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Abstract

In my PhD, | studied how the layers of the medial prefrontal cortex (mPFC) and subfields of
the hippocampus form mircrocircuits to support the perception and memory of everyday
experiences. Addressing this question required the high resolution offered by 7 Tesla (7T) MRI,
but also brought significant challenges. | assisted the Department’s Physics Team in
developing a new fMRI sequence which sought to minimise the high levels of distortion and
signal drop out in mPFC. | then developed a preprocessing and analysis pipeline to detect
layer- and subfield-specific multivoxel event representations. This included a tool for
automating segmentation of hippocampal subfields. | applied these acquisition and analysis
methods in two 7T fMRI experiments. The first examined participants while they recalled
experiences from their recent and remote past. | detected representations of specific remote
memories in the mPFC deep layers. This deep layer involvement suggests a role of feedback
signalling from the mPFC during the remembering of remote events. In the second study, |
sought to probe further the role of the mPFC in event processing. During scanning,
participants watched short animated movies comprising sets of scenes viewed consecutively,
that were either linked together to form meaningful events or were sets of unrelated scenes
(unlinked). | found that all of the mPFC layers were engaged specifically when the events were
meaningful, as were a number of hippocampal subfields, namely the dentate gyrus, Cornu
Ammonis (CA)2/3, CAl1 and the pre/parasubiculum. The involvement of all mPFC layers
suggests that both feedforward and feedback signalling are at play during event perception.
Overall, this work is starting to expose the neural microcircuitry that might ultimately lead to
a full mechanistic understanding of how our experiences are initially processed, and how they

often remain accessible to us in the weeks, months and years that follow.



Impact statement

Our waking hours are primarily spent experiencing present events, recalling past events, or
imagining scenarios that may happen in the future. Even in sleep, we conjure up a range of,
sometimes bizarre, events while we dream. Therefore, the ability to directly or mentally
experience events is a fundamental aspect of human life. Understanding the neural

mechanisms that support this capacity is a key issue in neuroscience.

Two brain regions, the hippocampus and the medial prefrontal cortex, are critical for event
processing. Until recently, investigations were limited to the engagement of these broad brain
areas, lacking the resolution to examine the finer microstructures, such as the cortical layers
and hippocampal subfields. Advances in high-resolution 7 Tesla magnetic resonance imaging
now allow for the exploration of event processing within these microstructures. The distinct
microcircuits formed from cortical layers and hippocampal subfields support specific types of
information processing. For instance, projections travelling between the deep layers of distant
cortical areas support top-down information processing, such as the transmission of high-level
beliefs to facilitate the rapid understanding of sensory information. Understanding the
involvement of these microcircuits provides a deeper and more mechanistic understanding of

event processing than ever before in human research.

Many neurological and psychiatric conditions compromise the hippocampus and medial
prefrontal cortex. Furthermore, these pathologies are often highly localised within these
regions during their early stages. Alzheimer's disease, for example, targets specific
microstructures within the hippocampal region. By understanding how the microcircuitry
supports normative event processing, we can better grasp how these circuits malfunction in
disease states. This insight may eventually inform the development of targeted interventions

and biomarkers for precise diagnoses.

This thesis contributes foundational knowledge about the brain's capacity to mentally
represent and process events, focusing on the neural microcircuitry. This research area is still
in its early stages, with few studies examining cognition in the hippocampus and medial
prefrontal cortex with such a high degree of spatial resolution. Given the infancy of the
research area, methods development was required, including the development of an open

access tool for automatically delineating subfields of the hippocampus in MRI scans. | hope
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that this thesis will provide both methodological resources and neuroscientific inspiration for

future discoveries about the neural underpinnings of human cognition.
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1. General Introduction

Our lives consist of a continuous series of events, ranging from the everyday brushing of one's
teeth to the highly significant experience of submitting a PhD thesis. We weave these life

events into the story of our lives. They shape our self-identities and world-views.

Rather than always experiencing events in the present moment, much of our time is also spent
reflecting on, replaying and reimagining events from our past and imagining possible future
scenarios. We can also imagine entirely fictitious events, from the fantastical stories of
literature to the vivid and often bizarre narratives of dreams. This faculty to mentally visualise
events that are not happening at that moment is important for survival. It allows us to learn
from our past experiences and anticipate and prepare for future challenges. Given that much
of our existence is spent visualising events, understanding the neural mechanisms that

support this function is a fundamental question in neuroscience.

In Section 1.1, of this introduction | will first examine the psychological features of events.
Subsequently, | will discuss neuroimaging studies that have identified a network of brain
regions supporting event processing. Among these regions, the hippocampus and medial
prefrontal cortex (mPFC) play important, cooperative roles in event processing. | will examine
evidence from behavioural studies in patients with focal bilateral damage to the hippocampus
or mPFC as well as neuroimaging studies in healthy people that reveal the roles of these two
brain regions in event processing. Finally, | will discuss how, based on their respective roles,
the hippocampus and mPFC can be organised into a functional hierarchy of event processing

along three cognitive dimensions: time, specificity and executive control.

In Section 1.2, | will change gears slightly to examine the microcircuitry of the hippocampus
and neocortex. | will explain the microcircuitry of the neocortex and how it is thought to
support hierarchical information processing. This microcircuitry is formed from connections

between the layers of hierarchically organised cortical areas as well as the hippocampal

subfields.

In Section 1.3, | will present the aims and outline of my PhD thesis. The broad aim was to
investigate the mapping of the hippocampal and neocortical microcircuitry onto functional

hierarchies of event processing. To this end, | used ultra-high field 7 Tesla (7T) magnetic

15



resonance imaging (MRI) to examine brain activity in the cortical layers and hippocampal

subfields during event processing.
1.1. Event processing

1.1.1. What is an event?

An important feature of events is that they consist of scene imagery. In this thesis, and in
previous research, a scene is defined as a naturalistic, three-dimensional (3D) spatially-
coherent representation of the world, typically including people, animals, objects and
landmarks, and viewed from an egocentric (i.e., first person) perspective (Dalton et al., 2018;
Maguire & Mullally, 2013). Scenes have been further defined as contexts that you could
physically step into (e.g., a forest) or operate within (e.g., a desk area; Monk, Dalton, et al.,
2021). They can be viewed in the real world or as two-dimensional (2D) representations of the

real world, like photographs (Monk, Dalton, et al., 2021).

The relevance of real-world scene imagery during the perception of life events is intuitive.
However, the significance of scenes in the retrieval and imagination of events requires further
scrutiny. To investigate this, a set of studies asked a large sample of 217 participants to
explicitly self-report their strategies for recalling past and imagining future events (Clark et al.,
2020). They performed an autobiographical memory retrieval task, in which they recalled and
described autobiographical memories of events from various time periods of their life (Levine
et al., 2002). During the future imagination task, participants imagined and described possible
future events (e.g., an event next weekend; Hassabis, Kumaran, Vann, et al., 2007). In each of
these tasks, the use of visual scene imagery was the most commonly reported strategy.
Moreover, the ability to mentally construct scene imagery was found to fully mediate
performance in each of these tasks (Clark et al.,, 2019). By contrast, tasks requiring the
perception and recall of abstract word pairs, which did not evoke mental images, relied more
heavily on verbal strategies than visual imagery (Clark et al., 2020). This research highlights

the fundamental role of scene imagery in internally generated mental events.

A second essential characteristic of events is their temporal dimension. Events have been
defined as having beginning, middle, and end such that they can be described in a story-like

narrative (Zacks & Tversky, 2001). To become an event, scene imagery must evolve, such that
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the world it depicts moves. The people and animals that populate it will often perform actions,
interacting with each other and elements of the environment. Like single scenes, events, can

be viewed in the real world or as a 2D representations of the real world, in the form of movies.

1.1.2. Core network of brain regions

A widely distributed set of brain regions is involved in recalling life events from the past (Beaty
et al., 2018; Bonnici, Chadwick, Lutti, et al., 2012; Hassabis & Maguire, 2007; Maguire, 2001,
McDermott et al., 2009; Schacter et al., 2007; Svoboda et al., 2006), imagining events in the
future (Beaty et al., 2018; Buckner & Carroll, 2007; Hassabis, Kumaran, & Maguire, 2007
Hassabis & Maguire, 2007; Schacter, 2012; Schacter et al., 2007), and perceiving events in the
present moment such as during spatial navigation (Bohbot et al., 2004; Doeller et al., 2010;
Herweg & Kahana, 2018; Rodriguez, 2010; Spiers & Maguire, 2006; Spreng et al., 2009;
Wolbers & Buchel, 2005; Wolbers et al., 2007). This core event processing network includes
the hippocampus, mPFC, parahippocampal, entorhinal, retrosplenial, precuneus, lateral
parietal, lateral prefrontal and lateral temporal cortices (Figure 1). This same set of brain areas
is also active during the imagination of single scenes, providing further support for the close
relationship between scene and event processing (Cukur et al., 2016; Dalton et al., 2018;
Epstein, 2008; Hassabis & Maguire, 2007; Robin et al., 2018; Robin & Olsen, 2019; Zeidman,
Mullally, et al., 2015).
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Precuneus/ Medial prefrontal Lateral parietal
retrosplenial correx cortex
cortex

Medial temporal — Lateral temporal
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Nature Reviews | Neuroscience

Figure 1. Core network of brain areas involved in event processing. A schematic showing the core set
of brain areas that are engaged when perceiving present, retrieving past or imagining future events as
well as during other forms of scene and event visualisation. These include the mPFC, the posterior
medial (including the retrosplenial cortex and precuneus) and lateral parietal cortices, medial temporal
cortex (including the hippocampus, entorhinal cortex and parahippocampal cortex), and lateral
temporal regions. Figure from Schacter et al. (2007).

Two brain areas within the core network, the hippocampus and mPFC, have received
particular attention for their distinct yet cooperative roles in event processing (McCormick,
Ciaramelli, et al., 2018). In Sections 1.1.3 and 1.1.4, | will explore the existing literature that

examines these roles.

1.1.3. The role of the hippocampus in event processing

1.1.3.1. The anatomy of the hippocampus

The hippocampus is a curved structure deep within the medial temporal lobe. It is composed
of several distinct subfields, defined based on their cellular composition and organisation.
They include the dentate gyrus (DG), Cornu Ammonis (CA)1, CA2, CA3, CA4, the subicular
cortices, which include the subiculum, presubiculum and parasubiculum, and the uncus
(Figure 2). Except the uncus, which is only in the most anterior portion of the hippocampus,

all of the hippocampal subfields extend along the full anterior-to-posterior length of the
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hippocampus. The hippocampal subfields have unique patterns of connectivity and cognitive

functions (see Section 1.2.3; Coras et al., 2014; Zeidman, Lutti, et al., 2015).

Uncus

Anterior

Medial Lateral |

4

Posterior

Hi l
b(l)%;;ocampa [ Uncus CA1 M Pro M EC

l DG Bl CA2 Sub HATA
H CA3 PrS/PaS [I Fimbria

Figure 2. The anatomy of the hippocampus. A schematic showing (a) the whole hippocampus (purple)
with the DG highlighted (dark purple). (b-e) Coronal slices at different points along the anterior-to-
posterior axis, specified by dashed lines in (a). These slices show the hippocampal subfields and
entorhinal cortex. DG = dentate gyrus, EC = entorhinal cortex; HATA = hippocampal-amygdaloid
transition area; Pro = prosubiculum; PrS/PaS = presubiculum and parasubiculum. Figure from Zeidman
& Maguire (2016).

1.1.3.2. The role of the hippocampus in memory over time

It has been known for decades that the hippocampus plays a critical role in the initial encoding
of autobiographical events into memory (Addis et al., 2009; Addis, Wong, et al., 2007,
Hainmueller & Bartos, 2020; Scoville & Milner, 1957). Furthermore, we known that, following
their initial encoding, autobiographical memories are consolidated in neocortical areas in a
process called systems-level consolidation (Barry et al., 2018; Frey & Morris, 1998; Marr, 1971;
Redondo & Morris, 2011).
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There are conflicting findings regarding the involvement of the hippocampus in recalling past
autobiographical events after the memories have undergone systems level consolidation. One
way to investigate this is by observing patients with bilateral hippocampal damage. There is
consensus amongst patient studies that the recall of autobiographical events that occurred
relatively recently before the hippocampal damage is significant impaired (Miller et al., 2020;
Rosenbaum et al., 2008; Scoville & Milner, 1957; Steinvorth et al., 2005). However, while many
hippocampal-damaged patients have similar impairments in retrieval of older memories
(Cipolotti et al., 2001; Corkin, 2002; Miller et al., 2020; Nadel & Moscovitch, 1997; Rosenbaum
et al., 2008; Steinvorth et al., 2005; Viskontas et al., 2000), others appear to have retained

their ability to remember remote events (Kirwan et al., 2008; Scoville & Milner, 1957).

Another approach to investigate the involvement of the hippocampus in retrieval of remote
and recent memories is by conducting neuroimaging studies in healthy participants. While
some functional MRI (fMRI) studies have found higher hippocampal activation during retrieval
of recent (less than 5 years ago) compared to remote (from childhood) autobiographical
events (Gilmore et al., 2021; Piefke et al., 2003), many others have found similar hippocampal
responses for both types of memory (Addis, Moscovitch, et al., 2007; Gilboa et al., 2004;
Soderlund et al., 2012; Steinvorth et al., 2006; Viard et al., 2007) or higher activation during
retrieval of remote compared to recent memories (Rekkas & Constable, 2005). Other fMRI
studies have probed hippocampal representations of specific memory content, using an
approach called multivoxel pattern analysis (MVPA). These studies have found stable
representations of both recent and remote autobiographical memories in the hippocampus
during their recall (Bonnici, Chadwick, Lutti, et al., 2012; Bonnici et al., 2013; Bonnici &
Maguire, 2018), and stronger representations of individual remote memories were found in
the CA3 and DG subfields (Bonnici et al., 2013), further indicating the sustained involvement

of the hippocampus across time.

These inconsistent findings have given rise to many opposing theories of hippocampal
function in the retrieval of memories over time (Barry & Maguire, 2019; Moscovitch et al.,
2016; Nadel et al., 2007; Squire et al., 2015). Standard Consolidation Theory posits that
memories are initially stored in the hippocampus and therefore the hippocampus is required
for retrieval of recent memories (Figure 3A). However, once memories are sufficiently

consolidated in the neocortex, they are no longer stored in the hippocampus and therefore
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no longer require the hippocampus for retrieval (Squire, 1992; Squire & Alvarez, 1995).
However, as discussed above, there is considerable evidence, from patient studies and
neuroimaging studies in healthy individuals, for hippocampal involvement in retrieval of

remote, consolidated memories.

Another theory, Multiple Trace Theory, proposes that the hippocampus continues to store
memories after they have been consolidated in the neocortex, making it necessary for their
retrieval across the lifespan (Figure 3B; Moscovitch et al., 2016; Nadel et al., 2007). This theory
was later updated to Trace Transformation Theory, suggesting that the degree to which
hippocampal memory representations are engaged during retrieval depends on the quality of
the memory and the retrieval demands (Robin & Moscovitch, 2017; Sekeres et al., 2018).
Memories that are recalled with rich episodic details are thought to always engage
hippocampal memory traces. This theory would explain why the hippocampus appears to be

involved in the retrieval of both recent and remote memories.

However, some flaws have been raised with Multiple Trace and Trace Transformation theories
(Barry & Maguire, 2019). A given memory is thought to be stored in a set of neurons that
contain strong synaptic connections with one another. This means that, when one cell fires,
the full ensemble of neurons also fire, causing the full memory trace to activate. Rodent
research suggests that there is a high turnover of the neurons and synapses that form these
memory traces in the hippocampus (e.g., Attardo et al., 2015; Spalding et al., 2013). For
example, it has been observed that dendritic spines, which contain synapses, only last for
short periods before degenerating (Attardo et al., 2015), and full neurons are periodically lost
to give way to newly born neurons, in a process known as adult neurogenesis (Spalding et al.,
2013). Therefore, the prolonged existence of memory traces in the hippocampus is unlikely.
Based on these observations, a third theory, Scene Construction Theory, posits that remote
autobiographical memories are indeed no longer stored in the hippocampus, as suggested by
Standard Consolidation Theory, but the hippocampus is nevertheless required to reconstruct
them during retrieval, allowing events to be vividly reexperienced in the mind’s eye (Figure
3C; Barry & Maguire, 2019). This may explain why the hippocampus is also involved in other
cognitive processes that involve the vivid visualisation of events. In the next section, | will

explore this idea further by reviewing the involvement of the hippocampus in other cognitive
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processes, outside of autobiographical memory retrieval, that also require the

(re)construction of events.
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Figure 3. Theories of systems-level consolidation. (A) Standard consolidation theory posits that an
episodic memory is initially stored as a joint hippocampal-neocortical trace but, over a period of
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consolidation, transitions to a purely neocortical trace, losing its hippocampal element. (B) Multiple
trace theory and trace transformation theory posit that an episodic memory is initially stored in a
hippocampal-neocortical trace, and over time, the neocortical trace is strengthened to produce a more
schematic and semantic memory. Also, with each repeated retrieval, a new hippocampal trace is
additionally encoded. (C) Scene construction theory proposes that an episodic memory is initially
encoded by a hippocampal-neocortical trace but with consolidation the hippocampal trace degrades
rapidly and the neocortical trace is strengthened. Also, with each repeated retrieval, the elements of
the neocortical memory trace are reconstructed to form a temporary hippocampal memory trace,
which functions to construct the series of scenes that make up the episode. Figure from Barry &
Maguire (2019).

1.1.3.3. Event processing beyond memory

Neuroimaging studies have reported increased activation in the hippocampus during a broad
range of cognitive functions beyond autobiographical memory, including during the
perception (Aly et al., 2013; Graham et al., 2010; Lee et al., 2013; Lee et al., 2005; Lee et al.,
2012; McCormick et al., 2021; Read et al., 2024; Zeidman, Mullally, et al., 2015) and
imagination of events (Addis, Moscovitch, et al., 2007; Addis et al., 2009; Gaesser et al., 2013;
Hassabis, Kumaran, & Maguire, 2007) as well as during spatial navigation (O'Keefe &

Dostrovsky, 1971; O'Keefe & Nadel, 1978).

Furthermore, patient studies have shown that individuals with hippocampal damage struggle
to mentally project themselves into future events, providing fewer details of imagined future
events compared to healthy controls (Addis & Schacter, 2011; Hassabis, Kumaran, Vann, et al.,
2007; Klein et al., 2005; Kurczek et al., 2015; but also see Squire et al., 2010). Hippocampal-
damaged patients also report fewer dreams during sleep and the few dreams that they have
lack episodic content (Spano et al., 2020). They also spend less time day-dreaming about past
and future events and their day-dreams are more abstract and verbal in content (McCormick,
Rosenthal, et al., 2018). Together, these findings suggest that the hippocampus plays an
important role in mentally visualising past, future and imagined events, whether during

wakefulness or sleep.

1.1.3.4. Scene construction

Evidence has accumulated to support a fundamental role of the hippocampus in processing
scene imagery (reviewed in Hassabis & Maguire, 2007, Maguire & Mullally, 2013). For
instance, the hippocampus produces greater responses to scenes compared to other types of

stimuli. During perception, the hippocampus activates more to the presentation of single
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scenes compared to single objects (Brandman & Peelen, 2017; Graham et al., 2010; Hodgetts
et al., 2016; Hodgetts et al., 2017; Read et al., 2024; Zeidman, Mullally, et al., 2015), faces
(Hodgetts et al., 2017; Read et al., 2024), scrambled images (McCormick et al., 2021) and
geometric shapes (Read et al., 2024). Likewise, during memory recall and imagination, the
hippocampus is more engaged when visualising single scenes compared to scrambled words

(Summerfield et al., 2010) and objects (Zeidman, Mullally, et al., 2015).

Further supporting a role of the hippocampus in scene processing, scene-selective
impairments of hippocampal damaged patients are observed during perception, memory and
imagination (reviewed in Graham et al., 2010; Lee et al., 2012; McCormick, Ciaramelli, et al.,
2018). Patients are unable to imagine single scenes, but can imagine single objects (Hassabis,
Kumaran, Vann, et al., 2007). They are unable to visualise anything that might exist beyond
the borders of a presented scene, but can describe possible semantic, conceptual, and
contextual details of an extended scene (Mullally et al., 2012). They perform poorly when
tasked with recognising previously presented scenes from their memory, but can recognise
faces (Bird et al., 2008; Taylor et al., 2007). Their day-dreams lack vivid scene imagery, but
remain rich in conceptual and semantic thoughts (McCormick, Rosenthal, et al., 2018).
Together, these findings suggest that the internal representation of scenes relies heavily on
the hippocampus when compared to representations of other stimuli, such as objects, faces,

words and concepts.

One study probed the specific role of the hippocampus in scene processing, revealing an
important role in their spatial construction, that is, the spatial arrangement of individual
elements (e.g., people, objects and landmarks) to internally visualise a scene (McCormick et
al., 2017). McCormick et al. (2017) found that patients were impaired at detecting implausible
scenes when the violations were constructive in nature (e.g., an endless staircase). By
contrast, they were able to detect semantically impossible scenes (e.g., an elephant with
butterflies for ears). The detection of constructive violations relies on the ability to internally
construct and compare multiple versions of a scene. Patients have also been found to perform
poorly in a perceptual discrimination task that similarly requires the internal construction and
comparison of scenes (Barense et al., 2010; Lee et al., 2013; Lee et al., 2005; but also see Kim
et al., 2011). In this task, an odd scene must be identified in a group of scenes shown from

different perspectives. It requires the ability to mentally reconstruct a given presented scene
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from various different perspectives, in order to compare it to the other presented scenes
(Zeidman & Maguire, 2016). In contrast, patients are able to discriminate between different
views of non-scene stimuli such as objects and faces, indicating that their ability to visualise

and mentally rotate non-scene images is intact.

Further research, using this same scene discrimination paradigm, found that the subicular
cortex, which included the subiculum, presubiculum and parasubiculum, was the only
hippocampal region to show this scene-selective construction effect (Hodgetts et al., 2017).
This finding supports other neuroimaging studies which showed that the medial-most portion
of the hippocampus, an area that corresponds with the position of the pre/parasubiculum, is
engaged during the perception and imagination of individual scenes (Dalton & Maguire, 2017;
Dalton et al.,, 2018; Zeidman, Lutti, et al., 2015) and during memory retrieval of
autobiographical events (Leelaarporn et al., 2024). Furthermore, the pre/parasubiculum is
functionally connected to the parahippocampal cortex and entorhinal cortex during
perception and memory of single scenes (Grande et al., 2022) and to the mPFC during the
recollection of autobiographical memories (Leelaarporn et al., 2024). Therefore, the
pre/parasubiculum has been proposed as a crucial hub for scene-based cognition (Dalton &

Maguire, 2017).

There is also considerable evidence that hippocampal subfields other than the
pre/parasubiculum are involved in processing scenes and spatial information more generally.
For example, another study using the scene discrimination task described above, found a
scene-selective effect in the inferior portion of CA1 (Read et al., 2024). Furthermore, studies
in rodents and non-human primates have identified neurons that fire when an animal is in a
specific location in space, place cells, in CA1, CA2, CA3 and the DG (Leutgeb et al., 2007; Oliva
et al., 2016) and neurons that fire when an animal looks at a specific part of the environment,
spatial view cells, in CA1 and CA3 (Robertson et al., 1998; Rolls, 2023). Moreover, a range of
subfields have been identified as important for the recollection of past events including the
DG (Bonnici et al., 2013; Chadwick et al., 2014), CA3 (Bonnici et al., 2013; Chadwick et al.,
2014; Miller et al., 2020), CA1 (Bartsch et al., 2011) and the subicular cortices (Barry et al.,
2021; Leelaarporn et al., 2024; Palombo et al., 2018).

In summary, evidence points to a role for the hippocampus in constructing mental imagery,

particularly in the form of scene representations, which is fundamental to event processing.
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This evident preference for constructing scenes led to the scene construction theory of the
hippocampus (Hassabis & Maguire, 2007; Maguire & Mullally, 2013). Many other theories of
hippocampal function exist (e.g., Behrens et al., 2018; Hassabis & Maguire, 2007; Maguire &
Mullally, 2013; Mayes et al., 2007; Mayes & Roberts, 2001; Olsen et al., 2012; Schiller et al.,
2015; Turk-Browne, 2019). One common theme amongst these theories is the importance of
the hippocampus for associating multiple elements, and scenes may be just one example of
stimuli that require this function. In this thesis, | seek to understand the role of the
hippocampus in event processing. Its involvement in scene construction is highly relevant due

to the integral nature of scene imagery in events.

1.1.4. The role of the mPFC in event processing

The anatomy of the mPFC

Along with the hippocampus, the mPFC also consistently engages during tasks requiring the
processing of events (Benoit et al., 2014; D'Argembeau, 2013; Lieberman et al., 2019;
Maguire, 2001; McDermott et al., 2009; Roy et al., 2012; Spreng et al., 2009; Svoboda et al.,
2006). The mPFCis a broad region that encompasses several Brodmann areas: 10, 12, 25, as
well as parts of 32, 9 and 11 (Figure 4; Catani et al., 2012). The area of activation during
autobiographical memory retrieval is large, spanning most of these Brodmann areas (Figure

5; Roy et al., 2012).
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Figure 4. The anatomy of the frontal lobe. The parcellation of the frontal lobe into Brodmann areas,
including the areas of the mPFC: 10, 12, 25, as well as parts of 32, 9 and 11. Figure from Catani et al.
(2012).

Figure 5. Functional MRI activation during autobiographical memory tasks. Based on a meta-analysis
of neurosynth.org database of 84 fMRI studies whose abstracts include the term “autobiographical
memory” once or more. There is strong and vast activation in the mPFC spanning several Brodmann
areas. Figure produced using neurosynth.org.
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The role of the mPFC in memory over time

As described previously, it is widely agreed that memories are stored in cortical regions in the
longer term (Figure 3; Barry & Maguire, 2019; Moscovitch et al., 2016; Squire, 1992; Squire et
al., 2015). Unlike in the hippocampus, in the neocortex, dendritic spines can last throughout
a lifetime providing capacity for the long-term storage of memory traces (Yang et al., 2009).
Although, many spines are pruned in order to forget information that is no longer useful

(reviewed in Faust et al., 2021).

Functional MRI studies using MVPA methods have identified the mPFC as a potential storage
site for remote autobiographical memories. They found stable multivoxel representations of
individual remote (4 month — 10 year old), but not recent (<2 week old), autobiographical
memories during retrieval (Barry et al., 2018; Bonnici, Chadwick, Lutti, et al., 2012; Bonnici et
al., 2013; Bonnici & Maguire, 2018). However, although the mPFC preferentially represents
older memories, it shows similar levels of univariate activation during the retrieval of
autobiographical memories of all ages (Barry et al., 2018; McCormick et al., 2020).
Furthermore, patients with mPFC damage are impaired in retrieval of autobiographical
memories of all ages (Bertossi et al., 2016; Della Sala et al., 1993; Kopelman et al., 1999). This
suggests a broader involvement of the mPFC in retrieval of autobiographical memories across

time.

Interactions between the mPFC and hippocampus appear to be relevant for retrieval of both
recent and remote autobiographical memory retrieval. Fuentemilla et al. (2014) found, using
magnetoencephalography (MEG), strong synchronisation of theta power between the
hippocampus and mPFC during recall of autobiographical memories (between 2 and 7 months
old), indicating functional connectivity between the two areas during autobiographical
memory retrieval (Fuentemilla et al., 2014). This synchrony did not exist during retrieval of
semantic memories. Further investigations used dynamic causal modelling (DCM; Friston et
al., 2003), a method that has been applied to electroencephalography (EEG), MEG and fMRI
to test biologically plausible models of effective (i.e., causal) connectivity between brain
regions, for example, the direction of influence that one region has on another. DCM studies
found that activity in the mPFC drives activity in the hippocampus during the initial retrieval
as well as the full elaborated recollection of past autobiographical events, regardless of their

age (McCormick et al., 2020; Nawa & Ando, 2019, 2020).
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Another approach used to infer the direction of connectivity between regions is using
neuroimaging modalities such as MEG and EEG, which have high temporal resolution, to
investigate the relative timing of responses in different brain regions (Figure 6; McCormick et
al., 2020). McCormick et al. (2020) adopted this approach finding that, although the mPFC
drove hippocampal activity during retrieval across all memories, it responded earlier than the
hippocampus specifically during the retrieval of remote memories (4 months to 5 years old).
In contrast, there was no difference in response time between when recent (less than 1 month
old) memories were recalled. This suggests that although the mPFC is involved in retrieving

memories of all ages, it may initiate retrieval only when remote memories are being retrieved.
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Figure 6. The mPFC initiates and drives activity in the hippocampus during autobiographical memory
retrieval. (a) During autobiographical memory there was a significant difference (indicated by the *) in
the timing of responses in the vmPFC (orange line) and the hippocampus (blue line) during retrieval of
4-12 month, 16-20 month, and 2-5 year old memories (lower 3 panels), with the mPFC responding
prior to the hippocampus. No difference in the timing of responses was observed during the retrieval
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of <1 month old memories (upper panel). Shaded areas around the solid line represent the SEM. Pink
shaded boxes represent the period in which the maximum response was determined. (b) Two models
of effective connectivity between the vmPFC and hippocampus were tested using DCM. The most likely
model, determined by Bayesian model comparison, was the one in which the mPFC drove activity in
the hippocampus. vmPFC =ventromedial prefrontal cortex, HPC=hippocampus. Figure from
McCormick et al. (2020).

In summary, while autobiographical memories are stored more stably in the mPFC over time,
the mPFC appears to be actively engaged in the retrieval of autobiographical memories of all
ages. Connectivity between the mPFC and hippocampus appears to be important, with the
mPFC playing a supervisory role in initiating and driving the retrieval process, particularly of
remote autobiographical memories. In the next section, | will explore the functions of the

mPFC in other areas of cognition that involve the visualisation of events.

The mPFC and event construction

As well as being active during autobiographical memory retrieval, the mPFC is consistently
engaged during processing of future and imaginary events (Benoit et al., 2014; Roy et al.,
2012; Schacter, 2012; Spreng et al., 2009). Furthermore, patients with mPFC damage
experience difficulty spontaneously imagining future events (Bertossi et al., 2017; Bertossi et
al.,, 2016) and report fewer day-dreams (Bertossi & Ciaramelli, 2016), indicating a more

general issue with event processing, beyond memory-related issues.

Unlike damage to the hippocampus, bilateral damage to the mPFC does not prevent patients
from vividly imagining in detail single scenes (Kurczek et al., 2015). It does, however, cause
deficits in the temporal representation of events. For example, patients are limited in their
ability to place memories accurately on a timeline (Tranel & Jones, 2006). Therefore, rather
than processing single scenes, the mPFC may be required for internally representing and

processing temporally extended events (McCormick, Ciaramelli, et al., 2018).

A second observation from mPFC-damaged patients is that they have a general challenge with
producing scene and event content that is relevant and appropriate to reality. Patients have
difficulty predicting typical objects that could exist within an imagined scene (De Luca et al.,
2018). Moreover, people with mPFC damage often exhibit confabulation, a condition where
they describe false, often bizarre and implausible memories, which they believe to be true

(Moscovitch, 1989; Moscovitch & Melo, 1997). Therefore, the mPFC might play a role in
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selecting appropriate elements for integration within a scene or event (Gilboa et al., 2006;
Gilboa & Marlatte, 2017; Moscovitch & Melo, 1997; Preston & Eichenbaum, 2013). This may
be due to an impairment in the ability to determine whether information is consistent with
prior knowledge. Indeed, the mPFC has been found to represent schemas, abstract prior
knowledge structures that have been extracted over multiple repeated events (e.g., the
typical sequence of subevents when dining out at a restaurant; Ghosh & Gilboa, 2014). These
kinds of event schemas may provide a template for supporting the temporal unfolding of
specific events, thereby explaining the involvement of the mPFC in processing temporally

extended events and timelines of multiple events.

Finally, there is evidence for a role of the mPFC in initiating scene and event processing beyond
autobiographical memory retrieval. Despite being unable to spontaneously imagine or recall
events, patients are able to do so when highly detailed external cues are provided (Bertossi et
al., 2017; Bertossi et al., 2016; Della Sala et al., 1993; Kopelman et al., 1999). Furthermore,
although patients report fewer instances of day-dreaming, an example of internally-driven
cognition, the few day-dreams that they have are focused on the external environment
(Bechara, 2004; Bertossi & Ciaramelli, 2016; Leopold et al., 2012), indicating a potential

impairment in the internal generation of event processing.

| have focused here on the role of the mPFC in event processing. However, it has other
functions outside of event processing. For example, damage to the mPFC can lead to deficits
in moral reasoning, emotion regulation, social behaviour, and understanding others'
perspectives (reviewed in McCormick, Ciaramelli, et al., 2018). These deficits may also be
related to problems with internal initiation of cognition and selecting appropriate beliefs.
Therefore, the mPFC may be required to initiate internally-driven cognition, including the

internal visualisation of scenes and events.

1.1.5. Functional hierarchies of event processing

Based on the findings from neuroimaging studies and observations from hippocampal- and
mPFC-damaged patients, several hierarchical relationships between the mPFC and
hippocampus have been recognised. First, a temporal hierarchy, where the lower-order
hippocampus represents single instances in time (i.e., single scenes), while the higher-order

mPFC represents temporally extended events under which single scenes unfold (McCormick,
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Ciaramelli, et al., 2018). Second, an abstraction hierarchy has been identified, where the
higher-order mPFC represents schematic information that is generalised across multiple
events, while the lower-order hippocampus processes specific events (Gilboa & Marlatte,
2017; McClelland et al., 1995; McCormick, Ciaramelli, et al., 2018; Preston & Eichenbaum,
2013; Robin & Moscovitch, 2017). Finally, there is a hierarchy of executive control, where the
higher-order mPFC has been proposed to initiate and monitor the processing of scenes and
events in the lower-order hippocampus (McCormick, Ciaramelli, et al., 2018). Note that under
each view, the mPFC is positioned above the hippocampus in a hierarchy of information

processing.

These hierarchical relationships have been formulated into a single model of scene and event
construction (Figure 7; McCormick, Ciaramelli, et al., 2018). According to this model, the mPFC
internally initiates event construction. Schematic representations in the mPFC act to select
the appropriate scene elements (e.g., people, objects and landmarks) and inhibit irrelevant
elements by activating the representations of these elements in lower-order neocortical areas
(Ghosh et al., 2014; Gilboa & Marlatte, 2017; Preston & Eichenbaum, 2013; van Kesteren et
al., 2010; van Kesteren et al., 2012). The scene elements are then passed on to the
hippocampus where a spatially-coherent scene is constructed (Hassabis & Maguire, 2007;
Maguire & Mullally, 2013). To envisage an extended event, the constructed scene is then
passed on to the mPFC and the process repeats for each successive scene of the event. As
such, the mPFC exerts top-down control of the hippocampus and neocortex to initiate and

coordinate unfolding of temporally extended events.

This model views events somewhat like movies such that they are made up of individual image
frames, each containing a slight change relative to the previous frame (Monk, Barry, et al.,
2021). Because we are continuously blinking and shifting our gaze, much like a movie reel, our
visual input is a discreet sequence of image snapshots. However, we are able to perceive the
world as a continuously moving image, indicating that the brain is able to link image snapshots

across time (Monk, Barry, et al., 2021).

33



Event

Figure 7. A proposed hierarchical model of event construction. The mPFC (in green) selects relevant
scene elements (with green outlines) encoded by neocortical areas. These are then directed to the
hippocampus (in red) where they are arranged to form a scene (with red outline). The scene is then
passed onwards to the mPFC and the process is repeated (green bands) to allow the unfolding of an
extended event. Figure from Ciaramelli et al., (2019).

Retrieval of remote, consolidated autobiographical memories have been hypothesised to
require more initialising and coordinating by the mPFC to successfully facilitate the
reconstruction of the scenes and events in the hippocampus (Barry & Maguire, 2019;
McCormick, Ciaramelli, et al., 2018). This is because the hippocampal memory representation

may be become weaker or absent over time (Barry & Maguire, 2019).

It is worth noting that the hippocampus and mPFC have been implicated in a variety of
functions beyond scene and event visualisation. For example, extensive research has shown
their roles in various executive and decision making functions, particularly in planning and
navigating towards behavioural goals (e.g., Crivelli-Decker et al., 2023, Gauthier & Tank, 2018).

Many of these functions likely involve the visualisation of events, which could explain the
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hippocampus and mPFC involvement. For example, deciding on the optimal course of action

necessitates the ability to envisage potential action sequences and their expected outcomes.

1.2. Anatomical hierarchies and microcircuits

So far, | have explained the role of the mPFC and hippocampus in scene and event processing
that justifies their proposed hierarchical organisation. In the next section, | will explain an
anatomical hierarchy that has been identified in the brain. This anatomical hierarchy has been
mapped in the occipital and medial temporal cortical regions, positioning the primary visual
cortex at the base of the hierarchy and the hippocampus at the top. It is an anatomical
hierarchy that is based on the laminar origins and targets of neuronal connections between
cortical areas. Two pathways of information flow between hierarchical levels exist: a
feedforward pathway that ascends from lower levels to higher levels and a feedback pathway
that descends from higher levels to lower levels. | will explain the well-known pathways of
information flow through the hippocampus and how they might correspond to feedforward
and feedback pathways. | will also discuss evidence to suggest that the anatomical hierarchy
extends to frontal and parietal regions, including the mPFC. Finally, | will describe work that
has been performed to map the laminar-based anatomical hierarchy onto a functional
hierarchy of visual information processing and to understand the relative involvement of

feedforward and feedback signalling on cognitive processes.

1.2.1. A laminar-based anatomical hierarchy

The neocortical grey matter consists of 6 distinct layers, running parallel to the cortical surface,
each with specific cell types (Figure 8). Brain areas have been defined based on differences in
the density of the various layers between regions of the cortex (Brodmann, 1909). Particularly,
the density of layer 4 differs considerably between areas, with some areas, such as the primary
visual cortex, having a very high density of granule cells in layer 4 and others, like the premotor

cortex, having a very sparse or non-existent layer 4.
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Figure 8. The neocortical layers. A schematic of the 6 distinct neocortical layers in the mPFC (purple
shading), which can broadly be separated into superficial (above layer 4), middle (layer 4) and deep
(below layer 4) layer depths.

Tracing studies in non-human primates have revealed distinct laminar sites of two types of
projections between neocortical areas (reviewed in Markov et al., 2014). Projections from
posterior to anterior areas typically originate in the layers above layer 4 (the superficial layers)
of more posterior areas and terminate in layer 4 of more anterior areas (Cragg, 1969; Lund et
al., 1975; Martinez-Millan & Hollander, 1975; Rockland & Pandya, 1979; Spatz et al., 1970;
Wong-Riley, 1978). Conversely, projections from anterior to posterior areas originate in the
layers below layer 4 (the deep layers) of more anterior areas and target the superficial and
deep layers of more posterior areas (Kaas & Lin, 1977; Kennedy & Bullier, 1985; Kuypers et al.,
1965; Tigges et al., 1973; Wong-Riley, 1978). These findings led to the development of a
network wiring diagram that organises cortical areas into an anatomical hierarchy, with more
posterior cortical areas sitting at the base of the hierarchy and more anterior brain areas sitting
at the higher levels (Figure 9; Felleman & Van Essen, 1991). As such, ascending feedforward
projections originate in the superficial layers of lower-level areas and terminate in layer 4 of
higher-level areas (Figure 10). Whereas, descending feedback projections originate in the
deep layers of higher-level areas and terminate in both the deep and superficial layers of

lower-level areas.
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Figure 9. Network diagram of the laminar-based anatomical hierarchy. This network diagram shows
the hierarchical organisation of occipital and medial temporal brain regions based on their laminar
connectivity. A given area sends feedforward projections, travelling in the middle and superficial layers,
to higher-level areas and receives feedback projections, travelling in the deep layers, from higher-level
areas. Figure from Felleman & Van Essen (1991).
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Figure 10. Feedforward and feedback signalling in the cortical layers. Feedforward signalling
pathways (in green) originate in the superficial layers and target the middle layers of higher-order
cortical areas. Feedback signalling pathways (in orange) originate in the deep layers and target the
superficial and deep layers of lower order cortical areas. Figure based on the wiring diagram
formulated by Felleman & Van Essen (1991).

Since Felleman and Van Essen’s iconic wiring diagram, further anatomical tracing studies have
been performed which have led to refinements and expansions to the diagram (Markov et al.,
2014). Markov et al. (2014) found that feedforward projections specifically originate in layer
3B and target both layer 4 and layer 3B of higher-level cortical areas. Similarly, the feedback
pathway was found to originate specifically in layer 6 and to target layer 6 and layer 1 of
downstream areas. Additionally, these well characterised feedforward and feedback pathways
were observed to function exclusively over longer distances. Two additional short-distance
pathways were observed between adjacent cortical areas: a feedforward pathway in layers 5

and 6 and a feedback pathway in layer 2/3A.

1.2.2. Mapping the anatomical hierarchy onto a feature representation hierarchy

The laminar-based anatomical hierarchy has been successfully mapped onto a functional
hierarchy of visual information processing (reviewed in Felleman & Van Essen, 1991;
Ungerleider & Haxby, 1994; Van Essen & Gallant, 1994). Information pertaining to a visual
stimulus arrives into the lowest level of the functional hierarchy, where neurons respond to

local features of the stimulus, like changes in contrast. These representations are then passed
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on to higher levels, where higher-level image features are represented, such as shapes. As the
information progresses further up the hierarchy, it becomes more integrated until, eventually,

the entire visual stimulus is represented.

Researchers have found that this visual processing hierarchy maps onto the laminar-based
anatomical hierarchy, such that at increasingly higher levels of the anatomical hierarchy,
neurons have larger receptive fields and to respond to more global, complex image features
(e.g., D'Souza et al., 2022; Harris et al., 2019). For example, the primary visual cortex, located
at the base of the anatomical hierarchy, responds to basic visual features like changes in image
contrast, while the hippocampus, positioned at the top, responds to more complex and global
features, such as entire scenes. A recent study further explored this by using a deep learning
neural network to generate, from electrophysiological recordings, scenes that mice were
presented with (Chen et al., 2024). They found that, when using recordings from progressively
higher levels of the anatomical hierarchy, the quality of the image reconstructions decreased.
This may be because the more global and meaningful features represented by higher-level
areas (e.g., the hippocampus) do not require the representation of pixel-level image details.
By contrast, the basic features, such as local contrast variations, represented by lower-level

areas (e.g., the primary visual cortex) would contain this level of image precision.

1.2.3. Microcircuitry of the hippocampal subfields

The hippocampus has been positioned at the apex of the laminar-based anatomical hierarchy
(Figure 9; Felleman & Van Essen, 1991). While the laminar-based anatomical hierarchy does
not split the hippocampal subfields into hierarchical levels, we know that information flows
through the hippocampal subfields in very specific ways. In this section, | will describe the
well-known microcircuitry of the hippocampal subfields and how the anatomical connections

may correspond to feedforward and feedback signalling pathways (Figure 11).

Most connections between the hippocampus and the neocortex pass through the entorhinal
cortex, a cortical region in the medial temporal lobe, adjacent to the pre/parasubiculum. The
primary feedforward inputs to the hippocampus project from the superficial layers (layers 2/3)
of the entorhinal cortex, reminiscent of feedforward projections. Whereas outputs project

back to the deep layers of the entorhinal cortex, reminiscent of feedback projections.
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There are two main pathways of information flow from the entorhinal cortex into the
hippocampus: the trisynaptic pathway and the monosynaptic pathway (Amaral & Witter,
1989; Lorente de NO, 1934; Witter & Amaral, 1991, 2020). The trisynaptic pathway is a series
of 3 projections. The first projection, the perforant path, projects from layer 2 of the entorhinal
cortex to the DG and CA3. The next, mossy fiber, path projects from the DG to CA3. Finally,
the Schaffer collateral path projects from CA3 to CA1 and then onwards to the subiculum. CA3
also contains dense self-projections, that is projections to itself. The second pathway of
information flow into the hippocampus, the monosynaptic pathway, sometimes referred to as
the temporo-ammonic pathway, comprises direct connections from layer 3 of the entorhinal

cortex to CA1 and the subiculum.
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Figure 11. Hippocampal microcircuits. Information from the neocortex enters the hippocampus via
the entorhinal cortex. The trisynaptic loop pathway projects from the entorhinal cortex to the DG, on
to CA3, and finally on to CAl. Recurrent connections exist within CA3. The monosynaptic pathway
projects directly from the entorhinal cortex to CAl. Outputs from the hippocampus project from CA1
and the subiculum back to the entorhinal cortex as well as onwards to the mPFC. The mPFC projects
back to the entorhinal cortex, from where it can re-enter the hippocampus. Based on the laminar
sources and/or targets of projections, some projections are coded as either feedforward (green) or
feedback (orange). DG = dentate gyrus, CA = Cornu Ammonis, EC = entorhinal cortex, mPFC = medial
prefrontal cortex.
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Based on their circuitry, and supported by findings from rodent and human studies, unique
computations are thought to occur in the different subfields of the hippocampus (Baker et al.,
2016; Berron et al., 2016; Guzman et al., 2016; Leutgeb et al.,, 2007; Lisman, 1999;
McNaughton & Morris, 1987; Rebola et al., 2017; Rolls & Treves, 1994; Treves & Rolls, 1994).
Due toits large cell population, the DG is thought to create sparse neural representations. This
process, known as pattern separation, allows for the existence of distinct representations of
overlapping events (i.e., two events that occurred at the same time in the same location). Due
to its dense recurrent collateral connections, CA3, is thought to form complex associative
representations. This unique recurrent architecture allows for the activation of a full
associative representation based on information that constitutes just a part of the full
representation. This process, known as pattern completion, is a mechanism by which
complete memories can be retrieved based on single features of a memory such as a place or

person.

Outputs from the hippocampus project back to the entorhinal cortex deep layers from CA1
and the subiculum (Witter & Amaral, 2020). From here, these outputs are sent back to the
entorhinal cortex superficial layers, where they are sent back into the hippocampus, creating
“big loop” recurrence (Koster et al., 2018). As well as sending feedback projections to the
entorhinal cortex, CA1 and the subiculum also send outputs to layer 3 of the mPFC,
reminiscent of feedforward projections (Aggleton et al., 2015; Carmichael & Price, 1995;
Koster et al., 2018). While there are no feedback-type pathways projecting directly from the
mPFC to the hippocampus, there are dense projections from the mPFC deep layers to the
entorhinal cortex deep layers, from where information may pass into the hippocampus. There
are also less direct routes of feedback signalling from the mPFC to the hippocampus, synapsing
in the parahippocampal cortex, retrosplenial cortex and lateral temporal cortices prior to the
entorhinal cortex. Therefore, clearly information processing does not stop at the
hippocampus. In the next section, | will examine evidence for the laminar-based anatomical

hierarchy extending beyond the hippocampus to cortical areas such as the mPFC.

1.2.4. Extending the anatomical hierarchy to the whole brain

Much of the existing work on the laminar-based anatomical hierarchy has used relatively
simple visual stimuli to map a functional hierarchy of brain areas, including the occipital and

medial temporal cortices. However, as explored in Section 1.1, the complex processing of
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scenes and events involves many areas outside of the occipital and medial temporal lobes,

including the mPFC.

Whole-brain anatomical networks have been mapped, based on tracing studies in non-human
primates (Figure 12; Averbeck & Seo, 2008). Projections exist from occipital and medial
temporal cortical areas, such as the visual cortex and hippocampus, to frontal areas.
Therefore, the laminar-based anatomical hierarchy is clearly a single section of a wider whole-

brain anatomical network.

Unlike the visual system, the laminar sources and targets of neurons in these whole-brain
networks have not been systematically mapped. However, there is evidence to suggest that
the laminar connectivity patterns between cortical areas is consistent throughout the brain.
Like the occipital and medial temporal lobe areas that make up the laminar-based anatomical
hierarchy, areas in the frontal and parietal lobes also contain 6 distinct cortical layers. As with
areas in the occipital and medial temporal lobes, some fronto-parietal areas contain a denser
layer 4 while other contain a layer 4 that is very sparse. In a recent primate study using
electrolytic markers and histology, a specific laminar pattern of neural oscillations was
observed: gamma oscillations peaked in layers 2/3, alpha-beta oscillations in layers 5/6, and
the crossover point between them was in layer 4 (Mendoza-Halliday et al., 2024). This
electrophysiological laminar profile was present in all cortical areas, whether they contained
a highly dense layer 4 (e.g., the primary visual cortex) or a very sparse layer 4 (e.g., the
premotor cortex). As neural oscillations result from synchronised firing in ensembles of
connected neurons, this is strong evidence to suggest that the same laminar connectivity

patterns exist across the whole cerebral cortex, irrespective of the density of layer 4.
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Figure 12. Whole brain network diagram. Network diagram showing the dense anatomical
connections of the frontal cortex with other brain regions based on anatomical tracing studies in non-
human primates. Note: this diagram only includes the intermediate and strong projections to the
frontal cortex and, therefore, not the full extent of connectivity. Figure from Averbeck & Seo (2008).

1.2.5. Mapping feedforward and feedback signalling pathways onto cognitive

functions

Considerable work has been carried out to understand the function of the two major
information processing pathways through the laminar-based anatomical hierarchy: the
feedforward and feedback signalling pathways. Much of this work has used a method called
laminar fMRI, in which neuronal activity is imaged across 3 cortical depths (superficial, middle
and deep) using high resolution 7T MRI scanning. By observing which depth-specific
activations or representations during a given task it is possible to infer the contribution of

feedforward and feedback signalling pathways.

43



Laminar fMRI studies have revealed that feedforward pathways transmit externally-generated
sensory information coming from the sensory organs (e.g., Bergmann et al., 2024; Carricarte
et al., 2024). Feedback signalling pathways, on the other hand, have been associated with
modulatory cognitive processes such as attention (Liu et al., 2021) and working memory
(Lawrence et al., 2018). As well as modulating external signals, feedback signalling pathways
have also been found to carry informational content, sometimes even in the absence of an
external stimulus. For example, activations caused by specific expected but not presented
stimuli (Aitken et al., 2020; Bastos et al., 2012; Kok et al., 2016; Warrington et al., 2024; Yu et
al., 2019) and imagined visual content (Bergmann et al., 2024; Carricarte et al., 2024) have
been localised in the deep cortical layers. Here, information is thought to flow through the
hiearchy in a top-down fashion, where higher-level visual information such as whole scenes
are activated and passed downwards to lower-levels where lower-level features such as

objects, shapes or contrasts are activated.

In summary, further work is required to map an anatomical hierarchy that extends to include
higher-order brain areas. We know that information is sent onwards from the visual cortical
hierarchy to frontal areas. We know that, during scene and event construction, frontal areas,
specifically the mPFC, process highly abstracted event information. Therefore, it seems likely
that they would be positioned high up in a representational hierarchy of event processing. We
also know that the layers of frontal cortical areas have the same electrophysiological
properties as the layers of lower order cortical areas. This indicates that they may exhibit the
same inter-area laminar connectivity patterns as identified in the occipital and medial

temporal lobes.

1.3. Aims and outline of the thesis

The broad aim of this thesis was to advance our understanding of how the mPFC,
hippocampus and a wider system of brain regions are functionally organised to support
memory and perception of events. Specifically, | was interested in their organisation at the
level of their neural microcircuitry, that is, the circuits formed from neuronal projections
between the cortical layers and hippocampal subfields. | asked two main questions: (1) what
are the functions of the mPFC and hippocampus in event processing? (2) how does their

laminar and subfield microcircuitry support these functions? An examination of mPFC and
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hippocampal functions with laminar resolution provided insights into involvement of
feedforward and feedback signalling pathways. Furthermore, the hippocampal subfield
resolution provided insights into the involvement of pathways of information flow through
the hippocampus and the computational functions associated with these pathways.
Ultimately, this work aimed towards mapping a cognitive hierarchy of event processing onto

a laminar and subfield-based anatomical hierarchy.

To address these aims, | used 7T MRI scanning. This ultra-high 7T magnetic field strength
provides significant improvements to the spatial resolution compared to the more typical 3T
MRI scanning, allowing neuronal activity to be measured within 0.8 x 0.8 x 0.8 mm?3 voxels (3D
pixels) of brain tissue. Given that the neocortical grey matter is, on average, 3 mm thick, this
submillimeter voxel size enables the dissociation of neuronal activity coming from three
cortical depths: deep, middle and superficial (Fischl & Dale, 2000). This approach, known as
laminar fMRI or depth-dependent fMRI, has been applied to determine the involvement of
the different cortical layers in various cognitive processes (e.g., Aitken et al., 2020; Bastos et
al., 2012; Kok et al.,, 2016; Warrington et al., 2024; Yu et al., 2019). Depending on
cytoarchitecture of the cortical area of interest, the deep, middle and superficial cortical
depths will map onto slightly different of the 6 cytoarchitectonic layers. For example, within
the mPFC, the relative thickness of the cortical layers differs between Brodmann areas.
Therefore, currently, laminar fMRI is reasonably coarse and the interpretation of results
should be carefully considered for each area based on the specific laminar anatomy of the

cortical area.

The submillimeter voxel resolution achieved by 7T fMRI also allows for the distinction of
activity in the hippocampal subfields. In fact, lower resolution 3T fMRI scanning with a
millimeter voxel size can successfully distinguish activity in the hippocampal subfields
(Bonnici, Chadwick, Kumaran, et al., 2012; Bonnici et al.,, 2013; Chadwick et al., 2010).
However, the smaller voxel sizes afforded by 7T fMRI help to reduce partial volume effects,
which are present when a voxel crosses subfield boundaries and lead to the blurring of signal

between neighbouring subfields.

There are relatively few 7T fMRI studies of event processing. Two recent 7T fMRI studies have
investigated the retrieval of autobiographical memories in the hippocampal subfields

(Leelaarporn et al., 2024; Pfaffenrot et al.,, 2024). Leelaarporn et al. (2024) found peak
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activation in the pre/parasubiculum when comparing retrieval of (>1 year old)
autobiographical memories to a counting baseline condition, supporting its role in scene-
related processing. Pfaffenrot et al. (2024) compared activation in the inner and outer layers
of the hippocampal subfields during retrieval of (<2 year old) autobiographical memories.
They found higher activation in the inner compared to the outer layers, indicating the
involvement of the trisynaptic loop pathway (and perhaps its pattern separation and
completion functions), which synapses in the inner layers of CA1. One 3T fMRI study, has also
investigated autobiographical memory retrieval in the hippocampal subfields, finding that
remote (10 years old) memories are represented more strongly in CA3 and the posterior DG
than recent (2 weeks old) memories, perhaps indicating higher pattern completion demands
as memories age (Bonnici et al., 2013). These fMRI studies have advanced our understanding
of the hippocampal microcircuitry supporting autobiographical memory retrieval. However,
retrieval of recent and remote autobiographical memories has not been compared in the

hippocampal subfields using 7T fMRI.

One 7T fMRI study, investigated episodic encoding and retrieval in the hippocampus and mPFC
layers, along with other cortical areas (Chang et al.,, 2022). During the encoding task,
participants were presented with the name of a famous person and an object and were tasked
with imagining the person interacting with the object. During retrieval, which was
immediately following encoding, they were presented with a name-object pair and responded
as to whether they had previously imagined the corresponding event during the encoding
task. Higher functional connectivity between the mPFC deep/middle layer and the posterior
hippocampus was observed during retrieval compared to encoding, supporting previous work
showing that interactions between the mPFC and hippocampus are involved in the retrieval
of past episodes (Fuentemilla et al., 2014; McCormick et al., 2020; Nawa & Ando, 2019, 2020).
The combination of deep layer and middle layer involvement implies the increased
involvement of both feedforward and feedback signalling pathways during retrieval compared
to encoding. However, unlike naturalistic event encoding, the encoding in this task relied
purely on imagination, were participants were internally-generating the event from basic cues
rather than externally perceiving an event. This distinction is important when investigating
cognitive processes in terms of laminar-specific activations as externally-driven and internally-

driven cognitive processes may rely on feedforward and feedback processing to different
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degrees organs (Bergmann et al., 2024; Carricarte et al., 2024). Naturalistic autobiographical
memory retrieval has not yet been investigated in the mPFC layers nor in the layers of other
cortical areas in the core network and no studies have, to my knowledge, investigated the
connectivity between the hippocampal subfields and the cortical layers during
autobiographical memory retrieval. Furthermore, to my knowledge, no 7T fMRI studies have
investigated the hippocampal and cortical microcircuitry underpinning event processing
beyond episodic memory, for example during the online perception of events (although some
7T fMRI studies have examined the perception of individual scenes: Berron et al., 2016;

Carricarte et al., 2024; Grande et al., 2019; Maass et al., 2014).

Measuring neural activations in the mPFC layers comes with significant challenges. While the
high field strength used in 7T fMRI allows for exceptional spatial resolution, it concurrently
increases the severity of certain image artefacts, such as geometric distortion, which typically
manifests as stretching and compressing of the brain tissue. Due to its proximity to the sinuses,
the mPFC experiences particularly high levels of geometric distortion. This can cause a blurring
of the measured signal between neighbouring voxels, thereby reducing our ability to

distinguish neural activity in the cortical layers.

Only three laminar fMRI study have attempted to image the frontal cortices (Chang et al.,
2022; Degutis et al., 2024; Finn et al., 2019) and only one of these has imaged the highly
challenging mPFC (Chang et al., 2022). At the time of conception of my PhD, there were no
published works that used 7T fMRI to image the mPFC. Therefore, | spent a significant portion
of my PhD working with the Physics Team to test various 7T fMRI acquisition methods, with
the aim of minimising geometric distortion, while still achieving a reasonable temporal
resolution of less than 4 seconds and coverage of the hippocampus and mPFC. By combining
several advanced imaging methods, we were able to significantly improve the fMRI image
quality. However, it was not possible to entirely remove geometric distortion in the mPFC
during acquisition. Therefore, | also spent a period of my PhD testing image preprocessing and
analysis methods with the aim of further correcting any remaining distortion to enable the

examination of layer-specific neural activity.

A second image artefact that interferes with the detection of laminar-specific activity is the
so-called superficial bias effect or venous draining effect (Chang et al., 2022; Degutis et al.,
2024; Finn et al., 2019; Kay et al., 2019; Norris & Polimeni, 2019; Ugurbil, 2016). This effect
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results from the fact that, in gradient echo (GE) blood oxygen level dependent (BOLD) fMRI,
most of the measured signal arises from large veins (Boxerman et al., 1995). Because there
are more large veins in the superficial layers, and blood drains from the deep to superficial
layers (Duvernoy et al., 1981), the measured signal is highest in the superficial layers. To
address this bias, | tested various preprocessing and analysis methods that generally aimed to
remove signal coming from the large veins from the analysis. This work, combined with the
work on correcting geometric distortion, resulted in a laminar fMRI preprocessing and analysis
pipeline that was optimised towards measuring layer-specific effects in highly distorted brain

areas such as the mPFC.

A final methodological challenge that | encountered during my PhD was with respect to the
manual definition of hippocampal subfields in MRI scans. This manual process, while the gold
standard approach, requires significant training on the anatomy of the hippocampus and,
even following this training, still takes approximately 8 hours per scan. To help to remove this
potential barrier to investigations into the hippocampal subfields, | developed a protocol to
automatically segmenting the hippocampal subfields in both 7T and 3T MRI scans. This tool is
now publicly available, with full open access, for future researchers to use (Hickling et al.,

2024).

Following a general overview of the methods used in this thesis (Chapter 2), | will present 4

experimental chapters.

Chapter 3: In the first experimental chapter, | report the 7T MRI sequence pilots that |
performed, with the Physics Team, with the goal of minimising geometric distortion in the
mPFC. Subsequently, | report the preprocessing and analysis tests that were conducted to

yield a complete pipeline for laminar analyses in the mPFC.

Chapter 4: In the second experimental chapter, | report some work that | did to develop a tool
for automatically segmenting the hippocampal subfields using a detailed segmentation

protocol.

Chapter 5: In the third experimental chapter, the first 7T laminar fMRI investigation of event
processing, | sought to identify the laminar and subfield microcircuitry supporting the retrieval
of recent and remote autobiographical memories. By investigating recent and remote

autobiographical memory retrieval at the level of the cortical layers, | was able to characterise
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these processes in terms of feedforward and feedback signalling. Furthermore, a subfield-
level analysis of the hippocampus provided insights into the specific hippocampal

microcircuitry underpinning the retrieval of autobiographical memories over time.

Chapter 6: In the second 7T laminar fMRI study on event processing, | examined the
microcircuitry supporting event perception. | probed the specific roles of the mPFC and
hippocampus in the processing of individual scenes and unfolding events, testing the
hypothesis that the mPFC is more involved in the processing of dynamic extended events,
while the hippocampus is necessary for any task requiring the visualisation of scene imagery.
By investigating event perception at the level of the cortical layers, | was able to characterise
it in terms of feedforward and feedback signalling. Furthermore, a subfield-level analysis of
the hippocampus provided insights into the specific hippocampal microcircuitry underpinning

scene and event perception.

Finally, | draw together the results from all of these experimental chapters for a discussion in
Chapter 7, considering in particular what can be learned about the involvement of the
hippocampal subfields, mPFC layers and the layers of other cortical areas, as well as their

relationships, in the retrieval and perception of events.

Given that the areas in the core network are widespread, and much of the extant studies have
investigated the mPFC and other cortical areas in terms of broad regions, | did not have specific
guestions around the short-range inter-area connectivity (e.g., between local Brodmann areas
within the mPFC brain region). Therefore, | chose to investigate reasonably broad cortical
areas, and focus on the long-distant laminar connectivity patterns between these areas and

the hippocampal subfields.

My work provides new insights into the laminar and subfield microcircuitry supporting event
processing, which, until the relatively recent advancements in 7T fMRI, was only possible with
invasive studies typically involving animals. This precluded a microcircuit level understanding
of cognitive processes that are not possible to research in animals, such as the perception and
memory of autobiographical events. Understanding the how the human brain’s microcircuitry
functions in these aspects of cognition is important as it provides a baseline for investigations

into its malfunction in disease states.
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Publications

During my PhD, | produced the following publications.

Hickling, A. L., Clark, I. A., Wu, Y. I., & Maguire, E. A. (2024). Automated protocols for
delineating human hippocampal subfields from 3 Tesla and 7 Tesla magnetic resonance

imaging data. Hippocampus, 34(6), 302—308. https://doi.org/10.1002/hip0.23606

Hickling, A. L., Graedel, N. N, Clark, I. A., Josephs, O., Malekian, V., Kok, P., Callaghan, M. F,,
Maguire, E. A. Feedforward and feedback signalling during recent and remote

autobiographical memory retrieval. In Preparation.

Hickling, A. L., Monk, A. M., Clark, I. A., Maguire, E. A. The laminar and subfield microcircuitry

supporting scene and event perception. In Preparation.

| also contributed towards the following publications. These publications are not covered in

detail in this thesis.

Malekian, V., Graedel, N. N., Hickling, A., Aghaeifar, A., Dymerska, B., Corbin, N., Josephs, O.,
Maguire, E. A., & Callaghan, M. F. (2023). Mitigating susceptibility-induced distortions in high-
resolution 3DEPI fMRI at 7T. Neurolmage, 279, 120294.
https://doi.org/10.1016/j.neuroimage.2023.120294

Miller, T. D., Hickling, A. L., Wu, Y. |, Zhou, J., Handel, A. E., Pollak, T. A., Coutinho, E., Zandi,
M. S., Rosenthal, C. R., Maguire, E. A. Decoding memory dysfunction in hippocampal amnesia.

In preparation.

Wu, Y. 1., Hickling, A. L., Alexander, N., Graedel, N. N., Seymour, R. A., Josephs, O., Malekian,
V., Callaghan, M. F.,, Maguire, E. A. 7T laminar fMRI responses during encoding and retrieval of
naturalistic virtual experiences. In preparation.

Wu, Y. I, Hickling, A. L., Alexander, N., Seymour, R. A., Maguire, E. A. 7T laminar fMRI
responses during retrieval of naturalistic virtual experiences after sleep consolidation. /In
preparation.

Wu, Y. I, Hickling, A. L., Alexander, N., Seymour, R. A., Maguire, E. A. 7T laminar fMRI
responses during retrieval of naturalistic virtual experiences after short-term versus long term
consolidation. In Preparation.
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2. General Methods

2.1. Introduction

In this chapter, | will describe the various methods that | used for data collection and analysis.
| will first explain how | selected and recruited the participants (Section 2.2), as well as the
procedures | followed when a participant visited the Centre for behavioural and neuroimaging
testing sessions (Section 2.3). Next, | describe how structural and functional images were
acquired during MRl scanning (Section 2.4) and why high field strength (i.e., 7T) MRI scanning
provides exciting opportunities for cognitive neuroscience investigations, but also comes with
challenges (Section 2.5). Following this, | will outline the specific 7T MRI sequences that | used
(Section 2.6). | will then explain the methods | deployed for preprocessing (Section 2.7) and
analysing the fMRI data. This includes using both whole-brain fMRI analyses (Section 2.8),
which examine activity across the entire brain volume (in my case it was actually a partial-
brain volume rather than a whole-brain volume), and region-of-interest (ROI) fMRI analyses,

which focus on predefined brain regions (Section 2.9).

Note that all data were acquired under challenging circumstances, with very stringent COVID-
19 safety requirements, as described in Section 2.3. Furthermore, Experiment 3, while
reported here first (Chapter 5), was actually performed second. This is because it required
participants to have 6 distinct memories (involving different people, activities and locations)

from the past month, which was simply not possible during government-enforced lockdowns.

2.2. Participants

All 7T MRI participants were healthy young adults (exact demographic details are provided in
the specific experimental chapters) with no self-reported history of neurological or psychiatric
conditions, and with normal or corrected-to-normal vision. The experiments were approved
by the University College London Research Ethics Committee (project ID: 18721/001) before
recruitment began. They were recruited through two different sources: (1) the UCL Division of
Psychology and Language Sciences SONA participant database; (2) the Call for Participants
recruitment service (https://www.callforparticipants.com). From these platforms, potential

participants were then directed to the study website that contained key information about
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the study, eligibility requirements and reimbursement

(https://ahicklingl.wixsite.com/brainimagingstudy).

Potential participants were contacted by telephone to answer a number of 7T MRI safety
screening and study eligibility questions. Key safety requirements included: no history of
surgeries involving the insertion of metal, no tattoos in the upper half of the body, and no
claustrophobia. These potential participants also read the participant information sheet and
the COVID-19 procedures information sheet and had the opportunity to ask questions about

the experiment.

For Experiment 2 (Chapter 4), | also availed of 3T MRI data that was previously acquired
between March 2015 and June 2017 (Clark & Maguire, 2023). The experiment was approved
by the University College London Research Ethics Committee (project ID: 6743/001) before
recruitment began. These participants were also healthy young adults, with no self-reported

neurological or psychiatric conditions, who passed the safety screening for 3T MRI scanning.

The final samples across experiments totalled 52 participants scanned using 7T MRI and 140

participants using 3T MRI. Several participants took part in multiple experiments (Table 1).

Table 1. Number of participants that took part in each experiment.

Experiment Participants (n)

1 2

2 (77) 15

2 (37) 140
3 2
4 8
2(7T)and 3 10
2(7T)and 4 7
1,2 (7T)and 3 4
2(7T),3and 4 3
1,2(7T),3and 4 1

52



2.3. Experimental set up

The research took place at the Wellcome Centre for Human Neuroimaging, Department of
Imaging Neuroscience, UCL Queen Square Institute of Neurology at University College London,
UK. In all experiments, participants underwent a combination of neuroimaging and
behavioural testing sessions. In Experiment 3 (Chapter 5), the sessions were split across two
separate visits. All other experiments involved a single visit to the Centre. The specific details
and order of the neuroimaging and behavioural sessions varied by experiment and are
described in full in each of the experimental chapters. Examples of behavioural sessions were
interviews, pre-scan task training, post-scan testing and post-scan debriefs. The neuroimaging
sessions all involved 7T MRI scanning, which is described in more detail in Section 2.5. The 3T
data had already been collected and were openly available (Clark & Maguire, 2023; and see

Experiment 2, Chapter 4).

Several measures were taken to reduce the risk of COVID-19 transmission during a visit. Within
24-hours of their visit, the participant was telephoned and asked a series of questions to
screen them for COVID-19 symptoms. If they were experiencing any symptoms, their
appointment was cancelled and rescheduled once they felt well. All equipment was
thoroughly cleaned immediately before and after the participant’s visit. Prior to their arrival,
| changed into medical scrubs and put on a face covering. Upon their arrival, the participant
was provided with a face covering and their temperature was recorded. If it was higher than
38 degrees Celsius, the appointment was terminated and rescheduled for a later date. They
were asked to maintain a 2-meter distance between themselves and anyone else at all times.
They were also encouraged to regularly sanitise their hands with hand sanitiser that was

provided throughout the building.

The participant was escorted to a designated quiet room, which was equipped with two
workstations, one for the participant and one for myself, separated by a Perspex screen. All
behavioural testing sessions were conducted in this room. They reviewed the participant
information sheet and the COVID-19 information sheet once more. They had the opportunity
to ask any remaining questions before providing written informed consent. Once they had

consented to the experiment, they changed into medical scrubs. If the visit included task-
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based fMRI as part of the neuroimaging session, the pre-scan task training was conducted

next.

In preparation for the neuroimaging session, they removed their shoes, along with any metal
items or make-up that could cause signal artefacts in the MRI data. They underwent a
thorough screening process, answering the same 7T MRI safety questions they had previously
answered during the telephone screening. If they were deemed suitable for MRI scanning,

they then signed the MRI Safety Questionnaire.

The participant was allowed to remove the face covering when being MRI scanned. They were
positioned in the scanner by a radiographer who wore full PPE (face covering, gloves and
apron). They lay on their back on the scanner bed with their head positioned inside the MRI
head coil. Cushions and foam pads were placed around their head for comfort and to minimise
head movement. Foam earplugs were used to protect their ears from the sound of the
scanner. An emergency alarm bell was taped to their abdomen and was easily accessible to
their left hand. They were instructed to use this bell at any time to signal that they wanted to
leave the scanner. While they were in the scanner, an intercom system was used to
communicate with them. If the neuroimaging session involved task-based fMRI, the visual
stimuli and task instructions were projected onto a screen via a mirror. Auditory stimuli were
presented using Etymotic Ear-Tone stereo sound system (Etymotic Research Inc, lllinois)
headphones. These were used in place of the protective foam earplugs as they also provide
ear protection from the noise produced by the scanner. The sounds were transmitted via
plastic tubes to foam ear buds. The plastic tubes were taped to the collar bone of the
participant to avoid them from tugging on the ear buds and coming loose. Task responses
were made using an MRI-compatible 4-way button box, which was placed in the right hand of
the participant. The task stimuli were delivered and responses stored using scripts written
with the Psychtoolbox for MATLAB. This setup was standardised across all participants and
experiments. After scanning, the participant was escorted back to the quiet room, where they

underwent additional behavioural debriefing session(s).

They were paid £10 per hour at the end of their final visit to cover their travel and meal

expenses.
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2.4. The biophysics of MRI

| will now provide some general background to MRI, the neuroimaging technique that | used

throughout this PhD.

MRI is a powerful, non-invasive brain imaging modality that can produce detailed structural
and functional images of the human brain. In this section | will explain the biophysical basis of
the MRI signal, how this signal is harnessed to distinguish between different brain structures
and functional states, and the spatial coding of the signal to produce 3D images of the brain.
These explanations are based on the “Introducing MRI” course by the Albert Einstein College

of Medicine (Albert Einstein College of Medicine, 2014b).

2.4.1. The MRl signal

The MRI signal originates from hydrogen protons within the water molecules of biological
tissues. A hydrogen proton is a single positively charged proton. Its positive charge gives it a

property called nuclear magnetism. Essentially, it will act like a small magnet.

Under normal background conditions, a population of hydrogen protons will be randomly
oriented, resulting a net magnetisation of zero. However, when they are placed into the static
magnetic field (BO) of an MRl scanner, they will either orient themselves in the same direction
as the externally applied magnetic field or in the exact opposite direction. In a large
population, an excess will orient in the opposite direction, resulting in a net magnetisation
that is antiparallel to the externally applied magnetic field, known as the longitudinal

magnetisation (Figure 13a).

Hydrogen protons also possess a quality called spin angular momentum. This means that
when they are placed in a magnetic field, they will rotate, or precess, around the orientation
of the magnetic field in a cone-shaped trajectory. The rate at which the hydrogen protons
precess is known as the lamor frequency and is determined by both the properties of the
hydrogen nucleus and the BO strength. In a population of hydrogen protons in a static
magnetic field, none will be precessing in the same phase, resulting in a net magnetisation

that is parallel and opposite to the magnetic field (Figure 13b).

During MR imaging, radio frequency (RF) energy is put into the system. If this energy has the

same frequency as the lamor frequency of the hydrogen protons, then the energy will pass
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between all the hydrogen protons and they will start precessing in the same phase as one
another. This phenomenon is known as resonance. It means that, now, as well as having a
longitudinal magnetisation, the population of hydrogen protons will also have a transverse
magnetisation (Figure 13c). The longer the RF pulse, the more hydrogen protons precess in
the same phase and the greater the magnitude of the transverse magnetisation. As the
longitudinal magnetisation decreases, the transverse magnetisation increases. This results in
a net magnetisation that is diagonal, or sometimes even perpendicular, to the static BO

magnetic field. The degree of rotation of the net magnetisation is known as the flip angle.

When the RF pulse is turned off, the hydrogen protons will move back to their lower energy
resting state in a process known as relaxation (Figure 13d). There are two types of relaxation
which are independent of one another. Longitudinal relaxation describes the process by which
the longitudinal magnetisation returns to its baseline and energy is transferred into molecules
in the surrounding “lattice” of the tissue. The rate of longitudinal relaxation is determined by
the time constant T1. Transverse relaxation is the process by which the transverse
magnetisation returns to its baseline, zero, as hydrogen protons return to random phase. The
time constant that governs the transverse magnetisation rate of decay is called T2. As the
transverse magnetisation decays, RF energy is released, which can be detected by RF receiver

coils. This is the MRI signal.
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Figure 13. Generation of the MRI signal. (a) When placed in a static magnetic field (BO, blue line),
hydrogen protons align with BO, with a relative excess in the opposite direction to BO (black arrows).
This results in a net magnetisation (green arrow) that is antiparallel to BO. (b) Hydrogen protons (black
arrows) precess at the lamor frequency (depicted by the grey cones) at random phase. (c) When a
radio frequency pulse (yellow arrow) is applied at the lamor frequency, the hydrogen protons (black
arrows) precess at the same phase, resulting in a net magnetisation (green arrow) that includes both
longitudinal (orange arrow) and transverse (purple arrow) components. (d) When the RF pulse is
switched off, the hydrogen protons (black arrows) gradually return to random phase causing the net
magnetisation to return to its baseline.

2.4.2.T1, T2, T2* and BOLD contrast

It is important to note that T1 and T2 are independent; longitudinal relaxation is much slower
than transverse relaxation. The T1 of a tissue is determined by its lattice composition, whereas
T2 is determined by its proton density, that is the concentration of hydrogen protons, typically

from water molecules.

After a single excitation, the reading at the echo time (TE; the time between the RF pulse and
the receipt of signal by the coil) will be a function of the T2. However, if a second excitation is
administered before the longitudinal magnetisation has completely returned, then the next

measurement at TE will be a function of both the T1 and the T2. The time between each RF
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excitation is referred to as the repetition time (TR). Therefore, to achieve a better T1 contrast
(i.e., to detect differences in T1 between different tissue types) it is optimal to have a short TR
and TE. An MR image with good T1 contrast is referred to as a T1-weighted image. Whereas
to achieve better T2 contrast (i.e., to detect differences in T2 between different tissue types),

a long TR and TE are preferable. This would produce a T2-weighted image.

Importantly, the BO magnetic field is not homogenous. This is because, the biological tissues
can interact with and distort the externally applied magnetic field. The degree to which each
biological tissue (e.g., brain, bone, fat) becomes magnetised is referred to as its magnetic
susceptibility. When adjacent tissues have different magnetic susceptibilities, an additional
magnetic field is produced, a so-called susceptibility field, which locally perturbs the BO field,
making it inhomogeneous. This means that the lamor frequency of the protons varies across
the brain, as the lamor frequency of a proton depends on the magnetic field applied to it. So,
after the protons are excited, they will gradually move out of phase with one another as they
precess at different frequencies. This results in faster decay of signal compared to the T2 signal
decay in a homogenous BO field. The signal decay under conditions of BO field inhomogeneity
is known as T2* decay and is defined by the time constant T2*. Although it decays faster, in
some cases, a reading of T2* is more desirable than a T2 reading, for example in BOLD contrast

imaging, which | will explain next.

Hemoglobin, the molecule in red blood cells that carries oxygen, has a different magnetic
susceptibility depending on whether it is oxygenated or deoxygenated. Oxyhemoglobin is
weakly diamagnetic and does not distort the BO field significantly. Whereas, deoxyhemoglobin
is paramagnetic and does perturb the BO field. As described above, these BO field
inhomogeneities increase the T2* decay time, causing a faster loss in MRI signal. This means
that a larger ratio of oxyhemoglobin to deoxyhemoglobin results in a higher measure of MR

signal.

When neurons within a brain area become active, they metabolise oxygen from the local
blood supply, reducing the ratio of oxyhemoglobin to deoxyhemoglobin and causing an initial
dip in the MRI signal. Then, oxygenated blood is rerouted to the neurons, causing local blood
vessels to dilate. This increase in blood flow increases the ratio of oxyhemoglobin to
deoxyhemoglobin causing a large increase in the MRI signal. As the neurons metabolise this
oxygen, the MRI signal decreases. The ratio dips below its baseline before gradually returning
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to baseline. This entire process, known as the hemodynamic response (Figure 14), is used in
fMRI analyses as an indirect measure of neural activity (Blamire et al., 1992). Being the most
pronounced part of the hemodynamic response, fMRI analyses aim to detect the main peak
in MRI signal that occurs around 6 seconds after the onset of neuronal activity.
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Figure 14. The haemodynamic response function. Following a single brief stimulus (red arrow), the
hymodynamic response function (blue line) is characterised by an initial dip in the BOLD response
followed by a large peak, then an undershoot before returning to baseline. Figure courtesy of Allen D.
Elster, MRIquestions.com.

2.4.3. MR image formation

So far, | have explained how the detected MRI signal can be used to distinguish between
different types of biological tissue or different metabolic states of the same tissue. Next, | will

”
"

explain how the MRI signal from each unit of volumetric space, a 3D pixel known as a “voxe

is localised to form a 3D image of the brain.

The first step is slice selection. Recall that, in order to excite hydrogen protons, the RF pulse
must be administered at precisely the lamor frequency of the protons, which is determined
by the strength of the externally applied magnetic field. The strength of the magnetic field can
be altered in small increments along a single axis of the scanner using a gradient coil. When

the RF pulse is applied, only hydrogen protons located at a certain point along the axis will
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become excited, the point at which the hydrogen protons are precessing at the same
frequency as the RF pulse. The thickness of this slice of excited protons can be increased by

increasing the RF frequency range or decreasing the gradient.

Once the slice has been excited, the slice selection gradient magnet is switched off. Then, at
the moment the MRI signal is measured (i.e., TE), a second gradient magnet is switched on,
this time along one of the in-plane axes of the slice. This is called the frequency encoding
gradient as it causes the hydrogen protons to precess at different frequencies along the axis.
A Fourier transform can be applied to the MRI signal to decompose it into the different
contributing frequencies, allowing localisation of the MRI signal along the frequency encoding

axis.

This leaves one final axis to locate the signal along, the second in-plane axis of the slice. After
the slice gradient but before the frequency gradient, a third, phase-encoding, gradient along
the final axis is switched on and then off. This causes the precessing hydrogen protons to either
increase in frequency (i.e., accelerate) or decrease in frequency (i.e., decelerate) by a certain
degree depending on their location along phase encoding axis, thereby knocking them out of
phase from one another. The MRI signal is measured and the same slice is excited again. On
this next repetition, a different strength of phase-encoding gradient is applied, resulting in a
different rate of phase shift along the phase encoding axis. The process is repeated for multiple
acquisitions, each using a different strength of phase encoding gradient. At a given point along
the phase encoding axis, there may be a large difference in phase caused by the different
gradients, whereas at another point, there will be a small difference in phase caused by the
different gradients. A second Fourier transform is applied to the acquired data to decompose
the signal into each magnitude of phase difference, allowing localisation of the MRI signal

along the phase encoding axis.

This entire process is repeated for each slice. For each slice, the raw data is read out over time
on a 2D grey-scale grid known as k-space, where the x axis is time, the y axis is the acquisition
number (e.g., the acquired data with each different phase encoding gradient) and the grey
scale of the data points is the MRI signal intensity value. The centre of k-space contains the
highest amplitude signal intensities, while the corners contain the weakest signal. The two
Fourier transformations, described above, are applied after the whole of k-space is acquired,
along the x and then y axis of k-space to yield the MR image.
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An issue with slice selection is that selective excitation of the desired slice is not possible.
Instead, the signal will fade out at each end of the slice. To solve this issue, 3D imaging was
developed. In 3D imaging, instead of exciting a single slice, the whole area that is being
imaged, known as the slab, is excited. A slice gradient is then switched on and off prior to the
phase encoding gradient. The same phase and frequency encoding gradients are applied as
described above and the whole of the 2D k-space is acquired. This is repeated multiple times,
using different slice gradient strengths and producing 2D k-space planes with different degrees
of dephasing. These 2D k-space planes can be combined to form a 3D k-space, where the z
axis is the slice acquisition number (i.e., the acquisition for each slice gradient). Three Fourier
transformations are then used to localise the signal along the slice axis as well as the frequency
and phase encoding axes, thereby producing a 3D image of the brain made up of voxels. The

size of the voxels is determined by the slice thickness and/or the size of the k-space matrix.

2.5. 7T MRI opportunities and challenges

MRI scanning at higher field strengths (e.g., 7T) provides a lot of advantages, but also comes

with some challenges.

2.5.1. Signal-to-noise ratio

The main advantage of increasing the magnetic field strength is the increase in MRI signal.
This is because, when the BO magnetic field is stronger, more hydrogen protons will align
parallel to the magnetic field, resulting in stronger longitudinal magnetisation. This provides
a larger population of precessing protons to be excited by the RF pulse, which also leads to
stronger transverse magnetisation. The result is an overall increase in the MRI signal and in

turn a higher signal-to-noise ratio (SNR).

The stronger BO magnetic field also leads to a stronger susceptibility field as the magnetic
susceptibilities of tissues are enhanced. This leads to an increase in T2* and BOLD signal and
in turn an increase in temporal SNR (tSNR). In other words, this improves the ability to detect

changes in the metabolic state of brain tissues, the proxy for neural activity.

2.5.2. Spatial resolution

A major appeal of 7T fMRI is its improved spatial resolution. It is important to recognise the

difference between nominal spatial resolution and effective spatial resolution. Nominal spatial

61



resolution refers to the theoretical resolution based on the voxel size. Whereas, effective
spatial resolution is the actual resolving power of the image, considering factors like SNR and
artefacts. Effective resolution is typically lower than nominal resolution due to these

influences.

As discussed previously, the voxel size depends on the size of the k-space matrix and the slice
thickness (in 2D imaging). Decreasing the voxel size, decreases the SNR because smaller voxels
are the accumulation of signal from a smaller number of hydrogen protons. Therefore, the
increase in SNR achieved by the higher BO field strength allows for smaller voxel sizes, while
maintaining good effective resolution. The use of stronger gradient magnets in 7T MRI
scanners also improves the spatial resolution as it allows the dissociation of signal between
closer points along the gradient axes. Taken together, this means that 7T fMRI scanning
achieves voxel sizes of less than 1 x 1 x 1 mm3, compared to the typical 3 x 3 x 3 mm?3 voxel

sizes used in 1.5T and 3T fMRI.

This improvement in spatial resolution means that neural activity in fine-scale structures such
as cortical layers and hippocampal subfields can be imaged. The cortical grey matter is
approximately 3 mm thick and has 6 distinct cytoarchitectural layers (Brodmann, 1909; von
Economo & Koskinas, 1925). Although we are not yet able to resolve activity separately in the
6 cytoarchitectural layers, it is possible to dissociate activity across 3 different cortical depths:

superficial, middle and deep.

2.5.3. Geometrical distortions and signal drop out

As described previously, the stronger susceptibility field achieved by high field strength
imaging can improve our ability to detect the BOLD signal. However, it also has a downside.
The BO field inhomogeneities caused by the susceptibility field result in dephasing of the
hydrogen protons. This dephasing can interfere with the phase encoding of the MRI signal.
This in turn results in a mis-mapping of signal in k-space and subsequently in image space,
making the brain appear deformed (Andersson et al., 2003; Gallichan et al., 2010; Jezzard &
Balaban, 1995; Jones & Cercignani, 2010). These deformations generally manifest as
stretching (signal spreading into non-brain voxels) or compression (signal piling up in brain

voxels) along the phase encoding axis.
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Dephasing also results in faster decay of the transverse magnetisation. In brain areas with a
very inhomogenous BO field, the high level of dephasing can mean that the MRl signal is very
low or has even reduced to zero by the time it is measured at TE. This results in areas of the

image with very low intensity or no signal, known as signal drop out.

The brain regions most severely affected by geometrical distortions and signal drop out are
the orbitofrontal cortex and inferior temporal cortex. This is because, these areas are close to
the sinuses and ear canals, where biological tissues (bone and air-filled cavities) have very

different magnetic susceptibilities.

2.5.4. Signal artefacts

Several types of artefact are more common at higher field strengths. For example,
susceptibility-induced artefacts related to increases in BO field inhomogeneity, and motion

artefacts due to the increased sensitivity to motion.

Because BO field inhomogeneities cause a mis-mapping of signal into k-space, Gibb's ringing
or truncation artefacts can emerge (Czervionke et al., 1988; Wood & Henkelman, 1985). These
are caused by abrupt changes in signal intensity between adjacent data points in k-space,
which can occur when high intensity signal is mispositioned around the edges of k-space

where the signal typically becomes zero.

It is important to minimise head motion during fMRI scanning so that each data point in k-
space and each voxel in image space correspond to the same portion of brain tissue
throughout the fMRI time course. Motion artefacts arise when the brain moves during
acquisition of k-space, often manifesting as “ghosting” (repeating of the brain or parts of the
brain) in the direction of phase encoding. Even sub-voxel motion can severely degrade the
quality of the scan. At higher field strengths, voxel sizes are typically very small which reduces

the margins for head motion.

Head motion also causes the susceptibility field to change and thereby alters the nature of
distortions (Andersson et al., 2001). This means that the shape of the brain is inconsistent
across different volumes of the fMRI time series, making it difficult to bring voxels back into
alignment post-acquisition. At higher field strengths, the increased susceptibility fields

increase the impact of susceptibility-motion interactions.
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Another pervasive signal artefact that poses significant challenges for laminar fMRI studies is
the so-called superficial layer bias effect or venous signal artefact (Kay et al., 2019; Norris &
Polimeni, 2019; Ugurbil, 2016). The majority of laminar fMRI studies acquire data with GE-
BOLD sequences as these are highly sensitive to changes in neural activity (Olman & Yacoub,
2011). However, in GE-BOLD fMRI, most of the measured BOLD signal arises from large veins
(Boxerman et al., 1995). Because there are more large veins in the superficial layers, and blood
drains from the deep to superficial layers (Figure 15; Duvernoy et al., 1981), the measured

BOLD signal is highest in the superficial layers.
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Figure 15. Vasculature of the cortical grey matter. Arteries (red) supply oxygenated blood to the
cortical grey matter. These arteries branch into smaller capillaries (purple) that run parallel to the
cortical layers. Deoxygenated blood is transported out of the grey matter by veins (blue). The measured
BOLD signal in GE fMRI comes from deoxygenated blood in the veins. The concentration of large veins,
running perpendicular to the cortical layers, increases from the deep to the superficial layers, and
consequently so does the BOLD signal. Additionally, the movement (white arrows) of deoxygenated
blood towards the pial surface causes leakage of BOLD signal from the deep to the superficial layers.
Figure from Havlicek & Uludag (2020).
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Several methods that attempt to correct or mitigate the superficial layer signal bias have been
developed and are explored in Experiment 1B (Chapter 3). These include: masking out voxels
that are likely to measure signal from large veins (e.g., tSNR, t value, and T2 signal masks; Jia
et al., 2021; Olman et al., 2007); using ratios rather than subtractions when contrasting task
conditions (Huang et al., 2021; Kashyap et al., 2018; Liu et al., 2021); and regressing out signals

that are correlated across layers in the GLM (Kok et al., 2016).

2.6. MRl scanner and sequences

2.6.1. MRI scanner

For my 7T experiments, MRI data were acquired on a Siemens Magnetom Terra 7T MRI system
(Siemens Healthcare GmbH, Erlangen, Germany) with an 8-channel head coil for localised
transmission, operating in a quadrature-like (“TrueForm”) mode, with a 32-channel head coil

insert for reception (Nova Medical, Wilmington, USA).

In Experiment 2 (Chapter 4), the 3T MRI data were open access (Clark & Maguire, 2023) and
acquired using three Siemens Magnetom TIM Trio 3T MRI systems with 32 channel head coils.

The three scanners used the same software and MRI sequences.

2.6.2. MRI sequences

2.6.2.1. Functional MRI

The 7T fMRI data were high resolution with a voxel size of 0.8 x 0.8 x 0.8 mm?3, which was
sufficient spatial resolution to extract signal from 3 cortical depths - superficial, middle and
deep - as well as the hippocampal subfields. To achieve this high resolution, and maintain a
reasonable TR, only part of the brain was imaged. The partial volume was always positioned
to include the hippocampus and mPFC, which was important to address the research
qguestions of all 3 experiments. By virtue of the anatomy of the brain, it also always covered
the retrosplenial, parahippocampal, occipital, lateral temporal and lateral frontal cortices. The
use of isotropic voxel dimensions provided equal resolution in all three imaging planes, which
was important for imaging convoluted structures like the cortical layers and hippocampal

subfields.
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The specific sequence used to acquire the fMRI data was a T2*-weighted 3D GE echo-planar
imaging (EPI) sequence (Mansfield, 1977). In GE-EPI, the whole of k-space is acquired
continuously during a GE train following a single RF pulse (Albert Einstein College of Medicine,
2014a). In a GE train, rather than administering an RF pulse for each acquisition, a gradient is
used to rephase the precessing hydrogen protons. This produces an “echo” of the MR signal.
A series of echoes can be used to iterate through the phase encoding acquisitions. GE-EPI is
an extremely fast acquisition method in MRI, making it a popular choice for functional
imaging. We achieved a volume acquisition time of 3872 ms, a TR of 44 ms and a TE of 18.7
ms. However, this fast imaging comes at a cost. Because the entire MR signal is acquired during
a long train of gradient echoes, there is more time for dephasing to interfere with phase

encoding. This means that the GE-EPI images are highly susceptible to geometric distortion.

We used parallel imaging acceleration, meaning that specific data points in k-space were not
sampled and were instead inferred from the surrounding data points (Deshmane et al., 2012).
This speeds up the time taken to acquire k-space, thereby reducing the time over which BO
inhomogeneities can cause geometric distortion and signal drop out. However, the process of
reconstructing images from under sampled data can amplify noise. As a result, the SNR in the
reconstructed images can be lower compared to fully sampled acquisitions. We applied
parallel imaging in both the direction of the partition (i.e., the slice direction, factor = 2) and

the phase encoding direction (factor = 4).

Because k-space is, in theory, symmetrical, a way to save time is by only sampling (a minimum
of) half of k-space, which would correspond to half the number of phase encoding iterations.
This is called partial Fourier imaging (McGibney et al., 1993). We used partial Fourier 6/8 in

the phase-encoded direction, meaning that only 75% of k-space is acquired.

In order to include the mPFC and hippocampus in all participants (each with unique brain
anatomy) we used a field of view of 192 x 192 x 70.4 mm? and a slab angle of 15°. Another

MRI parameter was a flip angle of 14°.

We used binomial (1331) water-selective excitation (Hore, 1983). This technique uses a
specific type of RF pulse sequence known as a binomial pulse. The numbers in the name
(1331) refer to the amplitude and phase configuration of the sub-pulses within the binomial

sequence. These pulses are designed to selectively excite water protons while suppressing the
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signal from fat protons by taking advantage of their different lamor frequencies (when placed

within the same external BO magnetic field).

We used advanced BO shimming. Shimming is an approach is to homogenise the BO field
before image acquisition (Juchem & de Graaf, 2017). It involves the application of small
gradients using a separate set of coils. We used an advanced algorithm for estimating the

necessary corrective gradients.

Anterior-to-posterior phase encoding was used, meaning that the phase-encoding gradient
was applied along the scanner axis that corresponded to the anterior-posterior axis of the
brain. Four images, with the same parameters but the opposite polarity (posterior-to-anterior)
of phase encoding, were acquired at the start of the sequence. Different polarities of phase
encoding lead to different manifestations of geometric distortion in the images. These
differently distorted images can then be used to correct geometric distortion in a method

known as “unwarping” (see Section 2.7.2).

2.5.2.2. Anatomical MRI

In my 7T fMRI experiments, a whole brain magnetisation transfer (MT)-weighted EPI image
was also acquired (Ranjeva et al., 1997). This image was acquired on the 7T MRI scanner using
a T2*-weighted 3D GE EPI sequence with many of the same parameters used in the fMRI

sequence.

An MT-based contrast was used. This means that tissues with significant interactions between
water and macromolecules (e.g., proteins) are suppressed. Because grey matter, white matter
and cerebrospinal fluid (CSF) are all suppressed to different degrees, the MT-weighting

amplifies the contrast between these tissue types.

The volume acquisition time of the MT-weighted EPI image was 3 m 45 s, the TE was 16.97
ms, the flip angle was 8°, the field of view was 192 x 192 x 128 mm?3, and parallel imaging

(factor = 4) was used.

Because it had many of the same parameters (e.g., TE and acceleration factor) as the fMRI
images, the MT-weighted EPl image was matched to the fMRI images in terms of geometrical

distortion. This meant it could be aligned to the functional images and then used as a high
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contrast functional image template for coregistering the anatomical images to the functional

images (see Section 2.9.2.3 for explanation of coregistration).

In my 7T experiments, a whole brain, submillimetre resolution (voxel size = 0.65 x 0.65 x 0.65
mm?3) T1-weighted image was acquired using a Magnetization Prepared 2 Rapid Acquisition
Gradient Echo (MP2RAGE) sequence (Marques et al., 2010). The volume acquisition time of 8
m 42 s, TR of 5000 ms, TE of 2.54 ms, inversion time of 900 ms and 2,750 ms, flip angles of 5°
and 3°, field of view of 208 x 208 x 156 mm?3, and in-plane GeneRalized Autocalibrating Partial
Parallel Acquisition (GRAPPA) acceleration (factor = 3). This whole brain anatomical image was
used to define the two cortical surfaces, the boundary between grey matter and CSF, and the
boundary between white matter and grey matter, which were later used to define the three

cortical depths.

In my 7T experiments, two partial brain, submillimetre resolution (voxel size =
0.52 x 0.52 x 0.5 mm?3) T2-weighted images were acquired using the 7T MRI scanner for the
purposes of hippocampal subfield segmentation. These images were acquired using a T2-
weighted 3D spin echo sequence with variable flip angles (SPACE) sequence (Mugler et al.,
2000) with a volume acquisition time of 10 m 25 s, TR of 3,500 ms, TE of 229 ms and flip angle
of 8°. The field of view of 200 x 169 mm x 56 mm and slab angle of 15° captured the
hippocampus in all participants. The sequence used partition oversampling of 14.3%, and in-

plane GRAPPA acceleration (factor = 2).
2.7. Preprocessing of fMRI data

2.7.1. Motion correction

To correct for any head movements during scanning, the functional images must be aligned
to one another such that the same voxel in each image contains the same anatomy. This
process is known as realignment. It involves estimating six parameters, 3 translation
parameters and 3 rotation parameters, that describe how an image must be moved so that it
isin alignment with a reference image. The realignment algorithm estimates these parameters
by minimising the differences in BOLD signal intensity between the images. First, all functional
images are realigned to the first functional image in the time series. Then an average

functional image is produced by calculating the mean BOLD signal intensity across the time
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series for each voxel. A second pass of realighment is then performed with respect to the

average fMRI image.

2.7.2. Distortion correction

At the same time as realignment, fMRI data are “unwarped”. Unwarping corrects for
geometric distortion in the fMRI data. There are several methods for unwarping, two of which
involve estimating a BO field map. In the most common method, the BO field is directly
measured by acquiring a field map image (Hutton et al., 2002; Jezzard & Balaban, 1995; Zeng
& Constable, 2002). In another approach, images are acquired with the opposite phase
encoding direction to the functional images (Andersson et al., 2003). All of our functional
images were acquired with anterior-posterior phase encoding and so we acquired up to 4
additional images with posterior-anterior phase encoding. By combining the posterior-
anterior phase encoded images with the same number of anterior-posterior phase encoded
images, it is possible to estimate the field that has produced these data (Chang & Fitzpatrick,
1992). This can be done using the “topup” algorithm implemented in the FMRIB Software
Library (FSL; Andersson et al., 2003). The field map produced by either of these approaches
can then be used to produce a model of the movement-by-inhomogeneity interactions, that
is, how the BO field changes with participant movement, which can then be applied to the
functional images to correct distortion (Andersson et al., 2001; Hutton et al., 2002). In
Malekian et al. (2023), we pitted these two approaches against each other using a subset of
the 7T fMRI data that | acquired in Experiment 4 (Chapter 6). We found superior distortion
correction using the opposite phase encoding method compared to the BO field map method,
particularly in the brain areas with most severe susceptibility-induced distortions, such as the
mPFC. Therefore, in all experiments reported in this thesis, | used the opposite phase encoding

approach to distortion correction.

In my 7T experiments, realignment and unwarping steps were applied to the fMRI data in a
single step. This is particularly important for cortical layer and hippocampal subfield analyses.
This is because preprocessing steps that require the resampling of fMRI data onto a new voxel
grid require the signal intensities corresponding to each voxel to be interpolated. Each time
the data are resampled and interpolated, the effective resolution of the data decreases (Wang
et al., 2022). This spatial smoothing can blur the signal between layers and prevent detection
of layer-specific neural activity.
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Note that geometric distortion is particularly problematic for cortical layer analyses, where it
can blur the BOLD signal between layers. It is also a major concern in one of my main brain
regions of interest, the mPFC (see Section 2.5.3 for explanation of this). Therefore, additional
preprocessing steps are taken prior to cortical layer analyses (described later in Section
2.9.2.3) to correct for any remaining distortion and to prevent this remaining distortion from

impacting analyses.

2.8. Whole-brain fMRI analyses

Although the main analyses within this thesis are at the level of cortical layers and
hippocampal subfields (described in Section 2.9.1), | will first describe the standard whole-
brain (or in my case, partial brain) mass-univariate approach to fMRI analysis, which can be

used to identify the brain areas that are active during certain cognitive processes.

First, some further preprocessing steps are required to move the functional images of all
participants into anatomical alignment with one another. This alignment is crucial to allow us
to find specific brain anatomy that activates across all participants. To achieve this, first, for
each participant separately, the BOLD signal associated with specific cognitive processes is
estimated for each voxel, using a general linear model (GLM; Frackowiak et al., 2004). The
results from this first-level analysis are then summarised into a single contrast image for each
participant and taken to the second level. At the second level, classical statistical methods are

applied to each voxel.

2.8.1. Additional preprocessing

The functional images of all participants are brought into alignment with one another in two
steps. First, the images are “warped” into approximate anatomical alignment. As each
participant has unique brain anatomy, this involves geometrically distorting the images. Next,
because it is not possible to precisely align the voxels between participants with warping, the

images are blurred, or “smoothed”, so that the anatomy is coarsely aligned.

Note that although the nominal spatial resolution of the images has not changed, this
smoothing significantly reduces the effective spatial resolution and results in a blurring of the
BOLD signal between the cortical layers and between the hippocampal subfields.

Furthermore, it may remove task-relevant information that is represented in the unsmoothed
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multivoxel patterns of signal, which is the basis of MVPA analyses. For this reason, all laminar
and subfield analyses and all MVPA analyses were performed within the native space of each

participant’s fMRI data, as described in Section 2.9.1.

2.8.1.1. Spatial normalisation (warping)

To approximately align their anatomy, the functional images of all participants are warped to

a standard brain template in Montreal Neurological Institute (MNI) space.

There are several steps to achieve this. First, for each participant, the functional images are
brought into alignment with the MP2RAGE anatomical MRI image, which has higher spatial
resolution and much clearer detail of the brain’s anatomy. This alignment is performed using
a process called coregistration, specifically normalised mutual information (NMI)
coregistration (described in detail in Section 2.9.2.3). Then the different tissue types (e.g., grey
matter, white matter and CSF) are delineated, or segmented, on the anatomical image using
the SPM segment tool. These tissue segmentations are used to warp the anatomical images
of different participants into alignment with one another using an SPM tool called DARTEL
(Ashburner, 2007). The result of this can then be transformed into MNI space. Finally, the same

warp and transformation is then applied to the functional images.

2.8.1.2. Spatial smoothing
Finally, the functional images are spatially smoothed. This involves applying a Gaussian
smoothing kernel to each voxel. The full-width at half maximum (FWHM) of the kernel governs

the degree of smoothing and typically ranges from 4 to 12 mm.

As described previously, spatially smoothing the images accounts for the fact that the spatial
normalisation process is not able to precisely align each participant’s anatomy at the level of
individual voxels. Smoothing the images, blurs the anatomy, thereby bringing it into alignment
across participants. Smoothing is also essential for the group-level statistical inference
(Section 2.8.2.2). This is because the group-level statistical inference uses Gaussian random
field theory, which assumes that the fMRI images are smooth. Therefore, smoothing is

necessary to ensure the validity of the results.
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2.8.2. Mass-univariate fMRI analysis

The mass univariate approach to fMRI analysis involves analysing the BOLD signal time course
at each voxel independently using statistical models. This allows for identification of clusters
of voxels (i.e., areas of the brain) where the neuronal activity is caused by the specific

experimental conditions.

2.8.2.1. Single-subject analysis

Single-subject fMRI analysis examines the relationship between experimental conditions and
the observed BOLD signal of individual participants. A general linear model (GLM) is used to
model this relationship in each voxel independently. The basic form of the GLM can be written

as:
Y=XB+¢

In this equation, Y is the observed BOLD signal in the form of a vector of BOLD signal values
over the time course of the experiment. X is the design matrix, representing the list of
variables that might explain the changes in the BOLD signal. B is a vector of values, which are
estimated when the model is fitted to the data. These beta estimates represent the estimated
contribution of the explanatory variables to the observed BOLD signal. Finally, € is the error
term, also known as the residuals, which is also estimated when the GLM is fitted to the data.
These residuals represent any noise in the data that is unaccounted for by the explanatory

variables.

The first step in the GLM analysis is construction of the design matrix. Each column of the
design matrix corresponds to a different explanatory variable, referred to as a regressor. These
could be task conditions (e.g., memory retrieval or counting), task events that are of no
interest (e.g., presentation of instructions), so-called nuisance regressors that could have
confounding effects (e.g., head motion parameters) or drift terms to account for low-
frequency noise. The rows of the design matrix correspond to each time point at which a
functional image was acquired. The data points in the design matrix represent the on and off
state of the regressor. For task-related regressors, each onset of the regressor corresponds to
a task event (e.g., stimulus presentations, tasks, or participant responses or presentation of
instructions). The events can either be represented as a continuous event of a specified

duration, using a square wave or “boxcar” function, or as a transient event, using a stick (delta)
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function. These event regressors are then convolved with the canonical HRF to account for
the delayed and dispersed nature of the BOLD signal relative to the neuronal activity that
caused it. This step transforms the discrete event timings and durations into the predicted

BOLD signal changes associated with each regressor.

Using the specified GLM, the beta values are estimated for each voxel within the functional
image. This involves finding the beta values that minimise the difference between the
predicted and observed time course of BOLD signal, using a maximum likelihood estimation.
A beta value is estimated for each regressor. It represents the degree to which the regressor
explains the BOLD signal changes of the voxel. It can be thought of as the magnitude of

neuronal activation caused by the task condition.

Hypotheses about the conditions are tested using contrasts, which are linear combinations of
the beta values. For example, to test the difference between two conditions, memory retrieval
and counting, for each voxel, a contrast vector of [1 -1] is applied to the beta estimates of
memory retrieval and counting, respectively. The result is a contrast value that represents the
weighted combination of the memory retrieval and counting beta values. To assess the
statistical significance of the contrast values, a t-test is commonly used. The t-test evaluates
whether the contrast value for each voxel is significantly different from zero. For more complex
hypotheses involving multiple contrasts, an F-test can be used. The F-test evaluates whether
a set of contrasts is jointly significant. This is particularly useful for testing whether there are
differences between any of the task conditions, rather than testing for pairwise differences
between specific conditions. Once the statistics have been computed for each voxel, the result
is a statistical map, where each voxel has a t-value (or F-value) indicating the strength of the

effect.

To identify significant voxels, the statistical map is thresholded. This involves selecting a
threshold value for the t-statistics (or F-statistics) that corresponds to a desired significance
level (e.g., p < 0.01). Given the large number of voxels, it is important to correct for multiple
comparisons to control the false positive rate. The most common correction method is the

Family-Wise Error (FWE) correction.
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2.8.2.2. Group-level analyses

Group-level fMRI analysis, also known as second-level analysis, aims to generalise the findings
from individual participants to a broader population. This involves combining the first-level
results from multiple participants to make inferences about the average effect and variability

across the group.

A new GLM is constructed for the group-level analysis and is applied to each voxel separately.
The primary input to the group-level GLM are contrast maps from the first-level analysis of
each participant. These images represent the effect sizes for specific condition contrasts (e.g.,
memory retrieval versus counting). The design matrix at the second level represents the
experimental conditions and covariates for the group analysis. The setup depends on the
research question and the structure of the data. For all of the experiments reported in this
thesis, | used the most simple and common design matrix, a single column of ones. For each
voxel, the second level GLM is fit to the participant contrast values. This involves estimating
the beta value for the single regressor of the design matrix. The beta value will correspond to
the mean contrast value. A t-statistic is then computed to test the whether the beta value (i.e.,
the mean contrast value of the group) is significantly different to zero. Note, more complex
GLMs with multiple regressors can be used to account for additional explanatory variables
(e.g., age, gender, clinical scores). Such complexity was not warranted in my case, as all the

participants were healthy young adults, with little variance overall in terms of age or gender.

The output of the group-level analysis is a group-level statistical map of t-values. As with the
single-subject analysis, this map can be thresholded to identify significant voxels, and correct
for the fact that multiple statistical tests have been performed (one for each voxel). As with
single-subject analysis, the most common multiple comparisons correction method is FWE

correction, which controls the false positive rate.

2.9. Region of interest fMRI analyses

By focusing analyses on predefined regions of interest (ROIs), it is possible to examine directly
the involvement of these specific ROIs in particular cognitive processes. There are several
advantages to an ROl-based approach compared to the whole-brain mass-univariate method
described in Section 2.8. First, by averaging signals within ROIls, ROIl-based analyses can

increase the SNR and enhance sensitivity to subtle effects, particularly in regions with
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relatively low signal intensity. Second, compared to whole-brain analyses, ROl-based analyses
reduce the number of statistical comparisons, which can help mitigate the issue of multiple
comparisons and increase statistical power. Finally, and perhaps most importantly for the
experiments reported in this thesis, ROI-based analyses can be performed in the native space
of the functional images of each participant. This yields a single result per ROI (e.g., per mPFC
layer) for each participant, which can then be analysed at the group-level. This differs from
the mass-univariate approach in which the individual voxels must be aligned across
participants before performing statistical analyses for each specific voxel. This requires
significant smoothing of the functional images, resulting in a substantial loss of spatial
resolution which precludes the investigation of cognitive processes at the level of

microstructures, that are of particular interest to me in this thesis.

The ROIs are typically defined based on (1) the aims and hypotheses of the experiment, (2)
previous findings and/or (3) results from whole-brain analyses performed in the same
experiment. Caution is required if using analyses from the same experiment. It is important
that either a different set of data is used to select the ROI (e.g., from a functional localiser
task) or, as | have done here, that structurally defined ROls are used, to avoid “double dipping”
(Kriegeskorte et al., 2009). Double dipping refers this improper use of the same dataset and
condition contrast to both define the ROI and perform statistical inference on the ROI. This
practice can lead to biased and inflated results because it violates the independence
assumption of statistical tests. In all of my experiments, the ROls were guided by all 3 of these
selection criteria noted above. | set out to investigate the involvement of the mPFC layers and
hippocampal subfields in event processing, and therefore included the 3 mPFC layers and 6
hippocampal subfields. Furthermore, in exploratory analyses, | included the 3 layers of other
cortical areas within the core network, drawing upon the wealth of existing literature

reporting their functional significance.

In this section, | first describe the steps taken to define the ROIs in the native functional space
of each participant. Once the ROIs have been defined, they can be used in univariate and
multivariate analyses; mine are described in detail in Sections 2.9.2 and 2.9.3. Finally, in

Section 2.9.4, | describe a method for investigating functional connectivity between ROls.
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2.9.1. ROI definition

To delineate the ROIls, a segmentation process is performed on the anatomical images
whereby anatomical brain structures are more easily distinguishable. The segmentations must
then be moved into alignment with the functional images in a process called coregistration.
Once in the same space as the functional images, the ROlIs are refined and the cortical ROIs

are divided into 3 cortical depths: deep, middle and superficial.

2.9.2.1. Segmentation of cortical areas and surfaces

The brain is first segmented into various cortical areas. Furthermore, in order to (later) divide
the cortical grey matter into 3 cortical depths (see Section 2.9.2.5), | first defined the outer
and inner boundaries of the grey matter, that is the pial surface, the boundary between grey
matter and CSF, and the white matter surface, the boundary between white matter and grey
matter. To achieve this, it is important that the anatomical image used to segment the cortical
surfaces and areas has high contrast between grey and white matter and between grey matter
and CSF. A “spliced” whole brain T2-weighted image was used, which combined several
anatomical images. First the MP2RAGE T2-weighted image was moved into alignment with
the two high resolution partial brain T2W images, using a NMI coregistration (see Section
2.9.2.3 for a full description of coregistration). These images were then averaged to produce
a high resolution, high contrast T2-weighted image, with good contrast between grey matter
and CSF. The MP2RAGE T1-weighted image was also used for segmentation, as it has good
contrast between grey and white matter. To remove noise from the “spliced” whole brain T2-
weighted image and the MP2RAGE T1-weighted image, the images were denoised and
minimally smoothed (1 mm FWHM, see Section 2.8.1.2). Finally, the spliced whole brain T2-
weighted image and the MP2RAGE T1-weighted image were passed through a segmentation
algorithm called FreeSurfer recon-all, which, after running several preprocessing steps,
delineates the two cortical surfaces and many cortical areas (Fischl et al., 2002; Fischl et al.,
2004). These cortical surfaces are in the form of a mesh, a collection of vertices (points), edges
(lines connecting vertices), and faces (triangles or polygons formed by edges) that create a 3D
model of a surface. Two brain atlases were used for segmenting the cortical areas on the pial
surface mesh: the Desikan-Killiany Atlas and the Destrieux Atlas (Desikan et al., 2006;

Destrieux et al., 2010).
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2.9.2.2. Segmentation of hippocampal subfields
In all experiments, | manually segmented the hippocampal subfields according to an
established protocol that is accurate to our current understanding of hippocampal anatomy

(Dalton et al., 2017).

First, the high resolution T2-weighted images were visually inspected and poor-quality images
were discarded. Then, they were denoised and averaged to produce a single T2-weighted
image with good SNR. This image was used to manually delineate the hippocampal subfields
using ITK Snap software version 3.2.0. For each participant the whole hippocampus, bilaterally,
was manually segmented into 6 subregions: DG/CA4, CA3/2, CA1l, subiculum,
pre/parasubiculum and uncus (Figure 16). On average, it took eight hours to segment the

hippocampi of a participant.
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Figure 16. Segmentation of the hippocampal subfields. (a) A 3D representation of the segmented
hippocampal subregions. (b) Two coronal slices of T2-weighted structural MRI scans, showing the
anterior (left) and posterior (right) hippocampus. The raw image (top) and the same image with
hippocampal subfield segmentations (lower) are shown. DG = dentate gyrus, CA = Cornu Ammonis.
Figure from Clark & Maguire (2023).

In Experiment 2 (Chapter 4), | used these manually segmented anatomical scans to train an
algorithm to automatically segment the hippocampal subfields in 7T MRI data. | also trained
an algorithm to automatically segment the hippocampal subfields in 3T MRI data that had

been previously acquired and manually segmented by another researcher. In so doing, | hope
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that the hippocampal community will find this a useful way to save a substantial amount of

time. The method for automatic segmentation is described in full in Chapter 4.

2.9.2.3. Coregistration

Having segmented the relevant brain areas on the anatomical scans, it is next necessary to
align these anatomical images and their segmentations with the functional data in a process
called coregistration. A choice must be made about whether to move the anatomical image
into the space of the functional image or vice versa. In all experiments, | moved the anatomical
images to the space of the functional images, to avoid unnecessary interpolation and
resampling the functional data. In coregistration, the two images being aligned have different
properties (e.g., an MP2RAGE image and a functional image). This differs from realignment,
where all images are acquired with the same MRI sequence, giving them the same properties

(e.g., functional images, see Section 2.7.1).

There are two main types of coregistration method, NMI and boundary-based registration
(BBR), each with their strengths and limitations. The choice between them depends on the
specific application and the characteristics of the images being coregistered. Both methods
estimate the translations and rotations in each axis that are required to move the one image
into alignment with the other. In the more commonly-used method, NMI, the transformation
is estimated by maximising the statistical dependence, or mutual information, between the
intensity values of the corresponding voxels in the two images. Whereas, in BBR, the focus is
on matching the edges or boundaries of structures in different images. In order to do BBR,
cortical surfaces must have been defined on one of the images being coregistered. BBR then
maximises the signal intensity gradients across the cortical surfaces in the other image. As
such, BBR is more effective at matching the edges or the images, in particular the cortical grey
matter, while NMR is more accurate at matching the subcortical structures like the

hippocampus.

Recall that the MT-weighted EPl image has the same geometric distortion and signal drop out
as the functional data. However, the MT-weighting provides it with a considerably higher
contrast-to-noise ratio. This makes it a good template, or reference, for moving the anatomical
images and their segmentations into alignment with the functional data. However, first, the

MT-weighted EPl image must be moved into alignment with the functional data. To do this, it
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is first distortion corrected in the same way that the fMRI data was, that is, using the anterior-
to-posterior and posterior-to-anterior images to estimate a field map, and then using the field
map to create a single distortion corrected image (see Section 2.7.2). It is then coregistered,
using NMI, to the average functional image that was produced during realignment of the

functional data.

In all experiments, NMI was used to coregister the T2-weighted structural image with the MT-
weighted image (and consequently the fMRI data). The same transformation was then applied
to the hippocampal subfield segmentations such that they were also brought into alignment

with the functional data.

The cortical surfaces and cortical area segmentations were coregistered to the functional data
in 3 steps. First, using NMI, coregistration of the MP2RAGE T1 image to the MT-weighted
image was estimated. Then, using BBR, the cortical surfaces were coregistered to the MT-
weighted image, estimated using FreeSurfer BBRegister (Greve & Fischl, 2009). In a final step,
BBR was applied recursively to improve coregistration of the cortical surfaces to the MT-
weighted image. This works by dividing the cortical surface mesh into increasingly smaller
subsections and performing BBR iteratively on each section of mesh (van Mourik, Koopmans,
etal., 2019). Six iterations of BBR were performed. In each iteration, scaling was allowed along
the phase-encoding direction, because in GE-BOLD EPI, geometrical distortion is most severe
in the phase-encoded direction (Jezzard & Clare, 1999; Mansfield, 1977; Pykett & Rzedzian,
1987). Allowing for scaling in the phase encoding direction and coregistering the surfaces to
subsections of cortex corrects for any distortion remaining in the functional data by essentially

distorting the cortical surfaces to fit the functional data.

2.9.2.4. Definition of cortical area ROIs

Now that the cortical surface and area segmentations are in the space of the functional
images, they can be processed into masks for each ROI. A mask is a voxel map of ones and
zeros, ones for the voxels in the ROl and zeros to all other voxels. To produce these masks,
first, the cortical area segmentations must be translated from the space of the cortical surfaces
(i.e., in the form of meshes) into the space of the functional volumes (i.e., in the form of
volumes comprised of voxels). This is done by projecting them across the surface normal, a

3D vector that runs perpendicular to the surface. As the cortical grey matter has undulations,
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gaps will exist in the cortical area masks. These can be filled in using FSL Maths Edge, Dilate

and Erode operations. Where appropriate, manual edits were made to these structural masks.

2.9.2.5. Definition of cortical layer ROIs

Next, the cortical area masks needed to be divided into 3 cortical depths for laminar analysis.
However, before | did this, some edits were made to them to remove voxels that may have
contaminated the laminar results. For example, voxels that were expected to contain large
veins were removed from the masks, to reduce the impact of the superficial layer bias effect
(see Section 2.5.4). Furthermore, voxels that were in areas with remaining distortion were

removed from the masks, as they would introduce noise into the results.

Voxels with a low tSNR are expected to contain large veins (Jia et al., 2021). Therefore, voxels
with a tSNR lower than the 65™ percentile of the tSNR distribution were excluded from the

masks.

Despite performing distortion correction, there were still some areas of the brain, namely the
mPFC and MTL, that remained somewhat distorted. To prevent these voxels from
contaminating the analyses, they should be removed from the masks. To do this, a Jacobian
map was estimated from the fMRI data using the HySCO tool in the ACID MATLAB toolbox
(http://www.diffusiontools.org/). The Jacobian is a measure of the displacement of the signal
contained within a voxel and captures the degree of compression or stretching that has
occurred (Jezzard & Balaban, 1995). It can therefore be used as a quantitative measure of
distortion (Clark et al., 2021). Voxels with Jacobian values lower than the 5th percentile and
higher than the 95th percentile of the Jacobian distribution were considered to be highly

distorted and were therefore removed from the mask.

Next, the cortical grey matter was divided into 3 equivolume depth bins or layers (deep,
middle and superficial) using the Open fMRI Analysis toolbox
(https://github.com/TimVanMourik/OpenFmriAnalysis). Equivolume layers were used for
anatomical validity - within small sections of cortical grey matter, the ratio of layer volumes
remains constant whereas the ratio of layer thicknesses depends on the curvature of the
cortex (Waehnert et al., 2014). To produce the layer boundaries, two additional surfaces were
produced between the pial and white matter surfaces using the level set method (van Mourik,

van der Eerden, et al., 2019; Waehnert et al., 2014). The distance of each ROl voxel to 5 cortical
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layer depths (white matter, CSF, and the 3 grey matter depth bins) was calculated, once again
using the level method. From this, the distribution of each voxel’s volume over the 5 depths
was calculated. For example, 80% of a voxel’s volume might be in the superficial layer and 20%

in the middle layer.

In multivariate analyses it is necessary to maintain the multivariate activity patterns, so this
estimation of each voxel’s volume across the 3 cortical layer depths was used to bin each voxel
into the superficial, middle or deep layer masks. Whereas, in univariate analyses, the signal in

each layer can be averaged. This was done using the spatial-GLM method, described next.

2.9.2. Univariate laminar and subfield analyses

Univariate analysis of cortical layer and hippocampal subfield ROIs is somewhat similar to
mass-univariate analysis — it involves estimating and fitting a GLM to the data and then
conducting statistical tests to compare condition effects. However, a major difference
between the ROl analyses and whole-brain mass univariate analysis is that the BOLD signal is
combined across voxels in the ROl mask prior to estimating the GLM. In Section 2.9.2.1. |
explain two methods for combining BOLD signal across voxels, namely the spatial-GLM
approach and simply averaging the signal, which were used for cortical layer and hippocampal
subfield analyses, respectively. In Section 2.9.2.2, | explain the single-subject statistical

analysis and, in Section 2.9.2.3, | explain the group-level analysis.

2.9.2.1. Preprocessing of input data

Spatial-GLM for obtaining layer time courses

As the cortical grey matter is on average 3 mm thick and our voxel size is 0.8 x 0.8 x 0.8 mm?3,
some voxels will contain signal from more than one layer. This issue is known as the partial
volume problem. Recall that to create the layer masks, voxels are binned into one of the layers
if they at > 80% within the layer. This means that, within each layer, there may be up to 20%
signal contamination from other layers. For this reason, the layer masks are not used to

combine the signal from each layer.

Instead, a spatial-GLM method is used to extract signal from each cortical layer (van Mourik,
van der Eerden, et al., 2019). This method is similar to the GLM framework (described in
Section 2.8.2.1) for extracting activations relating to experimental conditions. For each cortical

area ROI, the GLM is applied to the multivoxel pattern of BOLD signal intensities for each time
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point (i.e., functional image) within the time course. It is used to estimate the BOLD signal that

came from each cortical layer depth.
Y=XB+e¢

In this equation, Y is the multivoxel pattern of BOLD signal intensities. X is the spatial design
matrix, where each regressor column is a cortical layer depth (white matter, deep, middle,
superficial and CSF) and each row corresponds to each voxel in the ROI. The data points in the
design matrix represent the distribution of each voxel’s volume over the cortical layer depths.
B is a vector of BOLD signal estimations for each cortical layer depth. Finally, € is the estimated
residuals. Once the GLM has been applied to all time points, the result is a BOLD signal time

course for each cortical layer.

Averaging BOLD signal across voxels for obtaining hippocampal subfield time courses

In the case of hippocampal subfields, voxels are manually classified as belonging to one of the
6 subfields (see Section 2.9.2.2). As with the cortical layers, there are likely to be some partial
volume effects. However, the proportion of each voxels volume that belongs to each subfield
is difficult to estimate. Therefore, for each subfield ROI, the signal is simply averaged across

all voxels to obtain a BOLD signal time course for each subfield.

2.9.2.2. Single-participant analysis
A temporal GLM is then applied to the layer and subfield time courses using the same model
described in Section 2.7. However, this time, instead of applying the GLM and statistical tests

per voxel, they were applied per layer or per subfield.

2.9.2.3. Group-level analysis

At the group level, condition contrasts can be compared with zero using one-sample t tests,
to indicate whether there was a difference between the conditions in the ROI. Furthermore,
differences between condition contrasts can be assessed using two-sample t tests. This may
involve making multiple comparisons between several different condition contrasts and so the

resulting p-values must be corrected for multiple comparisons using Bonferroni correction.

2.9.3. Multivariate fMRI analyses

MVPA is a technique for fMRI data analysis that focuses on patterns of brain activity rather

than individual voxel activations or individual ROl activations. Specifically, unlike the standard
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mass-univariate analysis, which examines each voxel independently, MVPA considers the joint
activity of multiple voxels to decode information about experimental conditions. This allows
for detection of groups of voxels that represent very specific and subtle experimental
conditions, such as specific memories (e.g., Barry et al., 2018; Bonnici, Chadwick, Lutti, et al.,
2012; Bonnici et al., 2013; Bonnici & Maguire, 2018; Chadwick et al., 2010). There are several
reasons for the high sensitivity afforded by MVPA. First, MVPA can combine weak but
consistent signals from multiple voxels (Haynes & Rees, 2006; Kamitani & Tong, 2005). A
distributed network of very weakly activating voxels that show no univariate effect may be
detectable by MVPA. Second, it is sensitive to multivariate effects. For instance, the
relationship between the activity of voxel A and voxel B might be critical for a particular
cognitive process, even if changes in A or B alone are not significant. Finally, it can make use
of advanced, flexible modelling methods. For example, support vector machine (SVM)
algorithms, which are commonly used in MVPA, can capture non-linear relationships between
voxels, providing a more nuanced understanding of brain activity compared to linear

univariate methods.

2.9.3.1. Preprocessing of MVPA input data

In MVPA, information about what the participant was doing or experiencing on each trial is
decoded from the multivoxel activation patterns. To make this possible, | first needed to
extract the multivoxel activation pattern associated with each individual trial. A GLM approach
was adopted, where a GLM was constructed for each trial. The first regressor contained the
onset and duration of the trial and the second regressor contained the onsets and durations
of all other trials. This allowed me to infer the activation that was unique to the trial of interest.

Head motion parameters and drift terms were also included as additional regressors.

To limit the contribution of noisy voxels to the multivariate activation patterns, multivariate
noise normalisation was used. In multivariate noise normalisation, the beta estimates for each
voxel were divided by the square root of the GLM residuals, thereby down-weighting noisier

voxels (Walther et al., 2016).

2.9.3.5. Decoding states, categories and stimuli

Different types of information can be decoded from the multivoxel activation patterns of the

individual trials, depending on the research questions of the experiment (reviewed in
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Chadwick, 2012). The most general type of information that MVPA can decode is cognitive
states or processes, such as memory retrieval, attention, or emotion (e.g., Rissman et al.,
2010). This type of information is also easily detectable using univariate approaches. MVPA is
also effective at decoding categories of stimuli, such as distinguishing between visually
presented scenes or faces (e.g., Bonnici, Kumaran, et al., 2012; Read et al., 2024). For many
categorical kinds of information, univariate analyses are also effective. For example, univariate
analyses have identified the parahippocampal place area as being involved in processing of
scenes and the fusiform face area as being involved in processing of faces (Epstein &
Kanwisher, 1998; Kanwisher et al., 1997). The most specific type of information that MVPA
can decode are individual stimuli (e.g., a specific face) or specific internal representations (e.g.,
a specific memory; e.g., Barry et al., 2018; Bonnici, Chadwick, Lutti, et al., 2012; Bonnici et al.,
2013; Bonnici & Maguire, 2018; Chadwick et al., 2010). This is where univariate analyses fall
short, because they generally cannot distinguish between two individual memories based on
overall activation differences within a brain area. MVPA, however, is sensitive to differences in

the multivoxel patterns of activation associated with different internal representations.

Experiment 3 (Chapter 5) involved decoding of individual autobiographical memories.
Whereas, Experiment 4 (Chapter 6) involved decoding of stimulus categories, in this case

distinguishing between visually presented scenes or abstract patterns.

2.9.3.2. Representational similarity analysis

Representational Similarity Analysis (RSA) is a method for MVPA, first introduced by
Kriegeskorte, Mur, & Bandettini (2008) and Kriegeskorte, Mur, Ruff, et al. (2008), that examines
the similarity between patterns of voxel activation elicited by different trials. For each pair of
trials, the multivariate distance (or similarity) between their activation patterns is measured.
This can be done using simple measures like Pearson correlation, Euclidean distance, or other
multivariate distance metrics. High similarity (high correlation or low distance) indicates that
the multivoxel patterns for the two trials are similar and may therefore involve the same set
of neurons. Whereas, low similarity indicates the multivoxel patterns for the two stimuli are
different and may involve distinct sets of neurons. The similarity measures can be used to
assess which types of information can be decoded from the multivoxel patterns. For example,

if there is high similarity amongst trials where the same stimulus was presented and low
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similarity amongst trials of different stimuli, then this indicates that the specific stimulus is

decodable from the multivoxel patterns.

An advantage of RSA over other methods is its simplicity, making it easy to implement and
interpret (Chadwick, 2012). It is also very adaptable to different experimental paradigms.
Because it involves pairwise comparisons between stimuli, it does not require multiple trials

for each stimulus being decoded (Chadwick, 2012).

2.9.3.3. Classification

Classification is another widely used approach for MVPA of fMRI data (e.g., Bonnici, Chadwick,
Kumaran, et al., 2012; Bonnici et al., 2013; Bonnici & Maguire, 2018). This method involves
training a machine learning algorithm to distinguish between different stimulus categories
based on patterns of brain activity. If the classifier is able to do this, then we can infer that the

categories are decodable from the multivoxel activation patterns.

The dataset is divided into two subsets: a training set and a test set. The training set is used
to train the classifier, while the test set is used to evaluate its performance. During training,
the classifier algorithm learns to optimise the separation between two categories (e.g., scenes
versus abstract patterns) by determining an optimal “decision boundary” in high-dimensional
voxel pattern space, referred to as feature space. One of the most commonly used classifier
algorithms in fMRI analysis is the SVM. The SVM finds a hyperplane that best separates the
data points (voxel patterns) of different conditions in the feature space. The goal is to
maximise the margin, which is the distance between the hyperplane and the nearest data
points from each task condition (support vectors). After training, the classifier is tested on the
independent test dataset. The classifier predicts the condition of each test trial by determining
which side of the decision boundary the trial falls on. The performance of the classifier is
assessed by calculating the proportion of correctly classified trials in the test dataset. The
accuracy is given as a percentage, indicating how well the classifier can generalise to new,

unseen, data.

The train-test approach is crucial for avoiding overfitting, a common issue with complex
multivariate algorithms (Duda et al., 2001). Overfitting occurs when a model learns the noise

in the training data instead of the underlying pattern. This leads to inflated performance
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estimates of the training set, and is the reason why a separate test set is used to estimate the

model’s performance.

2.9.3.4. Group level analyses

At the group level, the decoding metric (e.g., correlation or classification accuracy) across
participants can be evaluated, using one-sample t tests, to see if they are different from the
value expected by chance. Furthermore, condition differences can be tested using two-sample

t tests, with Bonferroni correction.

2.9.4. Informational connectivity analysis

Informational connectivity analysis in fMRI is a method used to examine the relationships
between different brain regions based on the informational content of their multivoxel activity
patterns (Coutanche & Thompson-Schill, 2013). This approach is performed in conjunction
with MVPA, and provides insights into how information is shared and integrated across
different parts of the brain. Unlike traditional functional connectivity analyses, which rely on
correlations of signal intensity over time, informational connectivity focuses on correlations
in decoding power (e.g., RSA correlation or SVM classification accuracy) across time. If two
brain areas have similar time courses of decoding for specific task-related information, they
are considered to be informationally connected to one another. In other words, they may be

communicating this task-related information between each other.
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3. Experiment 1: Development of 7T MRI data acquisition

seguences and analysis methods

3.1. Introduction

As discussed in Chapter 2, the high (7T) magnetic field strength used in laminar and
hippocampus subfield fMRI studies presents numerous challenges. Geometric distortion and
signal dropout scale with the size of the magnetic field, and signal artefacts such as the
superficial layer bias effect are common. These issues can limit the reliability of laminar and

hippocampus subfield fMRI analyses.

In this chapter, | present the first experiment, in two parts, conducted during my PhD. In the
first part (Experiment 1A), | collaborated with the Centre’s Physics Group to develop a 7T GE-
BOLD fMRI sequence that would minimise geometric distortion, signal dropout, and signal
artefacts. In the second part of the experiment (Experiment 1B), | tested data preprocessing
and analysis methods in an attempt to address any remaining geometric distortion and correct

for the superficial layer bias effect.

The preprocessing results showed that using a 2-fold segmented acquisition, fMRI data
unwarping, and recursive BBR significantly improved the geometric distortion and the cortical
surface alignment in the mPFC. However, some signal dropout and distortion persisted in
areas such as the orbitofrontal cortex, with extreme levels of distortion and drop out,

necessitating the exclusion of highly distorted and low signal areas using Jacobian maps.

In relation to data analysis, | found that MVPA was resistant to the superficial layer bias effect
when decoding more fine-grained information such as stimulus categories and individual

stimuli, but not for broader information like cognitive states or processes.

3.2. Background

Geometric distortion arises when BO field inhomogeneity causes dephasing of hydrogen
protons, which interferes with the spatial coding of the MRI signal. This distortion manifests
as stretching or compression of the image along the phase encoding axis. In addition,

dephasing accelerates the decay of the MRI signal (resulting in a shorter T2*), which can lead
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to a phenomenon known as signal drop out, where only a small amount of signal remains
during readout. The increase in geometric distortion and signal drop out at 7T is of particular
concern for my experiments because the inferior part of the mPFC, the orbitofrontal cortex,
experiences significant BO field inhomogeneity. This is because it is in close proximity to the
sinuses, where high BO field inhomogeneity arises due to the large difference in the magnetic

susceptibility of bone and air.

The best way to avoid geometric distortion is to use fMRI acquisition methods that prevent it
from emerging in the first place. For example, one approach is to homogenise the BO field
before image acquisition using an acquisition technique called shimming (Juchem & de Graaf,
2017). Another method is to shorten the TE (the time between excitation and readout, in
which dephasing occurs) by either accelerating or segmenting the acquisition of k-space
(Deshmane et al., 2012; Stirnberg & Stocker, 2021). However, these sequence adjustments
come with trade-offs, as improvements in one area often lead to compromises in another. For
instance, excessive image acceleration can decrease SNR and functional sensitivity because
fewer data points are sampled. Due to the unpredictable outcomes of different combinations
of sequence parameters, it is essential to conduct pilot experiments to find the optimal

balance necessary for any one fMRI study.

Another way to address the issue of high distortion is during the preprocessing of fMRI data.
For example, BO field maps, which estimate the BO field, can be used to correct geometric
distortion (Hutton et al., 2002; Jezzard & Balaban, 1995; Zeng & Constable, 2002), or recursive
BBR can be used to warp anatomical segmentations, such as cortical surfaces, to match the
warped functional images (van Mourik, Koopmans, et al., 2019). However, data preprocessing
decisions also involve trade-offs. Excessive resampling and interpolation of fMRI data can lead
to a loss of effective spatial resolution, which can prevent the dissociation of signals in

microstructures like the cortical layers and hippocampal subfields.

Another challenge with 7T fMRI is susceptibility to artefacts. One of the most challenging
signal artefacts that needs to be addressed in laminar GE-BOLD fMRI studies is the superficial
layer bias effect, which arises from the anatomy of the cortical veins (Kay et al., 2019; Norris
& Polimeni, 2019; Ugurbil, 2016). Large arteries carrying oxygenated blood descend from the
pial surface into the cortical grey matter. This oxygenated blood is delivered to layer-specific

neurons by small capillaries that run parallel to the pial surface. Deoxygenated blood is then
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carried back to the pial surface by large ascending veins, which drain into larger veins on the
pial surface (Figure 15). To isolate the layer-specific GE-BOLD response, | needed to remove
the overwhelming macrovascular signal from these large veins, ensuring that only the

microvascular signal from the layer-specific capillaries remained (Huber, 2020).

Understanding how the macrovasculature affects the measured BOLD signal is a crucial first
step in correcting for its effect (Havlicek & Uludag, 2020; Huang et al., 2021; Kashyap et al.,
2018; Markuerkiaga et al., 2016). First, the large veins on the pial surface are very close to the
superficial layer, potentially contaminating the measured signal from this layer due to
insufficient spatial resolution to distinguish between these veins and the superficial layer grey
matter. Second, there is a higher proportion of large ascending veins in the superficial layers
compared to the deeper layers, which increases the measured superficial layer BOLD signal.
Third, deoxygenated blood flowing from the deep to superficial layers causes a leakage of
BOLD signal from the deep to the superficial layers. Collectively, these factors reduce the
spatial specificity of the measured BOLD signal, causing a bias towards the superficial layers

(Huang et al., 2021).

| conducted a two-part experiment to aid the development 7T MRI acquisition and analysis
methods that minimised geometric distortion, signal dropout, and signal artefacts. In the first
part of the experiment (Experiment 1A), | worked with the Department’s Physics Group to
develop a 7T GE-BOLD fMRI sequence. This sequence aimed to minimise geometric distortion,
signal dropout, and signal artefacts in the mPFC and hippocampus while maintaining good
SNR and task sensitivity. In the second part of the experiment (Experiment 1B), my goal was
to develop a data preprocessing and analysis pipeline that corrected for any remaining
geometric distortion, and the superficial layer bias effect, whilst enabling me to achieve

accurate cortical surface segmentation for laminar analyses.
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3.3. Experiment 1A. 7T fMRI sequence development

3.3.1. Methods

3.3.1.1. Participants

Two pilot participants were recruited and scanned multiple times for development of the MRI
sequences. They were 2 females aged 33 and 41, with no history of neurological or psychiatric

conditions, and with normal or corrected-to-normal vision.

3.3.1.2. Experimental protocol

Participants attended for one 7T MRI scanning session that included fMRI data acquisition. A
scanning session involved either resting in the scanner while fMRI data were acquired, or a
generic autobiographical memory task was performed as followed. One week prior to
scanning, the participant was provided with a list of generic memory cues such as “birthday
party” or “graduation”. They were instructed to prepare some of their own personal memories
that aligned with each cue. In each trial of the fMRI task, they were shown a memory cue for
3 seconds, were presented with a visual cue to close their eyes for 1 second and then recalled
the memory for 10 seconds (Figure 17). If they were unable to recall a memory associated
with the generic cue, they had the option to imagine an event instead, which has been shown
to activate the same core network of brain areas as memory retrieval (Buckner & Carroll, 2007;
Mullally & Maguire, 2014; Schacter et al., 2007). An auditory tone (1 second) then cued them
to open their eyes, followed by visual presentation of a question ("How vivid was the
memory?") for which they could answer on a scale from 1 to 3 (3 = "highly vivid"... 1 = “not at
all vivid”). If they imagined an event then they did not answer the vividness question, but
indicated, with a button press that they had “imagined instead”. Counting trials were used as
a baseline condition in the fMRI analysis, whereby a 2-digit number was presented instead of
a memory cue. A participant was tasked with counting up in 3's silently in their head from that

number for 10 seconds, and then they rated their focus during the counting exercise.
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Figure 17. Generic autobiographical memory task performed during 7T fMRI. Autobiographical
memory retrieval trials (blue box) consisted of a generic memory cue (3 s), then a cue to close eyes (1
s), followed by a period of vivid memory retrieval (10 s), after which there was an auditory tone to cue
opening of the eyes (1 s), followed by a vividness rating (up to 3 s) and finally a fixation cross (3 s).
Counting baseline trials (grey box) consisted of a number cue (3 s), followed by a cue to close eyes (1
s), then a period of counting (10 s), after which there was an auditory cue to open eyes (1 s), then a
focus rating (up to 3 s) and finally a fixation cross.

3.3.1.3. MRI sequences

| acquired partial-brain, submillimeter resolution fMRI data using various different MRI
sequences. All sequences that we tested used T2*-weighted 3D GE-BOLD EPI. The parameters
that remained consistent across all sequences were the field of view of 192 x 192 x 70.4 mm?3

and the RF pulse sequence of binomial (1331) water-selective excitation.

Across a series of A-B tests, several sequence parameters were adjusted; these included: the
direction of phase encoding, the angle of the slab, the use of a segmented acquisition, parallel
imaging, partial Fourier imaging, and the shimming procedure. Many of these parameter
decisions required other sequence parameters to be adjusted such that the total volume
acquisition time was ~4 seconds, to achieve reasonable sensitivity in the autobiographical
memory retrieval task, and the voxel size no more than 0.9 x 0.9 x 0.9 mm?3, to enable

dissociation of signal in the 3 cortical layer depths.
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3.3.1.4. fMRI data preprocessing and analysis

The functional images were visually inspected to understand the effect of the sequence
parameter options on signal drop out and geometric distortion. For some of the parameter
tests, we also quantified the effect on functional sensitivity by calculating tSNR and statistical

maps (i.e., t-value maps) of task contrasts.

For each participant, the functional images were first realigned to correct for head motion
during scanning. For each voxel, tSNR was calculated from the mean BOLD signal across the
time course and dividing it by the standard deviation in order to compare the average tSNR
value in the mPFC between participants. A coarse manual segmentation of the mPFC was

performed on the mean functional image to facilitate this analysis.

To produce the t-value maps, a GLM was first fitted to the realigned fMRI data. It contained
two regressors for task conditions: one for the 10 second memory retrieval/imagination
period and another for the 10 second counting baseline period. Each of these regressors was
convolved with the canonical HRF. The 6 motion parameters estimated during realignment
were used as nuisance regressors in the model. A memory retrieval versus counting baseline
contrast was applied to the beta estimates to yield a t-value map. This t-value map indicated

the degree of activation during autobiographical memory retrieval of each voxel.

3.3.2. Sequence parameter tests and results

3.3.2.1. Signal drop out and geometric distortion

Phase encoding direction: In GE-EPI, phase encoding is achieved by applying a gradient pulse
(sometimes referred to as a blip) along the phase encoding axis before acquisition of each line
of k-space. The choice in polarity of this gradient can result in different manifestations of
geometric distortion, due to differences in the magnetic field resulting from the interaction
between the susceptibility field and gradient. By visually inspecting the functional images, we
compared the nature of geometric distortion and signal drop out in functional images
acquired with anterior-to-posterior phase encoding to images acquired with posterior-to-

anterior phase encoding.

Angle of slab: The amplitudes of the x, y and z imaging gradients control the size, positioning
and angle of the slab. The same susceptibility field will perturb the x, y, and z imaging gradients

in different ways depending on their respective amplitudes and will therefore change the
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nature of the distortion and signal drop out. The angle of the slab was altered within a range
of 15° to 35°. The effect of the slab angle on geometric distortion was assessed by visually

comparing the functional images.

Segmented acquisition: Typically, with 3D EPI sequences, the whole of k-space is acquired
following a single excitation of the slab. With a segmented acquisition, the slab is excited n
times and 1/n of k-space is acquired in each excitation, where n is the number of segments
(Stirnberg & Stocker, 2021). By segmenting the acquisition, each of the n acquisitions is
shorter, meaning that there is less time for the signal to decay and less time for dephasing due
to BO field inhomogeneity. Consequently, the distortion and drop out are reduced. However,
using a segmented acquisition increases the total volume acquisition time, which could reduce
the statistical power when detecting task-related activations as there will be fewer data points
in the GLM. We compared geometric distortion and signal drop out in images acquired with
(2 segments) and without segmented acquisition. We also compared memory retrieval
activation maps (i.e., t-value maps of the memory retrieval versus counting contrast) of the

two sequences.

Partial Fourier: Because, in theory, k-space is symmetrical, a way to reduce the time taken to
acquire an image is by only sampling (a minimum of) half of k-space. This technique, known
as partial Fourier imaging, decreases the number of phase encoding iterations and shortens
the readout time (McGibney et al., 1993). As a result, there is less time for dephasing, leading
to reduced signal dropout and distortion. However, in practice, k-space is not completely
symmetrical due to the inherent phase resulting from BO field inhomogeneity. This means that
partially sampling k-space can reduce SNR of the image. We compared geometric distortion
and signal drop out in an MRI sequence with 6/8 Partial Fourier, meaning 75% of k-space was
sampled and the rest was filled with zeros, and a sequence without partial Fourier. To preserve
the TR at close to 4 seconds, the sequence without partial Fourier also had a larger voxel size
of 0.9 x 0.9 x 0.9 mm?3 as opposed to the 0.8 x 0.8 x 0.8 mm?3 voxel size used in all other
sequence tests. We also estimated the impact of partial Fourier imaging on tSNR by comparing

the mPFC tSNR values between sequences.

Advanced shimming: Some BO field inhomogeneities can be corrected prior to data
acquisition by applying small gradients using specially designed coils, a process known as
active shimming (Juchem & de Graaf, 2017). Various algorithms can be used to estimate the
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necessary corrective gradients. In our study, we compared geometric distortion and signal
dropout in sequences acquired using the Siemens shimming algorithm and a bespoke

advanced shimming algorithm.

The polarity of phase encoding blips noticeably affected distortion and dropout. Sequences
with posterior-to-anterior phase encoding experienced similar levels of geometrical distortion
in the mPFC as those with anterior-to-posterior encoding, but the nature of the distortion
differed. Anterior-to-posterior encoding caused the front of the brain to appear compressed,
whereas posterior-to-anterior encoding caused it to appear stretched (Figure 18a).
Additionally, the posterior-to-anterior phase encoding direction resulted in increased signal
dropout in the orbitofrontal cortex. Therefore, we decided to proceed with anterior-to-

posterior phase encoding.

Among all the tested parameters, segmented acquisition yielded the most significant
improvements in distortion and signal dropout. In the mPFC, segmentation visibly reduced the
degree of deformation (Figure 18b). In addition, there was less empty space (i.e., signal
dropout) in the images, specifically in the orbitofrontal cortex. Importantly, there was only a
small effect on the memory retrieval activation maps, indicating that the reduced number of
images produced by the segmented sequence did not limit our ability to detect task-related

activity. Consequently, we decided to proceed with segmented acquisition.

The use of the advanced method for active shimming also visibly improved brain distortion
(Figure 18c). Therefore, we decided to proceed with this method. The remaining sequence
parameters (angle of the slab, partial Fourier imaging) had no noticeable effect on geometric
distortion or signal dropout. Additionally, the impact of 6/8 partial Fourier imaging on memory
retrieval activation maps and mPFC tSNR was marginal (Figure 18d; tSNR: 11.34 with partial
Fourier and 11.92 without partial Fourier). Therefore, we selected these parameters based on
other considerations. We chose a 15° angle to ensure mPFC and hippocampus coverage across

a variety of brain shapes and sizes. We opted for partial Fourier imaging to decrease the TR.
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Figure 18. Optimising acquisition parameters. The effect of changing four acquisition parameters on
signal distortion, dropout or functional sensitivity were assessed. (a) Setting the phase encoding
direction to anterior-posterior resulted in less signal drop out in the mPFC than a posterior-anterior
phase encoding direction. (b) A two-segment acquisition produced less distortion than a one-segment
acquisition. (c) Advanced shimming marginally improved distortion and signal dropout. (d) Partial
Fourier imaging did not markedly impact task-related activations.

3.3.2.2. Gibb’s ringing artefact

During the above sequence tests, a “ringing” artefact was observed in the mPFC (Figure 19).
We hypothesised that the artefact was caused by eye movement during acquisition of the
reference data. Reference data are acquired at the start of the fMRI sequence before the task
starts. It is the only full sample of k-space that is acquired during the fMRI sequence and it is
used to fill in the gaps in the subsequent partial acquisitions of k-space (due to parallel imaging
and partial Fourier imaging) that occur during the task. It is very important that the reference
data are of good quality as this impacts all images in the time series. Subtle movements,
including eye movements, can lead to motion artefacts that repeat throughout the time
series. A series of tests was performed to test the hypothesis that eye movements during

acquisition of the reference data were causing the ringing artefact, specifically:

Eyes fixed or moving: Two fMRI acquisitions were compared, one where the participant
moved their eyes during acquisition of the reference data and a second where they fixated on

a cross in the centre of the screen.

Field of View (FOV) including or excluding the eyes: Two FOVs were used, an inferior one that

included the eyes and a superior one that did not.

Linear or interleaved acquisition: The reference data were previously acquired in an
interleaved fashion, where k-space is acquired in two segments, the first covering even lines
of k-space and the second covering odd lines (or vice versa). We suspected that interleaved
acquisition may be more sensitive to “ringing” motion artefacts than a linear acquisition,
where each line of k-space is acquired in order. Therefore, we tested two sequences, one with
linear acquisition of reference data and the other with interleaved acquisition of the reference

data.
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Figure 19. Gibb’s ringing artefact. A Gibb's ringing artefact was observed in the mPFC during piloting.
This was caused by an abrupt reduction in signal at the edge of k-space due to distortion of k-space.

None of the above tests impacted the artefact, leading us to reject our hypothesis that eye
movements were the cause. Irrespective of this, we decided to use a fixation cross during

acquisition of the reference data to avoid potential motion artefacts.

We pursued investigation of this artefact further. High intensity signal typically resides in the
centre, as opposed to the edges, of k-space. On inspecting the raw k-space data, high intensity
signal was observed around the edges of k-space, leading to an abrupt change in signal at the
outermost perimeter of k-space where the signal becomes zero. We hypothesised that this
abrupt change in signal was what was causing the artefact in the image, which is also known
as Gibb's ringing or a truncation artefact (Gibbs, 1898). In a second pilot we altered some

sequence parameters in an attempt to improve the quality of data in k-space.

Reduced acceleration: To reduce the volume TR, sampling of some of the data points in k-
space can be skipped and later recovered by interpolating. This is referred to as acceleration.
In previous pilots we used an acceleration in both the direction of the partition (factor = 2)
and the direction of phase encoding (factor = 4). However, the mispositioning of signal in k-

space may be compounded by this interpolation. Therefore, we removed the acceleration in
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the direction of the partition. To maintain a TR of less than 4 seconds we also reduced the FOV

substantially.

Altered the orientation of the slab: The susceptibility field impacts the imaging gradients
differently depending on their relative magnitudes, meaning that different imaging gradient
magnitudes can result in different mis-mappings of signal into k-space. As the imaging gradient
magnitudes determine the angle of the slab, changing the angle could shift the high intensity

signal around the edges of k-space further into the centre.

Apodisation during image reconstruction: Ideally, we aimed to avoid the displacement of
high-intensity signal altogether, either by reducing acceleration or changing the orientation of
the slab. However, as a backup plan, we also explored a reconstruction method to prevent the
displaced signal from causing artefacts in the images. Apodisation, a technique for filtering
the signal at the edges of k-space so that it gradually decreases to zero, can be applied after

the acquisition of k-space during the image reconstruction process.

Neither reducing acceleration nor changing the angle of the slab impacted the artefact.
Apodisation successfully removed the ringing artefact. This confirmed that the artefact was
indeed a Gibb’s ringing artefact caused by abrupt changes in signal intensity. A downside of
apodisation is that it would remove some of the spatial information that is typically located in
the edges of k-space. Furthermore, the high intensity signal that may reflect neural activations
is lost, thereby reducing SNR. However, it was more important to us that we could remove the
artefact as it would interfere with the coregistration of cortical surfaces. Therefore, we

proceeded with an adjusted reconstruction of the image that included apodisation.
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3.4. Experiment 1B. 7T MRI preprocessing and analysis pipeline

development

3.4.1. Methods

3.4.1.1. Participants

MRI data from 5 participants that were scanned during Experiment 3 (Chapter 5) were used
for developing the preprocessing and analysis pipeline. They were 3 females and 2 males aged
between 18 and 35 years old (mean = 25.60, SD = 3.44), with no history of neurological or

psychiatric conditions, and with normal or corrected-to-normal vision.

3.4.1.2. Experimental protocol

Participants attended the Department for two visits. During the first visit they underwent
structural MRI scanning followed by an Autobiographical Interview (Levine et al., 2002), in
which they described 12 autobiographical memories, 6 memories from the past month
(recent memories) and 6 memories from 2-5 years ago (remote memories). They then decided

on a short title for each memory.

They returned for a second visit 1-2 weeks later. The autobiographical memory retrieval task
was very similar to the general autobiographical memory retrieval task described in Section
3.3.1.2, except instead of using generic memory cues, the participant-specific memory titles
were used. The timings of the memory cue, close eyes cue, memory recall period, open eyes
cue and vividness ratings was the same as for the general autobiographical memory retrieval
task. This time, because the memory cues related to specific memories chosen by the
participant, they did not have the option to imagine an event instead. Therefore, the vividness
guestion was answered on a scale from 1 to 4 (4 = "highly vivid"... 1 = "not at all vivid") and
there was no “imagined instead” option. The counting trials were also exactly the same as in
the generic autobiographical memory task. There was a total of 6 runs of the task. Each
memory cue and number cue was presented once per run in a random order (both within and
across runs), yielding 24 trials per run. For more information on this task, see Chapter 5,

Section 5.3.2.2.
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3.4.1.3. MRI sequences

MRI data were acquired on a Siemens Magnetom Terra 7T MRI system (see Chapter 2, Section

2.6.1).

Functional MRI: Partial brain, submillimetre resolution (voxel size = 0.8 x 0.8 x 0.8 mm?3) fMRI
images were acquired using a T2*-weighted 3D GE EPI sequence. The sequence parameters
used were chosen based on the results of Experiment 1A. They were as follows: volume
acquisition time = 3872 ms, TR = 44 ms, TE = 18.7 ms, flip angle = 14°, field of view = 192 x
192 x 70.4 mm?3, slab angle = 15°, direction of phase encoding = anterior-to-posterior, parallel
imaging acceleration in both the direction of the partition (factor = 2) and the direction of
phase encoding (factor = 4), partial Fourier 6/8 in the phase-encoded direction of the EPI
readout, and a binomial (1331) water-selective excitation. Four images, with the same
parameters but the opposite (posterior-to-anterior) phase encoding direction, were acquired

at the start of the sequence. Advanced BO shimming (WIP 1441) was used.

Anatomical MRI: Four anatomical images were acquired. One whole brain MT-weighted EPI
image was acquired per subject using a T2*-weighted 3D GE EPI sequence with many of the
same parameters used in the fMRI sequence. Some parameters were modified: MT-based
contrast = on, volume acquisition time =3 m 45 s, TE = 16.97 ms, flip angle = 8°, field of view
=192 x 192 x 128 mm?3, parallel imaging (factor = 4). MT-weighted EPI images were matched
to the fMRI images in terms of geometrical distortion due to use of the same parameters (e.g.,
echo spacing and acceleration factor) but they had better contrast between grey and white
matter due to the MT weighting. Therefore, they were useful for coregistering cortical surfaces

to the fMRI data.

Submillimetre resolution (voxel size = 0.65 x 0.65 x 0.65 mm?3) T1-weighted images were
acquired using a single acquisition of an MP2RAGE sequence (Marques et al., 2010) with a
volume acquisition time =8 m 42 s, TR = 5000 ms, TE = 2.54 ms, inversion time = 900 ms and
2,750 ms, 5° and 3° flip angles, field of view 208 x 208 x 156 mm?3, and in-plane GRAPPA
acceleration (factor = 3). The MP2RAGE sequence produces 4 images: (1) the first read out
with 900 ms inversion time (i.e., the time between the inversion pulse and the readout), (2)

the second readout with 2,750 ms inversion time, (3) a T1-weighted image produced by
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combining the two readouts, (4) an inverted T1-weighted image produced by combining the

two readouts.

Two partial brain, submillimetre resolution (voxel size = 0.52 x 0.52 x 0.5 mm?3) T2-weighted
images were acquired using a T2-weighted 3D SPACE sequence (Mugler et al., 2000) with a
volume acquisition time =10 m 25 s, TR = 3,500 ms, TE = 229 ms, flip angle = 8°, field of view
=200 x 169 mm x 56 mm, partition oversampling = 14.3%, and in-plane GRAPPA acceleration
(factor = 2).

3.4.2. Preprocessing and analysis tests and results

Various preprocessing and analysis methods were tested with the ultimate goal of obtaining
layer-specific univariate and multivariate results. The process involved several sub-goals. First,
| optimised the definition of the cortical surfaces (the cortical grey matter boundaries) in the
anatomical images, which is crucial for accurately defining the cortical layers. Second, | tested
various methods for removing residual geometric distortion in the fMRI images. Third, |
explored methods for defining the cortical layer ROIs to ensure a reasonably even distribution
of voxels across the cortical layers. Finally, | tested methods for correcting the superficial layer
bias effect, including further preprocessing of the ROIs and evaluating several options for
calculating condition-specific responses. Success was measured differently for each sub-goal,

as explained in the relevant sections.

3.4.2.1. Cortical surface segmentation

Accurate segmentation of cortical surfaces is crucial for achieving precise coregistration of the
cortical surfaces to the functional images, which in turn ensures the accurate delineation of
cortical layer depths. In laminar fMRI studies, FreeSurfer’s recon-all pipeline is typically used
for defining the pial and white matter cortical surfaces on the anatomical image(s) (e.g., Kok
et al., 2016; Lawrence et al., 2019). This pipeline requires a whole brain T1-weighted image as
an input. It performs several preprocessing steps on the image, including normalisation of
signal intensities and removal of voxels corresponding to the skull. It then segments the brain
into various tissue types (e.g., white matter, grey matter and CSF) and constructs two cortical
surfaces (made up of vertices, edges, and faces) corresponding to the outer (pial surface) and
inner (white matter surface) boundaries of the grey matter. Finally, it divides the cortex into

different anatomical regions based on predefined atlases.
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| tested 4 different combinations of input images to the FreeSurfer recon-all pipeline.

T1-weighted MP2RAGE image: FreeSurfer requires a T1-weighted image for extracting the

cortical surfaces. Therefore, | used the raw T1-weighted MP2RAGE image as an input.

T1-weighted MP2RAGE and inverted T1-weighted MP2RAGE image: FreeSurfer also accepts
an optional whole brain T2-weighted image as a second input image for improving definition
of the pial surface. The MP2RAGE sequence produces an inverted T1-weighted image, which
has inverted T1 contrast giving it the same appearance as a T2-weighted image. Although it is
not technically a T2-weighted image, | tested whether it could be used in place of one in the

FreeSurfer recon-all pipeline for improvement of the pial surface.

Til-weighted MP2RAGE and inverted T1-weighted MP2RAGE image (denoised and
smoothed): The two images were minimally smoothed (FWHM = 1.5 mm) and denoised using

a Structural Averaging Toolbox before being input into FreeSurfer recon-all.

T1-weighted MP2RAGE and a “spliced” whole brain T2-weighted image: To further improve
definition of the pial surface, | wanted to take advantage of the high resolution (0.56 mm
isotropic) T2-weighted partial brain images. It was not possible to input these images directly
into FreeSurfer recon-all as the pipeline does not accept partial brain volumes as inputs.
Therefore, | created a “spliced” whole brain T2 image, which was produced by combining the
whole brain MP2RAGE inverted T1-weighted image with the partial brain T2-weighted images.
To create this image, the whole brain inverted T1-weighted MP2RAGE image was coregistered
(using NMI) with the partial brain high resolution T2-weighted images and the aligned images
were then averaged to produce a “spliced” whole brain T2-weighted image. The resulting
image had very high SNR within the central part of the volume that was an average of all 3
images. Whereas the most superior and inferior parts of the volume, which were comprised
of only the whole-brain T1l-inverted image, had lower SNR. Both the “spliced” T2-weighted
image and the MP2RAGE T1-weighted image were smoothed and denoised (as described

above) before being inputted to FreeSurfer recon-all.

The impact of each method on the quality of the cortical surface definition was assessed by
visually inspecting the cortical surface segmentations. Using the raw T1-weighted MP2RAGE
image resulted in areas of the pial and white matter surfaces overfitting the noise in the image,

causing jagged edges in the surfaces (Figure 20a). Using the inverted T1-weighted MP2RAGE
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image as an additional input improved definition of the surfaces, smoothing out some of the
jagged edges (Figure 20b). Smoothing and denoising the input images further improved the
smoothness of both of the surfaces (Figure 20c). Finally, use of the T2 “spliced” image further
improved pial surface registration, whilst still meeting the FreeSurfer requirements of a whole
brain scan (Figure 20d). The pial surfaces extracted on the “spliced” image were of good

quality and so we proceeded with this method (orange box in Figure 20d).

Figure 20. Optimising the definition of cortical surfaces. (a) Pial (turquoise) surfaces extracted on the
T1-weighted MP2RAGE image were jagged and inaccurate. (b) Using the T2-weighted MP2RAGE image
as an additional input improved definition of the pial surface. (c) Denoising and smoothing the T1- and
T2-weighted images further smoothed and improved the pial surface. (d) A “spliced” whole brain T2
image, produced from the MP2RAGE T2-weighted whole brain image and the T2-weighted partial brain
images, was used to take advantage of the high-resolution partial brain volumes.

3.4.2.2. Distortion correction

There are several methods for dealing with geometrically distorted functional images during

data preprocessing. Perhaps the most commonly used is unwarping using a BO field map. Here
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a map of the BO field can be used to estimate the displacement of voxels that would have
been caused by field inhomogeneities. The BO field map can either be directly acquired
(Hutton et al., 2002; Jezzard & Balaban, 1995; Zeng & Constable, 2002) or estimated from
images acquired with the reverse phase encoding (Andersson et al., 2003; Hedouin et al.,
2017; Holland et al., 2010; Morgan et al., 2004). In Malekian at al. (2023), we found that the
reverse phase encoding method produced superior distortion correction as it resulted in

unwarped functional images that more closely resembled anatomical images.

Another, less common, approach to dealing with geometric distortion is using recursive BBR
(van Mourik, Koopmans, et al., 2019). This method does not perform any unwarping of the
functional images. Instead, the functional images remain distorted and the cortical surfaces
are warped to fit them, so that they are distorted in the same way that the functional images
are distorted. The logic behind this approach is that the defined cortical layers will also be

distorted meaning that the true BOLD signal can be retrieved for each layer.

| tested two different preprocessing pipelines for distortion correction. In both approaches,

the data was first realigned to correct for head movement during the course of fMRI scanning.

Recursive BBR only: In the first preprocessing pipeline, SPM Realign was used to realign the
functional images and no further preprocessing of the functional data was performed.
Instead, recursive BBR was relied upon to deal with any distortion in the functional images.
The MT-weighted functional image was used for this coregistration instead of a functional
image. This is because the MT-weighted image has superior contrast to the functional images,
while still having equivalent distortion and signal drop. The MT-weighted image was
coregistered to the mean functional image. Then, standard NMI coregistration and BBR were
performed to bring the MP2RAGE T1-weighted image and the cortical surfaces into alignment
with the MT-weighted image. Finally, recursive BBR was performed. In recursive BBR, BBR is
applied 6 times to increasingly smaller partitions of the cortical surface mesh (van Mourik,
Koopmans, et al., 2019). Importantly, in each iteration, scaling was allowed along the phase-
encoding direction, because in GE-BOLD EPI, geometrical distortion is most severe in the
phase-encoded direction (Jezzard & Clare, 1999; Mansfield, 1977). It is the combination of
scaling in the phase encoding direction and coregistering the surfaces to subsections of brain
that results in the non-linear transformation (i.e., warping) of the cortical surfaces into

alignment with the functional data. If recursive BBR could successfully distort the cortical
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surfaces to fit the functional images, then unwarping of functional images would be
unnecessary. It was important to test whether this is possible because unnecessary
preprocessing of the functional images should always be avoided. This is because, each time
the voxel data are interpolated, there is some smoothing of the data which results in a
reduction in the effective resolution and potentially blurring of the BOLD signal across the

cortical layers and hippocampal subfields.

Unwarping and recursive BBR: In the second preprocessing pipeline, FSL topup was used to
estimate a BO field map from the 4 posterior-anterior phase encoded functional images and 4
anterior-posterior phase encoded functional images (Andersson et al., 2003; Smith et al.,
2004). The SPM Field Map toolbox was then used to calculate a voxel displacement map from
the estimated BO field map, which was subsequently used to unwarp the functional image
using SPM Realign and Unwarp. SPM Realign and Unwarp estimates both rigid body
realignment and unwarping, while considering susceptibility-motion interactions by
estimating changes in the BO field with participant movement (Andersson et al.,, 2001).
Importantly, the functional images were only interpolated and resampled once, in an attempt
to limit smoothing of the data. Recursive BBR was then used to warp the cortical surfaces to
fit the unwarped functional images in order to correct for any remaining distortion in the
functional images. The MT-weighted image was first unwarped so that its distortion was still
equivalent to the functional images. Then, the coregistration steps were performed as

described above.

| assessed the degree of distortion correction achieved by each method, by viewing the
coregistered cortical surfaces on the preprocessed MT-weighted images. | also calculated tSNR
in the mPFC in each of the processing methods by dividing the mean BOLD signal by the
standard deviation of the BOLD signal and averaging across voxels in the mPFC (using a

manually defined mPFC mask).

The first method, recursive BBR only, was not successful in aligning the cortical surfaces to the
functional images, particularly in parts of the brain that were highly distorted such as the
mPFC (Figure 21, left column). Whereas, unwarping brought the functional images into closer
alignment with the true anatomy, defined by the raw cortical surfaces (Figure 21, top right
guadrant), which resulted in good alignment of the recursive BBR cortical surfaces (Figure 21,
bottom right quadrant). Both methods have comparable tSNR (no unwarping: mean = 14.74,
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SD = 2.58, unwarping: mean = 14.61, SD = 2.54). Therefore, | decided that unwarping was a

necessary preprocessing step for laminar analyses in the mPFC.

rBBR only Unwarp and rBBR

Anatomical surfaces

Warped surfaces

Figure 21. Optimising the distortion correction of functional images. The preprocessed MT-weighted
images are overlaid onto the anatomically-faithful cortical surfaces (top row) and warped cortical
surfaces (bottom row). Realigned and unwarped images (second column) are considerably closer to
the true anatomy than images that were only realigned (first column), which in turn results in improved
alignment of the warped cortical surfaces.

Jacobian mask: Upon visually inspecting the unwarped functional images, | noticed that there

were areas of the brain, particularly around the orbitofrontal cortex, that appeared spatially
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smoothed (i.e., blurred) or contained low or no signal due to signal drop out. As a final
precaution against distortion and signal drop out, | decided to try a method for removing these
brain areas from analysis. Using the SPM HySco toolbox, | produced a Jacobian map, a map of
the derivative of the magnetic field that represents the changes in the BO field across the
image. By thresholding this map, areas with significant BO field inhomogeneities (i.e., high
levels of signal drop out and distortion) were masked out of the ROIs used for analyses. The

masks were overlaid onto the functional images and visually inspected.

The Jacobian mask successfully excluded voxels that were in brain areas with significant spatial

blurring and lack of signal. Therefore, | decided to proceed with this masking method.

3.4.2.3. Correction of superficial layer bias

| tested a total of 7 different methods for correcting the superficial layer bias effect. | focused

on the mPFC, given it was my main cortical area of interest.

Before | could test these methods, | needed to produce mPFC ROls. First, the FreeSurfer recon-
all pipeline was used to segment the brain according to several brain atlases. These brain area
masks were coregistered to the fMRI data by applying the same transformation estimated by
BBR of the cortical surfaces to the MT-weighted image. The 4 anatomical segmentations in the
region of the mPFC (the medial orbitofrontal, frontal pole, rostral anterior cingulate and
superior frontal cortices) were then translated from surface space into volume space by
projecting them across the surface normal, which is a 3D vector that runs perpendicular to
the surface. Gaps in the ROIs were filled in using FSL Maths Edge, Dilate and Erode operations.

The 4 ROIs were then combined to make an mPFC ROI.

Three methods that were used for correcting the superficial layer bias involved attempting to

exclude voxels that contained large veins from the laminar analyses. They were as follows.

Removing voxels with low tSNR: Voxels in close proximity to large veins tend to have a low
tSNR as they experience large variations in signal intensity due to large fluctuations in blood
oxygen level (Jia et al., 2021). A tSNR map was computed from the fMRI data and voxels with

the lowest 35% of tSNR values were excluded.

Removing voxels with low T2 signal intensity: Voxels near large veins have low T2 signal

intensity due to the short T2 decay time of deoxygenated haemoglobin. The spliced high
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resolution T2-weighted image was coregistered to the fMRI data and then thresholded. Voxels

with the lowest 30% of T2 signal intensity were excluded.

Removing voxels with high t-values: Previous work has found higher t-values in the large veins
compared to smaller capillaries (Kashyap et al., 2018; Polimeni et al., 2010). A GLM analysis
was performed on unsmoothed fMRI data in SPM. The model included two regressors of
interest which were the 10 s recall periods of memories and the 10 s periods of counting. The
six motion parameters were also modelled. For each participant, a t-value map of memory
recall was produced by contrasting memory beta estimates with counting beta estimates. |

then excluded voxels with the top 1% of t-values for the memory versus counting contrast.

For the ROIs produce by each of these methods, the laminar response profiles were then
computed. First, | divided the cortical grey matter into 3 equivolume depth bins or layers
(deep, middle and superficial) using the Open fMRI Analysis toolbox
(https://github.com/TimVanMourik/OpenFmriAnalysis). Two additional surfaces were
produced between the pial and white matter surfaces using the level set method (van Mourik,
van der Eerden, et al., 2019; Waehnert et al., 2014). The distance of each ROl voxel to 5
compartments (white matter, CSF, and the 3 grey matter depth bins) was calculated, once
again using the level method. From this, the distribution of each voxel’s volume over the 5
compartments was calculated. For example, 80% of a voxel’s volume might be in the

superficial layer and 20% in the middle layer.

Next, the signal time course for each layer was estimated by means of a spatial GLM (van

Mourik, van der Eerden, et al., 2019):
Y=XB+ ¢

Where X is an [n x k] spatial design matrix (n = number of voxels in the ROI, k = 5 cortical
depths) describing the distribution of each voxel’s volume over the 5 depths (WM, CSF and
the three cortical layer depths). Each row of the design matrix X corresponds to the proportion
of the voxel’s volume within each of the 5 depths. Y is an [n x 1] vector of voxel signal
intensities at a given time point (e.g., within a functional image) that is regressed against the
spatial design matrix to obtain B, a [k x 1] vector of signal estimations for each layer. For each
ROI, the GLM was applied to each functional volume within the time series to yield a signal

time course for each layer.
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A temporal GLM was then applied to the layer time courses. The model included two
regressors of interest which were the 10 s recall periods of memories and the 10 s periods of
counting, along with the six motion parameters. For each layer, the counting baseline beta
estimate was subtracted from the memory retrieval beta estimate to obtain layer-specific

responses to memory retrieval.

To measure the success of each of the methods for removing large vein voxels, | compared the
laminar activation profiles produced by each method. A steep positive slope of increasing
activation from the white matter to the CSF indicated that there may be a superficial layer bias
remaining. Whereas, if the superficial layer bias had been corrected, there may be a non-linear

relationship between cortical depth and response.

With all masking methods, except the low T2 signal intensity mask, there was an increase in
response between each cortical depth from the white matter to CSF, indicating that a

superficial layer bias effect may still exist in the response data (Figure 22).

The low T2 signal intensity mask contained more inter-subject variability than the other
masking methods (Figure 22). This may be because the high resolution T2 weighted images
contained severe signal drop out in several brain areas, particularly the right lateral temporal
lobe and right occipital lobe, so many non-vein voxels were also removed with the low T2
signal intensity mask. Furthermore, | was concerned that rigid-body coregistration would not
align the T2-weighted structural image to the functional images with the extremely high
spatial precision that would be required to align veins. This would also result in non-vein voxels
being removed. Removing non-vein voxels instead of vein voxels would reduce statistical

power and increase noise. Therefore, | decided not proceed with this method.

The removed voxels using the high t-values mask did not correspond with the low tSNR and
low T2 signal intensity voxels, and many of the removed voxels appeared to be in the deep

layers of the cortical grey matter. Therefore, | decided not to proceed with this mask.

Although the low tSNR mask did not have a substantial impact on the laminar activation
profile, | decided to proceed with it as there was no downside. However, clearly further

measures were required to address the issue of the superficial layer bias.
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Figure 22. Exclusion of large vein voxels to address the superficial layer bias effect. Three masking
methods were tested in the attempt to exclude large veins from the laminar analysis. Using no mask
(red), the low tSNR mask (purple) or the high t-score mask (green) produced a continuous increase in
response from the white matter to the CSF, indicating the existence of a superficial layer bias effect.
The low T2 signal intensity mask (blue) produced a non-linear laminar response profile, suggesting that
the superficial layer bias effect may be reduced, however, there was large variability (see error bars)
between participants.

| tested 4 alternative ways of estimating laminar responses from the beta estimates, each with

the aim of reducing the superficial layer bias effect.

Beta subtraction with tight contrasts: It is sometimes assumed that using a “tight” contrast
subtraction, between two conditions that are both expected to activate the brain area, would
remove the macrovascular component of the BOLD signal. This is based on the assumption
that the signal from the large veins is of equal magnitude across all conditions that activate
the brain area. To test this theory, a different temporal GLM was applied to the layer time
courses, this time the recall periods of recent and remote memories were modelled
separately, both of which are expected to activate the mPFC. The beta estimate for recent
memory retrieval was subtracted from the beta estimate for remote retrieval, yielding the

layer-specific responses to remote relative to recent retrieval.
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Beta ratios: Another hypothesis is that the signal from the large veins scales with the degree
of activation. To test this theory, instead of subtracting beta estimates for task conditions, the
ratios of beta estimates were used to calculate the layer-specific responses (similar to Huang
et al., 2021; Kashyap et al., 2018; Liu et al., 2021). For example, the memory retrieval beta
estimate was divided by the counting beta estimate to yield the layer-specific response to
memory retrieval. This method was tested for both the memory retrieval versus counting

contrast and the remote versus recent contrast.

Normalising: Normalisation is another approach that is also based on the idea that the
macrovascular signal scales with the degree of task-related activation. The estimated laminar
responses (i.e., subtractions of condition beta estimates) were normalised by diving them by
the mean BOLD signal of the layer (similar to Lawrence et al., 2019). By dividing by the mean
BOLD signal of the layer, the scaling effect will be removed. This method was tested for both

the memory retrieval versus counting contrast and the remote versus recent contrast.

Regression of other layer time courses: A regression method was used where, for each
cortical depth, the time courses of the deeper cortical depths were used as nuisance
regressors of in the temporal GLM (similar to Kok et al., 2016). Therefore, signal that
correlated with the deeper layers was removed from the layer-specific beta estimate. This
method is based on the assumption that signal leaks from the deep layers to the superficial
layers due to the large draining veins. This method was tested for both the memory retrieval

versus counting contrast and the remote versus recent contrast.

MVPA: An MVPA method was used where, for each voxel, a series of GLMs were fitted, one
per trial, which modelled the trial compared to all other trials. The beta estimate for each trial
was then noise-normalised by dividing by the square root of the GLM residuals, thereby down-
weighting noisier voxels and yielding a response estimate per voxel (Walther et al., 2016).
Then, | used RSA analysis of layer ROls. Layer ROIs were produced by binning voxels with at
least 80% of their volume in a given layer into that layer’s ROI. For each layer ROI, the
correlation between the multivoxel response patterns of trials within the same condition was
calculated and separately, the correlation between multivoxel response patterns of trials of
different conditions was calculated. The between-condition correlation was subtracted from
the within-condition correlation to yield a value corresponding to the decodability of the
condition. In MVPA, we are interested in the consistency of activation patterns across task
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trials rather than the overall amplitude of activation. Therefore, if there was a large
macrovascular signal in the superficial layers and weaker macrovascular signal in the deep
layers, this difference in overall magnitude of signal would not impact the decoding results.
Furthermore, MVPA affords the opportunity to use even tighter contrasts to investigate the
decoding of individual stimuli. Therefore 3 contrasts were used for this method, memory

versus counting, remote versus recent, and individual memory versus all other memories.

In order to compare the laminar response profiles between these different response metrics,
the responses calculated by beta ratios, normalisation, and MVPA were normalised to the
same scale as the responses calculated by beta subtraction (which was used in all other
methods). To do this, | calculated the ratio of the subtraction and normalisation response
scales and then multiplied the normalisation response values by this ratio. | then repeated this

for the beta ratio responses.

Using beta ratios instead of subtractions resulted in extreme outliers. This may be because
this method has high sensitivity to counting or recent beta values that are close to zero.
Divisions by these close to zero values resulted in extreme outliers. For this reason | decided

not to pursue this method and the results are not included in Figure 23.

For the memory versus counting contrast, the only method that substantially impacted the
laminar response profile was the layer regression method, which resulted in a decrease
(rather than increase) in response amplitude from the white matter to the CSF (Figure 23a).
However, | was concerned that this method may remove signal that is correlated across layers
due to the fact that each layer is functionally connected to the other layers. Regressing out
this correlated signal in the superficial but not deep layers may result in a biasing of signal
towards the deep layers. Therefore, | decided not to pursue this method. Normalising by the
mean BOLD signal of the layer had little effect on the laminar response profile of memory
retrieval versus counting baseline, nor did multivariate decoding of the memory retrieval

cognitive state.

Using a tight condition contrasts (i.e., remote memory retrieval versus recent memory
retrieval) produced laminar response profiles with shallower slopes than those produced by
the memory retrieval versus counting contrast (Figure 23b). However, for all methods except

the MVPA method, responses still clearly increased incrementally from white matter to CSF
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(Figure 23b). When using MVPA to perform stimulus category decoding of recent versus

remote memory retrieval, the responses decreased from the white matter to the deep layer

and from the superficial layer to the CSF, indicating that a superficial layer bias may be

somewhat corrected (Figure 23b).

Finally, when using MVPA to decode individual stimuli, there was a negative slope from the

white matter to the CSF, indicating that this very tight contrast produced little to no superficial

layer bias (Figure 23c).
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Figure 23. The effect of analysis method on superficial layer bias effect. The laminar response profiles
produced by four different analysis methods were compared. (a) When using a broad condition
contrast of memory retrieval versus counting, layer regression was the only analysis method that did
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not produce an increase in response from the white matter to the CSF. When using a tighter condition
contrast of (b) remote versus recent memory retrieval or (c) specific memory versus all other
memories, MVPA was the only method that did not produce an increase in response from the white
matter to the CSF.

3.5. Discussion

In this study, | first worked with the Physics Group to optimise the fMRI sequence with the aim
of mitigating geometric distortion, signal drop out and signal artefacts in the functional images
(Experiment 1a). The fMRI sequence parameter that made the most drastic improvements to
distortion and signal drop out was use of a two-fold segmented acquisition, while apodisation
of k-space during reconstruction effectively removed a Gibb’s ringing artefact. However, it was
not possible to entirely remove geometric distortion, signal drop out and signal artefacts
during image acquisition. Therefore, | next tested methods for correcting the remaining
distortion during image preprocessing (Experiment 1b). | found that unwarping of functional
images with a BO field map, estimated from reverse phase encoded images, combined with
recursive BBR resulted in the most accurate coregistration of cortical surfaces to the functional
images. | also tested methods for correcting a signal artefact coming from cortical veins,
known as the superficial layer bias effect (Experiment 1b). | found that attempting to remove
voxels containing large veins minimally reduced the bias of signal towards the superficial
layers. Whereas, analysis decisions such as examining multivoxel response patterns using tight
condition contrasts were successful in addressing the bias effect. Other optimisations were
made to the preprocessing pipeline, for example, using a “spliced” T2-weighted image to

accurately segment the cortical surfaces (Experiment 1b).

3.5.1. Signal drop out and geometric distortion

Segmentation is an acquisition method that was developed many years ago to address
geometric distortion (McKinnon, 1993). Since then, it has been successfully used for 7T fMRI,
specifically with 3D GE-BOLD EPI imaging (Zwanenburg et al., 2011). Our sequence parameter
tests provide further support for 2-fold interleaved segmentation as an acquisition method

for dealing with distortion and drop out.

In terms of preprocessing methods, | found that recursive BBR alone was insufficient to align

the cortical surfaces with the functional images in the mPFC. Unwarping the functional images
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prior to recursive BBR produced considerably better alignment. Unwarping is particularly
necessary in the mPFC, which contains more distortion than other brain areas. To minimise
interpolation and resampling of the data, | applied realignment and unwarping in one step
using SPM Realign and Unwarp. However, even with this approach, the most distorted areas
of the functional images, with severe pile-up of signal, appeared to be spatially blurred after
unwarping. This is because, with significant signal pile-up, the unwarping algorithm becomes
poorly conditioned and is unable to accurately divide and reposition the signal. These highly

distorted areas were successfully excluded from laminar analyses using a Jacobian mask.

While geometric distortion can be corrected during image preprocessing, signal dropout
cannot as the missing signal cannot be retrieved. While we do want the cortical surfaces to
warp to distorted parts of the image, we do not want them to warp around areas with signal
drop out. This is because it may lead to inaccurate allocation of signal to each of the cortical
layer depths. For instance, signal dropout in the superficial layers could cause the pial surface
to warp to the middle layer, leading to incorrect attribution of the middle layer's signal to the
superficial layer. In attempt to only warp the surfaces to distorted areas of the image, during
recursive BBR, we only allowed scaling of the cortical surfaces in the phase encoding direction,
where distortion is expected to be most severe. Furthermore, the areas of the brain that
contained the most significant signal drop out were excluded from the laminar analyses by

using a thresholded Jacobian map.

3.5.2. Correcting for the superficial layer bias

In an attempt to remove voxels containing large veins, while retaining the voxels containing
smaller layer-specific capillaries, | tried using several different masking methods: a tSNR mask,
t-value mask, and T2 signal intensity mask. However, none of these methods had a substantial
impact on the superficial layer bias effect. One explanation could be that the large vein voxels
were not effectively removed due to inadequate thresholds. However, using more lenient
thresholds caused large portions of the brain to be removed by the mask. This was particularly
the case for the T2 signal intensity mask, which contained a considerable amount of signal
drop out. Another explanation is that we do not have the required spatial resolution to
delineate the large veins that penetrate the cortical grey matter from the smaller capillaries

that are also within the cortical grey matter. Therefore, it is possible that we only removed the
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very large veins on the pial surface, which would only accounts for one of the physiological

causes of the superficial layer bias effect.

| tested out several different methods for computing laminar-specific responses: beta
subtractions, beta ratios, normalisation, layer regression, and MVPA. For the very broad
memory versus counting contrast, | found that layer regression was the only method that
removed the superficial layer bias, reversing the laminar response profile such that it was
skewed towards deeper layers. However, this may be due to the removal of functionally
relevant signal that is correlated across layers. Removing signal only in superficial layers while
retaining it in deeper layers introduces a new bias. A previous study using layer regression
regressed out all other layers' time courses, avoiding this bias but still removing informative
signal (Kok et al., 2016). | decided not to pursue this as an option as removal of any functionally

relevant signal from the layers is not desirable.

When performing tighter condition contrasts, MVPA was the only method resistant to the
superficial layer bias effect. However, MVPA was not resistant when decoding the broader
memory retrieval state. This discrepancy can be understood by considering how different
types of information are represented in the brain. Different cognitive states involve different
brain areas, but the multivoxel activation patterns within these areas are probably less
relevant. In contrast, processing of different individual stimuli likely involves the same brain
areas but the specific ensembles of neurons within those areas may be specific to the
stimulus. Therefore, for cognitive states, any correlated multivoxel response across recalls
would be driven by the voxels containing less spatially specific, more diffuse signal, such as
those containing macrovascular signal. Whereas, the voxels containing more spatially precise
microvascular signal would be inconsistent across memory retrieval trials. Conversely, when
decoding individual stimuli or categories, the spatially specific microvascular signal would be
correlated across stimulus repeats, while the correlation driven by the less spatially specific
macrovascular signal would be cancelled out by subtracting the correlation among trials of
other stimuli. As such, for tight contrasts, such as decoding of specific stimuli and stimulus
categories, MVPA would be more sensitive to the microvascular signal making it less

susceptible to the superficial layer bias effect.

Previous studies have produced mixed results regarding MVPA's resistance to the superficial
layer bias effect (Huang et al., 2021; Vizioli et al., 2020). Huang et al. (2021) found that MVPA
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was not resistant, while Vizioli et al. (2020) found it was. This discrepancy may be due to the
type of information being decoded. Huang et al. (2021) decoded attentional states, whereas
Vizioli et al. (2021) decoded individual scene images. A question arises as to whether using
MVPA to decode individual stimuli could lead to a bias towards the deep layers due to the
more spatially precise microvascular signal in these layers. However, this appears not to be
the case. Vizioli et al. (2020) artificially misaligned the multivariate response patterns by one
voxel and found an equal decrease in decoding accuracy across the cortical layers, indicating

comparable spatial precision of the multivoxel activation patterns in each of the cortical layers.

Clearly, it is very difficult to fully and accurately correct the superficial layer bias artefact, likely
due to a combination of vascular causes, which may vary between brain areas depending on
the vasculature. Some modelling methods have been developed that | did not test out as they
are based on the anatomy of the visual cortex and so their generalisability to other cortical

areas is unknown (Havlicek & Uludag, 2020; Heinzle et al., 2016; Markuerkiaga et al., 2016).

Furthermore, alternative MRI sequences have been developed that measure blood flow,
rather than changes in blood oxygen, which do not have a superficial layer bias effect. There
are two main types of blood flow-based sequence, vascular-space-occupancy (VASO)
sequences that measure cerebral blood volume (CBV; Huber et al., 2017; Lu et al., 2013), and
arterial spin labelling (ASL) sequences that measure cerebral blood flow (CBF; Huber et al.,
2017; Petcharunpaisan et al., 2010). However, these acquisition methods have less functional

sensitivity and long acquisition times, and/or small fields of view (Huber et al., 2017).

Given the inability to satisfactorily correct the superficial layer bias using univariate methods
and the downsides of alternative acquisition methods, we decided against pursuing univariate
laminar analyses and focused on multivariate analyses of individual stimuli or stimulus

categories.

A limitation of using the autobiographical memory task to assess the superficial layer bias is
the lack of clear expectations about the true laminar response profile. We assumed that a
steeper positive slope indicated a stronger superficial layer bias effect, which means that a
true superficially skewed laminar response could be misinterpreted as bias. Typically, methods
for correcting superficial layer bias are validated using simulations or tasks with well-

understood laminar activation profiles, such as feedforward visual input into the visual cortex

117



(e.g., Vizioli et al., 2020). However, as this is the first laminar fMRI study of the mPFC, there

are no established tasks that can predict the true laminar response profile in this region.

In these experiments, we explored various MRI data acquisition, preprocessing and analysis
methods to address the challenges of geometric distortion, signal dropout, and the superficial
layer bias effect in laminar GE-BOLD fMRI. Using a 2-fold segmented acquisition, fMRI data
unwarping, and recursive BBR significantly improved distortion and cortical surface alignment
in the mPFC. However, signal dropout and extreme levels of distortion remained an issue,
necessitating the exclusion of highly distorted and low signal areas using Jacobian maps. We
tested multiple techniques to correct for the superficial layer bias artefact. Despite some
success, none of the univariate analysis methods entirely eliminated the bias, highlighting the
complexity of this artefact. Therefore, we concluded that univariate laminar analyses were not
viable. MVPA was successful in addressing the bias when being used to decode stimulus
categories and individual stimuli. Therefore, we decided to proceed with multivariate laminar
analyses to understand event processing in the mPFC and wider network of brain areas. These
experiments underscore the need for continued refinement of acquisition, preprocessing and

analysis techniques to accurately interpret laminar fMRI data.
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4. Experiment 2: Automated protocols for delineating

human hippocampal subfields from 3T and 7T MRI data

4.1. Introduction

Researchers who study the human hippocampus are naturally interested in how its subfields
function. However, many researchers are precluded from examining subfields because their
manual delineation from MRI scans (still the gold standard approach) is time consuming and
requires significant expertise. To help ameliorate this issue, | present here two protocols, one
for 3T MRI and the other for 7T MRI, that permit automated hippocampus segmentation into
six subregions, namely DG/CA4, CA2/3, CA1, subiculum, pre/parasubiculum and uncus along
the entire length of the hippocampus. These protocols are particularly notable relative to
existing resources in that they were trained and tested using large numbers of healthy young
adults (N = 140 at 3T, N = 40 at 7T) whose hippocampi were manually segmented by experts
from MRI scans. Using inter-rater reliability analyses, | showed that the quality of automated
segmentations produced by these protocols was high and comparable to expert manual
segmenters. | provide full open access to the automated protocols, and anticipate they will
save hippocampus researchers a significant amount of time. They could also help to catalyse
subfield research, which is essential for gaining a full understanding of how the hippocampus

functions.

4.2. Background

The hippocampus is composed of distinct subfields that have different functions (Bonnici et
al., 2013; Neunuebel & Knierim, 2014; Zeidman, Lutti, et al., 2015) and connectivity patterns
(Dalton et al., 2022; Dalton et al., 2019). Studying human hippocampal subfields typically
requires them to be delineated from structural MRI scans. Manual segmentation of subfields
from such scans remains the gold standard approach (Dalton et al., 2017; Wisse et al., 2017).
However, there are currently numerous protocols available that differ on a range of
parameters. These include the location of borders between subfields, the granularity with
which specific subfields can be individually delineated, and whether nor not the full length of
the hippocampus is segmented (Yushkevich, Amaral, et al., 2015). Automated methods for
subfield segmentation have also been developed, which essentially recapitulate these
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protocol differences (e.g., Augustinack et al., 2013; DeKraker et al., 2022; Fischl et al., 2009;
Hadar et al., 2018; Iglesias et al., 2015; Pipitone et al., 2014; Romero et al., 2017; Van Leemput
et al., 2009; Wisse et al., 2016; Yushkevich, Pluta, et al., 2015; Yushkevich et al., 2010). This

variety of approaches hinders the ability to integrate and interpret findings across studies.

To address this issue, the Hippocampal Subfield Group (HSG:
http://www.hippocampalsubfields.com) was convened. It includes colleagues from around
the world who are working towards the production of a reliable, validated, harmonised
protocol for manual segmentation of hippocampal subfields and associated medial temporal
lobe regions. This huge undertaking is progressing, and will eventually be an invaluable and
unifying resource for the field of hippocampus neuroscience (Olsen et al., 2019; Wisse et al.,

2017; Yushkevich, Amaral, et al., 2015).

In the meantime, the Maguire Lab previously devised a detailed manual subfield
segmentation protocol that is faithful to our current understanding of hippocampal anatomy
(Dalton et al., 2017). | favour this protocol because it allows the whole hippocampus to be
segmented into 6 subregions: DG/CA4, CA2/3, CA1, subiculum, pre/parasubiculum, and the
uncus. It takes approximately eight hours for an expert to segment a person’s two hippocampi
from T2-weighted isotropic voxel MRI scans using this protocol. But such expertise is not
available in all research groups, and even when it is, the time sink involved often prohibits

conducting experiments at scale, such as those examining individual differences.

Consequently, the goal of this experiment was to devise an automated subfield segmentation
protocol based on the Dalton et al. (2017) approach. | could pursue this aim thanks to two
open access resources. The first is the recently released open access dataset from Clark and
Maguire (2023) that includes the largest set of manually segmented hippocampal subfields of
healthy young adults that is currently available using the Dalton et al. (2017) approach. The
second is the software package Automatic Segmentation of Hippocampal Subfields (ASHS)
(Yushkevich, Pluta, et al., 2015) which is free, open source and editable. ASHS can be retrained
using one’s own MRI data and segmentation protocol to produce an ASHS “atlas package” that
can then be used to automatically segment subfields from new MRI scans. We aimed to

produce two ASHS atlases, one for 3T MRI data and another for 7T MRI data.
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4.3. Materials and methods

4.3.1. Participants

For building and testing the 3T ASHS atlas, | availed of previously acquired and open access 3T
MRI scans from 140 healthy adult participants (81 females) aged between 20 and 41 years old
(mean age = 29.09, SD = 5.61; Clark & Maguire, 2023). For building and testing the 7T ASHS
atlas, | recruited and scanned using 7T MRI 40 healthy adult participants (26 females) aged
between 18 and 33 years old (mean age = 23.8, SD = 3.99).

4.3.2. Experimental protocol

All 140 3T MRI participants undertook the scanning in a dedicated structural MRI session. Of
the 140 3T MRI participants, | randomly allocated 125 participants to a 3T training group,
which was used to build the 3T ASHS atlas package. This provided an unprecedented
opportunity for the ASHS algorithm to train on a large number of expertly segmented
hippocampi. The remaining 15 participants were assigned to a 3T testing group that was used

to assess the 3T ASHS atlas package.

Of the 40 7T MRI participants, 22 participants undertook the structural imaging session in a
dedicated structural scanning session (as part of visit 1 of Experiment 3, Chapter 5), 12
participants undertook the structural imaging immediately following an fMRI session (as part
of Experiment 4, Chapter 6), and 6 participants were scanned in a dedicated structural imaging
session as part of a different 7T MRI study on which | am a collaborator, but that is not

reported in this thesis.

Of the 40 7T MRI participants, | randomly allocated 30 of the participants to a 7T training
group, which was used for training the 7T ASHS atlas package. The remaining 10 participants
were assigned to a 7T testing group that was used to assess the quality of automatic

segmentations produced by the 7T ASHS atlas package.

Participants were not required to do anything during structural scanning, other than rest and

remain as still as possible.
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4.3.3. MRI sequences

All 3T data were collected using Siemens Magnetom TIM Trio 3T MRI systems with a 32
channel head coil. For each 3T MRI participant, 3 separate T2-weighted partial volume images
were acquired using a 3D turbo spin echo sequence (Mugler et al., 2000). During this
sequence, a single axial slab was excited and the T2-weighted signal was read out. The
sequence used the following parameters: voxel size = 0.52x0.52x0.5 mm?,
matrix = 384 x 328, partitions = 104, partition thickness =0.5 mm, partition
oversampling = 15.4%, field of view =200 x 171 mm, TE =353 ms, TR =3200 ms, GRAPPA x 2
in phase-encoding direction, bandwidth = 434 Hz/pixel, echo spacing = 4.98 ms, turbo factor
in PE direction =177, echo train duration = 881, averages = 1.9. To minimise signal bias (e.g.,
caused by spatial variation in coil sensitivity profiles), the images were normalised using a pre-

scan and a low-intensity filter was applied. Each image took 13 minutes to acquire.

ASHS also requires a T1-weighted image for initial localisation of the whole hippocampus. For
each 3T MRl participant, a whole brain T1-weighted GE image was acquired as part of a Multi-
Parameter Mapping quantitative imaging protocol (Callaghan et al., 2015; Callaghan et al.,
2019). The sequence had the following parameters: voxel size = 0.8 x0.8 x 0.8 mm?3, TR =
25 ms, flip angle = 21°, field of view = 256 mm x 224 mm x 179 mm, TE = 8 equidistant read
outs ranging from 2.34 to 18.44 ms in steps of 2.30 ms, bandwidth = 488 Hz/pixel, GRAPPA x
2 in each phase encoding direction (anterior-to-posterior and right-to-left). The image took

25 minutes to acquire.

All 7T MRI data were acquired on a Siemens Magnetom Terra 7T MRI system (see Chapter 2,
Section 2.6.1). For each 7T MRI participant, 2 partial volume T2-weighted images were
acquired with the same sequence that was used at 3T, but adapted for 7T. The sequence had
a voxel size of 0.52 x 0.52 x 0.50 mm?3, TR = 3,500 ms, TE = 229 ms, flip angle = 8°, field of view
=200 x 169 mm x 56 mm, matrix = 384 x 324 x 112, partitions = 112, partition thickness = 0.5
mm, partition oversampling = 14.3%, GRAPPA x 2 in phase-encoding direction, bandwidth =
868 Hz/Px, echo spacing = 3.83 ms, turbo factor = 176, echo train duration = 548 ms, averages

= 1.4. Each image took 10 m and 25 s to acquire.

For each 7T MRI participant, a whole brain T1-weighted image was acquired using an

MP2RAGE sequence (Marques et al., 2010), with the following parameters: voxel size = 0.65 x
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0.65 x 0.65 mm?3, TR = 5000 ms, TE = 2.54 ms, Tl =900 ms and 2,750 ms, 5° and 3° flip angles,
field of view = 208 x 208 x 156 mm?3, and GRAPPA x 3 in phase encoding direction. The image

took 8 minutes 42 seconds to acquire.

Of note, all 3T and 7T images, such as those here, had isotropic voxels, meaning there was
equivalent resolution in all orientations, which is particularly important for convoluted

structures like the hippocampus, which can contain undulations in the subfields.

4.3.4. Data preprocessing

The T2-weighted images were visually inspected and those with poor image quality were
discarded. For each participant, the remaining T2-weighted images were realigned, denoised
and averaged. This averaging and denoising method improved the SNR of the T2-weighted
image used for hippocampal subfield segmentation. Although, note that individual 7T images
already had sufficient SNR for subfield segmentation, which could mean shorter structural
imaging sessions for future studies. The T1-weighted image was then coregistered to the

mean T2-weighted image using NMI.

4.3.5. Manual segmentation of hippocampal subfields

ITK Snap software version 3.2.0 was used to manually delineate the hippocampal subfields on
the averaged and denoised T2-weighted images in line with the Dalton et al. (2017) protocol.
For each participant the two hippocampi were manually segmented into 6 subregions. The
DG/CA4 was segmented first, followed by CA2/3, CA1, subiculum, pre/parasubiculum and
then the uncus. The subfields were segmented on coronal slices, starting at the most anterior
portion of the hippocampus and moving in the posterior direction. Anatomical markers,
described in Dalton et al. (2017), were used to define the boundaries between subfields.
Examples of these included: (1) the vestigial hippocampal sulcus at the outermost boundary
of the DG/CA4, which is visible as a “C” shape in the right hemisphere (or inverted “C” shape
in the left hemisphere) of high intensity voxels, and (2) the increase in white matter
projections from the perforant pathway at the boundary between the subiculum and
pre/parasubiculum, which is visible as a slight increase in T2 signal intensity. | performed the
manual segmentations on all 7T MR images and the 3T MR images had been previously

manually segmented by another researcher.
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Inter-rater reliability analysis was used to assess the reliability of the manual hippocampal
segmentations. To perform this analysis, a subset of images were segmented for a second time
by a different researcher. The subset included 20 out of the 125 participants in the 3T training
group, and 9 out of the 30 participants in the 7T training group. The Dice similarity coefficient
(Dice, 1945), which ranges from 0 (no overlap) to 1 (complete overlap), was used to calculate
the degree of overlap between the subfield masks produced by the first and second
researchers. The results are shown on Table 2, and for both 3T and 7T MRI they were
comparable to previous studies using this protocol (Barry et al., 2021; Clark et al., 2023; Dalton
et al., 2019) and other approaches (Berron et al., 2017; Bonnici et al., 2013; Chadwick et al.,
2014; Lee et al., 2014; Palombo et al., 2013; Yeung et al., 2019).

Table 2. Inter-rater reliability results for the two manual segmenters.

Dice similarity coefficient (mean % SD)

Subfield 3T MRI 7T MRI
Left Right Left Right

DG 0.84 £ 0.02 0.85+0.03 0.87 £0.02 0.86 £ 0.03
CA2/3 0.67 £0.04 0.68 £ 0.04 0.69 £ 0.02 0.68 £ 0.04
CAl 0.78 £0.03 0.79 £0.02 0.78 £0.03 0.80 £ 0.02
Subiculum 0.81 +0.02 0.79 £0.02 0.81+£0.03 0.79 £0.03
Pre/parasubiculum 0.71£0.03 0.69+£0.03 0.70+£0.04 0.72£0.02
Uncus 0.82 +0.03 0.84 +£0.02 0.88 £0.03 0.86 £ 0.04

Note: Two researchers independently segmented the hippocampi of 20 out of the 125 participants in the
3T training group, and 9 out of the 30 participants in the 7T training group.

4.3.6. Automatic segmentation of hippocampal subfields

Having established that the manual segmentations were reliable, | next used them to produce
the ASHS atlases. | trained ASHS on the manual hippocampal subfield segmentations of the
3T training group sample (125 participants) and separately on the 7T training group sample

(30 participants) to produce a 3T and 7T ASHS atlas, respectively.

The ASHS training pipeline was as follows (Yushkevich, Pluta, et al., 2015):
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1. Preprocessing: For each participant, the T2-weighted image was coregistered to the
T1-weighted image using NMI. Next, the T1l-weighted images from all participants
were normalised to a template using the Advanced Normalization Tools (ANTSs)
deformable coregistration tool. This template is provided in the atlas package. The
template image was then cropped around the left and right hippocampi (separately).
To achieve this, for each hemisphere, subfield masks were combined to produce a
whole hippocampus mask. This mask was then transformed into the template space
and used to crop the template image ensuring that the whole hippocampus was
included. Finally, the same transformation and cropping was applied to all the T1-
weighted images, T2-weighted images and segmentation images so that all images
were in the template space.

2. Joint label fusion (JLF): For each participant, an initial automatic segmentation was
produced. To achieve this, the T2-weighted images (and corresponding
segmentations) of all other participants were warped to the T2-weighted image of the
participant using ANTs deformable coregistration. Then a JLF algorithm was applied to
all of the warped segmentations (the following explanation is based on Wang et al.,
2013; Wang & Yushkevich, 2013; and Yushkevich, Pluta, et al., 2015). JLF combines
segmentations from multiple participants into a single segmentation. For each input
segmentation, a measure of similarity between it and the other segmentations was
computed, based on the relative T2 signal intensities of a patch centred on a voxel. The
similarity measure helps to determine how much weighting (i.e., trust) to place in the
segmentation at each voxel. The final subfield label for each voxel was determined by
a weighted voting scheme. The consensus label for each voxel was the one that
receives the highest total weighted vote. JLF calculates the correlation between pairs
of segmentations, and reduces the weights of correlated images. This reduces a bias
of the segmentation towards more typical anatomy, allowing the final segmentation
to also represent the more atypical cases.

3. Corrective learning classification: Corrective learning classifiers were then used to
correct any mislabelling of subfields by the JFL method (the following explanation is
based on Wang & Yushkevich, 2013; and Yushkevich, Pluta, et al., 2015). For each
subfield (in each separate hemisphere), a classifier was trained to predict whether a

given voxel belonged to the subfield based on various features of the voxel. Each voxel
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that was labelled as belonging to the subfield by the JLF method in each training image
was used as a training instance, as were voxels surrounding the JFL segmented
subfield. Rather than including all other voxels in the hippocampus, only the voxels
surrounding the subfield were included as these are the most likely voxels to have been
mislabelled by JLF. They were selected by slightly dilating (expanding) the JFL
segmented subfield for each participant image. Several voxel features were used for
classification. These included the T2 signal intensity values in a patch centred on each
voxel, the posterior probability maps produced by the JFL algorithm for the patch, and
the location of the voxel in relation to the centre of the subfield (as defined in the
initial JFL segmentation). Using spatial and contextual information from the JFL
segmentation as features gives these classifiers more power than most machine
learning methods used for medical image analysis, which typically only use features
extracted from the images (Morra et al., 2010; Tu & Bai, 2010; Tu et al., 2007; reviewed
in Wang & Yushkevich, 2013). Each subfield classifier algorithm was iteratively trained
using a type of corrective learning called AdaBoost (“adaptive” boosting). On each
iteration a “weak” classifier is trained and then tested using a leave-one-out approach
(in each iteration a single participant is excluded from training and is used for testing
instead). Then, the weights of the training instances (i.e., the voxels) were updated to
give more emphasis to the voxels that were misclassified, thereby guiding the next
weak classifier to focus more on these difficult cases. This process is repeated for a
specified number of iterations. A classifier weight is also assigned to each weak

Ill

classifier based on its accuracy. These weights are used to construct a final “strong”

classifier, which is the weighted sum of all the weak classifiers from each iteration.

4.3.7. Evaluating performance

Two approaches were used to evaluate performance of the 3T and 7T ASHS atlases. The first
approach used cross-validation tests. Here, ASHS atlases were iteratively retrained using a
leave-K-out approach, in which K participants were excluded from the atlas build and were
used to test the atlas. We used leave-one-out cross-validation to test performance of the 7T
ASHS atlas and, due to the larger 3T training group sample and for computational efficiency,

we used leave-five-out cross-validation to test performance of the 3T ASHS atlas.
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In the second, and more reliable, approach | used the final 3T and 7T ASHS atlas packages to

segment the hippocampi of participants in the new 3T testing group (15 participants) and new

7T testing group (10 participants) respectively. This allowed me to test the complete and final

3T and 7T ASHS atlases that will be used by future scientists wishing to segment subfields.

The ASHS segmentation pipeline for a given testing group participant is as follows (Yushkevich,

Pluta, et al., 2015):

1.

2.

Preprocessing: First, the participant’s T2-weighted image is coregistered to their T1-
weighted image using NMI. Then, the T1-weighted image is warped (using ANTS
deformable registration) to the group template (provided in the atlas package) and the
same warp is applied to the T2-weighted image. All subsequent steps are performed
in template space.

JLF: Each of the training group T2-weighted images and corresponding manual
segmentations (provided in the atlas package) are warped (using ANTS deformable
registration) to the testing participant’s T2-weighted image. JFL is used to produce an
initial segmentation of the new participant’s T2-weighted image.

Corrective learning classification: The corrective learning classifiers (provided in the
atlas package) are applied to the initial segmentation (the following explanation is
based on Wang & Yushkevich, 2013). For each subfield, voxels are selected by dilating
the JFL segmentation. Each voxel is then classified by the corrective learning classifier
as belonging to or not belonging to the subfield. If multiple corrective learning
classifiers determine that a voxel belongs to their subfield, the subfield whose classifier
has the highest probability is assigned to the voxel. This results in a refined
segmentation where mislabeled voxels from the JLF method are corrected based on
the more accurate classifications provided by the corrective learning classifiers.
Bootstrapping: It is important that the warping between the participant’s T2-weighted
image and all of the training participant’s T2-weighted images is accurate in order to
achieve high quality segmentations. Therefore, Steps 2 and 3 are repeated, but this

time the segmentation is used to improve the deformable coregistration.

The automatic segmentations were then compared to their corresponding manual

segmentation using the Dice similarity coefficient (Dice, 1945) between the manual and

automatic segmentations was computed. When Dice similarity coefficients are calculated
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between manual segmentations performed by independent expert segmenters (i.e., in inter-
rater reliability analyses), > 0.83 would be considered good for the DG/CA4, > 0.67 for CA2/3,
> 0.77 for CA1, > 0.77 for the subiculum, > 0.68 for the pre/parasubiculum, and > 0.81 for the
uncus (Barry et al., 2021; Clark et al., 2023; Dalton et al., 2019). Note that Dice similarity
coefficients are typically higher for the larger subfields (e.g., DG/CA4; the uncus) compared to
the smaller subfields (e.g., CA2/3; pre/parasubiculum). Finally, | also visually inspected the
automatic segmentations for systematic errors in the segmentation of each subfield, of which

there were none.

4.4, Results

The results of the cross-validation tests are shown in Table 3. In all subfields, the ASHS atlases
resulted in Dice similarity coefficients that were, on average, higher than those typically

achieved by manual segmenters using the same segmentation protocol.

Table 3. Reliability results for the ASHS atlases based on cross-validation tests.

Dice similarity coefficient (mean + SD)

Subfield 3T MRI ASHS atlas 7T MRI ASHS atlas
Left Right Left Right

DG 0.87 £0.02 0.87 £0.02 0.89 +0.06 0.90 +0.06
CA2/3 0.72 £0.07 0.71 +0.06 0.77 £0.12 0.79 £0.06
CAl 0.81 +0.02 0.81 £0.02 0.83 £ 0.07 0.84 +0.06
Subiculum 0.82 +0.03 0.81+£0.03 0.85 +0.05 0.86 +0.04
Pre/parasubiculum 0.70 £ 0.05 0.68 £ 0.06 0.75 £ 0.07 0.77 £ 0.06
Uncus 0.84 +0.04 0.84+0.04 0.88 +0.05 0.88 +0.05

Note: Segmentations performed in the cross-validation tests were compared with manual segmentations. For
the 3T MRl atlas, 24 cross-validation tests were performed, each on 5 participants. For the 7T MRl atlas, 30 cross-
validation tests were performed, each on 1 participant.

The results of the tests performed on the final and complete ASHS atlases are shown in Table
4 and are plotted in Figure 24. Again, both atlases achieved Dice similarity coefficients that
were, on average, higher than is typically achieved with manual segmentations using the same

segmentation protocol.
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Table 4. Reliability results for the ASHS atlases when compared to an independent set of
manually segmented images.
Dice similarity coefficient (mean + SD)

Subfield 3T MRI ASHS atlas 7T MRI ASHS atlas
Left Right Left Right

DG 0.88 +0.03 0.89 £ 0.01 0.87 £0.03 0.89 £ 0.01
CA2/3 0.74 £0.04 0.75 £ 0.05 0.75 £ 0.05 0.78 £0.03
CAl 0.81£0.03 0.83 £0.02 0.81+0.03 0.82 £0.02
Subiculum 0.83 +0.02 0.82 £0.02 0.83 £0.02 0.84 +0.02
Pre/parasubiculum 0.72 £ 0.05 0.72 £ 0.05 0.71 £ 0.05 0.74 £ 0.02
Uncus 0.85 +0.02 0.85+0.02 0.84 +0.03 0.86 £ 0.03

Note: Our 3T and 7T ASHS atlas packages were used to segment the hippocampi of participants in a new
3T test group (n=15) and a new 7T test group (n=10) respectively.

(a) 3T MRI (b) 7T MRI
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Figure 24. Similarity between automatic and manual segmentations. Dice similarity coefficients for
the comparison between ASHS automatic segmentations and the corresponding manual
segmentations, where (a) relates to our complete 3T ASHS atlas package used to segment hippocampi
from new 3T MRl data (n = 15), and (b) relates to our complete 7T ASHS atlas package used to segment
hippocampi from new 7T MRI data (n = 10). The overall mean Dice similarity coefficients are plotted
with opaque points and the mean Dice similarity coefficients for each test participant's data are plotted
with transparent points. Error bars indicate the standard error of the mean. To aid interpretation, the
dashed lines provide an approximate indication of the typical inter-rater reliability thresholds between
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human manual segmenters for the protocol used here. DG = DG; Sub = subiculum; Pre/para =
pre/parasubiculum.

When visually inspecting automatic segmentations performed using the final atlases and their
corresponding manual segmentations, the subregion masks appeared very similar (Figure 25).
There were some minor local differences, which are also common in manual segmentations

performed by different human segmenters.
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Figure 25. Example automatic and manual segmentations. Example segmentations, one from 3T MRI
participants (upper panels) and 7T MRI participants (lower panels), performed using (a) the 3T ASHS
atlas package to segment hippocampi from new 3T MRI data, and (b) the 7T ASHS atlas package to
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segment hippocampi from new 7T MRI data. In both (a) and (b), for each participant, the top row
displays the raw T2-weighted image, the second row shows a manual segmentation of the
hippocampal subfields and the bottom row displays the ASHS automatic segmentation. Note that light
blue areas are cysts. T2W = T2-weighted, DG = dentate gyrus, Sub = subiculum, Pre/para =
pre/parasubiculum. The images shown for 3T and 7T are from approximately similar locations along
the length of the hippocampus.

4.5. Discussion

| developed two protocols, one for 3T MRI and the other for 7T MR, that permit automated
hippocampus segmentation into six subregions, namely DG/CA4, CA2/3, CA1, subiculum,
pre/parasubiculum, and uncus along the entire length of the hippocampus. This involved
making use of pre-existing manual segmentations on 3T MRI images of 140 participants, and
manually segmenting hippocampi on 7T MRI images of 40 participants. | produced 3T MRI and
7T MRI ASHS atlases using a subset of the data and tested the performance of these atlases
on the remaining data. Using inter-rater reliability analyses, | showed that the quality of
automated segmentations produced by these protocols was high and, on average,
outperformed expert manual segmenters using the same protocol (Barry et al., 2021; Clark et
al.,, 2023; Dalton et al., 2019). These two ASHS atlas packages can, therefore, be used to
automatically segment subfields from new 3T and 7T T2-weighted structural MRI data with
isotropic voxels. The atlases, along with a README file containing information about the IT
requirements and a step-by-step guide for using the atlases, are open access and available on

Figshare (https://doi.org/10.6084/m9.figshare.24298891).

In addition to providing superior segmentation, these automated protocols significantly
reduce the time and expertise required to analyse high resolution MRI data. High resolution
isotropic MRI data take a particularly long time to manually segment due to the large number
of coronal slices, which is considerably more than in anisotropic images used for subfield
segmentation. Training experimenters in detailed subfield segmentation protocols, like the
Dalton et al. (2017) protocol, is particularly time-consuming, typically spanning several
months. These ASHS atlases make automatic subfield segmentation feasible for everyone,

including small, inexperienced research teams, or for the analysis of large datasets.

This is the first automated segmentation process using the Dalton et al. (2017) segmentation

protocol. The segmentation protocol that we used is true to our current understanding of
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hippocampal anatomy. As other automated methods used different segmentation protocols,
subfield Dice scores cannot be directly compared. Most other protocols combine the
subiculum and the pre/parasubiculum into one larger subregion (Hadar et al., 2018; Wisse et
al., 2016; Yushkevich, Pluta, et al., 2015), despite these areas having distinct functional roles
(Maass et al., 2014; Zeidman, Lutti, et al., 2015) and patterns of functional connectivity (Dalton
et al., 2019). Many protocols delineate the uncus into subfields (Iglesias et al., 2015; Kulaga-
Yoskovitz et al., 2015). However, given that the uncal subfields have unique cellular properties
and patterns of connectivity, | believe that it is appropriate to segment the uncus as a separate
subregion (Dalton et al., 2017). Finally, some protocols do not segment the tail of the
hippocampus at all (Iglesias et al., 2015; Wisse et al., 2016), despite it having many important

functions (Lee et al., 2020).

A second issue with the extant automated processes is the non-isotropic MRI data that they
have been trained on (e.g., DeKraker et al., 2022; Yushkevich, Pluta, et al., 2015). To our
knowledge only one protocol exists that is optimised for 7T isotropic MRI data (Wisse et al.,
2016). It is important for an automated algorithm to be trained with (and indeed be used to
segment) data with isotropic voxels. Such data have equivalent resolution in all orientations,
which is particularly important for convoluted structures like the hippocampus, which can
contain undulations in the subfields. Time of acquisition is often cited as a reason not to
acquire isotropic data. However, T2-weighted isotropic data can be acquired with ever-

increasing speed as demonstrated here (~10 minutes for 7T and ~13 minutes for 3T).

There are several caveats that should be borne in mind in relation to my ASHS atlases. They
were built using the MRI scans of healthy young adults, and so would be best used to segment
subfields in scans from similar people. As many participants in cognitive neuroscience
experiments are from the age groups scanned here, | hope the atlases will be useful. ASHS
also requires T2-weighted scans, and indeed such scans are, in our experience, best suited to
delineating the hippocampal subfields. As already noted, | also strongly advocate having scans
with isotropic voxels particularly for an undulating structure like the hippocampus. Atlas users
should therefore acquire data with isotropic voxels in order to achieve maximum benefit. A
final point to note is that my atlases focus solely on the hippocampus. For researchers

interested in adjacent cortical areas such as the entorhinal or perirhinal cortices, the large
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open access Clark and Maguire (2023) dataset and the editable ASHS software provide the

opportunity to segment and build new atlases that include these regions in the future.

In summary, here | demonstrated that the whole hippocampus can be automatically
segmented from 3T and 7T MRI scans with isotropic voxels into 6 subregions according to a
detailed subfield segmentation protocol. | provide free, open access to the ASHS atlas
packages | developed that makes this possible. | showed that the quality of automated
segmentations produced by these ASHS atlas packages is high when assessed by inter-rater
reliability analyses, which is the method typically used for checking the quality of manual
segmentations. | anticipate that these atlases will save researchers a significant amount of
time, especially when conducting subfield experiments at scale. Moreover, | hope that the
ability to automatically segment subfields will allow more research groups to conduct subfield
experiments, which will be essential for gaining a full understanding of how the hippocampus

functions.
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5. Experiment 3: The neural microcircuitry underpinning
retrieval of remote and recent autobiographical

memories

5.1. Introduction

Autobiographical memories are the ghosts of our past. Through them we visit places long
departed, see faces once familiar and hear voices now silent. These, often decades-old,

personal experiences locate us on life’s timeline and underwrite our capacity for autonomy.

Previous neuroimaging studies have revealed the brain regions supporting this ability, which
include the hippocampus and the medial temporal, lateral temporal, medial parietal, medial
prefrontal, lateral prefrontal and occipital cortices. However, it is unclear how retrieval of
remote and recent autobiographical memories is supported by cortical and subcortical

microcircuits.

Having developed the 7T MRI sequences and processing pipeline that | described in the
previous chapters, | used these to investigate, for the first time in humans, representations of
individual remote and recent autobiographical memories in the cortical layers and
hippocampal subfields. Participants vividly recalled a set of remote (2-5 year old) and recent
(1-6 week old) autobiographical memories 6 times each. Using RSA, | detected representations
of the individual remote memories in the deep cortical layers of two brain areas, the mPFC
and the middle gyrus of the lateral temporal cortex (mLTC). Whereas individual recent
memory representations were detected in the middle layers of the mLTC. | then sought to
understand whether or not there was a relationship between these memory representations
and representations in any other areas in the autobiographical memory network. To do this, |
correlated the trial-by-trial representation strengths using a method known as informational
connectivity. For remote autobiographical memories, | found that memory-specific
information may be shared by brain areas using feedback signalling pathways, which are
known to travel in the deep cortical layers. By contrast, recent memory representations

seemed to involve feedforward signalling pathways. Overall, these findings provide a window
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into the microcircuitry supporting the memory system as it works to remember experiences

from the distant and recent past.

5.2. Background

The initial encoding of autobiographical events into memory is thought to involve the
hippocampus (Dickerson & Eichenbaum, 2010; Spiers et al., 2001; Vargha-Khadem et al.,
1997). Over time, autobiographical memories are then consolidated into neocortical areas, by
means of interactions between the hippocampus and neocortex. This process is known as
systems-level consolidation (Barry & Maguire, 2019; Frey & Morris, 1998; Marr, 1971;
Redondo & Morris, 2011). The mPFC is one likely site for the consolidation of remote
autobiographical memories, with fMRI studies showing that remote autobiographical
memories are more strongly represented in the mPFC than recent memories (Barry et al.,
2018; Bonnici, Chadwick, Lutti, et al., 2012; Bonnici & Maguire, 2018). Interestingly, despite
remote and recent memory traces being stored in different brain areas, when they are
retrieved from memory, the same core network of brain areas is active (Buckner & Carroll,
2007; Hassabis & Maguire, 2007; Maguire, 2001; Schacter et al., 2007; Svoboda et al., 2006).
This includes the hippocampus, the medial prefrontal, lateral prefrontal, retrosplenial, lateral
temporal, parahippocampal and occipital cortices. Although, there is some debate over the
degree of involvement of these areas, particularly the hippocampus, after memories have
been consolidated in the neocortex (Barry & Maguire, 2019; Moscovitch et al., 2016; Nadel et
al., 2007; Squire et al., 2015).

The mPFC plays a critical role in autobiographical memory retrieval. Damage to this area
results in severe impairments in memory recall ability. For example, patients with mPFC
damage are unable to spontaneously recall autobiographical memories without heavy cueing
(Kurczek et al., 2015). This led to the proposition that the mPFC initiates and coordinates the
retrieval of autobiographical memories; a proposition that is supported by neuroimaging
research. For example, MEG work found that the mPFC responds earlier than the
hippocampus during retrieval of remote but not recent autobiographical memories
(McCormick et al., 2020). Furthermore, DCM analysis of these data showed that the mPFC

drove activity in the hippocampus, rather than vice versa. Remote memories may have a more

136



requirement for this top-down control, perhaps because the memory traces are less available

in the hippocampus (Barry & Maguire, 2019; McCormick, Ciaramelli, et al., 2018).

There are no direct anatomical pathways from the mPFC to the hippocampus, but there are
several indirect pathways via other cortical areas in the core network. Long range feedback
connections from higher order cortical areas, such as the mPFC, to lower order cortical areas,
such as the retrosplenial cortex and parahippocampal cortex, travel in the deep cortical layers
(Felleman & Van Essen, 1991). This differs from feedforward pathways, which travel in the
middle and superficial layers. The deep layer feedback pathways seem like a plausible pathway

for top-down control by the mPFC in support of autobiographical memory retrieval.

The principal aim of this experiment was to leverage the high spatial resolution of 7T fMRI to
investigate remote and recent autobiographical memory retrieval in the mPFC layers, the
hippocampal subfields, and the layers of other cortical areas within the core network. A
second goal was to understand the functional connectivity of the cortical layers and
hippocampal subfields during remote and recent autobiographical memory retrieval. As far as
| am aware, a laminar investigation has never been employed before when studying
autobiographical memory recall. The two other 7T fMRI studies that | am aware of in the
literature that have examined autobiographical memory recall did not interrogate cortical
laminar responses, and so could not speak to my research questions of interest (Leelaarporn

et al., 2024; Pfaffenrot et al., 2024).
Specifically, | asked:

1. Which brain areas were active during autobiographical memory retrieval?

2. Were there any differences in activation of the hippocampal subfields between remote
and recent autobiographical memory retrieval? Note, it was not possible to investigate
univariate activation differences in the cortical layers due to the existence of a
superficial layer bias effect (see Chapter 3).

3. Were specific remote and/or recent memories represented in any of the mPFC layers
or hippocampal subfields, or the layers of other cortical areas in the core network?

4. What was the nature of the connectivity between the mPFC layers, hippocampal
subfields and other areas in the core network during autobiographical memory

retrieval?
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To address these research questions, participants underwent 7T fMRI scanning while
performing an autobiographical memory retrieval task. During the task, participants were
presented with a memory verbal cue followed by a retrieval phase (10 s) during which they
vividly re-experienced the memory in their mind’s eye. Two types of memory were recalled:
remote memories (2 to 5 years old) and recent memories (less than one month old). To
address question 1 above, | used mass whole brain (or partial volume in this case) univariate
analysis to identify the brain areas that were active during memory retrieval. To address
question 2, | used univariate analyses to compare the activity during remote and recent
memory retrieval in each of the hippocampal subfields. To address question 3, | used RSA to
test whether individual memories were represented stably in any of the mPFC layers,
hippocampal subfields or the layers of other cortical areas. Finally, to address question 4, |
used informational connectivity analysis to understand whether any cortical layers or
hippocampal subfields with stable memory representations had correlated representation
time courses with other areas, indicating that memory-related information might be shared

between these brain areas.
| hypothesised that:

1. The core network of brain areas would be activated during autobiographical memory
retrieval, including the mPFC, lateral prefrontal, lateral temporal, parahippocampal,
retrosplenial, occipital cortices, and the hippocampus, which would corroborate
countless previous research (Buckner & Carroll, 2007; Hassabis & Maguire, 2007;
Maguire, 2001; Schacter et al., 2007; Svoboda et al., 2006).

2. There would be no difference in activation of the hippocampal subfields during remote
and recent autobiographical memory retrieval. This hypothesis was based on a few
previous fMRI studies that have found no effect of memory age on univariate
activation of the whole hippocampus (Barry et al., 2018; Bonnici, Chadwick, Lutti, et
al., 2012; Bonnici & Maguire, 2018). However, note that this question has not
previously been examined in the separate subfields of the hippocampus.

3. Individual memories would be represented in the mPFC deep layers (the layers in
which feedback pathways originate), and more strongly when the memories were
more remote. Remote memory representations may also be detected in the deep

layers of lower order cortical areas in the core network, such as the lateral temporal,
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parahippocampal, retrosplenial and occipital cortices. This hypothesis is based on the
proposition that the mPFC initiates and coordinates memory retrieval, via feedback
signalling, and that remote memories may have a greater reliance on this process.

4. Memory-specific information would be shared between the mPFC deep layers and the
deep layers of lower order cortical areas (e.g., the lateral temporal cortex,
parahippocampal cortex, retrosplenial cortex and/or occipital cortex) and/or the

hippocampus, again based on the idea that the mPFC controls the retrieval process.

This experiment could provide, for the first time in humans, an understanding of
autobiographical memory retrieval at the level of cortical layers, allowing autobiographical
memory retrieval to be characterised in terms of feedforward or feedback processing. These
data also speak to systems level consolidation theories, offering a more mechanistic

understanding, as the layer specificity provides some indication of the microcircuitry involved.

5.3. Methods

5.3.1 Participants

Twenty-four healthy participants were recruited and scanned. Two participants were excluded
from the analysis due to considerable head motion (> 1.6 mm movement) during fMRI data
acquisition. Another participant was excluded due to an artefact in the fMRI data, and a final
participant for their inability to vividly recall memories when performing the fMRI task. The
remaining 20 participants were 14 females and 6 males aged between 18 and 35 years old

(mean =22.75, SD = 3.16) with no history of neurological or psychiatric conditions.

5.3.2. Experimental procedure

Each participant paid two visits to the Department. During the first visit they underwent
structural MRI scanning, followed by an autobiographical interview (Levine et al., 2002), an
established procedure for sampling and selecting autobiographical memories that are vivid,
easy to remember and distinct from one another. Seven to 19 days later (mean = 9.65, SD =
3.82), they returned for a second visit where they recalled the autobiographical memories

during 7T fMRI scanning.
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5.3.2.1. Autobiographical interview

During the first visit, a participant was asked to describe out loud, in as much detail as they
could remember, autobiographical experiences from two time periods in their life: 2-5 years
ago (remote memories) and less than one month ago (recent memories). An event needed to
be retrievable as a story, with a beginning, middle and end. If a participant provided
insufficient detail, the interviewer would give general probes (e.g., "Can you remember
anything else from the event?"). They were asked to choose a section of the event that they
could later recall within 10 seconds during the fMRI task. A one- or two-word phrase was
agreed with the interviewer that would remind the participant of the specific section of the
memory to focus on during the subsequent fMRI scan. During this session, autobiographical
memories were scored approximately for Internal (episodic) and External (non-episodic)
details according to an adapted version of the widely-used Levine Autobiographical Interview
scoring method (Levine et al., 2002). The interview was terminated once a participant had
provided 8 remote and 8 recent memories that met the criteria for detail (number of
“internal” episodic details > 5; see Behavioural analysis section below for explanation of
internal episodic details). To maximise the differentiability of the memories, | ensured that,
for each participant, the memories were distinct from one another in terms of time, place,
people and activities. Furthermore, | ensured that all memories were temporally specific and
unique. For each event, participants were asked if they had experienced anything like the
event before or since. Events that were similar in content to other past events were excluded.
The autobiographical interview was audio recorded and transcribed to facilitate further

objective scoring of the memory descriptions.

5.3.2.2. Autobiographical memory task during fMRI

Following a training session where they practiced recalling 4 memories that were not used in
the fMRI experiment (2 remote and 2 recent), a participant underwent fMRI scanning while
recalling the remaining 12 memories (6 remote and 6 recent). During each trial (Figure 26), a
participant was shown a memory cue for 3 seconds, was then presented with a visual cue
indicating they should close their eyes for 1 second, and then recalled the memory for 10
seconds. An auditory tone (1 second) then cued them to open their eyes, followed by visual
presentation of a question ("How vivid was the memory?") for which they could answer on a

scale from 1 to 4 (1 = "not at all vivid", 2 = “not very vivid”, 3 = “very vivid”, 4 = "extremely
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vivid"). On average, both remote (mean = 3.16, SD = 0.301) and recent memories (mean =
3.32, SD = 0.364) were rated as very vivid to extremely vivid with ratings higher than 3 out of

4 in both cases.

Counting trials were used as a baseline condition in the mass univariate fMRI analysis and a
control condition in the RSA analysis. Counting trials were the same as memory trials except
that a 2-digit number was presented instead of a memory cue. A participant was tasked with
counting up in 3's silently in their head from that number for 10 seconds, and then they rated
their focus during the rating section of the trial. Counting trial timings were matched to the
memory trials. Participants on average rated their focus as 3.22 (SD = 0.424) out of 4 on
counting trials. Each memory or number cue was presented once per run in a random order
(both within and across runs), yielding 24 trials per run. There were 6 runs meaning that each
memory and number was presented a total of 6 times, yielding a total of 144 trials. The fMRI
task was produced using the MATLAB 2021b toolbox, Psychtoolbox-3 or Psychophysics Toolbox
Version 3 (PTB-3).

Memory Memory Open eyes Rating
cue recall
p - - -
Marathon Close )) How vivid? +
eyes - 1-4
) | | v Tone |
_ 5
d
3s 1s 10s 1s <3s 3s
Memory Memory Open eyes Rating
cue recall
Graduation Close > ’ | ‘))) How vivid? +
eyes K A/ 1-4
| | Tone | | |
. ;o N
rd
3s 1s 10s 1s <3s 3s
Number Count up in Open eves Rating
cue 3's
. . - - .
)) How
10 Close 10,13, focused? +
eyes 16... Tone 1-4
. s N . 78 >/
3s 1s 10s 1s <3s 3s

Figure 26. Autobiographical memory task performed during 7T fMRI. Remote (dark orange box) and
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recent (light orange box) autobiographical memory retrieval trials consisted of a memory cue (3 s),
then a cue to close eyes (1 s), followed by a period of vivid memory retrieval (10 s), after which there
was an auditory tone to cue opening of the eyes (1 s), followed by a vividness rating (up to 3 s) and
finally a fixation cross (3 s). Counting baseline trials (grey box) consisted of a number cue (3 s), followed
by a cue to close eyes (1 s), then a period of counting (10 s), after which there was an auditory cue to
open eyes (1 s), then a focus rating (up to 3 s) and finally a fixation cross.

5.3.3. Behavioural analyses

The memory descriptions provided in the autobiographical interview were objectively

analysed using the autobiographical interview method (Levine et al., 2002). Each memory

|” III

detail was categorised as belonging to one of the “internal” or “external” detail categories.
Internal detail categories included specific events, places, perceptual observations and
thoughts or emotions. External detail categories included unrelated events, semantic
knowledge, repetition of details, or other more general statements. Because participants were
using their calendars to remind them of events, | did not include temporal details as an
internal details category. For each memory, the number of memory details in each category
were summed to give a score per category. To check the reliability of memory scoring, |
performed an interrater reliability analysis. A subset of 48 randomly-selected memories were
scored by another experimenter. Intraclass coefficient estimates were calculated using SPSS
statistical package version 22 (SPSS, Chicago, IL) based on a single-measure, absolute-
agreement, two-way random-effects model (see Table 6 for interrater reliability of scores). For
each category, the scores were averaged across memories of the same time period, remote

and recent. Paired Wilcoxon signed rank tests were used to determine if there were

differences in the number of details remembered for remote compared to recent memories.
5.3.4. MRI sequences
MRI data were acquired on a Siemens Magnetom Terra 7T MRI system (see Chapter 2, Section

2.6.1).

5.3.4.1. Functional MRI

Partial brain, submillimetre resolution (voxel size = 0.8 x 0.8 x 0.8 mm?3) fMRI images were
acquired using a T2*-weighted 3D GE-EPI sequence, with a volume acquisition time of 3872
ms, TR =44 ms, TE = 18.7 ms, flip angle = 14°, field of view = 192 x 192 x 70.4 mm?3, slab angle

= 15°, direction of phase encoding = anterior-to-posterior, parallel imaging acceleration in
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both the direction of the partition (factor = 2) and the direction of phase encoding (factor =
4), partial Fourier 6/8 in the phase-encoded direction of the EPI readout, and a binomial
(1331) water-selective excitation. Four images, with the same parameters but the opposite
(posterior-to-anterior) phase encoding direction, were acquired at the start of the sequence.

Advanced B0 shimming (WIP 1441) was used.

5.3.4.2. Anatomical MRI

Four anatomical images were acquired. One whole brain MT-weighted EPl image was acquired
per participant using a T2*-weighted 3D GE-EPI sequence with many of the same parameters
used in the fMRI sequence. Some parameters were modified: MT- based contrast = on, volume
acquisition time =3 m 45 s, TE = 16.97 ms, flip angle = 8°, field of view = 192 x 192 x 128 mm?,
parallel imaging (factor = 4). MT-weighted EPI images were matched to the fMRI images in
terms of geometrical distortion (due to use of the same parameters e.g., echo spacing and
acceleration factor) but they had better contrast between grey and white matter (due to the

MT weighting). Therefore, they were useful for coregistering cortical surfaces to the fMRI data.

One whole brain, submillimetre resolution (voxel size = 0.65 x 0.65 x 0.65 mm?3) T1 weighted
image was acquired using an MP2RAGE sequence (Marques et al., 2010) with a volume
acquisition time =8 m 42 s, TR = 5000 ms, TE = 2.54 ms, Tl = 900 ms and 2750 ms, 5° and 3°
flip angles, field of view 208 x 208 x 156 mm?3, and in-plane GRAPPA acceleration (factor = 3).
This image was used to define the boundary between grey matter and CSF, and the boundary

between white matter and grey matter.

Two partial volume, submillimetre resolution (voxel size = 0.52 x 0.52 x 0.5 mm?) T2 weighted
images were acquired using a T2-weighted 3D SPACE sequence (Mugler et al., 2000) with a
volume acquisition time =10 m 25 s, TR = 3500 ms, TE = 229 ms, flip angle = 8°, field of view
=200 x 169 mm x 56 mm, partition oversampling = 14.3%, and in-plane GRAPPA acceleration
(factor = 2). The two images were first coregistered using SPM Realign. Then they were
denoised and averaged, using the Structural Averaging Toolbox, prior to being used for manual

segmentation of the hippocampal subfields.
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5.3.5. Preprocessing

5.3.5.1. Defining cortical surfaces

For each participant, the MP2RAGE image was denoised, using the Structural Averaging
Toolbox, before using FreeSurfer version 7.3.2 to define the pial surface, the boundary
between grey matter and CSF, and the white matter surface, the boundary between white
matter and grey matter. To improve the definition of the pial surface, FreeSurfer has the option
to additionally use a whole brain T2-weighted image. As my T2-weighted images were partial
brain, | produced and additionally used a “splice” whole brain T2-weighted image by
coregistering, denoising and averaging the MP2RAGE T2-weighted image with the two high
resolution partial brain T2-weighted images. The surfaces were visually inspected and, where

appropriate, manual edits were made.

5.3.5.2. Motion and distortion correcting fMRI data

Using FSL version 6.0, the susceptibility-induced off-resonance field was estimated from the
four opposite phase encoded (i.e., posterior-to-anterior) images and the first four (i.e.,
anterior-to-posterior) images from the fMRI time series, which contained distortions going in
opposite directions (Andersson et al., 2003; Smith et al., 2004). | then used SPM12 software,
implemented in MATLAB, to calculate a voxel displacement map from the estimated BO field
map. The voxel displacement map could then be used to undistort the fMRI data. The SPM
Realign and Unwarp function was used to estimate rigid body realignment and unwarping
(Andersson et al., 2001). SPM Realign and Unwarp also corrects for susceptibility-motion
interactions by estimating how the BO field changes with participant movement. The fMRI
data were resampled, correcting for motion and distortion in one step and a mean fMRIl image
was calculated. No further resampling of the fMRI data was performed to minimise smoothing

of the image due to interpolation.

As noted previously, the data from two participants were excluded from further analyses as
their head moved more than 2 voxels (1.6 mm) over the course of the scanning session, one
participant moved 4.39 mm and the other moved 5.78 mm. The remaining 20 participants did

not move their head more than 1.35 mm (mean = 0.65 mm, SD = 0.30).

The whole brain MT-weighted EPI image was also unwarped using FSL, using one image that

had opposite phase encoding (i.e., posterior-to-anterior) to the fMRI time series and the other
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that had the same phase encoding (i.e., anterior-to-posterior; Andersson et al., 2003; Smith
et al., 2004). It was then coregistered to the mean fMRI image using SPM. Due to its high grey
matter to white matter contrast, this image was used for coregistration of the cortical surfaces

to the fMRI data.

5.3.5.3. Aligning cortical surfaces to fMRI data

The pial and white matter surfaces were coregistered to the fMRI data. The coregistration was
estimated in three steps. First, a volume-based registration of the MP2RAGE T1 image to the
MT-weighted EPI image was estimated by FSL Flirt using NMI. Then, BBR of the cortical
surfaces to the high contrast fMRI image was estimated using FreeSurfer BBRegister, which
works by maximising the signal intensity gradients across the pial and white matter surfaces
(Greve & Fischl, 2009). Finally, recursive BBR was used to coregister the cortical surfaces to
the high contrast fMRI image using the OpenFmriAnalysis toolbox. This works by dividing the
cortical surface mesh into increasingly smaller subsections and performing BBR iteratively on
each section of mesh (van Mourik, Koopmans, et al., 2019). Six iterations of BBR were
performed. To correct for any distortion remaining in the fMRI data, in each iteration, scaling
was allowed along the phase-encoding direction, because in GE-BOLD EPI, geometrical

distortion is most severe in the phase-encoded direction (Jezzard & Clare, 1999).

5.3.6. Whole brain mass univariate analysis

The fMRI data were normalised to MNI space and then smoothed (FWHM = 6 mm) using
SPM12. The GLM analysis was performed in SPM12. The model included three regressors of
interest which were the 10 s recall periods of remote memories, the 10 s recall periods of
recent memories, and the 10 s periods of counting. Despite memory recall and counting trails
being rated, on average, as very vivid and very focused, respectively, | decided to use vividness
and focus as additional regressors of no interest in the GLM to account for any potential
effects. The six motion parameters were also modelled. For each participant, a t-statistic map
of memory recall was produced by contrasting remote and recent beta estimates with
counting beta estimates. Group level analysis was then performed in SPM12 to obtain a t-

statistic map for each contrast.
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5.3.7. Delineating regions of interest

5.3.7.1. Cortical layer ROIs

As well as defining the cortical surfaces, FreeSurfer segments the brain into cortical and
subcortical areas. The brain areas that corresponded with the areas activated by memory
recall, as determined by the brain area level analysis, were selected. For some brain areas, the
FreeSurfer masks were combined to create a mask that encompassed the full area of
activation. These brain area masks were coregistered to the fMRI data using BBR and then
translated from surface space into volume space by projecting them across the surface
normal, which is a 3D vector that runs perpendicular to the surface. Gaps in the ROIs were
filled in using FSL Maths Edge, Dilate and Erode operations. Small masks were combined to
give 7 cortical brain areas. Where appropriate, manual edits were made to the cortical area

ROls.

Within each cortical area ROI, | divided the cortical grey matter into 3 equivolume layers (deep,
middle and superficial) using the OpenFmriAnalysis toolbox. Two additional surfaces were
produced between the pial and white matter surfaces using the level set method (Waehnert
et al., 2014). The distance of each ROI voxel to 5 compartments (white matter, CSF, and the
superior, middle and deep cortical layers) was calculated, once again using the level method.
From this, the distribution of each voxel’s volume over the 5 compartments was calculated.

Voxels that were 80% or more within a given layer were included in the layer ROI.

GE-BOLD sequences are susceptible to an effect known as the superficial layer bias effect or
venous effect (Kay et al., 2019). Because there are more large veins in the superficial layers,
and blood drains from the deep to superficial layers (Duvernoy et al., 1981), the measured
BOLD signal is highest in the superficial layers. To address this, voxels with a tSNR lower than
the 65th percentile of the tSNR distribution were removed from the cortical layer ROIs as they
were expected to contain large veins (Jia et al., 2021). To remove voxels in areas with high
distortion from the analysis, a Jacobian map was estimated from the fMRI data using the
HySCO tool in the ACID MATLAB toolbox (Ruthotto et al., 2012). The Jacobian is a measure of
the displacement of the signal contained within a voxel and captures the degree of
compression or stretching that has occurred (Jezzard & Balaban, 1995). It can therefore be

used as a quantitative measure of distortion (Clark et al., 2021). Voxels with Jacobian values
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lower than the 5th percentile and higher than the 95th percentile of the Jacobian distribution
were considered to be highly distorted and were therefore removed from the cortical layer

ROls.

5.3.7.2. Hippocampal subfield ROIs

The two partial brain T2-weighted images were denoised and averaged. ITK-SNAP version
3.2.0 was used to manually delineate the hippocampal subfields, according to an established
segmentation protocol, on the resultant T2-weighted image (Dalton et al., 2017). The whole
hippocampus, bilaterally, was manually delineated into 6 subregions: DG/CA4, CA3/2, CA1,
subiculum, a region which combined the presubiculum and the parasubiculum known
hereafter as the pre/parasubiculum, and finally the uncus. To assess the reliability of the
manual segmentations, | used inter-rater reliability analysis. Twenty five percent of
hippocampi (5 of 20 participants) were additionally segmented by a separate experimenter
and the similarity between experimenter segmentations was assessed using the Dice
similarity coefficient, which ranges from 0 (no overlap) to 1 (complete overlap; see Table 9 for

the interrater reliability results).

5.3.8. Univariate hippocampal subfield analyses

A single BOLD signal time course was obtained for each subfield by averaging the BOLD signal
across all voxels in the subfield. A temporal GLM was then applied to the subfield time courses
using the same model described in Section 5.3.6. However, this time, instead of applying the
GLM and statistical tests per voxel, they were applied per subfield. In each subfield, two
condition contrasts were calculated using a condition subtraction: remote memory retrieval
minus the counting baseline, and recent memory retrieval minus the counting baseline.
Differences between these two contrasts were then tested using Bonferroni corrected paired
Wilcoxon signed rank tests, thereby testing for a difference in activation during remote and

recent memory retrieval.

5.3.9. Representational similarity analysis

Each trial was modelled with a separate GLM with one regressor of interest: the 10 second
retrieval or counting period of that trial. For memory trials, the 10 second retrieval periods of
all other memory trials were included as regressors of no interest; while for counting trials,

the 10 second retrieval periods of all other counting trials were included as regressors of no
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interest. This protocol attempted to isolate the activity relating to each specific memory recall
or number trial. Vividness ratings, focus ratings and motion parameters were included as
regressors of no interest. To limit the contribution of noisy voxels to the multivariate activation
patterns, | used multivariate noise normalisation (Walther et al., 2016). In multivariate noise
normalisation, the beta estimates for each voxel are divided by the square root of the GLM

residuals, thereby down-weighting noisier voxels.

| performed RSA using the RSA toolbox, following a procedure that was used in a previous
study on individual memory representations (Barry et al., 2018). For each memory trial, the
similarity of activity patterns across trials of the same memory was calculated by averaging
the Fisher Z-transformed Pearson product-moment correlation coefficient to give a “within-
memory” similarity measure. Next, the average correlation of the trial with trials of all other
memories was calculated to give a “between-memory” similarity measure. Both within- and
between- memory similarity measures were calculated by comparing the trial to trials in
different runs. To estimate the memory-specific representation strength on the recall trial, the
between-memory similarity measure was subtracted from the within-memory similarity
measure. These calculations were repeated for counting trials, first comparing the trial to
other trials of the same number and then to trials of other numbers. The trial-by-trial memory-
and number- specific representation strengths were then averaged across trials of the same
condition. At the group level, a mean representation strength that was significantly higher
than 0, evaluated using a one-sample Wilcoxon signed rank test, would suggest that on
average across participants and recall trials, the activity pattern for the memory or number
was distinct from activity patterns of all other memories or numbers. Bonferroni-corrected
Wilcoxon signed rank tests were used to test for stronger representations of remote memories

compared recent memories and numbers.

5.3.10. Informational connectivity analysis

For the ROIs that contained a difference in representation strength between conditions, | next
sought to understand if there was a relationship between these representations and
representations in other ROIs. To examine this, | used a method known as informational
connectivity (Coutanche & Thompson-Schill, 2013). | estimated the covariation of trial-by-trial
representation strengths between the ROl and each of the other ROIs by calculating the Fisher

Z-transformed Pearson product-moment correlation. A positive correlation indicated that
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whenever the ROl with detectable representations represented the memory or number, the
other region was likely to as well. For each pair of brain regions and each experimental
condition, | tested for a reliable positive correlation across participants using one-sample

Wilcoxon signed rank tests.

5.4. Results

5.4.1. Behavioural results - no differences between remote and recent memories

in terms of the number of overall internal and external details

There were no differences between remote and recent memories in terms of the number of
overall “internal” or “external”, which was assessed by analysing descriptions of the memories
provided by the participants prior to the scan details (Table 5 for detail scores by subcategory;
Table 6 for interrater reliability of scores). The most pertinent details here were the internal
details as they reflected the episodic nature of the recalled experiences, which was my main

interest.

In terms of the detail subcategories, for the external details (which were less relevant for my
analysis), the number of general statements that were external to the event differed between
remote and recent memories (p = 0.0326; Figure 27). However, this difference was very
marginal —on average 0.47 details (approximately half a detail) difference between memories.
This could reflect a slight increase in irrelevant statements as a participant filled the silence
while they attempted to remember remote details that might have been less accessible. There
were no differences between any other detail subcategories, particularly for the internal

details subcategories (Figure 27; Table 5).
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Figure 27. Comparison of remote and recent autobiographical memory detail scores. The average
number of Internal (upper plot) and External (lower plot) details per memory were compared for
remote and recent memories. The number of “External Other” details (i.e., general statements that
were unrelated to the memory being recalled) were marginally higher for remote compared to recent
memories. The heavy orange dots are the means, and the lighter dots are the individual participants’
data.
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Table 5. The data used to generate the graphs in Figure 27 - comparison of remote and recent
autobiographical memory detail scores.

. Mean score + SD
Detail category - - P value
Remote memories Recent memories
Internal 25.92 £12.63 26.75+12.56 0.467
Event 11.88 + 7.09 12.14 £6.21 0.55
Perceptual 6.30 £ 3.07 6.98 + 3.57 0.224
Place 2.77 £1.19 2.87+£1.04 0.468
Thoughts/emotions 498 +3.17 4.76 +3.00 0.478
External 6.351+4.54 5.85 +4.97 0.104
External events 1.23+£1.22 1.17+1.17 0.619
Semantic 1.68£1.03 1.48 +1.27 0.138
Repetition 1.87+£1.80 2.09+1.91 0.532
Other 1.58 +1.58 1.11+1.53 0.0326 *

Table 6. Interrater reliability of memory detail scores. Intraclass correlation coefficients between the
two researchers who independently scored a subset of 20% of the memories. Scores above 0.8

constitute very high agreement.

Detail category

Internal

Event

Perceptual

Place

Thoughts/emotions
External

External events

Semantic

Repetition

Other

0.975
0.940
0.866
0.871
0.844
0.832
0.683
0.781
0.767
0.798

Intraclass correlation

5.4.2. A core network of brain areas were activated by autobiographical memory

retrieval

Next, | identified the brain areas were engaged during autobiographical memory retrieval by

comparing all of the memory trials with all of the counting trials. | found significant (p > 0.01,

uncorrected) activity in several brain areas (Figure 28a, Table 7), including the mPFC (peak

151




voxel at left: x =-11,y = 43,z=-7; right: x=7,y =52, z=-9), retrosplenial cortex (left: x = -7,
y =-47, z = 6), lateral prefrontal cortex (left: x =-29,y =30, z=-17; right: x=35,y =34,z =-
17), mLTC (left: x =-45,y=-56,z = 17; right: x=56,y = -4, z=-17), superior gyrus of the lateral
temporal cortex (sLTC; left: x=-39, y=-6,z =-14; right =x =22,y =58, z = 5), parahippocampal
cortex (right: x =9, y = -41, z = 3), occipital cortex (left: x=7,y =52,z =-9; right: x=15,y = -
92,z =-1), and hippocampus (left: -19, -33, 10). This same set of brain areas were active when
remote and recent recall trials were separately compared with counting trials (Figure 28b and
28c). These results show that ultra-high 7T resolution can reveal the autobiographical memory
retrieval core network of brain areas, irrespective of memory remoteness, supporting
previous 3T fMRI studies (Buckner & Carroll, 2007; Hassabis & Maguire, 2007; Maguire, 2001;
Schacter et al., 2007; Svoboda et al., 2006).
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a Memory retrieval > Counting

p < 0.01 (uncorrected)

b Remote memory retrieval > Counting

C

Figure 28. Core network of brain areas active during autobiographical memory retrieval. A core
network of brain areas was activated during (a) autobiographical memory retrieval, (b) remote
autobiographical memory retrieval and (c) recent autobiographical memory retrieval. T-scores are

thresholded at p < 0.001 (uncorrected).
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Table 7. The data used to generate the graphs in Figure 28 - activation peaks for the autobiographical
memory retrieval > counting baseline contrast.

. X Cluster size Z Coordinates
Brain region
(voxels) score X y z
Retrosplenial cortex (L) 6.72 -7 -47 6
Precuneus (L) 10963 6.57 -5 -51 13
Parahippocampal cortex (R) 6.24 9 -41 3
Fusiform gyrus (L) 11390 6.57 -25 -40 -13
Pars orbitalis, lateral prefrontal cortex (L) 55036 6.00 -29 30 -17
Pars triangularis, lateral prefrontal cortex (L) 5.95 -52 18 3
Ventromedial prefrontal cortex, medial prefrontal
5.97 -11 43 -7
cortex (L)
" . 15022
Ventromedial prefrontal cortex, medial prefrontal
5.70 7 52 -9
cortex (R)
Fusiform gyrus (R) 9520 5.81 29 -35 -17
Pars orbitalis, lateral prefrontal cortex (R) 4525 5.68 35 34 -17
Occipital cortex (L) 3243 5.48 -11 -98 -4
Cerebellum (L) 457 -18 -8 -18
Middle temporal gyrus, lateral temporal cortex (R) 3766 5.09 56 -4 -17
Occipital cortex (R) 1711 4.64 15 -92 -1
Olfactory cortex (R) 234 4.62 0 12 -2
Temporal pole, lateral temporal cortex (R) 208 4.28 52 12 -11
Insula (R) 1142 3.51 34 10 -14
Middle temporal gyrus, lateral temporal cortex (L) 701 412 -45 -56 17
Hippocampus (L) 336 411 -19 -33 10
Thalamus (L) 3.18 -10 -30 9
Superior temporal gyrus, lateral temporal cortex (L) 3.61 -39 -6 -14
230
Temporal pole, lateral temporal cortex (L) 3.53 -43 0 -18
Superior frontal gyrus, lateral prefrontal cortex (R) 91 3.46 22 58 5
Pars triangularis, lateral prefrontal cortex (R) 23 3.28 51 25 17
Superior temporal gyrus, lateral temporal cortex (R) 3 3.19 47 -19 4
Thalamus (R) 10 3.18 4 -5 10
Anterior cingulate & i lat i, medial
g paracingulate gyri, media ) . . 36 ;
prefrontal cortex (R)

Note: (R) refers to right hemisphere and (L) refers to left hemisphere.

5.4.3. DG and CA2/3 were more active during retrieval of recent compared to

remote autobiographical memories
Next, | examined activation during remote and recent autobiographical memory retrieval in
the hippocampal subfields. | divided the hippocampus into six subfields - the DG, CA2/3, CA1,

subiculum, pre/parasubiculum and uncus. In each subfield, | calculated the percentage change

in signal during remote and recent autobiographical memory retrieval. A signal change that
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was higher than zero, assessed using a Wilcoxon signed rank test, indicated that remote or
recent memory retrieval activated the hippocampal subfield. Differences in the degree of
signal change between remote and recent memory retrieval were also compared using paired

Wilcoxon signed rank tests.

Recent autobiographical memory retrieval activated all hippocampal subfields (Figure 29,
Table 8; Table 9 for interrater reliability of scores), while remote autobiographical memory
retrieval activated all subfields except hippocampal CA2/3 (Figure 29, Table 8). Furthermore,
there was higher activation during recent compared to remote memory retrieval in two
subfields: the DG (p = 0.000734, Figure 29) and CA2/3 (p = 0.00639, Figure 29). There were no

differences in any of the other subfields (Table 8).

Hippocampus
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DG CA2/3 CA1 Subiculum Pre/parasubiculum Uncus

Subfield

Figure 29. Hippocampal subfield activation during remote and recent autobiographical memory
retrieval. The percentage signal change associated with remote and recent autobiographical memory
retrieval was compared in each hippocampal subfield. The DG and CA2/3 had a higher response to
recent compared to remote autobiographical memory retrieval. The heavy orange dots are the means,
and the lighter dots are the individual participants’ data.
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Table 8. The data used to generate the graphs in Figure 29 - hippocampal subfield activation during
remote and recent autobiographical memory retrieval.

0, H = -
RO Condition % Signal change p-value p-value
mean SEM (vs. zero) (remote vs. recent)
Remote 0.0803 0.0146  0.0000263 ***
DG 0.000734 ***
Recent 0.1191 0.0180 0.00000249 ***
R t 0.0322 0.0163 0.114
CA2/3 emote 0.00639 **

Recent 0.0715 0.0191 0.000105 ***

Remote 0.0490 0.0115 0.000409 ***

CAL Recent 0.0653 0.0157 0.00000381 *** 0.245
. Remote 0.0382 0.0149 0.0191 *

Subiculum Recent  0.0575 0.0184 0.0057 ** 0.396
R . 7 .0242 .0163 *

Pre/parasubiculum emote 0.063 0.0 0.0163 0.324

Recent 0.0911  0.0213 0.00041 ***

Uncus Remote ~ 0.0643  0.0221 0.00895 ** 0175
Recent ~ 0.0924  0.0232 0.0008 *** :

Table 9. Interrater reliability results for hippocampal subfield segmentation. Dice similarity
coefficients for the Two researchers independently segmented 5 of 20 participants. All subfields
achieved Dice coefficients that were higher than the pre-established thresholds from previous work
(Barry et al., 2021; Berron et al., 2017; Bonnici et al., 2013; Chadwick et al., 2014; Clark et al., 2023;
Dalton et al., 2019; Lee et al., 2014; Palombo et al., 2013; Yeung et al., 2019).

Dice similarity coefficient (mean £ SD)

Subfield
Left Right
DG 0.86 £ 0.03 0.86 +0.03
CA2/3 0.69 £ 0.01 0.70+£0.04
CAl 0.77 £0.02 0.79+0.01
Subiculum 0.80 £0.03 0.78 £ 0.02
Pre/parasubiculum 0.70+£0.03 0.71+£0.03
Uncus 0.87 +0.03 0.85+0.04

5.4.4. Individual remote memories were represented in the mPFC deep layers
and lateral temporal cortex deep and middle layers

Having conducted all the univariate analyses that | could notwithstanding the superior layer
bias, | next sought to understand whether individual remote memories could be decoded from

the multivoxel activity patterns in any of the hippocampal subfields or layers of the seven

cortical areas that were engaged during memory retrieval. | divided each of the seven cortical
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areas (the bilateral mPFC, lateral prefrontal cortex, mLTC, sLTC, retrosplenial cortex,
parahippocampal cortex and occipital cortex) into 3 cortical layers: superficial, middle and

deep. This yielded a total of 27 bilateral cortical layers and hippocampal subfield ROIs.

For each ROI, | used RSA (Kriegeskorte, Mur, & Bandettini, 2008) to quantify the strength of
the representations on each recall trial, following a similar procedure as a previous study that
decoded individual autobiographical memories (Barry et al., 2018). For each trial, the
correlation of voxel activation patterns within recall trials of the same memory were
subtracted from the correlation of patterns between recall trials of all other memories to yield
the representation strength of the trial (Figure 30). If a recall trial activated a similar voxel
response pattern as trials in which the same memory was recalled, and activated a distinct
pattern to trials in which different memories were recalled, then it would have a high
representation strength. This same procedure was repeated for the counting. Then the trial-
by-trial representation strengths were averaged within each condition: remote memories,
recent memories, and counting. A positive representation strength across all 20 participants
indicated that the memory or counting was decodable above chance. In other words, the brain

area represented the memory or counting.

| detected representations of remote autobiographical memories in two of the ROls, the mPFC
deep layer (p = 0.0328) and the mLTC deep layer (p =0.0117). Furthermore, in both the mPFC
deep layer and the mLTC deep layer, the remote memory representations were significantly
stronger than the counting representations (mPFC: p = 0.046; mLTC: p = 0.025), although there
was no detectable difference in representation strength between remote and recent
memories (MPFC: p = 0.33; mLTC: p = 0.786). There were also no detectable representations
(Table 10) or condition differences (Table 11) in representation strengths in any of the

remaining 25 ROls.

| detected representations of recent autobiographical memories in one of the 27 ROls, the
mLTC middle layer. These recent memory representations were significantly stronger than

representations of counting (p = 0.000201) and the remote memories (p = 0.007).
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Figure 30. Representations of individual remote memories, recent memories and counting. (a) For
each memory, the average Fisher Z transformed correlation in multivoxel pattern of activation
associated with recall trials of the same memory was calculated giving a “same memory similarity
score”. This was subtracted from its “different memory similarity score”, the average correlation with
multivoxel patterns of recall trials of different memories, to yield the representation strength of the
memory. (b) Two cortical areas contained layers with representation strengths that were significantly
greater than zero and different between remote memories, recent memories and/or counting. These
were the mPFC deep layer, mLTC deep layer and mLTC middle layer.

Table 10. Data used to generate Figure 30 - representations of individual remote autobiographical
memories, recent autobiographical memories, and counting.

. Representation
. Cortical " W-
Brain area Condition strength . . p-value
layer statistic
mean SD
Remote 0.001116 0.002147 162 0.0328 *
Recent 0.000410 0.001634 138 0.2310
Deep
Counting 0.000260 0.001053 78 0.3300
Remote 0.000182 0.002014 120 0.5960
Medial prefrontal  Middle Recent 0.000015 0.001212 105 1.0000
cortex Counting 0.000482 0.001302 61 0.1050
Remote 0.000517 0.001669 140 0.2020
Superficial Recent 0.000170 0.001642 94 0.7010
Counting 0.000322 0.001307 80 0.3680
Remote 0.000211 0.001175 78 0.3300
Deep Recent 0.000029 0.001112 109 0.8980
Counting 0.000169 0.000498 68 0.1770
Remote 0.000079 0.001143 117 0.6740
Lateral prefrontal i
cortex Middle Recent 0.000106 0.000693 99 0.8410
Counting 0.000063 0.000577 98 0.8120
Remote 0.000291 0.001255 126 0.4520
Superficial Recent 0.000051 0.000816 109 0.8980
Counting  0.000100 0.000536 129 0.3880
Remote 0.000225 0.001733 465 0.4640
Lateral t | Deep Recent 0.000023 0.001503 426 0.8350
ateral tempora Counting  0.000069 0.000503 439 0.7020
cortex (superior
gyrus) Middle Remote 0.000034 0.001993 364 0.5410
Recent 0.000193 0.001282 516 0.1560
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Counting  0.000327 0.001021 510 0.1810
Remote 0.000196 0.001632 374 0.6330
Superficial Recent 0.000017 0.001316 398 0.8770
Counting 0.000025 0.000777 394 0.8350
Remote 0.000710 0.001518 598 0.0117 *
Recent 0.000375 0.001501 519 0.1450
Deep
Counting 0.000026 0.001165 413 0.9730
Lateral temporal Remote 0.000059 0.001926 464 0.4720
cortex (middle Middle Recent 0.001326 0.001731 703 0.0000841 ***
gyrus) Counting  0.000020 0.001150 422 0.8770
Remote 0.000519 0.001654 546 0.0685
. ., Recent 0.000492 0.001736 535 0.0942
Superficial
Counting 0.000005 0.001373 410 1.0000
Remote 0.000030 0.005202 105 1.0000
Deep Recent 0.000122 0.004051 103 0.9560
Counting 0.001282 0.002817 60 0.0973
Retrosplenial Remote 0.000552 0.003727 129 0.3880
cortex . Recent 0.000468 0.003919 112 0.8120
Middle
Counting 0.000612 0.003665 95 0.7290
Remote 0.000303 0.004832 105 1.0000
Superficial Recent 0.000139 0.004691 107 0.9560
Counting  0.000449 0.003104 120 0.5960
Remote 0.000018 0.004905 98 0.8120
Deep Recent 0.000650 0.003757 66 0.1540
Counting 0.000471 0.002175 86 0.4980
Remote 0.000997 0.003278 133 0.3120
Parahippocampal . -
cortex Middle Recent 0.000454 0.003330 95 0.7290
Counting  0.000217 0.003367 118 0.6480
Remote 0.000848 0.003569 138 0.2310
Superficial Recent 0.000224 0.004472 90 0.5960
Counting 0.000302 0.002300 87 0.5220
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: Remote 0.000264 0.001111 75 0.2770
eep Recent  0.000058 0.000970 118 0.6480
Counting 0.000042 0.000779 109 0.8980
Remote 0.000008 0.001319 105 1.0000
Occipital cortex Middle Recent 0.000017 0.001046 108 0.9270
Counting 0.000027 0.000901 113 0.7840
Remote 0.000140 0.001362 90 0.5960
Superficial -
Recent 0.000534 0.001473 59 0.0897
Counting 0.000097 0.001052 112 0.8120
Remote 0.000353 0.003229 93 0.6740
DG N/A -
Recent 0.000929 0.002005 59 0.0897
Counting 0.000022 0.001964 106 0.9850
23 VA Remote 0.001795 0.005319 70 0.2020
Recent 0.000067 0.006467 107 0.9560
Counting 0.000574 0.003606 120 0.5960
Remote 0.000638 0.002059 79 0.3490
CAl N/A -
Recent 0.000243 0.001910 91 0.6220
Counting 0.000310 0.001964 116 0.7010
Remote 0.000067 0.002610 93 0.6740
Subiculum N/A Recent 0.000266 0.003003 116 0.7010
Counting 0.000603 0.002058 146 0.1330
Remote 0.001941 0.006136 61 0.1050
Pre/parasubiculum N/A -
Recent 0.001687 0.005438 79 0.3490
Counting 0.000048 0.002354 107 0.9560
Remote 0.000875 0.003661 127 0.4300
Uncus N/A Recent 0.000496 0.003024 126 0.4520
Counting 0.000317 0.002344 105 1.0000

Note: The hippocampal subfields were not divided into layers and so the Cortical Layers column is filled

with N/A.
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Table 11. Pairwise comparisons between representation strengths of remote autobiographical

memories, recent autobiographical memories and, counting.

Remote vs. Remote vs. Recent vs.
. Cortical Recent Counting Counting
Brain area
layer W- - W-
. .. p-value . .. p-value . p-value
statistic statistic statistic
Medial prefrontal Dgep 135 0.33 169 0.046 * 143 0.33
cortex Middle 121 0.588 151 0.269 134 0.588
Superficial 129 0.776 152 0.248 116 0.776
Lateral prefrontal De?ep 80 0.831 92 0.831 135 0.831
cortex Middle 121 1 117 1 100 1
Superficial 127 1 129 1 96 1
Lateral temporal Deep 410 1 455 1 415 1
cortex (superior Middle 294 0.245 280 0.245 381 0.702
gyrus) Superficial 382 1 355 1 396 1
Lateral temporal Deep 453 0.786 607 0.025 * 474 0.786
cortex (middle Middle 191 %097 48 og1a 707 0000201
gyrus) Superficial 403 093 516 039 523 0.39
Retrosplenial Deep 119 1 121 1 133 0.936
cortex Middle 102 1 117 1 117 1
Superficial 114 1 102 1 95 1
Parahippocampal Deep 116 1 106 1 93 1
cortex Middle 140 0.606 118 0.996 86 0.996
Superficial 119 1 143 0.495 106 1
Deep 82 0.818 68 0.531 114 0.818
Occipital cortex Middle 95 1 106 1 111 1
Superficial 126 0.904 95 0.904 61 0.315
DG N/A 124 0.996 94 0.996 75 0.831
CA23 N/A 72 0.693 77 0.693 97 0.784
CAl N/A 75 0.831 80 0.831 88 0.831
Subiculum N/A 102 1 88 1 87 1
Pre/parasubiculum  N/A 80 0.736 59 0.269 86 0.736
Uncus N/A 112 1 109 1 114 1

Note: All p-values are Bonferroni corrected. The hippocampal subfields were not divided into layers and
so the Cortical Layers column is filled with N/A.

5.4.5. Remote memory representations are correlated with cortical deep layers

and hippocampal CA3

| next explored the idea that the remote memory representations in the mPFC deep layers

and mLTC deep layers are communicated with other brain areas in the core network. While |

did not detect representations in any of the other brain areas when the representation
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strengths were averaged across trials, it is possible that memories were represented in these
areas on some recall trials. If the mPFC or mLTC deep layers was sharing memory-specific
information with another brain area then | would expect the trial-by-trial representation
strengths of the brain areas to covary (Coutanche & Thompson-Schill, 2013). | examined this
by correlating the trial-by-trial representation strengths of all remote memory trials between
the mPFC deep layers and each of the other 26 other ROIs under investigation and then
repeating this for the mLTC. Previous studies have interpreted correlated representation
strengths as an indication of information sharing between areas (Aitken & Kok, 2022; Koster

et al., 2018; Shao et al., 2023).

| found 2 areas with correlated trial-by-trial representation strengths with the mPFC deep
layers - the retrosplenial cortex deep layers (p = 0.04; Figure 31) and the occipital cortex deep
layers (p = 0.0172; Figure 31; Table 12 for the results from other brain areas). There were 3
areas with correlated trial-by-trial representation strengths with the mLTC deep layers - the
retrosplenial cortex deep layers (p = 0.024; Figure 31), the parahippocampal cortex deep layers
(p = 0.0328; Figure 31) and hippocampal CA2/3 (p = 0.0107; Figure 31; see Table 13 for the

results from other brain areas).
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Lateral temporal cortex (middle gyrus) deep layer connectivity (continued)
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Figure 31. Informational connectivity during remote and recent autobiographical memory retrieval.
(a) the trial-by-trial representation strengths of the mPFC deep layer, mLTC deep layer and mLTC middle
layer were correlated with those in all other areas in the core network. A correlation that was different
from zero suggested informational connectivity, sharing of memory content, between the brain areas.
(b) Remote memory representation strengths were correlated between the mPFC deep layer and
retrosplenial cortex deep layer and occipital cortex deep layer. The remote memory representation
strengths were correlated between the mLTC deep layer and the retrosplenial cortex deep layer,
parahippocampal cortex deep layer and hippocampal CA2/3. The recent memory representation
strengths were correlated between the mLTC middle layer and the mPFC middle layer and sLTC

superficial layer.
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Table 12. Informational connectivity of the mPFC deep layer during recall of remote autobiographical

memories.
ROI Layer Correlation V\.,- . P-value
mean SD statistic

Lateral prefrontal Deep 0.0409 0.1837 132 0.33
cortex Middle 0.0283 0.2323 110 0.869
Superficial 0.0344 0.2167 130 0.368
Lateral temporal Deep -0.0338 0.1972 82 0.409
cortex (superior Middle -0.0151 0.1971 99 0.841
gyrus) Superficial 0.0805 0.1700 151 0.0897
Lateral temporal Deep 0.0158 0.1777 115 0.729
cortex (middle Middle -0.0242 0.1913 101 0.898
gyrus) Superficial -0.0390 0.2261 87 0.522
Retrosplenial Deep 0.0927 0.2020 160 0.04 *
cortex Middle 0.0179 0.1609 126 0.452
Superficial 0.0206 0.1864 109 0.898
Parahippocampal De.ep -0.0029 0.2131 115 0.729
cortex Middle 0.0225 0.1561 132 0.33
Superficial 0.0378 0.1095 146 0.133

Deep 0.0999 0.1665 168 0.0172 *

Occipital cortex Middle 0.0651 0.1813 151 0.0897
Superficial 0.0687 0.1737 146 0.133

DG N/A 0.0701 0.1591 151 0.0897
CA2/3 N/A 0.0360 0.2257 125 0.475
CAl N/A 0.0048 0.1526 109 0.898
Subiculum N/A -0.0235 0.2003 85 0.475
Pre/parasubiculum  N/A -0.0386 0.1857 81 0.388
Uncus N/A 0.0457 0.1424 130 0.368
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Table 13. Informational connectivity of the lateral temporal cortex (middle gyrus) deep layer during

remote autobiographical memory retrieval.

ROI Layer Correlation W . P-value
mean SD statistic
Medial prefrontal Deep 0.0158 0.1777 115 0.729
cortex Middle 0.0574 0.2162 134 0.294
Superficial -0.0404 0.1842 75 0.277
Lateral prefrontal Deep -0.0149 0.2433 95 0.729
cortex Middle -0.0138 0.1904 96 0.756
Superficial 0.0276 0.1813 120 0.596
Lateral temporal Deep 0.0266 0.1703 137 0.245
cortex (superior Middle 0.0021 0.1915 124 0.498
gyrus) Superficial ~ -0.0052 0.1792 103 0.956
Retrosplenial Deep -0.1156 0.2102 45 0.024 *
cortex Middle 0.0989 0.2549 146 0.133
Superficial -0.0139 0.2174 90 0.596
Parahippocampal Deep -0.0699 0.1480 48 0.0328 *
cortex Middle 0.0057 0.1522 121 0.571
Superficial 0.0377 0.1766 131 0.349
Deep -0.0094 0.1578 89 0.571
Occipital cortex Middle 0.0423 0.2103 128 0.409
Superficial 0.0114 0.1854 117 0.674
DG N/A 0.0747 0.2126 152 0.0826
CA2/3 N/A 0.1143 0.1747 172 0.0107 *
CAl N/A 0.0077 0.1993 111 0.841
Subiculum N/A 0.0144 0.2332 111 0.841
Pre/parasubiculum N/A 0.0077 0.2039 84 0.452
Uncus N/A 0.0110 0.1758 114 0.756

5.4.6. Recent memory representations are correlated amongst cortical middle
layers

| next investigated the informational connectivity of the mLTC middle layer during retrieval of
recent autobiographical memories, using the same method as described above. | found just
two ROIs with correlated trial-by-trial representation strengths: the sLTC superficial layer (p =

0.0136) and the mPFC middle layer (p = 0.00422; Figure 31; Table 14 for the results from the

other brain areas).
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Table 14. Informational connectivity of the lateral temporal cortex (middle gyrus) middle layer

during recent autobiographical memory retrieval.

Correlation W-
ROI Layer mean D statistic P-value
Medial prefrontal Deep 0.0273 0.1696 127 0.43
cortex Middle 0.1153 0.1593 179 0.00422 **
Superficial 0.0257 0.1589 121 0.571
Lateral prefrontal Deep 0.0041 0.1629 114 0.756
cortex Middle 0.0226 0.2105 121 0.571
(middle gyrus) Superficial -0.0044 0.2359 99 0.841
Lateral temporal Deep 0.0341 0.1498 127 0.43
cortex (superior Middle -0.0215 0.1775 84 0.452
gyrus) Superficial 0.0948 0.1441 170 0.0136 *
Deep -0.0552 0.2436 81 0.388
Retrosplenial cortex Middle 0.0321 0.1342 135 0.277
Superficial -0.0628 0.1962 77 0.312
Parahippocampal Deep 0.0205 0.1588 111 0.841
cortex Middle 0.0296 0.1932 124 0.498
Superficial -0.0293 0.1900 89 0.571
Deep -0.0114 0.1577 95 0.729
Occipital cortex Middle 0.0680 0.1869 144 0.154
Superficial 0.0516 0.1912 135 0.277
DG N/A 0.0500 0.2262 129 0.388
CA2/3 N/A 0.0536 0.2459 141 0.189
CAl N/A 0.0009 0.1560 114 0.756
Subiculum N/A 0.0620 0.1443 148 0.114
Pre/parasubiculum N/A -0.0364 0.1747 79 0.349
Uncus N/A 0.0062 0.2295 107 0.956

5.5. Discussion

Supporting previous 3T fMRI studies, | identified a core network of brain areas that was
associated with autobiographical memory retrieval, including the mPFC, lateral prefrontal
cortex, mLTC, sLTC, parahippocampal cortex, retrosplenial cortex, occipital cortex, and the
hippocampus (Buckner & Carroll, 2007; Hassabis & Maguire, 2007; Maguire, 2001; Schacter
et al., 2007; Svoboda et al., 2006). Furthermore, | found increased activation during retrieval
of recent compared to remote autobiographical memories in the DG and CA2/3 of the
hippocampus. Next, | used RSA to investigate multivoxel representations of individual recent
and remote memories at the level of the cortical layers and hippocampal subfields. Supporting

my hypothesis, | detected multivoxel representations of rich and detailed remote memories
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(from 2-5 years ago) in the mPFC deep layers and in the deep layers of a lower order cortical
area, the mLTC, indicating the involvement of feedback processing pathways in remote

autobiographical memory retrieval.

By contrast, recent autobiographical memories were represented in the middle layer of the
mLTC, suggesting the involvement of feedforward signalling. To investigate these intermediate
cortical areas further, | used a method called informational connectivity to examine whether
the time course of layer-specific multivoxel representations in the mPFC or mLTC were
correlated with one another or with any other brain region in the core network. Correlated
representation time courses would indicate that there may be some sharing of representation
content between the areas (Coutanche & Thompson-Schill, 2013). | found that the time course
of remote memory representations in the mPFC and mLTC deep cortical layers was correlated
with those in the deep layers of several other cortical areas and with hippocampal CA2/3,
supporting my hypothesis of feedback signalling from the mPFC to the hippocampus via other
cortical areas. Whereas, the recent memory representations in the mLTC middle layer were
correlated with the sLTC superficial layer and the mPFC middle layer, indicating that there may

be some feedforward transfer of information during retrieval of recent memories.

5.5.1. The hippocampal microcircuitry supporting memory retrieval over time

The finding of increased activation in the hippocampal DG and CA3 during recent compared
to remote autobiographical memory retrieval suggest that the trisynaptic loop, consisting of
projections from the entorhinal cortex to the DG, then onwards to CA3, and finally synapsing

in CA1, becomes less involved in memory retrieval over time.

Supporting this view, molecular imaging and optogenetic studies in rodents found that, while
CA3is necessary for the retrieval of recently acquired memories, it is significantly less engaged
when remote memories are retrieved (Denny et al., 2014; Lux et al., 2016). Retrieval of these
older memories was, instead, found to solely rely on CA1 (Lux et al., 2016). These findings
inspired the hypothesis that CA3’s role in memory retrieval decreases over time, possibly
because of a failure to successfully pattern complete remote memory traces, which may have

degraded significantly in the hippocampus (Kesner & Rolls, 2015; Lux et al., 2016).

However, a study into human patients with damage to CA3 contradicts this view, finding

deficits in the retrieval of autobiographical memories of all ages (Miller et al., 2020).
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Furthermore, the strength of CA3 memory representations has actually been found to
increase as memories age (Bonnici et al., 2013). Unlike Bonnici et al. (2013), | was unable to
detect representations of individual remote (nor recent) memories in CA3 (nor in any of the
hippocampal subfields). However, | did find some evidence for the involvement of CA3 in
remote memory retrieval. Specifically, | found informational connectivity between the
neocortex and CA3 during remote memory retrieval, indicating that memory content may still
be passing through CA3 during retrieval of remote memories. These findings contradict the

proposition that the trisynaptic loop is less involved in the retrieval of remote memories.

Differences may exist between the 3T fMRI findings and my 7T fMRI findings because of the
different spatial resolution achieved by each of these field strengths (Bonnici et al., 2013). In
my experiment, we used a 7T fMRI voxel size of 0.8 x 0.8 x 0.8 mm?3, whereas the 3T fMRI
study used a voxel size of 1.5 x 1.5 x 1.5 mm3. The higher resolution afforded by 7T fMRI may

enhance the precision of subfield-specific effects.

In sum, my finding that the DG and CA3 are more engaged during recent compared to remote
autobiographical memory retrieval supports research in rodents suggesting that the
trisynaptic loop may be more engaged for retrieval of recent memories, whereas the
monosynaptic pathway is engaged during remote memory retrieval. However, my finding that
CA2/3 is informationally connected during retrieval of remote memories, as well as findings
from previous human studies of the hippocampal subfields, indicate that the trisyanaptic loop
still processes remote memory content during retrieval. These discrepancies highlight the
need for further human high-resolution fMRI studies of the hippocampal subfields to examine
the degree to which each input pathway to the hippocampus supports recent and remote

autobiographical memory retrieval.

Laminar fMRI could aid with the further distinction of these pathways. The trisyaptic loop
pathway extends from the entorhinal cortex 2 layer to the inner layers of CA1, via the DG and
CA2/3. Whereas the monosynaptic pathway extends from the entorhinal cortex 3 layer to the
outer layers of CAl. Unfortunately, significant geometric distortion and signal drop out around
the entorhinal cortex in our, and indeed most, fMRI data precluded the investigation of
memory representations in this brain area. Future studies could explore whether the

entorhinal cortex superficial layers are more involved in recent memory retrieval and middle
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layers in remote memory retrieval, which would distinguish between the trisynaptic loop and
the monosynaptic pathways. Furthermore, the distinction of BOLD activity in the layers of the
hippocampal subfields has recently been proven possible. Therefore, this approach could also
be applied to distinguish between trisynaptic loop and monosynaptic pathways, based on the

engagement of CA1 layers (Pfaffenrot et al., 2024).

5.5.2. Feedback signalling from medial prefrontal cortex during remote

autobiographical memory retrieval

In line with my hypothesis, | found that remote memory representations were present in the
deep layers of the mPFC, and connectivity between these deep layers and the deep layers of
lower-order cortical areas. Various laminar schemes of feedforward and feedback processing
have been proposed (Felleman & Van Essen, 1991; Markov et al., 2014; Shipp, 2023). While
these models differ in some aspects, they all agree that long-range feedback connections
between distant cortical areas travel in the deep layers. Consequently, the solely deep layer
involvement in remote memory retrieval found in this experiment strongly indicates the

involvement of feedback processing.

It should be noted that the studies investigating the anatomical pathways of feedforward and
feedback signalling have primarily focused on the primary sensory cortices of non-human
primates, and their generalisability to higher-order areas like the mPFC is debated (Barbas,
2015; Finn et al., 2021; Godlove et al., 2014; Rockland, 2019). However, recent evidence from
a non-human primate study finds that the electrophysiological properties of the cortical layers
is consistent throughout the neocortex (Mendoza-Halliday et al., 2024). It therefore seems
likely that the laminar connectivity patterns that give rise to these electrophysiological

properties is also ubiquitous.

From the informational connectivity results, a potential functional pathway for the top-down
influence of the mPFC deep layers on hippocampal CA3 during the retrieval of remote
memories can be reasoned (Figure 32). This feedback pathway would originate in the deep
layers of the mPFC, travel through the deep layers of the retrosplenial cortex and the mLTC,
and ultimately reach hippocampal CA3. Tracing studies in non-human primates have identified
direct anatomical connections between each of these cortical areas, except between the LTC

and hippocampal CA2/3 (Kobayashi & Amaral, 2003, 2007). Therefore, an additional
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intermediate cortical area must exist between the mLTC and CA2/3. The entorhinal cortex is a
prime candidate region, as it is known to serve as a gateway for information flow between the

hippocampus and the neocortex (Seltzer & Pandya, 1991).

It is worth noting that the informational connectivity between the retrosplenial cortex and the
mLTC was negative in sign. That is, there was a negative correlation between representation
strengths in each area. When there were stronger memory representations in retrosplenial
cortex, there were weaker memory representations in mLTC, and vice versa. This may indicate

the existence of inhibitory signalling during remote autobiographical retrieval.

5.5.3. Feedforward signalling to the medial prefrontal cortex during recent

autobiographical memory retrieval

| detected representations of recent autobiographical memories in the mLTC middle layer and
connectivity between the mLTC middle layer and the sLTC superficial layer and mPFC middle
layer (Figure 32). Supporting this, tracer studies in non-human primates have found
anatomical connections between the mLTC, sLTC and the mPFC (Bachevalier et al., 1997). The
middle and superficial layer involvement in retrieval of recent memories indicates
feedforward signalling from the lower-order mLTC and sLTC to the higher-order mPFC. Long-
range feedforward signalling pathways originate in the superficial layers of lower-order
cortical areas and target the middle layers of higher-order cortical areas. Feedforward
signalling of this kind may play a role in neocortical consolidation of recent autobiographical

memories during retrieval.
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Figure 32: Suggested informational connectivity schematic for remote and recent autobiographical
memory retrieval. Representations of remote memories were detected in the mPFC deep layers (dark
orange) and mLTC deep layers (dark orange). These areas were informationally connected to several
other cortical areas (indicated by dark orange lines). Representations of recent memories were
detected in the mLTC middle layer (light orange). This area is informationally connected to other areas
(indicated by the light orange lines). OC = occipital cortex, PHC = parahippocampal cortex, HPC =
hippocampus, CA = Cornu Ammonis, sLTC = lateral temporal cortex (superior gyrus), mLTC = lateral
temporal cortex (middle gyrus), RSC = retrosplenial cortex, mPFC = medial prefrontal cortex.

5.5.4. The medial prefrontal cortex and event schema

Previous studies have identified an important role for the mPFC in storing and processing
event schemas (Audrain & McAndrews, 2022; Guo & Yang, 2020; Preston & Eichenbaum,
2013; Reagh & Ranganath, 2023; van Kesteren et al., 2020). Event schemas are general
knowledge, derived from multiple prior experiences, about the typical sequence of events
that would unfold in a certain context (e.g., eating out at a restaurant). Many studies have
highlighted a role of event schemas in memory retrieval (Audrain & McAndrews, 2022;
Maguire et al., 1999; Preston & Eichenbaum, 2013; Reagh & Ranganath, 2023; Spalding et al.,
2015; van Kesteren et al., 2020); they may provide a structured way of cueing memories, by
stepping through the various stages of the event in sequence (e.g., sit down at table, receive
menu, order drinks etc.; Mandler, 1984). These cues could be used to guide selection of the
specific memory details, which may be located in lower order cortical areas. This role of
schemas may be particularly necessary for retrieval of remote memories where the specific

event details are less accessible.

An outcome of using event schemas to cue retrieval of remote memories is that, when the

event was non-typical, the specific details may be misremembered. Instead, the content of
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typical events may be retrieved (e.g., thinking you ordered ice cream for dessert as it is your
favourite). Indeed, people tend to confabulate information that is schema-congruent. For
example, when tasked with recalling words from list of thematically related words (e.g., hill,
valley and range), healthy controls tend to erroneously recall schema-congruent words that
were not included in the list (e.g., mountain; Roediger & Mcdermott, 1995). Patients with
mPFC damage make significantly fewer errors on this task (Ciaramelli et al., 2006; Warren et
al., 2014). Although, when recalling real-life autobiographical memories, mPFC damaged
patients tend to confabulate highly unrealistic stories, perhaps because their recollections are

unconstrained by event schema (Gilboa, 2010).

5.5.6. Memory representations in other neocortical areas

Both remote and recent autobiographical memories were detectable in the mLTC, although in
different layers. The lateral temporal cortex plays an important role in retrieving semantic
aspects of autobiographical memories (Maguire et al., 2000). These aspects include both
personal or generic information about the specific memory, such as people, places or objects.
These semantic memory details may be selected by schema representations in the mPFC, via
feedback connections, during remote autobiographical memory retrieval and consolidated

into schema, via feedforward connections, during recent autobiographical memory retrieval.

Several other cortical areas, the retrosplenial cortex, occipital cortex and parahippocampal
cortex had a time course of representation strengths that was correlated with that in the mPFC
or the mLTC. These lower-order cortical areas may contain the perceptual and further
semantic details that are specific to the autobiographical event being remembered.
Additionally, representations in mLTC deep layer directly correlated with hippocampal CA3.
Semantic details represented in the mLTC may be transmitted to CA3 for pattern completion

of the full memory.

5.5.7. Qualitative differences between remote and recent memories

It is important to note that qualitative differences between recent and remote memories may
contribute to the representational differences observed in this study. For events to be retained
in memory for many years with a high degree of vividness and detail, like the remote events

sampled in this study, they are likely to have a high degree of personal and emotional
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significance. By contrast, recent memories may not contain the same degree of significance.
Additionally, remote memories may evoke different emotional experiences to recent
memories during their retrieval, such as the feeling of nostalgia. These potential qualitative
differences between remote and recent memories could explain their representational
differences in the mPFC. Indeed, previous research has shown that the mPFC processes self-
referential, personally relevant and emotionally charged information (Gusnard et al., 2001;
Abraham, 2013; Kim & Johnson, 2013). A direct examination of how these variables mediate
the strength of memory representations in the mPFC could be an interesting direction for

future research.

5.5.8. Conclusions

In summary, my findings demonstrate a role for the mPFC deep layers, and their connectivity
with the deep layers of lower order cortical areas and hippocampal CA3, in retrieval of remote
memories. The deep layer involvement supports the idea that information is transmitted from
the mPFC to the hippocampus via feedback signalling pathways. Furthermore, my findings
indicate a role of the mLTC middle layer and its connectivity with the sLTC superficial layer and
mPFC middle layer in the retrieval of recent memories. This middle and superficial layer
involvement suggest a role of feedforward signalling from the lateral temporal cortex to the
mPFC. An interesting future direction would be to explore the precise nature of the memory
information that is shared between the mPFC and wider network of brain areas, which |

hypothesise may be related to event schemas.
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6. Experiment 4: The neural microcircuitry underpinning

the perception of scenes and events

6.1. Introduction

In this experiment, | sought to examine the specific role of the mPFC and hippocampus in
processing static scenes and dynamic events that were not autobiographical and over which |

had much more experimental control.

Participants watched short visual animations during fMRI scanning. The animations either
displayed sequences of unrelated real-world scenes (Unlinked Scenes) or real-world scenes
that were linked to form dynamic events (Linked Scenes). Control animations showed
sequences of static abstract patterns (Unlinked Non-scenes) or dynamic evolving patterns

(Linked Non-scenes). A control counting task was also included as a baseline condition.

First, | used a whole-brain mass-univariate analysis to identify a set of brain areas that
responded during scene and event perception, which included the mPFC and hippocampus.
Subsequently, | examined whether real-world, scene-based animations could be decoded
from non-scene animations in any of these brain regions based on their multivoxel activation
patterns, allowing the identification of scene-selective brain regions. | found that the DG,
CA2/3 and CA1 hippocampal subfields decoded both Linked Scenes from Linked Non-scenes
and Unlinked Scenes from Unlinked Non-scenes. This supports previous studies finding that
the hippocampus has a preference for processing scene imagery over other types of stimuli.
By contrast, the mPFC deep, middle and superficial layers decoded Linked Scenes from Linked
Non-scenes, but not Unlinked Scenes from Unlinked Non-scenes. This suggests that the mPFC
may have a preference for processing scene imagery, only when in the form of dynamic,
temporally extended events. Finally, | investigated the nature of communication between the
mPFC, hippocampus and wider system of brain regions using the method called informational
connectivity (Coutanche & Thompson-Schill, 2013), finding extensive information sharing
between the mPFC layers, hippocampal subfields and the layers of all other cortical regions in

the core network during scene and event processing.
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6.2. Background

A core network of brain regions, including the mPFC, hippocampus, lateral prefrontal, lateral
temporal, retrosplenial, parahippocampal and visual cortices, are consistently engaged in any
task that involves the visualisation of scenes and events, including retrieving past, planning
future, and perceiving present moment events (Buckner & Carroll, 2007; Hassabis, Kumaran,
& Maguire, 2007; Hassabis & Maguire, 2007; Hasson et al., 2008; Maguire, 2001; Robin et al.,
2018; Schacter et al., 2007; Summerfield et al., 2010; Svoboda et al., 2006; Zeidman, Mullally,
et al.,, 2015).

In Chapter 5, | investigated the microcircuits formed by these brain regions in support of
remote and recent autobiographical memory retrieval. In this next experiment, | sought to
understand the roles of the mPFC layers and hippocampal subfields in the temporal processing
of events. | define a scene as a 3D environment that could be encountered in the world (e.g.,
a beach, kitchen or garden) and an event as a dynamic sequence of actions unfolding within
a scene (e.g., a person swimming, preparing a meal, or sowing seeds) to create a story-like

narrative.

Focal, bilateral damage to the hippocampus results in severe impairments in any task requiring
the visualisation of scenes (Andelman et al., 2010; Scoville & Milner, 1957; St-Laurent et al.,
2009; Steinvorth et al., 2005; reviewed in McCormick, Ciaramelli, et al., 2018). Conversely,
damage to the mPFC does not prevent the vivid recollection of static scenes when specific
cues are used (Kurczek et al., 2015). However, it does impair the visualisation of events that
unfold over time (Bertossi & Ciaramelli, 2016; reviewed in McCormick, Ciaramelli, et al., 2018).
Therefore, the hippocampus appears crucial for the visualisation of scenes, while the mPFC
may integrate scene information across time to produce events that unfold over many
seconds, minutes or hours. In the real-world, scenes are rarely static. They are often
comprised of moving people and objects. Furthermore, our perspective of a given scene
changes as we shift our gaze and position within it. The mPFC has therefore been proposed to
provide a framework to the hippocampus into which scene imagery is continuously updated

(Monk, Barry, et al., 2021).

A previous MEG study found higher synchronisation of mPFC and hippocampal theta

oscillations during the visualisation of dynamic events when compared to static objects or
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scenes (Kaplan et al.,, 2017). Furthermore, the mPFC response precedes and drives the
hippocampal response during the reconstruction of past autobiographical events (McCormick
et al., 2020; Nawa & Ando, 2019, 2020) and during imagination of scenes (Barry et al., 2019;
Monk, Dalton, et al., 2021). Furthermore, in Experiment 3 (Chapter 5), | found that remote
autobiographical memory retrieval involves the mPFC deep layers and feedback signalling to
the deep layers of lower order cortical regions and the hippocampus, supporting the idea that

the mPFC guides event processing in a top-down fashion.

In this experiment, | leveraged the high spatial resolution of 7T MRI to further investigate
scene and event processing at the level of the cortical layers and hippocampal subfields, to

reveal the microcircuitry underpinning these functions.
Specifically, | asked:

5. Which brain regions are active during the perception of scenes and events?

6. Are real-world scenes and/or events distinguished from non-scene imagery in specific
mPFC layers or hippocampal subfields, or the layers of other cortical areas in the core
network?

7. What is the nature of connectivity between the mPFC layers, hippocampal subfields

and other cortical areas in the core network during scene and event processing?

In the task, participants watched short visual animations composed of individual image
frames. These images were either naturalistic scenes containing people and relevant objects
(Scenes) or abstract, patterns (Non-scenes). This design allowed for a direct comparison of
multivoxel response patterns associated with processing Scenes versus Non-scenes to identify
scene-selective brain regions. Additionally, the sequences of images were presented in two
formats: linked image sequences that formed an event (Linked) and unlinked, random
sequences of images (Unlinked). This manipulation allowed me to examine the differential

involvement of brain regions in processing static scenes and dynamic events.
| hypothesised that:

5. A core network of brain areas would respond during scene and event perception,
including the mPFC, lateral prefrontal, lateral temporal, parahippocampal,

retrosplenial, occipital cortices and the hippocampus, in accordance with previous
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research (e.g., Buckner & Carroll, 2007; Hasson et al., 2008; Zeidman, Mullally, et al.,
2015) and my results in Experiment 3 (Chapter 5).

6. The hippocampus would show scene-selectivity (i.e., it would distinguish scene
imagery from non-scene imagery) irrespective of the temporal condition.

7. The mPFC would distinguish scene imagery from non-scene imagery when in the form
of dynamic events (Linked Scenes), but not when in the form of static scenes (Unlinked
Scenes). Given that the mPFC has been found to drive activity in the hippocampus
during the processing of real-world events, and the deep cortical layers are the source
of top-down feedback signals, | expected this effect to be localised to the mPFC deep
layers.

8. There would be functional connectivity between the mPFC deep layer and the deep
layers of lower-order cortical areas (e.g., the lateral temporal, parahippocampal,
retrosplenial and/or occipital cortex) and/or the hippocampus, again based on the

perspective that the mPFC controls the construction of scenes and events.

This study will provide, for the first time in humans, an exploration of the differential
processing of individual scenes and extended events in the cortical layers and hippocampal

subfields.

6.3. Methods

6.3.1 Participants

| recruited and scanned 28 healthy young participants. Five participants moved their head
considerably (> 1.6 mm movement) during fMRI scanning and were therefore excluded from
the analysis. Three participants did not sufficiently attend to the fMRI task. This manifested as
answering more than 2 out of 8 of the attention checking task questions incorrectly (see
Section 6.3.2.1). A final participant was excluded for systematically linking together the
Unlinked Scene animations such that they were perceived as single events unfolding over
time. The remaining 19 participants were 13 females and 6 males aged between 18 and 35

years old (mean = 23.26, SD = 4.45) with no history of neurological or psychiatric conditions.
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6.3.2. Experimental procedure

Participants attended for a single visit in which they underwent fMRI and structural MRI
scanning. Following training, participants went into the MRI scanner to perform the scene and
event perception task, where they watched short visual animations. After the fMRI session,
they underwent a structural MRI session. Finally, they undertook post-scan testing and were
debriefed outside of the scanner. The visit lasted approximately 3 hours in total, including task
training, set up in the 7T MRI scanner, the experimental task, structural MRI scanning, and the

post-scan testing and debrief.

6.3.2.1. Stimuli

The stimuli used in this experiment were bespoke short visual animations that had been
produced for a previous MEG study (Monk, Barry, et al., 2021). The animations were built from
individual image frames depicting either Scenes or Non-scenes (Figure 33a). Scenes were
defined as spatially-coherent 3D recognisable environments, populated with a person, and
relevant objects. All Scene images contained a main stick-figure character who was positioned
relatively centrally in the image. Non-scenes were used as a control condition. They comprised
of abstract patterns in a 2D space and contained a main shape near the centre of the image.
Each image was formed of dark grey straight lines and circles on a light grey pixelated

background. Greyscale images were used to ensure a low luminance contrast.

The image frames were arranged into sequences to form animations. The image frames could
either be temporally linked, such that they produced an evolving event (Linked), or they could
be unrelated, such that no event narrative could be conceived (Unlinked). In the Linked
condition, each image frame displayed a small change relative to the previous image frame,
allowing a flip-book-style event to evolve. In the Linked Scene animations, the main stick-
figure character interacted with a main object to perform an action (e.g., skateboarding). The
background comprised of other objects (e.g., a table) and space defining features (e.g., walls
of a room; Mullally & Maguire, 2013) to give a sense of continuity between the image frames.
Half of the Linked Scene animations depicted indoor events while the other half were outdoor
events. In the Linked Non-scene animations, the main shape, gradually underwent several
transformations such as rotation, expansion or shearing. In the Unlinked condition, each

image frame was entirely unrelated to all of the other image frames. The central main
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character or main shape was different on each successive image frame as were the objects
and the backgrounds. This distinction between Linked and Unlinked animations allowed us to

investigate the effect of temporal linking on scene perception.

For both the Linked and Unlinked animations, the Scene and Non-scene animations were
matched in terms of low-level stimulus features. That is, each Linked Scene animation was
matched to a Linked Non-scene animation and each Unlinked Scene animation was matched
to an Unlinked Non-scene animation. The matched animations contained central items (main
characters and main objects) formed from the same number of pixels. Furthermore, the
backgrounds (everything except the central items) of the Non-scene image frames were

scrambled versions of the backgrounds of matched Scene image frames.

There were 16 image frames per animation type. Each image frame was displayed for 700 ms
and was followed by a “gap” frame of the same duration. Gap frames were blank images
comprised of only the pixilated grey background. They were particularly important for the
Unlinked condition as they ensured that each scene or non-scene was perceived as separate

from the previous.

6.3.2.1. Scene perception fMRI task

During each trial of the fMRI task, a participant was first shown a condition cue for 3 seconds,
informing them of the type of animation they were about to watch (Figure 33a). The
terminology used for each condition was simplified such that Linked Scenes were called
Pictures Linked, Linked Non-scenes were called Patterns Linked, Unlinked Scenes were called
Pictures Unlinked, and Unlinked Non-scenes were called Patterns Unlinked. A chain or broken
chain symbol was also used to signify Linked or Unlinked animations, respectively. After the
cue, the animation was presented for a total duration of 22.4 seconds. A fixation cross was

presented for 3 seconds before moving onto the next trial.

In 8 trials (2 trials per condition) a surprise probe question was presented after the animation
(Figure 33b). The probe question was “Having watched that clip, would this next image fit well
with that clip?”. A subsequent novel image frame was then presented. For each condition,
there was one trial in which a congruent image frame was shown (i.e., the correct answer was

“yes”) and one in which an incongruent image frame was shown (i.e., the correct answer was
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“no”). The purpose of these questions was to check if the participant was attending to the

animations. They were relatively evenly spread throughout the session.

Counting trials were also included, which were used as a baseline condition during the
univariate fMRI analysis. In these trials, participants were shown a cue for 3 seconds,
informing them that they were going to perform a counting trial. They were then shown a
number on the screen and they were tasked with counting up in 3’s from the number for 22.4

seconds with their eyes open, followed by a 3 second fixation cross.

Each animation and each number were presented once in a random order across runs. There
was a total of 50 trials (10 per condition, including the Counting condition) that were split into
two runs of 25 trials each. Each run was approximately 12 minutes in length. The fMRI task
was produced using the MATLAB 2021b in conjunction with the Psychophysics Toolbox Version
3 (PTB-3).
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Figure 33. Scene and event perception task. (a) Linked (green box) and Unlinked (purple box)
animation watching trials consisted of a fixation cross (3 s), then a cue informing them of the upcoming
animation type (1 s), followed by the animation (22.4 s). The animation was built from 16 images each
presented for 0.7 s and separated by a blank gap image (also presented for 0.7 s). Linked images (green
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box) featured the same central character or shape and background throughout and, when presented
in succession, formed a flip-book style movie. Unlinked images were unrelated to one another.
Counting trials (grey box) were included as a baseline condition. They started with a fixation cross (3
s), then a number cue (1 s) and finally a period of counting up in 3’s from the given number (22.4s) (b)
In 20% of animation watching trials a surprise probe question was presented after the animation to
check that the participant was attending to the animations.

6.3.2.1. Post-scan testing

Following the fMRI task, participants completed a post-scan test. In this session, they watched
each of the animations again. After each animation, they were asked to answer 2 questions
about their experience watching this clip during the fMRI task. They were asked to answer the
guestions with respect to the beginning (first 5 image frames), middle (next 6 image frames)

and end (last 5 image frames) of the animation.
The gquestions were as follows:

1. “To what extent were you linking the images in this clip together?” They could answer
on a 5 point scale where 1 = “I did not link the images at all”, 2 = “I only linked two
images together in my mind but on the whole the images felt unrelated”, 3 = “I linked
more than two images together in my mind”, 4 = “I linked most of the images”, and 5
= “I'linked all of the images”

2. “To what extent did you feel you were predicting what might happen next?” They could
answer on a 5 point scale, where 1 = “I did not predict at all”, 2 = “I predicted what
might happen next only rarely”, 3 = “l predicted what might happen next quite often”,
4 = “| predicted what might happen next most of the time”, and 5 = “I predicted what

might happen next all of the time”.

The ratings for linking were compared, using paired t-tests, between conditions to check that
the participants were experiencing the Linked animations as unfolding events and the
Unlinked animations as many unrelated images. One participant was excluded from further
analysis as they responded with a rating of 4 to all of the Unlinked Scene animations, indicating
that they were systematically linked these animations to perceive them as single evolving

events.
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6.3.3. MRI sequences

MRI data were acquired on a Siemens Magnetom Terra 7T MRI system (see Chapter 2, Section

2.6.1).

5.3.4.1. Functional MRI

Partial brain fMRI images with submillimetre resolution (voxel size = 0.8 x 0.8 x 0.8 mm3) were
acquired with a T2*-weighted 3D GE-EPI sequence. The sequence had the following imaging
parameters: volume acquisition time was 3872 ms, TR = 44 ms, TE = 18.7 ms, flip angle = 14°,
field of view = 192 x 192 x 70.4 mm, slab angle = 15°, direction of phase encoding = anterior-
to-posterior, parallel imaging acceleration in both the direction of the partition (factor = 2)
and the direction of phase encoding (factor = 4), partial Fourier 6/8 in the phase-encoded
direction of the EPI readout, and a binomial (1331) water-selective excitation, and advanced
BO shimming (WIP 1441). Two images were acquired at the start of the sequence with the
same parameters except that the opposite phase encoding direction was used (posterior-to-

anterior). These images were used for distortion correction of the fMRI data.

5.3.4.2. Structural MRI

A whole brain MT-weighted EPI image was acquired using a T2*-weighted 3D GE-EPI
sequence. Many of the parameters (e.g., echo spacing and acceleration factor) used to acquire
this image were matched to the fMRI sequence. This meant that the nature of distortion in
the MT-weighted image and fMRI images was the same. Some parameters did differ between
the acquisitions: MT-based contrast = on, volume acquisition time=3 m 45 s, TE = 16.97 ms,
flip angle = 8°, field of view = 192 x 192 x 128 mm?3, parallel imaging (factor = 4). The MT
weighting resulted in higher contrast between grey and white matter, making the MT-

weighted image superior for coregistering cortical surfaces to the fMRI data.

A whole brain T1 weighted image with submillimetre resolution (voxel size = 0.65 x 0.65 x 0.65
mm) was acquired using an MP2RAGE sequence (Marques et al., 2010). This MP2RAGE
sequence had the following imaging parameters: a volume acquisition time =8 m42 s, TR =
5000 ms, TE =2.54 ms, TI =900 ms and 2,750 ms, 5° and 3° flip angles, field of view 208 x 208
x 156 mm?3, and in-plane GRAPPA acceleration (factor = 3). The MP2RAGE sequence produces

4 images, including a T1l-weighted image and an inverted T1l-weighted image. These two
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images are used for defining the boundaries between the grey and white matter and the grey

matter and CSF.

Two partial brain T2-weighted images with submillimetre resolution (voxel size =
0.52 x 0.52 x 0.5 mm3) were acquired using a T2-weighted 3D SPACE sequence (Mugler et al.,
2000). This T2-weighted sequence used the following parameters: a volume acquisition time
=10m 25s, TR=3,500 ms, TE = 229 ms, flip angle = 8°, field of view = 200 x 169 mm x 56 mm,
partition oversampling = 14.3%, and in-plane GRAPPA acceleration (factor = 2). These two
images were used for segmenting the hippocampal subfields. | acquired 2 images so that a
single image with improved SNR could be used by coregistering, denoising and averaging the

images.

6.3.4. Preprocessing

6.3.4.1. Defining cortical surface

As explained in previous chapters, the first preprocessing step was to define the pial and white
matter surfaces. The pial surface is the boundary between the grey matter and CSF and the
white matter surface is the boundary between grey matter and white matter. Later, two
additional surfaces were be produced between the pial and white matter surface that define

the boundaries between the cortical layers.

For each participant, a “spliced” whole brain T2-weighted image was produced by
coregistering, denoising and averaging the MP2RAGE inverted T1-weighted image and the 2
high resolution partial brain T2-weighted images. This was then inputted to the FreeSurfer
(version 7.3.2) recon-all pipeline along with the MP2RAGE T1 weighted image. The recon-all
pipeline uses the MP2RAGE T1-weighted image to define the pial and white matter surfaces.
It then uses the “spliced” whole brain T2-weighted image to re-define the pial surface availing
of the superior grey matter to CSF contrast in this image. | visually inspected the cortical

surfaces to ensure that they were accurate to the anatomical boundaries.

6.3.4.2. Motion and distortion correcting fMRI data

| used a map of the BO field to correct for geometric distortion in the functional images. The
FSL (version 6.0) topup tool was used to estimate the BO field map from the 2 opposite phase
encoded images and the first 2 functional images of the fMRI data. A voxel displacement map,

which estimated the translation of each voxel due to the BO field, was then calculated from
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the field map using SPM12. This voxel displacement map was then inputted into SPM12
Realign and Unwarp along with the fMRI data. SPM Realign and Unwarp corrects for motion
and distortion in the fMRI data, taking into consideration the susceptibility-motion
interactions by estimating changes to the voxel displacement map with head motion.
Importantly, the fMRI data were only interpolated and resampled once, minimising the loss
of effective resolution that can result from interpolation. Finally, a mean fMRI image was

calculated from the corrected fMRI data.

The whole brain MT-weighted EPI image was also corrected for geometric distortion using FSL
Topup. This time, | used just one image that had been acquired with the opposite phase
encoding direction to the fMRI data and the single MT-weighted image with the same phase
encoding direction. This image would be used for coregistration of the cortical surfaces to the
fMRI data. Therefore, first it was brought into alignment with the fMRI data by coregistering

it to the mean fMRI image using SPM.

Five participants moved their head more than 2 voxels (1.6 mm) during the scanning session.
Excessive head motion can cause image artefacts such as “ghosting” (repeating of the brain
or parts of the brain) and susceptibility-motion interactions, where the susceptibility field
changes between functional images altering the nature of distortions (Andersson et al., 2001).
Therefore, | decided to exclude these participants from the experiment. The remaining 20
participants moved their head by, on average, 0.85 mm (SD = 0.49 mm) during the course of
the fMRI task (although a further participant was excluded for systematically linking together
the Unlinked Scene animations such that they were perceived as single events unfolding over

time).

6.3.4.3. Aligning cortical surfaces to fMRI data

Three coregistrations were performed to align the pial and white matter surfaces to the fMRI
data. First, a NMI coregistration, which maximises the shared information between the two
images, was applied using FSL Flirt to move the MP2RAGE T1-weighted EPI image into
alignment with the MT-weighted. EPl image. Following this, a BBR, which maximises the signal
intensity gradients across the pial and white matter surfaces, was applied using FreeSurfer
BBRegister to more the surfaces into alignment with the MT-weighted EPI image. Finally, a

recursive BBR, in which a surface is divided into iteratively smaller subsections BBR is
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performed on each subsection separately, was applied using the OpenFmriAnalysis toolbox to
improve the surface coregistration. During this recursive BBR step, 6 iterations of surface
divisions were applied. Furthermore, scaling was allowed in the phase-encoding direction to
correct for geometric distortion, which is most extreme along the phase encoding axis (Jezzard

& Clare, 1999).

6.3.5. Whole brain mass univariate analysis

Spatial normalisation was performed using SPM12 to warp the fMRI data into MNI space.
Smoothing (FWHM = 6 mm) was then performed, also using SPM12. For each participant, a
GLM analysis was then performed using SPM12. The 22.4 s animation watching periods of the
Linked-Scenes, Linked-Non-scenes, Unlinked-Scenes and Unlinked-Non-scenes, as well as the
22.4 s counting period of the Counting trials, were used as regressors of interest in the GLM.
The six motion parameters, estimated during realignment, were also included as nuisance
regressors. The 4 animation watching conditions were contrasted with the baseline counting
condition to yield a t-statistic map of animation watching. Two additional contrasts were
made, one between the Linked animation conditions and the counting baseline and another
between the Unlinked animation conditions and the counting baseline. Group level analyses

were performed using SPM12 to yield group level t-statistic maps for each contrast.

6.3.6. Delineating regions of interest

6.3.6.1. Cortical layer ROIs

Next, | defined the ROls that would be used in the ROI-based MVPA analysis. The pial surface
was segmented into cortical areas, according to the Desikan-Killiany and Destrieux atlases
(Desikan et al., 2006; Destrieux et al., 2010), using FreeSurfer. Cortical areas were selected by
consulting the areas activated, at the group level, by animation watching. The cortical area
segmentation was coregistered to the fMRI data by applying the same transformation that
was applied to the pial surface. Each cortical area, which were in the form of surface masks,
was projected across the surface normal, thereby projecting it into volume space. Gaps often
existed in the volume masks, which were filled using FSL Maths Edge, Dilate and Erode. Finally,
the animation watching group level t-statistic map was consulted again to identify broad areas

of activation. Cortical area masks were combined to create masks that corresponded to these
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broad areas. Where necessary, some manual editing was performed to bring the anatomical

masks into alignment with the group level functional activations.

Next, the cortical area masks were split into 3 equivolume layers (deep, middle and superficial)
using the OpenFmriAnalysis toolbox. First, the position of two additional surfaces between
(and running parallel to) the pial and white matter surfaces were calculated using the level set
method. Then for each voxel, the distance between it and each of the 5 compartments (white
matter, CSF, and the superior, middle and deep cortical layers) was calculated (Waehnert et
al., 2014). Based on these distances, the percentage of the voxel volume in each of the 5
compartments was estimated. Voxels were assigned to a layer ROI if at least 80% of their

volume was within the layer.

To correct for the superficial layer bias effect (see Chapter 2 and Chapter 3 for a detailed
explanation), voxels with tSNR below the 65th percentile were excluded (Jia et al., 2021). This
is because low tSNR can be an indication of the presence of large veins, which cause a large

variation in signal.

To correct for any remaining geometric distortions in the data, Jacobian values were calculated
using HySCO in the ACID MATLAB toolbox and voxels with extreme values, below the 5th
percentile or above 95th percentile, were excluded (Ruthotto et al., 2012). This is because the
Jacobian is a measure of signal displacement of a voxel and is therefore a useful quantitative

measure of the degree of geometric distortion in the voxel (Jezzard & Balaban, 1995).

6.3.6.2. Hippocampal subfield ROIs

The hippocampal subfields were manually segmented on the partial brain T2-weighted
images. First the two partial brain T2-weighted images were realigned, denoised and averaged
to produce a single image with superior SNR. Then, using the ITK-SNAP version 3.2.0 software,
6 hippocampal subfields, the DG/CA4, CA3/2, CA1, subiculum, pre/parasubiculum and uncus,
were manually defined according to a detailed segmentation protocol (see Chapter 4). To
assess the reliability of manual hippocampal segmentations, inter-rater reliability analysis was
performed. A quarter of hippocampi (5 of 19 participants) were segmented by a second,
independent experimenter. The similarity in segmentations performed by each experimenter
was evaluated using the Dice similarity coefficient, ranging from 0 (no overlap) to 1 (identical;

Table 20 for interrater reliability results).
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6.3.7. Multi-voxel pattern analysis

In order to perform MVPA analysis, first the multi-voxel pattern of activation caused by each
animation trial was estimated. For each animation trial, a GLM was fit to the fMRI data that
modelled the 22.4 second animation watching period of the trial and the animation watching
periods of all other trials. Motion parameters and drift terms were used as nuisance
regressors. The beta estimate of the single animation watching trial represented the neural
activation that was unique to that trial. Noisier voxels were down-weighted by dividing the

beta estimate of each voxel by the square root of the residuals (Walther et al., 2016).

MVPA was used to attempt to decode the stimulus category (Scene or Non-scene) from the
multi-voxel patterns of activation. Specifically, for each participant and each cortical layer ROI,
| used an SVM to classify animations as Scenes or Non-scenes based on their multi-voxel
pattern of noise normalised beta estimates. This scene decoding was performed separately

for Linked and Unlinked animations.

The data was first split into a training set and a testing set. There was a total of 18 animation
trials (9 Scene trials and 9 Non-scene trials) used as training instances in the training set. The
SVM learned to classify each trial as a Scene or Non-scene based a set of features, in this case
the noise normalised beta estimates of each voxel in the ROI. During training, the SVM plots
each trial in high-dimensional feature space, where each dimension corresponds to the noise
normalised beta estimate of a given voxel in the ROI. It then learns the optimal hyperplane
that separates Scene from Non-scene trials, known as a decision boundary. It does this by
maximising the margin, the distance between the closest points (called support vectors) of
each trial condition to the decision boundary. Importantly, SVM’s permit some data points to
be within the margin or on the wrong side of the decision boundary, making them less
sensitive to noise and more generalisable to new data. | used a linear kernel, meaning that no
transformations were performed to the features when plotting them in feature space, and
regularisation of C =1, which strikes a balance between maximising the margin and minimising
misclassification. During testing, the new data points are plotted in feature space and
classified as Scenes or Non-scenes based on the side of the decision boundary that they fall

on.
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| used a cross-validation approach to test performance of the classifier. This means that, for
each participant and each ROI, multiple SVM’s were trained and tested. On each iteration, a
different pair of Scene and Non-scene trials were allocated to the testing set and the
remaining trials were allocated to the training set. | iterated through all possible pair
combinations of Scene and Non-scene trials, yielding a total of 10 tests per trial. For each trial,
| calculated its classification accuracy by calculating the proportion of correctly classified tests

for that trial.

The trial-by-trial accuracy values were then averaged within Linked trials and Unlinked trials.
At the group level, if the SVM achieved above chance (i.e., above 50%) classification accuracy,
evaluated using a one-sample t test, for a given cortical layer ROI then | inferred that the
cortical layer ROl in some way represented scene imagery or was involved in scene processing.
Differences in the accuracy of scene decoding were compared, using Bonferroni corrected
paired t tests, between scenes that unfold into events (i.e., Linked) and sequences of scenes
that are unrelated (i.e., Unlinked), indicating the involvement of the cortical layer ROl in Linked

compared to Unlinked scene processing.

6.3.8 Informational connectivity analysis

I next sought to understand the nature of connectivity between the mPFC layers and the layers
of other cortical areas and the hippocampal subfields. To investigate this, | performed
informational connectivity analysis, which assesses the similarity of representation time
courses between brain areas (Coutanche & Thompson-Schill, 2013). Specifically, the Fisher Z-
transformed Pearson product-moment correlation was calculated between the trial-by-trial
decoding accuracy values in each mPFC layer and each other ROl under investigation. At the
group level, | used a one sample t test to test for a correlation that was reliably different from
zero. A positive correlation means that on trials where the mPFC layer was strongly
representing scenes, so was the other brain region. Whereas a negative correlation means
that stronger representations in the mPFC layer coincided with weaker scene representations

in the other brain region.
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6.4. Results

6.4.1. Participants maintained attention throughout the task

On average, participants answered 94.74% (SD = 7.59%) of the probe trials correctly showing

that they were attending to the animations throughout the session.

6.4.2. Participants linked and predicted successive images during the linked

animations

During the debrief session, participants rated, on a scale from 1 to 5, each of the animations
in terms of the degree to which they were linking the image frames to perceive them as
unfolding events. They provided these linking ratings with respect the beginning, middle and
end of the animations. On average, the 19 participants linked all of the image frames in Linked
animations across all phases of the experiment, whereas, they did not link the image frames
at all in the Unlinked animations (see Table 15). The linking ratings for Linked animations were
significantly higher than the linking ratings for Unlinked animations (p = 2.79e-174), thereby

validating the Linked versus Unlinked experimental manipulation.

Table 15. Linking ratings of animations.

Condition Phase Hokingirating

mean SD

Beginning 5 0

Linked Scenes Middle 5 0

End 5 0
Beginning 4.979 0.092
Linked Non-scenes Middle 4.979 0.092
End 4.958 0.126

Beginning 1.032 0.1

Unlinked Scenes Middle 1.032 0.1
End 1.053 0.187

Beginning 1 0

Unlinked Non-scenes Middle 1 0

End 1 0

Participants also rated, on a scale from 1 to 5, each of the animations in terms of the degree
to which they were predicting what would happen next at the beginning, middle and end of
the animations. Unlinked animations were consistently rated as completely unpredictable

throughout the animations, whereas, when watching Linked animations participants reported
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predicting to some degree what would happen next throughout the animation (see Table 16).
Linked animations were significantly more predictable than Unlinked animations (p = 9.72e-
32), which was assessed using a one-sample t-test (4 = 1) due to the lack of variation in

responses to Unlinked animations.

Table 16. Predicting ratings of animations.

Condition Animation phase Predicting rating
mean SD
Beginning 2.348 1.055
Linked Scenes Middle 3.103 1.105
End 2.78 1.142
Beginning 2.885 1.463
Linked Non-scenes Middle 3.335 1.326
End 3.04 1.258
Beginning 1 0
Unlinked Scenes Middle 1 0
End 1 0
Beginning 1 0
Unlinked Non-scenes Middle 1 0
End 1 0

6.4.3. Core network of brain areas are activated by scene and event perception

Next, | identified the brain areas that were activated during scene and event perception by
comparing all of the animation watching trials with all of the counting trials. | found significant
(p > 0.01, uncorrected) activity in several brain areas (Figure 34a), including the mPFC (peak
voxel at left: x =-8, y =51, z=17; right: x = 15, y = 48, z = 5), retrosplenial cortex (left: x = -17,
y= -51, z = 13; right: x = 2, y = -44, z = 8), lateral prefrontal cortex (left: x=-54,y=21,z=
20; right: x =34,y =27,z =-15), mLTC (left: x=-69,y =-17,z =-12; right: x=48,y=-11,z = -
15), sLTC (left: x =-57, y = -2, z = -12; right: x = 45, y = 11, z = -16), parahippocampal cortex
(left: x=-27,y =-27,z =-23; right: x=26,y =-18, z = -19), occipital cortex (left: x=-38,y = -
79, z =-10; right: x =32,y = -41, z = -22), and hippocampus (right: 21, -28, -4; Table 17 for all
activated areas). This same set of brain areas was active when Linked and Unlinked recall trials

were separately compared with counting trials (Figure 34b and 34c).
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a Animation watching > Counting

p < 0.01 (uncorrected)

b Linked animation watching > Counting

C Unlinked animation watching > Counting

Figure 34. Core network of brain areas active during animation watching. A core network of brain
areas was activated during (a) animation watching, (b) Linked animation watching and (c) Unlinked
animation watching. T-statistics are thresholded at p < 0.01 (uncorrected).
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Table 17. Activation peaks for the animation watching > counting baseline contrast.

Cluster Coordinates
Brain region size Z score

(voxels) y z
Occipital cortex, fusiform gyrus (R) 145670 6.57 32 41 -22
Occipital cortex, inferior occipital gyrus (L) 6.08 -38  -79 -10
Parahippocampal cortex (L) 2.64 -27 27 -23
Amygdala (R) 5730 3.95 22 -5 -14
Lateral prefrontal cortex, pars orbitalis (R) 3.72 34 27 -15

Medial prefrontal cortex, medial superior frontal gyrus

8576 398 -8 51 17
(L)

Medial prefrontal cortex, medial orbital superior

frontal gyrus (L) 3.88 -8 47 -9

Medial prefrontal cortex, anterior cingulate (L) 3.62 -11 36 -6
Hippocampus (R) 2174 3.72 21 28 -4
Lateral temporal cortex, middle gyrus (R) 1361 3.62 48 -11 -15
Lateral prefrontal cortex, pars triangularis (L) 1512 3.28 -54 21 20
Lateral temporal cortex, middle gyrus (L) 584 3.24 -69 -17 -12
I(_:;ceral temporal cortex, temporal pole superior gyrus 106 394 45 11 -16
Lateral temporal cortex, superior temporal gyrus (L) 433 2.42 57 -2 -12
Lateral prefrontal cortex, pars orbitalis (L) 157 2.92 -35 56 -8
Lateral prefrontal cortex, pars triangularis (R) 37 2.88 64 38 16
I(_;;ceral temporal cortex, temporal pole middle gyrus 54 579 54 16 26
Retrosplenial cortex (L) 52 2.72 -17  -51 13
Lateral prefrontal cortex, dorsolateral (L) 155 2.72 -23 58 10
Parahippocampal cortex (R) 25 2.69 26 -18 -19
Lateral prefrontal cortex, pars triangularis (R) 148 2.66 48 33 9

Lateral prefrontal corte, pars orbitalis (R) 15 2.62 12 58 -13
Lateral prefrontal cortex, pars triangularis (L) 3 2.60 -62 37 15
Posterior cingulate gyrus (R) 13 2.59 5 -40 10
Lateral temporal cortex, superior temporal gyrus (R) 13 2.58 67 2 2

I(_f)teral temporal cortex, temporal pole superior gyrus 12 5 55 53 7 11
Lateral prefrontal cortex, dorsolateral (R) 11 2.50 14 59 22
Thalamus (L) 1 2.41 -15  -20 0

Retrosplenial cortex (R) 1 2.40 2 -44 8

z\:l{;edlal prefrontal cortex, medial superior frontal gyrus 15 5 40 15 48 5

Caudate (L) 5 2.39 -14 25 -5
Cerebellum (R) 8 2.39 10 -63 -24
Lateral temporal cortex, inferior temporal gyrus (L) 1 2.35 -58 -15 -24

Medial prefrontal cortex, medial orbital superior

1 2.34 11 55 -9
frontal gyrus (R)

Note: (R) refers to right hemisphere and (L) refers to left hemisphere.
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6.4.4. Linked scenes are represented in all layers of the mPFC

Next, | sought to understand whether the perception of scene imagery could be decoded from
the multivoxel activity patterns in any of the mPFC layers or hippocampal subfields.
Additionally, in an exploratory analysis, | investigated scene decoding in the layers of the other
6 cortical areas that were engaged during animation watching. | divided each of the 7 cortical
areas (the mPFC, lateral prefrontal cortex, mLTC, sLTC, retrosplenial cortex, parahippocampal
cortex and occipital cortex) into 3 cortical layers: superficial, middle and deep. This yielded a

total of 27 cortical layer and hippocampal subfield ROls.

For each ROI, | used a SVM to classify Scene from Non-scene stimuli based on their multivoxel
response patterns. This scene decoding was performed separately for Linked and Unlinked
animations. Above chance (50%) classification accuracy, assessed using one-sample t-tests,
indicated that real-world scene imagery was in some way represented or processed by the
brain area. Differences in scene decoding accuracy between Linked and Unlinked animations
were assessed using paired t-tests. Higher accuracy of scene decoding for Linked compared to
Unlinked animations would indicate that the brain region preferentially represents or

processes real-world dynamic events compared to single scene snapshots.

| found above chance decoding of Linked Scenes in all layers of the mPFC (deep: p = 0.00603,
middle: p = 0.0329, superficial: p = 0.0181; Figure 35a). Whereas, Unlinked Scenes were not
decoded above chance in any of the mPFC layers (deep: p = 0.206 , middle: p = 0.385,
superficial: p = 0.318). Despite decoding Linked Scenes but not Unlinked Scenes in the mPFC
layers, there were no pairwise differences in decoding accuracy between the Linked and

Unlinked animations in any of the layers (deep: 0.22, middle: 0.233, superficial: 0.176).

In the hippocampal subfields, both Unlinked and Linked Scenes were decoded above chance
in the DG (Unlinked: p = 0.0383, Linked: p = 0.0174), CA2/3 (Unlinked: p = 0.0253, Linked: p =
0.00151) and CA1 (Unlinked: p = 0.0211, Linked: p = 0.0259; Figure 35a). While only Linked
Scenes were decoded above chance in the pre/parasubiculum (Linked: p = 0.015, Unlinked: p
= 0.138). Neither Unlinked nor Linked Scenes were decoded above chance in the subiculum
(Unlinked: p = 0.1, Linked: p = 0.175) and uncus (Unlinked: p = 0.16, Linked: p = 0.142). As in

the mPFC, there were no pairwise differences in scene decoding accuracy between the Linked
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and Unlinked animations in any of the hippocampal subfields (DG: p =0.989, CA2/3: p=0.716,
CAl: p = 0.447, subiculum: p = 0.543, pre/parasubiculum: p = 0.354, uncus: p = 0.794).

In exploratory analyses, | investigated representations of Linked and Unlinked scenes in the
other cortical areas in the core network, finding above chance decoding accuracy in many
areas (Table 18 for a full report of the results). However, just two of the cortical areas displayed
differences in scene decoding accuracy between Linked and Unlinked animations, the
retrosplenial cortex deep layer (p = 0.015) and the parahippocampal cortex superficial layer
(p = 0.04; Figure 35b; Table 19 for pairwise comparisons of the other ROIs). In both of these
regions, there was more accurate decoding of Unlinked Scenes compared to Linked Scenes,
indicating a preference of these brain regions towards processing multiple unrelated scene

images compared to extended events.
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Figure 35. Scene decoding of Linked and Unlinked animations. The accuracies of Linked (green) and
Unlinked (purple) scene decoding were compared to one another and to 0.5 (i.e., chance level
decoding). (a) In the mPFC layers, there was above chance scene decoding of only Linked animations.
In hippocampal DG, CA2/3 and CA1 there was above chance scene decoding of Linked and Unlinked
animations and in the pre/parasubiculum there was above chance scene decoding of only Linked
animations. (b) Two cortical areas contained layers with scene decoding that was significantly different
between Linked and Unlinked animations. These were the retrosplenial cortex deep layer and
parahippocampal cortex superficial layer.
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Table 18. Scene decoding of Linked and Unlinked animations.

Scene
Brain area CELLLEL Condition decoding t,' . p-value
layer accuracy statistic
mean SD
Deep Linked 0.596 0.134 3.11 0.00603 **
Unlinked 0.547 0.156 1.31 0.206
Medial prefrontal Middle Linked 0.577 0.146 2.31 0.0329 *
cortex Unlinked 0.528 0.139 0.89 0.385
Superficial Linked 0.587 0.145 2.60 0.0181 *
Unlinked 0.533 0.141 1.03 0.318
Deep Linked 0.569 0.131 2.30 0.0338 *
Unlinked 0.574 0.152 2.12 0.0481 *
Lateral prefrontal Middle Linked 0.575 0.141 2.32 0.0324 *
cortex Unlinked 0.573 0.141 2.27 0.036 *
Superficial Linked 0.582 0.133 2.69 0.015 *
Unlinked 0.580 0.138 2.54 0.0204 *
Deep Linked 0.572 0.112 2.81 0.0117 *
Unlinked 0.570 0.142 2.15 0.045 *
t(a)trf;i' (Zir;;‘?;ar' g _lnked 0579 0118  2.94 0.00884 **
Unlinked 0.562 0.150 1.81 0.0866
gyrus) : Kok
superficial L|nk.ed 0.594 0.113 3.61 0.00199
Unlinked 0.572 0.149 2.09 0.0511
Deep Linked 0.587 0.103 3.68 0.00172 **
Unlinked 0.596 0.145 2.89 0.00968 **
Lateral temporal Middle Linked 0.611 0.111 4.33 0.000403 ***
cortex (middle gyrus) Unlinked 0.588 0.141 2.72 0.0141 *
superficial Linked 0.645 0.102 6.16 0.00000811 ***
Unlinked 0.602 0.166 2.68 0.0153 *
Deep Linked 0.580 0.119 2.93 0.00886 **
Unlinked 0.607 0.167 2.78 0.0125 *
Parahippocampal Middle Linked 0.585 0.164 2.26 0.0363 *
cortex Unlinked 0.624 0.160 3.40 0.0032 **
Superficial Linked 0.607 0.132 3.53 0.00241 **
Unlinked 0.683 0.132 6.07 0.00000978 ***
Deep Linked 0.518 0.097 0.80 0.434
Unlinked 0.602 0.130 3.39 0.00323 **
Retrosplenial cortex  Middle Linked 0.606 0.126 3.69 0.00167 **
Unlinked 0.592 0.149 2.69 0.0151 *
Superficial Linked 0.571 0.117 2.65 0.0161 *
Unlinked 0.550 0.126 1.73 0.1
Deep Link_ed 0.611 0.122 3.96 0.000918 ***
Occipital cortex U_nllnked 0.598 0.160 2.68 0.0153 *
Middle Linked 0.637 0.131 4.55 0.000247 ***
Unlinked 0.627 0.154 3.60 0.00207 **
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cuverficia] _inked 0677 0126 6.16  0.00000816 ***
P Unlinked 0651 0158 4.14 0.000609 ***
H %k
e /A Linked 0573 0121 262 0.0174
Unlinked 0573 0.143  2.24 0.0383 *
Linked 0577 0090 3.74 0.00151 **
CA2/3 N/A Unlinked 0566 0.118  2.44 0.0253 *
Linked 0559 0106 2.43 0.0259 *
CAL N/A Unlinked 0588 0153  2.53 0.0211 *
. Linked 0538 0116 1.41 0175
Subiculum N/A Unlinked 0564 0161 1.73 01
. Linked 0591 0.148  2.69 0.015 *
Pre/parasubiculum — N/A Unlinked  0.551 0.143  1.55 0.138
Linked 0546 0129 1.54 0.142
Uncus N/A Unlinked  0.555 0.163  1.47 0.16

Table 19. Pairwise comparisons between scene decoding accuracy of Linked and Unlinked accuracy.

Brain area Cortical layer t-statistic p-value
Deep 1.270 0.22
Medial prefrontal cortex Middle 1.234 0.233
Superficial 1.409 0.176
Deep -0.140 0.89
Lateral prefrontal cortex Middle 0.055 0.956
Superficial 0.059 0.954
Lateral temporal cortex Dgep 0.062 0.951
(superior gyrus) Mlddle. . 0.479 0.638
Superficial 0.663 0.516
| | i Deep -0.306 0.763
;3:33 temporal cortex (middle Middle 0.697 0.495
Superficial 1.250 0.227
Deep -2.698 0.015 *
Retrosplenial cortex Middle 0.442 0.663
Superficial 0.622 0.542
Deep -0.701 0.492
Parahippocampal cortex Middle -0.847 0.408
Superficial -2.213 0.04 *
Deep 0.334 0.742
Occipital cortex Middle 0.282 0.781
Superficial 0.687 0.501
DG N/A -0.015 0.989
CA2/3 N/A 0.370 0.716
CAl N/A -0.778 0.447
Subiculum N/A -0.620 0.543
Pre/para N/A 0.952 0.354
Uncus N/A -0.264 0.794
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Table 20. Interrater reliability results for hippocampal subfield segmentation. Dice similarity
coefficients for the Two researchers independently segmented 4 of 19 participants. All subfields
achieved Dice coefficients that were higher than the pre-established thresholds from previous work
(Barry et al., 2021; Berron et al., 2017; Bonnici et al., 2013; Chadwick et al., 2014; Clark et al., 2023;
Dalton et al., 2019; Lee et al., 2014; Palombo et al., 2013; Yeung et al., 2019).

Dice similarity coefficient (mean £ SD)

Subfield
Left Right
DG 0.87 £0.02 0.86 £ 0.01
CA2/3 0.71+£0.02 0.66 £0.03
CAl 0.79+£0.02 0.79£0.02
Subiculum 0.81+£0.03 0.79£0.03
Pre/parasubiculum 0.70 £ 0.05 0.71+£0.02
Uncus 0.87 £0.03 0.84 £0.05

6.4.5. Linked scene representations are correlated between mPFC layers and all

other cortical areas and hippocampal subfields

| next explored the idea that the scene representations in the mPFC layers and hippocampal
subfields are communicated with other brain areas in the core network. If the mPFC or
hippocampus was sharing scene-related information with another brain area then | would
expect the trial-by-trial scene decoding accuracies of the brain areas to covary (Coutanche &
Thompson-Schill, 2013). | examined this by correlating the trial-by-trial scene decoding
accuracy of Linked animation trials between each of the mPFC layers and each of the other 26
other ROIs under investigation. | repeated this for the trial-by-trial Linked and Unlinked scene
representations of each of the hippocampal subfields. Previous studies have interpreted
correlated representation strengths as an indication of information sharing between areas

(Aitken & Kok, 2022; Koster et al., 2018; Shao et al., 2023).

| found that all 26 areas had correlated trial-by-trial scene decoding accuracies with all layers
of the mPFC (Table 21 for an example of the mPFC deep layer). Furthermore, the trial-by-trial
decoding accuracies of all hippocampal subfields were correlated with those of all other brain

regions under investigation.
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Table 21. Informational connectivity of the medial prefrontal cortex deep layer during Linked

animation watching.

. i Effect size
Brain area C:)artlcal Correlation 2} t.- . p-value (Cohen's
yer mean D statistic d)
Deep 1218 0532  19.95 1.03E-31 *** 2.29
t‘;tf;i' prefrontal Middle 1169 056  18.19 3.23E-29 *** 2.09
Ssuperficial  1.039 0373  24.30 2.74E-37 *** 2.79
Deep 0943 037  22.23 9.65E-35 *** 255
Lateral temporal cortex —, 40 0933 0304  26.80 3.76E-40 *** 3.07
(middle gyrus)
Ssuperficial 091 0245  32.41 7.37E-46 *** 3.72
Lateral termporal cortex —2€€P 0976 0261  30.33 7.61E-44 *** 3.48
cuperior gyrus) Middle 101 0217 2053 1.67E-32 *** 235
Superficial 0934 0323  25.79 5.03E-39 *** 2.96
Deep 0.68 033 2577 5.28E-39 *** 2.96
Retrosplenial cortex  Middle 0.654 0279  24.85 6.07E-38 *** 2.85
Ssuperficial  0.613 0289  14.30 3.97E-23 *** 1.64
_ Deep 0.64 023  16.89 2.89E-27 *** 1.94
Eg:fehx'ppocampa' Middle 0583 023  18.22 2.89E-29 *** 2.09
Superficial 0562  0.374  16.96 2.25E-27 *** 1.94
0.0000000000111
Deep 0907 0281  15.13 xxk 3.47
Occipital cortex 0.00000000000155
Middle 0.846 0429  17.01 *xk 3.90
Superficial  0.823 0316  11.10  0.00000000176 *** 255
Dentate gyrus N/A 0867 0305  12.38  0.000000000307 *** 284
CA2/3 N/A 0729 0251  12.64  0.000000000217 ***  2.90
CcAl N/A 0892 0367 1059  0.00000000366 *** 2.43
Subiculum N/A 0894 0504  7.72 0.000000404 *** 1.77
Pre/para N/A 0661 022  13.11  0.00000000012 *** 3.01
Uncus N/A 0744 031 1047  0.00000000438 *** 2.40

6.5. Discussion

In this experiment, participants watched short movie-like animations depicting either

continuous events (Linked Scenes) or static scenes (Unlinked Scenes). Control animations

showed either dynamic abstract patterns that evolved over time (Linked Non-scenes) or static

abstract patterns (Unlinked Non-scenes). First, | compared the BOLD signal while watching

these clips to a baseline counting task to identify a core network of brain regions involved in

scene and event processing. This core network included the mPFC, lateral prefrontal cortex,

mLTC, sLTC, parahippocampal cortex,

hippocampus.
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Next, | used MVPA to investigate multivoxel representations of scenes and events in the
cortical layers of these brain regions and in the hippocampal subfields. | trained SVM’s to
decode Scenes from Non-scenes based on the multivoxel response patterns. This scene
decoding was performed separately for Linked and Unlinked animations, further allowing me
to identify brain regions that differentially processed dynamic events compared to single
scenes. Supporting my hypothesis, the mPFC distinguished between Linked Scenes and Linked
Non-scenes. This was the case in the deep, middle and superficial mPFC layers, indicating the
involvement of both feedforward and feedback signalling to and from the mPFC during the
processing of dynamic unfolding events. In the hippocampal DG, CA2/3 and CA1, both Linked
and Unlinked Scenes were decodable from Non-scene imagery, suggesting that the
hippocampus processes both still scene imagery and unfolding events. In two brain regions in
the core network, the parahippocampal cortex superficial layer and the retrosplenial cortex
deep layer, | found higher decoding accuracy of Unlinked Scenes compared to Linked Scenes,
indicating that these regions are preferentially involved in processing multiple individual scene

images compared to a single unfolding event.

| next used the informational connectivity method to examine whether the time course of
layer- and subfield-specific multivoxel scene representations in the mPFC or hippocampus
were correlated with one another or with any other brain region in the core network,
indicating sharing of representation content between the regions (Coutanche & Thompson-
Schill, 2013). | found that the time course of event decoding accuracy in the mPFC layers and
hippocampal subfields were correlated with those in the layers of all other cortical areas in

the network and the hippocampal subfields, indicating network-wide connectivity.

6.5.1. The core network of brain regions supporting scene and event perception

The same core network of brain regions that was active during the retrieval of past
autobiographical events (see Experiment 3, Chapter 5) was also active during the real-time
perception of present scenes and events. However, the degree of activation within these
regions differed between perception and memory. While autobiographical memory retrieval
produced large responses in higher-order brain areas such as the retrosplenial,
parahippocampal and prefrontal cortices, scene and event perception primarily activated the
lower-order visual cortices. This difference may be explained by the source of the initiating

signal in each cognitive process. Memory retrieval is endogenously initiated and may
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therefore engage, more strongly, these higher-order brain areas to initiate and drive memory
retrieval. On the contrary, perception is initiated by exogenous signals, manifesting first in
lower-order sensory cortices and causing the strongest responses in these brain regions. The
differential activation of sensory cortices during memory and perception might also explain
the phenomenological difference between the highly vivid imagery experienced during

perception and the weaker visual imagery that is typically experienced during memory recall.

6.5.2. The medial prefrontal cortex and event schema

| found that the mPFC distinguished dynamic events from dynamic non-scene stimuli.
Whereas, it failed to distinguish static scenes from static non-scene stimuli. However, it is
worth noting that there were no significant differences in the decoding accuracy of dynamic
events and static scenes an any of the mPFC layers. Therefore, based on these findings, it
would be incorrect to conclude that the mPFC is preferentially involved in processing dynamic
events. Rather, my findings support its role in dynamic event processing, but fail to support its

involvement in individual scene processing.

As discussed in Chapter 5, the mPFC plays an important role in processing event schema, high-
level temporal information about events, such as the expected sequence of actions when
doing grocery shopping (e.g., pick up a basket, collect groceries, walk to the checkout till etc.;
Audrain & McAndrews, 2022; Guo & Yang, 2020; Preston & Eichenbaum, 2013; Reagh &
Ranganath, 2023; van Kesteren et al., 2020). The role of the mPFC in processing dynamic
unfolding events may be one of activating these event schemas. These schemas may then
provide a template into which each individual image frame can be anticipated, understood

and linked.

Despite being unable to decode static scenes from static non-scenes in the mPFC, | found
significant univariate activation in the mPFC during processing of unlinked stimuli when
compared to the baseline counting task, indicating that the mPFC is in some way involved in
processing static images. This accords with several previous MEG studies that found mPFC
engagement during the imagination of scene imagery (Barry et al., 2019; Kaplan et al., 2017;
Monk, Dalton, et al., 2021). These static scenes may activate other types of schematic
information in the mPFC, such as context schema, the typical people, objects and landmarks

that might be found within a context. If this were true, each Unlinked Scene animation would
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activate many different context schemas, resulting in strong univariate engagement of the

mPFC, as observed in this experiment.

6.5.3. Feedforward and feedback signalling in the medial prefrontal cortex

Recall that long-range feedback signalling pathways originate and terminate in the deep
cortical layers, whereas feedforward signalling pathways originate in the superficial layers of
lower-order cortical areas and target the middle layers of higher-order cortical areas (Felleman
& Van Essen, 1991; Markov et al., 2014; Shipp, 2023). In this experiment, Linked Scene
animations were decoded in all layers of the mPFC, indicating that perception of events
involves both feedforward and feedback signalling. This differs from studies using DCM that
found that the higher-order mPFC drives activity in the lower-order hippocampus during scene
and event visualisation (see Experiment 3, Chapter 5). These previous DCM studies used
paradigms that involved the endogenous initiation of mental imagery, such as imagination and
memory retrieval, which involve considerable feedback signalling (Bergmann et al., 2024;
Carricarte et al., 2024). By contrast, the online perception of events is predominantly driven
by exogenous signals and therefore also involves considerable bottom-up processing via
feedforward signalling pathways as well as a feedback component (Bergmann et al., 2024;
Carricarte et al.,, 2024; Hardstone et al.,, 2021; Kok et al.,, 2016; Lamme et al., 1998). For
example, an external stimulus will cause a first wave of feedforward signalling (Semedo et al.,
2022). This feedforward signal will pass upwards through the brain’s processing hierarchy until
it reaches the higher order brain areas such as the mPFC. Here, event schema representations
may be activated, which may then be fed back through the processing hierarchy via feedback
connections. These feedback signals may play a role in contextualising or predicting each
successive scene as it is processed, allowing faster comprehension of the event. Indeed, we
found that participants reported predicting what would happen next during Linked

animations.

6.5.4. The hippocampus and scene-based cognition

Several hippocampal subfields, the DG, CA2/3 and CA1, represented both static scenes
(Unlinked Scenes) and dynamic events (Linked Scenes). The pre/parasubiculum also
represented dynamic events (Linked Scenes), although no single scene representations

(Unlinked Scenes) were detectable. Previous research found strong hippocampal activation
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during the processing of scene compared to non-scene stimuli (Graham et al., 2010; Hassabis,
Kumaran, & Maguire, 2007; Hodgetts et al., 2016; Monk, Dalton, et al., 2021; Zeidman,
Mullally, et al., 2015). Furthermore, a previous MEG study using a similar paradigm to that
used in this experiment revealed that a distributed set of brain regions preferentially
responded to Linked Scene compared to Linked Non-scene animations, with the greatest
change in broadband (1-30 Hz) power in the hippocampus (Monk, Barry, et al., 2021).
Interestingly, this hippocampal scene-selective effect was only found at the first image frame,

supporting the hippocampus's primary involvement in processing individual static scenes.

My findings support previous work that has found that the pre/parasubiculum is particularly
involved in scene-based cognition (reviewed in Dalton & Maguire, 2017). It is thought to
combine spatial, object, and contextual information to form a cohesive scene (Dalton &
Maguire, 2017; Zeidman, Lutti, et al., 2015; Zeidman & Maguire, 2016). This area is part of a
wider hippocampal circuit that supports the spatial processing of information. Indeed scene-
selective effects have also been found in CA1 (Read et al., 2024) and place cells and spatial
view cells have been identified in CA1, CA2, CA3 and the DG (Leutgeb et al., 2007; Oliva et al.,
2016; Robertson et al., 1998; Rolls, 2023). The more complex 3D spatial environment present
in Scene compared to Non-scene imagery in our paradigm may explain the presence of a

scene-selective effect in all of the above mentioned hippocampal subfields.

6.5.5. Scene and event processing in other cortical areas in the core network

In two brain areas, the retrosplenial cortex deep layer and the parahippocampal cortex
superficial layer, there was more accurate scene decoding of unrelated individual scenes
(Unlinked Scenes) compared to unfolding events (Linked Scenes), indicating that these two
regions may have a preference towards processing individual scene imagery. The retrosplenial
cortex and parahippocampal cortex are functionally connected to one another and to the
hippocampus, and are consistently implicated in in spatial navigation and scene-based
cognition (Baldassano et al., 2016; Epstein, 2008; Epstein & Baker, 2019; Park & Chun, 2009;
Summerfield et al., 2010; Vann et al., 2009). Previous human and non-human primate studies
have identified a specific portion of the posterior parahippocampal cortex, known as the
parahippocampal place area, that responds selectively to scenes compared to objects or faces
(Bastin et al., 2013; Cukur et al., 2016; Epstein & Kanwisher, 1998; Mormann et al., 2017).

Specifically, the parahippocampal place area has been found to represent the perspective-
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dependent visuospatial organisation of a scene, including the relationships between objects
and landmarks, as well as the more general scene context (Aminoff et al., 2013; Park & Chun,
2009; Vass & Epstein, 2013). Whereas, the retrosplenial cortex has been found to represent
the higher-level global properties of a scene, such as relationships between objects that are
independent of the perspective as well as its location within the wider extended environment

(Kim & Maguire, 2018; Park & Chun, 2009; Vass & Epstein, 2013).

My results are consistent with the roles of the parahippocampal cortex and retrosplenial
cortex in scene cognition. Processing of unrelated individual scenes would likely involve higher
engagement of the retrosplenial cortex and parahippocampal cortex, due to the high quantity
of novel scenes, each with unique contexts, objects and characters, relative to a single
unfolding event in which a single context, main character and object were present throughout

the entire animation.

The preference for processing Unlinked Scenes was localised to the superficial layers of the
parahippocampal cortex, which forms part of the feedforward circuitry and is a primary input
to the hippocampus. These feedforward pathways would receive a high exogenous influx of
novel scene information relative to the Linked animations. In the retrosplenial cortex, the
effect was localised to the deep layer, which suggests a top-down feedback role, though its

functionality is currently not understood.

6.5.6. Network-wide informational connectivity

| found network-wide informational connectivity between all mPFC layers, hippocampal
subfields and cortical layers of all other brain areas in the core network. This differed from my
findings in Experiment 3 (Chapter 5) in which specific brain regions were informationally
connected during autobiographical memory retrieval. This difference may be explained by the
subtlety of the information being decoded in each experiment. In this experiment, | decoded
real-world scenes by differentiating multivoxel response patterns to animations with scene
imagery and patterns caused by animations with non-scene abstract patterns. Whereas, in
Experiment 3 (Chapter 5), specific autobiographical memories were decoded by comparing
multivoxel responses to retrieval of a specific memory with multivoxel responses to retrieval
of all other memories. The scene and event decoding investigated in the current experiment

reflects a broader processing of real-world scene imagery compared abstract non-scene
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imagery Experiment 3 (Chapter 5). This coarse scene-related information likely corresponds
to scene and event processing in general. Whereas, the event-specific content investigated in
Experiment 3 (Chapter 5) may be considerably subtler to detect, and sharing of this event-

specific information between areas may be more limited.

6.5.7. Methodological limitations

There are several key differences between linked and unlinked animations worth considering.
First, the temporal contrast differs between the two, with linked animations exhibiting higher
similarity in low-level visual features between successive image frames compared to unlinked
animations. This could result in greater habituation of visual responses during the watching of
linked animations. To mitigate these potential habituation effects, a blank "gap" image was
inserted between frames. However, full recovery after visual adaption can last for several
minutes (e.g., Rose & Lowe, 1982), so the gap image was unlikely to entirely eliminate these
effects. This difference in temporal contrast between linked and unlinked images may
therefore account for the differences in visual cortex responses to each experimental

condition.

Another potential difference between the linked and unlinked conditions is the cognitive
effort required for the task. Before each animation started, participants were informed about
the type of animation they were about to view. They were instructed to perceive the images
in unlinked animations as entirely unrelated, while they were encouraged to perceive
successive images of linked animations as related. In the real world, the brain's natural
processing of temporally successive scenes involves linking them as a means of making sense
of the world. Consequently, unlinked animations may require more effort to process, as
participants must inhibit this innate linking function. | aimed to limit this difference in required
effort by conducting extensive training with participants to train them to perceive the images
in unlinked animations as unrelated. However, a potential difference in the degree of effort
required may remain, which may explain observed differences between linked and unlinked

conditions.

Finally, as discussed above, the brain may naturally link temporally successive stimuli to derive
meaning from their relationships, such as cause and effect. Consequently, the increased

involvement of the mPFC during the perception of linked versus unlinked animations may
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reflect the greater engagement of causal processing when interpreting linked scenes. This
ability to extract meaning from temporally extended stimuli aligns with the mPFC's role in
event schematics — representations of temporal sequences of actions and outcomes that are
causally connected. Thus, temporal processing may be just one dimension of the mPFC's
broader role in processing event schema, specifically its role in learning and predicting

meaningful relationships between actions and outcomes (Alexander & Brown, 2011).

6.5.8. Conclusion

In summary, | found support for a role of the mPFC in processing dynamic unfolding events.
Whereas, | found evidence for the involvement of the hippocampus in processing both static
scenes and temporally extended events. This supports a proposed hierarchical organisation of
the hippocampus and mPFC in event processing, with the hippocampus representing single
scenes and the mPFC playing a higher-level role in integrating this scene information over time
to represent dynamic events (McCormick, Ciaramelli, et al., 2018). The engagement of all of
the deep, middle and superficial layers of the mPFC indicates the involvement of bidirectional

(i.e., both feedforward and feedback) signalling during event perception.
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7. General Discussion

7.1. Introduction

In this final chapter, | will focus on the two event processing 7T fMRI experiments, discussing
the findings in the context of the existing literature. | will refer to the experiment in which |
compared remote and recent autobiographical memory retrieval (Chapter 5) as “Event
Retrieval”. While | will refer to the experiment where | compared the perception of dynamic
and static, scene and non-scene animations (Chapter 6) as “Event Perception”. First, | will
briefly recap the motivation behind the work and the main findings. Following this, | will
discuss these findings in terms of hierarchical information processing in the mPFC,
hippocampus and wider system of brain regions during event processing. Finally, | will outline

some possible future directions for research within this domain.

7.2. Summary of the main results

In my PhD research | aimed to characterise the neural microcircuitry underpinning the
retrieval and perception of life events. This research was motivated by evidence to suggest
that the mPFC and hippocampus are arranged in a functional hierarchy, with the lower-order
hippocampus processing more basic event features such as specific scenes, which are then
integrated and abstracted by the higher-order mPFC to produce dynamic events and schema
(i.e., abstract prior knowledge structures that have been extracted over multiple repeated
events). The anatomical projections between hierarchically organised brain regions have been
systematically mapped and, interestingly, they follow a consistent laminar pattern (Felleman
& Van Essen, 1991; Markov et al., 2014). Long range feedforward projections originate in the
superficial layers (layers 2/3) of lower order areas and target the middle layer (layer 4) of
higher order areas. Long range feedback projections originate in the deep layers (layers 5/6)
of higher order areas and target the deep layers (layers 5/6) and superficial layers (layers 2/3)
of lower order areas. Within the hippocampus, feedforward inputs from the superficial layer
of the lower-order entorhinal cortex arrive into a specific set of subfields (the DG, CA3, CAl
and the subiculum) and outputs feeding back to the deep layer of the entorhinal cortex and
forward to the middle layer of the mPFC originate in a different set of subfields (CA1,
subiculum; Aggleton et al., 2015; Carmichael & Price, 1995; Witter & Amaral, 1991, 2020). The
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inputs from the entorhinal cortex to the hippocampus are divided into two separate pathways
(Amaral & Witter, 1989; Andersen et al., 1971; Lorente de No, 1934; Witter & Amaral, 1991,
2020). The trisynaptic pathway is a series of 3 projections: the entorhinal cortex to DG, then
onwards to CA3, and finally synapsing in CA1. Whereas, the monosynaptic pathway, comprises

direct connections from layer 3 of the entorhinal cortex to CA1 and the subiculum.

The distinct laminar sites of feedforward and feedback processing pathways between the
hippocampus and neocortical areas mean that, by examining the laminar sites of multivoxel
representations, event retrieval and perception can be understood in terms of the relative
involvement of feedforward and feedback signalling, allowing inferences about the direction
of connectivity between brain areas. To this end, | designed two experiments, examining the
cortical and hippocampal microcircuitry underpinning event retrieval and perception, and
thereby allowing the characterisation of each process in terms of feedforward and feedback
processing. Each experiment was designed to probe a potential difference in roles of the mPFC
and hippocampus in event processing, which | hypothesised may be evident in the

microcircuitry.

The first experiment, Event Retrieval, was motivated by previous research that reported
differences in the involvement of the hippocampus and mPFC in the retrieval of
autobiographical memories of different ages, with the mPFC more involved as memories
become more remote retrieval (Barry et al., 2018; Bonnici et al., 2012; Bonnici & Maguire,
2018). An examination of recent and remote retrieval at the level of cortical layers and
hippocampal subfields revealed differential involvement of feedforward and feedback
signalling pathways. During retrieval of remote memories, | detected multivoxel
representations of individual memories in the deep layers of the mPFC and another cortical
area, the mLTC, as well as connectivity with the deep layers of other cortical areas and
hippocampal CA2/3. These findings indicate the involvement of feedback signalling from the
mPFC to the lower order cortical areas and the hippocampus during retrieval of remote
autobiographical memories. By contrast, during retrieval of recent memories, | detected
individual memory representations in the lateral temporal cortex middle and superficial layers
and connectivity with the middle layer of the mPFC. These findings suggest the involvement
of feedforward signalling from the lateral temporal cortex to the mPFC in retrieval of recent

memories. Therefore, the direction of information flow between the mPFC, hippocampus and
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other areas in the autobiographical memory network during retrieval may shift as memories

age.

In the second experiment, Event Perception, | probed the specific roles of the mPFC and
hippocampus in event processing. | was inspired by patient and neuroimaging research that
suggested the hippocampus may be involved in the construction of single scenes, whereas the
mPFC may process the temporal dimension of events to produce extended events that unfold
over time (Kaplan et al., 2017; Kurczek et al., 2015). | found that the hippocampal DG, CA2/3
and CA1 distinguished scene from non-scene imagery, whether the stimuli were in the form
of static images or temporally extended events, indicating that hippocampus has a preference
for processing scenes, irrespective of the time dimension. By contrast, the mPFC layers
distinguished scene from non-scene imagery only when stimuli were in the form of temporally
extended events, indicating the involvement of the mPFC in processing the temporal
dimension of realistic events. The involvement of all mPFC layers indicate the involvement of

both feedforward and feedback signalling during the processing of dynamic events.

In this general discussion, | will consider the two main questions that | sought to answer with
this work: What are the specific roles of the mPFC and hippocampus in the retrieval and
perception of events? How do hippocampal and cortical microcircuits support these roles? |
will examine these questions in the context of hierarchical information processing in the mPFC

and hippocampus.

7.3. Functional hierarchies of event processing

Scene and event information has been proposed to be processed hierarchically along three
dimensions: time, executive control and specificity. First, there is a proposed temporal
hierarchy, where the lower-level hippocampus processes single instances in time (i.e., single
scenes), which are integrated and linked by the higher-level mPFC to produce events that
unfold over longer time scales (McCormick, Ciaramelli, et al., 2018). Second, there is a
proposed hierarchy of executive control, where the higher-level mPFC initiates and
coordinates the processing of scenes and events in the lower-level hippocampus (McCormick,
Ciaramelli, et al., 2018). Finally, there is an abstraction hierarchy, where the lower-level
hippocampus processes information pertaining to specific autobiographical events and the

higher-level mPFC extracts more general and abstract knowledge across multiple events (i.e.,
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event schema; Gilboa & Marlatte, 2017; McClelland et al., 1995; McCormick, Ciaramelli, et al.,
2018; Preston & Eichenbaum, 2013; Robin & Moscovitch, 2017).

These three hierarchical relationships have been combined into a single model of scene and
event construction (Figure 7; McCormick, Ciaramelli, et al., 2018). In the model, the mPFC
internally initiates event construction. The mPFC selects the appropriate scene elements and
inhibits irrelevant elements by activating the representations of these elements (e.g., people,
objects and landmarks) in neocortical areas (Ghosh et al., 2014; Gilboa & Marlatte, 2017
Preston & Eichenbaum, 2013; van Kesteren et al., 2010; van Kesteren et al., 2012). The scene
elements are then passed on to the hippocampus where a spatially-coherent scene is
constructed (Hassabis & Maguire, 2007; Maguire & Mullally, 2013). To envisage an extended
event, the constructed scene is then passed on to the mPFC and the process repeats for each
successive scene of the event. As such, the mPFC is proposed to exert top-down control of the
hippocampus and neocortex to initiate and coordinate the construction and linking together

of the series of scenes that comprise a full event.

In Sections 7.3.1 to 7.3.3, | will discuss evidence, including from my PhD research, for each of
these three proposed functional hierarchies. | will discuss how two of the proposed
hierarchies, the temporal and executive hierarchies, do not fully fit with my findings, but the

third proposed hierarchy, the abstraction hierarchy, does.

7.3.1. A temporal hierarchy

At the lowest level of a temporal hierarchy are single moments in time, such as a single scene
(i.e., a snapshot). At subsequent levels, fast, transient motions may be processed, such as the
flicker of a leaf in the wind, which may occur over milliseconds or seconds. At higher levels

still are slower events, such as the playing of a tennis match, which may last for several hours.

Neuroimaging studies have found that the hippocampus is particularly engaged when
processing single scene snapshots, when compared to other types of stimuli (Brandman &
Peelen, 2017; Graham et al., 2010; Hodgetts et al., 2016; Hodgetts et al., 2017; McCormick et
al., 2021; Read et al., 2024; Summerfield et al., 2010; Zeidman, Mullally, et al., 2015; but also
see Barense et al., 2010). Furthermore, damage to the hippocampus causes impairments in
any task involving the representation of scenes, including those involving the visualisation of

extended events, without affecting the visualisation of other stimuli, such as objects, faces,
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words, or concepts (reviewed in Graham et al., 2010; Lee et al., 2012; McCormick, Ciaramelli,
et al., 2018). Unlike the hippocampus, damage to the mPFC does not affect the visualisation
of individual scenes, provided specific cues are given (Kurczek et al., 2015), but does severely
impair tasks requiring the visualisation of temporally extended events (Bertossi et al., 2017;
Bertossi et al., 2016; Della Sala et al., 1993; Kopelman et al., 1999). Furthermore, in healthy
individuals, there was a significantly greater coupling in theta phase between the mPFC and
hippocampus during the visualisation of dynamic events when compared to static objects or
scenes (Kaplan et al., 2017). Together, these findings suggest that the connectivity between
the mPFC and hippocampus may facilitate the temporal integration of single scenes into

dynamic events (McCormick, Ciaramelli, et al., 2018).

My findings (in the Event Perception experiment) support this work. The hippocampus
distinguished scene from non-scene imagery, whether the stimuli were in the form of static
images or temporally extended events, indicating that hippocampus has a preference for
processing scenes, irrespective of the time dimension. By contrast, the mPFC distinguished
scene from non-scene imagery only when stimuli were in the form of temporally extended
events, indicating the involvement of the mPFC in processing the temporal dimension of

realistic events.

Despite not decoding static scenes from non-scenes in the mPFC using multivariate analyses,
univariate analyses of my Event Perception data revealed that the mPFC was still engaged
during the viewing of static images. This finding aligns with previous neuroimaging studies
that show that the mPFC activates during the imagination of meaningful static scenes (Barry
et al.,, 2019; McCormick et al.,, 2021; Monk, Dalton, et al., 2021). Furthermore, previous
studies using MEG found that neural activity in the hippocampus and the mPFC synchronise
during imagination of static scenes, with the mPFC driving activity in the hippocampus (Barry
etal., 2019; Kaplan et al., 2017; Monk, Dalton, et al., 2021; but also see Campbell et al., 2018).
These findings complicate the notion that the mPFC only acts to temporally bind scene

imagery, instead indicating that it may also play a role in atemporal processing.

The proposed temporal hierarchy is further obfuscated by evidence from patient and
neuroimaging studies suggesting that, as well as processing atemporal scenes, the
hippocampus also plays an important role in the processing of temporal sequences (reviewed

in Barry & Maguire, 2024; Davachi & DuBrow, 2015). For instance, damage to the

215



hippocampus prevented participants from recognising the correct temporal order of
previously presented sequences of stimuli, although they could remember the stimuli
themselves (Mayes et al., 2001). Similar impairments were observed when hippocampal
activity was transiently disrupted using direct electrical stimulation in epileptic patients with
surgically implanted electrodes (Goyal et al., 2018). These participants were unable to recall
the correct order of previously presented word sequences. A similar impairment is also
observed when processing naturalistic event stimuli. Unlike healthy controls, patients with
hippocampal damage were unable to recall of the correct order of events that were
experienced on a 25 minute walk around a university campus (Dede et al.,, 2016).
Furthermore, in an fMRI study, the hippocampus was active during retrieval of the temporal
order of events within a previously watched movie and its degree of engagement correlated
with the accuracy of sequence recall (Lehn et al., 2009). Together, these findings indicate an
important role for the hippocampus in encoding sequential associations between information

that was experienced within the same temporal context, occurring close together in time.

However, the hippocampus appears to be less involved in the processing of information over
longer time scales, that span days, months and even years, while the mPFC does appear to be
important for this function (Barry & Maguire, 2024). For instance, damage to the mPFC impairs
the ability to place autobiographical memories on a timeline that spans many years, while this
ability remains intact following hippocampal damage (Tranel & Jones, 2006). Furthermore,
mPFC damaged patients display strong temporal discounting, preferring smaller immediate
rewards to larger delayed rewards (Peters & D'Esposito, 2016; Sellitto et al., 2010). By contrast,
hippocampal damaged patients display temporal discounting in line with healthy controls
(Kwan et al., 2013). Therefore, perhaps the mPFC, but not the hippocampus, functions to

integrate information over longer periods of time.

Together, these findings suggest that the mPFC and hippocampus may indeed be organised
into a temporal hierarchy, with the mPFC processing information that spans across multiple
distinct events, perhaps occurring on different days, weeks or years, and the hippocampus
processing temporal sequence information, perhaps occurring within a shorter time period

such as within a single event.

216



7.3.2. An executive control hierarchy

A second hierarchical relationship that has been proposed to exist between the mPFC and
hippocampus is one of executive control, with the mPFC situated higher than the
hippocampus and undertaking a role of initiating and supervising the (re)construction of
scenes, and possibly sequences of subevents, by the hippocampus (McCormick, Ciaramelli, et

al., 2018).

Studies into patients with bilateral hippocampal or mPFC damage revealed a role for the mPFC
in exerting top-down control of the hippocampus. Hippocampal damaged patients seem to
have a fundamental issue with any task requiring the visualisation of scenes or events (Bird et
al., 2008; Cipolotti et al., 2001; Corkin, 2002; Hassabis, Kumaran, Vann, et al., 2007; Miller et
al., 2020; Mullally et al., 2012; Nadel & Moscovitch, 1997; Rosenbaum et al., 2008; Steinvorth
et al., 2005; Taylor et al., 2007; Viskontas et al., 2000). Whereas, mPFC damaged patients are
able to imagine or recall scenes and events when highly detailed external cues are provided,
but they are unable to spontaneously visualise scenes and events (Bertossi et al., 2017;
Bertossi & Ciaramelli, 2016; Bertossi et al., 2016; Della Sala et al., 1993; Kopelman et al., 1999),
indicating a potential issue with the endogenous initiation of event visualisation. Furthermore,
unlike hippocampal damaged patients, mPFC damaged patients engage less frequently in day-
dreaming, which is characterised by the internal direction of attention towards internal
thoughts and visualisations (Bechara, 2004; Bertossi & Ciaramelli, 2016; Leopold et al., 2012;
McCormick, Rosenthal, et al., 2018). This led to the idea that the mPFC may play a role in the

endogenous initiation of internal experiences (McCormick, Ciaramelli, et al., 2018).

One approach to investigating the influence of one brain area on another in healthy individuals
is using effective connectivity analyses, such as DCM, of neuroimaging data. DCM is used to
test biologically plausible network models of the effective (i.e., causal) connectivity between
regions. DCM analysis of MEG and fMRI data found that activity in the mPFC drives activity in
the hippocampus, rather than vice versa, during the recollection of past autobiographical
memories, regardless of their age (McCormick et al., 2020; Nawa & Ando, 2019, 2020), as well
as during imagination of static scene images (Barry et al., 2019; Monk, Dalton, et al., 2021;
but also see Campbell et al., 2018). These findings suggest a top-down influence, presumably
via feedback signalling pathways, of the mPFC on the hippocampus during the internal

visualisation of scenes and events.
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Despite finding that the mPFC drives activity in the hippocampus throughout retrieval,
McCormick et al. (2020) found that the mPFC responded earlier than the hippocampus
specifically during the retrieval of remote memories (aged between 4 months to 5 years old).
By contrast, no difference in response time between the regions was observed for recent
memories (less than 1 month old), suggesting that the mPFC may initiate remote but not
recent event retrieval. Based on this evidence, it was proposed that the mPFC always drives
activity in the hippocampus, and, except perhaps during retrieval of very recent memories
where a hippocampal memory trace may still exist, the mPFC initiates the internal

visualisation of scenes and events.

In my Event Perception study, | observed the involvement of all layers of the mPFC during the
perception of dynamic events, indicating the involvement of both feedforward and feedback
signalling. This may be explained by the idea that, unlike internally-driven scene and event
visualisation, externally-driven scene and event visualisation may not require the mPFC for
initiation and control. Supporting this view, two recent laminar fMRI studies compared the
internal imagination and external perception of events in a single study. In the first study, they
found that internally-generated imagery activated the deep layers of the parahippocampal
and visual cortices, whereas externally-generated imagery produced equal activation across
the layers (Carricarte et al., 2024). Similarly, the second study found that imagination activated
the deep layers of the primary visual cortex, while perception activated all layers (Bergmann
et al.,, 2024). These findings suggest that, while internally generated imagery may rely,
predominantly, on feedback signalling, perception may be supported by both feedforward and

feedback signalling between neocortical areas.

Based on this hypothesis, in the Event Retrieval study, | might have expected memory retrieval
to engage only the feedback layers, irrespective of the age of the memory being retrieved. |
did indeed find evidence for top-down control of the hippocampus by the mPFC during
retrieval of remote memories. Specifically, | found evidence for the sharing of memory content
from the mPFC to hippocampal CA3 (via other neocortical areas) via feedback anatomical
pathways. However, during retrieval of recent memories, | found no evidence of this top-down
influence. Instead, | found evidence for the sharing of information from the mLTC to the mPFC

via feedforward anatomical pathways.
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An important distinction between the DCM studies and my laminar fMRI studies is in the
nature of the connectivity being examined. DCM estimates the connectivity between regions
based on the time courses of univariate power changes or BOLD signal changes, typically taken
from a peak voxel within each region. These univariate measurements correspond to the
estimated amplitude of neural activation during a given cognitive process. Whereas, |
measured the layer-specific multivariate representations within brain regions and the sharing
of this information content between regions based on the time course of these multivoxel
representations. These multivoxel representations correspond to distributed patterns of
neuronal activity representing specific event content (i.e., individual memories). As such,
while DCM may more sensitive to detecting the overall influence of the activity in one area on
the activity in another during a given cognitive process, my layer-specific multivariate analyses
may be more sensitive to detecting the transfer of informational content between areas.
These two processes may be orthogonal. For example, during recent autobiographical
memory retrieval, there may be bidirectional connectivity between the hippocampus, mPFC
and other cortical areas. This may sum to an overall influence of the mPFC on the
hippocampus, perhaps due to its role in initiating and controlling the visualisation of events
by the hippocampus. However, the predominant passing of memory-specific content may
occur feedforward, from the lateral temporal cortex to the mPFC. Indeed, despite not
detecting stable hippocampal and mPFC representations of recent memories, | observed
univariate activation of both the mPFC and the hippocampus during recent memory retrieval,

indicating the involvement of these regions beyond the passing of memory-specific content.

In sum, while there is evidence from previous DCM studies for a hierarchy of control between
the mPFC and hippocampus, it, like the temporal hierarchy, appears to be insufficient for

explaining my findings fully.

7.3.3. An abstraction hierarchy

A third hierarchical relationship that has been observed between the hippocampus and mPFC
is based on the degree of abstraction of processed information, where the lower order
hippocampus has been proposed to process specific autobiographical events, and the higher
order mPFC to process generalised information that has been abstracted from multiple
individual events (Gilboa & Marlatte, 2017; McClelland et al., 1995; McCormick, Ciaramelli, et
al., 2018; Preston & Eichenbaum, 2013; Robin & Moscovitch, 2017).
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The complementary learning systems theory suggests that the hippocampus rapidly learns
and maintains unique representations of specific events by forming associations between
event elements (Kumaran et al., 2016; McClelland et al., 1995). The neocortex, on the other
hand, gradually learns the statistical structure of the world, in the form of generalised
representations that have been abstracted across multiple events. Perhaps the most abstract,
generalised knowledge structures that have been studied are so-called schemas. Many
different types of schema have been described, including but not limited to context and event
schema (Ghosh & Gilboa, 2014). Context schemas are knowledge structures of associations
between objects, people, landmarks that would typically be found within a given spatial
context. For example, a restaurant might typically contain tables, chairs and service staff. Event
schemas, on the other hand, are knowledge structures of temporal sequences that might
occur within a given context. For instance, the typical sequence of subevents when dining in
a restaurant includes being escorted to a table, sitting down, reading the menu, selecting a
meal, and placing an order. As demonstrated by this example, context and event schema are

not distinct from one another and may be linked under a broader “restaurant” schema.

There is considerable evidence supporting a role for the hippocampus in representing specific
event content and of the mPFC in representing of more generalised schema (Audrain &
McAndrews, 2022; Chadwick et al., 2011; Reagh & Ranganath, 2023; Schlichting et al., 2015).
For example, in a paradigm known as associative inference, participants learn associations
between pairs of stimuli that share a common element (e.g., AB and BC). Immediately after
encoding, multivoxel representations for A and C became more similar in the mPFC, despite
never being presented together, indicating the integration of information across “events”
(Schlichting et al., 2015). Whereas in the (posterior) hippocampus, neural representations for
A and C remained distinct indicating the maintenance of episode-specific representations. In
this study, arbitrary relationships between stimuli were learned during the experiment.
However, because in the real-world schemas are learned over a lifetime of experiences, to
achieve ecological validity, it is important to investigate schema in terms of real-world prior
knowledge. A second study sought to do this (Audrain & McAndrews, 2022). While being fMRI
scanned, participants retrieved memories of object-scene pairs that were either congruent or
incongruent with existing schema. The multivoxel response patterns in the mPFC were similar

for schema-congruent, but not incongruent, pairs that shared the same schematic context
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(e.g., beach). In the (posterior) hippocampus, on the other hand, multivoxel response patterns
remained distinct to the specific scene-object pair, irrespective of its schema-congruency.
Together, these studies highlight a role of the mPFC in integrating information across events

and the hippocampus in maintaining event-specific information.

Schemas are called upon in the service of two main functions: 1) the top-down provision of
prior knowledge to guide the retrieval, imagination, prediction or interpretation of specific
events, and 2) the bottom-up integration of novel or recent events into existing knowledge.
For example, during the online perception of events, schemas may function in the top-down
anticipation and interpretation of unfolding events. This may be particularly helpful when
events are ambiguous. Event schemas in particular, which store information about the
temporal structure of events, may guide event perception by giving rise to expectations about
what will happen next (Ortiz-Tudela et al., 2024; Richmond et al., 2017). These expectations
influence our interpretation of sensory information, leading us to perceive events in a way
that aligns with our prior knowledge (Knill & Richards, 1996). During the retrieval of past
events, schemas have been proposed to guide, in a top-down fashion, the rapid selection of
the most plausible event details (Gilboa & Marlatte, 2017; Preston & Eichenbaum, 2013). This
has been found to improve long-term memory of events, with subevents, such as individual
actions, being remembered better if they are congruent with event schemas (e.g., Bartlett,
1932; Spalding et al., 2015; Tse et al., 2007). The bottom-up integration of newly and recently
perceived events into existing schema ensures that schemas which accurately reflect our
experiences can continue to perform their important roles in perception and memory

retrieval.

The role of the mPFC in processing schema would explain its engagement in both
autobiographical memory retrieval (as in my Event Retrieval study), where schema may be
called upon to guide retrieval, and during scene and event perception (as in my Event
Perception study), where schema may be called upon to guide interpretation and prediction
of scenes and events as well as their integration into existing schema. A possible explanation
for the differential involvement of feedforward and feedback signalling pathways in the
processing of remote, recent and present moment events observed in my experiments may
correspond to the differential involvement of the two major schema functions in each process:

the top-down guidance of retrieval and perception, presumably operating via feedback
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pathways, and the bottom up (re)integration of information into schema, presumably

operating via feedforward pathways.

In the Event Perception experiment, realistic imagery was decodable from abstract pattern
imagery in the mPFC when in the form of temporally extended events. Whereas, when static
images were presented, the mPFC did not distinguish between meaningful and abstract
imagery. One possible explanation for this is that real-world temporal sequences engage
mPFC-based schema to a greater degree than real-world atemporal information. Indeed, static
scene imagery would likely activate context schema in the mPFC. Whereas, dynamic

meaningful events may additionally activate event schema.

Supporting this view, the mPFC has been found to be particularly involved in the
representation of event schema when compared to context schema (Baldassano et al., 2018).
In another study, participants watched movies or listened to audio narratives that took place
in one of two schematic contexts (a restaurant or an airport). For half of the participants, the
events were congruent with pre-existing event schema, unfolding in the typical temporal
sequence (e.g., entering the restaurant, being seated, ordering, and eating food). For the
other half of participants, the same events were incongruent with existing event schema,
unfolding in a scrambled order. Multivoxel representations of the contexts were detected in
the mPFC, but only when the events were shown in the correct order. This research indicates
that the mPFC may be particularly involved in representing the typical temporal sequences
that form event schema and less involved in the representation of the typical scene elements
that comprise context schema. Not only would this explain my findings, but it would also
explain why patients with mPFC lesions are impaired at recalling extended events but are able
to recollect individual scenes (Bertossi et al., 2017; Bertossi et al., 2016; Della Sala et al., 1993;
Kurczek et al., 2015), and why the mPFC-hippocampus coupling is stronger during dynamic

compared to static scene imagination (Kaplan et al., 2017).

In terms of the laminar microcircuitry, in my Event Perception experiment, | found that
dynamic real-world events were decodable from dynamic abstract patterns in all mPFC layers.
This indicates that, dynamic events and dynamic abstract patterns may differ in terms of their
reliance on schema for both top-down guidance, operating via feedback signalling pathways,
and bottom-up integration, operating via feedforward signalling pathways. When viewing
dynamic events and dynamic abstract patterns, participants reported predicting ahead to
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what might happen next. This function of predicting ahead may rely heavily on top-down
processing by existing event schema, particularly when real-world meaningful events are
perceived. By contrast, the function of predicting ahead during the perception of dynamic
abstract patterns may rely more on lower-order brain areas that process simple motions such
as rotation. This predictive function would be accompanied by the bottom-up integration of

information, perhaps in the form of prediction errors, into event schemas.

In my Event Retrieval study, specific remote, but not recent, memories were represented in
the mPFC during their retrieval, corroborating the findings of previous 3T fMRI studies, and
supporting the idea that the mPFC is a major neocortical consolidation site (Barry et al., 2018;
Bonnici, Chadwick, Lutti, et al., 2012; Bonnici & Maguire, 2018). It is widely believed that,
rather than being directly transferred into the neocortex, new memories are integrated into
pre-existing schemas (McClelland et al., 1995; McKenzie & Eichenbaum, 2011; Tse et al., 2007,
Wang & Morris, 2010). Supporting this view, recent fMRI studies found that memory
representations that were detected in the mPFC at 3 to 7 days post-encoding were not
memory-specific but instead overlapped with other events with shared features, such as a
shared schematic context (Audrain & McAndrews, 2022; Tompary & Davachi, 2017). This
coincided with a decreased memory for the specific event details, indicating that the process
of schema consolidation may have resulted in more generalised memories (Audrain &

McAndrews, 2022).

My results may therefore be explained by the notion that retrieval of remote autobiographical
events requires more top-down schema guidance, operating via feedback pathways, than
retrieval of recent memories. This would explain why, during retrieval of remote but not
recent memories, | found memory representations in the mPFC deep layers and sharing of
these representations (ultimately) with hippocampal CA3 (although passing through the
retrosplenial cortex deep layers and mLTC deep layers first). By contrast, retrieval of recent
autobiographical events may require more feedforward integration into existing schema than
retrieval of remote memories. Indeed, | found that recent episodic memories were not yet
stably represented in the mPFC and may therefore be in the process of consolidation into
mPFC schemas. This process of schema integration may involve the feedforward passing of

event information into the mPFC and may explain why recent memory representations in the
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lateral temporal cortex feedforward layers were shared with the mPFC feedforward layers

during retrieval.

Supporting the idea that schema integration occurs during memory retrieval, systems-level
consolidation is believed to occur, not just during rest and sleep, but also during memory
retrieval (Antony et al., 2017). During rest and sleep, the same sequences of neuronal firing
that took place during wakefulness have been found to be replayed in the hippocampus and
prefrontal cortex (Colgin, 2011; Ji & Wilson, 2007; Siapas et al., 2005). Blocking these replay
events impairs memory performance in rodents (Jadhav et al., 2012), highlighting their critical
role in memory consolidation. In a similar fashion to offline replay, memory retrieval activates
the same hippocampal and neocortical firing patterns that took place during encoding and
also improves memory performance (i.e., testing effects; Rowland, 2014). This has led to the

proposition that, like sleep and rest, memory retrieval also functions to consolidate memories.

While | detected remote representations in the mPFC, | did not detect representations of
memories of any age in the hippocampus, challenging the idea that it represents specific
events. However, | did find univariate activation of the hippocampus during retrieval of
memories of all ages, supporting its long-term involvement in memory retrieval (Barry &
Maguire, 2019; Moscovitch et al., 2016; Nadel et al., 2007). Scene Construction Theory posits
that memories are stored in the hippocampus for a short period, specifically, until they are
replaced by new memory traces. Following this, the hippocampus continues to be involved in
memory retrieval, but, instead of activating a stored memory trace, reconstructs a coherent
episodic memory from a combination of neocortical memory traces (Barry & Maguire, 2019).
It may be that the recent (1 — 6 week old) memories examined in my study had already
undergone this kind of degradation in the hippocampus. Indeed, enough time had passed for
the recent memories to undergo some neocortical consolidation, as they were stably
represented in the mLTC, suggesting that a hippocampal trace may no longer be required.
Therefore, perhaps, as proposed by Barry and Maguire, 2019, in my Event Retrieval study, the

hippocampus was functioning to flexibly reconstruct both recent and remote memories.

An alternative perspective, Trace Transformation Theory, posits that various types of memory
representations can coexist, including detailed, episode-specific representations in the
hippocampus (with coarse, gist-like representations in the anterior hippocampus and fine-

grained, detailed representations in the posterior hippocampus) and more generalised,
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schematic event representations in the mPFC (Robin & Moscovitch, 2017; Sekeres et al.,
2018). According to this theory, hippocampal traces are in the form of indexes, which point to
the relevant neocortical memory traces, including schematic, semantic and perceptual details.
The involvement of each type of representation is thought to depend on task demands, such
as the level of detail required during recollection and the nature of the memory cue provided.
For example, this theory posits that hippocampal representations will only engage when
episode-specific information is retrieved. The cue is also important as it is proposed to
determine which brain region initiates the retrieval process. When generic cues are used,
schematic representations in the mPFC will initiate and guide the retrieval process, whereas

when episode-specific cues are given the hippocampus will control retrieval.

In my Event Retrieval study, | ensured that highly detailed memories were selected and that
recent and remote memories were matched in terms of the number of episode-specific
details. Furthermore, the task demands were the same for recent and remote retrieval. A
reasonably coarse, but episode-specific, memory cue was provided and participants were
tasked with recollecting the specific event with a high degree of detail and vividness. However,
despite this, | did not detect stable hippocampal representations, nor did | find evidence for
them initiating and driving the engagement of mPFC representations. Instead, | found
evidence for the opposite effect during remote memory retrieval, that is, mPFC
representations driving the hippocampus via feedback signalling pathways. Therefore, my

findings do not support the predictions made by Trace Transformation Theory.

In summary, the arrangement of the mPFC and hippocampus into a functional hierarchy of
abstraction, with the lower-order hippocampus processing specific events and the mPFC
processing knowledge abstracted across multiple events, may explain why the mPFC is more
involved in the processing of temporally unfolding events compared to static images (Bertossi
et al., 2017; Bertossi et al., 2016; Della Sala et al., 1993; Kaplan et al., 2017; Kurczek et al.,
2015). This is because the mPFC may be particularly involved in representing the typical
temporal structure of commonly experienced events (event schema), which may act as a
template under which specific events unfold. Furthermore, it may explain why | found remote,
schema-consolidated, memories, were stably represented in the mPFC, while recent

memories were not.
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7.3.4. Other cortical areas

While the focus of this thesis is on the microcircuitry of the hippocampus and mPFCin support
of event processing, these brain regions clearly do not work in isolation. Rather, there is a
widely distributed set of brain areas involved (Beaty et al., 2018; Bonnici, Chadwick, Lutti, et
al., 2012; Hassabis & Maguire, 2007; Maguire, 2001; McDermott et al., 2009; Schacter et al.,
2007). In my Event Perception study, | found that, during perception, all of the areas in the
core network displayed scene-selectivity during scene and event perception and were
functionally connected to one another. This indicates the network-wide preference of the core
network of brain regions for scene compared to non-scene imagery and its strong functional

connectivity during their perception.

In my Event Retrieval study, one cortical area, the mLTC, contained recent and remote memory
representations. Furthermore, several cortical areas were informationally connected to the
mLTC or mPFC, which both contained memory representations. The specific informational
connectivity between brain areas during memory retrieval led to the creation of a connectivity
diagram that could explain an indirect pathway of connectivity between the mPFC and the
hippocampus. It revealed two brain areas, the retrosplenial cortex and mLTC that memory-

related information may pass through as the mPFC and hippocampus communicate.

Along with the mPFC, the mLTC has also been shown to engage during schema-guided
retrieval (Webb et al., 2016). For example, in one study, participants were presented with
scenes (bathroom and farm) containing schema-congruent and incongruent objects (Webb et
al., 2016). They subsequently underwent a recognition memory test while being fMRI
scanned. During the recognition memory test they were presented with the schema
congruent and incongruent objects from the encoded scenes as well as schema-congruent
lure objects that they had not seen before. The mPFC and lateral temporal cortices coactivated
whenever a schema-congruent object was reported as being seen before, whether the
memory was accurate or not. In contrast, the accurate recognition of memories coincided

with increased activity in the hippocampus and posterior visual cortex.

A recent study probed the specific type of event information that is represented by the mLTC
as well as other cortical regions and the hippocampus (Reagh & Ranganath, 2023). While being

fMRI scanned, participants watched and then recollected short events that were either
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overlapping in terms of context schema (café or grocery store), place (specific café or specific
grocery store) or person (specific woman or specific man). Supporting previous studies, the
study found that, during both encoding and retrieval, the mPFC represented schematic
context, while the hippocampus represented specific events. The mLTC represented people
but did not distinguish between locations. By contrast, the retrosplenial cortex represented
the specific location of the event, but did not distinguish between people. It is unclear from
this study if the people and place representations were semantic or perceptual in nature,
although the lateral temporal cortex in particular is known to play an important role in the
retrieval of the semantic gist of events (Buckner, 1996; Gabrieli et al., 1998; Noppeney et al.,
2007; Price, 2000; Simons et al., 2005). What is clear is that these kinds of event details would
be positioned between schematic and episode-specific representations in a hierarchy of
abstraction. For example, beaches in general are an example of a context schema, perhaps
represented in the mPFC. Three Cliffs Bay (a beach that | used to go to with my family) is an
example of a place, perhaps represented in the retrosplenial cortex. A specific trip to Three
Cliffs Bay when | was 12 years old is an example of a specific episode, perhaps represented by

the hippocampus.

These people and place event details may be precisely the type of event details that schemas
are proposed to select during memory retrieval, perhaps explaining the feedback passing of
information from the mPFC to the mLTC and retrosplenial cortex during retrieval of remote
memories (in my Event Retrieval study). They may also be the type of information that is
consolidated into mPFC schema representations, perhaps explaining the feedforward

signalling from the lateral temporal cortex to the mPFC during retrieval of recent memories.

Another prominent model of event processing, the “PMAT” framework (Ranganath & Ritchey,
2012), proposes a structural and functional division of the core network. According to this
framework, the anterior temporal (AT) system — including the anterior lateral temporal cortex,
lateral prefrontal cortex, and amygdala — processes semantic and conceptual event
information and its affective significance. In contrast, the posterior medial (PM) system —
including the parahippocampal cortex, retrosplenial cortex, and the pre/parasubiculum —
processes the spatial, temporal, and social context of events. Hippocampal CA3 and the DG,
along with the mPFC, are thought to mediate interactions between these networks for

successful event retrieval (Ritchey et al., 2015).
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My findings support the idea that the mPFC integrates information from both systems. During
event retrieval, the mPFC was functionally connected to an area in the AT system, the mLTC,
as well as areas in the PM system, the retrosplenial cortex and occipital cortex. However, | did
not find evidence for the convergence of AT and PM systems in the hippocampus.
Hippocampal CA3 was exclusively connected to the AT system, specifically the mLTC.
Moreover, my findings did not support a strict division between the PM and AT systems.
Instead, | observed direct functional connectivity between the mLTC (AT system) and the

retrosplenial cortex and parahippocampal cortex (PM system) during memory retrieval.

In summary, there is considerable evidence to suggest that the hippocampus and mPFC are
hierarchically organised during event processing. Furthermore, there is evidence to suggest
that lower-order cortical areas, such as the mLTC and retrosplenial cortex may sit between the
mPFC and hippocampus in a functional hierarchy of abstraction, representing the semantic

and perceptual details of events, such as people and places.

7.3.5. The hippocampal microcircuitry

In my Event Retrieval study, there was evidence for sharing of information content between
the neocortex and hippocampal CA2/3 during the retrieval of remote autobiographical
memories. By contrast, | did not find evidence for the sharing of memory content with any
hippocampal subfields during the retrieval of recent memories. This suggests that CA3 might
be more involved in retrieval as memories age. However, my analysis of univariate activation
in the hippocampal subfields revealed an opposite effect. Both the CA3 and the DG produced
greater activation during the retrieval of recent compared to remote autobiographical
memories. These univariate results instead suggest that the trisynaptic loop, consisting of
projections from the entorhinal cortex to the DG, then to CA3, and finally to CA1, become less

involved in retrieval as memories age.

The subfields of the trisynaptic loop, the DG and CA3, support two important computations,
pattern separation and completion (Baker et al.,, 2016; Berron et al., 2016; Guzman et al.,
2016; Leutgeb et al., 2007; Lisman, 1999; McNaughton & Morris, 1987; Rebola et al., 2017;
Rolls & Treves, 1994; Treves & Rolls, 1994). Neocortical information arrives into the DG, where
it is encoded by sparsely distributed ensembles of neurons (pattern separation). This allows

the incoming information to be encoded as distinct from past overlapping experiences. The
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distinct DG representations are projected onwards to CA3, which, given its dense recurrent
collateral connections, is able to access previously encoded information that overlaps with the
input (pattern completion). As such, complete memories can be retrieved based on partial

cues. These two computations are thought to be essential for memory function.

Evidence from rodent studies suggests that, while retrieval of recent contextual fear memories
is supported by both CA3 and CA1, CA3 is not necessary for the retrieval of remote memories
(Denny et al., 2014; Lux et al., 2016). Retrieval of these older memories was, instead found to
solely rely on CA1 (Lux et al., 2016). In line with Standard Consolidation Theory and Scene
Construction Theory, it was proposed that, over time, hippocampal memory representations
may degrade, making it difficult to successfully retrieve full memory representations via
pattern completion (Kesner & Rolls, 2015; Lux et al., 2016). This could explain why, in my Event
Retrieval study, the DG and CA3 were more engaged during the retrieval of recent compared

to remote memories.

Speaking against this hypothesis, focal damage to the human CA3 results in impoverished
episodic details of memories of all ages (Miller et al., 2020). An fMRI study has also found
stronger representations of remote autobiographical memories in CA3 when compared to
recent memories (Bonnici et al., 2013). Supporting these findings, an alternative proposition
has been made that CA3’s role in memory retrieval may instead increase as memories age,
due to a greater need to pattern complete memories as cues arriving from the neocortex are
likely to be highly vague or degraded (Bonnici et al., 2013). While | did not find evidence for
representations in CA3, | did find sharing of information content with CA3 for remote and not
recent memories, which could reflect a greater demand for pattern completion by the

retrieval of these older memories.

Given that pattern completion is believed to access stored memory representations, it implies
the existence of stable representations of the complete memory in CA3. However, | did not
find such stable representations in any of the hippocampal subfields. This challenges the idea
that the hippocampus pattern completes previously stored representations during retrieval,
instead supporting the view that the hippocampus flexibly reconstructs memories by
recruiting different neuronal populations on each retrieval. The reconstruction theory does
not, however, specify how hippocampal computations might support the proposed

reconstruction of events from individual details.
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Clearly, there are conflicting views on the involvement of the trisynaptic loop, the DG and CA3
subfields, in retrieval over time. | hope that future studies using 7T fMRI to investigate human
hippocampal subfields will help to resolve these debates. The variability in findings suggest
that any shift in the reliance of memory retrieval on CA3 over time may be highly nuanced,
rather than an all-or-nothing phenomenon. The conflicting findings also provide further
evidence for the importance of conducting both multivariate and univariate investigations of
cognitive processes. Each approach can provide insights about different types of information

processing and together offer a more fine-tuned understanding of cognitive processing.

7.4. Future directions and conclusion

My PhD work provides novel insights into the cortical and hippocampal microcircuits
supporting event processing, including memory of past autobiographical events and
perception of present moment events. Relatively few studies have investigated the anatomical
pathways of connectivity between the hippocampus, mPFC and other cortical areas that
support these important functions. My PhD research aimed to address this knowledge gap.
First, | developed, with the Department’s Physics Team, MRI acquisition and analysis methods
that would allow me to detect neuronal activity in the mPFC layers and hippocampal subfields.
As part of this methods development, | produced a publicly available, open source tool for
automatically delineating the hippocampal subfields in MRI scans. Subsequently, | applied
these methods to distinguish the roles of the mPFC layers and hippocampal subfields in recent
and remote autobiographical memory retrieval as well as their respective roles in the

processing of new events.

| found that, during Event Retrieval, remote but not recent autobiographical memories were
stably represented in the mPFC deep layers. The hippocampal subfields, on the other hand,
while actively engaged during retrieval, did not produce stable representations of recent or
remote autobiographical memories. One other cortical area, the mLTC, did contain stable
representations of both remote and recent memories in the deep and superficial layers,
respectively. During perception, several hippocampal subfields (the DG, CA3 and CA1l)
distinguished between scene and non-scene imagery irrespective of whether they were in the

form of individual atemporal scenes or temporally extended events. The mPFC layers, on the
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other hand, only distinguished between scene and non-scene imagery when in the form of

dynamic events.

Overall, my results are consistent with the idea that the hippocampus and mPFC are organised
into a temporal hierarchy, with the higher-level mPFC representing information extracted over
long time scales and the lower-order hippocampus flexibly (re)constructing individual scenes,
and perhaps short temporal sequences. While | did not formally test the specificity of
information represented by each brain area, my results are also consistent with the idea that
the hippocampus and mPFC may be organised into an abstraction hierarchy, with the higher-
level mPFC representing schematic information abstracted over multiple episodes and the
hippocampus flexibly (re)constructing specific episodes. These co-existing hierarchies can be
unified under the rubric that the mPFC plays a particularly important role in representing
event schema, the typical temporal sequence of actions or subevents that comprise an
extended event, and the hippocampus in processing episode-specific scenes and short

temporal sequences.

This work provides first insights into the cortical microcircuitry involved in naturalistic event
processing. The involvement of different cortical layers tells us about the direction of
connectivity, feedforward or feedback, therefore contributing to our knowledge about the
connectivity between brain regions. | propose that remote, schema-consolidated, memory
representations in the mPFC guide retrieval via feedback signalling pathways, perhaps by
selecting relevant and suppressing irrelevant event details in lower order areas. Whereas,
recent memory representations in the mLTC may undergo more feedforward consolidation
into the mPFC during retrieval. Event perception may involve an equal balance of schema-
guided perception, for example the prediction and interpretation of events as they are

unfolding, and the assimilation of novel events into existing schema.

This work also adds to the knowledge of hippocampal microcircuitry involved in event
processing. | found that several hippocampal circuits, including subfields of the input
pathways to the hippocampus, the trisynaptic loop (the DG, CA2/3 and CA1l), and the
monosynaptic pathway (CA1), and subfields in the output pathways from the hippocampus
(CA1 and the pre/parasubiculum), have a preference for scene over non-scene imagery.
However, their involvement in remote compared to recent memory retrieval was unclear, with
univariate activations implying greater engagement of the trisynaptic loop in recent compared
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to remote retrieval, but multivariate analyses finding that remote memory content was
passed into the trisynaptic loop. This shows how important it is to do studies of univariate
activation and content-specific multivariate studies. Multivariate laminar fMRI combined with
informational connectivity analysis is unique in providing a method that allows for inferences

about the direction of the passing of information content between brain regions.

Clearly, numerous questions remain. For a start, what type of memory content is represented
by the mPFC deep layers and the deep layers of lower order cortical areas during event
retrieval? While | suspected their involvement, | did not formally test how schemas underpin
the retrieval of autobiographical memories and the online perception of events. Future
studies could include events that are overlapping or distinct in terms of context schemas (e.g.,
airports or grocery stores) or event schemas (e.g., the typical sequence of subevents when
moving through an airport or grocery store). Representations of other event features, such as
specific people, places, objects or actions, could also be probed by including events are

overlapping or distinct along these dimensions.

It would also be interesting to track mPFC and hippocampal representations of the same
events over time to understand if, at any stage, the hippocampus stably represents specific
events and at what point they become stably represented in neocortical areas, including the
mPFC. One study performed this kind of analysis of autobiographical memory representations
in the mPFC, finding that they were not stably represented at 2 weeks after their initial
encoding, but they were after 4 months (Barry et al., 2018). Future studies could investigate
this further by measuring both hippocampal and mPFC event representations from the time
of their encoding. MRI-compatible VR could be used to expose participants to naturalistic
events while fMRI scanning. Events could then be retrieved at various different intervals
following encoding, such as immediately after, 1 day later and several months later. The use
of VR to present naturalistic events in a laboratory setting, as opposed to real-world
autobiographical memories, would also allow the comparison of schema-congruent and
schema-incongruent false details between remote and recent memories, as a ground truth

would be known.

Related to this, there is the question of whether the hippocampus stores lasting
representations of detailed memories, as proposed by Trace Transformation Theory, or if, after
a certain amount of time, the hippocampus flexibly reconstructs memories from neocortical
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representations, as proposed by Barry and Maguire (2019). My findings of hippocampal
activation during retrieval, but the absence of multivoxel representations of memories,
support the idea that the hippocampus flexibly reconstructs memories ranging from 1 week
to 5 years old. However, as discussed, there are conflicting results in both the rodent and
human literature on this topic. Therefore, further human studies of the hippocampal subfields
are required to resolve this question with respect to humans. | hope that the ASHS atlas that

| developed as part of my PhD will help to make these kinds of studies more accessible.

Another important future study to test the predictions made by Trace Transformation Theory
would be to understand the impact of cue specificity on hippocampal-neocortical
microcircuitry supporting retrieval. Trace Transformation Theory proposes that the mPFC
drives retrieval when schematic cues are used, whereas the anterior and posterior
hippocampus drive retrieval when gist-like or detailed episode specific cues are used,
respectively. This could be tested by manipulating the specificity of memory cues used in an
autobiographical memory retrieval study and observing the impact on hippocampal and mPFC

representations.

There is evidence to suggest that the integration of new information into schematic
representations can be achieved during its initial encoding when the new information is
schema congruent (Wang & Morris, 2010). Therefore, an interesting approach to test the
hypothesis that schema integration occurs feedforward and schema-guided retrieval occurs
feedback could be an experiment in which participants are presented with schema-congruent
and incongruent events. In a similar approach to Audrain and McAndrews (2022), but using
laminar and subfield fMRI, the events could fall into two schematic contexts (e.g., beaches
and offices). | would predict that the mPFC middle layers and/or superficial layers would
represent the schematic context during encoding of schema-congruent but not incongruent
events, indicating the feedforward passing of new schema-congruent information into existing
schema. Whereas, during retrieval, | would expect the mPFC deep layers to represent
schematic context, again, during schema-congruent but not incongruent retrieval, indicating

the involvement of feedback pathways in schema-guided retrieval.

In terms of the hippocampal subfield microcircuitry, it would be interesting to further explore
the idea that the trisynaptic loop may be more engaged during retrieval of recent memories.

A recent study has shown that it is possible to perform laminar analysis of the hippocampal
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subfields (Pfaffenrot et al., 2024). Therefore, using my same dataset, a laminar subfield
analysis of CA1 could be performed that would distinguish between the two pathways.
Alternatively, new fMRI data could be acquired that is optimised for imaging the entorhinal
cortex to distinguish between these pathways based on involvement of the superficial (layer
2) or middle layer (layer 3), which form part of the trisynaptic loop and monosynaptic pathway,

respectively.

Neurons in layer 2 of the entorhinal and transentorhinal cortices are the first neurons in the
brain to be affected by Alzheimer’s pathology, developing neurofibrillary tangles, which leads
to neurodegeneration (Braak & Braak, 1991). To understand this pathology better, laminar
fMRI could be deployed in patients with mild cognitive impairment, a condition that can lead
to Alzheimer’s disease, to see if there are differences in the engagement of EC layer 2 and the
subfields of the trisynaptic loop during memory encoding and retrieval compared to control
participants and whether these differences predict differences in memory ability. If functional
changes did exist, they could be a potential early biomarker for Alzheimer’s risk. It would also
be interesting to investigate the specific effects of any functional differences on hippocampal
computations like pattern separation and pattern completion, which depend on the

trisynaptic pathway.

In conclusion, my PhD research provides new insights into how the hippocampal subfields,
mPFC layers and layers of other cortical areas in the core autobiographical memory network
cooperate to support the processing of events. My findings highlight how various forms of
event processing can differentially engage feedforward and feedback signalling pathways.
Clearly, there is still much to learn and | hope that my findings will inspire future studies. Any
future studies could make use of the acquisition and analysis tools that | developed as part of
this PhD. Particularly, | hope that the work | undertook to develop a tool for automatically
defining the hippocampal subfields on MRI scans will remove any potential barriers for future

researchers interested in the functions of the human hippocampal microcircuits.

234



References

Abraham A. (2013). The world according to me: personal relevance and the medial prefrontal
cortex. Frontiers in human neuroscience, 7, 341.

https://doi.org/10.3389/fnhum.2013.00341

Addis, D. R., Moscovitch, M., & McAndrews, M. P. (2007). Consequences of hippocampal
damage across the autobiographical memory network in left temporal lobe epilepsy.

Brain, 130(Pt 9), 2327-2342. https://doi.org/10.1093/brain/awm166

Addis, D. R., Pan, L., Vu, M. A,, Laiser, N., & Schacter, D. L. (2009). Constructive episodic
simulation of the future and the past: distinct subsystems of a core brain network
mediate imagining and remembering. Neuropsychologia, 47(11), 2222-2238.
https://doi.org/10.1016/j.neuropsychologia.2008.10.026

Addis, D. R., & Schacter, D. L. (2011). The hippocampus and imagining the future: where do
we stand? Front Hum Neurosci, 5, 173. https://doi.org/10.3389/fnhum.2011.00173

Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the
future: common and distinct neural substrates during event construction and
elaboration. Neuropsychologia, 45(7), 1363-1377.
https://doi.org/10.1016/j.neuropsychologia.2006.10.016

Aggleton, J. P.,, Wright, N. F., Rosene, D. L., & Saunders, R. C. (2015). Complementary Patterns
of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex.

Cereb Cortex, 25(11), 4351-4373. https://doi.org/10.1093/cercor/bhv019

Aitken, F., & Kok, P. (2022). Hippocampal representations switch from errors to predictions
during acquisition of predictive associations. Nat Commun, 13(1), 3294.

https://doi.org/10.1038/s41467-022-31040-w

Aitken, F., Menelaou, G., Warrington, O., Koolschijn, R. S., Corbin, N., Callaghan, M. F., & Kok,
P. (2020). Prior expectations evoke stimulus-specific activity in the deep layers of the
primary visual cortex. PLoS Biol, 18(12), €3001023.
https://doi.org/10.1371/journal.pbio.3001023

235



Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome

predictor. Nature neuroscience, 14(10), 1338—1344. https://doi.org/10.1038/nn.2921

Aly, M., Ranganath, C.,, & Yonelinas, A. P. (2013). Detecting changes in scenes: the
hippocampus is critical for strength-based perception. Neuron, 78(6), 1127-1137.
https://doi.org/10.1016/j.neuron.2013.04.018

Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal
formation: a review of anatomical data. Neuroscience, 31(3), 571-591.

https://doi.org/10.1016/0306-4522(89)90424-7

Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in
cognition. Trends Cogn Sci, 17(8), 379-390. https://doi.org/10.1016/j.tics.2013.06.009

Andersen, P, Bliss, T. V., Lomo, T., Olsen, L. I., & Skrede, K. K. (1971). Lamellar organization of
hippocampal excitatory pathways. Acta Physiol Scand, 76(1), 4A-5A.
https://doi.org/10.1111/j.1748-1716.1969.tb04499.x

Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric
deformations  in EPI  time  series.  Neuroimage,  13(5), 903-919.

https://doi.org/10.1006/nimg.2001.0746

Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in
spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage,

20(2), 870-888. https://doi.org/10.1016/51053-8119(03)00336-7

Antony, J. W,, Ferreira, C. S., Norman, K. A., & Wimber, M. (2017). Retrieval as a Fast Route to
Memory Consolidation. Trends in cognitive sciences, 21(8).

https://doi.org/10.1016/j.tics.2017.05.001

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1),
95-113. https://doi.org/10.1016/j.neuroimage.2007.07.007

Attardo, A., Fitzgerald, J. E., & Schnitzer, M. J. (2015). Impermanence of dendritic spines in live
adult CAl hippocampus. Nature, 523(7562), 592-596.
https://doi.org/10.1038/nature14467

236



Audrain, S., & McAndrews, M. P. (2022). Schemas provide a scaffold for neocortical integration
of new memories over  time. Nat  Commun, 13(1), 5795.

https://doi.org/10.1038/s41467-022-33517-0

Augustinack, J. C., Huber, K. E., Stevens, A. A., Roy, M., Frosch, M. P., van der Kouwe, A. J.,
Wald, L. L, Van Leemput, K., McKee, A. C., Fischl, B., & Alzheimer's Disease
Neuroimaging, I. (2013). Predicting the location of human perirhinal cortex,
Brodmann's area 35, from MRI. Neuroimage, 64, 32-42.

https://doi.org/10.1016/j.neuroimage.2012.08.071

Averbeck, B. B., & Seo, M. (2008). The statistical neuroanatomy of frontal networks in the
macaque. PLoS Comput Biol, 4(4), €1000050.
https://doi.org/10.1371/journal.pcbi.1000050

Bachevalier, J., Meunier, M., Lu, M. X., & Ungerleider, L. G. (1997). Thalamic and temporal
cortex input to medial prefrontal cortex in rhesus monkeys. Exp Brain Res, 115(3), 430-

444, https://doi.org/10.1007/pl00005713

Baker, S., Vieweg, P., Gao, F., Gilboa, A., Wolbers, T., Black, S. E., & Rosenbaum, R. S. (2016).
The Human Dentate Gyrus Plays a Necessary Role in Discriminating New Memories.

Curr Biol, 26(19), 2629-2634. https://doi.org/10.1016/j.cub.2016.07.081

Baldassano, C., Esteva, A., Fei-Fei, L., & Beck, D. M. (2016). Two Distinct Scene-Processing
Networks Connecting Vision and Memory. eNeuro, 3(5).

https://doi.org/10.1523/ENEURO.0178-16.2016

Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of Real-World Event
Schemas during Narrative Perception. J Neurosci, 38(45), 9689-9699.
https://doi.org/10.1523/JINEUROSCI.0251-18.2018

Barbas, H. (2015). General cortical and special prefrontal connections: principles from
structure to function. Annu Rev Neurosci, 38, 269-289.

https://doi.org/10.1146/annurev-neuro-071714-033936

Barense, M. D., Henson, R. N., Lee, A. C., & Graham, K. S. (2010). Medial temporal lobe activity
during complex discrimination of faces, objects, and scenes: Effects of viewpoint.

Hippocampus, 20(3), 389-401. https://doi.org/10.1002/hipo.20641

237



Barry, D. N., Barnes, G. R,, Clark, I. A., & Maguire, E. A. (2019). The Neural Dynamics of Novel
Scene Imagery. J Neurosci, 39(22), 4375-4386.
https://doi.org/10.1523/JINEUROSCI.2497-18.2019

Barry, D. N., Chadwick, M. J.,, & Maguire, E. A. (2018). Nonmonotonic recruitment of
ventromedial prefrontal cortex during remote memory recall. PLoS Biol, 16(7),

€2005479. https://doi.org/10.1371/journal.pbio.2005479

Barry, D. N., Clark, I. A., & Maguire, E. A. (2021). The relationship between hippocampal
subfield volumes and autobiographical memory persistence. Hippocampus, 31(4).

https://doi.org/10.1002/hipo.23293

Barry, D. N., & Maguire, E. A. (2019). Remote Memory and the Hippocampus: A Constructive
Critique. Trends Cogn Sci, 23(2), 128-142. https://doi.org/10.1016/j.tics.2018.11.005

Barry, D. N., & Maguire, E. A. (2024). Functions of the human hippocampus. In R. Morris, D. G.
Amaral, T. Bliss, K. Duff, & J. O'Keefe (Eds.), The Hippocampus Book. Oxford University

Press.
Bartlett, F. C. (1932). Remembering: a study in experimental and social psychology. Macmillan.

Bartsch, T., Dohring, J., Rohr, A., Jansen, O., & Deuschl, G. (2011). CA1 neurons in the human
hippocampus are critical for autobiographical memory, mental time travel, and
autonoetic consciousness. Proc Natl Acad Sci U S A, 108(42), 17562-17567.
https://doi.org/10.1073/pnas.1110266108

Bastin, J., Vidal, J. R., Bouvier, S., Perrone-Bertolotti, M., Benis, D., Kahane, P., David, O.,
Lachaux, J. P., & Epstein, R. A. (2013). Temporal components in the parahippocampal
place area revealed by human intracerebral recordings. J Neurosci, 33(24), 10123-

10131. https://doi.org/10.1523/INEUROSCI.4646-12.2013

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012).
Canonical microcircuits for predictive coding. Neuron, 76(4), 695-711.

https://doi.org/10.1016/j.neuron.2012.10.038

238



Beaty, R. E., Thakral, P. P., Madore, K. P., Benedek, M., & Schacter, D. L. (2018). Core Network
Contributions to Remembering the Past, Imagining the Future, and Thinking Creatively.

J Cogn Neurosci, 30(12), 1939-1951. https://doi.org/10.1162/jocn_a_01327

Bechara, A. (2004). The role of emotion in decision-making: evidence from neurological
patients  with  orbitofrontal damage. Brain  Cogn,  55(1), 30-40.
https://doi.org/10.1016/j.bandc.2003.04.001

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., &
Kurth-Nelson, Z. (2018). What Is a Cognitive Map? Organizing Knowledge for Flexible
Behavior. Neuron, 100(2). https://doi.org/10.1016/j.neuron.2018.10.002

Benoit, R. G., Szpunar, K. K., & Schacter, D. L. (2014). Ventromedial prefrontal cortex supports
affective future simulation by integrating distributed knowledge. Proc Nat! Acad Sci U
SA, 111(46), 16550-16555. https://doi.org/10.1073/pnas.1419274111

Bergmann, J., Petro, L. S., Abbatecola, C., Li, M. S., Morgan, A. T., & Muckli, L. (2024). Cortical
depth profiles in primary visual cortex for illusory and imaginary experiences. Nat

Commun, 15(1), 1002. https://doi.org/10.1038/s41467-024-45065-w

Berron, D., Schutze, H., Maass, A., Cardenas-Blanco, A., Kuijf, H. J., Kumaran, D., & Duzel, E.
(2016). Strong Evidence for Pattern Separation in Human Dentate Gyrus. J Neurosci,

36(29), 7569-7579. https://doi.org/10.1523/INEUROSCI.0518-16.2016

Berron, D., Vieweg, P., Hochkeppler, A., Pluta, J. B., Ding, S. L., Maass, A., Luther, A., Xie, L.,
Das, S. R., Wolk, D. A., Wolbers, T., Yushkevich, P. A., Duzel, E., & Wisse, L. E. M. (2017).
A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla

MRI. Neuroimage Clin, 15, 466-482. https://doi.org/10.1016/j.nicl.2017.05.022

Bertossi, E., Candela, V., De Luca, F., & Ciaramelli, E. (2017). Episodic future thinking following
vmPFC damage: Impaired event construction, maintenance, or narration?

Neuropsychology, 31(3), 337-348. https://doi.org/10.1037/neu0000345

Bertossi, E., & Ciaramelli, E. (2016). Ventromedial prefrontal damage reduces mind-wandering
and biases its temporal focus. Soc Cogn Affect Neurosci, 11(11), 1783-1791.
https://doi.org/10.1093/scan/nsw099

239



Bertossi, E., Tesini, C., Cappelli, A., & Ciaramelli, E. (2016). Ventromedial prefrontal damage
causes a pervasive impairment of episodic memory and future thinking.
Neuropsychologia, 90, 12-24.
https://doi.org/10.1016/j.neuropsychologia.2016.01.034

Bird, C. M., Vargha-Khadem, F., & Burgess, N. (2008). Impaired memory for scenes but not
faces in developmental hippocampal amnesia: a case study. Neuropsychologia, 46(4),

1050-1059. https://doi.org/10.1016/j.neuropsychologia.2007.11.007

Blamire, A. M., Ogawa, S., Ugurbil, K., Rothman, D., McCarthy, G., Ellermann, J. M., Hyder, F,,
Rattner, Z., & Shulman, R. G. (1992). Dynamic mapping of the human visual cortex by
high-speed magnetic resonance imaging. Proc Natl Acad Sci U S A, 89(22), 11069-
11073. https://doi.org/10.1073/pnas.89.22.11069

Bohbot, V. D., laria, G., & Petrides, M. (2004). Hippocampal function and spatial memory:
evidence from functional neuroimaging in healthy participants and performance of
patients with medial temporal lobe resections. Neuropsychology, 18(3), 418-425.
https://doi.org/10.1037/0894-4105.18.3.418

Bonnici, H. M., Chadwick, M. J., Kumaran, D., Hassabis, D., Weiskopf, N., & Maguire, E. A.
(2012). Multi-voxel pattern analysis in human hippocampal subfields. Front Hum

Neurosci, 6, 290. https://doi.org/10.3389/fnhum.2012.00290

Bonnici, H. M., Chadwick, M. J., Lutti, A., Hassabis, D., Weiskopf, N., & Maguire, E. A. (2012).
Detecting representations of recent and remote autobiographical memories in vmPFC
and hippocampus. J Neurosci, 32(47), 16982-16991.
https://doi.org/10.1523/JINEUROSCI.2475-12.2012

Bonnici, H. M., Chadwick, M. J., & Maguire, E. A. (2013). Representations of recent and remote
autobiographical memories in hippocampal subfields. Hippocampus, 23(10), 849-854.
https://doi.org/10.1002/hip0.22155

Bonnici, H. M., Kumaran, D., Chadwick, M. J., Weiskopf, N., Hassabis, D., & Maguire, E. A.
(2012). Decoding representations of scenes in the medial temporal lobes.

Hippocampus, 22(5), 1143-1153. https://doi.org/10.1002/hip0.20960

240



Bonnici, H. M., & Maguire, E. A. (2018). Two years later - Revisiting autobiographical memory
representations in vmPFC and hippocampus. Neuropsychologia, 110, 159-169.
https://doi.org/10.1016/j.neuropsychologia.2017.05.014

Boxerman, J. L., Hamberg, L. M., Rosen, B. R., & Weisskoff, R. M. (1995). MR contrast due to
intravascular magnetic susceptibility perturbations. Magnetic resonance in medicine,

34(4). https://doi.org/10.1002/mrm.1910340412

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathol, 82(4), 239-259. https://doi.org/10.1007/BF00308809

Brandman, T., & Peelen, M. V. (2017). Interaction between Scene and Object Processing
Revealed by Human fMRI and MEG Decoding. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 37(32).

https://doi.org/10.1523/JNEUROSCI.0582-17.2017

Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien

dargestellt auf Grund des Zellenbaues.

Buckner, R. L. (1996). Beyond HERA: Contributions of specific prefrontal brain areas to long-
term memory retrieval. Psychon Bull Rev, 3(2), 149-158.
https://doi.org/10.3758/BF03212413

Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends Cogn Sci, 11(2), 49-
57. https://doi.org/10.1016/j.tics.2006.11.004

Callaghan, M. F., Josephs, O., Herbst, M., Zaitsev, M., Todd, N., & Weiskopf, N. (2015). An
evaluation of prospective motion correction (PMC) for high resolution quantitative

MRI. Front Neurosci, 9, 97. https://doi.org/10.3389/fnins.2015.00097

Callaghan, M. F,, Lutti, A., Ashburner, J., Balteau, E., Corbin, N., Draganski, B., Helms, G., Kherif,
F., Leutritz, T., Mohammadi, S., Phillips, C., Reimer, E., Ruthotto, L., Seif, M., Tabelow,
K., Ziegler, G., & Weiskopf, N. (2019). Example dataset for the hMRI toolbox. Data Brief,
25,104132. https://doi.org/10.1016/.dib.2019.104132

Campbell, K. L., Madore, K. P,, Benoit, R. G., Thakral, P. P.,, & Schacter, D. L. (2018). Increased

hippocampus to ventromedial prefrontal connectivity during the construction of

241



episodic future events. Hippocampus, 28(2), 76-80.
https://doi.org/10.1002/hip0.22812

Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal
cortex in  macaque monkeys. J Comp Neurol, 363(4), 615-641.
https://doi.org/10.1002/cne.903630408

Carricarte, T., lamshchinina, P., Trampel, R., Chaimow, D., Weiskopf, N., & Cichy, R. M. (2024).
Laminar dissociation of feedforward and feedback in high-level ventral visual cortex
during imagery and perception. iScience, 27(7), 110229.
https://doi.org/10.1016/j.isci.2024.110229

Catani, M., Dell'acqua, F., Vergani, F., Malik, F., Hodge, H., Roy, P., Valabregue, R., & Thiebaut
de Schotten, M. (2012). Short frontal lobe connections of the human brain. Cortex,

48(2), 273-291. https://doi.org/10.1016/j.cortex.2011.12.001

Chadwick, M. J. (2012). What information is represented in the human hippocampus?
Doctoral thesis, UCL.
https://discovery.ucl.ac.uk/id/eprint/1363077/1/Chadwick_Thesis.pdf

Chadwick, M. J., Bonnici, H. M., & Maguire, E. A. (2014). CA3 size predicts the precision of
memory recall. Proc Natl Acad Sci U S A, 111(29), 10720-10725.
https://doi.org/10.1073/pnas.1319641111

Chadwick, M. J., Hassabis, D., & Maguire, E. A. (2011). Decoding overlapping memories in the
medial temporal lobes using high-resolution fMRI. Learn Mem, 18(12), 742-746.
https://doi.org/10.1101/Im.023671.111

Chadwick, M. J., Hassabis, D., Weiskopf, N., & Maguire, E. A. (2010). Decoding individual
episodic memory traces in the human hippocampus. Curr Biol, 20(6), 544-547.
https://doi.org/10.1016/j.cub.2010.01.053

Chang, H., & Fitzpatrick, J. M. (1992). A technique for accurate magnetic resonance imaging
in the presence of field inhomogeneities. IEEE Trans Med Imaging, 11(3), 319-329.
https://doi.org/10.1109/42.158935

242



Chang, W.,, Langella, S., Seo, M. S., Huynh, K., Yap, P., & Lin, W. (2022). Cross-layer Balance of
Visuo-hippocampal Functional Connectivity Is Associated With Episodic Memory

Recognition Accuracy. Research Square. https://doi.org/10.21203/rs.3.rs-1789565/v1

Chen, Y., Beech, P, Yin, Z,, Jia, S., Zhang, J., Yu, Z., & Liu, J. K. (2024). Decoding dynamic visual
scenes across the brain hierarchy. PLoS Comput Biol, 20(8), e1012297.
https://doi.org/10.1371/journal.pcbi.1012297

Ciaramelli, E., De Luca, F., Monk, A. M., McCormick, C., & Maguire, E. A. (2019). What "wins"
in VMPFC: Scenes, situations, or schema? Neuroscience and biobehavioral reviews,

100. https://doi.org/10.1016/j.neubiorev.2019.03.001

Ciaramelli, E., Ghetti, S., Frattarelli, M., & Ladavas, E. (2006). When true memory availability
promotes false memory: evidence from confabulating patients. Neuropsychologia,

44(10), 1866-1877. https://doi.org/10.1016/j.neuropsychologia.2006.02.008

Cipolotti, L., Shallice, T., Chan, D., Fox, N., Scahill, R., Harrison, G., Stevens, J., & Rudge, P.
(2001). Long-term retrograde amnesia...the crucial role of the hippocampus.

Neuropsychologia, 39(2), 151-172. https://doi.org/10.1016/s0028-3932(00)00103-2

Clark, I. A., Callaghan, M. F., Weiskopf, N., Maguire, E. A., & Mohammadi, S. (2021). Reducing
Susceptibility Distortion Related Image Blurring in Diffusion MRI EPI Data. Front
Neurosci, 15, 706473. https://doi.org/10.3389/fnins.2021.706473

Clark, I. A., Dalton, M. A., & Maguire, E. A. (2023). Posterior hippocampal CA2/3 volume is
associated with autobiographical memory recall ability in lower performing

individuals. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-35127-2

Clark, 1. A., Hotchin, V., Monk, A., Pizzamiglio, G., Liefgreen, A., & Maguire, E. A. (2019).
Identifying the cognitive processes underpinning hippocampal-dependent tasks. J Exp

Psychol Gen, 148(11), 1861-1881. https://doi.org/10.1037/xge0000582

Clark, I. A., & Maguire, E. A. (2023). Release of cognitive and multimodal MRI data including
real-world tasks and hippocampal subfield segmentations. Sci Data, 10(1), 540.
https://doi.org/10.1038/s41597-023-02449-9

243



Clark, I. A.,, Monk, A. M., & Maguire, E. A. (2020). Characterizing Strategy Use During the
Performance of Hippocampal-Dependent Tasks. Front Psychol, 11, 2119.
https://doi.org/10.3389/fpsyg.2020.02119

Colgin, L. L. (2011). Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol,
21(3), 467-474. https://doi.org/10.1016/j.conb.2011.04.006

Coras, R., Pauli, E., Li, J.,, Schwarz, M., Rossler, K., Buchfelder, M., Hamer, H., Stefan, H., &
Blumcke, 1. (2014). Differential influence of hippocampal subfields to memory
formation: insights from patients with temporal lobe epilepsy. Brain, 137(Pt 7), 1945-
1957. https://doi.org/10.1093/brain/awu100

Corkin, S. (2002). What's new with the amnesic patient H.M.? Nat Rev Neurosci, 3(2), 153-
160. https://doi.org/10.1038/nrn726

Coutanche, M. N., & Thompson-Schill, S. L. (2013). Informational connectivity: identifying
synchronized discriminability of multi-voxel patterns across the brain. Front Hum

Neurosci, 7, 15. https://doi.org/10.3389/fnhum.2013.00015

Cragg, B. G. (1969). The topography of the afferent projections in the circumstriate visual
cortex of the monkey studied by the Nauta method. Vision Res, 9(7), 733-747.
https://doi.org/10.1016/0042-6989(69)90011-x

Crivelli-Decker, J., Clarke, A., Park, S. A., Huffman, D. J., Boorman, E. D., & Ranganath, C. (2023).
Goal-oriented representations in the human hippocampus during planning and
navigation. Nature communications, 14(1), 2946. https://doi.org/10.1038/s41467-
023-35967-6

Cukur, T., Huth, A. G., Nishimoto, S., & Gallant, J. L. (2016). Functional Subdomains within
Scene-Selective Cortex: Parahippocampal Place Area, Retrosplenial Complex, and
Occipital Place Area. J Neurosci, 36(40), 10257-10273.
https://doi.org/10.1523/JINEUROSCI.4033-14.2016

Czervionke, L. F., Czervionke, J. M., Daniels, D. L., & Haughton, V. M. (1988). Characteristic
features of MR truncation artifacts. AJR Am J Roentgenol, 151(6), 1219-1228.
https://doi.org/10.2214/ajr.151.6.1219

244



D'Argembeau, A. (2013). On the role of the ventromedial prefrontal cortex in self-processing:
the valuation hypothesis. Front Hum Neurosci, 7, 372.

https://doi.org/10.3389/fnhum.2013.00372

D'Souza, R. D., Wang, Q., Ji, W., Meier, A. M., Kennedy, H., Knoblauch, K., & Burkhalter, A.
(2022). Hierarchical and nonhierarchical features of the mouse visual cortical network.

Nat Commun, 13(1), 503. https://doi.org/10.1038/s41467-022-28035-y

Dalton, M. A., D'Souza, A., Lv, J., & Calamante, F. (2022). New insights into anatomical
connectivity along the anterior-posterior axis of the human hippocampus using in vivo

quantitative fibre tracking. Elife, 11. https://doi.org/10.7554/elife.76143

Dalton, M. A., & Maguire, E. A. (2017). The pre/parasubiculum: a hippocampal hub for scene-
based cognition? Curr Opin Behav Sci, 17, 34-40.
https://doi.org/10.1016/j.cobeha.2017.06.001

Dalton, M. A., McCormick, C., & Maguire, E. A. (2019). Differences in functional connectivity
along the anterior-posterior axis of human hippocampal subfields. Neuroimage, 192,

38-51. https://doi.org/10.1016/j.neuroimage.2019.02.066

Dalton, M. A., Zeidman, P., Barry, D. N., Williams, E., & Maguire, E. A. (2017). Segmenting
subregions of the human hippocampus on structural magnetic resonance image scans:
An  illustrated tutorial. Brain  Neurosci Adv, 1, 2398212817701448.
https://doi.org/10.1177/2398212817701448

Dalton, M. A., Zeidman, P., McCormick, C., & Maguire, E. A. (2018). Differentiable Processing
of Objects, Associations, and Scenes within the Hippocampus. J Neurosci, 38(38),

8146-8159. https://doi.org/10.1523/INEUROSCI.0263-18.2018

Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: The role of
prediction and context. Trends in cognitive sciences, 19(2).

https://doi.org/10.1016/j.tics.2014.12.004

De Luca, F., McCormick, C., Mullally, S. L., Intraub, H., Maguire, E. A., & Ciaramelli, E. (2018).
Boundary extension is attenuated in patients with ventromedial prefrontal cortex
damage. Cortex; a journal devoted to the study of the nervous system and behavior,

108. https://doi.org/10.1016/j.cortex.2018.07.002

245



Dede, A. J., Frascino, J. C., Wixted, J. T., & Squire, L. R. (2016). Learning and remembering real-
world events after medial temporal lobe damage. Proc Natl Acad Sci U S A, 113(47),
13480-13485. https://doi.org/10.1073/pnas.1617025113

Degutis, J. K., Chaimow, D., Haenelt, D., Assem, M., Duncan, J., Haynes, J. D., Weiskopf, N., &
Lorenz, R. (2024). Dynamic layer-specific processing in the prefrontal cortex during
working memory. Commun Biol, 7(1), 1140. https://doi.org/10.1038/s42003-024-
06780-8

DeKraker, J., Haast, R. A. M., Yousif, M. D., Karat, B., Lau, J. C., Kohler, S., & Khan, A. R. (2022).
Automated hippocampal unfolding for morphometry and subfield segmentation with

HippUnfold. Elife, 11. https://doi.org/10.7554/elLife.77945

DeKraker, J., Kohler, S., & Khan, A. R. (2021). Surface-based hippocampal subfield
segmentation. Trends Neurosci, 44(11), 856-863.
https://doi.org/10.1016/j.tins.2021.06.005

Della Sala, S., Laiacona, M., Spinnler, H., & Trivelli, C. (1993). Autobiographical recollection and
frontal damage. Neuropsychologia, 31(8), 823-839. https://doi.org/10.1016/0028-
3932(93)90131-i

Denny, C. A., Kheirbek, M. A, Alba, E. L., Tanaka, K. F., Brachman, R. A., Laughman, K. B., Tomm,
N. K., Turi, G. F., Losonczy, A., & Hen, R. (2014). Hippocampal memory traces are
differentially modulated by experience, time, and adult neurogenesis. Neuron, 83(1),

189-201. https://doi.org/10.1016/j.neuron.2014.05.018

Deshmane, A., Gulani, V., Griswold, M. A., & Seiberlich, N. (2012). Parallel MR imaging. J Magn
Reson Imaging, 36(1), 55-72. https://doi.org/10.1002/jmri.23639

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L.,
Dale, A. M., Maguire, R. P., Hyman, B. T, Albert, M. S., & Killiany, R. J. (2006). An
automated labeling system for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. Neuroimage, 31(3).

https://doi.org/10.1016/j.neuroimage.2006.01.021

246



Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human
cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 1-

15. https://doi.org/10.1016/j.neuroimage.2010.06.010

Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology,

26, 297-302.

Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: neurocircuitry and
disorders. Neuropsychopharmacology, 35(1), 86-104.
https://doi.org/10.1038/npp.2009.126

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory

network. Nature, 463(7281), 657-661. https://doi.org/10.1038/nature08704
Duda, O. R,, Hart, P. E., & Stork, D. G. (2001). Pattern Classification. Wiley.

Duvernoy, H. M., Delon, S., & Vannson, J. L. (1981). Cortical blood vessels of the human brain.

Brain Res Bull, 7(5), 519-579. https://doi.org/10.1016/0361-9230(81)90007-1

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment.

Nature, 392(6676), 598-601. https://doi.org/10.1038/33402

Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial
navigation. Trends Cogn Sci, 12(10), 388-396.
https://doi.org/10.1016/j.tics.2008.07.004

Epstein, R. A., & Baker, C. I. (2019). Scene Perception in the Human Brain. Annu Rev Vis Sci, 5,
373-397. https://doi.org/10.1146/annurev-vision-091718-014809

Faust, T. E., Gunner, G., & Schafer, D. P. (2021). Mechanisms governing activity-dependent
synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci, 22(11), 657-
673. https://doi.org/10.1038/s41583-021-00507-y

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate
cerebral cortex. Cereb Cortex, 1(1), 1-47. https://doi.org/10.1093/cercor/1.1.1-a

Finn, E. S., Huber, L., & Bandettini, P. A. (2021). Higher and deeper: Bringing layer fMRI to
association cortex. Prog Neurobiol, 207, 101930.
https://doi.org/10.1016/j.pneurobio.2020.101930

247



Finn, E. S., Huber, L., Jangraw, D. C., Molfese, P. J., & Bandettini, P. A. (2019). Layer-dependent
activity in human prefrontal cortex during working memory. Nat Neurosci, 22(10),

1687-1695. https://doi.org/10.1038/s41593-019-0487-z

Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc Natl Acad Sci U S A, 97(20), 11050-11055.
https://doi.org/10.1073/pnas.200033797

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A.,
Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M.
(2002). Whole brain segmentation: automated labeling of neuroanatomical structures
in the human brain. Neuron, 33(3), 341-355. https://doi.org/10.1016/s0896-
6273(02)00569-x

Fischl, B., Stevens, A. A., Rajendran, N., Yeo, B. T., Greve, D. N., Van Leemput, K., Polimeni, J.
R., Kakunoori, S., Buckner, R. L., Pacheco, J., Salat, D. H., Melcher, J., Frosch, M. P,
Hyman, B. T., Grant, P. E., Rosen, B. R., van der Kouwe, A. J., Wiggins, G. C., Wald, L. L.,
& Augustinack, J. C. (2009). Predicting the location of entorhinal cortex from MRI.
Neuroimage, 47(1), 8-17. https://doi.org/10.1016/j.neuroimage.2009.04.033

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., Busa, E.,
Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A.
M. (2004). Automatically parcellating the human cerebral cortex. Cereb Cortex, 14(1),
11-22. https://doi.org/10.1093/cercor/bhg087

Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J., Price, C. J., Zeki, S., Ashburner, J. T,,

& Penny, W. D. (2004). Human brain function. Elsevier Academic Press.

Frey, U., & Morris, R. G. (1998). Synaptic tagging: implications for late maintenance of
hippocampal long-term potentiation. Trends Neurosci, 21(5), 181-188.
https://doi.org/10.1016/s0166-2236(97)01189-2

Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4),
1273-1302. https://doi.org/10.1016/s1053-8119(03)00202-7

248



Fuentemilla, L., Barnes, G. R., Duzel, E., & Levine, B. (2014). Theta oscillations orchestrate
medial temporal lobe and neocortex in remembering autobiographical memories.

Neuroimage, 85 Pt 2, 730-737. https://doi.org/10.1016/j.neuroimage.2013.08.029

Gabrieli, J. D., Poldrack, R. A., & Desmond, J. E. (1998). The role of left prefrontal cortex in
language and memory. Proc Natl Acad Sci U S A, 95(3), 906-913.
https://doi.org/10.1073/pnas.95.3.906

Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R., & Schacter, D. L. (2013). Imagining the
future: evidence for a hippocampal contribution to constructive processing.

Hippocampus, 23(12), 1150-1161. https://doi.org/10.1002/hip0.22152

Gallichan, D., Scholz, J., Bartsch, A., Behrens, T. E., Robson, M. D., & Miller, K. L. (2010).
Addressing a systematic vibration artifact in diffusion-weighted MRI. Hum Brain Mapp,
31(2), 193-202. https://doi.org/10.1002/hbm.20856

Gauthier, J. L., & Tank, D. W. (2018). A Dedicated Population for Reward Coding in the
Hippocampus. Neuron, 99(1), 179-193.e7.
https://doi.org/10.1016/j.neuron.2018.06.008

Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on
current neuroscience literature. Neuropsychologia, 53.

https://doi.org/10.1016/j.neuropsychologia.2013.11.010

Ghosh, V. E., Moscovitch, M., Melo Colella, B., & Gilboa, A. (2014). Schema representation in
patients with ventromedial PFC lesions. J Neurosci, 34(36), 12057-12070.
https://doi.org/10.1523/JINEUROSCI.0740-14.2014

Gibbs, J. (1898). Fourier's Series. Nature, 59(200).

Gilboa, A. (2010). Strategic retrieval, confabulations, and delusions: theory and data. Cogn

Neuropsychiatry, 15(1), 145-180. https://doi.org/10.1080/13546800903056965

Gilboa, A., Alain, C., Stuss, D. T., Melo, B., Miller, S., & Moscovitch, M. (2006). Mechanisms of
spontaneous confabulations: a strategic retrieval account. Brain, 129(Pt 6), 1399-1414.

https://doi.org/10.1093/brain/awl093

249



Gilboa, A., & Marlatte, H. (2017). Neurobiology of Schemas and Schema-Mediated Memory.
Trends Cogn Sci, 21(8), 618-631. https://doi.org/10.1016/j.tics.2017.04.013

Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J., & Moscovitch, M. (2004). Remembering
our past: functional neuroanatomy of recollection of recent and very remote personal

events. Cereb Cortex, 14(11), 1214-1225. https://doi.org/10.1093/cercor/bhh082

Gilmore, A. W., Quach, A., Kalinowski, S. E., Gonzalez-Araya, E. I., Gotts, S. J., Schacter, D. L., &
Martin, A. (2021). Evidence supporting a time-limited hippocampal role in retrieving
autobiographical memories. Proc Natl Acad Sci U S A, 118(12).
https://doi.org/10.1073/pnas.2023069118

Godlove, D. C., Maier, A., Woodman, G. F., & Schall, J. D. (2014). Microcircuitry of agranular
frontal cortex: testing the generality of the canonical cortical microcircuit. J Neurosci,

34(15), 5355-5369. https://doi.org/10.1523/INEUROSCI.5127-13.2014

Goyal, A., Miller, J., Watrous, A. J., Lee, S. A., Coffey, T., Sperling, M. R., Sharan, A., Worrell, G.,
Berry, B., Lega, B., Jobst, B. C., Davis, K. A,, Inman, C., Sheth, S. A., Wanda, P. A., Ezzyat,
Y., Das, S. R., Stein, J., Gorniak, R., & Jacobs, J. (2018). Electrical Stimulation in
Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory. J Neurosci,

38(19), 4471-4481. https://doi.org/10.1523/INEUROSCI.3049-17.2018

Graham, K. S., Barense, M. D., & Lee, A. C. (2010). Going beyond LTM in the MTL: a synthesis
of neuropsychological and neuroimaging findings on the role of the medial temporal
lobe in memory and perception. Neuropsychologia, 48(4), 831-853.
https://doi.org/10.1016/j.neuropsychologia.2010.01.001

Grande, X., Berron, D., Horner, A. J., Bisby, J. A., Duzel, E., & Burgess, N. (2019). Holistic
Recollection via Pattern Completion Involves Hippocampal Subfield CA3. J Neurosci,

39(41), 8100-8111. https://doi.org/10.1523/JNEUROSCI.0722-19.2019

Grande, X., Sauvage, M. M., Becke, A., Duzel, E., & Berron, D. (2022). Transversal functional
connectivity and scene-specific processing in the human entorhinal-hippocampal

circuitry. Elife, 11. https://doi.org/10.7554/elife.76479

250



Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-
based registration. Neuroimage, 48(1), 63-72.
https://doi.org/10.1016/j.neuroimage.2009.06.060

Guo, D., & Yang, J. (2020). Interplay of the long axis of the hippocampus and ventromedial
prefrontal cortex in schema-related memory retrieval. Hippocampus, 30(3), 263-277.

https://doi.org/10.1002/hipo.23154

Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex
and self-referential mental activity: relation to a default mode of brain
function. Proceedings of the National Academy of Sciences of the United States of

America, 98(7), 4259-4264. https://doi.org/10.1073/pnas.071043098

Guzman, S. J., Schlogl, A., Frotscher, M., & Jonas, P. (2016). Synaptic mechanisms of pattern
completion in the hippocampal CA3 network. Science, 353(6304), 1117-1123.
https://doi.org/10.1126/science.aaf1836

Hadar, P. N., Kini, L. G., Coto, C., Piskin, V., Callans, L. E., Chen, S. H., Stein, J. M., Das, S. R.,
Yushkevich, P. A., & Davis, K. A. (2018). Clinical validation of automated hippocampal
segmentation in temporal lobe epilepsy. Neuroimage Clin, 20, 1139-1147.
https://doi.org/10.1016/j.nicl.2018.09.032

Hainmueller, T., & Bartos, M. (2020). Dentate gyrus circuits for encoding, retrieval and
discrimination of episodic memories. Nat Rev Neurosci, 21(3), 153-168.

https://doi.org/10.1038/s41583-019-0260-z

Hardstone, R., Zhu, M., Flinker, A., Melloni, L., Devore, S., Friedman, D., Dugan, P., Doyle, W.
K., Devinsky, O., He, B. J., Hardstone, R., Zhu, M., Flinker, A., Melloni, L., Devore, S.,
Friedman, D., Dugan, P., Doyle, W. K., Devinsky, O., & He, B. J. (2021). Long-term priors
influence visual perception through recruitment of long-range feedback. Nature

Communications, 12(1). https://doi.org/10.1038/s41467-021-26544-w

Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A., Bohn, P,
Caldejon, S., Casal, L., Cho, A., Feiner, A., Feng, D., Gaudreault, N., Gerfen, C. R,,
Graddis, N., Groblewski, P. A., Henry, A. M., Ho, A., Howard, R,, . . . Zeng, H. (2019).

251



Hierarchical organization of cortical and thalamic connectivity. Nature, 575(7781), 195-

202. https://doi.org/10.1038/s41586-019-1716-z

Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using imagination to understand the neural
basis of episodic memory. J Neurosci, 27(52), 14365-14374.
https://doi.org/10.1523/JINEUROSCI.4549-07.2007

Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal
amnesia cannot imagine new experiences. Proc Nat/ Acad Sci US A, 104(5), 1726-1731.
https://doi.org/10.1073/pnas.0610561104

Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction.

Trends Cogn Sci, 11(7), 299-306. https://doi.org/10.1016/].tics.2007.05.001

Hasson, U., Furman, O., Clark, D., Dudai, Y., & Davachi, L. (2008). Enhanced intersubject
correlations during movie viewing correlate with successful episodic encoding.

Neuron, 57(3), 452-462. https://doi.org/10.1016/j.neuron.2007.12.009

Havlicek, M., & Uludag, K. (2020). A dynamical model of the laminar BOLD response.
Neuroimage, 204. https://doi.org/ARTN 11620910.1016/j.neuroimage.2019.116209

Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nat

Rev Neurosci, 7(7), 523-534. https://doi.org/10.1038/nrn1931

Hedouin, R., Commowick, O., Bannier, E., Scherrer, B., Taquet, M., Warfield, S. K., & Barillot, C.
(2017). Block-Matching Distortion Correction of Echo-Planar Images With Opposite
Phase Encoding Directions. [EEE Trans Med Imaging, 36(5), 1106-1115.
https://doi.org/10.1109/TMI.2016.2646920

Heinzle, J., Koopmans, P. J., den Ouden, H. E. M., Raman, S., & Stephan, K. E. (2016). A
hemodynamic model for layered BOLD signals. Neuroimage, 125, 556-570.
https://doi.org/10.1016/j.neuroimage.2015.10.025

Herweg, N. A., & Kahana, M. J. (2018). Spatial Representations in the Human Brain. Front Hum
Neurosci, 12, 297. https://doi.org/10.3389/fnhum.2018.00297

252



Hickling, A. L., Clark, I. A, Wu, Y. |, & Maguire, E. A. (2024). Automated protocols for
delineating human hippocampal subfields from 3 Tesla and 7 Tesla magnetic resonance

imaging data. Hippocampus, 34(6), 302-308. https://doi.org/10.1002/hipo.23606

Hodgetts, C. J., Shine, J. P, Lawrence, A. D., Downing, P. E., & Graham, K. S. (2016). Evidencing
a place for the hippocampus within the core scene processing network. Human Brain

Mapping, 37(11). https://doi.org/10.1002/hbm.23275

Hodgetts, C. J., Voets, N. L., Thomas, A. G., Clare, S., Lawrence, A. D., & Graham, K. S. (2017).
Ultra-High-Field fMRI Reveals a Role for the Subiculum in Scene Perceptual
Discrimination. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 37(12). https://doi.org/10.1523/JINEUROSCI.3225-16.2017

Holland, D., Kuperman, J. M., & Dale, A. M. (2010). Efficient correction of inhomogeneous
static magnetic field-induced distortion in Echo Planar Imaging. Neuroimage, 50(1),

175-183. https://doi.org/10.1016/j.neuroimage.2009.11.044

Hore, P.J. (1983). A new method for water suppression in the proton NMR spectra of aqueous
solutions. Journal of Magnetic Resonance (1969), 54(3).
https://doi.org/10.1016/0022-2364(83)90335-9

Huang, P., Correia, M. M., Rua, C., Rodgers, C. T., Henson, R. N., & Carlin, J. D. (2021). Correcting
for Superficial Bias in 7T Gradient Echo fMRI. Front Neurosci, 15, 715549.
https://doi.org/10.3389/fnins.2021.715549

Huber, L. (2020). Removing unwanted venous signal from GE-BOLD maps: Overview of vein
removal models and implementations in LAYNII. Retrieved 04/11/2024 from
https://layerfmri.com/2020/04/02/devein/

Huber, L., Handwerker, D. A., Jangraw, D. C., Chen, G., Hall, A., Stuber, C., Gonzalez-Castillo, J.,
Ivanov, D., Marrett, S., Guidi, M., Goense, J., Poser, B. A., & Bandettini, P. A. (2017).
High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of
Cortical Input and Output in Human M1. Neuron, 96(6), 1253-1263 e1257.
https://doi.org/10.1016/j.neuron.2017.11.005

253



Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., & Turner, R. (2002). Image
distortion correction in fMRI: A quantitative evaluation. Neuroimage, 16(1), 217-240.
https://doi.org/10.1006/nimg.2001.1054

Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., Roy, N., Frosch,
M. P., McKee, A. C., Wald, L. L., Fischl, B., Van Leemput, K., & Alzheimer's Disease
Neuroimaging, |. (2015). A computational atlas of the hippocampal formation using ex
vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

Neuroimage, 115, 117-137. https://doi.org/10.1016/j.neuroimage.2015.04.042

Jadhay, S. P, Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave
ripples support spatial memory. Science, 336(6087), 1454-1458.
https://doi.org/10.1126/science.1217230

Jezzard, P., & Balaban, R. S. (1995). Correction for geometric distortion in echo planar images
from BO field variations. Magn Reson Med, 34(1), 65-73.
https://doi.org/10.1002/mrm.1910340111

Jezzard, P., & Clare, S. (1999). Sources of distortion in functional MRI data. Hum Brain Mapp,
8(2-3), 80-85. https://doi.org/10.1002/(sici)1097-0193(1999)8:2/3<80::aid-
hbm2>3.0.co;2-c

Ji, D.,, & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and
hippocampus during sleep. Nat Neurosci, 10(1), 100-107.
https://doi.org/10.1038/nn1825

Jia, K., Zamboni, E., Rua, C., Goncalves, N. R., Kemper, V., Ng, A. K. T., Rodgers, C. T., Williams,
G., Goebel, R., & Kourtzi, Z. (2021). A protocol for ultra-high field laminar fMRI in the
human brain. STAR Protoc, 2(2), 100415. https://doi.org/10.1016/j.xpro.2021.100415

Jones, D. K., & Cercignani, M. (2010). Twenty-five pitfalls in the analysis of diffusion MRI data.
NMR Biomed, 23(7), 803-820. https://doi.org/10.1002/nbm.1543

Juchem, C., & de Graaf, R. A. (2017). B(0) magnetic field homogeneity and shimming for in vivo
magnetic resonance spectroscopy. Anal Biochem, 529, 17-29.

https://doi.org/10.1016/j.ab.2016.06.003

254



Kaas, J. H., & Lin, C. S. (1977). Cortical projections of area 18 in owl monkeys. Vision Res, 17(6),
739-741. https://doi.org/10.1016/s0042-6989(77)80013-8

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain.

Nat Neurosci, 8(5), 679-685. https://doi.org/10.1038/nn1444

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in
human extrastriate cortex specialized for face perception. J Neurosci, 17(11), 4302-

4311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997

Kaplan, R., Bush, D., Bisby, J. A., Horner, A. J., Meyer, S. S., & Burgess, N. (2017). Medial
Prefrontal-Medial Temporal Theta Phase Coupling in Dynamic Spatial Imagery. J Cogn
Neurosci, 29(3), 507-519. https://doi.org/10.1162/jocn_a_01064

Kashyap, S., Ivanoy, D., Havlicek, M., Poser, B. A., & Uludag, K. (2018). Impact of acquisition
and analysis strategies on cortical depth-dependent fMRI. Neuroimage, 168, 332-344,
https://doi.org/10.1016/j.neuroimage.2017.05.022

Kay, K., Jamison, K. W., Vizioli, L., Zhang, R., Margalit, E., & Ugurbil, K. (2019). A critical
assessment of data quality and venous effects in sub-millimeter fMRI. Neuroimage,

189, 847-869. https://doi.org/10.1016/j.neuroimage.2019.02.006

Kennedy, H., & Bullier, J. (1985). A double-labeling investigation of the afferent connectivity to
cortical areas V1 and V2 of the macaque monkey. J Neurosci, 5(10), 2815-2830.
https://doi.org/10.1523/JNEUROSCI.05-10-02815.1985

Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests
of the theory: new developments. Neurosci Biobehav Rev, 48, 92-147.

https://doi.org/10.1016/j.neubiorev.2014.11.009

Kim, K., & Johnson, M. K. (2015). Activity in ventromedial prefrontal cortex during self-related
processing: positive subjective value or personal significance?. Social cognitive and

affective neuroscience, 10(4), 494-500. https://doi.org/10.1093/scan/nsu078

Kim, M., & Maguire, E. A. (2018). Hippocampus, Retrosplenial and Parahippocampal Cortices
Encode Multicompartment 3D Space in a Hierarchical Manner. Cereb Cortex, 28(5),

1898-1909. https://doi.org/10.1093/cercor/bhy054

255



Kim, S., Jeneson, A., van der Horst, A. S., Frascino, J. C., Hopkins, R. O., & Squire, L. R. (2011).
Memory, visual discrimination performance, and the human hippocampus. J Neurosci,

31(7), 2624-2629. https://doi.org/10.1523/JNEUROSCI.5954-10.2011

Kirwan, C. B., Bayley, P. J., Galvan, V. V., & Squire, L. R. (2008). Detailed recollection of remote
autobiographical memory after damage to the medial temporal lobe. Proc Natl Acad

SciUS A, 105(7), 2676-2680. https://doi.org/10.1073/pnas.0712155105

Klein, S. B., Loftus, J., & Kihlstrom, J. F. (2005). Memory and temporal experience: the effects
of episodic memory loss on an amnesic patient's ability to remember the past and
imagine  the  future.  https://doi.org/10.1521/s0c0.20.5.353.21125,  20(5).
https://doi.org/10.1521/s0c0.20.5.353.21125

Knill, D. C., & Richards, W. (1996). Perception as Bayesian Inference. Cambridge University

Press.

Kobayashi, Y., & Amaral, D. G. (2003). Macaque monkey retrosplenial cortex: Il. Cortical
afferents. J Comp Neurol, 466(1), 48-79. https://doi.org/10.1002/cne.10883

Kobayashi, Y., & Amaral, D. G. (2007). Macaque monkey retrosplenial cortex: Ill. Cortical
efferents. J Comp Neurol, 502(5), 810-833. https://doi.org/10.1002/cne.21346

Kok, P., Bains, L. J., van Mourik, T., Norris, D. G., & de Lange, F. P. (2016). Selective Activation
of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback. Curr

Biol, 26(3), 371-376. https://doi.org/10.1016/j.cub.2015.12.038

Kopelman, M. D., Stanhope, N., & Kingsley, D. (1999). Retrograde amnesia in patients with
diencephalic, temporal lobe or frontal lesions. Neuropsychologia, 37(8), 939-958.
https://doi.org/10.1016/s0028-3932(98)00143-2

Koster, R., Chadwick, M. J., Chen, Y., Berron, D., Banino, A., Duzel, E., Hassabis, D., & Kumaran,
D. (2018). Big-Loop Recurrence within the Hippocampal System Supports Integration
of Information across Episodes. Neuron, 99(6), 1342-1354 el1346.
https://doi.org/10.1016/j.neuron.2018.08.009

256



Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis -

connecting the branches of systems neuroscience. Front Syst Neurosci, 2, 4.
https://doi.org/10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., & Bandettini,

P. A. (2008). Matching categorical object representations in inferior temporal cortex of

man and monkey. Neuron, 60(6),

1126-1141.
https://doi.org/10.1016/j.neuron.2008.10.043

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in

systems neuroscience: the dangers of double dipping. Nat Neurosci, 12(5), 535-540.
https://doi.org/10.1038/nn.2303

Kulaga-Yoskovitz, J., Bernhardt, B. C., Hong, S. J., Mansi, T., Liang, K. E., van der Kouwe, A. J.,

Smallwood, J., Bernasconi, A., & Bernasconi, N. (2015). Multi-contrast submillimetric

3 Tesla hippocampal subfield segmentation protocol and dataset. Sci Data, 2, 150059.
https://doi.org/10.1038/sdata.2015.59

Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What Learning Systems do Intelligent

Agents Need? Complementary Learning Systems Theory Updated. Trends in cognitive

sciences, 20(7). https://doi.org/10.1016/j.tics.2016.05.004

Kurczek, J., Wechsler, E., Ahuja, S., Jensen, U., Cohen, N. J.,, Tranel, D., & Duff, M. (2015).

Differential contributions of hippocampus and medial prefrontal cortex to self-

projection and self-referential processing.

Neuropsychologia, 73, 116-126.
https://doi.org/10.1016/j.neuropsychologia.2015.05.002

Kuypers, H. G., Szwarcbart, M. K., Mishkin, M., & Rosvold, H. E. (1965). Occipitotemporal

Corticocortical Connections in the Rhesus Monkey. Exp Neurol, 11, 245-262.
https://doi.org/10.1016/0014-4886(65)90016-6

Kwan, D., Craver, C. F., Green, L., Myerson, J., & Rosenbaum, R. S. (2013). Dissociations in

future thinking following hippocampal damage: evidence from discounting and time
perspective in episodic amnesia.

J Exp Psychol Gen, 142(4),
https://doi.org/10.1037/a0034001

1355-1369.

257



Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback
processing in the visual cortex. Curr Opin Neurobiol, 8(4), 529-535.
https://doi.org/10.1016/s0959-4388(98)80042-1

Lawrence, S. J., Norris, D. G., & de Lange, F. P. (2019). Dissociable laminar profiles of concurrent
bottom-up and top-down modulation in the human visual cortex. Elife, 8.

https://doi.org/10.7554/elife.44422

Lawrence, S. J. D., van Mourik, T., Kok, P., Koopmans, P. J., Norris, D. G., & de Lange, F. P. (2018).
Laminar Organization of Working Memory Signals in Human Visual Cortex. Curr Biol,

28(21), 3435-3440 e3434. https://doi.org/10.1016/j.cub.2018.08.043

Lee, A. C., Brodersen, K. H., & Rudebeck, S. R. (2013). Disentangling spatial perception and
spatial memory in the hippocampus: a univariate and multivariate pattern analysis

fMRI study. J Cogn Neurosci, 25(4), 534-546. https://doi.org/10.1162/jocn_a_00301

Lee, A. C., Buckley, M. J., Pegman, S. J., Spiers, H., Scahill, V. L., Gaffan, D., Bussey, T. J., Davies,
R. R., Kapur, N., Hodges, J. R., & Graham, K. S. (2005). Specialization in the medial
temporal lobe for processing of objects and scenes. Hippocampus, 15(6), 782-797.

https://doi.org/10.1002/hipo.20101

Lee, A.C,, Yeung, L. K., & Barense, M. D. (2012). The hippocampus and visual perception. Front
Hum Neurosci, 6, 91. https://doi.org/10.3389/fnhum.2012.00091

Lee, J. K., Ekstrom, A. D., & Ghetti, S. (2014). Volume of hippocampal subfields and episodic
memory in childhood and adolescence. Neuroimage, 94, 162-171.

https://doi.org/10.1016/j.neuroimage.2014.03.019

Lee, J. K., Fandakova, Y., Johnson, E. G., Cohen, N. J., Bunge, S. A., & Ghetti, S. (2020). Changes
in anterior and posterior hippocampus differentially predict item-space, item-time,
and item-item memory improvement. Dev Cogn Neurosci, 41, 100741.

https://doi.org/10.1016/j.dcn.2019.100741

Leelaarporn, P.,, Dalton, M. A., Stirnberg, R., Stocker, T., Spottke, A., Schneider, A., &
McCormick, C. (2024). Hippocampal subfields and their neocortical interactions during
autobiographical memory. Imaging Neuroscience, 2.

https://doi.org/10.1162/imag_a_00105

258



Lehn, H., Steffenach, H. A., van Strien, N. M., Veltman, D. J., Witter, M. P., & Haberg, A. K.
(2009). A specific role of the human hippocampus in recall of temporal sequences. J

Neurosci, 29(11), 3475-3484. https://doi.org/10.1523/JNEUROSCI.5370-08.2009

Leopold, A., Krueger, F., dal Monte, O., Pardini, M., Pulaski, S. J., Solomon, J., & Grafman, J.
(2012). Damage to the left ventromedial prefrontal cortex impacts affective theory of

mind. Soc Cogn Affect Neurosci, 7(8), 871-880. https://doi.org/10.1093/scan/nsr071

Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. |. (2007). Pattern separation in the dentate

gyrus and CA3 of the hippocampus. Science, 315(5814), 961-966.

https://doi.org/10.1126/science.1135801

Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and
autobiographical memory: dissociating episodic from semantic retrieval. Psychol

Aging, 17(4), 677-689. https://www.ncbi.nlm.nih.gov/pubmed/12507363

Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, self,
(situational), and affective processes in medial prefrontal cortex (MPFC): Causal,

multivariate, and reverse inference evidence. Neurosci Biobehav Rev, 99, 311-328.

https://doi.org/10.1016/j.neubiorev.2018.12.021

Circuitry to Function. Neuron, 22(2).

Lisman, J. E. (1999). Relating Hippocampal

https://doi.org/10.1016/50896-6273(00)81085-5
Liu, C., Guo, F., Qian, C., Zhang, Z., Sun, K., Wang, D. J., He, S., & Zhang, P. (2021). Layer-

dependent multiplicative effects of spatial attention on contrast responses in human
Prog Neurobiol, 207, 101897.

early visual cortex.

https://doi.org/10.1016/j.pneurobio.2020.101897
Lorente de NO, R. (1934). Studies on the Structure of the Cerebral Cortex Il. Continuation of

the Study of the Ammonic System. Journal fiir Psychologie und Neurologie, 46, 113-

177.

Lu, H., Hua, J., & van Zijl, P. C. (2013). Noninvasive functional imaging of cerebral blood volume

with vascular-space-occupancy (VASO) MRI. NMR Biomed, 26(8), 932-948.

https://doi.org/10.1002/nbm.2905

259



Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., & Fuchs, A. F. (1975). The origin of
efferent pathways from the primary visual cortex, area 17, of the macaque monkey as
shown by retrograde transport of horseradish peroxidase. The Journal of comparative

neurology, 164(3). https://doi.org/10.1002/cne.901640303

Lux, V., Atucha, E., Kitsukawa, T., & Sauvage, M. M. (2016). Imaging a memory trace over half
a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in

retrieval. Elife, 5, e11862. https://doi.org/10.7554/elife.11862

Maass, A., Schutze, H., Speck, O., Yonelinas, A., Tempelmann, C., Heinze, H. J., Berron, D.,
Cardenas-Blanco, A., Brodersen, K. H., Stephan, K. E., & Duzel, E. (2014). Laminar
activity in the hippocampus and entorhinal cortex related to novelty and episodic

encoding. Nat Commun, 5, 5547. https://doi.org/10.1038/ncomms6547

Maguire, E. A. (2001). Neuroimaging studies of autobiographical event memory. Philos Trans

R Soc Lond B Biol Sci, 356(1413), 1441-1451. https://doi.org/10.1098/rstb.2001.0944

Maguire, E. A., Frith, C. D., & Morris, R. G. (1999). The functional neuroanatomy of
comprehension and memory: the importance of prior knowledge. Brain, 122 ( Pt 10),

1839-1850. https://doi.org/10.1093/brain/122.10.1839

Maguire, E. A., & Mullally, S. L. (2013). The hippocampus: a manifesto for change. J Exp Psychol
Gen, 142(4), 1180-1189. https://doi.org/10.1037/a0033650

Maguire, E. A., Mummery, C. J., & Buchel, C. (2000). Patterns of hippocampal-cortical
interaction dissociate temporal lobe memory subsystems. Hippocampus, 10(4), 475-

482. https://doi.org/10.1002/1098-1063(2000)10:4<475::AID-HIP014>3.0.CO;2-X

Mandler, J. M. (1984). Stories, scripts, and scenes: aspects of schema theory (1st ed.).

Psychology Press. https://doi.org/10.4324/9781315802459

Mansfield, P. (1977). Multi-planar image formation using NMR spin echoes. Journal of Physics
C: Solid State Physics, 10(3). https://doi.org/10.1088/0022-3719/10/3/004

Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery,
P., Giroud, P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K., & Kennedy, H. (2014).

260



Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex.

The Journal of comparative neurology, 522(1). https://doi.org/10.1002/cne.23458

Markuerkiaga, I., Barth, M., & Norris, D. G. (2016). A cortical vascular model for examining the
specificity of the laminar BOLD signal. Neuroimage, 132, 491-498.
https://doi.org/10.1016/j.neuroimage.2016.02.073

Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P. F., & Gruetter, R.
(2010). MP2RAGE, a self bias-field corrected sequence for improved segmentation and
T1-mapping at high field. Neuroimage, 49(2), 1271-1281.
https://doi.org/10.1016/j.neuroimage.2009.10.002

Marr, D. (1971). Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci,
262(841), 23-81. https://doi.org/10.1098/rstbh.1971.0078

Martinez-Millan, L., & Hollander, H. (1975). Cortico-cortical projections from striate cortex of
the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Res, 83(3), 405-

417. https://doi.org/10.1016/0006-8993(75)90833-1

Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal
lobes. Trends Cogn Sci, 11(3), 126-135. https://doi.org/10.1016/j.tics.2006.12.003

Mayes, A. R, Isaac, C. L., Holdstock, J. S., Hunkin, N. M., Montaldi, D., Downes, J. J., Macdonald,
C., Cezayirli, E., & Roberts, J. N. (2001). Memory for single items, word pairs, and
temporal order of different kinds in a patient with selective hippocampal lesions. Cogn

Neuropsychol, 18(2), 97-123. https://doi.org/10.1080/02643290125897

Mayes, A. R., & Roberts, N. (2001). Theories of episodic memory. Philos Trans R Soc Lond B
Biol Sci, 356(1413), 1395-1408. https://doi.org/10.1098/rstb.2001.0941

McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review, 102(3).

https://doi.org/10.1037/0033-295X.102.3.419

McCormick, C., Barry, D. N., Jafarian, A., Barnes, G. R., & Maguire, E. A. (2020). vmPFC Drives

Hippocampal Processing during Autobiographical Memory Recall Regardless of

261



Remoteness. Cereb Cortex, 30(11), 5972-5987.
https://doi.org/10.1093/cercor/bhaal72

McCormick, C., Ciaramelli, E., De Luca, F., & Maguire, E. A. (2018). Comparing and Contrasting
the Cognitive Effects of Hippocampal and Ventromedial Prefrontal Cortex Damage: A
Review of Human Lesion Studies. Neuroscience, 374, 295-318.

https://doi.org/10.1016/j.neuroscience.2017.07.066

McCormick, C., Dalton, M. A., Zeidman, P.,, & Maguire, E. A. (2021). Characterising the
hippocampal response to perception, construction and complexity. Cortex, 137, 1-17.

https://doi.org/10.1016/j.cortex.2020.12.018

McCormick, C., Rosenthal, C. R., Miller, T. D., & Maguire, E. A. (2017). Deciding what is possible
and impossible following hippocampal damage in humans. Hippocampus, 27(3).

https://doi.org/10.1002/hipo.22694

McCormick, C., Rosenthal, C. R., Miller, T. D., & Maguire, E. A. (2018). Mind-Wandering in
People with Hippocampal Damage. J Neurosci, 38(11), 2745-2754.
https://doi.org/10.1523/JINEUROSCI.1812-17.2018

McDermott, K. B., Szpunar, K. K., & Christ, S. E. (2009). Laboratory-based and autobiographical
retrieval tasks differ substantially in their neural substrates. Neuropsychologia, 47(11),

2290-2298. https://doi.org/10.1016/j.neuropsychologia.2008.12.025

McGibney, G., Smith, M. R., Nichols, S. T., & Crawley, A. (1993). Quantitative evaluation of
several partial Fourier reconstruction algorithms used in MRI. Magnetic resonance in

medicine, 30(1). https://doi.org/10.1002/mrm.1910300109

McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: two lives of

memories? Neuron, 71(2), 224-233. https://doi.org/10.1016/j.neuron.2011.06.037

McKinnon, G. C. (1993). Ultrafast interleaved gradient-echo-planar imaging on a standard

scanner. Magn Reson Med, 30(5), 609-616. https://doi.org/10.1002/mrm.1910300512

McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and
information storage within a distributed memory system. Trends in neurosciences,

10(10). https://doi.org/10.1016/0166-2236(87)90011-7

262



Medicine, A. E. C. 0. (2014a). The Gradient Echo Pulse Sequence and Modified Flip Angle (34
of 56) YouTube.
https://www.youtube.com/watch?v=yuj85NdU85c&Ilist=PLPcImQzEnTpz-
5TzxyyoYSbiAa9xdd89I&index=34&t=291s

Medicine, A. E. C. o. (2014b). Introducing MRI YouTube Playlist, YouTube.
https://www.youtube.com/playlist?app=desktop&list=PLPcImQzEnTpz-
5TzxyyoYSbiAa9xdd89I&cbrd=1

Mendoza-Halliday, D., Major, A. J., Lee, N., Lichtenfeld, M. J., Carlson, B., Mitchell, B., Meng, P.
D., Xiong, Y. S., Westerberg, J. A,, Jia, X., Johnston, K. D., Selvanayagam, J., Everling, S.,
Maier, A., Desimone, R., Miller, E. K., & Bastos, A. M. (2024). A ubiquitous
spectrolaminar motif of local field potential power across the primate cortex. Nat

Neurosci, 27(3), 547-560. https://doi.org/10.1038/s41593-023-01554-7

Miller, T. D., Chong, T. T., Aimola Davies, A. M., Johnson, M. R,, Irani, S. R., Husain, M., Ng, T.
W., Jacob, S., Maddison, P.,, Kennard, C., Gowland, P. A., & Rosenthal, C. R. (2020).
Human hippocampal CA3 damage disrupts both recent and remote episodic

memories. Elife, 9. https://doi.org/10.7554/elLife.41836

Monk, A. M., Barry, D. N., Litvak, V., Barnes, G. R., & Maguire, E. A. (2021). Watching Movies
Unfold, a Frame-by-Frame Analysis of the Associated Neural Dynamics. eNeuro, 8(4).

https://doi.org/10.1523/ENEURO.0099-21.2021

Monk, A. M., Dalton, M. A., Barnes, G. R., & Maguire, E. A. (2021). The Role of Hippocampal-
Ventromedial Prefrontal Cortex Neural Dynamics in Building Mental Representations.

J Cogn Neurosci, 33(1), 89-103. https://doi.org/10.1162/jocn_a_01634

Morgan, P. S., Bowtell, R. W., MclIntyre, D. J., & Worthington, B. S. (2004). Correction of spatial
distortion in EPI due to inhomogeneous static magnetic fields using the reversed
gradient method. Journal of magnetic resonance imaging : JMRI, 19(4).

https://doi.org/10.1002/jmri.20032

Mormann, F., Kornblith, S., Cerf, M., Ison, M. J., Kraskov, A., Tran, M., Knieling, S., Quian

Quiroga, R., Koch, C., & Fried, I. (2017). Scene-selective coding by single neurons in the

263



human parahippocampal cortex. Proc Natl Acad Sci U S A, 114(5), 1153-1158.
https://doi.org/10.1073/pnas.1608159113

Morra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Toga, A. W., & Thompson, P. M. (2010).
Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's
Disease Through Automated Hippocampal Segmentation. IEEE Transactions on

Medical Imaging, 29(1). https://doi.org/10.1109/TMI1.2009.2021941

Moscovitch, M. (1989). Confabulation and the frontal systems: Strategic versus associative
retrieval in neuropsychological theories of memory. In H. L. R. I. F. I. M. Craik (Ed.),
Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 133—

160). Lawrence Erlbaum Associates, Inc.

Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic Memory and Beyond:
The Hippocampus and Neocortex in Transformation. Annu Rev Psychol, 67, 105-134.
https://doi.org/10.1146/annurev-psych-113011-143733

Moscovitch, M., & Melo, B. (1997). Strategic retrieval and the frontal lobes: evidence from
confabulation and amnesia. Neuropsychologia, 35(7), 1017-1034.
https://doi.org/10.1016/s0028-3932(97)00028-6

mriquestions.com. BOLD and Brain Activity: Does the BOLD response result from the firing of
nerve cells? . mriquestions.com. https://mriquestions.com/does-boldbrain-

activity.html

Mugler, J. P, 3rd, Bao, S., Mulkern, R. V., Guttmann, C. R., Robertson, R. L., Jolesz, F. A,, &
Brookeman, J. R. (2000). Optimized single-slab three-dimensional spin-echo MR
imaging of the brain. Radiology, 216(3), 891-899.
https://doi.org/10.1148/radiology.216.3.r00au46891

Mullally, S. L., Intraub, H., & Maguire, E. A. (2012). Attenuated boundary extension produces
a paradoxical memory advantage in amnesic patients. Curr Biol, 22(4), 261-268.

https://doi.org/10.1016/j.cub.2012.01.001

Mullally, S. L., & Maguire, E. A. (2013). Exploring the role of space-defining objects in
constructing and maintaining imagined scenes. Brain Cogn, 82(1), 100-107.

https://doi.org/10.1016/j.bandc.2013.02.013

264



Mullally, S. L., & Maguire, E. A. (2014). Memory, Imagination, and Predicting the Future: A
Common Brain Mechanism? Neuroscientist, 20(3), 220-234.

https://doi.org/10.1177/1073858413495091

Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the
hippocampal complex. Curr Opin Neurobiol, 7(2), 217-227.
https://doi.org/10.1016/s0959-4388(97)80010-4

Nadel, L., Winocur, G., Ryan, L., & Moscovitch, M. (2007). Systems consolidation and
hippocampus: two views. Debates in Neuroscience, 1(2).

https://doi.org/10.1007/s11559-007-9003-9

Nawa, N. E., & Ando, H. (2019). Effective connectivity within the ventromedial prefrontal
cortex-hippocampus-amygdala network during the elaboration of emotional
autobiographical memories. Neuroimage, 189.

https://doi.org/10.1016/j.neuroimage.2019.01.042

Nawa, N. E., & Ando, H. (2020). Effective connectivity during autobiographical memory search.
Brain Behav, 10(8), e01719. https://doi.org/10.1002/brb3.1719

Neunuebel, J. P.,, & Knierim, J. J. (2014). CA3 retrieves coherent representations from degraded
input: direct evidence for CA3 pattern completion and dentate gyrus pattern

separation. Neuron, 81(2), 416-427. https://doi.org/10.1016/j.neuron.2013.11.017

Noppeney, U., Patterson, K., Tyler, L. K., Moss, H., Stamatakis, E. A., Bright, P., Mummery, C., &
Price, C. J. (2007). Temporal lobe lesions and semantic impairment: a comparison of
herpes simplex virus encephalitis and semantic dementia. Brain, 130(Pt 4), 1138-1147.
https://doi.org/10.1093/brain/awl344

Norris, D. G., & Polimeni, J. R. (2019). Laminar (f)MRI: A short history and future prospects.
Neuroimage, 197, 643-649. https://doi.org/10.1016/j.neuroimage.2019.04.082

O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence
from unit activity in the freely-moving rat. Brain research, 34(1).

https://doi.org/10.1016/0006-8993(71)90358-1

O'Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford University Press.

265



O'Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Velasco-Hernandez, G., Krpalkova,
L., Riordan, D., & Walsh, J. (2019). Deep Learning vs. Traditional Computer Vision.
Computer Vision Conference. https://doi.org/10.1007/978-3-030-17795-9

Oliva, A., Fernandez-Ruiz, A., Buzsaki, G., & Berenyi, A. (2016). Spatial coding and physiological
properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus,

26(12), 1593-1607. https://doi.org/10.1002/hip0.22659

Olman, C. A, Inati, S., & Heeger, D. J. (2007). The effect of large veins on spatial localization
with GE BOLD at 3 T: Displacement, not blurring. Neuroimage, 34(3).
https://doi.org/10.1016/j.neuroimage.2006.08.045

Olman, C. A., & Yacoub, E. (2011). High-field FMRI for human applications: an overview of
spatial resolution and signal specificity. Open Neuroimag J, 5, 74-89.
https://doi.org/10.2174/1874440001105010074

Olsen, R. K., Carr, V. A., Daugherty, A. M., La Joie, R., Amaral, R. S. C., Amunts, K., Augustinack,
J. C.,, Bakker, A., Bender, A. R., Berron, D., Boccardi, M., Bocchetta, M., Burggren, A. C,,
Chakravarty, M. M., Chetelat, G., de Flores, R., DeKraker, J., Ding, S. L., Geerlings, M. I,
... Hippocampal Subfields, G. (2019). Progress update from the hippocampal subfields
group. Alzheimers Dement (Amst), 11, 439-449.
https://doi.org/10.1016/j.dadm.2019.04.001

Olsen, R. K., Moses, S. N., Riggs, L., & Ryan, J. D. (2012). The hippocampus supports multiple
cognitive processes through relational binding and comparison. Frontiers in human

neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00146

Ortiz-Tudela, J., Turan, G., Vilas, M., Melloni, L., & Shing, Y. L. (2024). Schema-driven prediction
effects on episodic memory across the lifespan. Philos Trans R Soc Lond B Biol Sci,

379(1913), 20230401. https://doi.org/10.1098/rstb.2023.0401

Palombo, D. J., Amaral, R. S., Olsen, R. K., Miiller, D. J., Todd, R. M., Anderson, A. K., & Levine,
B. (2013). KIBRA polymorphism is associated with individual differences in
hippocampal subregions: evidence from anatomical segmentation using high-
resolution MRI. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 33(32). https://doi.org/10.1523/INEUROSCI.1406-13.2013

266



Palombo, D. J., Bacopulos, A., Amaral, R. S. C., Olsen, R. K., Todd, R. M., Anderson, A. K., &
Levine, B. (2018). Episodic autobiographical memory is associated with variation in the
size of hippocampal subregions. Hippocampus, 28(2).

https://doi.org/10.1002/hipo.22818

Park, S., & Chun, M. M. (2009). Different roles of the parahippocampal place area (PPA) and
retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage, 47(4), 1747-

1756. https://doi.org/10.1016/j.neuroimage.2009.04.058

Petcharunpaisan, S., Ramalho, J., & Castillo, M. (2010). Arterial spin labeling in neuroimaging.

World J Radiol, 2(10), 384-398. https://doi.org/10.4329/wijr.v2.i10.384

Peters, J., & D'Esposito, M. (2016). Effects of Medial Orbitofrontal Cortex Lesions on Self-
Control in Intertemporal  Choice. Curr  Biol, 26(19), 2625-2628.
https://doi.org/10.1016/j.cub.2016.07.035

Pfaffenrot, V., Bouyeure, A., Gomes, C. A., Kashyap, S., Axmacher, N., & Norris, D. (2024).
Characterizing BOLD activation patterns in the human hippocampus with laminar

fMRI. bioRxiv. https://doi.org/10.1101/2024.07.04.602065

Piefke, M., Weiss, P. H., Zilles, K., Markowitsch, H. J.,, & Fink, G. R. (2003). Differential
remoteness and emotional tone modulate the neural correlates of autobiographical

memory. Brain, 126(Pt 3), 650-668. https://doi.org/10.1093/brain/awg064

Pipitone, J., Park, M. T., Winterburn, J., Lett, T. A., Lerch, J. P.,, Pruessner, J. C., Lepage, M.,
Voineskos, A. N., Chakravarty, M. M., & Alzheimer's Disease Neuroimaging, |. (2014).
Multi-atlas segmentation of the whole hippocampus and subfields using multiple
automatically generated templates. Neuroimage, 101, 494-512.
https://doi.org/10.1016/j.neuroimage.2014.04.054

Poiret, C., Bouyeure, A., Patil, S., Grigis, A., Duchesnay, E., Faillot, M., Bottlaender, M.,
Lemaitre, F., & Noulhiane, M. (2023). A fast and robust hippocampal subfields
segmentation: HSF revealing lifespan volumetric dynamics. Front Neuroinform, 17,

1130845. https://doi.org/10.3389/fninf.2023.1130845

267



Polimeni, J. R., Fischl, B., Greve, D. N., & Wald, L. L. (2010). Laminar analysis of 7T BOLD using
an imposed spatial activation pattern in human V1. Neuroimage, 52(4), 1334-1346.
https://doi.org/10.1016/j.neuroimage.2010.05.005

Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in
memory. Curr Biol, 23(17), R764-773. https://doi.org/10.1016/j.cub.2013.05.041

Price, C. J. (2000). The anatomy of language: contributions from functional neuroimaging. J

Anat, 197 Pt 3(Pt 3), 335-359. https://doi.org/10.1046/j.1469-7580.2000.19730335.x

Pykett, I. L., & Rzedzian, R. R. (1987). Instant images of the body by magnetic resonance. Magn
Reson Med, 5(6), 563-571. https://doi.org/10.1002/mrm.1910050607

Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided
behaviour. Nature reviews. Neuroscience, 13(10), 713-726.

https://doi.org/10.1038/nrn3338

Ranjeva, J. P., Franconi, J. M., Manelfe, C., & Berry, |. (1997). Magnetization transfer with echo
planar imaging. MAGMA, 5(4), 259-265. https://doi.org/10.1007/BF02595043

Read, M. L., Berry, S. C., Graham, K. S., Voets, N. L., Zhang, J., Aggleton, J. P., Lawrence, A. D.,
& Hodgetts, C. J. (2024). Scene-selectivity in CA1/subicular complex: Multivoxel
pattern analysis at 7T. Neuropsychologia, 194, 108783.
https://doi.org/10.1016/j.neuropsychologia.2023.108783

Reagh, Z. M., & Ranganath, C. (2023). Flexible reuse of cortico-hippocampal representations
during encoding and recall of naturalistic events. Nat Commun, 14(1), 1279.

https://doi.org/10.1038/s41467-023-36805-5

Rebola, N., Carta, M., & Mulle, C. (2017). Operation and plasticity of hippocampal CA3 circuits:
implications for memory encoding. Nat Rev Neurosci, 18(4), 208-220.

https://doi.org/10.1038/nrn.2017.10

Redondo, R. L., & Morris, R. G. (2011). Making memories last: the synaptic tagging and capture
hypothesis. Nat Rev Neurosci, 12(1), 17-30. https://doi.org/10.1038/nrn2963

Rekkas, P. V., & Constable, R. T. (2005). Evidence that autobiographic memory retrieval does

not become independent of the hippocampus: an fMRI study contrasting very recent

268



with remote events. J Cogn Neurosci, 17(12), 1950-1961.
https://doi.org/10.1162/089892905775008652

Richmond, L. L., Gold, D. A., & Zacks, J. M. (2017). Event perception: Translations and
applications. J Appl Res Mem Cogn, 6(2), 111-120.
https://doi.org/10.1016/j.jarmac.2016.11.002

Rissman, J., Greely, H. T., & Wagner, A. D. (2010). Detecting individual memories through the
neural decoding of memory states and past experience. Proc Natl Acad Sci U S A,

107(21), 9849-9854. https://doi.org/10.1073/pnas.1001028107

Ritchey, M., Libby, L. A., & Ranganath, C. (2015). Cortico-hippocampal systems involved in
memory and cognition: the PMAT framework. Progress in brain research, 219, 45-64.

https://doi.org/10.1016/bs.pbr.2015.04.001

Robertson, R. G., Rolls, E. T., & Georges-Fran ois, P. (1998). Spatial view cells in the primate
hippocampus: effects of removal of view details. J Neurophysiol, 79(3), 1145-1156.
https://doi.org/10.1152/jn.1998.79.3.1145

Robin, J., Buchsbaum, B. R., & Moscovitch, M. (2018). The Primacy of Spatial Context in the
Neural Representation of Events. J Neurosci, 38(11), 2755-2765.
https://doi.org/10.1523/JNEUROSCI.1638-17.2018

Robin, J., & Moscovitch, M. (2017). Details, gist and schema: hippocampal—neocortical
interactions underlying recent and remote episodic and spatial memory. Current

Opinion in Behavioral Sciences, 17. https://doi.org/10.1016/j.cobeha.2017.07.016

Robin, J., & Olsen, R. K. (2019). Scenes facilitate associative memory and integration. Learn

Mem, 26(7), 252-261. https://doi.org/10.1101/Im.049486.119

Rockland, K. S. (2019). What do we know about laminar connectivity? Neuroimage, 197, 772-
784. https://doi.org/10.1016/j.neuroimage.2017.07.032

Rockland, K. S., & Pandya, D. N. (1979). Laminar origins and terminations of cortical
connections of the occipital lobe in the rhesus monkey. Brain Res, 179(1), 3-20.

https://doi.org/10.1016/0006-8993(79)90485-2

269



Rodriguez, P. F. (2010). Neural decoding of goal locations in spatial navigation in humans with

fMRI. Hum Brain Mapp, 31(3), 391-397. https://doi.org/10.1002/hbm.20873

Roediger, H. L., & Mcdermott, K. B. (1995). Creating False Memories - Remembering Words
Not Presented in Lists. Journal of Experimental Psychology-Learning Memory and

Cognition, 21(4), 803-814. https://doi.org/Doi 10.1037/0278-7393.21.4.803

Rolls, E. T. (2023). Hippocampal spatial view cells for memory and navigation, and their
underlying connectivity in humans. Hippocampus, 33(5).

https://doi.org/10.1002/hipo.23467

Rolls, E. T., & Treves, A. (1994). Neural networks in the brain involved in memory and recall.

Prog Brain Res, 102, 335-341. https://doi.org/10.1016/5S0079-6123(08)60550-6

Romero, J. E., Coupe, P, & Manjon, J. V. (2017). HIPS: A new hippocampus subfield
segmentation method. Neuroimage, 163, 286-295.
https://doi.org/10.1016/j.neuroimage.2017.09.049

Rose, D., & Lowe, I. (1982). Dynamics of adaptation to contrast. Perception, 11(5), 505-528.
https://doi.org/10.1068/p110505

Rosenbaum, R. S., Moscovitch, M., Foster, J. K., Schnyer, D. M., Gao, F., Kovacevic, N., Verfaellie,
M., Black, S. E., & Levine, B. (2008). Patterns of autobiographical memory loss in
medial-temporal lobe amnesic patients. J Cogn Neurosci, 20(8), 1490-1506.
https://doi.org/10.1162/jocn.2008.20105

Rowland, C. A. (2014). The effect of testing versus restudy on retention: a meta-analytic review
of the testing effect. Psychol Bull, 140(e), 1432-1463.
https://doi.org/10.1037/a0037559

Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and
the generation of affective meaning. Trends Cogn Sci, 16(3), 147-156.
https://doi.org/10.1016/j.tics.2012.01.005

Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M., & Wolters, C. H.

(2012). Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic

270



resonance images. Phys Med Biol, 57(18), 5715-5731. https://doi.org/10.1088/0031-
9155/57/18/5715

Schacter, D. L. (2012). Adaptive constructive processes and the future of memory. Am Psychol,

67(8), 603-613. https://doi.org/10.1037/a0029869

Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the
future: the prospective brain. Nat Rev  Neurosci, 8(9), 657-661.
https://doi.org/10.1038/nrn2213

Schiller, D., Eichenbaum, H., Buffalo, E. A., Davachi, L., Foster, D. J., Leutgeb, S., & Ranganath,
C. (2015). Memory and Space: Towards an Understanding of the Cognitive Map. J
Neurosci, 35(41), 13904-13911. https://doi.org/10.1523/INEUROSCI.2618-15.2015

Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational
changes reveal dissociable integration and separation signatures in the hippocampus

and prefrontal cortex. Nat Commun, 6, 8151. https://doi.org/10.1038/ncomms9151

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions.

J Neurol Neurosurg Psychiatry, 20(1), 11-21. https://doi.org/10.1136/jnnp.20.1.11

Sekeres, M. J., Winocur, G., & Moscovitch, M. (2018). The hippocampus and related
neocortical structures in memory transformation. Neurosci Lett, 680, 39-53.

https://doi.org/10.1016/j.neulet.2018.05.006

Sellitto, M., Ciaramelli, E., & di Pellegrino, G. (2010). Myopic discounting of future rewards
after medial orbitofrontal damage in humans. J Neurosci, 30(49), 16429-16436.
https://doi.org/10.1523/JNEUROSCI.2516-10.2010

Seltzer, B., & Pandya, D. N. (1991). Post-rolandic cortical projections of the superior temporal
sulcus in  the rhesus monkey. J Comp Neurol, 312(4), 625-640.
https://doi.org/10.1002/cne.903120412

Semedo, J. D., Jasper, A. |., Zandvakili, A., Krishna, A., Aschner, A., Machens, C. K., Kohn, A., Yu,
B. M., Semedo, J. D., Jasper, A. I., Zandvakili, A., Krishna, A., Aschner, A., Machens, C.

K., Kohn, A., & Yu, B. M. (2022). Feedforward and feedback interactions between visual

271



cortical areas use different population activity patterns. Nature Communications,

13(1). https://doi.org/10.1038/s41467-022-28552-w

Shao, X, Li, A., Chen, C., Loftus, E. F., & Zhu, B. (2023). Cross-stage neural pattern similarity in
the hippocampus predicts false memory derived from post-event inaccurate

information. Nat Commun, 14(1), 2299. https://doi.org/10.1038/s41467-023-38046-y

Shipp, S. (2023). Computational components of visual predictive coding circuitry. Front Neural

Circuits, 17, 1254009. https://doi.org/10.3389/fncir.2023.1254009

Siapas, A. G., Lubenoy, E. V., & Wilson, M. A. (2005). Prefrontal phase locking to hippocampal
theta oscillations. Neuron, 46(1), 141-151.
https://doi.org/10.1016/j.neuron.2005.02.028

Simons, J. S., Verfaellie, M., Hodges, J. R,, Lee, A. C., Graham, K. S., Koutstaal, W., Schacter, D.
L., & Budson, A. E. (2005). Failing to get the gist: reduced false recognition of semantic
associates in  semantic dementia.  Neuropsychology, 19(3), 353-361.
https://doi.org/10.1037/0894-4105.19.3.353

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg,
H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J.,
Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances
in functional and structural MR image analysis and implementation as FSL.
Neuroimage, 23 Suppl 1, $208-219.
https://doi.org/10.1016/j.neuroimage.2004.07.051

Soderlund, H., Moscovitch, M., Kumar, N., Mandic, M., & Levine, B. (2012). As time goes by:
hippocampal connectivity changes with remoteness of autobiographical memory

retrieval. Hippocampus, 22(4), 670-679. https://doi.org/10.1002/hipo.20927

Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., Bostrom,
E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C., Druid, H., & Frisen,
J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6), 1219-
1227. https://doi.org/10.1016/j.cell.2013.05.002

Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the

Neural Correlates of Schemas: Ventromedial Prefrontal Cortex Is Necessary for Normal

272



Schematic Influence on Memory. J Neurosci, 35(47), 15746-15751.
https://doi.org/10.1523/JINEUROSCI.2767-15.2015

Spano, G., Pizzamiglio, G., McCormick, C., Clark, I. A., De Felice, S., Miller, T. D., Edgin, J. O.,
Rosenthal, C. R., & Maguire, E. A. (2020). Dreaming with hippocampal damage. Elife,
9. https://doi.org/10.7554/elife.56211

Spatz, W. B., Tigges, J., & Tigges, M. (1970). Subcortical projections, cortical associations, and
some intrinsic interlaminar connections of the striate cortex in the squirrel monkey
(Saimiri). The Journal of comparative neurology, 140(2).

https://doi.org/10.1002/cne.901400203

Spiers, H. J., & Maguire, E. A. (2006). Thoughts, behaviour, and brain dynamics during
navigation in the real world. Neuroimage, 31(4), 1826-1840.
https://doi.org/10.1016/j.neuroimage.2006.01.037

Spiers, H. J., Maguire, E. A., & Burgess, N. (2001). Hippocampal amnesia. Neurocase, 7(5), 357-
382. https://doi.org/10.1076/neur.7.5.357.16245

Spreng, R. N., Mar, R. A,, & Kim, A. S. (2009). The common neural basis of autobiographical
memory, prospection, navigation, theory of mind, and the default mode: a quantitative
meta-analysis. J Cogn Neurosci, 21(3), 489-510.
https://doi.org/10.1162/jocn.2008.21029

Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats,
monkeys, and humans. Psychol Rev, 99(2), 195-231. https://doi.org/10.1037/0033-
295x.99.2.195

Squire, L. R.,, & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a
neurobiological perspective. Curr  Opin Neurobiol, 5(2), 169-177.
https://doi.org/10.1016/0959-4388(95)80023-9

Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring
Harb Perspect Biol, 7(8), a021766. https://doi.org/10.1101/cshperspect.a021766

Squire, L. R., van der Horst, A. S., McDuff, S. G., Frascino, J. C., Hopkins, R. O., & Mauldin, K. N.

(2010). Role of the hippocampus in remembering the past and imagining the future.

273



Proc Natl Acad Sci U S A, 107(44), 19044-19048.
https://doi.org/10.1073/pnas.1014391107

Steinvorth, S., Corkin, S., & Halgren, E. (2006). Ecphory of autobiographical memories: an fMRI
study of recent and remote memory retrieval. Neuroimage, 30(1), 285-298.

https://doi.org/10.1016/j.neuroimage.2005.09.025

Steinvorth, S., Levine, B., & Corkin, S. (2005). Medial temporal lobe structures are needed to
re-experience remote autobiographical memories: evidence from H.M. and W.R.
Neuropsychologia, 43(4), 479-496.
https://doi.org/10.1016/j.neuropsychologia.2005.01.001

Stirnberg, R., & Stocker, T. (2021). Segmented K-space blipped-controlled aliasing in parallel
imaging for high spatiotemporal resolution EPl. Magn Reson Med, 85(3), 1540-1551.
https://doi.org/10.1002/mrm.28486

Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2010). Differential engagement of brain
regions within a 'core' network during scene construction. Neuropsychologia, 48(5).

https://doi.org/10.1016/j.neuropsychologia.2010.01.022

Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of
autobiographical memory: a meta-analysis. Neuropsychologia, 44(12), 2189-2208.
https://doi.org/10.1016/j.neuropsychologia.2006.05.023

Taylor, K. J., Henson, R. N., & Graham, K. S. (2007). Recognition memory for faces and scenes
in amnesia: dissociable roles of medial temporal lobe structures. Neuropsychologia,

45(11), 2428-2438. https://doi.org/10.1016/j.neuropsychologia.2007.04.004

Tigges, J., Spatz, W. B., & Tigges, M. (1973). Reciprocal point-to-point connections between
parastriate and striate cortex in the squirrel monkey (Saimiri). Journal of Comparative

Neurology, 148(4). https://doi.org/10.1002/cne.901480406

Tompary, A., & Davachi, L. (2017). Consolidation Promotes the Emergence of Representational
Overlap in the Hippocampus and Medial Prefrontal Cortex. Neuron, 96(1), 228-241
e225. https://doi.org/10.1016/j.neuron.2017.09.005

274



Tranel, D., & Jones, R. D. (2006). Knowing “What” and Knowing “When”. Journal of Clinical and
Experimental Neuropsychology, 28(1), 43-66.
https://doi.org/10.1080/13803390490919344

Treves, A., & Rolls, E. T. (1994). Computational analysis of the role of the hippocampus in
memory. Hippocampus, 4(3), 374-391. https://doi.org/10.1002/hipo.450040319

Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P,, &
Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82.
https://doi.org/10.1126/science.1135935

Tu, Z., & Bai, X. (2010). Auto-context and its application to high-level vision tasks and 3D brain
image segmentation. IEEE Trans Pattern Anal Mach Intell, 32(10), 1744-1757.
https://doi.org/10.1109/TPAMI.2009.186

Tu, Z., Zheng, S., Yuille, A. L., Reiss, A. L., Dutton, R. A,, Lee, A. D., Galaburda, A. M., Dinoy, |.,
Thompson, P. M., & Toga, A. W. (2007). Automated extraction of the cortical sulci based
on a supervised learning approach. I[EEE Trans Med Imaging, 26(4), 541-552.
https://doi.org/10.1109/TMI.2007.892506

Turk-Browne, N. B. (2019). The hippocampus as a visual area organized by space and time: a
spatiotemporal similarity hypothesis. Vision research, 165.

https://doi.org/10.1016/j.visres.2019.10.007

Ugurbil, K. (2016). What is feasible with imaging human brain function and connectivity using
functional magnetic resonance imaging. Philosophical transactions of the Royal Society
of London. Series B, Biological sciences, 371(1705).
https://doi.org/10.1098/rstb.2015.0361

Ungerleider, L. G., & Haxby, J. V. (1994). 'What' and 'where' in the human brain. Current opinion
in neurobiology, 4(2). https://doi.org/10.1016/0959-4388(94)90066-3

Van Essen, D. C., & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in
the primate visual system. Neuron, 13(1), 1-10. https://doi.org/10.1016/0896-
6273(94)90455-3

275



van Kesteren, M. T., Fernandez, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schema-
dependent hippocampal-neocortical connectivity during memory encoding and
postencoding rest in humans. Proc Natl Acad Sci U S A, 107(16), 7550-7555.
https://doi.org/10.1073/pnas.0914892107

van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and
novelty augment memory formation. Trends in neurosciences, 35(4).

https://doi.org/10.1016/j.tins.2012.02.001

van Kesteren, M. T. R, Rignanese, P., Gianferrara, P. G., Krabbendam, L., & Meeter, M. (2020).
Congruency and reactivation aid memory integration through reinstatement of prior

knowledge. Sci Rep, 10(1), 4776. https://doi.org/10.1038/s41598-020-61737-1

Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L. L., Augustinack, J., Dickerson, B.
C., Golland, P., & Fischl, B. (2009). Automated segmentation of hippocampal subfields
from ultra-high resolution in vivo MRIL Hippocampus, 19(6), 549-557.
https://doi.org/10.1002/hip0.20615

van Mourik, T., Koopmans, P. J., & Norris, D. G. (2019). Improved cortical boundary registration
for locally distorted fMRI scans. PLoS One, 14(11), e0223440.
https://doi.org/10.1371/journal.pone.0223440

van Mourik, T., van der Eerden, J., Bazin, P. L., & Norris, D. G. (2019). Laminar signal extraction
over extended cortical areas by means of a spatial GLM. PLoS One, 14(3), e0212493.
https://doi.org/10.1371/journal.pone.0212493

Vann, S. D., Aggleton, J. P.,, & Maguire, E. A. (2009). What does the retrosplenial cortex do?
Nature reviews. Neuroscience, 10(11). https://doi.org/10.1038/nrn2733

Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., & Mishkin,
M. (1997). Differential effects of early hippocampal pathology on episodic and
semantic memory. Science, 277(5324), 376-380.
https://doi.org/10.1126/science.277.5324.376

Vass, L. K., & Epstein, R. A. (2013). Abstract representations of location and facing direction in
the human brain. J Neurosci, 33(14), 6133-6142.
https://doi.org/10.1523/JNEUROSCI.3873-12.2013

276



Viard, A., Piolino, P., Desgranges, B., Chetelat, G., Lebreton, K., Landeau, B., Young, A., De La
Sayette, V., & Eustache, F. (2007). Hippocampal activation for autobiographical
memories over the entire lifetime in healthy aged subjects: an fMRI study. Cereb

Cortex, 17(10), 2453-2467. https://doi.org/10.1093/cercor/bhl153

Viskontas, I. V., McAndrews, M. P., & Moscovitch, M. (2000). Remote episodic memory deficits
in patients with unilateral temporal lobe epilepsy and excisions. J Neurosci, 20(15),

5853-5857. https://doi.org/10.1523/JINEUROSCI.20-15-05853.2000

Vizioli, L., De Martino, F., Petro, L. S., Kersten, D., Ugurbil, K., Yacoub, E., Muckli, L., Vizioli, L.,
De Martino, F,, Petro, L. S., Kersten, D., Ugurbil, K., Yacoub, E., & Muckli, L. (2020).
Multivoxel Pattern of Blood Oxygen Level Dependent Activity can be sensitive to
stimulus  specific  fine scale responses. Scientific  Reports,  10(1).

https://doi.org/10.1038/s41598-020-64044-x

von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des

erwachsenen Menschen. Springer.

Waehnert, M. D., Dinse, J., Weiss, M., Streicher, M. N., Waehnert, P., Geyer, S., Turner, R., &
Bazin, P. L. (2014). Anatomically motivated modeling of cortical laminae. Neuroimage,

93 Pt 2, 210-220. https://doi.org/10.1016/j.neuroimage.2013.03.078

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). Reliability of
dissimilarity measures for multi-voxel pattern analysis. Neuroimage, 137, 188-200.

https://doi.org/10.1016/j.neuroimage.2015.12.012

Wang, H., Suh, J. W,, Das, S. R., Pluta, J. B., Craige, C., & Yushkevich, P. A. (2013). Multi-Atlas
Segmentation with Joint Label Fusion. /[EEE transactions on pattern analysis and

machine intelligence, 35(3), 611-623. https://doi.org/10.1109/TPAMI.2012.143

Wang, H., & Yushkevich, P. A. (2013). Multi-atlas segmentation with joint label fusion and
corrective learning-an open source implementation. Frontiers in neuroinformatics, 7,

27. https://doi.org/10.3389/fninf.2013.00027

Wang, J., Nasr, S., Roe, A. W., & Polimeni, J. R. (2022). Critical factors in achieving fine-scale
functional MRI: Removing sources of inadvertent spatial smoothing. Hum Brain Mapp,

43(11), 3311-3331. https://doi.org/10.1002/hbm.25867

277



Wang, S. H., & Morris, R. G. (2010). Hippocampal-neocortical interactions in memory
formation, consolidation, and reconsolidation. Annu Rev Psychol, 61, 49-79, C41-44.

https://doi.org/10.1146/annurev.psych.093008.100523

Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage
to the ventromedial prefrontal cortex: implications for understanding the neural
correlates of schematic memory. J  Neurosci, 34(22), 7677-7682.
https://doi.org/10.1523/JNEUROSCI.0119-14.2014

Warrington, O., Graedel, N. N., Callaghan, M. F., & Kok, P. (2024). Communication of
perceptual predictions from the hippocampus to the deep layers of the

parahippocampal cortex. bioRxiv. https://doi.org/10.1101/2024.03.28.587186

Webb, C. E., Turney, . C., & Dennis, N. A. (2016). What's the gist? The influence of schemas on
the neural correlates underlying true and false memories. Neuropsychologia, 93(Pt A),

61-75. https://doi.org/10.1016/j.neuropsychologia.2016.09.023

Wisse, L. E., Kuijf, H. J.,, Honingh, A. M., Wang, H., Pluta, J. B., Das, S. R.,, Wolk, D. A.,
Zwanenburg, J. J., Yushkevich, P. A., & Geerlings, M. |. (2016). Automated Hippocampal
Subfield Segmentation at 7T MRI. AJNR. American journal of neuroradiology, 37(6).
https://doi.org/10.3174/ajnr.A4659

Wisse, L. E. M., Daugherty, A. M., Olsen, R. K., Berron, D., Carr, V. A,, Stark, C. E. L., Amaral, R.
S. C., Amunts, K., Augustinack, J. C., Bender, A. R., Bernstein, J. D., Boccardi, M.,
Bocchetta, M., Burggren, A., Chakravarty, M. M., Chupin, M., Ekstrom, A., de Flores, R.,
Insausti, R., . . . Hippocampal Subfields, G. (2017). A harmonized segmentation
protocol for hippocampal and parahippocampal subregions: Why do we need one and
what are the key goals? Hippocampus, 27(1), 3-11.
https://doi.org/10.1002/hipo.22671

Witter, M. P., & Amaral, D. G. (1991). Entorhinal cortex of the monkey: V. Projections to the
dentate gyrus, hippocampus, and subicular complex. J Comp Neurol, 307(3), 437-459.
https://doi.org/10.1002/cne.903070308

278



Witter, M. P., & Amaral, D. G. (2020). The entorhinal cortex of the monkey: VI. Organization of
projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J

Comp Neurol, 529(4), 828-852. https://doi.org/10.1002/cne.24983

Wolbers, T., & Buchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to
successful formation of survey representations. J Neurosci, 25(13), 3333-3340.

https://doi.org/10.1523/JNEUROSCI.4705-04.2005

Wolbers, T., Wiener, J. M., Mallot, H. A., & Buchel, C. (2007). Differential recruitment of the
hippocampus, medial prefrontal cortex, and the human motion complex during path
integration in humans. J Neurosci, 27(35), 9408-9416.
https://doi.org/10.1523/JNEUROSCI.2146-07.2007

Wong-Riley, M. (1978). Reciprocal connections between striate and prestriate cortex in
squirrel monkey as demonstrated by combined peroxidase histochemistry and
autoradiography.  Brain  research,  147(1).  https://doi.org/10.1016/0006-
8993(78)90781-3

Wood, M. L., & Henkelman, R. M. (1985). Truncation artifacts in magnetic resonance imaging.

Magn Reson Med, 2(6), 517-526. https://doi.org/10.1002/mrm.1910020602

Xie, L., Wisse, L. E. M., Wang, J., Ravikumar, S., Khandelwal, P,, Glenn, T., Luther, A., Lim, S.,
Wolk, D. A., & Yushkevich, P. A. (2023). Deep label fusion: A generalizable hybrid multi-
atlas and deep convolutional neural network for medical image segmentation. Med

Image Anal, 83, 102683. https://doi.org/10.1016/j.media.2022.102683

Yang, G., Pan, F., & Gan, W. B. (2009). Stably maintained dendritic spines are associated with
lifelong memories. Nature, 462(7275), 920-924. https://doi.org/10.1038/nature08577

Yeung, L. K., Olsen, R. K., Hong, B., Mihajlovic, V., D'Angelo, M. C., Kacollja, A., Ryan, J. D., &
Barense, M. D. (2019). Object-in-place Memory Predicted by Anterolateral Entorhinal
Cortex and Parahippocampal Cortex Volume in Older Adults. J Cogn Neurosci, 31(5),

711-729. https://doi.org/10.1162/jocn_a_01385

Yu, Y., Huber, L., Yang, J., Jangraw, D. C., Handwerker, D. A., Molfese, P. J., Chen, G., Ejima, Y.,

Wu, J., & Bandettini, P. A. (2019). Layer-specific activation of sensory input and

279



predictive feedback in the human primary somatosensory cortex. Sci Adv, 5(5),

eaav9053. https://doi.org/10.1126/sciadv.aav9053

Yushkevich, P. A., Amaral, R. S., Augustinack, J. C., Bender, A. R., Bernstein, J. D., Boccardi, M.,
Bocchetta, M., Burggren, A. C., Carr, V. A., Chakravarty, M. M., Chetelat, G., Daugherty,
A. M., Davachi, L., Ding, S. L., Ekstrom, A., Geerlings, M. |., Hassan, A., Huang, Y.,
Iglesias, J. E., . . . Hippocampal Subfields, G. (2015). Quantitative comparison of 21
protocols for labeling hippocampal subfields and parahippocampal subregions in in
vivo MRI: towards a harmonized segmentation protocol. Neuroimage, 111, 526-541.

https://doi.org/10.1016/j.neuroimage.2015.01.004

Yushkevich, P. A, Pluta, J. B., Wang, H., Xie, L., Ding, S. L., Gertje, E. C., Mancuso, L., Kliot, D.,
Das, S. R., & Wolk, D. A. (2015). Automated volumetry and regional thickness analysis
of hippocampal subfields and medial temporal cortical structures in mild cognitive

impairment. Hum Brain Mapp, 36(1), 258-287. https://doi.org/10.1002/hbm.22627

Yushkevich, P. A., Wang, H., Pluta, J.,, Das, S. R, Craige, C., Avants, B. B., Weiner, M. W.,, &
Mueller, S. (2010). Nearly automatic segmentation of hippocampal subfields in in vivo
focal T2-weighted MRI. Neuroimage, 53(4).
https://doi.org/10.1016/j.neuroimage.2010.06.040

Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychol Bull,
127(1), 3-21. https://doi.org/10.1037/0033-2909.127.1.3

Zeidman, P., Lutti, A., & Maguire, E. A. (2015). Investigating the functions of subregions within
anterior hippocampus. Cortex, 73, 240-256.
https://doi.org/10.1016/j.cortex.2015.09.002

Zeidman, P., & Maguire, E. A. (2016). Anterior hippocampus: the anatomy of perception,
imagination and episodic memory. Nat Rev Neurosci, 17(3), 173-182.

https://doi.org/10.1038/nrn.2015.24

Zeidman, P., Mullally, S. L., & Maguire, E. A. (2015). Constructing, Perceiving, and Maintaining
Scenes: Hippocampal Activity and Connectivity. Cereb Cortex, 25(10), 3836-3855.
https://doi.org/10.1093/cercor/bhu266

280



Zeng, H., & Constable, R. T. (2002). Image distortion correction in EPl: comparison of field
mapping with point spread function mapping. Magn Reson Med, 48(1), 137-146.
https://doi.org/10.1002/mrm.10200

Zwanenburg, J. J., Versluis, M. J., Luijten, P. R., & Petridou, N. (2011). Fast high resolution whole
brain T2* weighted imaging using echo planar imaging at 7T. Neuroimage, 56(4).

https://doi.org/10.1016/j.neuroimage.2011.03.046

281



Appendix

| acknowledge the use of ChatGPT-3.5 and ChatGPT-4 (OpenAl, https://openai.com/) to:

e draft text in Sections 2.8.2.1. and 4.3.6., which | subsequently fact checked and
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e edit and proofread the final draft.
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