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Understanding the structure of real data is paramount in advancing modern deep-
learning methodologies. Natural data such as images are believed to be composed of
features organized in a hierarchical and combinatorial manner, which neural networks
capture during learning. Recent advancements show that diffusion models can generate
high-quality images, hinting at their ability to capture this underlying compositional
structure. We study this phenomenon in a hierarchical generative model of data. We
find that the backward diffusion process acting after a time t is governed by a phase
transition at some threshold time, where the probability of reconstructing high-level
features, like the class of an image, suddenly drops. Instead, the reconstruction of low-
level features, such as specific details of an image, evolves smoothly across the whole
diffusion process. This result implies that at times beyond the transition, the class has
changed, but the generated sample may still be composed of low-level elements of the
initial image. We validate these theoretical insights through numerical experiments
on class-unconditional ImageNet diffusion models. Our analysis characterizes the
relationship between time and scale in diffusion models and puts forward generative
models as powerful tools to model combinatorial data properties.

diffusion models | data structure | compositionality | deep learning

Understanding which data are learnable by algorithms is key to machine learning.
Techniques such as supervised, unsupervised, or self-supervised learning are most often
used with high-dimensional data. However, in large dimensions, for generic data or
tasks, learning should require a number of training examples that is exponential in the
dimension (1, 2), which is never achievable in practice. The success of these methods
with limited training set sizes implies that high-dimensional data such as images or text
are highly structured. In particular, these data are believed to be composed of features
organized in a hierarchical and compositional manner (3–10). Arguably, generative
models can compose a whole new datum by assembling features learned from examples.
Yet, formalizing and testing this idea is an open challenge. In this work, we show how
diffusion models (11–14)—such as DALL·E (15) and StableDiffusion (16)—generate
images by composing features at different hierarchical levels throughout the diffusion
process. Specifically, we first provide quantitative evidence of compositional effects in
the denoising diffusion of images. We then provide a theoretical characterization of such
effects through a synthetic model of hierarchical and compositional data.

Diffusion models add noise to images as time increases and learn the reverse denoising
process to generate new samples. In particular, if some finite amount of noise is added to
an image and the process is then reversed, we observe that: (i) for small noise, only low-
level features of the image change ; (ii) at a threshold noise, the probability of remaining
in the same class suddenly drops to near-random chance; (iii) beyond that point, low-level
features may persist and compose the element of a new class. While observation (i) is
intuitive and was first noticed in ref. 12, the fact that at large noise only low-level features
may remain unchanged is surprising. We will show below that this property is expected
for hierarchical data. These results appear already evident in examples such as Fig. 1, and
we systematically quantify them by considering the change of internal representations in
state-of-the-art convolutional neural networks.

We show that the observations (i), (ii), and (iii) can be theoretically explained through
generative models of data with a hierarchical and compositional structure (10), inspired
by models of formal grammars and statistical physics. We demonstrate that for these
models the Bayes optimal denoising can be described exactly using belief propagation on
tree-like graphs. Remarkably, our analysis predicts and explains both the phase transition
in the class [observation (ii)] and how lower-level features compose to generate new data
before and after this transition [observations (i) and (iii)]. Overall, our results reveal that
diffusion models act at different hierarchical levels of the data at different time scales
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Fig. 1. Illustration of forward–backward experiments. Images generated by
a denoising diffusion probabilistic model starting from the Top-Left image
and inverting the dynamics at different times t. T corresponds to the
time scale when the forward diffusion process converges to an isotropic
Gaussian distribution. At small t, the class of the generated image remains
unchanged, with only alterations of low-level features, such as the eyes of the
leopard. After a characteristic time t, the class undergoes a phase transition
and changes. However, some low-level attributes of the original image are
retained to compose the new image. For instance, the wolf is composed of
eyes, nose, and ears similar to those of the leopard, and the butterfly inherits
its colors and black spots.

within the diffusion process and establish hierarchical generative
models as valuable theoretical tools to address several unanswered
questions in machine learning.

Our Contributions. We perform a systematic study of the
denoising diffusion dynamics on ImageNet. We invert the
noising process at some time t, leading to novel noiseless
images. We then analyze how the representation of state-of-the-
art convolutional architectures changes between the initial and
newly generated images as a function of both time t and depth of
the representation. This analysis reveals the presence of a sharp
transition in the class at a given time or noise level. Importantly,
at times beyond the transition, when the class has changed, we
find that the generated images may still be composed of low-level
features of the original image.

To model theoretically the compositional structure of images,
we consider hierarchical generative models of data where the
structure of the latent variables is tree-like. We use belief
propagation to study the optimal denoising dynamics for such
data and obtain the evolution of latent variables’ probabilities
for different levels of corruption noise. In the limit of a large
tree depth, this analysis reveals a phase transition for the
probability of reconstructing the root node of the tree—which
represents the class label of a data point—at a specific noise
threshold. Conversely, the probability of reconstructing low-
level latent variables evolves smoothly throughout the denoising
diffusion process. Thus, after the transition, low-level features
of the original datum may persist in composing a generated
element of a new class, as we empirically observe in ImageNet.
Finally, we show numerically that the dynamics of the latent

variables is reflected in the hidden representation of deep
networks previously trained on a supervised classification task on
these data.
Organization of the paper. In Section 1, we introduce denois-
ing diffusion probabilistic models and present our large-scale
experiments on ImageNet data. In Section 2, we define the
hierarchical generative model of data that we study theoretically.
In Section 3, we study the optimal denoising for these data using
message-passing techniques and show that our model captures the
experimental observations on real data. In Section 4, we perform
a mean-field analysis of the optimal denoising process, obtaining
an analytical prediction for the phase transition of the class at
a critical noise value and for the reconstruction probabilities of
lower-level features.

Related Work.
Forward–backward protocol in diffusion-based models. (12) in-
troduced the “forward–backward” protocol to probe diffusion-
based models, whereby an image with a controlled level of noise
is then denoised using a reverse-time diffusion process. It led
to the observation that “when the noise is small, all but fine
details are preserved, and when it is large, only large scale features
are preserved.” Although our work agrees with the first part
of the statement, it disagrees with the second. Our work also
provides a systematic quantification of the effects of forward–
backward experiments, going beyond qualitative observations
based on individual images as in ref. 12. Specifically, we introduce
quantitative observables that characterize changes in the latent
features of images and perform extensive experiments with state-
of-the-art models, averaging results over 105 ImageNet samples.
Such quantification is key to connecting with theory. The
forward–backward protocol was also studied in ref. 17 to speed
up the generation process of images.
Theory of diffusion models. Most of the theoretical work on
diffusion models considers simple models of data. Under mild
assumptions on the data distribution, diffusion models exhibit
a sample complexity that scales exponentially with the data
dimension (18, 19). This curse of dimensionality can be mitigated
through stronger distributional assumptions, such as considering
data lying within a low-dimensional latent subspace (20–22),
Gaussian mixture models (23–25), graphical models (26), or
data distributions that can be factorized across scales (27). For
multimodal distributions such as Gaussian mixtures, the back-
ward dynamics exhibits a cross-over time when it concentrates
toward one of the modes (23, 28, 29). This cross-over is similar
to our observation (ii) above if these modes are interpreted as
classes. As demonstrated in SI Appendix, section 5, such models
of data cannot reproduce our salient predictions and observations.
Closer to our work, (30) considers synthetic compositional data
to empirically show how diffusion models learn to generalize by
composing different concepts. In contrast, we study data that
are not only compositional but also hierarchically structured and
make quantitative predictions on how diffusion models compose
features at different scales.
Hierarchical models of natural data. Generative models of data
have a long history of describing the structure of language
and image data. In linguistics, formal grammars describe the
syntactic structure of a language through a hierarchical tree
graph (31). Similar ideas have been explored to decompose visual
scenes hierarchically into objects, parts, and primitives (32) and
have been formalized in pattern theory (33). These hierarchical
models led to practical algorithms for semantic segmentation
and scene understanding, as illustrated in, e.g., refs. 34–36.
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Recent works propose a hierarchical decomposition of images,
in which latent variables are wavelet coefficients at different
scales (27, 37). In this case, the graph is not tree-like (27)—a
conclusion that could stem from the specific choice of latent
variables.
Hierarchical models in machine learning theory. More recently,
generative models of data received attention in the context of
machine learning theory. In supervised learning, deep networks
can represent hierarchical tasks more efficiently than shallow
networks (5) and can efficiently learn them from an information
theory viewpoint (7). For hierarchical models of data, correlations
between the input data and the task are critical for learning (4,
6, 38, 39) and the representations learned by neural networks
with gradient descent reflect the hidden latent variables of such
models both in Convolutional Neural Networks (CNNs) (10)
and transformers (40). In this work, we use these hierarchical
generative models of data to study the denoising dynamics of
diffusion models theoretically.

Diffusion Models and Feature Hierarchies

This section introduces denoising diffusion probabilistic models
and demonstrates how class-unconditional ImageNet diffusion
models operate on image features across different hierarchical
levels at different time scales.*

Background on Denoising Diffusion Models. Denoising diffu-
sion probabilistic models (DDPMs) (12) are generative models
designed to sample from a distribution by reversing a step-by-step
noise addition process. In particular, let q(·) represent the data
distribution, and let x0 be a sample drawn from this distribution,
i.e., x0 ∼ q(x0). First, DDPMs consist of a forward process
which is a Markov chain generating a sequence of noised data
{xt}1≤t≤T by introducing isotropic Gaussian noise at each time
step t with a variance schedule {�t}1≤t≤T as follows:

q(x1, . . . , xT |x0) =
T∏

t=1
q(xt |xt−1)

=
T∏

t=1
N (xt ;

√
1− �txt−1, �tI). [1]

Thus, at each time step t, we have

xt =
√
�tx0 +

√
1− �t� [2]

with �t =
∏t

t ′=1(1 − �t ′) and � ∼ N (0, I). By selecting the
noise schedule such that �t → 0 as t → T , the distribution of
xT becomes an isotropic Gaussian distribution. Subsequently,
DDPMs reverse this process by gradually removing noise in
a backward process. In this process, the models learn Gaussian
transition kernels q(xt−1|xt) by parameterizing their mean and
variance using a neural network with parameters � as follows:

p�(xt−1|xt) = N (xt−1;��(xt , t),Σ�(xt , t)). [3]

After training, the learned p� can be used to generate novel
examples by initiating the process with xT ∼ N (0, I) and
running it in reverse to obtain a sample from q. We refer the
reader to refs. 12, 42, and 43 for more details regarding the
formulation of DDPMs and the technical aspects of the reverse
transition kernels parameterization with neural networks.

*The code for running the experiments on ImageNet is available at github.com/pcsl-
epfl/forward-backward-diffusion.

Forward–Backward Experiments. Previous studies on DDPMs
noted that inverting the diffusion process at different times t
starting from an image x0 results in samples x̂0(t) ∼ p�(x̂0|xt)
with distinct characteristics depending on the choice of t. Specif-
ically, when conditioning on the noisy samples xt ’s obtained by
diffusing images from the CelebA dataset, one finds that for small
values of t, only fine details change (12). We conduct a similar
experiment using a class-unconditional DDPM introduced by
Dhariwal and Nichol (43), on the ImageNet dataset with 256×
256 resolution.

In the Left panel of Fig. 2, we present some images resulting
from this experiment. For each row, the initial image x0
is followed by images generated by initiating the diffusion
process from x0, running the forward dynamics until time t,
with 0 < t ≤ T = 1,000, and ultimately running the backward
dynamics to produce a sample image x̂0(t). Our observations
from these synthetic images are as follows:

(i) Similarly to the findings in ref. 12, at small inversion times
t, only local features change. Furthermore, the class of
the sampled images remains consistent with that of the
corresponding starting images, i.e., class(x̂0(t)) = class(x0)
with high probability.

(ii) There exists a characteristic time scale t∗ at which the class
of the sampled images undergoes a sudden transition.

(iii) Even after the class transitions, some low-level features
composing the images persist and are reincorporated into
the newly generated image. For instance, looking at the Left
panel of Fig. 2, in the second row, the jaguar is composed
with the paws and the ears of the dog in the starting picture,
or in the third row, the sofa’s armrests inherit the shape of
the car headlights.

Our theory, presented in Sections 3 and 4, predicts how
features at different hierarchical levels vary at different time scales
of the diffusion dynamics in accordance with observations (i), (ii),
and (iii).

ImageNet Hidden Representations. To quantify the qualitative
observations mentioned earlier, we design an experiment using
the empirically known fact that deep learning models learn
hierarchical representations of the data, with complexity in-
creasing as the architecture’s depth grows. This phenomenon
holds true in both real (44–46) and synthetic scenarios (10, 47).
Therefore, we use these internal representations as a proxy for
the compositional structure of the data. We investigate how
the hidden representations of a deep ConvNeXt Base model
(41), achieving 96.9% top-5 accuracy on ImageNet, change as a
function of the inversion time t and depth ` of the representation.
In the Right panel of Fig. 2, we illustrate the value of the
cosine similarity between the postactivations of every hidden
layer of the ConvNeXt for the initial and generated images. We
observe that:

(i) The representations of early layers of the network, corre-
sponding to low-level and localized features of the images,
are the first to change at short diffusion times and evolve
smoothly.

(ii) At a specific time and noise scale, the similarity between
logits experiences a sharp drop, indicating a transition in
the class.

(iii) Around the class transition, there is an inversion of the
similarity curves. Indeed, the hidden representations in the
first layers for the new and generated images now display
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Fig. 2. Left panel: Examples of images generated by reverting the diffusion process at different times t. Starting from the left images x0 at time t = 0, we
generate samples x̂0(t) ∼ p�(x̂0|xt) by first running the diffusion process up to time t and then reverting it, as described in Section B. At time t = T , xT
corresponds to isotropic Gaussian noise and the generated image x̂0(T) is uncorrelated from x0. At intermediate times, instead, a sudden change of the image
class is observed, while some lower-level features are retained. Right panel: Cosine similarity between the postactivations of the hidden layers of a ConvNeXt
Base (41) for the initial images x0 and the synthesized ones x̂0(t). Around t ≈ T/2, the similarity between logits exhibits a sharp drop, indicating the change
in class, while the hidden representations of the first layers change more smoothly. This indicates that certain low-level features from the original images are
retained for composing the sampled images also after the class transition. To compute the cosine similarity, all activations are standardized, i.e., centered
around the mean and scaled by the SD computed on the 50,000 images of the ImageNet-1k validation set. At each time, the values of the cosine similarity
correspond to the maximum of their empirical distribution over 10,000 images (10 per class of ImageNet-1k).

the largest alignment. This indicates that low-level features
from the original images can be reused in composing the
sampled images, as qualitatively observed in Fig. 2.

To study the robustness of our results with respect to the
architecture choice, in SI Appendix, section 4, we report the same
measurements using ResNet architectures with varying width
and depth (48). We find the same qualitative behavior as the
ConvNeXt in Fig. 2.

We now present our theory, which predicts these observations.

Hierarchical Generative Model of Data

In this section, we introduce a generative model of data that
mimics the structure of images while being analytically tractable.
Natural images often display a hierarchical and compositional
structure (49). Take, for example, the image of a snow leop-
ard (Fig. 3). This image is composed of multiple high-level
components, such as the head and the paws. Each of these
components, in turn, is composed of subfeatures. For instance,
the head comprises elements like ears, eyes, and mouth. Further

Fig. 3. Sketch of the hierarchical and compositional structure of data. Left
panel: The leopard in the image can be iteratively decomposed in features
at different levels of abstraction. Right panel: Generative hierarchical model
we study in this paper. In this example, depth L = 3 and branching factor
s = 2. Different values of the input and latent variables are represented with
different colors.

dissecting these elements, we find even more granular details,
such as edges that define the finer aspects of each feature. To
model this hierarchical and compositional nature of images, we
consider hierarchical generative models (4, 6, 10, 38, 39, 47, 50).
In particular, consider a set of class labels C ≡ {1, . . . , v} and an
alphabet A≡ {a1, . . . , av} of v features. Once the class label 

is picked uniformly at random from C, the data are generated
iteratively from a set of production rules with branching factor s
at each layer ` (see Fig. 3, for an illustration):


 7→ �(L−1)
1 , . . . ,�(L−1)

s for 
 ∈ C and �(L−1)
i ∈ A,

�(`)
7→ �(`−1)

1 , . . . ,�(`−1)
s for �(`)

∈ A,�(`−1)
i ∈ A,

` ∈ {L− 1, . . . , 1}.

Since the total size of the data increases by a factor s at each
level, the input data are made of d ≡ sL input features �(0). We
adopt a one-hot encoding of these features, ultimately leading to
a data vector X ∈ Rdv. Note that for ` ≥ 1, the node variables
correspond to latent variables, and there is no need to specify any
choice of encoding.

For each level `, we consider that there are m distinct
production rules originating from the same higher-level feature
�(`), i.e., there are m equivalent lower-level representations of
�(`). In addition, we assume that two distinct classes or latent
variables cannot lead to the same low-level representation. This
condition ensures, for example, that two distinct classes never
lead to the same data.

We consider the case of the Random Hierarchy Model (RHM)
(10), for which the m production rules of any latent variable or
class are sampled uniformly at random among the vs possible
ones without replacement. In this case, the total number of
possible data produced per class is m · ms

· · ·msL−1
= m

d−1
s−1 ,

which has exponential dependence in the dimension d = sL. In
the following, we use the notation X (`)

i to indicate the variable
at layer ` and position i ∈ {1, . . . , sL−`

}.
In the context of unsupervised learning, a key parameter for

this model is f = m/vs−1. When f = 1, all strings of latent
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variables of size s can be produced at any level of the hierarchy.
This implies that all possible vd input strings are generated, and
the data distribution has little structure. When f < 1, however,
only a small fraction ∼ f (d−1)/(s−1) of all possible strings is
generated by the production rules. This implies that spatial
correlations between different input positions appear, reflecting
the hierarchy generating the data.

Optimal Denoising of the RHM with Message
Passing

In this section, we characterize the Bayes optimal denoising
process for the RHM. Given a noisy observation X (0) = x(t) of
the input variables at time t, we compute p(x(0)|x(t)) exactly,
obtaining full control of the statistics of the backward diffusion
process from time t to time 0. In particular, given the tree
structure of the model, we can compute the marginal probability
of the values of all latent variables conditioned on x(t) by using a
message-passing algorithm. Therefore, we obtain the probability
that a latent variable at level ` has changed when performing the
forward–backward diffusion process for a duration t, a central
quantity to interpret Fig. 2. The optimal denoising corresponds to
reconstructing the data distribution p(x(0)) exactly. This perfect
reconstruction corresponds to a diffusion model achieving perfect
generalization. Although this is a strong assumption for modeling
a neural network trained with empirical risk minimization, like
the one considered in Section 1, our theoretical analysis captures
the phenomenology of our experiments.

Belief Propagation. For computing the marginal distributions,
we use Belief Propagation (BP) (51, 52), which gives exact results
for a tree graph such as the Random Hierarchy Model. In this
case, the leaves of the tree correspond to the input variables at the
bottom layer, and the root corresponds to the class variable at the
top of the hierarchy. Each rule connecting variables at different
levels corresponds to a factor node, as shown in Fig. 4.

The forward process adds noise to the variables in the input
nodes. Each of these nodes sends its belief on its value at t = 0 to
its parent latent node. These beliefs, or messages, represent proba-
bilistic estimates of the state of the sender node. Each latent node
receives messages from all its children, updates its belief about its
state, and sends its upward message to its parent node. This process
is repeated iteratively until the root of the tree. Subsequently,
starting from the root, each node sends a downward message to

Fig. 4. Illustration of the flow of messages in the Belief Propagation
algorithm for the case s = 2, L = 2 of the Random Hierarchy Model. The factor
nodes (squares) represent the rules that connect the variables at different
levels of the hierarchy. The downward process is represented only for the
leftmost branch.

its children. Finally, the product of the upward and downward
beliefs received at a given node represents the marginal probabil-
ities of its state conditioned on the noisy observation. Hence, we
can use these conditional marginals to compute the mean values
of the variables at all levels of the hierarchy. We assume that
the production rules of the model are known by the inference
algorithm, which corresponds to the optimal denoising process.

The input variables X (0), in their one-hot-encoding represen-
tation, undergo the forward diffusion process of Eq. 2, which
can be defined in continuous time and constant �t by redefining
�t = e−2t and taking the limit T →∞ (14).

The denoising is made in two steps: the initialization of the
messages at the leaves and the BP iteration.

initialization of the Upward Messages. In its one-hot-encoding
representation, X (0)

i is a v-dimensional vector: Taking the symbol
a
 ∈ {a1, . . . , av} = A corresponds to X (0)

i = e
 , with e

a canonical basis vector. Its continuous diffusion process takes
place in Rv: Given the value X (0)

i = xi(t), we can compute
the probability of its starting value p(xi(0)|xi(t)) using Bayes
formula. As derived in SI Appendix, section 1, we obtain

p(xi(0) = e
 |xi(t)) =
1
Z

exi,
(t)/Δt , [4]

with Δt = (1 − �t)/
√
�t and Z =

∑v
�=1 exi,�(t)/Δt . This

computation is performed independently for each input variable
i, and therefore does not take into account the spatial correlations
given by the generative model. The probabilities of Eq. 4 are used
to initialize the BP upward messages �(0)

↑
= p(xi(0)|xi(t)) at the

input variables.

BP Iteration. Let  (`) be any factor node connecting an s-tuple
of low-level variables at layer `− 1, {X (`−1)

i }i∈[s], to a high-level

variable X (`)
1 at layer `. Without loss of generality, to lighten the

notation, we rename the variables as Y = X (`)
1 , taking values y ∈

A, and Xi = X (`−1)
i , each taking values xi ∈ A. For each possible

association y → x1, . . . , xs, the factor node  (`)(y, x1, ..., xs)
takes values

 (`)(y, x1, ..., xs) =
{

1, if y→ (x1, ..., xs) is rule at layer `

0, otherwise.

The BP upward and downward iterations for the (unnormalized)
upward and downward messages respectively read

�̃(`+1)
↑

(y) =
∑

x1,...,xs∈A⊗s

 (`+1)(y, x1, ..., xs)
s∏

i=1
�(`)
↑

(xi),

�̃(`)
↓

(x1) =
∑

x2,...,xs∈A⊗(s−1)

y∈A

 (`+1)(y, x1, ..., xs)

× �(`+1)
↓

(y)
s∏

i=2
�(`)
↑

(xi), [5]

where �(`)� (x) = �̃(`)� (x)∑
x′ �̃

(`)
� (x′)

, � ∈ {↑,↓}. The downward

iteration, reported for x1, can be trivially extended to the other
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Fig. 5. Probability that the latent has not changed in the denoising process,
corresponding to the largest marginal probability computed by BP, averaged
for each layer, for varying inversion times of the diffusion process t. Data
for the RHM with v = 32, m = 8, s = 2, and L = 10. Each level of the tree,
indicated in the legend, is represented with a different color. We observe the
same behavior of the curves for ImageNet data in Fig. 2: The probability of
the correct class has a sharp transition at a characteristic time scale, while
the probabilities corresponding to latent variables in the lower levels change
smoothly.

variables xi by permuting the position indices. The values of
�(0)
↑

(xi) and �(L)
↓

(y) are set by the initial conditions. In particular,

we initialize �(0)
↑

(xi) as described in the previous paragraph and

�(L)
↓

(y) = 1/v, which corresponds to a uniform prior over the
possible classes C.†

Results. We run the BP upward and backward iterations numer-
ically. In Fig. 5, we show the probability corresponding to the
correct symbol for each node of the tree. Remarkably, we note
that (i) the probability for the correct class at layer L displays
a transition at a characteristic time which becomes sharper for
increasing L, and (ii) the messages for the correct input variables
and the correct latent variables at low levels of the tree change
smoothly. In particular, the curves for messages at layer L and
layers ` < L invert their order at the transition, as in our
observations on DDPMs and ImageNet data in Fig. 2. This
transition is one of our key findings, which we explain below.

Mean-Field Theory of Denoising Diffusion

In this section, we make a simplifying assumption for the initial
noise acting on the input and adopt a mean-field approximation
to justify the existence of a phase transition. Remarkably, this
approximation turns out to be of excellent quality for describing
the diffusion dynamics. Specifically, consider a reference config-
uration at the leaves variables X (0)

i = xi that we would like to
reconstruct, given a noisy observation of it. We assume that for
each leaf variable, the noise is uniformly spread among the other
symbols.‡ In other words, our belief in the correct sequence is
corrupted by � ∈ [0, 1]:{

X (0)
i = xi with belief 1− �,

X (0)
i uniform over alphabet with belief �.

[6]

†This assumption corresponds to unconditioned diffusion, where the DDPM is not biased
toward any specific class.
‡This is a mild approximation, as documented in SI Appendix, section 3.

Hence, the initialization condition of the upward BP messages
at a leaf node X (0)

i becomes{
�(0)
↑

(xi) = 1− � + �/v,

�(0)
↑

(xi 6= xi) = �/v,
[7]

where v is the alphabet cardinality.
Given these initial conditions and since the production

rules are known, if � = 0—i.e., in the noiseless case—BP
can reconstruct all the values of the latent variables exactly.
Conversely, if � = 1—i.e., when the input is completely
corrupted and the belief on the leaves variables is uniform—
the reconstruction is impossible. In general, for a value of �,
one is interested in computing the probability of recovering the
latent structure of the tree at each layer ` and, as L → ∞, to
decide whether the probability of recovering the correct class of
the input remains larger than 1/v.

Upward Process. We begin by studying the upward process
from the leaves. Consider a true input tuple x1, . . . , xs which is
associated with the higher-level feature y. Given the randomness
of the production rules, the messages are random variables
depending on the specific realization of the rules. We adopt a
mean-field or annealed approximation that neglects the fluctu-
ations coming from the random choice of rules. Specifically,
we approximate the upward message by the average upward
message exiting the corresponding factor node 〈�(1)

↑
(y)〉 over

the possible realizations of  . In SI Appendix, section 2, we show
that 〈�(1)

↑
(y)〉 can take only two values: one for y = y and one

for y 6= y, as expected by symmetry considerations. Therefore,
mean messages have the same structure as Eq. 7 and we can
define a new �′. Introducing the probability of reconstructions
p = 1− � + �/v and p′ = 1− �′ + �′/v, we have

p′ =
ps + f m−1

mv−1 (1− ps)

ps + f (1− ps)
= F (p). [8]

Iterating this procedure across all the levels of the tree, we can
compute the probability of recovering the correct class of the
input. In particular, for large L, we are interested in studying the

Fig. 6. Phase diagram for inferring the class node using the upward iteration
of BP. When sf < 1, BP can infer the class if � < �∗(sf ). This transition is very
well predicted by our theory. The inference region in the figure corresponds
to the phase wherein the probability of the correct class is larger than the
initialization belief in the correct values of the leaves, that is 1− �+ �

v . Experi-
mental data are for a single realization of the RHM with v = 32, s = 2, L = 10.
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A B

Fig. 7. (A) Probability that the latent has not changed in the denoising process, corresponding to the largest marginal probability computed by BP, for varying
�. Data for the RHM with v = 32, m = 8, s = 2, and L = 10. Each level of the tree, indicated in the legend, is represented with a different color. The black dashed
lines are our mean-field theoretical predictions, which show excellent agreement with the experiments. In particular, the inversion between the curves for the
Top and Bottom levels at the phase transition can be observed. (B) Cosine similarity between the postactivations following every layer of a deep CNN trained on
the RHM (v = 16, m = 4, s = 2, L = 7) for the starting and sampled data. Each layer of the architecture, indicated in the legend, is represented with a different
color. The curves showcase the same inversion predicted by our theory (cf. panel A).

fixed points p∗ = F (p∗) of the iteration map in Eq. 8. As derived
in SI Appendix, section 2.A, when sf > 1, this map has a repulsive
fixed point p∗ = 1, which corresponds to � = 0, and an attractive
fixed point p∗ = 1/v, corresponding to � = 1. Thus, in this
regime, inferring the class from the noisy observation of the input
is impossible. In contrast, when sf < 1, p∗ = 1 and p∗ = 1/v
are both attractive fixed points, and a new repulsive fixed point
1/v < p∗ < 1 separating the other two emerges. Therefore, in
this second regime, there is a phase transition between a phase in
which the class can be recovered and a phase in which it cannot.
These theoretical predictions are numerically confirmed in the
phase diagram in Fig. 6.

Physically, sf < 1 corresponds to a regime in which errors at
lower levels of the tree do not propagate: They can be corrected
using information coming from neighboring nodes, thanks to the
fact that only a small fraction of the strings are consistent with
the production rules of the generative model. Conversely, when
sf > 1, even small corruptions propagate through the entire tree
up to the root node and BP cannot infer the class correctly.

Downward Process. The same calculation can be repeated for
the downward process, with the additional difficulty that the
downward iteration mixes upward and downward messages. We
refer the reader to SI Appendix, section 2 for the theoretical
treatment.

Probabilities of Reconstruction. Combining the mean upward
and downward messages, we obtain a theoretical prediction
for the probabilities of reconstructing the correct values of the
variables at each layer. We compare our theoretical predictions
with numerical experiments in Fig. 7A. In these experiments, BP
equations are solved exactly for a given RHM starting with the
initialization of Eq. 7. Our theory perfectly captures the probabil-
ity of reconstruction for the input nodes and the class. Moreover,
in SI Appendix, section 2 we show that our theory predicts the
probabilities of reconstruction of latent nodes at all layers.

Experiment on CNN’s Activations. Similarly to our experiment
on the ConvNeXt in Section 1, we investigate how the hidden
representation of a model trained to classify the RHM changes
when its input is denoised starting from a corruption noise �. We

consider an instantiation of the RHM with L = 7, s = 2, v = 16,
and m = 4. First, we train a convolutional neural network with
L = 7 layers, matching the tree structure of the model, with
n = 300 k training examples up to interpolation. The resulting
architecture has 99.2% test accuracy. To sample new data from
noisy observations of held-out data, we start by sampling the
root using the marginal probability computed with BP. Then,
we update the beliefs and the marginals conditioning on the
sampled class, and sample one latent variable at layer L− 1. We
iterate this procedure node-by-node, descending the tree until
we obtain a sampled configuration at the bottom layer (52). For
each corrupting noise � and each layer of the CNN, we compute
the cosine similarity between postactivations for the initial and
generated configurations. Panel B of Fig. 7 shows the obtained
curves. Remarkably, we observe the same qualitative behavior
as in panel A of Fig. 7, ultimately explaining the empirical
observation of Fig. 2.

Conclusions

We have argued that reversing time in denoising diffusion models
opens a window on the compositional nature of data. For
synthetic hierarchical generative models of data, where the Bayes
optimal denoising can be exactly computed, low-level features
can already change at small times, but the class remains most
often the same. At larger times, a phase transition is found where
the probability of remaining in the same class suddenly drops
to random chance. Yet, low-level features identical to those of
the initial sample can persist and compose the new sample.
Strikingly, this theoretical analysis characterizes well the results
found with ImageNet, where the denoising is performed by a
trained U-Net. Interestingly, the structure of the U-Net with the
skip connections between the encoder and decoder parts mimics
the upward and downward iterations of belief propagation, where
the downward process mixes upward and downward messages.
In fact, building on the present work (53) shows that U-Nets
are capable of effectively approximating the belief propagation
denoising algorithm. Investigating whether the function learned
by U-Nets approximates BP is a promising avenue for future
work. In the present work, we used the internal representation
of deep networks as a proxy for the hierarchical structure of
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images. An interesting direction for future work will be using
deep hierarchical segmentation techniques (54–57) to extract
latent variables, so as to test our predictions on their evolution
in forward–backward experiments. Finally, future work can
test our theoretical predictions on other modalities successfully
handled by diffusion models, such as language and biological
structures.

The interplay between the hierarchy in feature space and in
time revealed here may help understand the puzzling success
of diffusion models, including the number of data needed to
train such methods, or why they can generalize and not simply
memorize the empirical distribution on which they were trained
(58–60). More generally, our results put forward hierarchical

generative models as tools to understand open questions for
other methods, ranging from the emergence of new skills by
the composition of more elementary ones in foundation models
to that of transferable representations in self-supervised learning.

Data, Materials, and Software Availability. Software code data have been
deposited in the repository Forward–backward diffusion (github.com/pcsl-
epfl/forward-backward-diffusion) (61).
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