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Abstract—This systematic literature review provides a struc-
tured and detailed overview of research on anomaly detection
for connected and autonomous vehicles, focusing on the Artificial
Intelligence methods employed, training approaches, and testing
and evaluation techniques. The initial database search identified
2,160 articles, of which 203 were included in this review after
rigorous screening and assessment.

This study revealed that the most commonly used anomaly
detection techniques employed are deep learning networks such
as LSTM, CNN, and autoencoders, alongside one-class SVM.
Most detection models were trained using real-world operational
vehicle data, although anomalies, such as attacks and faults,
were often injected artificially into the datasets. The models
were evaluated primarily using five key evaluation metrics: recall,
accuracy, precision, F1-score, and false positive rate. The most
frequently used set of evaluation metrics for detection models
were accuracy, precision, recall, and F1-score.

The review makes several recommendations to improve fu-
ture work related to anomaly detection models. It recommends
providing comprehensive assessment of the anomaly detection
models and emphasise the importance to share models publicly
to facilitate collaboration within the research community and
enable further validation. Recommendations also include the
need for benchmarking datasets with predefined anomalies or
cyberattacks (with comprehensive threat modelling) to test and
improve the effectiveness of the proposed anomaly detection
models. Future research should focus on the deployment of
anomaly based detection in vehicles to evaluate their performance
in real-world driving conditions, and explore systems using
communication protocols beyond CAN, such as Ethernet and
FlexRay.

Index Terms—Connected and Autonomous Vehicles, Anomaly
Detection, Intrusion Detection System, Artificial Intelligence.

I. INTRODUCTION

THE last decade have seen unprecedented growth in
the technology of Connected and Autonomous Vehicles

(CAVs), which is driven by improvements and innovations
in Artificial Intelligence (AI) [1] and enabling technology
related to sensors and communication systems. CAVs include
a variety of internal and external sensors, including cameras,
LiDar (Light Detection and Ranging), radar, GNSS/GPS, and
infrared sensors, to help them gather data about their sur-
roundings and make important judgments. These vehicles are
expected to be connected to other vehicles through Vehicle-to-
Vehicle (V2V) communication and to the infrastructure using
the Vehicle-to-Infrastructure (V2I) communication network.
By using in-vehicle communication, the vehicle connects
the components of the vehicle and enables the exchange of
information between different modules and sensors within the
vehicle. Machine Learning (ML) including Deep Learning
(DL) techniques are used to process large sets of data and

enable CAVs to operate safely and independently without
a human driver. Examples of such techniques include real-
time sensor anomaly detection [2], detecting faults in the
vehicle parts such as battery [3] and detecting driver behaviour
anomalies [4].

The different levels of vehicle autonomy have been classi-
fied into six levels where level 0 is a normal human driver
without any assistance, and level 5 is a self-driving vehicle
without any human supervision [5]. Several companies, such
as Waymo (formerly known as the Google Self-Driving Car
Project), Cruise, TuSimple, and Aurora, are working actively
towards developing level 5 autonomous vehicles. Technologi-
cal advancements, particularly in deep learning, are enabling
the development of fully autonomous vehicles. This is done
through advanced data analytics that allows vehicles with
the capability to process and understand a large volume
of complex data from multiple sources, essential for their
operation. Deep learning models can analyse sensor data in
real time, identify objects, pedestrians and road infrastructure,
improving the vehicle’s ability to navigate safely. Recent
developments in deep learning have demonstrated performance
that is superior to that of humans [6], and it is expected
that autonomous vehicles will significantly reduce the risk of
road users and other vehicles compared to vehicles operated
by human drivers [7]. Other predicted benefits of connected
and autonomous vehicles include reducing isolation for people
with disabilities or elderly people; improving access to edu-
cation, work and leisure; and helping deliver essential goods
and groceries [8]. In April 2023, Wayve [9] teamed up with
the supermarket Asda in the UK, launching a year-long trial
delivering groceries to 72,000 households in London using
autonomous vehicles. Industry efforts like these show that
CAVs are becoming a fast reality and they are expected to
grow both in popularity and advance in their technology.

Although CAVs have become a promising technology for
the future of transportation, ensuring their safety and security
remains a significant challenge. Anomaly detection, which is
the ability to identify abnormal behaviour or events, plays an
important role in maintaining the safety and security of CAVs.
Anomaly detection can be an effective way to secure CAVs
[10]. It could be used to detect faults in the vehicle’s hardware
and software, dangerous road conditions, cyber and physical
attacks targeting the vehicle, or unusual driver behaviour.
Furthermore, anomaly detection techniques have already been
proposed to address the complex task of ensuring both the
security and safety of CAVs. ML and DL have emerged as
one of the most promising methods for detecting anomalies in
CAVs due to their ability to efficiently process vast amounts
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TABLE I
OVERVIEW OF REVIEWS AND SURVEYS ON ANOMALY DETECTION FOR CONNECTED AND AUTONOMOUS VEHICLES

[10] [12] [13] [14] This review
Type Survey Survey Survey Survey Systematic review
Years Early 2000’s–2018 2016–2020 2015–2022 2019–2023 2013–2023
Attack surface X X X
Data source X X X
Application targeted X X X X X
Dataset used X X X
Dataset characteristics X
Simulation method (data generation) X X X
Detection technique X X X X X
Security or safety-focused X
Model availability X
Anomaly generation X
Evaluation metrics X X
Anomaly types detected X
Scientific method X X X X X

of data and detect patterns that indicate anomalies [11]. By
using ML algorithms, anomaly detection models can learn
from historical data on normal vehicle operation to recognise
abnormal behaviour, such as zero-day attacks.

Table I presents related surveys and reviews relevant to
CAVs. These earlier studies lacked a systematic literature
review and did not cover the following aspects: information
on model availability, generation of anomalies, dataset char-
acteristics, and evaluation metrics. Taking into consideration
these gaps, a systematic review is carried out to examine the
current state of the literature on anomaly detection for CAVs in
a systematic and structured way. This review does not explore
types of anomalies detected, as the focus of this paper is on
the broader objectives of identifying AI methods used, training
processes, and evaluation metrics for anomaly detection in
CAVs, leaving analysis of anomaly types beyond the scope
of this research.

Conducting a systematic literature review of anomaly detec-
tion for CAVs is important for several reasons. First, the field
is rapidly evolving, with advancements and new research being
published regularly. A systematic review will ensure that the
latest findings are included, thereby providing a comprehensive
and contemporary overview of the literature. Moreover, the
systematic approach enables us to critically evaluate and
synthesise the existing research rigorously to minimise bias
[15]. By employing inclusion and exclusion criteria, it is
possible to systematically identify and select relevant studies
from diverse sources. Lastly, a systematic review allows for
the identification of trends, patterns, and gaps in the current
literature [16]. By analysing the various methods used for
anomaly detection, the training procedures employed, and the
evaluation methodologies utilised, it is possible to gain a com-
prehensive understanding of the strengths and limitations of
existing approaches. This knowledge can serve as a foundation
for future research directions and inform the development of
more transparent and robust anomaly detection techniques.

This systematic review aims to analyse the existing litera-
ture on anomaly detection for CAVs focusing on exploring
the various methods employed for anomaly detection, the
training procedures for detection models, and the evaluation
methodologies. This review aims to provide a comprehensive

understanding of the current state of anomaly detection for
CAVs by answering the following research questions:

• RQ1: What AI methods have been developed to detect
anomalies in CAVs?

• RQ2: How are anomaly detection models for CAVs
trained?

• RQ3: How are anomaly detection models for CAVs tested
and evaluated?

Addressing these research questions include gaining an
understanding of the types of algorithms used in anomaly
detection models, the application domain of each model, and
whether the method is focused on safety or security.

The remainder of the paper is organised as follows. Section
II provides an overview of the background, covering CAVs,
attack surfaces, Artificial Intelligence, and anomaly detection.
Section III outlines the methodology for the systematic litera-
ture review, detailing the review protocol. Section IV presents
the results, followed by Section V, which discusses the findings
and provides recommendations. Finally, Section VI concludes
the paper.

II. BACKGROUND

A. Connected and Autonomous Vehicles

CAVs have emerged as a transformative technology, gradu-
ally replacing human drivers to varying extents in the operation
of vehicles [17]. The advent of automated driving systems can
be traced back to the early 20th century when initial techno-
logical functionalities, such as autonomous speed, brake, lane
control, and basic cruise control capabilities, were introduced
[18]–[21]. Furthermore, over the past decade, there has been an
unprecedented surge in technological advancements, leading to
the testing of numerous prototype CAVs on public roads [22].
Consequently, CAVs are widely regarded as the epitome of
future automotive engineering [23].

CAVs are different from traditional vehicles in several
aspects. CAVs are equipped with sensors to create a perception
of the vehicle’s surroundings. Cameras, radar, LiDAR, and
GPS sensors on the CAV are responsible for perceiving the
vehicle’s dynamics (such as location and speed) as well as its
immediate environment (such as distances to other vehicles,
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traffic conditions, and traffic signals) [24], [25]. This data
is processed by the onboard computer, which then issues
commands to the Electronic Control Units (ECUs). The ECUs,
smaller controllers that control specific functions within the
vehicle, in turn, control the relevant actuators to adjust the
vehicle’s speed and direction as required. Communication sys-
tems within the vehicle, such as the Controller Area Network
(CAN) bus, enables the communication between the in-vehicle
network’s actuators, external sensors, ECUs, and the onboard
computer. CAVs also frequently employ the Global Navigation
Satellite System (GNSS) such as Global Positioning System
(GPS) to provide precise location data.

According to the Society of Automotive Engineers (SAE),
vehicles are categorised into six levels of autonomy [26].
The six levels, which range from 0 (no autonomous feature)
to 5 (completely self-driving vehicle), can be thought of
as a progression of self-driving features [27]. Level 0 has
no automation and completely puts the driver in charge. At
Level 1, the vehicle may notify the driver of problems and
circumstances using smart sensors. Level 2 automation allows
the vehicle to carry out some assistance tasks, but the driver
retains control. Nominal autonomy is Level 3, where the
majority of safety-critical operations can be carried out by the
vehicle under recognised circumstances, but the driver must
be prepared to take over. At level 4, also known as high
automation, the vehicle is capable of performing all safety-
critical driving tasks in constrained spaces without human
intervention. Level 5 is the ultimate step of autonomy. At this
point, the vehicle is capable of moving under any conditions
without a human driver, and the vehicle no longer requires a
steering wheel or a brake pedal.

The new generation of information and communication
technologies that connect vehicles to everything is known as
Vehicle-to-Everything (V2X) communication [28]. V2X com-
munication encapsulates diverse communication modalities,
including communication with infrastructure, denominated
as Vehicle-to-Infrastructure (V2I); communication with peer
vehicles, designated as Vehicle-to-Vehicle (V2V); communi-
cation with pedestrians, termed Vehicle-to-Pedestrian (V2P);
connections with network systems or cloud-based services,
recognised as Vehicle-to-Network (V2N) and Vehicle-to-Cloud
(V2C), respectively. Furthermore, internal communication
within the vehicular framework is subsumed within the V2X
paradigm, encompassing all intra-vehicular components such
as sensors, LiDAR systems, cameras, peripheral devices, and
the onboard computational unit. Specifically, the rubric of
Vehicle-to-Grid (V2G) communication pertains to the com-
munication occurring between Electric Vehicles (EVs) and
the electric grid infrastructure, facilitating not only energy
consumption for EV charging but also enabling surplus energy
discharge into the grid. Also, the domain of Vehicle-to-Device
(V2D) communication encompasses the interaction between
vehicles and an array of external devices or cloud-hosted
services. Essentially, V2X is the communication that occurs
external to the vehicle as well as in-vehicle communication.
This communication is essential for the proper operation of
CAVs, however, reliance on these communication channels
also exposes the vehicle to security attacks.

B. Attack Surfaces

The expanding network communication infrastructure sur-
rounding CAVs increases their vulnerability to security threats,
as each connection point represents a potential entry point for
attackers [27]. Potential attackers could exploit vulnerabilities
within the V2X network through various connection points,
including links within the controller network connecting the
CAN bus with ECUs, interconnections among ECUs, con-
nections from ECUs to actuators, and even targeting internal
sensors and actuators themselves, highlighting the vulnerabil-
ities in in-vehicle communication. In contemporary vehicles,
the proliferation of ECUs, ranging from 70 to 100 [29], in
contrast to only two ECUs in the 1980s [30], has significantly
escalated the attack surface. Furthermore, CAVs are exposed
to heightened risk due to their diverse onboard computer
connections, encompassing both wireless interfaces like WiFi
for external devices and physical connections like Ethernet
and USB, extending to sensors, dashboards, and externally
introduced devices. These extended connection points lack ro-
bust security measures, rendering CAVs susceptible to various
forms of cyberattacks, thereby attracting potential malevolent
actors seeking to exploit these vulnerabilities to steal personal
data, inflict damage to the property and environment, or cause
bodily injury [31].

To address the expanded attack surface in CAVs, sev-
eral authors have attempted to address security requirements,
which are, in essence, an expansion and modification of
the Confidentiality, Integrity, and Availability (CIA) triangle.
Confidentiality is a principle concerned about the secrecy
of information and inaccessibility to unauthorised actors;
integrity ensures that data remains trustworthy and accurate;
and availability ensures that information is accessible when
needed. The CIA triangle is a fundamental framework for
designing and evaluating information security measures. The
security requirements of CAVs; vehicular ad hoc networks
(VANETs), which are wireless networks formed by vehicles
and roadside infrastructure for improved road safety and
traffic management through V2V and V2I communication; and
Intelligent Transportation Systems (ITS), which are commu-
nication systems used to enhance the safety, efficiency, and
sustainability of transportation networks by improving traffic
management, providing real-time information to travellers, and
optimising infrastructure utilisation, can be categorised into
four subcategories [32]–[35]:

1) Authenticity/identification: It is necessary to guarantee
the identity of the vehicle driver, the data source, and the
vehicle’s position. To stop attacks involving fabricated
entities, user authentication is first required. Second, data
source authenticity is crucial to determining whether
a valid company produced the data. Third, location
authenticity is employed to guarantee the accuracy of
location information collected through GPS sensors and
other vehicles.

2) Availability: Information sent or shared, services, and
functionality must be processed and made readily avail-
able in real-time.

3) Data integrity: Data must be received in the correct
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form without being tampered with, altered, or deleted
inadvertently or maliciously during transmission.

4) Confidentiality: Exchanged data should not be accessible
to harmful or unauthorised users and should only be
exposed to authorised and legitimate users.

C. Artificial Intelligence

AI can play an important role in enhancing the protection
of CAVs [36]. It can aid in improving the decision-making
process of CAVs, enabling them to make real-time, informed
choices based on multiple diverse data inputs and evolving
road conditions, ultimately increasing the safety and reliability
of autonomous driving systems. With the complexity and vari-
ability of real-world driving scenarios, AI, like deep learning
algorithms can analyse large and multimodal datasets collected
by sensors, cameras, and other sources in CAVs to identify
patterns and detect potential risks or anomalies [13]. By using
AI techniques, CAVs can learn from historical data and adapt
their behaviour to different situations, improving their ability
to anticipate and respond to potential hazards. AI algorithms
can also help develop robust anomaly detection systems to
identify and mitigate malicious attacks or unauthorised access
attempts, ensuring the security and integrity of the vehicle’s
operation [37]. Two of the subsets of AI that are used to build
anomaly detection models in CAVs are ML and DL.

Machine Learning (ML) has become a widely employed
method for building models that can learn complex relation-
ships within datasets [38]. ML can be broadly classified into
three branches: supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning is particularly
effective when working with labelled data points, allowing for
predictive modelling. On the other hand, unsupervised learning
techniques are employed to analyse and group datasets without
labels, uncovering underlying patterns and structures. Lastly,
reinforcement learning focuses on planning and environment
control, emphasising the selection of actions that maximise
rewards in specific situations. CAVs leverage these algorithms
to make predictions and informed decisions regarding driving
actions.

Deep Learning (DL) models use artificial neural networks
with multiple layers, referred to as deep neural networks, to
process and interpret complex sensor data. In the context of
CAVs, DL is instrumental in several critical aspects. Firstly, it
facilitates perception, allowing CAVs to accurately detect and
identify objects, pedestrians, road signs, and lane boundaries
from data collected by cameras, LiDAR, radar, and other
sensors [39]. Secondly, DL enables sophisticated decision-
making by incorporating reinforcement learning techniques,
which enable CAVs to navigate complex traffic scenarios,
make safe lane changes, and respond to dynamic road con-
ditions [40]. Additionally, DL is important in mapping and
localisation, enabling CAVs to create high-definition maps of
their environment and precisely determine their position on
the road [41]. The adaptability and scalability of deep learning
models are of paramount importance in the evolution of CAVs,
as they can be continuously improved and updated to handle
evolving real-world driving scenarios.

D. Anomaly Detection

Anomaly detection in the form of monitoring for faults
and cyber-physical attacks is important to maintain a high
level of security and safety for CAVs. Anomaly detection is
not exclusively used to identify cyberattacks—it can also be
used for predictive maintenance and identify components that
become defective over time or to identify anomalies resulting
from human error. However, the term Intrusion Detection
System (IDS) is commonly used to refer to anomaly detection
used to detect cyberattacks [42]. As the attack surface of
CAVs expands due to increased interconnectedness with other
vehicles and infrastructure, improving their security becomes
more necessary than ever to cover the potential points of vul-
nerabilities. IDSs utilise various techniques, such as signature-
based detection, and prediction-based anomaly detection, to
identify patterns that indicate potential intrusion attempts or
malicious behaviour.

Signature-based IDS is one of the simplest systems for this
purpose and is designed to compare the incoming data traffic
to a database with known attacks. In this system, an alert
will occur when incoming data matches the already stored
known attacks. This approach uses the method of blacklisting.
Another alternative is a system using a signature-based IDS
with a whitelist method. This method only accepts information
that corresponds to known benign examples [43]. However,
the use of signature-based IDS has the drawback of being
inflexible—and not capable of detecting unknown attacks,
zero-day attacks. An attacker can bypass the blacklist by
making a modest tweak to an attack, but whitelist modes
are only useful for smaller systems with specific behaviour
requirements.

A prediction-based anomaly detection system could be an
alternative to signature-based IDS. In this approach, signatures
will not be created, but a model of data dynamics gathered
from a system could be generated. Subsequently, by using sta-
tistical techniques, it is possible to find unexpected deviations
in the data. More specifically, a future prediction of the system
value is computed and compared to the actual observed data.
An indicator of whether the system is in an abnormal state is
the difference between these two values. This approach, which
uses prediction-based methods to monitor features like sensor
input and control commands, is used in several papers [42],
[44]–[46].

To evaluate an ML/DL-based anomaly detection models,
several evaluation metrics can be used [47]. A confusion
matrix is a table that provides a comprehensive view of the
performance of a classification model. In the matrix, four
classes are highlighted: true positive (TP), false negative (FN),
false positive (FP), and true negative (TN). Based on the
information provided in the confusion metrics, widely used
evaluation or performance metrics include accuracy, recall,
precision, and F1-score can be computed.

III. METHODOLOGY

This systematic literature review was conducted using the
PRISMA protocol [48].
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A. Search Terms

In September 2023, an exhaustive literature search was
conducted across multiple scholarly databases, including
Web of Science, ProQuest, Scopus, IEEE Xplore Digital
Library, and ACM Digital Library. The search was restricted
to articles published between January 2013 and September
2023 to capture the latest decade of research on the topic. To
achieve a balance between sensitivity and specificity in the
literature review process, various search terms were piloted
and refined. Multiple iterations were carried out, with 100
articles assessed for each search iteration to determine the
relevance rate of each search. Ultimately, the search term that
yielded the highest number of relevant articles was identified
using a keyword search with the following keywords:

”vehicle*” AND ”anomaly detection”

B. Inclusion/exclusion Criteria

To answer the research questions introduced in the in-
troduction, and ensure a comprehensive and reliable review,
criteria were set to guide the identification and selection
of relevant academic literature. The search was restricted
to peer-reviewed international conference papers and journal
articles. Conversely, articles that were published in magazines
or newspapers or those that were behind a paywall that our
institution did not have access to were excluded from the
review. The exclusion criteria proposed in Edanz-Learning-
Team [49] and Meline [50] were employed to eliminate any
articles that did not meet the criteria for inclusion:

• Issues with methodological quality
• Review articles with no original data
• Works which are not relevant to the research question and

outcomes
• Sources in languages other than English
Furthermore, specific criteria have been established to nar-

row the relevance of the articles. These exclusion criteria are:
• Published before 2013
• The main subject is unmanned aerial vehicles (UAV),

military/naval systems, air vehicles, rail vehicles or non-
ground vehicles.

• The anomaly detection model is built on supervised
models.

C. Filtering Stages

Following the initial literature search, a process of removing
duplication was conducted using the Zotero software, which
identified and eliminated duplicate entries. The remaining
articles were then screened using Rayyan, a tool for systematic
reviews, to assess conformity with the basic inclusion and ex-
clusion criteria. This tool was also used to remove duplicated
articles that were previously not identified using Zotero.

1) Inter-rater Reliability: In the screening stage, identified
citations and abstracts were imported to Rayyan, and dupli-
cates were removed. Two researchers have separately read the
titles and abstracts of 100 random samples of the identified
papers to assess whether they meet the inclusion criteria and

Fig. 1. PRISMA flow diagram of the identification, screening, and inclusion
of studies in the review

to assess inter-rater reliability (IRR) and mitigate coder drift
[51]. IRR was assessed using the prevalence- and bias-adjusted
kappa (PABAK) statistic, which controls for chance agreement
[52]. As a result of the screening and the calculation, the
PABAK score of 0.89 indicated high inter-rater agreement (see
[53]).

2) Data Extraction and Management: A pro forma was
created to extract information from each study, ensuring that
relevant information was captured [53]. The pro forma was
piloted on a sample of articles to validate the span of cap-
tured data. The pro forma captured the following information
categorised to each of the research questions:

1) What AI methods have been developed to detect anoma-
lies in CAVs?

• Algorithm used in anomaly detection model
• Application domain of the model
• Is the method safety or security focused
• Open source or not

2) How are anomaly detection for CAVs trained?
• Data used in training anomaly detection models
• Generation of anomalies in the data
• Size and date of collection
• Is the data collected for specific levels of autonomy

3) How are anomaly detection models for CAVs tested and
evaluated?

• Metrics used to test and evaluate the models
• Detection latency

IV. RESULTS

A. Summary of Search Results

The initial database search yielded 2160 articles (see Fig. 1).
In the first stage, 790 duplicates were identified and removed.
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In the screening stage, 1370 articles were screened based on
titles and articles. Of these, 977 articles were removed. These
articles were excluded from the full-text assessment because
they focused on unmanned aerial vehicles, naval systems,
traffic surveillance, spacecraft, railway systems, launch vehi-
cles, or charging stations. In addition, articles were removed
because of no relevance to CAVs. After the screening of titles
and abstracts, 393 articles remained for full-text assessment.
Of these, 190 articles were excluded due to the same reasons
as the previous step, such as lack of access, non-English
language, or irrelevance to the study topic. In the end, 203
articles were included in this review. 1

B. AI Methods used in Anomaly Detection for CAVs

This section will address the first research question: What
AI methods have been developed to detect anomalies in CAVs?

1) Algorithms: The analysis revealed the prevalence of sev-
eral prominent algorithms across the selected articles. Figure 2
provides an overview of the 20 most frequently used methods
in the reviewed studies. An overview of datasets commonly
used in anomaly detection models, including details on the
algorithms implemented and the best-performing models for
each dataset, can be found in Table II. All datasets listed in this
overview are public. Furthermore, this section highlights the
top five AI algorithms most frequently employed, excluding
traditional statistics-based methods:

• Long Short-Term Memory (LSTM): LSTM is a type of
Recurrent Neural Network (RNN) that is particularly ef-
fective in modelling sequential data [54], which was used
in 41 papers. LSTM’s distinguishing feature lies in its
ability to capture intricate, long-range dependencies and
to preserve contextual information, rendering it robust
for detecting anomalies within the dynamic, time-series
data typically emanating from autonomous vehicles. In
practical application, LSTM constructs predictive models
that are trained to learn the anticipated data patterns.
Outliers from these learned patterns are subsequently
identified and flagged as anomalies.

• Convolutional Neural Network (CNN): The second most
commonly employed algorithm in the reviewed articles,
with a count of 21. CNNs are primarily known for their
performance in computer vision tasks, as they effectively
extract features from images [55]. In CAVs, CNNs are
deployed to analyse visual data, notably images derived
from onboard cameras. These networks, underpinned by
convolutional layers, are adept at identifying abnormal
visual patterns or objects that may signify potential
anomalies.

• Autoencoder: The third most prevalent algorithm in the
reviewed studies, which was used in 13 articles. Au-
toencoders, representing unsupervised neural networks,
are designed to reconstruct input data by learning a
compressed representation of the input data. By training
an autoencoder on normal operating conditions, any devi-
ations from the learned representation can be interpreted

1The collected data can be found at: https://github.com/JRoarVS/ADSCAVs

as anomalies [56]. The core principle underpinning their
operation is the capacity to encode data into a compact
latent representation and subsequently decode it back to
its original form. Anomalies come to light when the
reconstructed data exhibits disparities from the expected
input.

• Deep Learning: The fourth most used algorithm. This
category includes models rooted in deep learning princi-
ples [57] without specifying a particular algorithm. Deep
learning constitutes a subset of machine learning algo-
rithms employing multi-layered neural networks, known
as deep neural networks. These networks process data by
incorporating data features and utilising multiple layers
of processing to represent the data. Deep learning was
used in 10 papers.

• One-class Support Vector Machine (one-class SVM):
Used in 9 papers. This algorithm is designed to identify
a decision boundary that effectively segregates normal
data instances from anomalies [58]. One-class SVMs,
primarily trained on normal data, possess the ability to
establish a hypersphere or hyperplane encapsulating typ-
ical data points. Any data instances that deviate beyond
this designated hypersphere are categorised as anomalies.
These algorithms prove especially efficient when anoma-
lies within the dataset are sparse in proportion.
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Fig. 2. Algorithms used in anomaly detection for vehicles

2) Application Domain: In terms of the application domain,
the analysis revealed the prevalence of several prominent
domains in which anomaly detection techniques were applied.
Figure 3 provides an overview of the 20 most researched
domains covered in the reviewed studies. In this subsection,
the focus is on presenting the top five domains that garnered
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the most attention:

• CAN (Controller Area Network) bus: The most frequently
studied domain for anomaly detection, with a significant
focus observed in 78 articles. The CAN bus network
serves as a vital communication backbone within vehi-
cles, enabling ECUs to exchange data necessary for con-
trolling various vehicle systems such as brakes, steering,
lighting, and more. [59]. Anomaly detection in the CAN
bus network involves monitoring and analysing the com-
munication traffic, detecting abnormal traffic patterns, and
identifying potential security threats or malfunctions.

• Vehicle sensors: The second most frequently studied field
for anomaly detection, with 27 papers. This category
encompasses sensor readings from the vehicle’s internal
components in the form of time series data. Automotive
vehicles contain many different types of sensors installed
on a vehicle, such as sensors measuring temperature,
Revolutions Per Minute (RPM), speed, acceleration, air
quality, and fuel level. Vehicle sensors differs from what
is recorded as environment sensors (see Fig. 3), which
was the application domain for 5 papers. The category
environment sensors encompass models that use data
from sensors that relate to the vehicle’s perception of its
environmental surroundings.

• Image: Involves the utilisation of visual data from on-
board cameras and other sensors to understand the ve-
hicle’s surroundings, contributing to tasks like object
detection. Anomaly detection using this type of data
allows CAVs to identify irregular or unexpected patterns,
objects, or events within the visual systems of the vehicle
[60]. 26 articles focused on this domain.

• Internet of Vehicles (IoV): The fifth most prevalent
domain in the reviewed studies, with a count of 11
articles. Anomaly detection in this domain is concerned
with identifying abnormal behaviours or events in the
interconnected vehicular network to ensure the safety,
security, and efficiency of the transportation system [61].

• Lane Detection: Encompasses anomaly detection models
that focus on detecting anomalous lane driving behaviour
through the camera. This category uses the image domain
to detect anomalies, but specifically focuses on lane
detection. 7 papers focused on anomaly detection for lane
abnormalities.

3) Safety and Security: The analysis of the selected articles
revealed that out of the total 203 articles, 102 articles specif-
ically emphasised security, 64 articles focused on safety, and
36 articles addressed both safety and security aspects. Data for
this section was recorded based on the paper’s primary focus.
Safety and security are two critical dimensions that require
attention in the context of CAVs. Although there may be some
overlap between the two, it is important to distinguish between
safety and security concerns in this domain. In an information
technology context, safety can be described as system’s inabil-
ity to cause harm or undesired effects in its environment while
security can be defined as the environment’s (e.g. external
threats) inability to affect the system [62]:

This review treats safety as ensuring the physical well-
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Fig. 3. Top 20 applications domains in anomaly detection models for CAVs

being of occupants, pedestrians, other road users, and vehicles.
Safety measures aim to minimise the risk of accidents, injuries,
and fatalities caused by the operation of CAVs. Anomaly de-
tection techniques focused on safety aim to identify deviations,
malfunctions, or abnormal behaviours that may compromise
the vehicle’s ability to navigate, respond to hazards, or adhere
to traffic rules.

Security, on the other hand, focusses on protecting CAVs
and their associated infrastructure from malicious attacks such
as unauthorised access and data breaches. Anomaly detection
techniques focused on security aim to identify abnormal
network behaviours, intrusions, cyber threats, and privacy
breaches that may compromise the integrity, availability, or
confidentiality of the vehicle’s systems or the data it generates.
Ensuring security in CAVs involves implementing measures
such as authentication, encryption, access control, intrusion
detection, and secure communication protocols.

4) Open-source: In the analysis of the reviewed articles,
only nine studies made their models publicly available on
online accessible platforms, such as on GitHub (see [63]–[71]).
Most studies collected their data to construct datasets through
simulation or real vehicles.

C. Training of Anomaly Detection Models

This section will address the second research question: How
are anomaly detection models for CAVs trained?

1) Data used in Training Anomaly Detection Models:
The analysis revealed that out of the analysed articles, 136
studies trained their models using real-world data (that is,
data collected from a real vehicle), while 50 studies utilised
simulation-based training. 15 articles incorporated a combi-
nation of both real-world and simulation data. By utilising
real-world data, researchers aim to capture the intricacies and
complexities of actual driving conditions, including various
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TABLE II
OVERVIEW OF DATASETS USED IN ANOMALY DETECTION MODELS

Dataset Algorithm used Models with highest F1-score

Car-Hacking dataset [72] —
CAN dataset

1) Long Short-Term Memory [68], [73]–[76]
2) Genetic Algorithm [77], [78]
3) Spiking Neural Network [79]
4) Graph Neural Network [80]
5) Statistics-based [81]
6) Convolutional Neural Network [82]
7) Logarithmic Ratio (Over-sampling strategy) [83]
8) Temporal Convolutional Networks [84]
9) K-Nearest Neighbor [85]

10) Autoencoder [86]

1) DoS attack: [76], [81], [85] achieved 100% preci-
sion, accuracy, recall and F1-score.

2) Fuzzy attack: [81] achieved 100% precision, accu-
racy, recall and F1-score.

3) RPM attack: [76] achieved 100% precision, accu-
racy, recall and F1-score.

4) Gear attack: [76] achieved 100% precision, accuracy,
recall and F1-score.

SPMD [87] — Basic safety
messages dataset

1) Convolutional Neural Network [37], [88]–[90]
2) One-Class Support Vector Machine [91], [92]
3) Long Short-Term Memory [89]
4) Estimation-based [93]
5) Wavelet Kernel Network [94]
6) Temporal Neural Networks [95]

[94] achieved 99.9% accuracy, 99.8% recall, 99.9% preci-
sion, and 99.9% F1-score.

OTIDS [96] — CAN dataset

1) Maximum Likelihood Estimator with N-grams [97]
2) One-Class Support Vector Machine [98]
3) Artificial Neural Network [99]
4) Convolutional Neural Network [100]
5) Logarithmic Ratio (Over-sampling strategy) [83]
6) Autoencoder [86]

1) DoS attack: [99] achieved 99.98% accuracy, preci-
sion, recall, and F1-score.

2) Fuzzy attack: [99] achieved 100% accuracy, preci-
sion, recall, and F1-score.

3) RPM attack: [97] achieved 100% accuracy.
4) Gear attack: [97] achieved 100% accuracy.

SynCAN [101] — CAN
dataset

1) Deep Learning [102]
2) Convolutional Neural Network [103]
3) One-Class Support Vector Machine [104]
4) Long Short-Term Memory [104]
5) Temporal Convolutional Networks [105]

[102] achieved 99.7% F1-score, 99.8% recall, and 99.5%
precision.

Open Sourcing 223 GB of
Driving Data by Udacity [106]
— Image dataset

1) Edge Computing-Based [107]
2) Continuous Wavelet Transform [92]
3) Convolutional Neural Network [92], [108]

[108] achieved 99.7% accuracy, 98,7% recall, 99.43% pre-
cision, and 99.06% F1-score.

KITTI [109] — Image dataset

1) Generative Adversarial Networks [110]
2) Regularized Diffusion Process [111]
3) Unsupervised Discriminative Feature Learning [112]

[111] did not report F1, but had the highest AUC score. The
model achieved 80% AUC, 31% MAE, and 61% OvR.

UNSW-NB15 [113] — Attack
dataset

1) Explainable Neural Network [114]
2) Genetic Algorithm [77] [114] achieved 99.7% accuracy, 99.3% precision, 98.7%

recall, and 98.7% F1-score.

VeReMi [115] — Image
dataset

1) Deep Neural Network [116]
2) Convolutional Neural Network [117]
3) Long Short-Term Memory [117], [118]

[116] achieved 98% accuracy, 95.6% recall, 99.6% preci-
sion, and 97.6% F1-score.

Cityscapes [119] — Image
dataset

1) Generative Adversarial Networks [110]
2) Regularized Diffusion Process [111] [111] achieved 80% AUC, 18% MAE, and 71% overlapping

ratio (OvR).

BDD100k [120] — Image
dataset

1) Convolutional Neural Network [39]
2) Unsupervised Discriminative Feature Learning [112] [39] did not report F1-score, but achieved 79% AUROC.

UAH-Driveset [121] — Image
dataset

1) Kalman Variational Autoencoder [56]
2) Generalized Markov Jump Particle Filter [122] [122] did not report F1-score, but achieved 73.3% accuracy.

ROAD [123] — Image dataset
1) Gated Recurrent Unit [124]
2) Logarithmic Ratio (Over-sampling strategy) [83] [83] did not report F1-score, but achieved 99.8 precision,

99.8 recall, 99,8 FMeasure, 99.9 accuracy, and 99.9 AUC.

road surfaces, traffic scenarios, and environmental factors. It is
important to note that, the data collected for this section only
looks at whether the training data is simulated or collected
from a real-world scenario. If the training data is based on
real-world data and attacks are later simulated, it is categorised
as real-world data.

Simulation environments offer researchers precise control
over the parameters, scenarios, and ground truth labels, pro-
viding a controlled and repeatable setting for training and
evaluation. They allow for the generation of diverse scenarios,
including rare or dangerous events that may be difficult

to encounter in real-world data [125]. Training models on
simulated data can facilitate rapid experimentation, scalability,
and the exploration of extreme or edge cases that are otherwise
hard to obtain in real-world scenarios. In addition to the
above approaches, 15 articles adopted a hybrid approach,
combining both real-world and simulation data for training
their anomaly detection models. The most frequently used
methods for generating simulated data were: simulating ve-
hicle components through a test bed, Simulation of Urban
MObility (SUMO), and OMNET++ (a framework used for
simulating communication networks).
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2) Generation of Anomalies in the Data: The analysis
revealed a range of approaches used by researchers, with
different degrees of explanation. It is worth noting that in
some cases, there were no explanations provided related to
how anomalies were introduced. The results are as follows:

• Random Injections: In 48 articles, anomalies were gener-
ated through random data injections into the dataset. This
approach involved modifying existing data within the
dataset to represent outliers or injecting outliers randomly.
By randomly introducing anomalies, researchers aimed
to simulate abnormal scenarios and evaluate the effec-
tiveness of their anomaly detection models in identifying
these anomalies.

• Attacks Performed While Recording the Log: 41 articles
employed attacks performed while recording the CAN log
through the Onboard Diagnostic (OBD-II) port. In these
cases, real-world attacks were executed in a controlled
environment by the research team or in a lab. The attacks
were recorded in real-time, capturing the dynamics of the
anomalies introduced during the attack.

• Simulated Attacks: 28 articles simulated attacks to gener-
ate anomalies within the dataset. Simulated attacks pro-
vided researchers with precise control over the anomaly
characteristics, enabling the evaluation of the detection
models’ performance against specific attack types or
patterns.

• Anomalies Generated: 24 articles used algorithms or
models to generate anomalies within the dataset. Re-
searchers employed data generation techniques, such as
Generative Adversarial Networks (GANs) (such as [126],
[127]), to synthesise anomalies that resemble real-world
anomalies.

• Real-World Anomalies: 11 articles used real-world
anomalies—of these, with the majority focusing on road
surface detection. These anomalies were derived from
actual obstacles encountered in real-world scenarios. Re-
searchers incorporated data captured from real-world road
surfaces with irregularities, such as potholes, bumps,
cracks, or other physical disturbances.

• No Explanation: 50 articles lacked clear explanations
regarding the anomalies generated within the dataset.

3) Characteristics of the Datasets: The description of the
dataset used for training varied throughout the reviewed ar-
ticles. The different ways to describe the data size include
the length of data in time, byte size of data, number of
car signals, number of data points, number of data samples,
number of messages, number of nodes, and number of packets.
Only 47 out of 203 articles contained a description of data
size. Furthermore, in terms of the temporal date of collection,
only 14 of the articles indicated the time frame of data
collection. Moreover, the different datasets used across the
publicly available papers can be found in Table II.

4) Levels of Autonomy: None of the papers mentioned
whether the data collected or the anomaly detection was devel-
oped for a specific level of autonomous vehicles. However, one
paper noted that their model was built for highly automated
vehicles (HAD) [128]. This does not indicate a specific level

as defined by the Society of Automotive Engineers [26].

D. Testing and evaluation of anomaly detection models

This section will address the third research question: How
are anomaly detection models for CAVs tested and evaluated?

1) Testing and Evaluation Metrics: The analysis revealed
that the top five evaluation metrics, in terms of frequency,
were: recall, accuracy, precision, F1-score, and false positive
rate (see Fig. 4):

• Recall: Used 106 times, measures the proportion of
correctly identified anomalies (true positives) out of the
actual anomalies (true positives and false negatives).
It focuses the model’s ability to identify all relevant
anomalies.

• Accuracy: Used 86 times, measures the overall correct-
ness of the anomaly detection model by calculating the
ratio of correctly classified instances to the total number
of instances.

• Precision: Used 73 times, measures the proportion of
correctly identified anomalies (true positives) out of the
total instances identified as anomalies (true positives and
false positives).

• F1-score: Used 62 times, is the harmonic mean of preci-
sion and recall. It provides a balance between precision
and recall, capturing the trade-off between correctly iden-
tifying anomalies and minimising false positives and false
negatives.

• False Positive Rate: Used 33 times, measures the propor-
tion of normal instances incorrectly labelled as anomalies
(false positives) out of the total number of actual normal
instances. It focuses on the model’s ability to avoid
misclassifying normal instances.
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Fig. 4. Frequency of metrics used to test and evaluate anomaly detection
models

The set of evaluation metrics used collectively in the papers
is presented here, to illustrate the commonly chosen evaluation
metrics used in the reviewed papers. Figure 5 provides an
overview of the 10 most frequently used evaluation metric
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combinations in the reviewed studies. Here, the focus is on
presenting the top five most commonly used selection of
metrics:

• F1-score, Precision, Recall, and Accuracy: The most
common selection of evaluation metrics, allowed for an
evaluation that considers overall correctness, a balance
between precision and recall, and a trade-off between
correctly identifying anomalies and minimising false pos-
itives and false negatives. This combination was used 22
times.

• Accuracy: Used in 21 papers. Researchers relied solely
on accuracy to evaluate the overall correctness of the
anomaly detection model, without considering additional
metrics.

• F1-score, Precision, and Recall: This combination was the
second most frequent combination, appearing 19 times.
These metrics were employed together to evaluate the
model’s ability to strike a balance between correctly
identifying anomalies and avoiding false positives.

• False Positive Rate (FPR) and Recall: Used 10 times.
FPR and recall, often employed in receiver operating
characteristic (ROC) analysis, provide insights into the
model’s ability to avoid misclassifying normal instances
(FPR) and correctly detect anomalies (recall).

• Accuracy, FPR, and Recall: Used 8 times. Accuracy rep-
resents the overall correctness of predictions, capturing
the ratio of correctly classified instances to the total
number of instances. FPR, on the other hand, focuses on
the rate of falsely predicted positive instances out of all
negative instances. It helps evaluate the model’s ability
to avoid false alarms and misclassifications. Recall, also
known as sensitivity, measures the proportion of true
positive instances that are correctly identified as positive.
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Fig. 5. 10 most frequently used combinations of metrics to test and evaluate
anomaly detection models

2) Detection Latency: Among the reviewed articles, 18
papers provided data on the detection latency in anomaly
detection for CAVs. The detection latency, which represents
the time taken to detect anomalies, varied across these studies.

The reported detection latency ranged from 0.06 ms to 6,000
ms. The best model in terms of detection latency [76] used
long short-term memory on the car hacking dataset [72] and
achieved 0.06 ms. Detection latency plays an important role
in real-time anomaly response and is an important consider-
ation in ensuring the effectiveness and timeliness of anomaly
detection mechanisms for CAVs.

3) Case studies: This section presents two case studies
showcasing a successful implementation of anomaly detection.
The first study uses a CAN dataset and develops a prediction-
based IDS. The study described below [76], presents a novel
framework for detecting anomalies and attacks on the CAN
bus. The model is trained using the most frequently used
dataset (the Car-Hacking Dataset by HCRL) and is one of
the highest-scoring models in terms of F1-score. The dataset
comes with four attacks: DoS, Fuzzy, RPM spoofing, and
gear spoofing. The IDS utilises a prediction-based approach,
leveraging the temporal correlation of message contents to
detect anomalies and attacks. Two prediction modules are
introduced: a Long Short-Term Memory (LSTM) network and
a Convolutional LSTM (ConvLSTM) network. An attack is
classified based on prediction errors using a Gaussian Naı̈ve
Bayes classifier. Evaluation against state-of-the-art one-class
classifiers and existing works demonstrate superior accuracy,
with 100% F1-score, accuracy, precision, and recall on the
RPM and gear spoofing datasets. This study highlights the
effectiveness of the proposed IDS framework in enhancing
CAV cybersecurity.

The second study uses an image dataset and proposes an
innovative intrusion detection system that integrates Space
Dimension and Time Dimension Models based on sensor
data fusion to detect simultaneous attacks on multiple sensors
[108]. In the Space Dimension Model, correlations among
multivariate in-vehicle sensor data are leveraged using an
optimised CNN to detect independent and confederate attacks.
Vehicle state matrices are constructed to capture the underlying
data correlations between sensors, facilitating classification.
The Time Dimension Model, on the other hand, utilises
the Mahalanobis distance metric to capture abrupt deviations
caused by anomalous sensor data over time. The paper utilises
the Open Sourcing 223 GB of Driving Data by Udacity [106]
image dataset and achieved 99.7% accuracy, 98.7% recall,
99.43% precision, and 99.06% F1-score, which is the highest
F1-score for this dataset.

V. DISCUSSION

A. AI Methods used in Anomaly Detection for CAVs

In answering the first research question, LSTM, CNN,
autoencoders, other deep learning, and one-class SVM rep-
resent the most commonly employed methods for detecting
anomalies in CAVs. These five algorithms together are used
in 91 of the 203 articles in the review. In the most frequently
used CAN dataset, Car-Hacking Dataset [72], the highest per-
forming algorithm was LSTM which achieved 100% precision,
accuracy, recall, and F1-score on the DoS, fuzzy attacks,
and gear spoofing attacks [76]. In the most frequently used
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image dataset, which was from Udacity Inc [106], the best-
performing model used CNN and achieved 99.7% accuracy,
98.7% recall, 99.43% precision, and 99.06% F1-score [108].

While the existing detection models demonstrate strong
results within single case study contexts, such as CAN bus
anomaly detection, the usability and effectiveness of these
models in a real-world context remain uncertain. CAVs are
complex systems of systems, where anomalies may stem
from a range of sources across internal vehicles subsystems
and external infrastructures. The need to manage various
anomaly types (e.g., faults and attacks) across multiple systems
adds a layer of complexity that current models may not be
equipped to handle, highlighting an area for further research
and development.

When it comes to the application domain, the majority of
the articles were focused on the CAN bus network, vehicle
sensors, the image domain, IoV, and lane detection. The papers
that focused on the CAN bus network extracted data from
either a simulated environment or through a real vehicle using
the OBD-II port. This port is available on most vehicles and
enables access to the in-vehicle network traffic. Connected
to the in-vehicle network, the vehicle sensors measure the
performance of the vehicle’s components, such as sensor data
from acceleration, engine RPM, vehicle speed, and GPS. This
differs from environment sensors, encompassing sensors that
perceive the vehicle’s surroundings. The next most frequently
studied area is the image domain. This category predominantly
focuses on road anomaly detection, such as potholes or other
obstacles that the camera can detect. Furthermore, the next
most studied field is IoV, which primarily applies to traffic
management, emergency message delivery, traffic, and tem-
perature monitoring [129]. As opposed to the aforementioned
categories, IoV entails external communication. Next, the field
of lane detection was the fifth most frequently studied domain.
In this domain, the authors proposed methods for detecting
sudden lane changes. This also used the image domain but
is specifically focused on detecting anomalous events such as
sudden lane changing that could be dangerous. The findings
of this review show that most research is concerned with CAN
(78 out of 203 papers).

The review has highlighted a focus on both security and
safety in anomaly detection research for CAVs and shows
the recognition of their intertwined importance. While there
is a higher number of papers focusing on security, there is
a significant high focus on safety too. This is similar to the
findings of Rajbahadur et al. [10]. By taking into account both
security and safety dimensions, researchers can contribute to
the development of more resilient, secure, and safe connected
and autonomous vehicles.

The low number of open-source models in the review high-
lights the need for increased emphasis on open collaboration
and transparency within the security research community. As
outlined in ITU-T X.1382 [130], the International Telecom-
munication Union has proposed a guideline for sharing secu-
rity threat information pertaining to connected vehicles. This
recommendation emphasises the need to establish a dedicated
platform for exchanging data related to the information se-
curity of CAVs. Such a platform would foster collaboration

between academic institutions and industry stakeholders, en-
abling them to work together in addressing and mitigating
cyber threats. UNECE WP.29 mandates consideration for
monitoring, detecting, and responding to cyber threats to
CAVs for all new vehicle types, which will be enforced July
2024 [131]. It also includes a mandate for establishing a
management system to take accountability for the response and
processing of this information. By encouraging researchers to
share their models and datasets openly, the security community
can benefit from the collective expertise, shared knowledge,
reproduce and validate the models, and compare and validate
the reliability of the studies, ultimately driving improvements
in anomaly detection for CAVs and contributing to safer and
more secure autonomous systems.

B. Training of Anomaly Detection Models

In addressing the second research question of how anomaly
detection models are trained, the majority of the reviewed
papers used real-world data over simulated data. Only a few
models used real-world attacks or faults during the training
process. Instead, popular methods included randomly injecting
anomalies into the dataset and performing attacks through
the OBD-II port while recording the vehicle’s log. These
findings align with Rajbahadur et al. [10], who found that
most datasets are used with simulated attacks. Incorporating
real-world attacks that accurately reflect the threat model or
faults can expose detection models to realistic adversarial
situations, allowing them to better tested against real-world
anomalies and threats. None of the reviewed studies included
a dataset featuring real-world attacks. As aforementioned, the
recommendation [130] to create a community where data is
shared openly with relevant cybersecurity for CAV actors is
necessary to share real anomaly data. Currently, the most
realistic attack scenario is to attack a vehicle in a secure
environment while recording the log.

Current threat modelling for anomaly detection in CAVs
tends to be oversimplified, often focusing on a narrow range
of attack scenarios that may not fully reflect the diversity of
real-world threats. Effective deployment of these models will
require more comprehensive threat modelling that captures a
broader spectrum of attack vectors and scenarios. Without this,
the detection models may struggle to generalise to new, evolv-
ing threats across different contexts and sources, highlighting
the need for further research into more sophisticated threat
modelling techniques.

Furthermore, only one article explicitly mentioned the level
of autonomy at which the data was collected or for which
anomaly detection was conducted [128]. The level of au-
tonomy is a critical factor that influences the complexity of
the data and the specific challenges associated with anomaly
detection. Understanding the level of autonomy allows for
a better interpretation of the results and their relevance to
different autonomous driving scenarios. As vehicles transition
from conventional to semi-autonomous and fully autonomous
modes, the complexity of anomaly detection methodologies
may need to undergo a significant evolution. At lower au-
tonomy levels, where human drivers are actively engaged
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in vehicle operation, anomaly detection may primarily focus
on identifying deviations from expected driver behaviour or
vehicle performance metrics. Contrarily, as vehicles progress
towards higher autonomy levels, where human intervention
becomes less frequent or non-existent, anomaly detection
must adapt to account for the increased reliance on onboard
sensor suites, decision-making algorithms, and communication
networks. For instance, integrating Advanced Driver Assis-
tance Systems (ADAS) adds complexity to anomaly detection
in CAVs. As CAVs incorporate more sophisticated ADAS
functionalities, anomaly detection becomes increasingly chal-
lenging, emphasising the importance of robust and adaptable
detection systems for ensuring vehicle safety and reliability.
Moreover, the dynamic nature of operational contexts across
different autonomy levels may require the development of
adaptive anomaly detection systems capable of discerning
anomalies amidst evolving environmental conditions, traffic
scenarios, and system configurations.

1) Creation, maintenance, and standardisation of bench-
marking datasets: The creation of benchmarking datasets
faces several challenges. First, the creators have to decide
whether to use real or simulated data. Most models identified
in this paper used real-world data: image classification models
have trained their models mostly on real images, and time
series anomaly detection models have trained on log data from
the vehicle’s OBD-II port or recorded sensor data. Next, the
authors have to decide on a method for introducing anomalies
into the dataset. The scenario that is most similar to a real
attack or fault scenario is injecting attacks on the vehicle
while it is operating in a controlled environment. A problem
identified with some of the datasets is a lack of attack data,
which leads to researchers having to generate their anomalies.
This restricts the comparability between models using the
same dataset. For a dataset to be used for benchmarking, it
is most effective to have a dataset with pre-injected or pre-
performed attacks. Another limitation of attack data is the lack
of variation. The most commonly employed dataset was the
car-hacking dataset [72] which includes DoS, fuzzy (randomly
injected values), gear spoofing, and RPM spoofing, which is
restricted to only four different attacks.

In terms of maintaining datasets for anomaly detection
models, they will have to be updated relating to new attack
types. For instance, a more recent dataset [132] addresses
this by including more attack types. The authors introduce
nine different attack types on the CAN bus: DoS, fuzzing,
systematic, gear spoofing, RPM spoofing, speed spoofing,
combined spoofing, standstill, and interval. To advance the
field of anomaly detection for CAVs, benchmarking datasets
will have to add new attack types as they are discovered either
in the field of academics or in the industry.

2) Testing and Evaluation of Anomaly Detection Models:
In addressing the second research question, recall was the
most frequently used evaluation metric across all papers. The
most frequently used set of metrics were accuracy, F1-score,
precision, and recall. Looking at the most frequently used
metric, the use of recall highlights a significance in capturing
the ability of a model to identify true positive instances. Given
the criticality of detecting anomalies in autonomous vehicles

to ensure safe and efficient operation, a high recall value is
essential to minimise the chances of false negatives and the
potential risks associated with undetected anomalies. Maximis-
ing true positives and minimising false negatives should be
the highest priority when evaluating anomaly detection models
[133], [134].

Out of the 203 reviewed articles, only 18 studies provided
data on detection latency. This metric measures the time from
the anomaly first occurs until it is detected. Detection latency is
an important metric in anomaly detection models [133], [134].
This metric should be included when evaluating anomaly
detection models for CAVs since a timely response can po-
tentially avoid a dangerous on-road situation for CAVs. This
limited inclusion of detection latency information suggests a
gap in reporting and analysing this crucial aspect of anomaly
detection.

C. Limitations

This review identified two limitations in the reporting prac-
tices across the reviewed papers, which restricts comparisons
between the proposed models:

1) Data on the detection latency was generally missing
from the reviewed papers. The limited availability of
such data inhibits a comprehensive analysis of detection
latency trends across the reviewed studies, hindering the
ability to draw conclusive insights.

2) The wide variation in the description of datasets used
for training anomaly detection models poses a challenge
to standardisation and comparability. The lack of a
uniform framework for describing data sets complicates
efforts to understand their characteristics and assess their
applicability to different scenarios.

These limitations underscore the need for improved data
quality and standardised reporting practices in future studies,
ensuring greater transparency, comparability, and depth of
analysis in the field of anomaly detection for CAVs. Fur-
thermore, these limitations exacerbate the already existing
challenges associated with the lack of baseline evaluations
and benchmarking observed in anomaly detection studies, as
highlighted by Rajbahadur et al. [10] in their study.

D. Recommendations

Based on the findings and limitations identified in this
systematic review, several recommendations are proposed to
guide future research developing anomaly detection for CAVs:

1) Incorporate multiple evaluation metrics: To provide a
comprehensive assessment of anomaly detection models,
it is recommended to include multiple evaluation metrics
in future research [135]. Utilising a diverse set of eval-
uation metrics allows for a better understanding of the
strengths and weaknesses of the models, better trade-off
analysis, and improved transparency in reporting the ef-
fectiveness of the anomaly detection approaches. There
should also be a consensus on what set of evaluation
metrics should be used for anomaly detection.

2) Open-source anomaly detection models, threat models,
and datasets: Future studies should consider making
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their models, threat models, and datasets open-source
to foster collaboration, transparency, and reproducibility
within the field [135]. Currently, existing threat models
are often oversimplified and focus on a narrow set of
attack scenarios. Sharing a wider range of comprehen-
sive threat models would allow for more realistic and
varied attack scenarios beyond current cases, aligning
with ITU’s recommendation to establish a community
for sharing security-related information on CAVs [130].

3) Enhanced benchmarking to handle diverse anomaly
types in complex CAV systems: Current datasets lack
predefined, varied anomalies and attacks. Many studies
rely on normal traffic data, requiring researchers to
generate their own anomalies. This lack of standard
benchmarking makes it challenging to compare the per-
formance of different algorithms consistently. To address
this, future research should develop standardised datasets
featuring a range of predefined attacks, as CAVs will
require models capable of detecting multiple types of
anomalies across various systems. These datasets should
accommodate the multi-system nature of CAVs, which
are complex systems of systems, to assess model efficacy
in diverse scenarios.

4) Lack of data on the deployment of anomaly detection
models: The anomaly detection models reviewed have
not been tested in real-world settings, and therefore, their
performance remains uncertain. It is challenging to draw
conclusions about the usability and effectiveness of these
models, given the absence of real-world deployment
data. It will be useful for future research to investigate
the deployment and maintenance of these models to
understand how they will perform in real settings and
vehicles over time.

5) Lack of anomaly detection models for Ethernet,
FlexRay, and LIN: As CAVs progress to include more
automated functions and ultimately progress to a fully
automated vehicle, more components will be connected
to the in-vehicle network. This has posed challenges
to the traditional CAN, leading Bosch to develop new
CAN protocols, CAN FD and CAN XL [136], that have
increased bandwidth to adapt to this change. Ethernet
is used to accommodate the need for bigger bandwidth
for technologies, such as LiDAR, radar, and cameras. In
this review, only one paper [137] investigates anomaly
detection for traffic in the Ethernet. Companies such as
Garrett Motion and ETAS have already developed IDS
for Ethernet network traffic. This is an area that could
benefit from more research to establish effective IDS.
Furthermore, there were no papers investigating anomaly
detection models for FlexRay and LIN.

Implementing these recommendations in future research
could improve the transparency, reproducibility, and effec-
tiveness of anomaly detection models designed for CAVs.
By promoting open collaboration, specifying relevant details,
improving data reporting, ensuring uniformity, and utilising a
comprehensive set of evaluation metrics, the field can advance
more rapidly and foster the development of more reliable,

robust, and applicable anomaly detection solutions for CAVs.

VI. CONCLUSION

This systematic literature review examined the landscape
of AI-based anomaly detection for CAVs, covering a broad
spectrum of articles and incorporating a total of 203 research
papers in the final review. The review was structured around
three principal research inquiries: AI algorithms employed for
anomaly detection; the training processes of these models; and
the strategies for their testing and evaluation.

The findings indicate that LSTM is the most frequently used
AI method in anomaly detection for CAVs, followed by CNN,
Autoencoder, other deep learning algorithms, and one-class
SVM. The CAV component that has received the most research
interest is the CAN bus, with a significant focus on security,
although safety also constitutes a substantial portion of the
research. Overall, only a small fraction (9 out of 203) of the
articles reviewed provided open access to their models.

The review also aimed to understand the training processes
of the anomaly detection models proposed for CAVs. The data
reveals that real-world data is the preferred choice for training
datasets, utilised nearly three times as often as simulated data.
Anomalies were introduced into these datasets through various
methods, with the most prevalent approach being the random
data injection of anomalies into an existing dataset. However,
the use of real-world attacks and faults was less common.

The final research question addressed the evaluation of
anomaly detection models. The review identified that accu-
racy, F1-score, precision, and recall were the most frequently
selected set of metrics used to evaluate anomaly detection
models. Throughout all papers, recall was the most frequently
used metric. Detection latency ranged from 0.06 milliseconds
to 6,000 milliseconds but was used as a metric in 18 papers.

This systematic review provides a comprehensive overview
of the current state of anomaly detection for CAVs, high-
lighting key methodologies, training processes, evaluation
strategies, and the current state-of-the-art models for the most
frequently used datasets. It emphasises the need for further
research to incorporate multiple evaluation metrics; include
detection latency as an evaluation metric; open source their
models for transparency and reproducibility, and create a
community where the vehicle industry and researchers can
benefit from the research; and keep benchmarking datasets up
to date with known attacks. The recommendation for future
research includes assessing the performance of the anomaly
detection models when deployed in a vehicle on the road, as
well as exploring their application to emerging communication
protocols such as Ethernet and FlexRay.

While anomaly-based detection is the initial stage of de-
tecting faults and cyber-physical attacks, what follows next,
addressing anomalies and response, requires further research
and attention, an area that is currently lacking attention.
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