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THE BIGGER PICTURE Documenting all interactions between viruses and mammals is not feasible; viruses
are too small, theworld is too big, and viruses andmammals are too diverse. As a consequence, we thinkwe
only know about 1% or 2% of the interactions between mammals and viruses. This is a critical gap in our
knowledge because it can lead us to missing reservoirs of possible zoonotic viruses. In this article, we
develop a process to leverage the information we have about interactions between hosts and viruses to
do three things: First, we predict missing interactions in this network and give them a score based on
how likely the model guesses they are. Second, we map these predicted interactions in space to provide
guidance about where to go and what to look for to collect data that would maximize our knowledge of
host-virus interactions. Finally, based on the predicted interactions, we use information about the genome
of viruses to identify possible zoonotic viruses.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Predicting host-virus interactions is fundamentally a network science problem. We develop a method
for bipartite network prediction that combines a recommender system (linear filtering) with an imputation
algorithm based on low-rank graph embedding. We test this method by applying it to a global database
of mammal-virus interactions and thus show that it makes biologically plausible predictions that are
robust to data biases. We find that the mammalian virome is under-characterized anywhere in the
world. We suggest that future virus discovery efforts could prioritize the Amazon Basin (for its unique
coevolutionary assemblages) and sub-Saharan Africa (for its poorly characterized zoonotic reservoirs).
Graph embedding of the imputed network improves predictions of human infection from viral genome
features, providing a shortlist of priorities for laboratory studies and surveillance. Overall, our
study indicates that the global structure of the mammal-virus network contains a large amount of infor-
mation that is recoverable, and this provides new insights into fundamental biology and disease
emergence.
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INTRODUCTION

Despite growing interest in viral ecology, data remain limited

because most of the global virome remains undocumented.

Computational methods that can infer undiscovered associa-

tions in a partially observed host-virus network can fill in some

of these gaps.1 At least 20%–40% of host-parasite associations

are estimated to be unrecorded in locally collected, highly com-

plete datasets;2 a much higher proportion is likely unrecorded in

the high-sparsity datasets cataloging the global virome. An even

greater proportion of host-virus interactions may be biologically

plausible (i.e., a virus might have the capacity to infect a host) but

still unrealized for lack of ecological opportunities. These are

often the links with the greatest relevance to actionable science;

at least 10,000 mammalian viruses likely have the unrealized ca-

pacity to infect human hosts,3 while an even greater number

could be shared thousands of times between mammals as

they track shifting habitats in a changing climate.4

Here, we propose a novel method for predicting unknown links

in partially sampled networks and apply it to the largest database

of host-virus associations currently available. The method is

based on a combination of linear filtering, which uses high-level

network information to generate an initial guess as to the proba-

bility of an interaction, and singular value decomposition, which

uses the structure of a low-rank approximation (which has a bet-

ter signal-to-noise ratio5) of the entire network to impute interac-

tions that were presumed negatives. In combination, thismethod

uses existing knowledge on the entire network but can also be

tuned in such a way that its adjacency matrix is approximated

at a rank that maximizes the amount of information used for

imputation. Importantly, this method relies entirely on network

structure and does not consider (or require) external information

specific to the hosts and viruses involved (Table 1). We used this

method to predict host-virus associations that are either unde-

tected (they happen in nature but are not observed or docu-

mented) or are biologically plausible but possibly unrealized in

the real world (they can happen in nature but are restricted by

the spatial distribution of the species, which can be modified

by climate change). Finally, we applied graph embedding to

the observed and imputed networks and used these as predic-

tive features to augment a previously published model that pre-

dicts which viruses can infect humans based on summaries of

viral genome composition,6 testing whether knowledge about

the global dynamics of cross-species transmission is informative

for the narrowly defined problem of predicting human disease

emergence.

RESULTS AND DISCUSSION

Predicting the host-virus network
The combined linear filtering and singular value decomposition

(LF-SVD) model relies on four hyper-parameters describing the

relative importance of network structure and matrix rank used

for approximation (SVD). The network structure parameters we

use are the in-degree (proportional number of viruses infecting

a host), out-degree (proportional number of hosts infected by a

virus), and connectance (proportion of pairs of species that

have an interaction); these were picked because they capture

a lot of relevant information on network structure and have
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been established to be enough to start identifying possible

missing interactions.7 After tuning of the hyper-parameters, the

best model (which used initial values emphasizing network con-

nectance and performed SVD at rank 12) achieved an area under

the receiver operating characteristic curve (ROC-AUC) of 0.84

(Table S1; Figure S1). Although analyses of ecological networks

usually gravitate toward using degree-based (over connectance-

based) models, this choice of best model is perhaps unsurpris-

ing. Assuming that the overwhelming majority of interactions

are unsampled, known degree is mostly a proxy for sampling

effort—an assumption that is supported by previous work sug-

gesting that observed per-host viral richness (equivalent

to degree in a bipartite network) is largely the result of virus

discovery effort.8 The hyper-parameter tuning strategy and the

one-by-one LF-SVD imputation step help circumvent this bias;

in less under-sampled networks, or in networks where under-

sampling has less statistical structure, it would not be surprising

to see degree-based models outperforming connectance-

based ones.

We applied four tests of whether model performance was

undermined by biases in the partially observed network, a com-

mon problem in predicting host-pathogen interactions.

First, we tested the effect of passive sampling bias with a

regression of host species’ viral diversity against citation counts,

a commonly used proxy for scientific research effort. We found

that, consistently, citations had a weaker effect predicting viral

richness after imputation (Table S2), suggesting a direct de-

biasing effect.

Second, we tested the influence of impact bias, a specific form

of active sampling bias driven by relevance to human health. As a

simple test of impact bias, we examined the top 10 hosts that

shared viruses with humans before and after imputation. In the

observed network, domesticated and lab animals dominated

this list; although proximity to humans might lead livestock to

share many pathogens, this result is generally presumed to be

the effect of impact bias. After imputation, many of these species

were replaced with a handful of great apes and rodents (Fig-

ure S2). The former reflects well-supported biological rules

(closely related species share more viruses1,9), while the latter

might reflect a mix of true rodent ‘‘hyper-reservoir’’ potential10

and, more likely, residual sampling bias from the well-character-

ized viromes of mouse and rat models.

Third, we examined whether sampling bias might be creating

an undesirable ‘‘rich-get-richer’’ effect, where novel interactions

are disproportionately predicted for species that are already

oversampled. If training data were unbiased, then this could be

a useful property; for example, a model might correctly assign

more interactions to some viruses because it ‘‘learns’’ that they

have a higher intrinsic host plasticity. However, host-virus net-

works are heavily shaped by sampling history, creating

geographic and taxonomic biases that could produce false

inferences.8,11

To examine the effects of geographic sampling bias, we map-

ped the number of total known host-virus interactions based on

mammal host ranges and compared this with the same map of

newly predicted interactions (Figure 1). In previous studies, pre-

dictive models have often reproduced a pattern of dispropor-

tionate sampling in European wildlife.10,12 Our model suffered

from a similar limitation and predicted notably fewer interactions



Figure 1. Mammal biodiversity and sampling bias shape the geography of predicted interactions

(A) The total number of interactions recorded does not track the global distribution of mammalian richness with an overwhelming density of interactions in Europe.

(B) Known zoonotic hosts are concentrated in the Amazon, an area with comparatively fewer known host-virus interactions; the distribution of known zoonotic

hosts closely tracks the global richness of mammals.

(C and D) Post imputation, the model predicts strong increases in the number of interactions (C) in the Amazon and Central Europe but an increase in the number

of zoonotic hosts primarily concentrated in Africa (D). As a result, we expect the Amazon to be a hotspot of novel interactions and Africa to be a hotspot of novel

zoonotic hosts (i.e., the increase is greater than expected, given the known quantities in these places).
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in South America and Africa. However, the imputation process

did significantly reduce geographic bias, and the imputed inter-

actions tracked global gradients in mammal biodiversity much

better than the original network. We also repeated this analysis

just for mammalian hosts of zoonotic diseases and found that

the original network was heavily biased toward neotropical rain-

forests but predicted that zoonotic hosts were primarily concen-

trated in sub-Saharan Africa. This would be a notable departure

from previous work, which has again reproduced patterns in ex-

isting data and predicted that undiscovered zoonoses are largely

concentrated in the neotropics.13,14

To examine the effects of taxonomic sampling bias, we esti-

mated the number of ‘‘missing’’ viruses (i.e., the gap between

observed and estimated viral richness per host species13) by

counting each host’s predicted novel interactions. Missing

viruses displayed only a moderate phylogenetic signal (Pagel’s

l = 0.35), suggesting that they are distributed fairly equally

across the mammalian tree of life—a finding that matches other

recently published observations.15 An additional taxonomic

analysis identified four clades—cetaceans, a subclade of mostly

insectivorous bats, and two subclades of New World rodents–

with fewer missing viruses than other mammals (Figure S3;

Table S3), suggesting that the model is responsive to the fact

that these taxa may be more deeply sampled than the average

mammal. In the last two decades especially, bats and rodents

have been prioritized by virus surveillance programs because

they account for the majority of mammal species diversity and

because of hypotheses about their role as disproportionate ‘‘hy-

per-reservoirs’’ of zoonotic diseases (e.g., Han et al.10 and Luis

et al.16). A growing number of analyses suggest that these clades

may not actually harbor more viruses or more zoonoses; rather,
the appearance that they do is an impact of this disproportionate

sampling effort.8,15,17,18 Ourmodel assigns fewer unknown inter-

actions to these species, suggesting that it has the ability to

overcome taxonomic sampling bias without directly using any

data on host taxonomy or phylogeny.

Emergent properties of the imputed host-virus network
Compared with the 5,494 interactions recorded in our original

mammal-virus dataset, our model predicted a total of 75,901

new interactions (Figure 2). With a total of 81,395 interactions,

the imputed network has a connectance of 0.09, which is well

within the range of connectances for antagonistic bipartite net-

works.19 The best-scoring model has a false discovery rate of

9.3%, meaning that it is potentially over-predicting about 7,060

interactions. The same model has a false omission rate of

23%, which would suggest a number of undiscovered interac-

tions of the order of 105 for this dataset. This being said, these

numbers should be interpreted within the context of data con-

straints; the initial dataset is biased toward extreme sparsity,

and for this reason it is likely that the imputed network is less

severely incomplete than the false omission rate would suggest.

We next examined the post-imputation network formeaningful

biological signals. The ‘‘evolutionary distance effect’’ is often the

best-supported signal in host-virus networks: closely related

hosts share viruses (through coevolution) and microbiologically

relevant traits (through identity by descent), which facilitates

cross-species transmission, leading to a correlation between

evolutionary distance and virome similarity.9 We tested this

property in the pre- and post-imputation networks by examining

viral sharing pairwise among all hosts and between humans and

other mammals. We found a strong and consistent phylogenetic
Patterns 4, 100738, June 9, 2023 3



Figure 2. The global virome pre and post

imputation

Network layouts reflect the first two dimensions of a

t-SNE embedding on four dimensions, where the

positions of nodes were initially picked based on a

PCA analysis. Hosts are shown as circles and vi-

ruses as downward-pointing triangles, and the

relative size of each point scales linearly with degree

(using the same scale for both figures; i.e., two no-

des with the same degree will have the same size on

the left and right).
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distance effect in viral sharing (whether two hosts share any vi-

ruses at all) and the total number of viruses shared pairwise

among mammals and specifically with humans (Figure S4);

although imputation reduced the signal of these effects, all but

one (binary viral sharing with humans) remained significant

even after imputation (Tables 2 and 3). These results suggest

that the interactions predicted by our model have a high biolog-

ical plausibility, and that, even without incorporating any host or

viral traits into our analyses, the latent factors that structure the

network are identified and successfully recapitulated by

the model.

Finally, we evaluated the effect of imputation on the spatial dis-

tribution of viral biodiversity. Our models predicted that the total

numberofhost-virus interactionsgenerally trackedmammalbiodi-

versity, with a previously unknown hotspot of potential zoonotic
Table 1. Comparison with existing approaches

Network Taxonomy Phylogeny Traits

Sampling

effort

This study yes

Stock et al.7 yes

Evans et al.20 host, virus host,

virus

Farrell et al.12 yes host

Pandit et al.21 yes virus yes

Stock et al.22 * yes virus host host yes

Wardeh et al.23 yes virus host host,

virus

yes

Our study is one of the only feature-agnostic approaches that has so far

been applied to predicting mammal-virus interactions and results in

equally biologically plausible findings compared with other approaches.

These previous approaches usually require extensive information on

host and virus features, which often requires an estimate of sampling

effort to be added as a confounder. By adding the SVD step after the

LF, we improve on the Stock et al.7 approach, which is equally feature

agnostic but focuses on the network rather than its embedding; this

method performed poorly when applied to prediction of bat hosts of be-

tacoronaviruses in a multi-model context,24 emphasizing the importance

of considering network embeddings even lacking additional predictors.

Some of the methods (marked with asterisks) listed have only been

applied to non-virus systems but are classified with the host-analog

and virus-analog organism.
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disease hosts in sub-Saharan Africa (Figure 1). To further explore

these patterns, we used the local contribution to the beta-diversity

approach,25whichmeasures theextent towhich the community at

a single location differs from the expectation based on the entire

range considered. When applied to interactions,26 it reveals areas

where, although the networkmight not be structurally different, it is

composed of interactions that do not usually occur together. In

biological terms, this means that novel host jumps are possible

through different host-virus pairs being in contact. Comparing

the uniqueness of the viral community composition based on

host spatial distribution before and after imputation reveals an un-

documented hotspot of unique host-virus associations in the

Amazon (Figure 3). This finding tracks with other recent work on

the biogeography of bat coronaviruses,27,28 which has suggested

that betacoronaviruses followed divergent trajectories of cospeci-

ationwith their hosts after somebat familiesbecame isolated in the

New World. Our predictions suggest that this might be a broader

pattern that shaped the biogeography of mammal viruses, and

although the Amazon may not harbor disproportionate viral rich-

ness, it might be home to more unusual (and currently unknown)

branches of viral evolution.
Predicting viruses with zoonotic potential
We finally explored whether network-wide prediction offered

useful insights into zoonotic potential, the ability of a virus to

infect humans (a subset of links with one focal node in the

network). Surprisingly, we found that the imputation method

did not predict known human-associated viruses any better

than random (AUC = 0.51; Table 4). This finding does reassur-

ingly imply that zoonotic viruses are not contributing a particu-

larly strong structural bias to the predictions but indicates that

the model performs poorly when predictions are restricted to

one fairly atypical node of over 1,000. Indeed, while the ability

of the model to predict the viruses associated with a given

host generally increased as hosts are linked tomore viruses, per-

formance was poor for hosts linked to unusually high numbers of

viruses relative to the rest of the dataset (of which humans were

the most extreme; Figure 4). A similar but less extreme pattern

was observed among viruses linked to above-average numbers

of hosts. Thus, although our best model focusing exclusively on

connectance performed well in general, models incorporating in-

or out-degree or specialized to a particular node may be needed

for better-sampled nodes.



Table 2. Phylogenetic signal in virus sharing pre and post

imputation

Sharing

Data

source b SE p Value R2 (adj.)

Pairwise

(all hosts)

pre imputation 2.23 e�2 8.44 e�05 *** 9.8%

Pairwise

(all hosts)

post imputation 3.50 e�03 1.30 e�4 *** 0.07%

With H.

sapiens

pre imputation 3.32 e�2 1.07 e�2 *** 2.4%

With H.

sapiens

post imputation 1.46 e�2 2.30 e�2 0.524 �0.09%

Statistics are given for a GLM fit with a binomial distribution for the

outcome variable (whether any viruses at all are shared between two

hosts). ***p < 0.001.

Table 3. Phylogenetic signal in number of viruses shared pre and

post imputation

Sharing

Data

source b SE p Value R2 (adj.)

Pairwise

(all hosts)

pre

imputation

�2.04 e�02 4.97 e�05 *** 8.5%

Pairwise

(all hosts)

post

imputation

�6.12 e�03 7.20 e�06 *** 3.0%

With H.

sapiens

pre

imputation

6.53 e�03 4.50 e�04 *** 2.2%

With H.

sapiens

post

imputation

4.76 e�0.3 1.08 e�04 *** 3.8%

Statistics are given for a GLM fit with a Poisson distribution for the

outcome variable. ***p < 0.001.
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We next investigated whether the imputed host-virus network

could be applied in specialized models aimed at identifying

human-infecting viruses. Viral host breadth is a widely used pre-

dictor of zoonotic ability but is generally unavailable for poorly

studied viruses.6,13,29 To test whether the structural information

on host range from our imputed network can bemade accessible

for prediction, we revisited a recently developed model that

applies boosted regression tree models to predict zoonotic po-

tential based on the genome composition of animal viruses.6

We extracted the position of viruses in the pre- and post-imputa-

tion networks by removing humans (as well as viruses linked only

to humans in the observed data) and applying random dot prod-

uct graph embedding, which generated a total of 12 latent fea-

tures that describe each virus’s relationship to other viruses

and animal hosts in the network. We then added these features

to the genome composition-based model and compared perfor-

mance on the same set of viruses. Models incorporating the

embeddings performed significantly better than a genome

composition-only model despite the fact that humans were

removed from the network. Using embeddings derived from the

post-imputation network consistently produced better predic-

tions (mean test set AUC = 0.875, SD = 0.04; Figure 5). Averaging

predictions across the top 10% of repeated training iterations30

further improved performance (AUC = 0.898). Moreover, of the

top 20 viruses predicted by the algorithm, 11 already have sero-

logical or otherwise circumstantial evidence of human infection

(Table 5), as domany of the other highly ranked viruses (Figure 6).

Overall, these findings suggest that network inference and

network embedding can work in tandem to capture latent infor-

mation about viral ecology and evolution, leading to better

predictions about which viruses might someday infect humans.

However, more work is needed to establish the exact operating

conditions under which such an approach can be useful; in

particular, the number of animal hosts that need to have been

found before reliable inferences on zoonotic risk can be made

for novel viruses (cf. Figure 4) is difficult to assess without

detailed data on the order in which hosts are linked to viruses

(expected to be nonrandom given sampling biases).

Conclusions
In this study, we use a novel feature-agnostic imputation method

to infer properties of the host-virus network that are often
clouded by sampling bias or data deficiency. Our findings sup-

port the general assumption that only a small percentage of

the mammalian virome has been characterized, even in well-

sampled regions like Europe. However, our models also suggest

some new aspects of global viral biogeography; in particular, we

find that future virus discovery efforts in the Amazonmay reveal a

hidden hotspot of unique coevolutionary systems, while future

sampling in sub-Saharan Africa might be most likely to identify

new reservoirs of zoonotic disease. Applying the model to zoo-

notic risk ranking of wildlife viruses, we find that ecological net-

works contain a substantial amount of information that can be

recovered through graph embedding and machine learning.

Our shortlist of predicted high-risk viruses could be a starting

point not just for laboratory characterization but for real-world

surveillance, especially for pathogens where we found some ev-

idence that emergence in human populationsmay already be un-

derway. Future work can expand these findings by adding more

microbiological, immunological, and ecological mechanisms,1

eventually iterating a living model of the global virome.

Our study provides a strong proof of concept that the structure

of the observed host-virus network containsmeaningful informa-

tion about the rules of cross-species transmission. The imputa-

tion process recovers more of this information, even without

use of mechanistic predictors like host phylogeny, retaining bio-

logically relevant signals while reducing key biases in current

observational data. Thus, future efforts to predict viral emer-

gence may be able to leverage use of recommender systems

as a data inflation step to make better predictions. However,

these approaches (and notably their validation) remain limited

by how poorly characterized the host range of most viruses is;

the majority of viruses are either undiscovered or known from a

single host. As the global virome becomes better sampled, these

approaches will be increasingly reliable not just for biological

inference but for actionable efforts to prevent zoonotic

emergence.
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Figure 3. Network imputation reveals a hotspot of unique host-virus associations in the Amazon

(A and B) The compositional uniqueness of host-virus interactions remains about similarly distributed in the pre-imputation (A) and post-imputation (B) networks.

(C) Nevertheless, the largest hotspot in gain of interaction uniqueness is in the Amazon.

(D) It appears that the predicted hotspots of uniqueness gain closely follow the originality of the host compositions, suggesting that more unique mammal as-

semblages have more original host-virus networks. Hotspots are given as the difference in uniqueness post and pre imputation, both rescaled between 0 and 1.
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Data and code availability

The code to reproduce these analyses is accessible online under the MIT li-

cense (https://github.com/viralemergence/trefle39); the code for zoonotic virus

imputations is similarly available online under the GPL license (https://github.

com/viralemergence/haystack40).

Model design and implementation

Host-virus association data

We used a recently published dataset called CLOVER,41 which is the largest

open dataset describing the mammal-virus network currently available and

combines data from four sources that each cover overlapping but distinct por-

tions: the Host-Pathogen Phylogeny Project (HP3) dataset,13 the Enhanced In-

fectious Diseases Database (EID2),42 the Global Mammal Parasite Database

version 2.0 (GMPD2),43 and an unnamed dataset recently published by

Shaw et al.44 By reconciling these datasets and their underlying taxonomy,

the CLOVER dataset achieves a 30% reduction in matrix sparsity over the

next most detailed dataset.
Table 4. The top 10 predicted (novel) zoonotic links in the post-imp

Virus Family

Canine mastadenovirus A Adenoviridae

Simian mastadenovirus A Adenoviridae

Panine gammaherpesvirus 1 Herpesviridae

Phocid alphaherpesvirus 1 Herpesviridae

Carnivore protoparvovirus 1 Parvoviridae

Torque teno virus 14 Annelloviridae

Torque teno virus 4 Annelloviridae

Panine betaherpesvirus 2 Herpesviridae

Torque teno virus 23 Annelloviridae

Torque teno virus 2 Annelloviridae

Evidence of interaction generated by the imputation model is contrasted aga

successfully predicts zoonotic potential from viral genome composition bias

sented in Table 5.
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The CLOVER dataset describes 5,494 interactions between 829 viruses and

1,081 mammalian hosts. The majority of these interactions have been re-

corded in wild animals using a combination of detection methods (usually

serology, PCR, or virus isolation). A small portion of records assimilated

from NCBI’s GenBank into these other datasets may also record experimental

infections, which provides insight into biological compatibility but not neces-

sarily opportunity for infection in nature. Each of the component datasets

and the CLOVER dataset are presence only (i.e., they only report an edgelist

of known interactions and do not include true negatives).

Imputation model description

The imputation model uses two steps to chain LF (which can recommend

potentially false-negative interactions7) to recommendation based on SVD

(which adequately captures the low-rank structure of ecological association

networks45). This imputation model is hereafter termed LF-SVD. The LF step

relies on four hyper-parameters expressed as an array of weights a =

½a1;a2;a3;a4�T , which are, respectively, the relative importance of the original

(i.e., observed) value of the interaction, in- and out-degree, and connectance
utation network

Evidence Prior risk assignment

275.6808 medium

242.8597 –

201.9715 –

191.4652 high

191.2557 high

187.3940 high

187.3940 medium

187.3940 high

187.3940 high

182.4210 medium

inst prior predictions by Mollentze et al.,6 who implemented a model that

. Revised estimates of this model applied to the imputed network are pre-

https://github.com/viralemergence/trefle
https://github.com/viralemergence/haystack
https://github.com/viralemergence/haystack
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B

Figure 4. Predictive performance of LF-SVD

generally increases with increased connec-

tivity

Points represent individual host species and show

the probability that a randomly sampled virus known

to infect that host will be ranked above a randomly

sampled virus that has not been observed to do so

(measured as the area under the receiver operating

characteristic curve [ROC-AUC]). While hosts sub-

ject to extreme study bias, such as humans, cannot

be predicted, this does not appear to degrade

performance on other species.
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(the constraint
P

a = 1 is always enforced). LF creates a potential matrix A

from an observed matrix Y of size ðn;mÞ by assigning every interaction be-

tween species i and j an initial score given by the dot product of weights and

properties of Y,

Aij =

"
Yij ;

1

n

X
k

Ykj ;
1

m

X
l

Yil ;
1

nm

X
Y

#
$a:

This corresponds to a weighted average of averages, wherein cði; jÞ; 0%
Aij %1. We compared three parameterizations of the a: connectance only

(½0; 0; 0; 1�T ), degree only (½0; 1; 1; 0�T ), and hybrid (½0; 1; 1; 1�T ). While techni-

cally there is an infinite number of possible configurations for the LF weight

vector, the computational cost of a grid search is prohibitive, and these param-

eterizations have the added benefit of corresponding to phenomenological as-

sumptions about what drives network structure that have been well laid out in

the literature.19 In this application, we set a1 = 0, as the initial value of the

interaction is ignored, reducing the number of hyper-parameters to tune

from four to three.

We updated the initial values produced by LF using (truncated) SVD imputa-

tion. Like principal-component analysis (PCA), SVD is an embedding of a start-

ing matrix into latent subspaces; compared with PCA, SVD is a more general

solution that also well handles numerical instability because of very small en-

tries,46 which is a likely scenario because some interaction probabilities are ex-

pected to be small. Because all entries ofA and Y are inℝ, we can decompose

either of thesematrices asUSVT , whereU andV are unitarymatrices known as

the left and right subspaces, and S is a diagonal matrix containing the singular

values of the decomposed matrix. To impute the interaction ði; jÞ, we create a

matrix K = Y, wherein Kij = Aij (according to the LF model). To decompose

this matrix at low-rank r, we set the values of S larger than k to 0 and calculate

the approximate version of K as

K = UrSrV
T
k

The overall SVD step was conducted as follows:

for every interaction ði; jÞ, we first set its value

according to the LF model and perform the trun-

cated SVD step as outlined above. We then up-

date K so that Kij = Kij. The SVD step is repeated

20 times (after preliminary assays revealed that

the absolute change after 10 iterations was

consistently smaller than 10� 3), and the final value

after 20 iterations is the score for the imputed

interaction. Note that, because of the nature of

SVD, the score is not bound to ½0; 1�; for this

reason, we re-expressed the score as ‘‘evidence

of increase’’ (measured as the ratio between the

updated and initial value minus one so that an

initial score that is unaffected by SVD has a value

of 0), and brought this value back to the unit inter-

val by taking its logistic. This yields a pseudo-

probability for the interaction, which is then

thresholded (during hyper-parameter tuning) and
used for imputation. The tuning and imputation of the LF-SVD model

were performed in the software Julia 1.647 using the EcologicalNet-

works.jl package.48

Hyper-parameter tuning, thresholding, and evidence scoring

To tune the hyper-parameters (LF weight vector, SVD rank), we picked a cali-

bration set of 800 positives and 800 assumed negative interactions and

imputed them using each possible model (using ranks from 1–20, giving n =

60). This makes the strong assumption that the 800 negative interactions we

picked in the calibration set were indeed true negatives; although the model

ended up recommending many interactions, ecological networks are known

for their sparsity, andwe judged this assumption acceptable based on an over-

all examination of model performance.

Outside the field of host-virus network prediction, our approach allows us to

establish a data-driven baseline for the seeding of SVD as a recommender.

This is an important development because we show a flexible method to ac-

count for different aspects of network structure; although, in this instance,

the best possible tuning used connectance as an initial values, networks

with different degrees of undersampling may be best predicted by initializing

the recommender step with values derived from, e.g., their degree distribution.

For each set of 1,600 predictions returned by the models, we derived confu-

sion tables at thresholds ranging from the lowest to the highest score using

1,000 steps; recall that the thresholding is performed on the transformed score

on the unit interval so that the step size is constant (z10� 3). From this confu-

sion table, we calculated the ROC-AUC, true/false positive/negative rates,

positive/negative predictive values, false discovery/omission rates, critical

success index, accuracy, and informedness (also known as Youden’s J).

The model with the highest ROC-AUC was picked as the best model and

used for the rest of this study.

The exact cutoff to use to transform the continuous output of LF-SVD into a

binary classifier (i.e., the interaction is recommended or not) was determined

by picking the threshold value maximizing Youden’s J statistic. Each interac-

tion is presented as an evidence score, which is obtained by dividing the

values post-imputation (LF-SVD) by the values pre-imputation (LF), minus
Patterns 4, 100738, June 9, 2023 7
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Figure 5. Network embeddings improved the ability to identify viruses that can infect humans

(A) An existing model of human infection risk using virus genomic features is improved when network embeddings are added as virus traits; models that use

embeddings from the imputed network perform better than those using the observed network. Violin and boxplots show the ROC-AUC for test set predictions

across 1,000 replicate 70%:15%:15% train:calibrate:test splits (n = 612). p-values from pairwise Kruskal-Wallis rank-sum tests are shown for all comparisons.

Diamonds indicate the performance of a bagged model that averages predictions from the 100 best-performing models based on test set AUC iteratively re-

calculated while excluding the virus being predicted. Mean AUC: genome composition model = 0.723; genome composition + observed network = 0.830;

genome composition + imputed network = 0.875.

(B) Predictive feature importance in the combined (genome composition + imputed network) model; network embeddings are consistently the top predictive

features compared with biologically informative measures of genome composition.
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one. An evidence of 0 means that the imputation did not change the value, and

increasingly positive values meant that the change because of imputation was

stronger. This interaction evidence was used to rank interactions when

required for the analyses.

Comparison to existing approaches

The LF-SVD method is fairly unique as a feature-agnostic method to predict

bipartite ecological networks. Previous studies that have developed predictive

models of the mammal-virus network have generally included a mix of host

and viral traits as predictors (Table S1), generally using a machine learning

classifier such as boosted regression trees. Our method uses a network theo-

retic approach at the global scale rather than assigning node-level features to

include in a standalone machine learningmodel and is entirely agnostic to host

and virus traits. Our approach is most comparable with a handful of ap-

proaches that use network dissimilarity to structure recommendations, some-

times alongside host phylogeny12 and other traits.22 A growing number of

comparable studies also leverage network features like network motifs23 or

other topological metrics21 at the node level and add these to a base machine

learning approach that is network agnostic. Particularly in comparison with a

previous standalone iteration of the LF-only approach,7 which validates poorly

compared with ecological models,24 our approach is surprisingly comparable

with these more intensive algorithms; as we discuss, our predictions have a

high degree of biological plausibility and handle most kinds of sampling bias

well, including some like impact bias and rich-gets-richer effects that are

particularly visible in previously published work.12,23

Analysis of the imputed network

Additional data sources

For phylogenetic analyses, we used a recently published mammalian super-

tree published by Upham et al.49 that has been taxonomically harmonized to

the CLOVER dataset for ease of analysis. For geographic analyses, we used

the International Union for Conservation of Nature (IUCN) Red List

(iucnredlist.org) species distribution maps for mammals, downloaded on

June 6, 2019. For citation counts, we extracted total virus-related publications
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for each species (by searching for host species binomial plus all known syno-

nyms and ‘‘virus’’ or ‘‘viral’’) from the PubMed database using the R package

rentrez.50

Testing effects of biased data collection

Observed host-pathogen association networks compiled from published re-

cords are influenced by a passive sampling bias resulting from differential

research across host and pathogen species. In comparative analyses of viral

richness per host species, the number of publications per host species is often

included as a covariate in an attempt to control for variable sampling effort

across hosts.51 This estimate of sampling bias is consistently positively related

to viral richness and typically is the strongest predictor, explaining more vari-

ation than other biological covariates.13,16,52–54 To explore whether network

imputation via LF-SVD is extrapolating sampling biases across host species,

we conducted a set of phylogenetic regressions of the relationship between

viral richness and the number of publications per host species (in total and

limited to those including keywords about viruses). Models were fit using the

formulation of phylogenetic least-squares regression provided via the pgls

function (Pagel’s l estimated via maximum likelihood) in the R package ca-

per.55,56 By comparingmodels of observed viral richness with estimates after

imputation with LF-SVD, we investigate the slope of the relationship and the

explained variance in viral richness to assess how strongly passive sampling

biases are retained in the LF-SVD imputed network.

In addition to passive sampling bias, host-virus association data are

frequently shaped by active or impact bias, where surveillance is targeted

based on relevance to human health or economics. This is easily detected in

records of virus sharing with humans. In principle, the species with the highest

similarity to the human virome should be species that are closely related to hu-

mans (primates) or frequently live alongside humans (domesticated animals or

synanthropic wildlife, particularly rodents that can live in human settlements),

but domesticated animals and laboratory model systems will also score

disproportionately in this metric because of sampling effort. As a new test of

model bias, we propose that imputation should reduce the signal of the latter

group in viral sharing withHomo sapiens, leaving mostly the former. To test the

http://iucnredlist.org


Table 5. The top 20 predicted (novel) zoonotic viruses in the extended model

Virus Virus family (-viridae) Animal hosts (number of species) Probability Prior risk

Lagos bat lyssavirusa Rhabdo Chiroptera (10), Carnivora (3), Rodentia (1) 0.856 very high

Tacaribe mammarenavirusb Arena Chiroptera (9), Rodentia (1) 0.793 high

Rio Bravo virusb Flavi Chiroptera (19) 0.779 medium

Dera Ghazi Khan orthonairovirusb Nairo Rodentia (4), Artiodactyla (2) 0.755 medium

Wad Medani virus Reo Artiodactyla (6), Rodentia (4) 0.750 medium

Enterovirus Ec Picorna Artiodactyla (1), Primates (1) 0.745 low

Phocine morbillivirus Paramyxo Carnivora (22) 0.741 high

Bimiti orthobunyavirusb,d Peribunya Chiroptera (5), Rodentia (4), Perissodactyla (1) 0.734 high

Bujaru phlebovirusb,d Phenui P. guyannensis (Rodentia) 0.733 very high

Ectromelia viruse Pox Rodentia (3), Carnivora (1) 0.701 high

Murine respirovirusf Paramyxo Rodentia (9), Artiodactyla (1), Carnivora (1), Primates (1) 0.683 medium

Akabane orthobunyavirusg Peribunya Artiodactyla (31), Perissodactyla (4), Proboscidea (1) 0.682 high

Reston ebolavirusb,c,h Filo Chiroptera (9), Artiodactyla (1), Primates (1) 0.680 high

Saboya virusi Flavi Rodentia (4), Chiroptera (1) 0.679 high

Simian orthorubulavirusb,c Paramyxo M. fascicularis (primates) 0.678 high

Chobar Gorge virusb,d Reo Artiodactyla (2), Chiroptera (2), Perissodactyla (1) 0.673 medium

Issyk-Kul virusj Nairo Chiroptera (13) 0.672 –

Patois orthobunyavirusb,c Peribunya Rodentia (6), Artiodactyla (2), Didelphimorphia (2),

Carnivora (1), Lagomorpha (1)

0.667 high

Bovine fever ephemerovirus Rhabdo Artiodactyla (30), Proboscidea (1) 0.660 medium

Minatitlan orthobunyavirus Peribunya Primates (1), Rodentia (1) 0.654 –

All are classified as ‘‘very high’’ risk by the combined model, which uses viral genome compositions and imputed network embeddings. Prior risk as-

signments from Mollentze et al.6 are also given where possible.
aSerological evidence recorded from four human samples.32

bIndicates that a virus has serological evidence of human infection in CLOVER, which was not included as a positive in the genomic model but was

considered evidence of association in the mammal-virus network; however, note that H. sapiens and its associations were dropped before generating

embeddings.
cIndicates that a virus is accepted as a human virus by Woolhouse and Brierley.31

dIndicates that a virus has recorded evidence of human infection in the Centers for Disease Control and Prevention (CDC) ArboCat, although original

source literature is not traceable.
eA strain was isolated in 2012 from an outbreak of erythromelalgia-associated poxvirus in rural China in 1987;33most databases do not record this virus

as zoonotic.
fTentative serological evidence recorded.34

gSerological evidence recorded.35

hSerological evidence first recorded from cases associated with occupational exposure.36

iSerological evidence recorded for Potsikum virus,37 now a member of Saboya virus.
jTentative evidence of viral isolation is recorded.38
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effect of active sampling bias, we examined the top 10 hosts based on similar-

ity to H. sapiens pre and post imputation. Before imputation, the top 10 list

(based on Jaccard similarity of host and human viral community) includes

six livestock or companion animals (Bos taurus, Equus caballus, Sus scrofa,

Ovis aries, Capra hircus, and Canis lupus familiaris), three primates (Pan trog-

lodytes,Macaca mulatta, andMacaca fascicularis), and one synanthropic and

commonly studied laboratory animal (Mus musculus). After imputation, four of

the domesticated or primate species remained (C. lupus familiaris, E. caballus,

S. scrofa, and P. troglodytes). The updated list includes two more primates

(Gorilla beringei and Gorilla gorilla) and four more mice or rats (Hylaeamys

megacephalus, Peromyscus maniculatus, Proechimys guyannensis, and Zy-

godontomys brevicauda). This mostly reflects changes in the network connec-

tivity; all but one of these are in the top 10 species to gain links (with

Z. brevicauda replaced by Rattus rattus).

Phylogeographic signals of missing interactions

The distribution of missing viruses (each host species’ total number of pre-

dicted but unknown host-virus links) across space and across the evolutionary

tree, are interlinked patterns that are of significant interest to viral ecologists.13

These patterns inform scientists’ understanding of where undiscovered zoo-
notic threats might emerge and can be used to target sampling to locations

and taxa with the most undiscovered viruses. However, these predictions

are also difficult to disentangle from sampling bias, which can create spurious

patterns that are undermined on closer analysis.15

To assess phylogenetic patterns in the number of missing viruses, we used

the previously specified supertree.49 To match virus data against the phylog-

eny, we averaged missing virus counts for 30 species (n = 14 tips in the super-

tree). We used the caper R package to first broadly estimate phylogenetic

signal as Pagel’s l.57 We next applied a graph-partitioning algorithm, phyloge-

netic factorization, to more flexibly identify mammal clades that differ in

missing virus counts. We used the phylofactor R package to partition

counts of missing viruses in a series of generalized linear models with a nega-

tive binomial distribution.58 We determined the number of significant clades

using Holm’s sequentially rejective test with a 5% family-wise error rate.

We identified a weak to moderate overall phylogenetic signal in the number

of missing viruses (l = 0.35), although this estimate was distinct from phyloge-

netically independent models and Brownian motion models of evolution (both

p < 0.01). Phylogenetic factorization, in turn, identified only four small clades

with significantly different counts of missing viruses, all of which had fewer
Patterns 4, 100738, June 9, 2023 9
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Figure 6. Ranking viruses by their predicted probability of human infection accurately predicts known infections

Viruses are arranged by the mean prediction produced by a bagged version of the model trained on genome composition features and an embedding repre-

senting the imputed network (panel A; black line). Error bars show the region containing 95% of the predictions used for bagging. Dashed lines highlight the cutoff

thatmaximizes informedness (Youden’s J) when convertingmean predicted probabilities to binary predictions. Panel B shows themost reliable detectionmethod

providing evidence of human infection for each virus in the CLOVER database. For the purposes of model training, viruses linked to humans through serological

detection only or where the detection method was unspecified were labeled negative; the model nevertheless identifies the majority of these as human infecting.
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missing viruses than the remaining mammal phylogeny (Table S3). These

clades included cetaceans (x = 18, n = 30) and a subclade of primarily insec-

tivorous Yangochiroptera (x = 43, n = 109) as well as two subclades of the New

World rodent subfamily Sigmodontinae (x = 11, n = 11; x = 16, n = 15). Overall,

these results indicate that, except for some coldspots likely driven by over-

sampling (or, in the case of cetaceans, a peripheral role in the host-virus

network), missing viruses are distributed fairly equally across the mammalian

tree of life—a finding that matches other recently published work.15

To assess geographic patterns in the number of missing viruses, we eval-

uated the number of known and missing viruses at the level of each host spe-

cies and joined these to each host’s IUCN range map. We mapped the total

number of hosts with recorded interactions, the total number of known and

predicted missing interactions, and the normalized difference between

missing interactions and host diversity. Known interactions are recorded

disproportionately in Europe and Asia and, to a lesser degree, North Amer-

ica, a pattern that reveals strong sampling bias in viral inventories (Figure 1).

This pattern is substantially reduced in the missing interactions, which glob-

ally track the true distribution of mammal diversity fairly well (better, in some

places, than the hosts with viral interactions recorded in CLOVER). However,

the normalized difference map still revealed a bias toward interactions pre-

dicted in North America and Eurasia, with coldspots in South America and

Africa (Figure 1).

Coevolutionary signal in viral sharing

To test for the signal of evolutionary history in the viral sharing network, we

analyzed two outcome variables (viral sharing as a binary state and as the total

number of viruses shared) for two data structures (the entire pairwise host-host

viral sharing matrix, or each hosts’ sharing with H. sapiens; i.e., its role in zoo-

notic disease) in the pre- and post-imputation network. We analyzed these

variables as a function of phylogenetic distance using generalized linear

models (GLMs), with virus sharing coded as a binomial outcome (logit link)

and the count data modeled using a Poisson distribution. GLMs were fit using

the stats package in R, and adjusted R-squared values were derived using

the rsq package. Model coefficients and significance are given in Tables 2
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and 3. Response curves were finally plotted using the automated smoothing

in the ggplot package with the same specifications.

We found that virus sharing, as a binary outcome, decoupled substantially

from phylogeny after imputation. In large part, this can be explained by the

fact that, with a 16-fold increase in connectance, binary sharing should

become substantially less informative after imputation. (This also makes bio-

logical sense; for example, nearly all mammal species should share the capac-

ity to be infected with true generalist viruses like rabies and influenza A.) In

particular, the phylogenetic signal of virus sharing with humans became insig-

nificant (p = 0.52) after imputation, the only insignificant relationship among

those we tested. While the count data also recovered a reduction in effect

size after imputation, we found that this reduction was much smaller and

that the phylogenetic signal of sharing with H. sapiens was slightly more

explanatory in the post-imputation network.

Community uniqueness analysis

We performed a measure of community compositional uniqueness using the

local contribution to the beta-diversity approach25 and specifically its exten-

sion to interaction data.26 LCBD identifies locations (here, pixels) in which

the community composition contributes more to the overall dissimilarity. For

this section, we will note X the sites-by-items matrix, often referred to as a

‘‘community data matrix,’’ in which locations are rows, and items (host, vi-

ruses, interactions) are columns. The total beta-diversity is measured as b =

Var(X), after rows and columns with a marginal sum of 0 have been removed.

The Xmatrix is then transformed by centering and squaring the values so that

S = ½Sij � = ½ðXij � XjÞ2�. The sum of squares in X is then simply given by

SStotal =
P

i

P
jSij . From there, measuring the LCBD (i.e., the actual contribu-

tion of each location to b) is done by summing the matrix X row wise and

dividing by the total sum of squares:

LCBDi =
X
j

Sij

SStotal

:
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Within every location, this value indicates the degree of uniqueness of this

location (sampling unit) compared with all other sampling units in the data.

LCBD values are typically, but not necessarily, measured after X has been

transformed using Chord’s or Hellinger’s distance. This, however, assumes

that sampling is close to complete, which is an unreasonable assumption in

our observed dataset; because applying a Hellinger transformation post but

not pre imputation would prevent a comparison of the results, we work on

the raw matrices.

Prediction of zoonotic potential

We next tested whether the expanded host-range information available in the

imputed network could improve zoonotic risk prediction in cases where infor-

mation on individual viruses is limited. We expanded a recently developed

model that combines summary statistics of viral genome composition and

compositional similarity to human genes to predict zoonotic risk.6

We extracted pseudo-traits from the host-virus network using latent vari-

ables by extracting the left latent subspace of a random dot product graph

decomposition.59 We used the same number of dimensions (12) as for the

low-rank approximation based on the imputation method; as LF-SVD func-

tions as a dimensionality reduction technique (the ranks that are not consid-

ered for the imputation are essentially lost), the most conservative approach

was to decide against re-adding dimensions for the zoonotic potential anal-

ysis. The feature matrix for viruses is given by

F = U12

ffiffiffiffiffiffiffiffi
S12

p

whereU andS are the truncated left-subspace and singular valuesmatrices of

the decomposition of the network, respectively. This method was selected

because the latent traits extracted this way can reproduce the original network

within an arbitrary precision threshold and have been shown to capture the

evolutionary signal on network structure.59 To avoid leaking data on observed

human infection into subsequent model training and evaluation steps, these

network embeddings were generated while excluding humans. We also

removed all viruses that had so far only been linked to humans because, after

removal of humans from the network, these viruses were uniquely identifiable

as some of the only included viruses with no links in the network (another po-

tential data leak; a small number of viruses with no known mammalian hosts

were similarly unlinked, but thesewere rare enough that amodel that predicted

all unlinked viruses as human-infecting would have had reasonably high

performance).

Full genomes were available for 612 of the 681 remaining viruses. We used

the reference sequence for each virus whenever available or the longest

complete genome otherwise. These genomes were used to calculate the

relevant genome composition measures described in Mollentze et al.6 These

were combined with the embeddings to train a series of gradient boosted

classification and regression tree models to distinguish between viruses

known to infect humans and other viruses. Viruses were randomly split into

three datasets, using 70% for training, 15% for model calibration, and the re-

maining 15% for evaluating model performance.6 This training/calibration/

test procedure was repeated 1,000 times to assess variability in performance

arising from current limited knowledge of the human-infecting virome. We

compared models trained on either the original viral genome composition de-

scriptors from Mollentze et al.6 or a combination of viral genome composition

and embeddings derived from either the observed network or from the

imputed network. Finally, the best model by ROC-AUC (the model using viral

genome features and embedding features describing the imputed network)

was used to predict the probability of human infection for all 612 viruses.

For this purpose, predictions were averaged across the best-performing

10% of models in which each virus occurred in the test data, a process

akin to bagging.30 Model performance was re-evaluated while excluding

the virus being predicted to avoid selecting models based on their perfor-

mance on the virus being predicted.

Feature importance was measured using their Shapley values, which mea-

sure the contribution of individual features to the final probability predicted for

each virus.60We calculated the overall importance of each feature as themean

of absolute Shapley values across all viruses. When combined with features

describing virus genomes, features derived from the t-SNE embedding of

the SVD-imputed network tended to dominate (Figure 5). However, there

was poor correspondence between embedding rank and relative feature
importance (Spearman correlation = 0.315), highlighting the importance of

including as much information about the network as possible.
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