

biological insights into mechanisms leading to AD. 

2.4.2 Microglial activation, AD risk genes and alternative mechanisms 
linking to synapses 

GWAS have transformed how we view AD, which led to a shift in focus towards the 

innate immune system. These studies have identified around 100 genes/loci variants 

associated with AD risk (Bellenguez et al., 2022; Kunkle et al., 2019; Lambert et al., 

2013; Salih et al., 2019), many of which are expressed by microglia in the brain, 

implicating the innate immune system in AD pathogenesis (Lambert et al., 2013). The 

genetic network formed by these risk genes is specifically induced by amyloid 

pathology, and in large due to triggering of microglial proliferation and activation 

(Keren-Shaul et al., 2017). Intriguingly, this microglial risk network activation occurs 

early in disease progression, preceding neuronal death and cognitive decline (Hansen 

et al., 2018). Exploring how these risk genes/loci influence AD susceptibility 

encompasses exploring alternative mechanisms when variants do not alter the protein 

coding sequence of genes. Non-coding variants can modulate gene expression and 

splicing patterns (expression quantitative loci, eQTLs, and splicing quantitative loci, 

sQTLs), which may influence transcript abundance, specific transcript isoforms, 

subcellular localisation of RNA, and changes in the proteome to compound AD risk (T. 

Raj et al., 2018a; Simone et al., 2021; Westra et al., 2013). While short-read RNA-seq 
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is valuable for quantifying gene-level expression changes, it has limitations in 

capturing differential transcript usage, exon usage and alternative splicing. To address 

such limitations, we performed long-read RNA-seq of cortical RNA in the AppNL-G-F 

mouse model of amyloid plaque accumulation compared with WT control samples. 

Analysis of gene expression was undertaken at 9 months of age in mice that had 

already developed an Aß associated spatial short-term memory deficit (Yaman et al., 

2024). We identified novel transcripts from causal and risk genes associated with AD 

such as Apoe, Ctsb, Grn. We observed induction of microglial-expressed AD risk 

genes at the whole gene-level, but also discovered preferential transcript usage in 

microglial genes in response to amyloid plaques. Moreover, a significant number of 

the genes which exhibited differential exon usage and alternative splicing in response 

to amyloid, were enriched in functional pathways coordinating synaptic physiology and 

the interaction with diverse cell types in the brain encompassing T cells, astrocytes 

and oligodendrocytes. Understanding these novel changes at the transcript-level will 

provide new insights into microglial activation, synaptic adaptation and interaction 

between other cell types at early disease stages, potentially informing disease-stage 

and isoform-specific diagnostic and therapeutic strategies.  

2.4.3 Transcript-level alterations reveal insights into the microglial 
response to amyloid  

Accompanying the well-characterised induction of microglial-expressed AD risk genes 

at the gene-level in response to amyloid, we also revealed preferentially used novel 

isoforms, transcript usage, switching and splicing events in a series of microglial 

genes, including many ARM/DAM cell-state genes associated with amyloid pathology, 

independent from changes in cell number due to proliferating microglia with amyloid. 

Transcript isoform changes were seen in genes such as Capg, Trem2, Ocln, Ctsd, 

Ctsb, Ctsa, Cd68, Gusb and Csf2ra. Recent work has shown that changes in CTSB 

activity may contribute to AD (Wu et al., 2023). Thus, intricate control of transcript 

isoforms of these microglial genes within AD risk genetic pathways/networks is likely 

to tailor the functional microglial response to amyloid.  
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2.4.4 Conservation of isoform switches in amyloid pathology between 
AD mouse models and late-stage human AD brain 

We identified transcript isoform switches and usage profiles, comparing these gene 

sets with isoform changes detected in human AD brains from the MAYO, MSBB, and 

ROSMAP cohorts (Marques-Coelho et al., 2021). Notably, 42 genes showing isoform 

usage or switches in response to amyloid pathology in the mouse model were also 

altered in human late-AD brains. These genes are involved in crucial pathways, 

including endocytic and vesicle trafficking (e.g. elastin microfibril interfacer 1 

(EMILIN1), CLTA, adaptor-related protein complex 2 subunit alpha 1 (AP2A1), and 

DENN domain containing 2A (DENND2A)); neuroinflammation and microglial 

activation (e.g. apoptosis-inducing factor mitochondria-associated 2 (AIFM2), 

regulator of G-protein signaling 10 (RGS10), fractalkine receptor (CX3CR1), and 

interferon regulatory factor 9 (IRF9)); lysosomal function and protein degradation (e.g. 

CTSD, CTSA, and ATPase H+ transporting V1 subunit E1 (ATP6V1E1)); and 

cytoskeletal dynamics (e.g. leucine-rich repeats and immunoglobulin-like domains 1 

(LRIG1), kinesin family member 1A (KIF1A), abl interactor 1 (ABI1), tocopherol 

transport protein (TPGS1), and rhotekin 2 (RTKN2)). 

EMILIN1, an extracellular matrix glycoprotein, plays a critical role in forming anchoring 

filaments essential for proper lymphatic drainage. EMILIN1’s interaction with integrins 

involved in regulating lymphatic valve formation and maintenance, potentially 

influencing immune cell trafficking and inflammation in the brain. Given the established 

role of neuroinflammation in AD, changes in EMILIN1 expression could exacerbate 

the inflammatory response associated with amyloid plaque deposition (Pivetta et al., 

2016, 2022).  

LRIG1, a membrane glycoprotein, negatively regulates receptor tyrosine kinases 

(RTKs), including the epidermal growth factor receptor (EGFR). LRIG1 has been 

identified as potential AD risk gene in GWAS from APOE-stratified East Asian 

population ((S. Kang et al., 2021)). Overexpression of LRIG1 has been shown to block 

neurotrophin signaling (Trinchero et al., 2017), and reduce dendritic growth in 

developing hippocampal neurons (Alsina et al., 2016).  

CTSD, a lysosomal protease, plays a pivotal role in AD pathogenesis. It is involved in 

lysosomal function, protein degradation, and APP processing. CTSD is responsible for 
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degrading a significant portion of Aβ, particularly in lysosomes, which are key to 

maintaining brain Aβ proteostasis. Differential degradation rates of Aβ42 and Aβ40 

suggest CTSD's involvement in regulating the Aβ42/40 ratio. Dysfunction 

in CTSD could thus contribute to Aβ accumulation, exacerbating AD progression 

(Grubman et al., 2019; Ouyang et al., 2023; Suire et al., 2020). 

AIFM2, which encoding ferroptosis suppressor protein 1 (FSP1), plays a crucial role 

in protecting cells from ferroptosis by regeneratingmembrane-embedded antioxidants 

in healthy conditions (Xavier da Silva et al., 2023). It has a dual role; it can also induce 

caspase-activated cell death. Increased isoform-usage of AIFM2 in both human AD 

and an AD mouse model may suggest the presence of an amyloid-specific specific 

isoform that contributes to the iron-dependent cell death or excessive apoptosis 

contributing to the disease. This highlights a potential novel mechanism in 

dysregulated apoptosis in earlier stage of the AD.  

Key limitations exist in the comparison of isoform usage and switching events across 

species and platforms. Our study revealed isoform changes in mice using long-read 

sequencing from bulk whole cortex samples, while human data from the Mayo Clinic, 

MSBB, and ROSMAP cohorts relied on short-read RNA-seq from dorsolateral 

prefrontal and entorhinal cortices (Marques-Coelho et al., 2021). Our study was based 

on whole cortex in mouse model with amyloid pathology only, whereas human 

datasets analyzed focused on specific brain regions. These differences in brain 

regions and the stage of the disease pathology could also influence the results, in 

addition to species-specific differences. In addition, short-read sequencing offers 

limited resolution at the exon level, complicating precise mapping of exon usage and 

splicing events. Although we identified shared isoform-level changes in response to 

amyloid pathology between human and mouse models, the exact splicing events, such 

as which exons are differentially spliced, remain uncertain. Also, from bulk tissue it is 

difficult to attribute transcript splicing and usage changes to specific cell types, and it 

may be that certain transcript forms are expressed or induced by very specific cell 

types normally not expressing canonical versions of the gene in healthy, non-disease 

circumstances. 

Furthermore, the timing of AD pathology differs between models. Human tissue from 

the aforementioned cohorts represents late-stage AD, including tau pathology and 
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underrepresentation of neurons lost, and the influence of ageing, whereas the mouse 

models we used capture earlier amyloid pathology stages (without tau pathology and 

neuronal death). Therefore, some isoform changes in the mouse model may not fully 

correspond to early-stage human AD pathology, complicating direct comparisons 

across disease stages.  

The statistical approaches also introduce variability: isoform switch analysis in short-

read human data differs from that of long-read sequencing in mice. These 

methodological differences may impact the detection of isoforms and their annotations 

(novel/canonical), and the transcript models also complicates cross-species 

comparisons. Future studies employing long-read sequencing in human AD tissues 

will be essential for a more accurate and comprehensive understanding of isoform-

level events  across species and disease stages.   
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3 Genome-wide 5mC differential methylation 
analysis via long-read DNA sequencing in the 
AppNL-G-F Alzheimer’s Disease mouse model 

 

3.1 Introduction 
Alzheimer’s Disease (AD) is characterized by complex interactions among genetic, 

epigenetic, and environmental factors that influence disease progression. While 

genome-wide association studies (GWAS) have identified risk variants associated with 

AD, the functional mechanisms through which these variants contribute to the disease 

remain unclear (Kunkle et al., 2019; Lambert et al., 2013). One key avenue of 

exploration is epigenetic regulation, where DNA methylation and histone acetylation 

significantly influence gene expression, splicing, or other regulatory processes critical 

to neurodegeneration in AD (De Jager et al., 2014; Lardenoije et al., 2019; Marzi et 

al., 2018).  

DNA methylation involves the formation of 5-methylcytosine (5mC) through a covalent 

bond with the cytosine 5′ carbon site of the CpG dinucleotides, mediated by DNA 

methyltransferases (DNMTs). 5mC may disrupt the transcription factor binding at 

promoter recognition sites or recruit methyl-CpG-binding proteins that suppress 

transcription by altering chromatin structure (Du et al., 2015; Jones, 2012). 

Short-read sequencing, particularly bisulfite sequencing remains the gold standard for 

5mC detection due to its high throughput and cost-effectiveness. BSseq distinguishes 

methylated from unmethylated cytosines by converting unmethylated cytosines to 

uracils, allowing differentiation upon sequencing (Ni et al., 2023). However, this 

method has notable limitations, including the potential for biases introduced during the 

bisulfite conversion process, which can lead to inaccurate methylation estimates (Tran 

et al., 2016). 

Unlike traditional short-read sequencing, long-read sequencing directly detects DNA 

methylation at single-nucleotide resolution without bisulfite conversion, preserving the 

DNA in its native state and bypassing PCR, which preserves methylation and other 

base modifications (Logsdon et al., 2020; Wang et al., 2021). Long-read sequencing 
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also achieves comprehensive coverage of complex genomic regions, such as 

repetitive sequences and structural variants, which are often implicated in AD (Ebbert 

et al., 2019). Generating longer reads that span entire genes or regulatory regions 

enables the comprehensive identification of methylation patterns across extensive 

genomic areas, offering a more precise and detailed understanding of specific 

methylation types, such as 5mC. This capability is crucial for elucidating how these 

methylation modifications impact gene function, including potential changes in gene 

expression and splicing profiles (Liu et al., 2021)  

In this chapter, we examine 5mC genome-wide epigenetic modifications through long-

read DNA sequencing, focusing on methylation patterns in an AD mouse model versus 

controls to profile the responses to amyloid, simulating early AD stages. This study 

aims to identify differentially methylated regions (DMRs) that contribute to disease 

progression and investigate pathways potentially affected by methylation patterns, 

using both mouse and human AD brain RNA-seq datasets. 

3.1.1 Aims and objectives 

Hypothesis: Genome-wide DNA methylation patterns in the AppNL-G-F AD mouse 

model contribute to altered gene regulation and are associated with specific cell 

types and pathways relevant to AD pathology. Identifying these methylation patterns 

will provide insights into cellular responses to the amyloid pathology, reflecting the 

early-stage AD pathology. This chapter focuses on the identifying DMRs in response 

to amyloid accumulation and annotating these regions to understand the broader 

impact of genome-wide methylation changes.  

To achieve these objectives, the following analyses were performed: 

1. Identification and characterisation of DMRs: To investigate genome-wide 

methylation differences between the AppNL-G-F AD mouse model and WT controls, 

long-read DNA sequencing was performed using the same samples and experimental 

design as in Chapter 2.  

2. Functional annotation and pathway analysis of DMRs: To assess the biological 

significance of the identified DMRs, GO and pathway enrichment analyses were 

performed on promoter regions and across all DMRs marking the coding regions of 

genes, enabling a focused investigation of regulatory regions (promoters) and 
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capturing broader biological processes influenced by methylation changes in response 

to amyloid pathology.  

3. Cell-type enrichment analysis of DMR genes: To identify cell types most affected by 

differential methylation, cell-type enrichment analysis was conducted to explore cell-

type-specific methylation patterns that might contribute to AD pathology.  

3.2 Methods 
3.2.1 Sample preparation 

DNA was extracted from the same homogenized mouse cortex samples used for RNA 

extraction, specifically from AppNL-G-F (n=6) and WT (n=6) mice. Genomic DNA 

(gDNA) was purified using the NEB Monarch gDNA purification kit (T3010). 

Sequencing libraries were prepared with the Ligation Sequencing gDNA Kit and native 

barcoding (SQK-LSK109 with EXP-NBD104 and EXP-NBD114). For each sample, 2 

µg of DNA was sheared to approximately 20 kb fragments using a Megaruptor and 

then pooled for sequencing. Six pools, each containing a mix of one AppNL-G-F sample 

and one WT sample, were loaded onto PromethION flow cells using R9.4.1 chemistry 

for sequencing. 

3.2.2 Base calling and methylation detection 

Base calling was performed using Guppy version 6.5.7 (high-accuracy model), 

generating 450 bp reads with integrated 5mC base modification detection. Methylation 

calls (modBAM) were generated during base calling using Guppy, a tool from Oxford 

Nanopore Technologies for base calling, also detecting base modifications such as 

5mC.  

3.2.3 Mapping 

The modBAM files, containing 5mC base-modification calls, were aligned to the 

reference genome to map methylation sites. Base called reads were aligned with 

Minimap2 using the mouse reference genome (mm10) due to available tools for 

downstream analysis, and BAM files were sorted using samtools. The aligned BAM 

files were processed using the modkit tool to convert them into bedMethyl format. 

These bedMethyl files were then incorporated into the analysis pipeline for 

downstream genome-wide differential methylation analysis.  
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3.2.4 Data Import and Initial Preprocessing 

The first step in the data analysis involved reading methylation data files in tabular 

format from individual pools, stratified by sample type. bedMethyl files were converted 

into TSV files to be used in the Dispersion Shrinkage for Sequencing (DSS) workflow 

(Feng et al., 2014; Park & Wu, 2016; Wu et al., 2013, 2015). The raw methylation data 

consisted of ~25M sites across the mouse genome. 

3.2.5 Filtering and Quality Control 

To include high-quality CpG sites across the methylation regions, filtering was applied 

to select those with sufficient coverage and variability. Specifically, the filtering criteria 

was the threshold a minimum of 10 reads per site in all samples (covMin) and a 

methylation standard deviation (SD) of at least 5% (methSD). These criteria were 

applied  using the filterRegions() function from the comethyl package in R (Mordaunt 

et al., 2022). The thresholds for covMin and methSD were determined to capture 

regions with adequate variability and coverage were retained (Sigurpalsdottir et al., 

2024).  

The filterRegions() function was applied after optimizing these cutoffs using 

the getRegionTotals() and plotRegionTotals() functions, which summarise the read 

count and methylation distribution for each region.  After filtering, the regions were re-

examined using plotRegionStats() to visually compare the methylation profiles of the 

AppNL-G-F and WT samples (n=6). 

3.2.6 Differential methylation analysis  
3.2.6.1 Model Design and Fitting 

To perform differential methylation analysis, we used the DSS package, to robustly 

detect the differentially methylated loci and regions by count-based methylation data. 

The analysis was conducted on a filtered methylation object that included CpG sites 

meeting abovementioned pre-defined thresholds for coverage and methylation 

variability. 

Model fitting was performed using the DMLfit.multiFactor() function in 

the DSS package, which supports the incorporation of multiple experimental factors 

into the model.  The design matrix for the model included key 
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covariates: Genotype, Sex, Batch (samples pooled toegether for sequencing), and the 

interaction between Genotype and Sex. 

The following model was applied to correct for batch and sex effects, while retaining 

the genotype effect: 

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 ∼ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑆𝑒𝑥 + 𝐵𝑎𝑡𝑐ℎ + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒: 𝑆𝑒𝑥	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

This function also performs Wald tests at each CpG site to assess whether the effect 

of the Genotype covariate significantly alters the methylation levels. Specifically, we 

tested whether methylation levels were significantly different between the AppNL-G-

F genotype and the reference (WT), focusing on the Genotype term in the model.  

This analysis results in differentially methylated locis (DMLs); while informative, may 

not always reflect the broader biological implications of methylation changes. The 

methodologies for identifying DMRs from whole genome bisulfite sequencing, 

indicates that the aggregation of DMLs into DMRs can provide a more comprehensive 

understanding of methylation patterns across the genome (Peters et al., 2021a). This 

suggests that while DMLs are useful for pinpointing specific methylation changes, they 

may lack the contextual significance that DMRs provide when considering gene 

regulation on a larger scale.  

3.2.6.2 DMR Identification 

callDMR() function from the DSS package was used to identify DMRs from the CpG-

level results obtained from the strain-specific differential methylation test. The function 

consolidates individual CpG sites with significant methylation changes into larger 

regions, helping to identify regional methylation patterns rather than relying on 

individual CpG changes, which can be more susceptible to noise. 

The areaStat statistic was calculated for each DMR, which represents the summed 

test statistics (e.g. Wald statistics) for all CpG sites within the region. A 

higher areaStat indicates a stronger overall signal of differential methylation across 

the DMR, reflecting more substantial and widespread methylation changes in that 

genomic region.  
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3.2.7 Annotation of DMRs 

The identified DMRs were converted into a GRanges object, which is a genomic 

ranges format that allows efficient representation and manipulation of genomic 

intervals. We loaded the TxDb.Mmusculus.UCSC.mm10.knownGene database, 

which contains known gene annotations for the mouse genome (mm10). This 

database is used in the annotation process to associate DMRs with specific genomic 

features such as promoters, exons, introns, and transcription start sites (TSS). 

Using the annotatePeak() function from the ChIPseeker package (Wang et al., 2022; 

Yu et al., 2015), DMRs were annotated with genomic features to link them to nearby 

genes. In annotatePeak() function, the tssRegion argument was set to include regions 

2 kb upstream and 500 bp downstream of the TSS, defining typical promoter regions. 

annotatePeak() then compares the coordinates of each DMR with these predefined 

genomic features. The function checks if each DMR overlaps with, or is within a set 

distance from features like promoters, exons, or intergenic regions. If a DMR is within 

the specified distance from a TSS, it will be annotated as related to that gene’s 

promoter region. For DMRs that do not fall directly within promoter 

regions, annotatePeak() assigns the closest gene based on the distance to the 

nearest TSS. This association shows if gene might be regulated by methylation 

changes in that DMR, even if the DMR is located in an intron, exon, or intergenic 

region. 

The areaStat parameter, derived from the DMR analysis, is a measure that quantifies 

the magnitude and direction of methylation changes across a region. It is used to 

assess whether the region is hypermethylated (more methylated in the experimental 

condition) or hypomethylated (less methylated in the experimental condition) relative 

to the control condition. DMRs were divided into these two groups, 

with hypermethylated and hypomethylated regions based on the areaStat parameter 

(areaStat>0 hypermethylated, and area<0 hypomethylated regions) of the DMR table 

and analyzed separately to explore their functional roles.  

The primary focus was on promoter regions, which were used to subset for 

subsequent GO annotations, as these regions are key regulatory elements influencing 

gene expression. The rGREAT package was used to annotate genomic regions 
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overlapping DMRs (Gu & Hübschmann, 2023a). For the GO analysis, 

the simplifyEnrichment R package (Gu & Hübschmann, 2023b) was used to cluster 

enriched GO terms. Clustering was performed using the 'binary_cut' method, which 

simplifies and organizes GO terms into distinct clusters. Keyword enrichment 

analysis was then conducted for each GO cluster, and gene associations were 

retrieved for the top clusters, displaying annotations that included the distances of 

DMRs to the nearest TSS. 

3.2.8 Cell-type enrichment  

To determine the enrichment of specific cell types in the gene sets containing DMRs, 

we conducted a cell-type enrichment analysis using the Expression Weighted Cell-

type Enrichment (EWCE) method (Skene & Grant, 2016). EWCE evaluates the over-

representation of genes associated with specific cell types by comparing input genes 

to background gene expression data from reference cell types. The Mouse reference 

dataset was used for the cell-type enrichment analysis (Zeisel et al., 2015).  

3.2.9 Methylation site visualisation 

To visualize DMRs identified in the methylation dataset, the DMR.plot function from 

the DMRcate package was used, and a customised version, DMRPlot2 function 

(Peters et al., 2015, 2021b, 2024).  Additionally, the bsseq package (Hansen et al., 

2012) was utilized to visualize DNA methylation levels at both single and multiple loci. 

The plotRegion function from bsseq was used to generate plots of methylation levels 

for specific genomic coordinates, incorporating smoothed estimates of methylation 

across the region. This function provided a granular view of methylation changes, to 

compare methylation levels across individual loci. For a broader 

view, plotManyRegions from the bsseq package was used to visualize methylation 

levels across multiple genomic regions simultaneously.  

3.2.10 Data Availability 
 
Raw data files will be made available online on GEO database.  
 
The information about supplementary tables and their URLs are available in 
Appendix A.  
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3.2.11 Software and Algorithms 

A snakemake pipeline created to pre-process modBAM files and generate the 

methylation tables (bedmethyl files) can be accessed through the GitHub repository: 

https://github.com/umranyaman/ONT_DNA_pipeline.  

3.3 Results  
3.3.1 Alignment statistics 

The alignment statistics for the AppNL-G-F and WT datasets reveal that there is no 

significant variation between the two groups, indicating downstream analyses were 

not affected by technical variability between mice and samples (Fig. 3.1). The 

comparison of alignment statistics between the AppNL-G-F and WT datasets shows no 

statistically significant differences across summary key metrics, as determined by two-

sample t-tests. The total read count for AppNL-G-F (2.83M) and WT (3.29M) yielded a 

p-value of 0.273, indicating no significant difference. N50 values, which represents the 

length at which 50% of the total sequences that are contained in contigs or scaffolds 

equal to or longer than this length, are nearly identical between the two groups (AppNL-

G-F: 13,994, WT: 14,035), with a p-value of 0.978. The mean coverage for AppNL-G-F 

(10.82) is slightly lower than that of WT (12.02), but this difference is not statistically 

significant (p-value: 0.354). Similarly, the median read length for AppNL-G-F (10,244.5) 

compared to WT (9,326.5) produced a p-value of 0.286, indicating no significant 

difference. Although WT has a higher total yield (33.07 Gb, versus 29.75 Gb for AppNL-

G-F), the p-value of 0.354 confirms that this difference is not statistically significant. 

 

https://github.com/umranyaman/ONT_DNA_pipeline
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Figure 3-1 Comparison of five key sequencing metrics: Total reads, N50, mean 
coverage, mean length, and total yield (Gb) between the two groups: AppNL-G-F 
(red bars) and WT (blue bars). 
The samples were distributed across six pools (pool1 to pool6, where each pool 

contained one AppN-G-F and one WT mouse sample). Total reads represent the total 

number of reads generated, N50 indicates the read length such that 50% of total bases 

are in reads of this length or longer, mean coverage shows the average depth of 

coverage across the genome, mean length represents the average read length, and 

total yield (Gb) represents the overall amount of data generated. Bars for AppNL-G-F 

and WT are shown side by side for direct comparison in each pool (n=6). A t-test 

shows no significant differences between genotypes for any of the metrics. 

3.3.2 Overall methylation metrics for AppNL-G-F and WT mouse replicates  

When comparing the 5mC modification between AppNL-G-F and WT mouse samples, 

AppNL-G-F showed a slightly higher pass fraction (fraction of counts passing QC) of 
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70.05% at a threshold of 0.7552, compared to 69.85% in WT samples at a threshold 

of 0.7526 (Table 3.1). In contrast, for the canonical (unmodified) cytosine (C), WT 

samples had a pass fraction of 30.15%, while AppNL-G-F samples had a comparable 

pass fraction of 29.95%. This slight difference suggests a marginally higher prevalence 

of the 5mC modification in AppNL-G-F samples. However, t-test for both 5mC and C 

modifications indicate no significant differences between the genotypes. For 5mC, the 

p-values associated with the number of counts passing QC per mouse (0.938), the 

fraction of counts passing QC (0.640), total counts per mouse (0.938), and the fraction 

of total counts passing QC (0.634) are all above the standard significance threshold 

of 0.05, suggesting no statistical difference. Similarly, for the C modification, p-values 

for these metrics (0.987, 0.640, 0.982, and 0.634, respectively) indicate no significant 

differences between AppNL-G-F and WT samples. 

 

Table 3-1 Summary of base modification and threshold analysis in AppNL-G-F   and 
WT samples. 

group: Indicates the sample genotype group (AppNL-G-F or WT mice). 

base: Specifies the type of base analyzed, either cytosine (C) or 5-methylcytosine (5mC). 

mod: Lists the modification type, either 5mC or unmethylated C. 

threshold: Provides the threshold value applied to determine base modification presence. 

pass_count: Shows the number of bases that passed the threshold. 

pass_frac: Presents the fraction of the total bases passing the threshold. 

all_count: Represents the total count of all measured bases. 
all_frac: Shows the fraction of all measured bases. 

3.3.3 Differential methylated region analysis  

The DMR analysis was performed using CpG sites within filtered regions, identified 

using comethyl package (Mordaunt et al., 2022)(Fig. 3.2), yielding 8,208,368 CpG 

sites in each sample from regions meeting the covMin and methSD criteria (minimum 

of 10 reads in all samples and a methylation standard deviation of at least 5%) as 

detailed in Section 3.2.5. 

 

group base mod threshold pass_count pass_frac all_count all_frac 

WT C 5mC 0.752 10160054 0.698 11024943 0.682 

WT C C 0.752 4374657 0.301 5110780 0.317 

AppNL-G-F C 5mC 0.755 10234370 0.700 11105926 0.684 

AppNL-G-F C C 0.755 4381324 0.299 5121588 0.315 
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Figure 3-2 Histograms of region-level statistics before filtering for methylated 
regions 

The distribution of several region-level methylation metrics for all samples (n=12). 

The width panel shows the distribution of region sizes in base pairs, with a red vertical 

line indicating the median width. The n panel represents the number of CpG sites 

within each region. The covMin panel illustrates the minimum coverage (number of 

reads) across samples for each region. The covMean panel reflects the average 

coverage across all CpGs in each region. The methMean panel depicts the average 

methylation level across CpGs within each region, with values clustering around 0.8, 

suggesting high methylation in most regions. The methSD panel indicates the 

standard deviation of methylation across CpGs within each region. Red vertical lines 

in each panel represent the median value for each metric. 

 

From this dataset, 1,174 hypermethylated sites and 974 hypomethylated sites were 

detected with differential methylation analysis (Table 3.2, full table in Supplementary 

Table 3.1), spanning various genomic features, including promoters, exons, and 

intergenic regions. These DMRs are ranked based on their area statistics, which 

indicate the magnitude of methylation change between the AppNL-G-F and WT groups 

(Fig. 3.3 and Fig. 3.4).  

covMean methMean methSD

width n covMin

0 50 100 150 200 0.0 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3

0 500 1000 5 10 15 20 25 20 40 60 80 100
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Figure 3-3 Heatmap of Top 50 Hypermethylated Regions in AppNL-G-F mice 
Across Samples 

The heatmap displays the top 50 hypermethylated differentially methylated regions 

(DMRs), with each row representing a DMR (gene symbols) and each column 

representing a sample. The colour scale represents beta methylation values which 

represents the percentage of CpG sites in that region are methylated; where blue 

indicates low methylation, green/yellow represents intermediate levels, and red 

indicates high methylation. Rows are hierarchically clustered to reveal distinct 

methylation patterns across samples. Gene symbols that appear more than once, 

indicate multiple distinct DMRs identified within or near the same gene, highlighting 

separate regions with significant methylation differences. Grey values in the heatmap 

denote missing or low-quality data for specific regions in certain samples, where beta 

methylation values could not be reliably measured. Sample columns (AppNL-G-F or WT) 

are labelled with sex (M or F) and pool allocation (pool A to F). 
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Figure 3-4 Heatmap of Top 50 Hypomethylated Regions in AppNL-G-F mice 
Across Samples 

This heatmap displays the top 50 hypomethylated differentially methylated regions 

(DMRs), with each row representing a DMR (gene symbols) and each column 

representing a sample. The colour scale indicates beta methylation values, where blue 

represents low methylation, green/yellow represents intermediate levels, and red 

indicates high methylation. Gene symbols appearing more than once, such as in cases 

of multiple DMRs near the same gene, highlight distinct regions with separate 

methylation patterns. Grey values in the heatmap denote missing or low-quality data 

for specific regions in certain samples, where beta methylation values could not be 

reliably measured. Sample columns (AppNL-G-F or WT) are labelled with sex (M or F) 

and pool allocation (pool A to F). 
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3.3.3.1 Annotation of DMRs and Genomic Feature Associations  

To explore the biological relevance of these DMRs, each was annotated based on its 

genomic context – whether located within promoters, exons, introns, or intergenic 

regions, and proximity to known genes. This annotation step mirrors the potential 

biological relevance of the DMRs, as regions located near or within genes are more 

likely to be affected by methylation differences observed in the region. DMRs were 

annotated relative to known genomic features such as TSS, promoters (defined as -

2,000 to +500 bp relative to TSS), exons, introns, and intergenic regions (Yu et al., 

2015). We assessed whether these DMRs corresponded to AD risk genes (Bellenguez 

et al., 2022), and DMRs detected in human AD brain (Altuna et al., 2019) regulatory 

elements, by comparing methylation patterns between AppNL-G-F  and WT mice, and 

the response to amyloid pathology. 

Specifically, DMRs were annotated to genomic features using ChIPseeker and 

the TxDb.Mmusculus.UCSC.mm10.knownGene annotation database. Although the 

majority of DMRs were hypothesized to reside within promoter regions due to the TSS 

window applied, many were annotated to distal intergenic and intronic regions, 

particularly those located farther from the TSS. This observation aligns with previous 

reports that enhancer regions and distant regulatory elements, which are often 

intergenic, play critical roles such as regulation of gene expression, particularly in the 

context of complex diseases (Agrawal et al., 2019; Andersson et al., 2014).  
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Table 3-2 Summary of genomic annotation of the top 10 differentially methylated regions (DMRs) identified in the 
methylation analysis. 

chr: Chromosome where the DMR is located. 
start and end: Genomic coordinates marking the start and end of each DMR. 
length: Length of the DMR in base pairs. 
Number of CpG sites within each DMR. 
Area statistic indicating the magnitude of methylation change for the DMR. 
annotation: Genomic location of the DMR, such as promoter, exon, intron, or intergenic region. 
distanceToTSS: Distance in base pairs from the DMR to the nearest transcription start site (TSS). 
Symbol: Gene symbol for the nearest gene associated with the DMR. 
Gene name: Full name of the nearest gene, highlighting the potential biological relevance of the DMR. 

chr start  end length nCG areaStat annotation distanceToTSS symbol gene name 

chr15 72809480 72811193 1714 83 -254.496 Promoter (<=1kb) 0 Peg13 paternally expressed 13 

chr6 48629266 48629730 465 56 -116.461 Exon (2 of 4) 1331 AI854703 expressed sequence  

AI854703 

chr14 55052648 55054356 1709 43 112.997 Promoter (<=1kb) 0 Zfhx2os zinc finger homeobox 2 

chr10 20953895 20954702 808 31 92.767 Exon (1 of 1) 1348 Ahi1 Abelson helper integration

 site 1 

chr6 138006604 138007360 757 28 -72.570 Intron (4 of 5) 29543 Slc15a5 solute carrier family 15,  

member 5 

chr2 118554971 118555340 370 31 68.242 Distal Intergenic -5284 Bmf BCL2 modifying factor 

chr1 75388161 75388368 208 27 -57.232 Exon (4 of 41) 2551 Speg SPEG complex locus 

chr19 5406526 5407047 522 25 51.951 Promoter (<=1kb) 0 4930481A15Rik RIKEN cDNA  

4930481A15 gene 

chr3 128520088 128520657 570 19 49.973 Distal Intergenic -288482 D030025E07Rik RIKEN cDNA  

D030025E07 gene 

chr9 114073632 114074068 437 21 -49.555 Intron (3 of 4) 16492 Susd5 sushi domain containing 5 
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The analysis revealed that methylation changes in AppNL-G-F model are most 

concentrated within intronic and distal intergenic regions, which comprise the highest 

proportions of both hypomethylated and hypermethylated sites (Fig 3.5). Specifically, 

intronic regions exhibit substantial methylation changes (Table 3.2, Supp. Table 3.1.), 

which may play  a role in regulating splicing (Petibon et al., 2016) or modulating gene 

expression (Xue et al., 2011). Distal intergenic regions, often associated with enhancer 

activity, also display significant methylation alterations, indicating that long-range 

regulatory elements may be impacted in this disease context. Exonic and promoter 

regions contain fewer but still meaningful methylation changes, with hypermethylation 

in exonic regions potentially contributing to isoform-specific regulation and promoter 

hypomethylation suggesting increased gene activation. Minimal methylation changes 

were observed in the 3' and 5' UTRs and downstream regions, indicating that these 

areas are less affected by differential methylation in this analysis. 

 

The feature distribution of DMRs further shows that most regions are annotated as 

gene body or intergenic regions (Fig. 3.5). Intronic regions, which can harbour 

regulatory elements such as enhancers and silencers, suggest that observed 

methylation changes in these regions may influence the expression levels of nearby 

genes. A concentration of binding sites within the "0-1 kb" range from TSSs supports 

a broader regulatory framework, implying that methylation’s impact on gene 

expression may not be solely dependent on DMRs’ absolute position but may also 

involve higher-order chromatin structures and DNA looping that bring together distant 

regulatory elements and TSSs. 
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Figure 3-5 Feature distribution of hypomethylated and hypermethylated sites 
The bar plot shows the genomic context of hypomethylated (blue) and 

hypermethylated (red) sites as a percentage of total sites analysed. Features include 

intronic, distal intergenic, exonic, promoter, 3' UTR, 5' UTR, and downstream regions. 

Intronic and distal intergenic regions account for the highest percentage of methylation 

changes, followed by exonic and promoter regions. Minimal methylation changes are 

observed in the UTR and downstream regions. Annotations of genomic regions 

obtained via mm10 database using annotatePeak() function from ChiPseeker 

package. 

 

When considering known protein binding sites, a majority of hypermethylated and 

hypomethylated binding sites cluster within the "0-1 kb" range from the TSS, with 

48.3% of hypermethylated and 47.9% of hypomethylated sites in this category (Fig. 

3.6). Considering the genomic context of these methylated sites as in Figure 3.5., 

distance from TSS were small in not only promoter areas but other regions such as 
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gene body and distal intergenic region. This expected proximity suggests a direct 

influence on transcription factor binding, potentially modulating gene expression. 

Hypermethylated sites also show a significant proportion of binding loci within the "10-

100 kb" range (24.9%), suggesting that long-range regulatory elements may be 

impacted by hypermethylation. Conversely, hypomethylated regions display a notable 

percentage of binding sites further from the TSS, with 16.5% located in the ">100 kb" 

range, potentially affecting distal regulatory elements such as enhancers or insulators. 

 

 
Figure 3-6 Distribution of Transcription Factor-Binding Loci Relative to TSS 

Distribution of transcription factor-binding loci relative to the transcription start site 

(TSS) for hypermethylated (top) and hypomethylated (bottom) regions annotated via 

mm10 genome using annotatepeak() function from ChiPseeker package. Binding sites 

are grouped by their distance from the TSS into six categories: "0-1kb", "1-2kb", "2-

5kb", "5-10kb", "10-100kb", and ">100kb". Each bar represents the percentage of 

binding sites in each distance category, with the percentage values displayed at the 

end of the bars. The colour-coding corresponds to the different distance categories. 

Hypermethylated sites show the highest binding activity within "0-1kb" regions 
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(48.3%), while hypomethylated regions also exhibit a significant percentage (47.9%) 

within the same range. Additionally, a considerable proportion of hypermethylated 

sites are located in the "10-100kb" range (24.9%), whereas hypomethylated regions 

have a notable number in the ">100kb" range (16.5%).  

3.3.3.2 Gene ontology annotation of promoters 

GO analysis of differentially methylated promoters in the AppNL-G-F model reveals 

distinct biological processes influenced by hypermethylation and hypomethylation, 

with clustering illustrating functional similarities among GO terms. For 

hypermethylated promoters, GO analysis identified 42 clustered terms (Fig. 3.7), 

encompassing biological processes such as splicing, cellular maintenance, 

communication, metabolic processes, and positive regulation (Supplementary Table 

3.2). The presence of splicing-related GO terms suggests that hypermethylation in 

these promoter regions could impact alternative splicing and RNA-binding proteins, 

potentially disrupting transcript processing.  The identified clusters suggest potential 

repression of genes involved in cellular maintenance, communication, and metabolic 

processes, which may contribute to impaired cellular function and possibly play a role 

in AD progression. Hypomethylated promoters are associated with 35 distinct GO 

terms, which primarily cluster into categories related to dephosphorylation pathways 

(FDR = 0.007). Immune response-related terms also rank second, although they did 

not reach statistical significance (Fig. 3.8; Supplementary Table 3.4). These findings 

imply that hypomethylation in these promoter regions may enhance processes 

associated with immune activity and cell signaling, potentially contributing to an 

adaptive or compensatory immune response to amyloid pathology in AD. 

Several key genes within enriched pathways were noted for their potential relevance 

to AD. For example, Semaphorin 4D (Sema4d), enriched in the phosphorylation 

pathway, exhibited differential splicing and isoform switching in response to amyloid 

(Supplementary Table 2.9 and 2.10). Sema4d is known to mediate cell-cell 

interactions and is implicated in neuroinflammatory responses, potentially affecting 

glial cell behaviour and neuron-glia interactions. Similarly, Protein Phosphatase 2 

Catalytic Subunit Beta (Ppp2cb) and Protein Phosphatase 3 Catalytic Subunit 

Gamma (Ppp3cc) showed isoform switching, with roles in signaling pathways relevant 

to synaptic plasticity and neuronal survival. Their intersection with Sema4d may reflect 

an interplay between phosphatase activity and neuroinflammatory signaling, 
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potentially modulating neuronal responses to amyloid build-up. Other genes within the 

dephosphorylation pathway, such as Dual specificity protein phosphatase 2 (Dusp2), 

known for its dephosphorylation of MAPK family members, may mitigate 

hyperactivation of Mitogen-Activated Protein Kinase (MAPK) pathways, potentially 

offering protection against amyloid-induced stress. Additionally, Protein Tyrosine 

Phosphatase, Non-Receptor Type 22 (Ptpn22) has increased expression in these 

conditions and plays a role in immune cell signaling, indicating a pathway by which the 

immune response may be modulated during amyloid accumulation. 
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Figure 3-7 Gene ontology annotation of hypermethylated promoters 

This heatmap shows clustering of 42 GO terms linked to hypermethylated promoters, identified using rGREAT and refined with 

simplifyEnrichment. Terms are grouped by functional similarity, with red shading indicating similarity strength, and clusters labeled 

as "splicing," "maintenance," "communication," "metabolic processes," and "positive regulation." Larger text indicates more significant 

enrichment (p-value < 0.05). Enrichment was assessed using a hypergeometric test with Benjamini-Hochberg correction, highlighting 

key pathways associated with hypermethylation.
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Figure 3-8 Gene ontology annotation of hypomethylated promoters 
This heatmap shows clustering of 35 GO terms linked to hypomethylated promoters, identified using rGREAT and refined with 

simplifyEnrichment. GO terms are grouped by biological similarity, with red shading indicating higher similarity and white representing 

lower or no similarity. Functional categories like "dephosphorylation" and "immune response" are highlighted, with hierarchical 

clustering revealing groupings of hypomethylation that may influence gene expression. Larger text indicates more significant 

enrichment (pp-value < 0.05). Enrichment was assessed using a hypergeometric test with Benjamini-Hochberg correction.
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3.3.3.3 Gene ontology annotation of all DMR sites 

Amongst the top hypermethylated and hypomethylated DMRs, many regions were 

within the gene body and the intergenic regions. Limiting our analysis to promoter 

regions alone can lead to a significant oversight. In gene bodies, differential 

methylation has been suggested to correlate with gene expression levels, for instance, 

hypermethylation within gene bodies is often associated with increased transcriptional 

activity, while hypomethylation with reduced expression (Zhou et al., 2021). Intragenic 

methylated CpG islands have been shown to be tissue-specific and significantly 

associated with transcriptional activity (Almamun et al., 2015). The regulatory roles of 

methylation in the 3' and 5' untranstated regions (UTRs) could potentially modulate 

gene expression by influencing mRNA stability and translation. 

Many crucial regulatory elements, such as enhancers and silencers, are located 

outside of the gene. These elements can greatly influence gene expression and play 

vital roles in the complex regulatory networks that operate within the genome. For that 

purpose, all the DMRs, regardless of position to the TSS, were annotated with the GO 

database, but separately for hypomethylation and hypermethylation .  

The gene sets associated with both hypermethylated and hypomethylated sites 

showed enrichment in similar pathways (Fig. 3.7 and 3.8), primarily related to 

metabolic processes and cell development (Supplementary Table 3.3 and 3.5). In the 

hypomethylated region, the “cellular development” enrichment term had the largest 

cluster, meaning the majority of the genes regulated via hypomethylated regions 

shared the developmental/differentiation relevant annotations as observed in 

hypermethylation annotations. Immune cell migration and trafficking was specific to 

hypomethylated genes, including genes such as Colony Stimulating Factor 3 Receptor 

(Csf3r) (areaStat= -8.261). CSF3R encodes the receptor for colony-stimulating factor 

3, a cytokine that controls the production, differentiation, and function of granulocytes, 

and identified AD blood biomarker (Seligmann et al., 2023). 

 

 



   
 

 95 

 
Figure 3-9 Gene ontology annotation of hypermethylated DMRs 

This heatmap shows clustering of 990 GO terms associated with hypermethylated regions in gene bodies and intergenic regions, 

identified using rGREAT and refined with simplifyEnrichment. GO terms are grouped by biological similarity, with red shading 

indicating higher similarity and white indicating lower similarity. Functional categories, such as "metabolic pathways," "protein 

localization," and "neuronal and microglial response," are highlighted on the right. Text size reflects enrichment significance, with 

larger text indicating greater significance (pp-value < 0.05). Enrichment was assessed using a hypergeometric test with Benjamini-

Hochberg correction.
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Figure 3-10 Gene ontology annotation of hypomethylated DMRs 

This heatmap displays clustering of 849 GO terms associated with hypomethylated regions, covering DMRs across promoters, gene 

bodies, and intergenic regions. These regions are linked to genes regulating processes such as development, cell migration, cellular 

response to the environment, and protein localization. Text size reflects enrichment significance, with larger text indicating greater 

significance (pp-value < 0.05, adjusted for FDR). Enrichment analysis was performed using a hypergeometric test with Benjamini-

Hochberg correction, based on 849 significant GO terms derived from hypomethylated regions.
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3.3.4 Cell type enrichment of differentially methylated genes with a 
mouse reference dataset 

To investigate the cell type specificity of genes potentially regulated by 

hypermethylation or hypomethylation, we first focused on promoter regions, given their 

well-established role as critical regulators of gene expression through methylation 

dynamics (Jones, 2012).  Promoter methylation is known to influence transcriptional 

activity by modulating transcription factor binding and chromatin modifier recruitment, 

where hypermethylation is typically associated with transcriptional repression and 

hypomethylation with activation (Bird, 2002). These properties made promoter regions 

an ideal starting point for this analysis. 

Using EWCE, we analyzed differentially hypermethylated and hypomethylated 

promoters (-2000 to +500 bp relative to the TSS) separately to determine cell type-

specific enrichment. As illustrated in Figure 3.11, the enrichment test was conducted 

across 48 cell types (Zeisel et al., 2015) Although there were no significant 

associations observed for promoters overall, there was a tendency of hypomethylated 

genes to be expressed specifically in interneurons (Int), vascular endothelial cells 

(Vend), perivascular microglial cells (Pvm) and microglial cells (Mgl) subtypes. While 

on the gene expression level, microglial enrichment was observed in Chapter 2, 

isoform-level alterations pointed out more diverse enrichment of the cell types. A 

variety of neuronal cell types express the genes marked with hypermethylation and 

hypomethylation but overall did not reach statistical significance for enrichment when 

only promoter regions were analysed. 

When all DMRs (including non-promoter regions) were incorporated into the analysis, 

a stronger enrichment for neuronal cell types was detected, as shown in Figure 3.12. 

A total of 664 genes were retained for hypermethylation, while 542 genes were 

identified for hypomethylation after filtering (Fig. 3.12). This broader inclusion revealed 

significant enrichment (q < 0.05) in three cell types for both hypermethylated and 

hypomethylated genes. Both hypermethylated and hypomethylated genes were 

enriched in pyramidal neurons in the hippocampal CA1 region, pyramidal neurons in 

the somatosensory Layer 2/3 region, and interneurons in the hippocampal CA1 region. 

These results indicate that DNA methylation changes, particularly those outside 
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promoter regions, may play a role in regulating isoform-level alterations, as suggested 

by the overlap with findings from Chapter 2.  

 

 
Figure 3-11 Cell type enrichment of expressed genes marked by differentially 
hypermethylated and hypomethylated promoters 
The top panel illustrates the enrichment of expressed genes marked by 

hypermethylation (only promoters) across cell types, while the bottom panel depicts 

the enrichment of expressed genes marked by hypomethylation (promoters). The y-

axis represents the number of standard deviations from the mean expression for each 

gene within a given cell type. Genes not classified into one of the defined major cell 

types are grouped under “None.” Enrichment analysis was performed using 

the bootstrap enrichment test from the EWCE package, with Benjamini-Hochberg 

(BH) adjustment applied to control the False Discovery Rate (FDR) and calculate q-

values (n=6). No significant enrichment was observed for either hypermethylated or 

hypomethylated promoter regions. The colour scale represents the degree of 

deviation, with intensity corresponding to the magnitude of enrichment in standard 
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deviations. Statistical significance was determined based on the adjusted p-values (q-

values). 

 

 
Figure 3-12 Cell type enrichment of expressed genes marked by differentially 
hypermethylated and hypomethylated regions outside of promoters 

The top panel represents expressed genes marked by hypermethylation, and the 

bottom panel shows those marked by hypomethylation outside of promoters. The y-

axis indicates the number of standard deviations from the mean expression for each 

gene per cell type. Genes marked with asterisks (*) demonstrate statistically significant 

deviations from the mean, highlighting the most differentially methylated genes in that 

cell type. Enrichment analysis was performed using the bootstrap enrichment 

test from the EWCE package, with Benjamini-Hochberg (BH) adjustment applied to 

control the False Discovery Rate (FDR) and calculate q-values (n=6). No significant 

enrichment was observed for either hypermethylated or hypomethylated promoter 

regions. The colour scale represents the degree of deviation, with intensity 

corresponding to the magnitude of enrichment in standard deviations. Statistical 

significance was determined based on the adjusted p-values (q-values). 
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3.4 Discussion 
3.4.1 Long-read DNA sequencing quality control metrics and alignment 

statistic between genotypes  

A limited number of studies have used long-read DNA sequencing to capture genome-

wide methylation signatures. Particularly, for mouse models or for AD or 

neurodegenerative disease contexts, so the number of resources for cross-

referencing are quite limited. Thus, this study presents a novel and comprehensive 

methylation profile of the AppNL-G-F AD mouse model and WT controls. The dataset 

could be also used as a reference for detecting repetitive elements or large structural 

variants in mouse studies.  

The reliability of the data assessed by quality control metrics for both the AppNL-G-F and 

WT samples (Fig. 3.1), compare very favourably with published benchmarks for long-

read methylation studies. The total read counts of approximately 2.83 million for AppNL-

G-F and 3.29 million for WT are in line with previous studies using long-read sequencing 

technologies, which generally report similar read counts as sufficient for 

comprehensive CpG methylation analysis (Yuen et al., 2021). The total yield of 29.75 

Gb for AppNL-G-F and 33.07 Gb for WT is well within the range expected for high-

coverage, genome-wide methylation studies, further supporting the depth and 

reliability of the dataset (Beyter et al., 2021)  Additionally, the mean sequencing 

accuracy of 93.15% for AppNL-G-F and 93.08% for WT is above the 90% threshold 

considered necessary for confident methylation calling, and the data is of high fidelity 

(Simpson et al., 2017). The N50 values (~14 kb) and median read lengths (~10 kb) 

meet the benchmarks set by studies such as those by Simpson et al. (2017), which 

emphasize the importance of longer read lengths for covering critical regulatory 

regions, including promoters and enhancers (Simpson et al., 2017).  

A recent benchmarking study by Sigurpalsdottir et al. (2024) evaluated the accuracy 

of two long-read sequencing platforms—Nanopore and SMRT sequencing by Pacific 

Biosciences—against oxidative bisulfite sequencing (oxBS), a gold-standard method 

for DNA methylation profiling. The study found a strong correlation between 

sequencing coverage and the accuracy of methylation detection (Sigurpalsdottir et al., 

2024). Based on these findings, we included methylated regions with more than 10x 

coverage in our analysis. 
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Promoters, typically located within a few hundred to a couple of thousand base pairs 

around transcription start sites (TSS), play a critical role in regulating gene expression. 

Sigurpalsdottir et al. (2024) demonstrated that long-read sequencing reliably 

replicates biological patterns of methylation, such as the characteristic depletion near 

TSS. Their study highlights the importance of methylation changes in promoter regions 

and their potential impact on transcriptional regulation. 

In summary, the number of reads, N50 values, median read lengths, and coverage all 

meet or exceed the standards necessary for conducting a comprehensive methylation 

analysis. The high base calling accuracy and sufficient sequencing yield further 

support the validity of our results. Our study provides a novel resource and a reference, 

given there are few prior studies that have used long-read sequencing to capture 

genome-wide methylation patterns in AD mouse models, which provides novel insights 

into the epigenetic mechanisms of the response of the brain to amyloid pathology (Liu 

et al., 2021; Logsdon et al., 2020).  

3.4.2 Global methylation pattern shows high percentage of variation 
near transcription start sites 

The analysis of transcription factor-binding loci within promoters revealed both 
hypermethylation and hypomethylation in response to amyloid at the highest 

percentage within 0-1 kb from the TSS. This proximity to the TSS strongly suggests 

that methylation changes in these regions could directly influence gene transcription 

by modulating transcription factor binding. Hypermethylation near the TSS is 

commonly associated with transcriptional repression, as methylation can prevent the 

binding of transcription factors. In contrast, hypomethylation in these regions can result 

in increased transcriptional activity. Proximity of methylation changes to TSS was 

consistent in both hypermethylated and hypomethylated regions, suggesting that AD-

related methylation changes could either suppress or activate the transcription of 

genes directly implicated in disease pathology. Furthermore, the distribution of 

hypermethylated sites in the 10-100 kb range suggests that some methylation 

changes may be acting on distant regulatory elements, such as enhancers, which can 

modulate gene expression and DNA looping over long genomic distances. 

Hypomethylated sites, on the other hand, showed a notable enrichment in the >100 

kb range, indicating the involvement of more distal elements. This reinforces the 
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importance of considering non-coding regions when studying the epigenetic 

landscape of AD. The GO analysis of hypermethylated and hypomethylated promoters 

further supports the functional relevance of the observed methylation changes in 

neuronal adaption of different neuronal populations. 

3.4.3 Gene ontology annotation of DMRs 

The GO analysis of differentially methylated promoters in the AppNL-G-F model provided 

new insights into the regulatory roles that hypermethylation and hypomethylation may 

play in AD pathology. Promoters, essential for initiating transcription, are particularly 

sensitive to methylation changes that can alter transcription factor binding and gene 

expression (Lubliner et al., 2015; Xu et al., 2015). Hypermethylation in promoter 

regions, as observed in the AppNL-G-F model, may repress gene expression by 

restricting transcription factor access (Bubnova et al., 2023). Specifically, 

hypermethylated promoters in this model are enriched for processes related to RNA 

splicing, cellular maintenance, metabolic pathways, and stress-activated signaling, 

suggesting that methylation of these regions might silence genes vital for neuronal 

homeostasis. RNA splicing is crucial for generating protein diversity, and alterations in 

this process could lead to abnormal protein isoforms, contributing to the cellular 

dysfunction. Notably, 49 out of 100 differentially spliced genes (Supplementary Table 

2.10, and  Supplementary Table 3.1) overlap with the DMRs in the same model in 

response to amyloid pathology, although only a few DMRs directly overlap with spliced 

regions. This observation suggests that hypermethylation may control factors 

mediating splicing control of genes, although the DNA methylation of promoters 

themselves may not directly regulate splicing. DNA methylation changes altering 

expression of splice factors may potentially compounding regulatory feedback loops 

that drive disease progression.  

Hypermethylation in the promoters of stress-response genes involved in the response 

to amyloid are a series of serine/threonine (MAPK) kinase cascade, such 

as glutathione s-transferase pi 2 (Gstp2), SMAD family member 3 (Smad3), mitogen-

activated protein kinase 6 (Map2k6), malignant fibrous histiocytoma amplified 

sequence 1 (Mfhas1), and SAM and SH3 domain containing 1 (Sash1), suggesting a 

mechanism by which the cell's ability to manage oxidative and inflammatory stress 

may be impaired. The MAPK cascade is a critical signaling pathway activated in 
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response to cellular stress, regulating processes like inflammation, apoptosis, and 

repair. This indicates that in response to amyloid accumulation, hypermethylation-

mediated suppression of these stress-activated pathways, which increases oxidative 

stress and chronic inflammation, and could modulate the resilience of cells to external 

stimuli, which may exacerbate neuronal damage. It was previously shown that 

inhibiting the MAPK signaling pathway can alleviate memory decline and hippocampal 

damage in AD by reducing the expression of APP and SP1 (Y. Du et al., 2019). Thus, 

this suggests a potential protective early mechanism via hypermethylation in AppNL-G-

F. 

Genes of hypomethylated promoters were enriched in GO terms related to immune 

response, cellular transport, and cytokine production, aligning with the inflammatory 

and immune changes that characterize AD pathology. Hypomethylation in immune-

related promoters may lead to an upregulation of pro-inflammatory genes, promoting 

the chronic neuroinflammation seen in AD. For instance, immune-modulating genes 

such as Ptpn22 may be upregulated due to hypomethylation, amplifying immune 

signaling and potentially accelerating disease pathology.  

Hypomethylation was also enriched in transport-related genes such as 

Cacna1e and Syt1, suggesting possible upregulation of pathways involved in synaptic 

vesicle transport and neurotransmitter release. These processes are essential for 

maintaining synaptic function and plasticity, and disruptions in these transport 

mechanisms can impair synaptic communication and adaptability, contributing to the 

cognitive deficits associated with AD. Interestingly, while gene-level upregulation was 

not observed, isoform-level analyses (Chapter 2) reveal changes in specific isoforms 

associated with pre- and post-synaptic functions, alongside immune response 

pathways. These finding suggests a nuanced interaction between immune cell 

upregulation and specific synaptic isoform alterations, as reflected by methylation 

patterns. Such a pattern implies that while methylation changes indicate an immune 

response, they may also highlight specific isoform shifts relevant to synaptic 

processes. Despite limitations associated with GO terms covering only the biology 

studied to date by the community, these GO terms begin to provide new insights into 

how DNA methylation marks contribute to the progression of AD. 
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Overall, these findings suggest that differential methylation in promoter regions 

impacts a range of pathways relevant to AD, from immune responses to neuronal 

stress signaling, potentially contributing to amyloid adaptation and disease 

progression. 

3.4.4 Cell type enrichment of differentially methylated promoters and all 
DMRs in AD 

The enrichment analysis of genes marked by differentially methylated genes revealed 

distinct cell type associations for both hypermethylation and hypomethylation, 

emphasizing the regulatory potential of methylation changes across genomic contexts. 

Promoter regions, traditionally recognized as critical regulators of gene 

expression (Bird, 2002; P. A. Jones, 2012), provided an important focus for initial 

analyses. Methylation at promoters modulates transcription factor binding and 

chromatin structure, with hypermethylation typically silencing gene expression and 

hypomethylation often facilitating activation.   

When analyzing promoter-specific methylation changes, significant enrichment 

patterns of marked genes were not observed for any cell types. However, when 

including the hypomethylated and hypermethylated DMRs from all regions, significant 

enrichment was observed in pyramidal neurons in the hippocampal CA1 region, 

pyramidal neurons in the somatosensory Layer 2/3 region, and interneurons in the 

hippocampal CA1 region. This finding suggests that methylation in intronic and 

intergenic regions, beyond promoters, also plays a key role in gene regulation in these 

cell types, as supported by studies linking such methylation events to alternative 

splicing and isoform-specific expression (Moore et al., 2013).  

Genes marked by hypomethylated promoters, in particular, exhibited enrichment (ns) 

in microglial cells, aligning with findings from Chapter 2, where microglial activation 

was evident at both gene and isoform levels. These data point to a potential link 

between hypomethylation and microglial activation, a hallmark of neuroinflammation, 

observed in AD (Benitez et al., 2021; Keren-Shaul et al., 2017; Mathys et al., 2019; 

Olah et al., 2020; Parachikova et al., 2007; Sala Frigerio et al., 2019). The genes 

enriched in this microglial phenotype, ARM/DAM, were not  entirely observed within 

the DMRs, indicating that the methylation is not the sole mechanism that drives the 

ARM/DAM phenotype. However, genes such as Capg, and Dkk2 were found to be 
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enriched in the ARM/DAM response to amyloid pathology (Keren-Shaul et al., 2017; 

Sala Frigerio et al., 2019). CAPG was also found to be increased in proteomics in 

cerebro spinal fluid (CSF) from early onset AD individuals (Drummond et al., 2022). 

CAPG was also reported as consistently increased at protein level in AD proteomics 

studies, which signifies its role as a potential biomarker (Askenazi et al., 2023). 

The inclusion of all DMRs, including those outside of classical promoters, revealed 

significant enrichment in pyramidal neurons and interneurons in hippocampal and 

somatosensory regions in both hypermethylated and hypomethylated regions, 

highlighting the importance of broader methylation events beyond promoter regions. 

These findings suggest that differential methylation may affect neuronal function by 

accompanied isoform usage or alternative splicing or by regulating these processes .  

The combined evidence from promoter and genome-wide analyses highlights the 

complexity of methylation's role in cell type-specific gene regulation. Future studies 

integrating methylation with other epigenetic modifications and transcriptomic data will 

be essential to elucidate the functional consequences of these methylation changes, 

particularly in the context of neuronal and microglial interactions in neurodegenerative 

diseases. In longer term work it would be useful to disrupt methylated loci using 

CRISPR to investigate functional changes of DNA methylation on gene expression 

and splicing. 

3.4.5 Potential role of DMRs in AD pathology 

Differentially methylated regions (DMRs) identified in the analysis were associated 

with key genes involved in pathways essential for neuronal function and AD pathology. 

These pathways included neuronal signaling and plasticity, glutamate metabolism, 

oxidative stress, mitochondrial function, lipid metabolism, neuroinflammation, 

cytoskeletal integrity, and DNA repair (Fig. 3.9 and  Fig. 3.10) 

Epigenetic alterations in genes critical for neuronal function and signaling highlight 

potential mechanisms underlying AD pathology. For instance, Forkhead Box P1 

(Foxp1), a gene associated with neuronal signaling and plasticity, displayed significant 

and multiple hypermethylation changes in intergenic and intronic areas, as well as a 

hypomethylation in promoter area. Foxp1 is essential for neurotrophic factor regulation 

and supports neuronal survival and synaptic plasticity (Kong et al., 2013). Its 



   
 

 106 

dysregulation, driven by altered methylation, could impair neurotrophic support and 

disrupt the PI3K/Akt signaling pathway that is shown to be protective against AD 

progression (Peng et al., 2023).  Reticulon 4 (Rtn4), known for modulating BACE1 

activity and amyloid production, exhibited differential hypomethylation in its promoter. 

Its role in amyloid plaque formation and synaptic dysfunction formation (Kulczyńska-

Przybik et al., 2021; Masliah et al., 2010) suggests that epigenetic regulation may 

significantly influence amyloid-related pathology in AD. Other notable genes 

include zinc finger homeobox 2 (Zfhx2os), which exhibited hypermethylation in its 

promoter region, potentially silencing its expression. Zfhx2os is implicated in neuronal 

differentiation and function (Komine et al., 2012), and its repression could impair 

neurogenesis and synaptic plasticity.  

Hypermethylation changes were also observed in exonic regions of abelson helper 

integration site 1 (Ahi1), and both hypermethylation and hypomethylation in solute 

carrier family 15 member 5 (Slc15a5), affecting its intronic regions. Ahi1 is vital for 

ciliary trafficking and signaling, particularly in the hippocampus and cerebral cortex, 

brain regions notably affected in AD. Alterations in Ahi1 methylation may disrupt ciliary 

function, leading to impaired neuronal signaling, which could contribute to cognitive 

impairments like memory loss commonly seen in AD (Hsiao et al., 2021). 

Hypomethylation changes in the promoter of genes related to glutamate metabolism 

and excitotoxicity, such as glutamate-ammonia ligase (Glul) and solute carrier family 

25 member 12 (Slc25a12), also underline the potential role of excitotoxicity in AD. 

Excessive glutamate activity leads to excitotoxic neuronal damage, particularly in 

regions vulnerable to AD.  

In addition to pathway-specific findings, cell-type enrichment analysis indicates 

changes in neuronal populations, highlighting genes such as Cacna1e, Cux2, 

Glutamate decarboxylase 1 (Gad1), Nefm, Satb2, and Syt1 as central to neuronal 

function and behaviour. For example, Cacna1e, encoding the alpha-1E subunit of 

voltage-gated calcium channels (VGCCs), and essential for neurotransmission and 

synaptic plasticity, showed hypermethylation in an intronic region, potentially 

disrupting calcium homeostasis (Lauerer & Lerche, 2023). Cux2 hypermethylation in 

the promoter region may further modulate neuronal signaling, possibly impacting 

synaptic strength and plasticity (Cubelos et al., 2010). Gad1, encodes glutamate 
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decarboxylase, a key enzyme responsible for synthesizing GABA, the primary 

inhibitory neurotransmitter in the brain. Hypermethylation in the 3' UTR of Gad1 gene, 

could lead to loss of inhibitory input as observed previously in early AD (Guennewig 

et al., 2021; Ramos-Miguel et al., 2017). Similarly, Syt1, a key player in synaptic 

vesicle exocytosis, showed intronic hypermethylation, which could affect 

neurotransmitter release and synaptic communication (Chang et al., 2018). In 

contrast, hypomethylation in genes like RAR-related orphan receptor beta (Rorb) may 

indicate differential regulatory mechanisms affecting neuronal subtypes (Leng et al., 

2021). Hypomethylation in these genes may correspond with increased gene 

expression, potentially influencing pathways related to neurogenesis and cellular 

differentiation.  

The GO annotation of the promoter DMRs uncovered a significant enrichment of 

immune response pathways within hypomethylated regions. Hypomethylation, was 

notably associated with genes such as Foxp1, Cd14, Rtn4, and Ipo5. These genes 

are integral to immune response activation and suggest that chronic 

neuroinflammation in AD may not simply be a downstream consequence of 

neurodegeneration. Instead, hypomethylation appears to play an early role in initiating 

and sustaining the immune response. 

In addition to the immune response pathways, a distinct enrichment for immune cell 

migration pathways was observed within hypomethylated regions, including 

hematopoietic stem cell migration (q = 0.024), which highlights the potential 

involvement of cellular migration pathways. While cell migration pathways were 

marked by both hypomethylated and hypermethylated regions, hypomethylated 

regions uniquely included genes such ectodomain phosphatase/phosphodiesterase-1 

(Enpp1), B-cell lymphoma/leukemia 11B (Bcl11b), and exostosin glycosyltransferase 

1 (Ext1). These genes are known regulators of immune cell activity and movement, 

suggesting that hypomethylation may facilitate microglial migration around amyloid 

plaques or immune cell infiltration into the brain. This infiltration could contribute to the 

inflammatory environment characteristic of AD. 

Interestingly, this regulation of immune cell migration pathways by hypomethylation 

may serve as an adaptive mechanism in early AD. Increased immune surveillance or 

cellular migration might initially be protective, enabling the brain to respond to 
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emerging damage. However, as the disease progresses, prolonged and heightened 

immune activation could foster chronic inflammation, contributing to 

neurodegeneration and worsening the disease’s pathological landscape. 

Further insights were provided by the enrichment of apoptotic pathways within 

hypomethylated regions, which included genes such as Enpp1 again, peripheral 

myelin protein 22 (Pmp22) and a kinase anchoring Protein 12 (Akap12). The 

upregulation of these genes suggests a potential link between immune activation and 

neuronal apoptosis, a hallmark of AD pathology. While apoptosis may serve as a 

protective mechanism in early stages of the disease, clearing damaged or 

dysfunctional cells, excessive activation of apoptotic pathways can lead to a 

detrimental reduction in neuronal populations. This loss of neuronal resilience can 

exacerbate cognitive decline, creating a vicious cycle of damage and cell death (Glass 

et al., 2010). Although the mouse model used here may does not show obvious neuron 

death, these pathways in early disease may prime neurons for death in late disease. 

The inclusion of all DMRs revealed significant enrichment in neuronal cell types, 

particularly pyramidal neurons and interneurons in hippocampal and somatosensory 

regions. This suggests that methylation changes in intronic and intergenic areas, 

implicates broader regulatory elements in neuronal cell types. These non-coding DNA 

elements, often acting as enhancers, can influence transcriptional expression through 

enhancer-promoter interactions (Carullo & Day, 2019; Marzi et al., 2018). Some 

tissue-specific enhancers are located within intronic regions, suggesting that these 

non-coding regions are not merely passive but actively participate in the regulation of 

gene activity (Borsari et al., 2021). For instance, intronic hypermethylation 

in Cacna1e and Syt1 may alter calcium signaling and synaptic vesicle release, 

thereby affecting neurotransmission and plasticity in these cells.  

Several imprinted genes were observed in the DMRs list; genomic imprinting is an 

epigenetic mechanism that results in parent-of-origin-specific gene expression, 

meaning certain genes are expressed in a monoallelic manner based on whether they 

were inherited from the mother or father. In mammals, many imprinted genes are 

situated in the non-coding genome including paternally expressed gene 13 (Peg13), 

a long non-coding RNA implicated in AD due to its role in genomic imprinting and 

association with brain development. PEG13 is located in a genomic region linked to 
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an AD-associated imprinting control region (Cevik et al., 2023). Its expression is 

regulated by brain-specific enhancers and is influenced by genomic imprinting, 

resulting in the selective expression of either the paternal or maternal allele in neural 

tissues (Claxton et al., 2022; Court et al., 2014). Peg13 was identified as a top 

hypomethylated gene within the promoter region (≤1kb from the TSS) on chromosome 

15.  

Another key imprinted gene, ubiquitin-protein ligase E3A (Ube3a), is maternally 

expressed in neurons and plays a critical role in protein ubiquitination. Ube3a has been 

shown to be reduced with age in the AD Tg2576 mouse model, accompanied by a 

loss of dendritic spine density and behavioural deficits. In our analysis, Ube3a was 

found to be hypermethylated in a distal intergenic region, though this did not 

significantly impact gene expression at the bulk level. Additionally, hypermethylation 

was observed in the intronic region of scm-like with four mbt Domains 2 (Sfmbt2), 

which is a maternally imprinted gene, meaning its expression is primarily derived from 

the paternal allele. It encodes a polycomb group (PcG) protein involved in chromatin 

remodeling and transcriptional repression, contributing to the regulation of 

developmental and cellular processes, and has been found to be differentially 

methylated in Braak Lewy body stage neuroinflammatory pathways, and increased in 

microglial cells (Oliveros et al., 2023). Finally, another imprinted gene, disks large-

associated protein 2 (Dlgap2) was found to be differentially methylated in our study, 

where hypermethylation in an intronic region was observed. DLGAP2, a synaptic gene 

coding for DLGAP2 protein in the middle layer of the postsynaptic density complex (Li 

et al., 2017), is highly expressed in the brain, and showed differential expression in 

brain regions associated with cognitive decline across diverse populations in AD 

(Ouellette et al., 2020). Dlgap2 also has been identified as a potential key regulator of 

age-related cognitive decline in AD, with specific spine phenotypes linked to cognitive 

resilience against AD pathology (Ouellette et al., 2020). Since its protein form plays a 

critical role in synaptic plasticity by interacting with scaffold proteins in the postsynaptic 

density, disruption of these complexes can lead to synaptic stability and signaling 

dysfunction, emphasizing the importance of DLGAP2 in preserving synaptic integrity 

and cognitive function. Thus, methylation changes in non-coding regions, may act, in 

part via imprinted genes to coordinate the cellular response to AD pathology. 
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3.4.6 Potential Implications for AD Pathology 

The methylation landscape identified in this study provides key insights into the 

regulatory impact of DMRs on pathways and cellular processes essential for neuronal 

function and AD pathology. Both hypermethylation and hypomethylation were 

associated with distinct, yet interconnected, pathways, reflecting their potential roles 

in either suppressing or activating processes relevant to neurodegeneration. 

Hypermethylation was observed in genes critical for neuroprotection, cellular 

maintenance, and stress responses. For example, hypermethylation in stress-

response genes suggests a mechanism by which neuronal defences against oxidative 

stress and inflammation could be altered. In AD, where oxidative damage and 

inflammation are pervasive, this alteration in expression could indicate affected 

response of the cell’s ability to disease-related stressors, which may cause neurons 

to be more vulnerable to degeneration. Although hypermethylation suggests 

repression, it's also worth considering that not all methylation changes necessarily 

lead to repression. Also, the change in the response to the stressor could be also a 

compensatory mechanism, to counteract other dysregulated pathways. This raises the 

possibility that certain methylation patterns could reflect adaptive responses rather 

than purely pathological processes. 

Specific genes, such as Foxp1, exhibited hypermethylation that could interfere with 

their roles in transcriptional regulation and alternative splicing. FOXP1 is also essential 

for neurotrophic signaling and synaptic plasticity (Khandelwal et al., 2024a), and its 

silencing has been implicated in promoting neuronal death or synaptic 

dysmorphogenesis (Louis Sam Titus et al., 2017). Similarly, hypermethylation in genes 

associated with cytoskeletal integrity and synaptic maintenance, such 

as Nefm and Rtn4, suggests potential impacts on axonal stability and synaptic 

communication. 

In a study by Altuna et al. (2019), RHOB was identified as one of the hypermethylated 

genes in the human hippocampus, where it was significantly correlated with tau 

pathology (Pearson cor = 0.99, pvalue=0.013) (Altuna et al., 2019). In the AppNL-G-F 

model, this hypermethylation occurs in a distal intergenic region approximately 13.7 

kb from the Rhob TSS on chromosome 12 (chr12: 8,486,110–8,486,345) in response 
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to amyloid, suggesting the region serves as a regulatory element or enhancer rather 

than a promoter. The significance of Rhob hypermethylation in a distal intergenic 

region is two-fold. Firstly, such regions often harbour regulatory elements like 

enhancers that modulate gene expression by interacting with promoters via chromatin 

looping. Secondly, hypermethylation at these sites typically reduces transcription 

factor accessibility, potentially repressing Rhob expression. In AD, such repression 

may impair processes like cell-cell interaction and adhesion, both critical for 

maintaining synaptic integrity. As neurodegeneration progresses, this loss of function 

could exacerbate synaptic dysfunction. 

Given the role of Rhob in cell signaling, structural integrity, and adhesion, its 

hypermethylation may reflect an epigenetic response to amyloid pathology. This 

modification may suppress its activity, disrupting cellular interactions and structural 

support crucial for countering amyloid-induced stress. Since Rhob supports synaptic 

communication and cognitive resilience, its dysregulation may contribute to the decline 

in synaptic integrity characteristic of AD. 

Overall, the enrichment of hypermethylated genes across various pathways, including 

RNA splicing, and their presence in multiple neuronal cell types underscore the far-

reaching impact of methylation on neuronal resilience. These epigenetic changes 

warrant further investigation to determine whether methylation directly contributes to 

neuronal dysfunction, thereby accelerating cognitive decline and disease progression.  

Hypomethylation shared common pathways with the hypermethylation, however 

hypomethylation of promoters was exclusively associated with immune responses, 

cellular transport, and cytokine production. Immune-modulating genes, such 

as Ptpn22, showed hypomethylation that likely resulted in the upregulation of pro-

inflammatory pathways. While this immune activation may initially serve as a 

protective response to protect against neuronal damage, sustained activation can lead 

to maladaptive chronic neuroinflammation. 

Transport-related genes, including those involved in synaptic vesicle transport and 

neurotransmitter release, also exhibited hypomethylation, suggesting potential 

upregulation of synaptic activity. Genes such as Cacna1e and Syt1, which regulate 

calcium influx and synaptic vesicle exocytosis, respectively, may reflect compensatory 
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mechanisms aimed at preserving synaptic function in the face of disease-relevant 

stressors. However, persistent dysregulation in these pathways could result in 

impaired synaptic communication and plasticity, ultimately contributing to the cognitive 

deficits observed in AD. 

Interestingly, while gene-level upregulation of transport pathways was not apparent at 

the bulk RNA level, isoform-level analyses revealed changes in synaptic and immune 

response pathways (as detailed in Chapter 2). These findings suggest that methylation 

changes might regulate these pathways more subtly through isoform-specific 

expression patterns or through discrete cell populations, highlighting complex 

interactions between immune activation and synaptic adaptations in the AD brain. 

3.4.7 Broader Implications 

The differential methylation patterns observed across both promoter and non-
promoter regions reveal an influence on neuronal and immune-related pathways in 

response to amyloid pathology, occurring during the earliest phase of AD. These 

findings emphasise that the role of epigenetic changes in AD may extend beyond 

simple gene expression regulation. 

In the next chapter, we explore the integration of methylation data with transcriptomics 

to uncover the mechanisms through which these modifications may shape AD 

pathology. This chapter emphasizes the need for validating methylation sites and 

integrating these data with transcriptomic analyses to elucidate the precise pathways 

influenced by epigenetic changes in AD. Additional experimental validation 

approaches, will be pivotal for directly testing the functional consequences of 

methylation modifications. For instance, site-specific demethylation or 

hypermethylation using CRISPR-dCas9 systems fused with TET1 or DNMT3A may 

reveal how these changes impact transcriptional activity, splicing regulation, or 

chromatin architecture (Gallego-Bartolomé et al., 2018; Morita et al., 2020). Chromatin 

immunoprecipitation (ChIP) can assess transcription factor binding at methylated loci, 

while reporter assays can evaluate promoter functionality (M. Lambert et al., 2018; 

Lassar et al., 2019; P. J. Park, 2009). Functional studies in neuronal and glial cell 

models derived from induced pluripotent stem cells (iPSCs) can provide a cellular 
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context to assess the impact of methylation changes on AD-relevant phenotypes, such 

as synaptic physiology, oxidative stress response, and immune activation. 

In summary, this study advances our understanding of the methylation epigenetic 

landscape in early AD by identifying potentially critical pathways and regulatory 

mechanisms that may serve as potential therapeutic targets. The interplay between 

hypermethylation and hypomethylation highlights a complex regulatory network 

modulating immune responses, neuronal resilience, and synaptic function in an 

amyloid mouse model, representing the earliest phase of AD.  
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Chapter 4 

4 Investigating the correlation patterns between 

methylation and expression in AppNL-G-F and WT 

mice, and comparison to human AD brain 

4.1 Introduction 
DNA methylation is the process by which methyl groups (-CH3) are added to the 

cytosine residues of the DNA molecule, typically in the context of CpG dinucleotides 

(cytosine-guanine dinucleotides). This epigenetic modification can have profound 

effects on gene expression by influencing chromatin structure and the accessibility of 

transcriptional machinery. Thus, the correlation between gene expression and DNA 

methylation in Alzheimer’s disease (AD) may provide understanding into the 

epigenetic mechanisms that influence gene regulation and may contribute to disease 

progression.  

Numerous studies have demonstrated that the hypermethylation of CpG-rich regions, 

often found in gene promoters, is generally associated with transcriptional silencing. 

Promoter hypermethylation can lead to the recruitment of methyl-CpG-binding 

proteins (MBPs), which in turn recruit histone deacetylases (HDACs) and other 

chromatin-remodelling complexes. This results in a more compact and inaccessible 

chromatin structure, effectively blocking the binding of transcriptional activators and 

the recruitment of the RNA polymerase complex, thereby repressing gene expression. 

Conversely, the hypomethylation of CpG-rich promoter regions is generally associated 

with transcriptional activation. In the absence of DNA methylation, the promoter region 

becomes more accessible to transcriptional activators, allowing for the recruitment of 

the RNA polymerase complex and the initiation of gene transcription (Deaton & Bird, 

2011; P. A. Jones, 2012). The complex dynamics of DNA methylation is critical to 

understand in AD, where aberrant methylation patterns correlate with altered gene 

expression (De Jager et al., 2014; Lardenoije et al., 2019; Lunnon et al., 2014; Marzi 
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et al., 2018; Roubroeks et al., 2020; Shireby et al., 2022), potentially driving disease-

related changes. 

Building on insights from previous analyses of gene expression, isoform-level 

changes, and epigenetic modifications presented in Chapters 2 and 3, this chapter 

examines the relationship between DNA methylation and gene expression in response 

to amyloid pathology in matching samples. This chapter also includes an analysis of 

whether the methylation patterns observed in an AD mouse model align with gene 

expression levels in a human snRNA-seq AD dataset, comprised of 440,000 single-

nuclei RNA-sequencing (snRNA-seq) profiles from human early AD, late AD, and age-

matched controls from the ROSMAP project (Xiong et al., 2023). Evaluating the human 

orthologues of mouse-identified genes may help identify methylation biomarkers in the 

early stage of the disease reflecting broader disease mechanisms and to inform future 

therapeutic strategies. 

4.1.1 Aims and objectives 

Hypothesis: Hypermethylation is associated with decreased gene expression, while 

hypomethylation correlates with increased expression, with some conserved 

expression patterns between mouse models of AD and human early AD compared to 

controls. 

This chapter aims to: 

1. Investigate the correlation between DNA methylation and gene expression in 

the AppNL-G-F mouse model of AD, focusing on promoter regions and all genomic 

regions overlapping with DMRs to assess how methylation patterns influence gene 

expression. 

2. Identify genotype-specific methylation-expression relationships by 

comparing AppNL-G-F and WT genotypes, calculating differential correlations to 

uncover potential epigenetic regulatory differences. Examine whether shared genes 

with methylation-expression correlations exhibit isoform alterations, including isoform 

switching, alternative splicing, or transcript usage changes, integrating findings from 

Chapter 3. 
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3. Perform cell-type enrichment analysis using DMR-associated gene sets from AD 

mouse model to explore potential cell-specific roles of methylation patterns in human 

datasets.  

4. Examine whether there are any genes from the mouse DNA-methylation and 

transcript correlation patterns that could be detected in the human AD brain, with a 

focus on cell-type-specific roles across disease stages using data from human snRNA-

seq analyses. 

4.2 Methods 
4.2.1 Datasets 

Long-read RNA- and DNA-sequencing data from Chapters 2 and 3 were used to 

compare expression and methylation patterns. Gene expression data, represented as 

log2-transformed normalized counts, were filtered to include approximately 6,100 

shared genes of interest. Methylation data, derived from pre-processed long-read DNA 

sequencing, were mapped, quality-checked, and extracted for specific regions such 

as promoters, exons, and regulatory elements using the bsseq R package. Correlation 

analysis was conducted on both promoter regions and all regions overlapping with 

DMRs, focusing on shared genes to explore the relationship between methylation and 

gene expression across diverse functional elements. 

4.2.2 Data Integration  

For both promoter-specific and all-region analyses, promoters were defined as regions 

upstream of transcription start sites (TSS), typically spanning 1–2 kb, while all regions 

included promoters, gene bodies (both intronic and exonic regions), and distal 

intergenic regions. A GRanges object was created for each region based on genomic 

coordinates to facilitate methylation data extraction from the pre-processed dataset. 

Gene expression data from the filtered matrix were aligned with methylation data at 

the sample level, ensuring consistent sample IDs for reliable integration. 

4.2.3 Pearson Correlation Analysis 

The association between methylation levels at CpG sites and gene expression was 

assessed using Pearson correlation. For each CpG site in a defined region: 

1. Methylation levels (percentages) were treated as independent variables (𝑥). 
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2. Gene expression levels (log2-transformed normalized counts) were treated as 

dependent variables (𝑦). 

3. The Pearson correlation coefficient (𝑟) was calculated as: 

For each gene: 

Genotype-Specific Correlation: 

Pearson correlation coefficients were calculated separately for AppNL-G-F and WT 
using the formula:  

𝑟 = 	
∑(𝑥! −	𝑥̅) (𝑦! −	𝑦>)

?∑(𝑥! −	𝑥̅)"∑(𝑦! −	𝑦>)"
 

where 𝑥! and  𝑦! are the methylation and expression values for sample	𝑖, and 𝑥̅ and 𝑦> 

are their means. A t-test was used to assess the statistical significance of the 

correlation coefficient.  

For both promoter and all-region analyses, Pearson correlation coefficients were 

calculated separately for the AppNL-G-F and WT genotypes: 

𝑟#$$%&'( : Correlation between methylation and expression within the AppNL-G-F 

genotype. 

𝑟)*: Correlation between methylation and expression within the WT genotype. 

Differential Correlation: 

The difference in correlation (∆𝑟 = 	 𝑟#$$%&'( − 𝑟)*) was calculated. A correlation test 

(t-test) was applied to the differences in methylation and expression values between 

the two genotypes.  

4.2.4 snRNA-seq Analysis 

Publicly available snRNA-seq data from Xiong et al. (2023), comprising ~414,000 cells 

from 92 individuals across different AD stages, were also used (Xiong et al., 2023). 

Low-quality cells were filtered based on gene count and mitochondrial expression 

levels, retaining cells with >750 to 8,000 gene counts, and <10% mitochondrial content 

(Luecken & Theis, 2019; Zheng et al., 2017). 
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Data were normalised to adjust for variations in sequencing depth and cell cycle 

effects. Normalization was performed using a log transformation with a scaling factor 

of 10,000 by default, which standardizes the data across cells and mitigates the impact 

of sequencing depth differences. Scaling was then applied to account for cell cycle 

effects by regressing out variations associated with cell cycle phases, using the cell 

cycle markers within CellCycleScoring() function. Principal Component Analysis 

(PCA) was applied to transform the gene expression data into principal components 

that capture the maximum variance in the dataset. Manifold Approximation and 

Projection (UMAP) performed for the low-dimensional representation of the data, and 

visualization and interpretation of cellular relationships. DoubletFinder was used to 

identify and remove potential doublets, with an estimated doublet rate of 4%. 

4.2.5 Cell Type Enrichment Analysis 

Expression Weighted Cell-type Enrichment (EWCE) was applied to determine the cell 

type enrichment within the gene sets of interest, which compares input gene lists 

against a background reference of brain cell types from both mouse and human 

datasets (Skene & Grant, 2016). Input gene lists were cross-referenced with 

orthologue conversion lists, retaining one-to-one orthologues for clear interpretation. 

The reference dataset included scRNA-seq data annotated for specific cell types in 

human AD (Xiong et al., 2023) and mouse brain (Zeisel et al., 2015).  EWCE-based 

cell-type enrichment analysis was conducted using gene names derived from DNA 

methylation peak annotations. 

While both EWCE and rGREAT were used to analyze DMR-associated gene sets, 

their differing methodologies result in expected differences. Unlike rGREAT, which 

extends associations to nearby regulatory elements, EWCE directly links genes to 

peaks, creating a more focused gene list. This targeted approach is especially 

advantageous for cell-type enrichment, as it can identify cell type-specific expression 

patterns with greater power. However, EWCE’s reliance on direct annotations 

excludes many of the indirect regulatory associations captured by rGREAT, resulting 

in a more refined view centred on gene products directly associated with genomic 

peaks. This distinction allows for a complementary analysis, where EWCE offers 

focussed insights into cell type-specific associations, while rGREAT captures a 

broader regulatory context surrounding each DMR. 
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The CellTypeDataset (CTD) summarizes gene expression for each cell type in the 

reference scRNA-seq dataset. Average expression levels were calculated for each 

gene within each cell type, alongside specificity scores that highlight genes 

predominantly expressed in specific cell types. Standardization was applied, aligning 

gene names to a consistent format and normalizing expression values across the 

dataset. These adjustments make the CTD suitable for downstream analyses. 

EWCE’s bootstrap_enrichment_test function to evaluate whether the input gene set 

was significantly enriched in specific cell types. This test compares the observed 

expression of the input gene list to randomly generated gene lists of the same size, 

sampled from the background gene set. The enrichment analysis was performed 

across multiple annotation levels in the ROSMAP dataset (Xiong et al., 2023) with 

level 1 (major cell types) and level 2 (cell subtypes) cell type annotations available. 

The bootstrapping process involved 10,000 repetitions as suggested (Skene & Grant, 

2016). 

4.2.6 Gene expression and methylation data integration and correlation 

For each DMR mapped to genes/loci, the corresponding gene expression data were 

examined to determine the relationships between methylation and expression levels.  

Gene symbols from the DMR data were matched to those in the gene expression 

dataset, which was extracted from log-normalized counts from that used in differential 

expression analysis. Methylation data was processed using the bsseq package 

(Hansen et al., 2012) as described in Chapter 3. 

The initial analysis focused on promoter regions due to their known regulatory impact 

on gene expression. To extend the analysis, methylation patterns in gene bodies and 

intergenic regions were also evaluated for associations with gene expression. Gene 

names were consistently referenced when comparing the isoform-level changes, such 

as isoform usage and switch.  

Pearson correlation tests were conducted for both genotypes (AppNL-G-F and WT) to 

assess the correlation between differential methylation and gene expression levels, 

and to uncover any genotype-specific patterns. Methylation data was summarized 

both as mean methylation percentages per sample genome-wide, and per-CpG basis 

only for some genes, resulting in two separate analyses: 
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1. Averaged methylation per region  

2. Per-CpG site methylation  

4.2.7 Code Availability 

The R markdown file used for the snRNA-seq analysis and other relevant data 

processing scripts is available at: https://github.com/umranyaman/brain_AD.  

4.2.8 Data Availability 

The public snRNA-sequencing dataset used for analysis (Xiong et al., 2023) can be 

accessed from Kellis Lab’ website at https://compbio.mit.edu/ad_epigenome/.  

4.3 Results 
4.3.1 Correlation between promoter methylation and gene expression  

Promoter regions overlapping with DMRs were analyzed to explore their relationship 

with gene expression, recognizing that DMRs may span diverse functional elements. 

The study focused on around 6,100 genes shared between the methylated DNA loci 

and the filtered expression matrix used for differential gene expression analysis. 

Instead of genome-wide, correlation analysis was performed on set of shared genes. 

Promoter methylation levels of these genes  that overlapped with gene expression 

data were examined to assess how methylation patterns in these regions correlate 

with gene expression.  

Overall, there was a discernible trend suggesting a relationship between methylation 

and expression. However, these correlations were generally not statistically significant 

when analyzed within the AppNL-G-F and WT groups individually (Figure 4.1). For 

example, the promoter region of the App gene displayed a noticeable correlation 

between methylation and expression, yet differences in methylation and expression 

levels were not statistically significant. This indicates a potential association that 

reflects trends rather than robust and consistent patterns. 

https://github.com/umranyaman/brain_AD
https://compbio.mit.edu/ad_epigenome/
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Figure 4-1 Differential methylation of the App promoter and expression 
correlation in AppNL-G-F and WT mice in each pool 
(A)Mean methylation levels of App promoter region in each samples per genotype 

(n=6). (B) Gene expression levels (log2) of App gene each samples per genotype 

(n=6). (C) The App promoter showed a significant correlation between differential 

expression and methylation values (Pearson correlation = -0.842, p = 0.035, t-test). 

Despite these strong correlations, no significant differential methylation was detected 

in the App promoter region overall (pane A), or differential expression of App between 

AppNL-G-F and WT (p=0.7, Wald test, panel B).  

The findings showed that some genes had correlations between methylation levels 

and gene expression in specific regions or at certain CpG sites (Table 4.3; full list in 

Supplementary Table 4.1). In several cases, strong positive correlations suggested 

potential biological importance, given the affected genes were linked to changes in 

expression or methylation associated with AD pathology.  

4.3.2 Individual CpG sites may show stronger genotype-specific 
correlations with gene expression beyond DMRs  

The promoter region of capping actin protein (Capg) gene, one of the amyloid -

associated microglial (ARM/DAM) genes, and shown to have differential expression 

and isoform usage/switching in Chapter 2, was also identified within differentially 

methylated genes in Chapter 3 (areaStat: -8.757, Wald test, see Supplementary Table 

3.1. and 4.1). Hypomethylation in the promoter region (within ±1 kb of the TSS, 

distance to TSS = 236 bp) of Capg displayed no overall correlation to expression 

(Figure 4.2). However, CpG site-specific  analysis of promoter methylation against 
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expression changes highlighted a single CpG site correlated to expression (Table 

4.1.).  

 

 
Figure 4-2  Methylation and expression comparisons for the Capg gene 
between AppNL-G-F and WT genotypes. 
Panel A shows a modest, however, significant change in the promoter methylation 

levels (areaStat= -8.757, Wald test, hypomethylation) between AppNL-G-F and WT mice. 

Panel B shows significantly elevated expression in the AppNL-G-F genotype compared 

to WT (p = 5e-07, Wald test). Panel C illustrates the no significant association (r = -

0.239, p = 0.648) between methylation and expression changes per sample for Capg.  

Although the overall DMR for Capg (Figure 4.2) showed limited correlation with gene 

expression, specific CpG sites revealed more significant relationships. For example, 

CpG Site 3 in the AppNL-G-F group showed a positive correlation with gene expression 

(r = 0.814, p = 0.048; Table 4.1). This suggests that while genotype differences in 

promoter methylation and expression were not substantial, specific CpG sites (Figure 

4.4 and Figure 4.5) might better predict expression levels within the same sample set. 
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Table 4-1 Summary of methylation and expression correlations at CpG sites of 
the Capg gene in AppNL-G-F and WT genotypes, including differential 
correlations. 

Site 
Pearson 

correlation 
AppNL-G-F 

P val. 
AppNL-G-F 

Pearson 
correlation 

WT 

P val. 
WT 

Pearson 
Corelation 

Diff 2 

P val. 
Diff 

Aggregated1 -0.225 0.667 -0.031 0.95 -0.239 0.648 

CpG Site 1 0.348 0.498 0.375 0.462 0.574 0.233 

CpG Site 2 0.564 0.242 -0.133 0.800 0.318 0.537 

CpG Site 3 0.814 0.048 -0.139 0.791 0.382 0.454 

CpG Site 4 -0.374 0.464 -0.150 0.775 -0.163 0.757 

1The correlation between methylation and expression levels across all CpG sites combined (Pearson 
correlation=0.814, p.value=0.048, t-test) 
2The correlation between methylation differences and expression differences in matching samples of 

AppNL-G-F and WT groups, per pool (n=6) where each pool is one AppNL-G-F and one WT mouse 

sequenced simultaneously. 
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Figure 4-3 The differential hypomethylation level in the Capg promoter across AppNL-G-F and WT groups. 

Each row represents a different sample (pink and blue annotations, marked Ap or WT, then sex M/F, then the pool number A-F), with 

methylation levels indicated in the heatmap by colour intensity—lighter yellow shades represent higher methylation in WT 

(hypomethylation). The Capg promoter DMR, indicated by purple in the “DMRs” row, highlights areas of hypomethylation. The lines 

at the bottom of the figure illustrate the variation in methylation levels across samples, capturing the epigenetic differences between 

the genotype groups.  
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Figure 4-4 Hypomethylation in CpG sites in the Capg promoter region. 
The figure shows DMR region for Capg promoter only (areaStat=-8.756, Wald test, hypomethylation). The top track shows Capg 

transcripts, with two major isoforms indicated by blue arrows. Below, heatmaps display methylation levels at four CpG sites for 

the AppNL-G-F and WT groups. The AppNL-G-F heatmap (red gradient) shows lower methylation per CpG site, with darker red indicating 

higher levels. The WT heatmap (blue gradient) shows higher WT methylation, with darker blue representing higher levels. Differences 

in methylation patterns between the groups are evident at multiple CpG sites. 
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Figure 4-5 Heatmap showing methylation levels of four CpG sites within the 
Capg promoter region across samples. 

Methylation levels range from low (green) to high (red), as indicated by the colour 

gradient on the right. Each row represents a biological sample from either the WT 

(wild-type) or AppNL-G-F group, and each column corresponds to a CpG site 

(CpG_Site_1, CpG_Site_2, CpG_Site_3, CpG_Site_4). The heatmap visualizes 

differences in methylation patterns between genotypes, with notable hypermethylation 

observed in specific CpG sites in the AppNL-G-F samples compared to WT. M/F, 

male/female; A-F, pool ID. 

 

The colony-stimulating factor 1 (Csf1) shows a trend of a correlation between 

hypomethylation in a distal intergenic area and gene expression, where methylation 

at CpG site 1 tended to positively correlate with the increasing expression. Although 

the correlations are not statistically significant, the observed patterns may indicate that 

differential methylation of specific CpG sites may affect Csf1 expression based on 

pathology and sample group. 

Table 4-2 Summary of methylation and expression correlations at CpG sites of 
the Csf1 gene in AppNL-G-F and WT genotypes, including differential 
correlations. 
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Site 
Pearson 

correlation 
AppNL-G-F 

P val. 
AppNL-G-F 

Pearson 
correlation 

WT 

P val. 
WT 

Pearson 
Corelation 

Diff2 

P val. 
Diff 

Aggregated1 -0.646 0.165 0.569 0.238 0.433 0.390 

CpG Site 1 -0.431 0.393 0.622 0.186 0.751 0.084 

CpG Site 2 -0.357 0.486 0.547 0.260 0.127 0.809 

CpG Site 3 -0.207 0.693 0.499 0.313 0.694 0.126 

CpG Site 4 -0.545 0.262 0.524 0.285 0.098 0.852 

CpG Site 5 -0.660 0.153 0.448 0.372 -0.653 0.159 

1The correlation between methylation and expression levels across all CpG sites combined.  
2The correlation between methylation differences and expression differences in matching samples of 

AppNL-G-F and WT groups, per pool (n=6) where each pool is one AppNL-G-F and one WT mouse 
sequenced simultaneously. 
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Table 4-3 Correlation between promoter methylation and gene expression in genes of AppNL-G-F and WT models 

1The correlation between methylation and expression differences in matching samples of AppNL-G-F and WT groups, per pool (n=6 pools) 
2Indicates whether hypomethylation is associated with increased gene expression. 
3Indicates whether hypermethylation is associated with decreased gene expression. 
4"Yes" indicates observed increased gene expression in AppNL-G-F (Figure 2.3, see Supplementary Table 2.1.) 

gene 
AppNL-G-F 

correlation 
AppNL-G-F 

pvalue 
WT 

correlation 
WT 

pvalue 
Diff. 

correlation1 

Diff. 
pvalue 

Hypo 
Increased 

Expression2 

Hyper 
Decreased 

Expression3 

Gene 
Exp4 

Irf9 -0.190 0.719 -0.349 0.497 -0.913 0.011 FALSE FALSE Yes 

Ugt1a7c -0.672 0.144 0.371 0.469 0.898 0.015 TRUE FALSE Yes 
Gcnt1 -0.831 0.040 -0.524 0.286 -0.877 0.022 FALSE FALSE Yes 
Fcer1g 0.693 0.127 0.458 0.361 0.858 0.029 TRUE FALSE Yes 

Unc93b1 0.383 0.453 0.489 0.325 0.848 0.033 TRUE FALSE Yes 
Tmem176b -0.364 0.479 -0.405 0.425 -0.810 0.051 FALSE FALSE Yes 

Cd180 -0.106 0.842 -0.251 0.632 -0.807 0.052 FALSE FALSE Yes 
Gfap 0.067 0.899 -0.263 0.615 -0.806 0.053 TRUE FALSE Yes 

Igf1 -0.736 0.096 -0.529 0.280 -0.803 0.054 TRUE FALSE Yes 
Irf5 0.026 0.961 -0.747 0.088 -0.761 0.079 TRUE FALSE Yes 

Cd300c2 0.035 0.947 0.330 0.523 0.754 0.083 TRUE FALSE Yes 
Il4i1 -0.109 0.837 -0.112 0.832 -0.744 0.090 TRUE FALSE Yes 
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4.3.3 DMRs in gene body and intergenic regions correlate with gene 
expression  

To investigate the potential influence of DMRs located within gene bodies and 

intergenic regions on gene expression, correlations between differential methylation 

and gene expression were systematically explored. Pearson correlation coefficients 

were calculated for these annotated DMRs to evaluate the relationship between 

methylation and gene expression per pool (n=6 pools), with pools containing individual 

samples that were matched for both long-read DNA and RNA-sequencing (methylation 

called from DNA-sequencing, with one AppNL-G-F and one WT mouse per pool). As 

outlined in the "Diff. correlation" column of Table 4.4, this column shows how the 

difference between AppNL-G-F and WT samples within pools, correlates between one 

modality to the other across all the samples. It was of particular interest to determine 

whether methylation alterations outside promoter regions could significantly modulate 

transcriptional activity. 

Table 4.4 details the correlation values, p-values, and the relationships between 

methylation status of gene body, intergenic regions and their correlation to the gene 

expression in both the AppNL-G-F and WT mouse models. The results indicate that 

DMRs within non-promoter regions did indeed correlate with expression changes, 

suggesting that regulatory mechanisms may extend beyond promoter-associated 

methylation. 

Hypomethylation in the intronic region of cadherin-13 (Cdh13) was linked to a 

significant negative differential correlation between expression and methylation. In the 

AppNL-G-F, Cdh13 displayed a correlation of differential expression and methylation of 

-0.933 (p < 0.01) (Supplementary Table 4.2), suggesting that hypomethylation within 

the gene body could be associated with increased gene expression. Cdh13 is notably 

abundant in cell types including excitatory, inhibitory neurons and oligodendrocyte 

progenitor cells (Mossink et al., 2022; Xiong et al., 2023). In human AD brain, CDH13 

is found to be increased in early AD and decreased as the disease progresses to the 

late stage in excitatory cell types (Figure 4.6) in single-cell ROS-MAP data, suggesting 

that elevated CDH13 may initially enhance synaptic stability and plasticity, potentially 

serving a protective role. CDH13 supports the formation and maintenance of excitatory 

synapses, crucial for cognitive functions such as learning and memory (Saunders et 



   
 

 130 

al., 2022). This increased expression in early AD may counteract synaptic loss and 

help preserve cognitive function, as synaptic dysfunction is an early pathological 

feature of AD. 

 

 
Figure 4-6 CDH13 expression across human cell types and AD stages 

Boxplots display the mean expression levels of CDH13 across different cell types (Ast, 

Exc, Inh, Mic, Oli, Opc, Vas) for early AD (n=29 individuals), late AD (n=15), and non-

AD stages (n=48), with individual data points representing individuals re-analyzed 

from the ROSMAP dataset (Xiong et al., 2023). The boxplots depict the interquartile 
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range (IQR; 25th–75th percentiles), with the central line representing the median 

expression level, while whiskers extend to the minimum and maximum values within 

1.5×IQR. Statistically significant differences between pathology stages, assessed by 

pairwise Wilcoxon tests with FDR correction, are marked by asterisks (* p<0.05, ** 

p<0.01, *** p<0.001), while non-significant comparisons are labelled as 

"ns." CDH13 expression increases in excitatory cells in the earlier stage, followed by 

decreased levels in the late stage of AD. 

 

A high positive differential correlation was observed for protein tyrosine phosphatase, 

receptor type E (Ptpre)(0.979, p < 0.001), accompanied by a significant increase in 

the expression of the specific isoform ENSMUST00000209979 (Ptpre-204), as 

detailed in Chapter 2, in response to amyloid pathology. This correlation, while 

reflecting overall gene expression, strongly suggests that hypermethylation within 

intronic region of the Ptpre gene may preferentially drive the expression of the Ptpre-

204 isoform, notable for being the only isoform to show increased expression in 

the AppNL-G-F model. Interestingly, in the human AD dataset, PTPRE expression 

decreases as the disease progresses (Figure 4.7). Given that PTPRE has been 

implicated in the regulation of angiogenesis and vascular health — both crucial for 

maintaining blood-brain barrier (BBB) integrity (Cai et al., 2024) — pointing to altered 

microglia-endothelial cell interactions across AD stages. The observed increased 

expression of Ptpre-204 in the AppNL-G-F model may signify an adaptive or protective 

response during early AD, aiming to sustain BBB function and vascular stability, which 

may then breakdown with Tau pathology in humans (which is not seen in the AppNL-G-

F mice). 
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Figure 4-7 PTPRE expression across human cell types and AD stages 
Boxplots display the mean expression levels of PTPRE across different cell types (Ast, 

Exc, Inh, Mic, Oli, Opc, Vas) for early AD (n=29 individuals), late AD (n=15), and non-

AD stages (n=48), with individual data points representing individuals. The boxplots 

depict the interquartile range (IQR; 25th–75th percentiles), with the central line 

representing the median expression level, while whiskers extend to the minimum and 

maximum values within 1.5×IQR. Statistically significant differences between 

pathology stages, assessed by pairwise Wilcoxon tests with FDR correction, are 

marked by asterisks (* p<0.05, ** p<0.01, *** p<0.001), while non-significant 

comparisons are labelled as "ns." Statistically significant differences between 
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pathology stages, assessed by pairwise Wilcoxon tests with FDR correction, are 

marked by asterisks (* p<0.05,** p<0.01,*** p<0.001), while non-significant 

comparisons are labelled as "ns". PTPRE expression decreases in the microglia as 

the disease progresses.  

These examples illustrate that in specific situations DMRs within gene bodies and 

intergenic regions can correlate with gene expression changes, reinforcing the 

hypothesis that methylation outside of promoter regions may also play an essential 

role in transcriptional regulation. This could influence isoform-specific responses and 

overall gene expression dynamics in the context of amyloid pathology. 
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Table 4-4 Summary of differentially methylated regions (DMRs) correlating with gene expression in AppNL-G-F and WT 
mouse models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1The correlation between methylation and expression differences in matching samples of AppNL-G-F and WT groups, per pool (n=6 pools) 
2Indicates whether hypomethylation is associated with increased gene expression. 
3Indicates whether hypermethylation is associated with decreased gene expression. 
4"Yes" indicates observed increased gene expression in AppNL-G-F (Figure 2.3, see Supplementary Table 2.1.) 
 

gene 
AppNL-G-F 

correlation 

AppNL-

G-F 

pvalue 

WT 
correlation 

WT 
pvalue 

Diff. 
correlation1 

Diff. 
pvalue 

Hypo 
Increased 

Expression2 

Hyper 
Decreased 

Expression3 

Gene 
Exp4 

Ptpre 0.222 0.672 0.448 0.373 0.979 0.001 FALSE FALSE No 

Sik3 0.593 0.215 0.538 0.271 0.956 0.003 FALSE FALSE No 
Stard5 -0.558 0.250 -0.262 0.616 -0.956 0.003 FALSE FALSE No 

Cdh13 -0.800 0.056 -0.776 0.069 -0.933 0.007 TRUE FALSE No 
Runx1 -0.051 0.924 -0.767 0.075 -0.929 0.007 FALSE FALSE Yes 

Sipa1l3 0.670 0.146 0.399 0.434 0.891 0.017 FALSE FALSE No 
Lmo7 0.772 0.072 0.341 0.508 0.884 0.020 FALSE TRUE No 

Arap2 0.397 0.436 0.656 0.157 0.868 0.025 FALSE FALSE No 
Pmp22 0.259 0.621 -0.369 0.472 0.816 0.048 FALSE FALSE No 
Zfp804b -0.166 0.753 0.166 0.790 0.879 0.050 FALSE TRUE No 

Kit 0.575 0.233 0.672 0.144 0.778 0.068 FALSE TRUE No 
Tec 0.109 0.837 0.837 0.037 0.760 0.080 TRUE FALSE Yes 
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4.3.4 DMRs and AD risk genes  

A gene set overlap of DMRs within known AD risk genes was conducted to explore 

potential epigenetic mechanisms influencing gene expression in AD pathology. 

Bellenguez et al. (2022) identified 89 genetic loci associated with AD, many of which 

are involved in processes such as lipid metabolism, immune response, and synaptic 

function (Bellenguez et al., 2022). Gene names associated with differentially DMRs 

were compared to AD risk genes identified through genome-wide association studies 

(GWAS), highlighting DMR sites within genes common to both datasets (Table 4.5.). 

The DMR analysis revealed hypomethylation or hypermethylation in many AD causal 

and risk genes, such as App, Mapt, epidermal growth factor receptor (Egfr), signal 

peptide peptidase-Like 2A (Sppl2a), ubiquitin associated and SH3 domain containing 

B (Umad1), and membrane metalloendopeptidase (Mme) across the individual CpG 

sites or the DMR in response to amyloid.   

In App, both hypomethylation in distal intergenic region (areaStat=12.070) and 

hypermethylation in an intronic region (areaStat=-9.961) were observed. 

Hypermethylation in the App intronic region showed a weak non-significant trend of 

negative correlation with gene expression (Pearson correlation = -0.649, p = 0.162). 

A hypomethylated distal intergenic region exhibited a trend towards a negative 

correlation with App expression (Pearson correlation = -0.751, p = 0.085), suggesting 

that hypomethylation might contribute to an increase in App expression. A specific 

hypomethylated CpG site demonstrated the strongest correlation exclusively within 

the AppN-L-GF group (Pearson correlation = -0.808, p = 0.051), highlighting the potential 

for non-promoter regions to exert regulatory control over the gene activity. 

Egfr showed a significant positive correlation at CpG site 4 in the AppNL-G-F group 

(Pearson correlation = 0.835, p = 0.039), suggesting that hypermethylation may be 

linked to increased expression in this group. Conversely, CpG site 1 in the WT group 

exhibited a strong positive correlation (Pearson correlation = 0.848, p = 0.033), 

implying that methylation at specific CpG sites in the interaction with APP and Aß 

signalling may regulate Egfr expression differently between the groups. 

In Sppl2a, hypomethylation in exonic regions showed a strong negative overall 

correlation with gene expression in the WT group (Pearson correlation = -0.917, p = 
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0.010), indicating a potential inverse relationship between methylation and expression. 

Although CpG site-specific correlations in the AppNL-G-F group were weaker and not 

statistically significant, these results suggest methylation may 

regulate Sppl2a expression, particularly in the WT group. 

For Umad1, hypomethylation in the intronic region was associated with a significant 

positive overall correlation with gene expression across all samples (Pearson 

correlation = 0.659, p = 0.020). Although individual CpG site correlations within the 

AppNL-G-F and WT groups were moderate, they did not reach statistical significance, 

highlighting the need for further investigation. 

Finally, Mme showed a weak trend of a positive correlation between hypomethylation 

in the distal intergenic region and gene expression, particularly in the WT group at 

CpG site 2 (Pearson correlation = -0.719, p = 0.107). Although these correlations were 

not statistically significant, they suggest further methylation testing at this region 

should be investigated in relation to gene expression. 

Interestingly, Mapt exhibited hypermethylation in an intronic region in both the AD 

mouse model (areaStat = 10.589) and human AD (p = 3.16e-07), with the latter 

reported by Wang et al. (2023). In both cases, the hypermethylation was associated 

with amyloid pathology burden. 

Overall, these observations underscore the complexity of methylation regulation in AD-

related genes, where both hypo- and hypermethylation in various genomic regions 

showed context-specific correlations with altered gene expression. The methylation 

patterns in genes App, Egfr, Sppl2a, Umad1, and Mme suggest that methylation may 

exert context-dependent regulatory effects influenced by the response to amyloid 

(AppNL-G-F vs WT), CpG site location, and gene function.  

 



   
 

 137 

Table 4-5 Differentially methylated regions in genes common with AD risk genes identified by GWAS 

1Specifies the size of each region in base pairs (bp) and the number of CpG sites contained within it. 
2Reflects the degree of methylation changes within each region. 
3Distance to TSS - Provides the genomic context (e.g., intronic, intergenic) and distance to the closest transcription start site (TSS). Gene set comparison 

between isoform switch and usage between AppNL-G-F AD mouse model and human AD brain in base pairs 

chr           start           end length1    nCG1 areaStat2 annotation Distance 
ToTSS3 symbol gene name 

chr16 84965424 84965476 53 4 12.070 Intron -2043 App Amyloid beta precursor protein 

chr16 85269999 85270065 67 5 -9.962 Distal 
Intergenic -96233 App Amyloid beta precursor protein 

chr14 45455942 45456152 211 5 11.262 Distal 
Intergenic 21709 Fermt2 Fermitin family member 2 

chr11 16736261 16736435 175 5 10.307 Distal 
Intergenic -15768 Egfr Epidermal growth factor recepto

r 

chr11 16655442 16655553 112 4 8.848 Distal 
Intergenic -96650 Egfr Epidermal growth factor recepto

r 

chr7 131000000 131000000 228 4 8.558 Intron 5819 Plekha1 
Pleckstrin homology domain co
ntaining, family A (phosphoinosi
tide binding specific) member 1 

chr8 121000000 121000000 250 6 -13.322 Intron 58885 Fendrr 
Foxf1 adjacent non-

coding developmental regulator
y RNA 

chr3 51512071 51512304 234 5 -11.645 Distal 
Intergenic 24343 Setd7 SET domain containing (lysine 

methyltransferase) 7 
chr2 127000000 127000000 226 5 -11.059 Exon 4495 Sppl2a Signal peptide peptidase like 2A 

chr17 48689345 48689471 127 4 -11.053 Distal 
Intergenic 226941 Unc5cl Unc-5 family C-terminal like 

chr6 8315739 8315853 115 4 -9.780 Intron 45273 Umad1 
UMAP1-

MVP12 associated (UMA) dom
ain containing 1 

chr3 63123237 63123537 301 4 -9.588 Distal 
Intergenic -118000 Mme Membrane metallo endopeptida

se 
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4.3.5 DMRs across human AD datasets 
To explore the conservation of DMRs identified in the mouse model further, 

comparisons were made with three human AD datasets. Each dataset highlights DNA 

methylation changes in brain regions linked to amyloid pathology. The first dataset 

was from the middle temporal gyrus (MTG), a region highly vulnerable to amyloid 

plaque accumulation (PIP) (Piras et al., 2023). The second dataset was obtained from 

parahippocampal gyrus (PHG), an area closely associated with neuritic amyloid 

plaques and early cognitive dysfunction (WAP) (Wang et al., 2023). Finally, the 

ROSMAP dataset analyzed methylation changes in the prefrontal cortex (PFC), a 

region that is critically affected in the later stages of AD and associated with the burden 

of neuritic amyloid plaques (De Jager et al., 2014).  

Comparisons between mouse DMR genes and these human datasets revealed 

varying degrees of overlap. In the ROSMAP dataset, five shared genes were 

identified, including striated muscle preferentially expressed protein kinase (SPEG), a 

regulator of cell signaling, and forkhead box protein K1 (FOXK1), a transcription factor 

involved in chromatin remodeling and cellular differentiation. 

The WAP dataset showed a broader overlap with 39 genes. These included mitotic 

arrest deficient 1-like 1 (MAD1L1), a key regulator of mitotic checkpoints and 

chromosome segregation, and glutamate ionotropic receptor kainate type subunit 

2 (GRIK2), which is involved in excitatory synaptic transmission. Other notable genes 

were transmembrane protein 2 (TSPAN2), which mediates cell adhesion and 

signalling, and protein phosphatase 2 regulatory subunit B gamma (PPP2R2C), a 

regulator of cell cycle progression. 

The PIP dataset had the largest overlap, with 67 genes shared between mouse DMRs 

and human results. Among these were rho guanine nucleotide exchange factor 

3 (ARHGEF3), a key player in actin cytoskeleton regulation, FOXP1, which is essential 

for neurodevelopment and synaptic maintenance. Other conserved genes 

included calcium/calmodulin-dependent protein kinase 1D (CAMK1D), which 

modulates calcium signalling pathways, and MAD1L1, underscoring its repeated 

relevance across datasets. 
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Notably, genes such as MAD1L1, ARHGEF3, and GRIK2 were consistently identified 

across multiple human AD DNA methylation datasets, suggesting their strong 

association with amyloid-related pathology. A Venn diagram below shows the shared 

and unique overlaps between mouse DMRs and the three human datasets. 

 
Figure 4-8 Conservation of DMRs between the AppNL-G-F mouse model and 
human AD datasets (WAP, PIP, ROSMAP) 

The Venn diagram shows gene overlaps between the DMRs detected in AppNL-G-F vs 

WT, and three human datasets: WAP (parahippocampal gyrus), PIP (middle temporal 

gyrus), and ROSMAP (prefrontal cortex). Numbers represent shared or unique genes, 

with 5 genes conserved across mouse and ROSMAP, 35 genes shared between 

mouse and WAP, and 70 genes shared between mouse and PIP datasets. 

4.3.6 Cell-type specific DNA methylation dynamics in AD mouse model, 
and across human AD brain stages 

In Chapter 3, cell type specificity of genes affected by hypermethylation and 

hypomethylation was examined using a mouse reference dataset. The analysis initially 

focused on promoter regions (-2000 to +500 bp relative to the TSS), given their central 

role in gene regulation. Although no significant associations were detected overall at 

the promoter level (Figure 3.11.), some of hypomethylated genes were expressed in 
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microglial cells in the human AD brain, consistent with the microglial activation 

described in Chapter 2. When the analysis was expanded to include all DMRs, both 

hypermethylated and hypomethylated genes were enriched in hippocampal CA1 

pyramidal neurons, somatosensory Layer 2/3 pyramidal neurons, and CA1 

interneurons (adjusted p-value<0.05), highlighting the contribution of methylation 

changes beyond promoters (Figure 3.12). 

In Chapter 4, the focus shifted to human brain expression data, covering non-AD, early 

AD, and late AD stages. Using a human reference dataset captures the complexity of 

AD progression and addresses species-specific differences that limit the mouse 

model. This approach builds on the earlier findings and places them in a clinical 

context, providing a clearer view of how DNA methylation changes relate to cell type-

specific processes at different stages of AD. 

Although statistically insignificant, promoters of genes marked by hypomethylated 

regions exhibited a tendency for enrichment in early AD within endothelial cells 

(aEndo), excitatory neurons (Exc), and interneurons (Inh). In late AD, this tendency 

for enrichment extended to Exc, Inh, and microglial subtypes (Mic), whereas in non-

AD samples, enrichment was observed in Inh and Mic cell types (Figure 4.9). 

For promoters of genes marked by hypermethylated regions, early AD showed a 

tendency for enrichment in fibroblasts (Fib) and Inh, whereas late AD demonstrated 

enrichment in Exc and Inh. In non-AD samples, hypermethylated promoters tended to 

be enriched in excitatory neurons and interneurons (Figure 4.10). 
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Figure 4-9 Cell type enrichment test of genes with promoters marked by hypomethylated DMRs using the human single 
cell expression AD reference atlas, across early AD, late AD, and non-AD stages using EWCE.   

The top, middle, and bottom panels represent enrichment in early AD (n=29 individuals), late AD (n=15), and non-AD stages (n=48) 

respectively. The y-axis shows standard deviations from the mean expression per cell type, with the color scale indicating 

enrichment magnitude (red = higher, blue = lower). Enrichment analysis used Benjamini-Hochberg adjustment for FDR, with no 

significant enrichment observed for hypermethylated or hypomethylated promoter regions based on q-values.  
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Figure 4-10 Cell type enrichment of hypermethylated promoter DMRs using the human AD reference atlas, across early 
AD, late AD, and non-AD stages using EWCE 

The top, middle, and bottom panels represent hypermethylated promoter DMRs enrichment in early AD (n=29 individuals), late AD 

(n=15), and non-AD stages (n=48) respectively. The y-axis shows standard deviations from the mean expression per cell type, with 

the color scale indicating enrichment magnitude. While no significant enrichment is observed, deviations in excitatory and 

interneuron subtypes vary by disease stage. Enrichment analysis used Benjamini-Hochberg adjustment for FDR. 
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When incorporating DMRs from gene bodies and intergenic regions, cell type 

enrichment analysis revealed distinct patterns of hypomethylation across AD stages. 

Hypomethylated DMRs were significantly associated with subtypes of inhibitory 

neurons, and oligodendrocyte precursor cells (OPCs). In both early and late AD, these 

regions showed significant enrichment in inhibitory neuronal cell types, indicating a 

potential stage-specific and cell-type-specific methylation response to disease 

pathology. OPCs exhibited strong enrichment in both non-AD and late-AD stages 

(adjusted p-value < 0.05), suggesting a broader regulatory role extending beyond 

promoter regions to include gene bodies and intergenic regions (Figure 4.11).  

The distribution of hypomethylated DMR-associated genes suggests these genes may 

serve distinct roles in different cell types and stages of disease. While no significant 

enrichment was observed in major cell types such as astrocytes, excitatory neurons, 

or interneurons, specific OPC subtypes, such as OPC_GPR4, showed consistent 

enrichment across stages, reflecting their potential involvement in disease-related 

cellular processes. 

For hypermethylated DMRs, cell type enrichment analysis revealed distinct expression 

patterns across non-AD, early AD, and late AD stages. In early AD, hypermethylated 

regions were significantly enriched in an inhibitory neuronal subtype, reflecting a likely 

regulatory response to early pathological changes. By late AD, enrichment extended 

to multiple inhibitory subtypes and arterial endothelial cells (aEndo) (adjusted p-value 

< 0.05), suggesting hypermethylation may influence both neuronal and vascular 

functions in advanced disease stages (Figure 4.12). 

Figures 4.11 and 4.12 illustrate these patterns, with standardized deviations 

highlighting the significance of methylation changes across specific cell types. 

Hypomethylation was prominent in OPCs, with non-significant trends observed in 

inhibitory cell types, while hypermethylation showed broader enrichment, including 

endothelial and inhibitory subtypes, particularly in early and late AD. These findings 

emphasize the role of stage-specific methylation changes in modulating cellular 

responses to AD pathology, with potential implications for both neuronal and vascular 

dysfunction during disease progression.
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Figure 4-11 Cell type enrichment analysis of hypomethylated DMRs across non-AD, early AD, and late AD stages. 

The cell-type enrichment bar plot shows the standardized deviation from the mean for cell type-specific enrichment of hypomethylated 

DMRs across early AD (n=29 individuals), late AD (n=15), and non-AD stages (n=48) respectively. Non-significant enrichment is 

observed in excitatory neurons (Exc), interneurons (Inh), astrocytes (Ast), and oligodendrocyte precursor cells (OPC). Significant 

enrichment is observed for OPC_GPR4 in non-AD, and late-AD, as indicated by the asterisks (*). These results highlight stage-

specific patterns of hypomethylation and demonstrate that DMR gene lists may be enriched in distinct cell types at different stages 

of disease progression. Enrichment analysis used Benjamini-Hochberg adjustment for FDR. 



   
 

 145 

 
Figure 4-12 Cell type enrichment analysis of hypermethylated DMRs across early AD, late AD, and non-AD stages. 

The cell-type enrichment bar plot shows the standardized deviation from the mean for cell type-specific enrichment of 

hypermethylated DMRs across early AD (n=29 individuals), late AD (n=15), and non-AD stages (n=48) respectively. Cell types are 

displayed on the x-axis, and the standardized deviation is plotted on the y-axis. Significant enrichment is observed in aEndo (arterial 

endothelial cells) and interneuron subtypes during early and late AD stages, as indicated by asterisks (*). These findings highlight 

enrichment trends of hypermethylation in specific cell types, particularly in endothelial cells and interneurons, across disease stages. 

Enrichment analysis used Benjamini-Hochberg adjustment for FDR. 
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4.4 Discussion 
4.4.1 Correlation between methylation levels in promoter regions of 

genes with gene expression in matched samples 

Several strong correlations or trends were observed between promoter methylation 

and gene expression. While significant inverse correlations were identified, differences 

in methylation or expression levels between AppNLGF vs WT were statistically 

insignificant. For example, hypomethylation in Foxp1 (areaStat = -34.744, Wald test) 

showed a notable inverse correlation with its expression levels (Pearson correlation = 

-0.75, p = 0.080, t-test). Given the potential role of Foxp1 in AD pathology, this 

correlation still warrants further investigation; Foxp1 is a transcription factor involved 

in immune regulation neuronal function. Irie et al. (2023) demonstrated that FOXP1 is 

expressed in NeuroD1-induced neuronal cells derived from microglia/macrophages, 

suggesting a role in modulating the inflammatory environment following brain injury 

(Irie et al., 2023). Khandelwal et al. (2024) reported that FOXP1 can induce phenotypic 

rescue in striatal neurons, indicating its therapeutic potential in restoring normal 

synaptic function in neurodegenerative conditions (Khandelwal et al., 2024b). This 

suggests, as observed in the correlation analysis, increased FOXP1 levels could 

counteract synaptic deficits observed in AD, potentially improving cognitive function 

and neuronal resilience. 

Overall, while specific genes did exhibit statistically significant differential expression 

overall, there were an observable trends of increased gene expression in the AppNL-G-

F  model compared to WT. These findings indicate that while expression levels for such 

genes remain relatively stable under current conditions, their sensitivity to methylation 

changes suggests that future shifts, possible through environment or experimental 

manipulations, could drive more pronounced changes, highlighting its regulatory 

potential in response to amyloid pathology.  

This observation aligns with previous studies showing that even modest changes in 

promoter methylation can exert significant regulatory effects on gene expression 

(Jones, 2012). Methylation changes may not always result in immediate or detectable 

expression under controlled experimental conditions but could still have long-term 

impacts on gene regulation. Methylation may serve as a prelude to more substantial 



   
 

 147 

transcriptional changes or as part of a complex regulatory mechanism that integrates 

multiple epigenetic and environmental inputs (Zhang et al., 2013), and it is important 

to bear in mind that the environments of the mice used in this study were carefully 

controlled, and so the true environmental impact is hard to assess. Thus, genes with 

significant correlations between methylation and expression could potentially be 

interesting, as they may represent key players in disease progression or response to 

environmental stimuli, particularly in humans.  

4.4.2  CpG or regional correlation between methylation and expression  

Several genes exhibited DMRs that correlated with the gene expression; however, in 

specific cases, individual CpG sites were more indicative of the expression changes 

rather than the overall methylation of a wider region. Microglial genes 

including Capg and Csf1, both of which are involved in critical biological processes 

such as immune response and neuroinflammation, showed CpG specific correlations.  

In the Capg gene, hypomethylation in the promoter was associated with upregulation 

of gene expression. The Pearson correlation coefficient for the aggregated methylation 

across the Capg promoter showed a moderately negative correlation (-0.3875), 

indicating that, at a regional level, methylation differences do not strongly correlate 

with gene expression in a straightforward, linear fashion.  

Some CpG sites may exhibit methylation changes but have no impact on expression, 

whereas others might be tightly linked to transcriptional regulation. Identifying these 

functionally relevant CpG sites requires investigating them individually. Both DMR 

analysis and single CpG site analysis provide valuable, complementary insights. DMR 

analysis is effective for identifying broader regions of differential methylation and may 

reduce noise by aggregating information across sites. However, analysing each CpG 

site individually with the Pearson correlation is essential for uncovering fine-scale, 

functional relationships between methylation and gene expression. This higher-

resolution view can highlight specific CpG sites with significant regulatory roles, and 

to help understand the heterogeneity within DMRs. 

 

Examining individual CpG sites is critical, especially those near regulatory elements 

such as promoters or transcription factor binding sites, as these locations can have a 

significant influence on gene expression. Regional analyses, while useful for capturing 
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broader patterns, may obscure the functional importance of specific CpG sites. 

However, examining CpG sites comes with challenges, particularly in ensuring robust 

quality control. Variability in sequencing accuracy and coverage at individual CpG sites 

can introduce noise; thus, it is essential to implement stringent QC measures to filter 

for high-confidence sites. Focusing on these sites within differentially methylated 

regions or filtered sites, can provide more precise understanding of the potential 

regulatory roles these CpG sites play in modulating gene expression. 

4.4.3 Stage-specific DNA methylation patterns reveal conserved cell 
type involvement in AD pathology 

Cell type enrichment analysis revealed that DMRs were predominantly associated with 

neuronal genes. In Chapter 3, a mouse reference atlas was used to annotate 

hypermethylated and hypomethylated regions, providing insights into methylation 

patterns linked to amyloid pathology. Chapter 4 extended this approach by 

incorporating stage- and cell-type-specific annotations from human AD brains. This 

allowed for a comparative perspective, highlighting potential conserved methylation 

mechanisms across human and mouse models while exploring their associations with 

cell-type-specific pathology severity. 

One relevant study, Lang et al. (2022), analyzed DNA methylation changes associated 

with AD neuropathologic change (ADNC) across eight brain regions, including the 

dentate gyrus and cingulate gyrus, using the Illumina 850k EPIC BeadChip array. 

Their study focused on bulk tissue methylation, identifying differentially methylated 

promoters linked to AD severity markers, such as Aβ plaques and neurofibrillary 

tangles. They employed cell-type deconvolution based on single-cell RNA sequencing 

(scRNA-seq) reference data, observing numerous differentially methylated promoters 

in neurons, as well as in astrocytes, endothelial cells, and oligodendrocyte precursor 

cells (OPCs). These methylation changes were associated with Aβ burden, as 

assessed using the National Institute on Aging-Alzheimer’s Association (NIA-AA) 

criteria. 

Similar to their findings, our enrichment analysis of DMRs from the AD mouse model 

annotated using human AD brain data revealed that common cell types and genes 

were involved with the two studies. While Lang et al. focused on promoter methylation, 

our analysis also included non-promoter regions, which allowed us to capture 
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significant methylation changes in neuronal, OPC, and endothelial genes. For 

example, Lang et al. (2022) identified promoter methylation of CSF1 in the cingulate 

gyrus linked to Aβ and tangle severity, while our mouse model revealed DMRs in the 

distal intergenic area of Csf1 associated with amyloid pathology. 

There are notable methodological differences between the two studies. Lang et al. 

used cell-type deconvolution to infer methylation patterns, while our approach 

employed cell type enrichment using a curated marker list from dorsolateral prefrontal 

cortex snRNA-seq data. Additionally, Lang et al. (2022) focused solely on promoter 

methylation, while we included methylation changes across promoters, gene bodies, 

and intergenic regions, providing a broader view of epigenetic regulation. 

Despite these differences, both studies identified shared methylation patterns in key 

genes. For instance, we observed conserved methylation changes 

in SEMA4D and glutamate ionotropic receptor AMPA Type subunit 1 (GRIA1) in 

neurons and astrocytes, as well as phosphatidylinositol-5-phosphate 4-kinase type 2 

gamma (PIP4K2C) in oligodendrocytes/OPCs. While these findings highlight 

conserved methylation mechanisms, the functional roles of these changes may differ 

across species and brain regions. 

Importantly, our analysis revealed that when including the regions beyond promoters, 

OPCs are more prominent in hypomethylated regions (Figure 4.11.) and distinct 

inhibitory cell subtypes are involved as disease progresses (Figure 4.12.), suggesting 

broader regulatory implications of methylation changes.  

It is important to acknowledge that methylation changes do not always correlate 

directly with gene expression alterations. The reference datasets used in both studies 

serve solely to estimate the cell type enrichment of DMRs, without direct functional 

validation. A key strength of the cell type enrichment analysis in this study lies in the 

use of an annotation dataset with higher resolution, encompassing a greater number 

of cells, finer cell subtypes, and disease-stage-specific information. In this study, a 

large snRNA-seq dataset derived from the dorsolateral prefrontal cortex of human AD 

brains across various disease stages were used. Also, EWCE minimizes the bias 

toward highly expressed genes as it measures the standard deviation of the mean of 
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genes, providing a more precise evaluation of cell-type-specific associations and 

enhancing the reliability of our findings. 

These findings emphasize the need for further research to determine whether the 

DMR-associated genes in the AD mouse model align with gene expression changes 

observed in human AD brains with matching methylation data. Such analyses could 

shed light on the functional implications of hypomethylation in disease progression 

and reveal how these epigenetic changes affect specific cell types on a gene-by-gene 

basis. 

4.4.4 DMR overlap between mouse and human AD datasets 

A gene set overlap analysis between three AD methylation datasets from various brain 

regions (De Jager et al., 2014; Piras et al., 2023; Wang et al., 2023) and our mouse 

model revealed significant degree of epigenetic conservation. The identification of 

multiple shared DMRs between our dataset and previous AD studies (Altuna et al., 

2019; Shireby et al., 2022) suggests that certain epigenetic changes are preserved 

across different experimental and clinical cohorts. RHOB was specifically associated 

with neuritic plaque density, while SPEG and CACNA1E were also linked to tau 

pathology. The detection of common DMRs in both human and mouse datasets 

underscores potential conserved mechanisms of epigenetic regulation between 

human and mice.The enrichment of shared DMRs in genes involved in 

neurodevelopment, synaptic regulation, and cytoskeletal organization suggests that 

epigenetic dysregulation in these pathways may contribute to neuronal dysfunction in 

AD. This supports the utility of mouse models in capturing key epigenetic alterations 

observed in human AD.  

Despite these parallels, notable differences about methodological approaches exists 

between our findings and those reported in previous AD studies. The DMRs in our 

study were identified using long-read DNA sequencing, in contrast to the bisulfite 

conversion-based methods employed in these datasets. While our dataset 

encompassed the whole cortex, the overlap with region-specific methylation changes 

observed in late AD from these human datasets is noteworthy. This suggests that 

some cortical methylation changes captured in our model may reflect alterations 

occurring in specific brain regions during late-stage AD. However, the exact DMR type 
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and its functional effects may differ due to the methodological and biological 

distinctions between datasets. The overlap of DMRs between different human brain 

regions was limited across human AD datasets, although mouse DMRs had 

intersections of genes with each of datasets, reinforcing the idea of brain-region 

specificity of methylation changes, underscoring the importance of studying 

methylation dynamics within distinct regions in AD. Despite these differences, the 

conservation of key pathways between mouse and human datasets strengthens the 

utility of mouse models in exploring epigenetic mechanisms underlying AD. 

The relationship between methylation changes and gene expression in amyloid 

pathology is exemplified by Cdh13 and Ptpre. In the AppNL-G-F model, intronic 

hypomethylation of Cdh13 correlated with increased expression, suggesting a role in 

synaptic stability and plasticity during early AD (Mossink et al., 2022). This aligns with 

observations from human AD datasets, where Cdh13 expression rises in early stages 

but declines in late AD, reflecting progressive synaptic dysfunction. Similarly, intronic 

hypermethylation of Ptpre in the AppNL-G-F model was linked to increased expression 

of the isoform Ptpre-204, suggesting isoform-specific regulation. In human AD, 

overall PTPRE expression declines with disease progression, potentially indicating 

disrupted microglia-endothelial interactions and blood-brain barrier dysfunction. These 

findings highlight the regulatory role of non-promoter methylation in gene expression 

and isoform-specific responses, emphasizing its contribution to cellular adaptations in 

AD and its potential as a therapeutic target. 

DMRs in AD risk genes shared between studies and species, can help to uncover how 

epigenetic changes might influence disease progression, in relation to the amyloid 

pathology. The study revealed both hypomethylation and hypermethylation in key 

genes, including App, Egfr, Sppl2a, Umad1, and Mme, with distinct patterns linked to 

expression. For example, hypomethylation in an intergenic region of App was 

associated with increased expression, suggesting a potential role in regulating 

amyloid-related processes. In Egfr, methylation at specific CpG sites showed group-

specific correlations with expression, pointing to differences in regulatory mechanisms 

between amyloid-pathology and control groups. Mapt displayed hypermethylation in 

an intronic region in both the AD mouse model and human AD as reported by Wang 

et al. (2023), where it was associated with amyloid pathology. The hypermethylation 



   
 

 152 

of Mapt in an intronic region is particularly intriguing in the amyloid model of AD, 

as Mapt encodes tau, the key protein in neurofibrillary tangle formation. While 

the AppNL-G-F mouse model primarily reflects amyloid pathology without tau tangles, 

this hypermethylation may represent an early or indirect link between amyloid 

accumulation and tau-related regulatory mechanisms. Alternatively, it could be a 

protective response to amyloid, potentially modulating Mapt expression to limit tau 

availability for pathological aggregation. These possibilities highlight the role of 

epigenetic regulation in amyloid pathology and its implications for amyloid-tau 

interactions and disease progression. 

Although the precise methylation sites differ between species, and the methodology 

may differ, these findings underscore the importance of cross-species comparisons in 

identifying biologically relevant methylation patterns. Such comparisons can provide 

insights into the potential role of methylation in AD pathology, and help to prioritise 

experiments, even when the exact genomic coordinates are not directly comparable. 

4.4.5 Implications for disease staging and therapeutic interventions 

Uncovering preferential transcript usage, alternative splicing, and novel transcripts in 

response to amyloid pathology reveals critical insights into AD diagnosis, staging, and 

treatment strategies. These molecular shifts not only reflect underlying disease 

mechanisms but also suggest new biomarkers capable of refining disease staging and 

tracking progression with greater precision. 

Adding to this complexity, the role of DNA methylation provides a better understanding 

of the complexities of gene regulation. Aberrant methylation patterns, particularly in 

immune response and synaptic physiology genes, have been observed in AD (De 

Jager et al., 2014; Lang et al., 2022; Piras et al., 2023; E. Wang et al., 2023). 

Hypermethylation in promoter regions may silence protective genes or isoforms, while 

hypomethylation could drive the expression of pathogenic genes or isoforms. 

Methylation changes outside of promoter regions, such as in enhancers or insulator 

elements, can also have regulatory consequences (Marzi et al., 2018; Nott et al., 

2019). 

Incorporating methylation data into analyses of gene or isoform level changes may 

enhance our ability to stage AD and devise therapeutic interventions. Epigenetic 
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modifications, such as CpG methylation changes, may serve as early biomarkers that 

can distinguish between disease stages, offering a tool for earlier diagnosis. Although 

the methylation and expression/splicing patterns warrant further investigation and 

validation in different models and samples, and with complementary technologies, 

targeting methylation patterns therapeutically may restore proper splicing and 

expression profiles. Correcting these methylation-driven disruptions holds promise for 

reducing synaptic dysfunction and slowing neurodegeneration. 

These findings point to a dual approach: on the one hand, they enable the 

development of biomarkers to refine disease staging, and on the other, they highlight 

transcript isoforms as therapeutic targets. For example, antisense oligonucleotides 

(ASOs) could be employed to shift splicing toward protective isoforms and away from 

harmful variants (Chery, 2016). Such precision-targeted therapies offer the potential 

not only to slow disease progression but also to enhance synaptic resilience, 

presenting a promising new frontier for AD treatment. 
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5 Conclusions 
AD is strongly associated with genetic risk variants identified through genome-wide 

association studies (GWAS) (Bellenguez et al., 2022; Kunkle et al., 2019; J. C. 

Lambert et al., 2013). However, the mechanisms by which these risk variants influence 

gene function remain largely unknown, especially if the variants is within the non-

coding genome. These non-coding variants are thought to play significant roles in 

regulating gene expression, yet their functional implications are not fully understood.  

Recent efforts to integrate DNA methylation and gene expression data from GWAS 

analyses have sought to bridge this gap by identifying the functional role of these 

variants in disease process (Marzi et al., 2018; Nott et al., 2019). For example, SNPs 

in the enhancer region of the BIN1 gene, which is associated with AD, have been 

shown to regulate gene expression specifically in microglia, but not in other cell types, 

highlighting the cell-type-specific nature of genetic regulation in AD. While these 

studies offer important insights into how genetic variants may influence disease, the 

functional roles and regulation of many risk genes, particularly in the early stages of 

AD, remain unclear. This thesis has addressed some of these gaps by investigating 

how amyloid pathology, a hallmark of early AD, influences gene expression, 

transcriptome regulation and DNA methylation in the AppNL-G-F mouse model of AD. 

By focusing on early disease mechanisms, this research offers new perspectives on 

the molecular pathways that may underlie AD progression and provides further 

understanding of how genetic risk variants contribute to the disease. 

Our study investigated the impact of amyloid pathology on gene expression and DNA 

methylation in the AppNL-G-F mouse model of AD using genome-wide long-read RNA 

and DNA sequencing. We identified genes involved in immune response and synaptic 

function that exhibited differential alternative splicing and unique isoform patterns in 

response to amyloid pathology. DNA methylation analysis revealed both hyper- and 

hypomethylation in neuronal subtypes, with differentially methylated CpG sites found 

in promoter, intronic, and intergenic regions of AD-associated genes. These findings 

suggest that early amyloid pathology induces cellular adaptations that may enhance 

resilience in microglia and neurons. Since this model is protected from overt tau 
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tangles and neuronal death, it provides a unique opportunity to explore the early 

molecular mechanisms underlying AD progression. 

Chapter 2 focused on transcriptomic changes linked to amyloid pathology, identifying 

genes with distinct isoform usage and alternative splicing patterns. These 

included some disease-associated microglia genes such as Capg, Syngr1, Csf1, 

and  cathepsins (including Ctsa, and Ctsd), as well as interestingly synaptic genes 

such as Clta and novel transcripts of AD risk genes. Thus immune-related genes 

expressed in microglia alongside synaptic genes demonstrated pronounced splicing 

variations, highlighting the cooperative adaptive responses of these cell types. 

Chapter 3 explored DNA methylation changes, identifying DMRs in genes related to 

immune and synaptic processes, including Capg, Csf1, App, and Mapt. This analysis 

revealed methylation differences in promoters, intergenic regions, and non-coding 

elements, with bulk-level correlations indicating links between methylation and 

expression. Genes with DMRs mainly showed neuronal cell type enrichment of 

expression.  

Chapter 4 integrated transcriptomic and methylation data, emphasizing some shared 

patterns between the mouse model and human AD datasets. These comparisons 

uncovered conserved molecular mechanisms, reinforcing the translational value of 

findings from the AppNL-G-F model. Cross-species comparisons with human data 

demonstrated that some of these changes are conserved, providing insights into their 

relevance for human AD pathology. 

5.1 Limitations  
While this thesis provides valuable insights into the molecular mechanisms of AD, 

several limitations must be acknowledged. The analysis was performed on bulk tissue, 

which limited the ability to resolve cell-type-specific changes. The AppNL-G-F mouse 

model represents a single stage of AD and does not capture the effects of ageing, 

which may play a critical role in disease progression. The mice used were relatively 

young, allowing the capture of data relevant for earlier amyloid deposition, however 

limiting the ability to study age-related methylation and splicing changes. Verifying the 

functional roles of spliced isoforms was constrained by the availability of specific 

antibodies, and mass spectrometry sensitivity and approaches. Additionally, while 
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some mechanisms were conserved between mouse and human, species-specific 

differences may limit the generalizability of findings. The controlled environment in 

which the mice were studied may also have restricted the range of methylation 

changes observed. Furthermore, this study did not distinguish between 5-

methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), which may have 

implications for interpreting methylation changes, particularly in the context of neuronal 

function where 5hmC is more abundant. Additionally, our focus was limited to CpG 

methylation, excluding non-CG (CH) methylation, which has been increasingly 

recognized for its role in neuronal epigenetics and may contribute to disease 

processes. 

Given the limitations of using a mouse model, which may not capture the full 

complexity of human AD, future studies should aim to address these gaps for greater 

translational impact, such as performing similar studies in a mouse model of tau 

pathology, and mice that show amyloid-dependent tau pathology. Future research 

could focus on determining the functional roles of differentially expressed isoforms and 

DMRs in AD pathology. Applying gene-editing tools, like CRISPR/Cas9, or 

overexpression systems may clarify how these molecular changes and preferential 

isoform usage affect disease processes, particularly in microglia and neurons (Gallo 

et al., 2024). Furthermore, characterizing the identified DMRs and cross-validating 

with human epigenome-wide association studies could uncover new pathways 

involved in AD, shedding light on their functional roles in disease progression. 

Acknowledging these limitations, future studies should aim to bridge these gaps to 

enhance the translational relevance of the findings. 

5.2 Future Directions 

Future research needs to address the current gaps in our understanding of AD. One 

important direction is to investigate changes in methylation and its functional roles on 

gene and isoform level alterations including isoform switching and splicing, within 

individual cell types, such as microglia and neurons across disease stages using long-

read sequencing. These analyses could uncover subtle, cell-type-specific 

mechanisms that potentially drive AD pathology.  
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To gain a fuller understanding of disease progression, future studies should also 

include mouse models that incorporate tau pathology or amyloid-tau interactions. This 

expansion will allow for a more comprehensive examination of the disease, particularly 

in later stages, where the interplay between amyloid and tau may be critical and poorly 

understood. Additionally, investigating environmental factors—such as physical 

activity and diet—could offer valuable information on modifiable risk factors, opening 

new pathways for prevention and therapeutic interventions. 

In parallel, it is essential to validate the functional significance of the observed 

molecular changes. Techniques such as CRISPR/Cas9 could be employed to directly 

modify methylation sites or splicing events, providing a way to test their impact on 

disease processes. Targeted mass spectrometry could be used to confirm whether 

these changes affect particular disease-relevant protein isoforms, while antisense 

oligonucleotide (ASO) therapies may offer a solution for correcting splicing 

abnormalities. Finally, conducting meta-analyses that combine findings from mouse 

models and human datasets will strengthen the reliability and translational relevance 

of these insights, ensuring that the knowledge gained from these studies can be 

effectively applied to human Alzheimer's disease. 

5.3 Final Words 

Our study employed genome-wide long-read RNA and DNA sequencing to investigate 

the effects of amyloid pathology on gene expression and DNA methylation in 

the AppNL-G-F mouse model of AD. The analysis of both transcriptomic and methylation 

changes revealed distinct genes exhibiting alternative splicing and unique isoform 

patterns, particularly in pathways related to immune response and synaptic function. 

These findings suggest that early amyloid pathology triggers cellular adaptations that 

may enhance resilience in microglia and neurons, especially since this model is 

protected from overt tau tangles and neuronal death. 

Several key immune-related genes, especially those expressed in microglia, were 

found to exhibit distinct isoforms and splicing variations. The methylation data further 

enriched these findings, revealing differential patterns of methylation between AD-

model and control mice, particularly in genes associated with neuroinflammation and 

immune responses. The cross-species comparison with human data highlighted that 
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some of these splicing and methylation changes are conserved across species, 

suggesting that the molecular mechanisms observed in the mouse model may be 

relevant to human AD. 

Despite the valuable insights gained from this work, the use of a mouse model 

inherently limits the ability to fully capture the complexity of human AD. Future studies 

should aim to address these gaps by using mouse models that incorporate tau 

pathology or amyloid-tau interactions at different disease stages. Expanding research 

to explore the functional roles of differentially expressed isoforms and differentially 

DMRs could provide further clarity on their contributions to AD pathology. Gene-editing 

tools such as CRISPR/Cas9 or overexpression systems could offer deeper insights 

into how these molecular changes affect disease processes, particularly in microglia 

and neurons (Gallo et al., 2024). Additionally, characterizing the identified DMRs and 

validating them against human epigenome-wide association studies (EWAS) could 

uncover novel pathways involved in AD, enhancing our understanding of their roles in 

disease progression. 

The integration of long-read sequencing technologies into AD research represents a 

significant step toward unraveling the genetic and epigenetic complexities of the 

disease. By focusing on the functional analysis of isoforms and DMRs, future research 

could pave the way for developing targeted therapeutic strategies that address the 

multifaceted, cell-type and stage-dependent nature of AD pathology, ultimately 

advancing our understanding of the disease and potential treatments. 
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