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Agricultural drought threatens food security and agricultural sustainable development. There have been
numerous spectral indices from remote sensing images developed for monitoring crop drought. However, most
present spectral indices are focusing on crop growth and Land Surface Temperature (LST), and the crop canopy
water content are in less consideration simultaneously. Additionally, the Normalized Difference Vegetation Index
(NDVI) is used for characterizing crop growth in almost all spectral drought indices, with the spectral saturation
problem of NDVI for closed crop canopy. When vegetation cover is high, NDVI values tend to saturate, which
makes them insensitive to further changes in crop health. Therefore, the NDVI saturation phenomenon may lead
to an underestimation of the extent of crop drought, as it is not effective in identifying subtle changes in crops
under high-density vegetation conditions. Hence, we propose three novel triangular spectral indices for char-
acterizing winter wheat drought using three features including LAI, Land Surface Water Index (LSWI) and LST.
For validating the proposed spectral indices, we compared the agreement between these indices with measured
Relative Soil Moisture (RSM) and Volumetric Water Content (VWC) of soil in agricultural meteorological station
and present popular indices including Crop Water Stress Index (CWSI), Temperature-Vegetation Drought Index
(TVDI), and Vegetation Health Index (VHI). The results revealed that our proposed indices including Euclidean
distance Crop Health Index (ECHI), Difference Crop Health Index (DCHI) and Perpendicular Water Stress Index
(PWSI) outperformed the popular CWSI, TVDI and VHI, with stronger correlations with measured RSM and VWC
in agricultural meteorological station. Secondly, there are spatial consistencies for characterizing winter wheat
drought between proposed ECHI, DCHI and PWSI with popular CWSI, TVDI and VHI. In addition, our proposed
ECHI, DCHI and PWSI have achieved good performance of drought monitoring both in irrigated and rainfed
croplands. All these results suggest that our proposed indices have great potential in crop drought monitoring.

1. Introduction hectares and the yield of 37.48 million tons in 2019. Drought has
brought serious impacts on agricultural production. In the spring of
2019, the area affected by drought was 64.2 thousand hectares, the area

of lost harvest was 6.8 thousand hectares, resulting in agricultural losses

Drought is a pervasive and complex hazard for crop failures (Yihdego
et al., 2019; Azmi et al., 2016; Sheffield and Wood, 2012), which will

lead to yield and economic loss and threaten agricultural sustainable
development (Lesk et al., 2022). Wheat is one of the three main grains
(rice, corn and wheat) in China. Henan province is the largest producer
of winter wheat in China, with the planted area of 5706.65 thousand
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of 286 million yuan in Henan Province (Henan Provincial Bureau of
Statistics, 2019). Globally, agricultural drought poses significant threats
to food security, economic stability, and sustainable development. Ac-
cording to the Food and Agriculture Organization (FAO), droughts have
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affected more than 1.5 billion people from 2000 to 2019, causing sub-
stantial economic losses and exacerbating food insecurity (FAO, 2023).
These global impacts highlight the importance of improving drought
monitoring techniques to mitigate its adverse effects on agriculture.
Therefore, the efficient and accurate monitoring of agricultural drought
is vital for agricultural sustainable development.

There are four kinds of drought including meteorological drought,
agricultural drought, hydrological drought and socio-economic drought
(Wilhite and Glantz, 1985). Agricultural drought is the period of soil
water deficit caused by lower precipitation and higher evaporation and
transpiration (Dai, 2011), which is the most severe meteorological
disaster affecting agricultural production. Remote sensing is extensively
used for agricultural drought monitoring for its good performance on
acquiring the data of crop and cropland quickly in large area with low
cost (Huang et al., 2019; Mehmood et al., 2024b; Xuan et al., 2023). This
technology enables the continuous observation of crop conditions and
soil moisture levels, providing critical information that can be used to
assess the severity, temporal change, and spatial distribution of drought.
The spectral drought indices derived from remote sensing data are
particularly useful for quantifying drought characteristics, allowing for
more precise and dynamic monitoring of agricultural drought.
Furthermore, remote sensing facilitates the integration of multiple data
sources, including satellite imagery, ground-based observations, and
climate models, to provide a comprehensive understanding of drought
conditions. This integration is essential for developing effective drought
mitigation strategies and ensuring sustainable agricultural practices. In
summary, the ability of remote sensing to provide timely, high-
resolution, and broad-scale data makes it especially suited for agricul-
tural drought monitoring (Anees et al., 2024; Mehmood et al., 2024a).
Developing the efficient spectral drought indices do good to drought
monitoring by describing the severity, temporal change and spatial
distribution of drought by quantifying drought characteristics.

The existing spectral drought indices can be classified into four
groups (Hao and Singh, 2015) including (1) soil drought indices, such as
Soil Moisture Index (SMI) (Esch et al., 2018) and Ratio Dryness Moni-
toring Index (RDMI) (Zhang et al., 2019); (2) vegetation drought indices,
such as Vegetation Condition Index (VCI) and Enhanced Vegetation
Index (EVI) (Ha et al., 2023; Shi et al., 2022; Dubovyk et al., 2019); (3)
temperature drought indices, such as Land Surface Temperature (LST)
(Gutman, 1990) and Thermal Condition Index (TCI) obtained from long-
term LST (Kogan, 1995). Soil-vegetation drought indices such as Visible
and Short-wave infrared Drought Index (VSDI) (Zhang et al., 2013),
Normalized Multi-band Drought Index (NMDI) (Wang et al., 2008), and
Short-wave Infrared Water Stress Index (SIWSI) (Fensholt and Sandholt,
2003) have been proposed to address the monitoring challenges in semi-
arid regions with sparse vegetation. Vegetation-temperature drought
indices including Temperature-Vegetation Drought Index (TVDI)
(Sandholt et al., 2002), Vegetation Temperature Condition Index (VTCI)
(Sandholt et al., 2002), and Vegetation Health Index (VHI) (Abbass
et al., 2022), combine remote sensing of land surface temperature with
the growth status of vegetation as drought indicators. Meanwhile,
vegetation-temperature-water content drought indices like Temperature
Vegetation Shortwave Infrared Reflectance Dryness Index (TVSDI) (Xu
etal., 2022), Temperature Vegetation Water Stress Index (TVWSI) (Joshi
et al., 2021), and Temperature Vegetation Precipitation Dryness Index
(TVPDI) (Wei et al., 2020) assess the drought responses by combining
two elements from evapotranspiration, vegetation growth and soil
moisture (Joshi et al., 2021). Unfortunately, there is still challenges of
these indices for agricultural drought monitoring. Firstly, the crop
canopy structure changes significantly from open canopy to closed
canopy, and the NDVI will be saturated after the canopy is closed. This
problem will result in the low performance of drought monitoring using
NDVI (Dong et al., 2021; Ma Rufah et al., 2017; Zhang et al., 2017).
Moreover, the 2D drought indices take into account less crop canopy
water content at the same time. Current indices are unable to monitor
the full range of characteristics of crop water deprivation or address
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spectral saturation, limitations that highlight the need for the develop-
ment of a new spectral drought index. Improved indices should be able
to capture more detailed information on crop canopy structure, moisture
content and overall vegetation health to provide more reliable and ac-
curate drought monitoring.

To overcome the limitations of existing remote sensing drought
indices, we try to develop triangular spectral indices using LAI, LSWI
and LST (or SWIR reflectance) for monitoring winter wheat drought. The
LAI is the proxy of crop growth, instead of NDVI for alleviating the
saturation problem after the crop canopy is closed. Combination of LSWI
is done for quantifying the crop canopy water content. And LST or SWIR
is used for characterizing crop canopy temperature. These three pa-
rameters are used to build 3D feature space, ECHI, DCHI and PWSI are
built within this 3D feature space. The objective of this study is to
develop the triangular spectral indices and validate their performance
with measured soil water content in agricultural meteorological station
and existing popular indices. Furtherly, our proposed spectral drought
indices are explored to characterize the winter wheat drought in a
complete drought period and compared the performance of drought
monitoring in both irrigation and rainfed cropland.

2. Study area and data sources
2.1. Study area

The study area is in Henan Province, located in the central-east of
China. The topography of Henan Province is predominantly character-
ized by plains and basins, and the landforms of Henan Province can be
divided into five regions, namely, the Huanghuaihai Plain, which ac-
counts for nearly 50 % of the total area of the province; the northern
mountains, where there are one-sided mountains with an elevation of
about 1,500 m, and hills with an elevation of 300-400 m in front of the
mountains; the western mountains, where the elevation of the moun-
tains is generally 500-2,000 m; the Nanyang Basin, which is situated at
an elevation of 80-150 m between the western and southern mountains;
and the southern mountains, which are mostly about 800 m in elevation.
The Yellow River runs through the entire province from west to east,
providing abundant irrigating water sources. Henan Province falls
within the warm temperate continental monsoon climate zone. This
region experiences hot and rainy summers, cold and dry winters, and
short spring and autumn. The annual average temperature ranges be-
tween 12-16 °C, and the annual precipitation is varied between
500-1000 mm. Influenced by the monsoon, the rainfall is mainly in
summer and autumn when it is the growing season of corn. The frost-free
period extends from 201 to 285 days throughout the whole year. And the
main crops planted in Henan Province include wheat, corn, cotton,
peanuts, rapeseed, rice, and soybeans. Specially, the wheat production
of Henan Province ranks first where is vital for food security of China.

Unfortunately, the crop production in Henan Province also faces
severe natural challenges including drought, dry hot wind and flood.
Spring droughts particularly occurred, as the insufficient rainfall
coupled with the increasing temperature, coupling of which accelerates
soil moisture evaporation, leading to water stress for winter wheat.
Therefore, we are aiming at finding the efficient way to monitor the
drought of winter wheat in this study. And the planted area of winter
wheat come from the classification products of Huang et al. (2022) and
Zhang et al., (2022).

2.2. Data sources

2.2.1. MODIS products

The MODIS (Moderate Resolution Multispectral Imager) is carried
aboard both the Terra and Aqua satellites as a part of the U. S. Earth
Observing System (EOS). The MODIS hosts the surface reflectance,
surface temperature, LAI, and evapotranspiration products, which have
been leveraged through the Google Earth Engine (GEE) platform. The
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LSWI and SWIR (SWIR2 band) data were derived from the daily gridded
L2G product of MOD09GA.061 using the sinusoidal projection, which
were used for building our proposed triangular spectral indices. This
dataset encompasses 500 m reflectance values and 1 km observation and
geolocation statistics. Meanwhile, the LST data was sourced from
MOD11A1.061, furnishing daily LST and emissivity values at a spatial
resolution of 1000 m. This dataset includes both daytime and night time
LST values accompanied by a quality layer. For the spatial consistency,
the daytime LST data was resampled to the spatial resolution of 500 m.
The LAI data was extracted from MCD15A3H.061. In this process, the
“best” pixel available was selected from all the acquisitions within every
4-day period, and the data was captured at a resolution of 500 m. The
NDVI data from MOD09GA.061 was used to calculate the TVDI and VHI.
And the ET and PET data were acquired from the MOD16A2.061 dataset
hosted on the Terra satellite, which were produced using Penman-
Monteith equation. These three kinds of MODIS products were used to
calculate the TVDI, VHI, and CWSI, for validating our proposed trian-
gular spectral indices to monitor crop drought.

2.2.2. Meteorological data and irrigation products

Measured VWC and RSM at the topsoil depth of 20 cm were collected
from 190 meteorological stations in Henan Province for every day of
March 2019. These measurements collected on at 6:00 am (UTC) were
used to validate our proposed spectral drought indices. The datasets
were produces with the spatial resolution of 500 m. The irrigation data
were derived from annual distribution mapping of irrigated cropland in
China with 500 m spatial resolution, produced by Zhang et al. (2022a;
2022b). These products have demonstrated an overall accuracy ranging
from 70 % to 90 % in ground sample validation across the country. In
this study, the maps of irrigated and rainfed areas in Henan Province
were used to explore the performance of our proposed spectral indices
used for drought monitoring in both irrigation and rainfed cropland.
(Fig. 1).

3. Methodology
3.1. Conceptual prototype of proposed triangular spectral indices

Drought stress would affect crop leaf photosynthesis, stomatal
movement, and nutrient metabolism negatively, limiting the crop
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Fig. 1. Study area and the meteorological stations for validating the triangular
spectral indices proposed in this study.
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growing furtherly. The resulted structural and biological changes from
drought included leaf curled, leaf temperature increasing, stomatal
conductance and water content decreasing (Li et al., 2013). Inadequate
moisture availability inhibits crop growth, and this limitation is directly
reflected in vegetation cover, which can lead to a reduction in LAI LAl is
a crucial parameter that represents the total leaf area relative to the
ground surface area. A decrease in LAI indicates a reduction in the
overall leaf surface available for photosynthesis and transpiration. This
reduction in leaf area decreases the canopy’s ability to intercept solar
radiation, leading to a further decline in canopy water content. The
canopy water content can be effectively estimated using the LSWI,
which is directly related to the canopy water content. The reduction in
canopy water content due to drought stress affects photosynthesis and
transpiration processes, leading to an increase in canopy temperature.
This temperature rise can be monitored using LST measurements. Under
drought conditions, crops mitigate water loss through transpiration by
regulating stomatal conductance-closing or narrowing stomata. This
physiological response reduces water vapor exchange between the
canopy and the atmosphere, resulting in decreased vegetation water
content and increased values in the SWIR band. The SWIR band is sen-
sitive to changes in leaf water content, and increases in SWIR reflectance
are indicative of reduced water content. As such, LSWI serves as an in-
dicator of the canopy’s water status. Fig. 2 illustrates these processes and
how they interrelate. Therefore, in this study, we use LAI, LSWI, LST,
and SWIR to develop our triangular spectral indices. These indices are
designed to capture the complex interactions between canopy structure,
water content, and temperature, providing a comprehensive approach to
monitoring agricultural drought.

3.2. Derivation of ECHI, PWSI, DCHI in 3D features space

3.2.1. Normalization of images features

Regarding to the biophysical changing process of crop canopy when
water deficit happened, the reduction in LAL the decrease in LSWI, and
the increase in LST or SWIR can collectively indicate the impact of water
deficiency on vegetation. LAI, LSWI and LST or SWIR were used to
develop the triangular spectral indices and characterize the agricultural
drought from crop growth. Given there were different value ranges for
LAI (0.1-6.8), LSWI (—1.31-0.55) and LST (3.4-31.6 °C) or SWIR
(0.0048-0.7016), we normalized all of them to a uniform rang [0,1]
symbolized as LAI’, LSWI’ and LST" or SWIR’. This normalization was
essential to ensure comparability among the indices, as it places all
parameters on a common scale, facilitating the integration and inter-
pretation of the data. The choice of the [0,1] range for normalization is
particularly advantageous because it standardizes each variable into a
consistent scale, which simplifies the mathematical manipulation and
comparison of different datasets. By converting all measurements to this
normalized range, we eliminate the influence of differing units and
scales among the original data. This approach is widely used in remote
sensing and environmental modeling to ensure that each parameter
contributes equally to the final analysis irrespective of its original
magnitude (Fang et al., 2019; Li et al., 2024; Luo et al., 2024). These
normalized indices were then used to build a feature cube with a length,
width, and height of 1. Any points within the 3D coordinates of LA,
LSWTI’, and LST’ or SWIR’ would fall into this feature cube (Fig. 3). This
feature cube allows for a comprehensive spatial representation of the
combined effects of LAI, LSWI, and LST or SWIR on drought
characterization.

; XX
x =T 1
o Xinax - XImin W

where i is 1-4, representing LAI, LSWI, LST, and SWIR respectively, and

X, represents the normalized value, X],, represents the max value,

Xt

! in Tepresents the min value.
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Fig. 3. The 3D feature space of LAI’, LSWI’ and SWIR’ (Gray color represents
the projection of the point in each dimension).

3.2.2. Derivation of ECHI

According to the relationship between LAI’, LSWI’, LST" or SWIR’
and drought, it can be deduced that the pixel with smaller LAT’, lower
LSWI’ and higher LST” or SWIR’ is probably in drought stress of crop.
Conversely, a pixel with higher LAI’, lower SWIR’ or LST’, and higher
LSWI’ indicates a wetter condition. Within the feature cube shown in
Fig. 4, M is a proxy of dry low-vegetation cover area, and point N is a
proxy of the full vegetation coverage with saturated water content. The
near neighbor of M (0,0,1) would be decided as drought, and the near
neighbor of N (1,1,0) would be decided as the most moisturized crop-
land. Therefore, the distance of given point to the driest D point in this
3D feature space is used to develop ECHI for characterizing the agri-
cultural drought, which is as formula (2). ECHI; is calculated within
SWIR’-LAI’-LSWT’ feature space, ECHI, is calculated within LST’- LAI’-
LSWTI’ feature space, and the value of them range from 0 to V3.

ECHI = \/LAF2 + LSWI? + (1 — SWIR orLST/)? ()

z A
Dry, M

<
1
=
@
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Iy Al'izcd‘ N
1
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Fig. 4. Derivation illustration of ECHI.

3.2.3. Derivation of DCHI

It could be observed that the trend of LAI is correlated positively with
LSWI, LAT and LSWI are all correlated negatively with LST or SWIR from
the two-dimensional feature spaces formed by each pair of the three
parameters (as depicted by the projections of pixels of the triangular
spectral indices onto the three respective planes in Fig. 4). Numerous
studies have suggested that a combination of surface temperature, NDVI
and canopy temperature (Ts) can provide information on vegetation
stress and moisture conditions at the surface. The scatter plots of
remotely sensed surface temperature and the NDVI often exhibit trian-
gular or trapezoidal (Carlson et al., 1994; Moran et al., 1994) shapes and
are called the NDVI-T; space. By extracting the plane where the diagonal
MN is located, the projection of each point on this plane can also be
abstracted as a trapezoid. So, the change of drought severity could be
quantified using the simplified two-dimensional feature space of LST or
SWIR with vLAI? + LSWI2, which is shown as the plane in Fig. 5 (a)
with the hotspot close to the dry M. And Fig. 5 (b) is the proxy of the
plane for characterizing drought severity. Meanwhile, like TVDI (tem-
perature/vegetation dryness index) (Carlson et al., 1994), we can fit the
dry and wet edges, assuming that all points are inside the trapezoidal
interior. In Fig. 5, point A has the highest LST or SWIR and the lowest
LAI and LSWI, so it is assumed to be a dry low-vegetation cover area,
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point B has the lowest LST or SWIR and the lowest LAI and LSWI, so it is
assumed to be a low-vegetation cover area with saturated moisture
content, and similarly point C is assumed to be the water stress under full
vegetation cover (vegetation wilting point), and point D represents the
area of full vegetation cover at saturated moisture content. The line AC is
assumed to be the extreme dry edge (SWIRq,y) with poor soil moisture
availability and low evapotranspiration, while the line BD means suffi-
cient soil moisture and high surface evapotranspiration, assumed as the
extreme wet edge (SWIRy,t). According to Sturges (1926), the number
of boxes E is calculated using range R and quantity Q, and the highest
and lowest LST or SWIR are determined in each box of v/ LAI? + LSWIZ,
By fitting the linear regression function, the dry edge and wet edge
would be acquired. Where, a; and by, ap and b, are the fitted coefficients
of dry edge and wet edge respectively.

R
E=—
1+ 3.322l0gQ

SWIRyy, = by + a1 x v LAI* + LSWI? 4
SWIR: = by + ay x /LAI* + LSWI? 5)

Based on the position of pixel within the SWIR —+/LAI? + LSWI?
feature space, DCHI (formula 6) was built to quantify crop drought
stress. It represents the ratio between the difference ‘m’ of SWIRg,y and
SWIR’ and the difference ‘n’ of SWIRg4;y and SWIRyer. The smaller ratio
indicates the closer to the dry edge, the closer the pixel is to the dry edge,
indicating a more severe drought condition (Fig. 6). Mathematically,
DCHI encapsulates the gradient of dryness, being 0 at the dry edge

3

where drought conditions are most extreme, and reaching 1 at the wet

edge, indicative of no drought stress. Hence, lower DCHI values denote

higher levels of drought severity, providing a quantitative measure that

aligns with intuitive understandings of drought intensity.
m _ SWIRyy — SWIR

DCHI = — = 220 222
n~ SWIRgy, — SWIR,.

(6)
3.2.4. Derivation of PWSI

In the 3D feature space illustrated in Fig. 4, pixels close to the dry
edge epitomized the severest drought conditions, while those on the wet
edge embodied the peak of moisture abundance. Capitalizing on this
spatial layout, PWSI and DCHI are built by measuring the perpendicular
distance from the given pixel to the wet edge, which was used to
quantify the drought stress in crops and its intensity. As shown in Fig. 7,
the magnitude of PWSI is contingent on the length of segment OP, which
symbolizes the discrepancy between the crop condition represented by
the pixel and the extreme moist state. A larger OP corresponds to a
higher PWSI value, indicating that the pixel is farther from the wet edge
and thus signifies a more severe level of crop drought. Conversely, a
smaller OP equates to a lower PWSI value, signifying closeness to the
wet edge and thereby inferring milder drought conditions for the crops
depicted. Contrary to DCHI, PWSI value is 0 on the wet edge and 1 on the
dry edge. The calculation of PWSI varies depending on the relative
magnitude of SWIR’ or LST’ compared to the intercept by of the fitted
equation delineating the wet edge, which is as formula 7.

6 = arctan(|ay|) 7)

(8
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Fig. 6. Derivation illustration of DCHI.

3.3. Evaluation of ECHI, DCHI and PWSI for drought monitoring

Our proposed ECHI, DCHI and PWSI are validated by comparing with
measured soil water content in agricultural meteorological stations and
existing popular drought indices including CWSI, TVDI and VHI. The
CWSI is used to validate the capabilities of meteorological drought
monitoring, while the TVDI and VHI are used to validate the capabilities
of remote sensing drought monitoring. The correlation between ECHI,
DCHI and PWSI with the measured soil VWC are analyzed to for vali-
dation of drought monitoring. Pearson Correlation Coefficient (R) is
used as evaluation indicator with range [-1, 1], widely used to measure
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the degree of correlation between two variables, and the larger absolute
value indicating the greater correlation (Ly et al., 2018; Cohen et al.,
2009). The choice of Pearson Correlation Coefficient for this analysis is
justified for several reasons. First, it is a well-established measure for
linear relationships, which is appropriate for our study since we expect a
linear correlation between drought indices and soil moisture content.
Pearson Correlation Coefficient is straightforward to interpret and
widely recognized in both meteorological and agricultural research for
its robustness and simplicity. While other statistical measures such as
Spearman’s rank correlation coefficient or Kendall’s tau could also be
considered, these are typically used when the relationship between
variables is non-linear or not assumed to be normally distributed. In our
dataset, preliminary analysis suggested a predominantly linear rela-
tionship between the drought indices and soil moisture content, justi-
fying the use of Pearson Correlation Coefficient. The workflow
illustrating the process for developing and validating ECHI, DCHI, PWSI
drought indices is shown in Fig. 8.

Among these three indices used for validation, CWSI is built on the
principle of surface energy balance, fully considering the underlying
vegetation cover and meteorological factors such as ground wind speed,
water vapor pressure, sunshine time, and temperature (Jackson et al.,
1988; Idso et al., 1981). Evapotranspiration is the total water vapor flux
transported from the ground to the atmosphere, including vegetation
transpiration, evaporation of soil water, trapped precipitation or dew.
The sum of surface soil water evaporation and vegetation transpiration
is usually designated as actual evapotranspiration (ET) (Gao et al., 2006;
Liuetal., 2003; Jackson et al., 1988; Idso et al., 1981), and the estimated
evapotranspiration under sufficient water supply condition is defined as
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potential evapotranspiration (PET) (Liu and Zhang, 2011). The rela-
tionship between ET and PET can be an important indicator of crop
water scarcity and drought in the region (Ciczkowski et al., 2020; Mu
et al.,, 2011). When the soil is not lacking in water, the actual evapo-
transpiration is equal to the potential evapotranspiration under ideal
conditions, so the CWSI value is 0. When the soil is seriously short of
water, the actual evapotranspiration is much smaller than the potential
evapotranspiration, and the CWSI value is close to 1. That is to say, the
greater the CWSI value is, the more arid the soil is.

TVDI is widely used for monitoring regional soil moisture status and
proving drought index construction (Javed et al., 2021). In terms of the
theory of vegetation soil line, it introduces surface temperature and
structures a triangular feature space in the light of different spectral
information of bare soil areas and vegetation covered areas in remote
sensing images (Ali et al., 2019; Sandholt et al., 2002). TVDI value
ranges from O to 1, with smaller values being wetter.

VHI is calculated by Vegetation Condition Index (VCI) and Tem-
perature Condition Index (TCI) (Kogan, 2001; Anderson et al., 2013),
which can simultaneously reveal changes in water and temperature in
the region. When crops are affected by agricultural drought, VCI and TCI
have their own advantages in reflecting crop growth and Thermal
Regime (Gidey et al., 2018; Bayarjargal et al., 2006). As drought occurs,
vegetation growth is threatened, and the VCI decreases (Sun et al.,
2023). In addition, the emergence of agricultural drought is ordinarily
accompanied by an abnormal increase in temperature, and the TCI de-
clines (Berry et al., 2010). Consequently, the smaller the VHI, the drier
and less healthy the crop.

4. Results and analysis
4.1. Parameterization of ECHI, DCHI, PWSI

Among our proposed three triangular spectral indices, ECHI is
calculated directly using formula (2). However, DCHI and PWSI are
calculated differently, which are calculated within the feature space of
LST’ or SWIR’ with vLAI? + LSWI? and required to fit the dry and wet
edges. As suggested by Sadeghi et al. (2017), the elimination of over-
saturated or shadowed pixels around the edges is achieved through
“visual inspection” of pixel distribution. This process helps to precisely
define and calculate the equations for dry and wet edges. To create DCHI
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Fig. 8. Flowchart illustrating the process for developing and validating ECHI, DCHI, PWSI drought indices.
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and PWSI, the value of LAT" or SWIR’ are categorized into distinct bins
on the Y-axis, and the number of bins was determined using formula (3).
Subsequently, within each bin of vLAI? + LSWI?, the highest and
lowest LST” or SWIR’ values will be identified. These points are then
subjected to linear regression to establish corresponding regression
lines. The fitted dry edge and wet edge for monitoring the typical
drought in Henan Province on March 14th, 2019, are shown in Fig. 9.

4.2. Validation using measured soil water content in agricultural
meteorological stations

The performance of our proposed ECHI, PWSI, DCHI are validated
using the measured RSM and VWC in agricultural meteorological sta-
tions. Firstly, we compare the individual SWIR, LAI, LST, LSWI with
measured RSM (Fig. 10 (a-d)) and VWC (Fig. 10 (e-h)) in agricultural
meteorological stations. Fig. 10 and Table 1 reveal that the individual
parameter including SWIR, LAL, LST, LSWI are correlated with measured
RSM and VWC with lower correlation coefficient (R) ranging from 0.33

Table 1

The absolute value of correlation coefficients between individual SWIR, LAI,
LST, LSWI, proposed indices including ECHI, PWSI, DCHI, existing CWSI, TVDI,
VHI with measured RSM and VWC.

SWIR LAI LSWI LST ECHI, PWSL;  DCHIL
RSM 0.33 0.41 0.47 0.30 0.63 0.51 0.48
VWC  0.39 0.42 0.45 0.33 0.64 0.57 0.50
ECHI, PWSI, DCHI, CWSI  TVDI VHI
RSM 0.66 0.54 0.57 0.46 0.35 0.44
VWC  0.65 0.47 0.51 0.47 0.32 0.39

to 0.47. Secondly, we compare our proposed two kinds of indices
including ECHI, PWSI, DCHI with measured RSM and VWC. Fig. 11 (a-f)
is the comparations of calculated ECHI;, PWSI;, DCHI; in SWIR’-LAT’-
LSWI’ feature space, and Fig. 11 (g-1) is the comparations of calculated
ECHI,, PWSIp, DCHI, in LST’-LAI’-LSWTI’ feature space. Fig. 11 and
Table 1 reveal that there are higher correlation coefficients ranging from
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Fig. 10. Comparation of SWIR, LAI, LSWI, LST with measured RSM (a-d) and VWC (e-h). Notes: The color shows the correlation (The same below).
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0.50 to 0.66 between our proposed ECHI, PWSI, DCHI with measured
RSM and VWC. Comparably speaking, there are higher correlation co-
efficients between calculated ECHI;, PWSI,, DCHI, using LST’-LAI’-
LSWTI’ feature space than that using ECHI;, PWSI;, DCHI; feature space.
The higher correlation of the ECHI;, PWSI, and DCHI, with RSM
compared to VWC is an interesting finding that warrants further dis-
cussion. Firstly, soil type and structure can affect the relationship be-
tween VWC and RSM. For example, soils with a high clay content can
hold more water but may not reflect changes in RSM as readily as sandy
soils, and soil moisture measurements were taken throughout the study
area, with regional variations in soil properties, which affects the cor-
relation with drought indices. Secondly, the methods used to measure
RSM and VWC can introduce variability in the data. RSM is derived from
soil moisture sensors that measure the dielectric constant of the soil,
which is directly influenced by water content. VWC, on the other hand,
is derived gravimetric methods or other techniques that can introduce
additional uncertainties.

Fig. 12 is the comparation of correlation between existing popular
CWSI, TVDI, VHI with measured RSM and VWC. Upon examining
Fig. 10, Fig. 11 and Table 1, it becomes evident that our proposed ECHISs,
DCHIs, PWSIs are more correlated with measured RSM and VWC in
agricultural meteorological stations than the existing popular indices
including CWSI, TVDI, VHI. Notably, the validation performance using

RSM is better than that using VWC. Inferring from these findings, it can
be concluded that our proposed indices showed higher competitiveness
compared with the existing popular drought indices in monitoring soil
water content. This conclusion aligns with the outcomes of Liu et al.
(2020) shared in Nature Communication, where soil moisture emerged
as the predominant factor influencing drought stress in arid and semi-
arid regions. Taken together, the results from this study indicate that
our proposed indices are effective for drought monitoring.

4.3. Comparison with existing popular drought indices

The spatial consistency and correlation between our proposed ECHIs,
DCHIs, PWSIs with popular CWSI, TVDI, VHI are done to explore the
performance of our proposed indices in drought monitoring. Fig. 13 is
the spatial consistency between them, and Fig. 14 is the correlation
between them. Among these three popular drought indices, CWSI is
rooted in evapotranspiration principles, primarily capturing the water
requirements of crops under drought-induced stress. TVDI and VHI are
calculated from NDVI and LST. Due to their significance in drought
monitoring, CWSI, TVDI and VHI are served as a benchmark for evalu-
ating the performance of our proposed indices firstly. From the spatial
distribution of all these indices, the drought areas monitored by ECHI is
consistent with that showed by CWSI, especially for ECHI,. CWSI and
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Fig. 12. Comparation of existing popular CWSI, TVDI, VHI with measured RSM and VWC.

ECHI, are divided into quartiles Oth —25th, 25th —50th, 50th —75th,
and 75th —100th based on the thresholds, and the proportions of each
quartile were, respectively, 1.13 %, 41.24 %, 64.29 %, 1.82 %, 1.04 %,
38.02 %, 59.26 %, 1.67 %. Comparably speaking, DCHIs and PWSIs are
more consistent with TVDI and VHI, respectively. And PWSI; is more
consistent with VHI. From the spatial perspective, the spatial charac-
teristics of ECHIs, DCHIs, PWSIs exhibited strong similarities with CWSI,
TVDI, VHI. These three triangular spectral indices effectively reflected
the soil moisture content response to drought conditions. Comparably
speaking, ECHI,, DCHI,, CWSI, TVDI monitor more drought areas than
that of ECHI;, DCHI;, PWSI;, PWSI,, VHL

Through spatial comparisons of ECHIs, DCHIs, PWSIs, with CWSI,
TVDI, VHI, it can be observed that the areas characterized as drought-
prone by ECHIs, DCHIs, and PWSIs generally align with those indi-
cated by three popular drought monitoring indices including CWSI,
TVDI and VHI. The quantitative validation is carried out by correlation
analysis for assessing the meteorological drought monitoring capability
of our proposed spectral indices. Among all these absolute values of
correlation coefficients between our proposed indices and popular
CWSI, TVDI, VHI, our proposed ECHI,, DCHI,, PWSI; calculated in LST’-
LAI’-LSWI’ feature space are with the highest correlation coefficients
with VHI of 0.93, 0.74 and 0.95 respectively. Comparably speaking, the
correlation coefficient between our ECHI;, DCHI;, PWSI; with TVDI are
lowest with 0.71, 0.59 and 0.68, respectively. Generally speaking, our
proposed ECHIs, DCHIs, PWSIs spectral indices are with the highest
correlation with VHI, and after it is CWSI, and the index with the lowest
correlation is TVDI.

4.4. Drought monitoring in a whole drought process of winter wheat

Taking into account the enhanced drought monitoring capabilities
and effectiveness of the ECHI, within the proposed three-dimensional
drought indices, an agricultural drought assessment was conducted in
the study area spanning from 2018 to 2019 (using 16-day combined
ECHI,). The primary objective was to recreate the progression of
drought throughout the complete growth period of winter wheat. Fig. 15
(a-b) illustrates the spatial and temporal variations of ECHI; throughout
the entire growth period of winter wheat, revealing that drought

conditions are pervasive across Henan Province, with a significant
concentration in the southwest, central, and eastern regions. Notably,
October 2018 exhibited the broadest and most intense drought condi-
tions in the province, coinciding with the winter wheat sowing period.
During this time, reduced vegetation cover and canopy water content
were observed, with ECHI, values primarily reflecting surface temper-
ature conditions. By the end of December 2018, drought conditions in
wheat planting areas had gradually alleviated, with no drought reported
in other regions, except for mild drought in areas with inadequate soil
moisture. A downward trend in ECHI; occurred between January 2019
and early February 2019 (there were missing data during this period, so
this may have increased the error in the drought assessment), which
suggests that mild drought was occurring in some regions, mainly
concentrated in the southwest and southern regions. Subsequently,
ECHI; exhibited an upward trend, with no drought in most parts of the
province, except for poor soil moisture in the western and southwestern
regions. In April 2019, ECHI, reached its peak for the year, correlating
with widespread rainfall during that month, indicating that the ECHI,
index accurately depicts the impact of precipitation. From late April to
early June 2019, ECHI, decreased, indicating drought in most regions of
the province, particularly in early June. During this late growth stage of
winter wheat, a decrease in LAI, plant water content, and an increase in
temperature were observed, with ECHI, values primarily reflecting
surface temperature conditions. The lack of precipitation during this
period also led to mild drought in the central, western, southwestern,
and northern parts of the province. These findings align with the
monthly water condition reports from the Henan Provincial Hydrology
and Water Resources Measurement Center (https://www.hnssw.com.
cn), enhancing the credibility of ECHIp-based drought monitoring and
confirming its efficacy in capturing the onset, development, and cessa-
tion of drought events.

5. Discussions
5.1. Potential improvements for agricultural drought monitoring

Although it is revealed that ECHIs, PWSIs, and DCHIs outperform
three popular drought indices including CWSI, TVDI and VHI in
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(The same below).

agricultural drought monitoring in this study, their correlation with
meteorological station data is exceptionally low. There are still some
issues for further exploration. Firstly, it’s important to note that the
relationship between LST, LAIL, LSWI, and soil moisture is not strictly
linear. As illustrated in Fig. 3, the distributions of soil water in LST-LAI,
LAI-LSWI and LST-LSWI spaces tend to form trapezoids or triangles,
rather than following a straightforward linear pattern. The further
studies could fit more nonlinear models to capture these non-linear re-
sponses of agricultural drought. Specific non-linear models that might
be explored include polynomial regression, support vector machines
with non-linear kernels, and artificial neural networks. These models
can better capture the complexities in the relationships between the
drought indices and soil moisture. Moreover, the accuracy of drought
monitoring is contingent on the retrieving accuracy of LST, LAI and
LSWI, as well as the accurate fitting of dry edge and wet edge. Chal-
lenges in accurately retrieving these parameters can introduce errors
that affect the performance of drought indices. Additionally, the
removal of unnecessary oversaturated or shadowed pixels can aid in
defining edges more effectively. Deep learning techniques, such as
convolutional neural networks (CNN) and generative adversarial net-
works (GAN), could be investigated to achieve this objective. CNN are
particularly well-suited for image data and could be used to improve the
accuracy of LST, LAI, and LSWI retrievals. By training on large datasets
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of satellite images and corresponding ground-truth measurements, CNN
could learn to correct for atmospheric distortions, sensor noise, and
other factors that affect the retrieval accuracy. GAN can be used to
generate high-quality synthetic data that can supplement real data in
training models, especially in cases where ground-truth data is sparse.
This can help in refining the edges and improving the accuracy of the
drought indices. GAN can also be employed to enhance the resolution of
satellite images, making it easier to identify and remove oversaturated
or shadowed pixels. These techniques are capable of handling complex
data processing tasks and could improve the accuracy and reliability of
the drought indices. One issue to point out is that there are two feature
spaces are built in this study including LST’-LAI’-LSWI’ and SWIR’-LATI’-
LSWT'. The validation results in Section 4.2 and Section 4.3 reveal that
the monitored results of winter wheat using LST’-LAI’-LSWI" are closer
to measured RSM and VWC in agricultural meteorological stations than
that using SWIR’-LAI’-LSWI’. However, we still encourage the usage of
SWIR’-LAI'-LSWTI” for agricultural drought monitoring because the
acquisition of SWIR reflectance is easy and quick without the error
propagation and difficulties of LST retrieval.

5.2. Field management

As we all know that there is difference for the drought response of
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winter wheat in rainfed and irrigation areas. Therefore, we compare the
performance of our proposed spectral indices both in rainfed cropland
and irrigation cropland. Considering there is the best performance of
ECHI; index calculated in LST’-LAI’-LSWI’ feature space for drought
monitoring, we compare and analyse ECHI, for the comparation in
rainfed cropland and irrigation cropland. Fig. 16 is the comparation of
ECHI; in rainfed cropland and irrigation cropland with measured RSM
and VWC in agricultural meteorological stations. The correlation be-
tween ECHI, with RSM and VWC in irrigation area are lower in rainfed
area, with the correlation coefficient of 0.59 and 0.56, 0.68 and 0.65
respectively shown in Fig. 16. Fig. 17 reveals that there is more severe
drought in rainfed cropland than that in irrigation cropland. And the
irrigation management plays an important role in alleviating crop
drought. The difference in ECHI, performance between rainfed and
irrigated cropland can be attributed to several factors. In irrigated areas,
the controlled water supply can mitigate the effects of drought, leading
to less variation in soil moisture and vegetation water content. This
results in a less pronounced signal for the ECHI, to detect drought
conditions. Conversely, rainfed areas are more directly affected by
natural precipitation patterns, which cause more significant variations
in soil moisture and crop water stress, leading to higher sensitivity of the
ECHI,. The physiological response of winter wheat to drought stress can
differ between rainfed and irrigated systems. In rainfed systems, crops
are more likely to exhibit stress symptoms such as reduced leaf area and
lowered canopy water content, which are detectable by spectral indices.
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In contrast, irrigation can buffer these stress symptoms, making it harder
for spectral indices to distinguish between water-stressed and non-
stressed states. Irrigation can create microclimatic conditions that
differ from those in rainfed areas, such as increased humidity and lower
soil surface temperatures. These conditions can affect the thermal and
spectral properties of the crop canopy, influencing the performance of
indices that rely on LST.

6. Conclusions

Agricultural drought threatens food security and agricultural sus-
tainable development. We propose three novel triangular spectral
indices including ECHIs, DCHIs and PWSIs for characterizing winter
wheat drought in this study. The comparation of ECHIs, DCHIs, PWSIs
with measured RSM and VWC in agricultural meteorological stations
and existing popular drought indices including CWSI, TVDI and VHI are
done. Our findings are as follows.

(1) The integration of LAI, LSWI and LST or SWIR as the proxies of
crop growth, crop canopy water content and canopy temperature
does good to improve crop drought monitoring. All the com-
parations of proposed ECHIs, DCHIs, PWSIs with measured RSM,
VWC and existing CWSI, TVDI, VHI prove the improvement of
ECHI, DCHI, PWSI for drought characterizing.
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(2) Our proposed drought indices including ECHIs, DCHIs, PWSIs
demonstrate robust capabilities in a complete drought process in
Henan Province in 2019. Furtherly, the performance of these
triangular spectral indices is validated both in irrigation cropland
and rainfed cropland.

(3) The proposed indices show enhanced sensitivity to changes in soil
moisture and crop water status, particularly in the integration of
multiple spectral features. This leads to more accurate detection
and monitoring of drought conditions. Meanwhile, by consid-
ering the non-linear relationships between LST, LAL, and LSWI,
the indices better capture the complex interactions occurring
during drought conditions, compared to the linear models used in
indices like CWSI, TVDI, and VHI. And the indices perform well
across different types of cropland (irrigated and rainfed), indi-
cating their broad applicability.

(4) The accuracy of the proposed indices is contingent on the precise
retrieval of LST, LAI, and LSWI. Errors in these retrievals can
propagate and affect the drought monitoring accuracy. This is
particularly challenging due to atmospheric distortions and
sensor calibration issues. The need for high-quality, frequent
satellite observations to retrieve the necessary spectral data can
be a limitation in regions with persistent cloud cover or limited
satellite coverage.

CRediT authorship contribution statement

Fu Xuan: Writing — original draft, Methodology, Conceptualization,
Data curation, Software, Visualization. Hui Liu: Writing — original draft,
Methodology, Visualization. JingHao Xue: Investigation, Resources.
Ying Li: Validation, Resources. Junming Liu: Resources, Writing — re-
view & editing. Xianda Huang: Software, Data curation. Zihao Tan:
Investigation, Resources. Mohamed A.M. Abd Elbasit: Conceptualiza-
tion, Investigation. Xiaohe Gu: Investigation, Validation. Wei Su:
Writing — review & editing, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgment

This work was supported by the National Key R&D Program Project
(No. 2022YFD2001103), the National Natural Science Foundation of
China under the project (No. 42171331), the 2115 Talent Development
Program of China Agricultural University and the National Natural
Science Foundation of China (41805090).

References

Abbass, K., Qasim, M.Z., Song, H., Murshed, M., Mahmood, H., Younis, 1., 2022. A review
of the global climate change impacts, adaptation, and sustainable mitigation
measures. Environ. Sci. Pollut. Res. 29 (28), 42539-42559.

Ali, S., Tong, D., Xu, Z.T., Henchiri, M., Wilson, K., Siqi, S., Zhang, J., 2019.
Characterization of drought monitoring events through MODIS-and TRMM-based
DSI and TVDI over South Asia during 2001-2017. Environ. Sci. Pollut. Res. 26,
33568-33581.

Anderson, M.C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B.,
Pimstein, A., 2013. An intercomparison of drought indicators based on thermal
remote sensing and NLDAS-2 simulations with US Drought Monitor classifications.
J. Hydrometeorol. 14 (4), 1035-1056.

Anees, S.A., Mehmood, K., Khan, W.R., Sajjad, M., Alahmadi, T.A., Alharbi, S.A., Luo, M.,
2024. Integration of machine learning and remote sensing for above ground biomass

14

International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104151

estimation through Landsat-9 and field data in temperate forests of the Himalayan
region. Eco. Inform. 82, 102732 https://doi.org/10.1016/j.ecoinf.2024.102732.

Azmi, M., Riidiger, C., Walker, J.P., 2016. A data fusion-based drought index. Water
Resour. Res. 52 (3), 2222-2239.

Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., Tucker, C.J.,
2006. A comparative study of NOAA-AVHRR derived drought indices using change
vector analysis. Remote Sens. Environ. 105 (1), 9-22.

Berry, J.A., Beerling, D.J., Franks, P.J., 2010. Stomata: key players in the earth system,
past and present. Curr. Opin. Plant Biol. 13 (3), 232-239.

Carlson, T.N., Gillies, R.R., Perry, E.M., 1994. A method to make use of thermal infrared
temperature and NDVI measurements to infer surface soil water content and
fractional vegetation cover. Remote Sens. Rev. 9, 161-173. https://doi.org/
10.1080/02757259409532220.

Cigzkowski, W., Szporak-Wasilewska, S., Kleniewska, M., J6zwiak, J., Gnatowski, T.,
Dabrowski, P., Goraj, M., Szatytowicz, J., Ignar, S., Chormanski, J., 2020. Remotely
sensed land surface temperature-based water stress index for wetland habitats.
Remote Sens. 12 (4), 631.

Cohen, L., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., Huang, Y., Cohen, L.,
2009. Pearson correlation coefficient. Noise Reduction in Speech Processing 1-4.

Dai, A., 2011. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim.
Chang. 2 (1), 45-65.

Dong, H., Pengxin, W., Yue, Z., Huiren, T., Xijia, Z., 2021. Progress of agricultural
drought monitoring and forecasting using satellite remote sensing. Smart Agriculture
3(2),1.

Dubovyk, O., Ghazaryan, G., Gonzalez, J., Graw, V., Low, F., Schreier, J., 2019. Drought
hazard in Kazakhstan in 2000-2016: a remote sensing perspective. Environ. Monit.
Assess. 191, 1-17.

Esch, S., Korres, W., Reichenau, T.G., Schneider, K., 2018. Soil moisture index from ERS-
SAR and its application to the analysis of spatial patterns in agricultural areas.

J. Appl. Remote Sens. 12 (2), 022206.

Fang, W., Huang, S., Huang, Q., Huang, G., Wang, H., Leng, G., Wang, L., Guo, Y., 2019.
Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability
to drought stress of the Loess Plateau in China. Remote Sens. Environ. 232, 111290
https://doi.org/10.1016/j.rse.2019.111290.

FAO. 2023. The Impact of Disasters on Agriculture and Food Security 2023 — Avoiding
and reducing losses through investment in resilience. Rome. 10.4060/cc7900en.

Fensholt, R., Sandholt, 1., 2003. Derivation of a shortwave infrared water stress index
from MODIS near-and shortwave infrared data in a semiarid environment. Remote
Sens. Environ. 87 (1), 111-121.

Gao, G., Chen, D.L., Ren, G.Y., Chen, Y., Liao, Y.M., 2006. Trend of potential
evapotranspiration over China during 1956 to 2000. Geogr. Res. 25 (3), 378-387.

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., Zenebe, A., 2018. Analysis of the long-
term agricultural drought onset, cessation, duration, frequency, severity and spatial
extent using vegetation health index (VHI) in Raya and its environs, Northern
Ethiopia. Environmental Systems Research 7, 1-18.

Gutman, G.G., 1990. Towards monitoring droughts from space. J. Clim. 3 (2), 282-295.

Ha, T.V., Uereyen, S., Kuenzer, C., 2023. Agricultural drought conditions over mainland
Southeast Asia: spatiotemporal characteristics revealed from MODIS-based
vegetation time-series. Int. J. Appl. Earth Obs. Geoinf. 121, 103378.

Hao, Z., Singh, V.P., 2015. Drought characterization from a multivariate perspective: a
review. J. Hydrol. 527, 668-678.

Henan Provincial Bureau Of Statistics, 2019.

Huang, X., Huang, J., Li, X., Shen, Q., Chen, Z., 2022. Early mapping of winter wheat in
Henan province of China using time series of Sentinel-2 data. Gisci. Remote Sens. 59
(1), 1534-1549.

Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., Su, W., Zhang, X., Zhu, D.,
2019. Evaluation of regional estimates of winter wheat yield by assimilating three
remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model.
Eur. J. Agron. 102, 1-13. https://doi.org/10.1016/j.¢ja.2018.10.008.

Idso, S.B., Jackson, R.D., Pinter Jr, P.J., Reginato, R.J., Hatfield, J.L., 1981. Normalizing
the stress-degree-day parameter for environmental variability. Agric. Meteorol. 24,
45-55.

Jackson, R.D., Kustas, W.P., Choudhury, B.J., 1988. A reexamination of the crop water
stress index. Irrig. Sci. 9, 309-317.

Javed, T., Li, Y., Rashid, S., Li, F., Hu, Q., Feng, H., Chen, X., Ahmad, S., Liu, F.,
Pulatov, B., 2021. Performance and relationship of four different agricultural
drought indices for drought monitoring in China’s mainland using remote sensing
data. Sci. Total Environ. 759, 143530.

Joshi, R.C., Ryu, D., Sheridan, G.J., Lane, P.N., 2021. Modeling vegetation water stress
over the forest from space: Temperature Vegetation Water Stress Index (TVWSI).
Remote Sens. 13 (22), 4635.

Kogan, F.N., 1995. Application of vegetation index and brightness temperature for
drought detection. Adv. Space Res. 15 (11), 91-100.

Kogan, F.N., 2001. Operational space technology for global vegetation assessment. Bull.
Amer. Meteorol. Soc. 82 (9), 1949-1964.

Lesk, C., Anderson, W., Rigden, A., Coast, O., Jagermeyr, J., McDermid, S., Davis, K.F.,
Konar, M., 2022. Compound heat and moisture extreme impacts on global crop
yields under climate change. Nat. Rev. Earth Environ. 3 (12), 872-889.

Li, X., Wu, J., Lv, A., Liu, M., 2013. The difference of drought impacts on winter wheat
leaf area index under different CO2 concentration. Acta Ecol. Sin. 33 (9),
2936-2943.

Li, Z., Xuan, F., Dong, Y., Huang, X, Liu, H., Zeng, Y., Su, W., Huang, J., Li, X., 2024.
Performance of GEDI data combined with Sentinel-2 images for automatic labelling
of wall-to-wall corn mapping. Int. J. Appl. Earth Obs. Geoinf. 127, 103643 https://
doi.org/10.1016/j.jag.2023.103643.


http://refhub.elsevier.com/S1569-8432(24)00507-7/h0005
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0005
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0005
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0010
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0010
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0010
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0010
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0015
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0015
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0015
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0015
https://doi.org/10.1016/j.ecoinf.2024.102732
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0025
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0025
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0030
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0030
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0030
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0035
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0035
https://doi.org/10.1080/02757259409532220
https://doi.org/10.1080/02757259409532220
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0045
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0045
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0045
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0045
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0050
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0050
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0055
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0055
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0060
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0060
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0060
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0065
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0065
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0065
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0070
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0070
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0070
https://doi.org/10.1016/j.rse.2019.111290
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0085
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0085
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0085
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0090
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0090
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0095
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0095
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0095
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0095
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0100
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0105
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0105
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0105
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0110
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0110
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0125
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0125
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0125
https://doi.org/10.1016/j.eja.2018.10.008
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0135
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0135
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0135
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0140
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0140
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0145
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0145
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0145
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0145
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0150
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0150
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0150
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0155
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0155
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0160
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0160
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0165
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0165
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0165
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0170
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0170
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0170
https://doi.org/10.1016/j.jag.2023.103643
https://doi.org/10.1016/j.jag.2023.103643

F. Xuan et al.

Liu, J., Chen, J.M., Cihlar, J., 2003. Mapping evapotranspiration based on remote
sensing: an application to Canada’s landmass. Water Resour. Res. 39 (7).

Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., Seneviratne, S.I., 2020. Soil
moisture dominates dryness stress on ecosystem production globally. Nat. Commun.
11 (1), 4892.

Liu, C., Zhang, D., 2011. Temporal and spatial change analysis of the sensitivity of
potential evapotranspiration to meteorological influencing factors in China. Acta
Geograph. Sin. 66 (5), 579-588.

Luo, M., Anees, S.A., Huang, Q., Qin, X., Qin, Z., Fan, J., Han, G., Zhang, L., Shafri, H.Z.
M., 2024. Improving forest above-ground biomass estimation by integrating
individual machine learning models. Forests 15, 975. https://doi.org/10.3390/
f15060975.

Ly, A., Marsman, M., Wagenmakers, E.J., 2018. Analytic posteriors for Pearson’s
correlation coefficient. Stat. Neerl. 72 (1), 4-13.

Ma Rufah, U., Hidayat, R., Prasasti, I., 2017. Analysis of relationship between
meteorological and agricultural drought using standardized precipitation index and
vegetation health index. In: IOP Conference Series: Earth and Environmental
Science. IOP Publishing, p. 012008.

Mehmood, K., Anees, S.A., Luo, M., Akram, M., Zubair, M., Khan, K.A., Khan, W.R.,
2024a. Assessing Chilgoza Pine (Pinus gerardiana) forest fire severity: remote sensing
analysis, correlations, and predictive modeling for enhanced management strategies.
Trees, Forests and People 16, 100521. https://doi.org/10.1016/].tfp.2024.100521.

Mehmood, K., Anees, S.A., Rehman, A., Pan, S., Tariq, A., Zubair, M., Liu, Q., Rabbi, F.,
Khan, K.A., Luo, M., 2024b. Exploring spatiotemporal dynamics of NDVI and
climate-driven responses in ecosystems: Insights for sustainable management and
climate resilience. Eco. Inform. 80, 102532 https://doi.org/10.1016/j.
ecoinf.2024.102532.

Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994. Estimating crop water deficit using
the relation between surface-air temperature and spectral vegetation index. Remote
Sens. Environ. 49, 246-263. https://doi.org/10.1016/0034-4257(94)90020-5.

Mu, Q., Zhao, M., Running, S.W., 2011. Improvements to a MODIS global terrestrial
evapotranspiration algorithm. Remote Sens. Environ. 115 (8), 1781-1800.

Sadeghi, M., Babaeian, E., Tuller, M., Jones, S.B., 2017. The optical trapezoid model: a
novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-
8 observations. Remote Sens. Environ. 198, 52-68.

Sandholt, I., Rasmussen, K., Andersen, J., 2002. A simple interpretation of the surface
temperature/vegetation index space for assessment of surface moisture status.
Remote Sens. Environ. 79 (2-3), 213-224.

Sheffield, J., Wood, E.F., 2012. Drought: past problems and future scenarios. Routledge.

Shi, X., Ding, H., Wu, M., Zhang, N., Shi, M., Chen, F., Li, Y., 2022. Effects of different
types of drought on vegetation in Huang-Huai-Hai River Basin. China. Ecol. Indic.
144, 109428.

Sturges, H.A., 1926. The choice of a class interval. J. Am. Stat. Assoc. 21 (153), 65-66.

15

International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104151

Sun, N., Chen, Q., Liu, F., Zhou, Q., Guo, Y., 2023. Agricultural drought research in
Yellow River-Huangshui River Valley from 2000 to 2020. Arid Area Geography 46
(3), 437-447.

Wang, L., Qu, J.J., Hao, X., Zhu, Q., 2008. Sensitivity studies of the moisture effects on
MODIS SWIR reflectance and vegetation water indices. Int. J. Remote Sens. 29 (24),
7065-7075.

Wei, W., Pang, S., Wang, X., Zhou, L., Xie, B., Zhou, J., Li, C., 2020. Temperature
vegetation precipitation dryness index (TVPDI)-based dryness-wetness monitoring in
China. Remote Sens. Environ. 248, 111957.

Wilhite, D.A., Glantz, M.H., 1985. Understanding: the drought phenomenon: the role of
definitions. Water Int. 10 (3), 111-120.

Xu, M., Yao, N., Hu, A., de Goncalves, L.G.G., Mantovani, F.A., Horton, R., Heng, L.,
Liu, G., 2022. Evaluating a new temperature-vegetation-shortwave infrared
reflectance dryness index (TVSDI) in the continental United States. J. Hydrol. 610,
127785.

Xuan, F., Dong, Y., Li, J., Li, X., Su, W., Huang, X., Huang, J., Xie, Z., Li, Z., Liu, H.,
Tao, W., Wen, Y., Zhang, Y., 2023. Mapping crop type in Northeast China during
2013-2021 using automatic sampling and tile-based image classification. Int. J.of
Applied Earth Observation and Geoinformation 117, 103178. https://doi.org/
10.1016/j.jag.2022.103178.

Yihdego, Y., Vaheddoost, B., Al-Weshah, R.A., 2019. Drought indices and indicators
revisited. Arab. J. Geosci. 12, 1-12.

Zhang, C., Dong, J., Ge, Q., 2022a. Mapping 20 years of irrigated croplands in China
using MODIS and statistics and existing irrigation products. Sci. Data 9 (1).

Zhang, C., Dong, J., Ge, Q., 2022b. IrriMap_CN: annual irrigation maps across China in
2000-2019 based on satellite observations, environmental variables, and machine
learning. Remote Sens. Environ. 280, 113184.

Zhang, N., Hong, Y., Qin, Q., Liu, L., 2013. VSDI: a visible and shortwave infrared
drought index for monitoring soil and vegetation moisture based on optical remote
sensing. Int. J. Remote Sens. 34 (13), 4585-4609.

Zhang, L., Jiao, W., Zhang, H., Huang, C., Tong, Q., 2017. Studying drought phenomena
in the Continental United States in 2011 and 2012 using various drought indices.
Remote Sens. Environ. 190, 96-106.

Zhang, Q., Shi, R., Xu, C., Sun, P., Yu, H., Zhao, J., 2022. Multisource data-based
integrated drought monitoring index: model development and application.

J. Hydrol. 615, 128644.

Zhang, J., Zhang, Q., Bao, A., Wang, Y., 2019. A new remote sensing dryness index based

on the near-infrared and red spectral space. Remote Sens. 11 (4), 456.

Further reading

Henan Province Statistical Bulletin on National Economic and Social Development. 2011.


http://refhub.elsevier.com/S1569-8432(24)00507-7/h0180
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0180
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0185
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0185
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0185
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0190
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0190
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0190
https://doi.org/10.3390/f15060975
https://doi.org/10.3390/f15060975
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0200
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0200
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0205
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0205
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0205
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0205
https://doi.org/10.1016/j.tfp.2024.100521
https://doi.org/10.1016/j.ecoinf.2024.102532
https://doi.org/10.1016/j.ecoinf.2024.102532
https://doi.org/10.1016/0034-4257(94)90020-5
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0225
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0225
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0230
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0230
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0230
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0235
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0235
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0235
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0240
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0245
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0245
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0245
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0250
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0255
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0255
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0255
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0260
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0260
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0260
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0265
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0265
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0265
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0270
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0270
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0275
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0275
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0275
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0275
https://doi.org/10.1016/j.jag.2022.103178
https://doi.org/10.1016/j.jag.2022.103178
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0285
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0285
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0290
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0290
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0295
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0295
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0295
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0300
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0300
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0300
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0305
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0305
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0305
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0310
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0310
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0310
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0315
http://refhub.elsevier.com/S1569-8432(24)00507-7/h0315

	The novel triangular spectral indices for characterizing winter wheat drought
	1 Introduction
	2 Study area and data sources
	2.1 Study area
	2.2 Data sources
	2.2.1 MODIS products
	2.2.2 Meteorological data and irrigation products


	3 Methodology
	3.1 Conceptual prototype of proposed triangular spectral indices
	3.2 Derivation of ECHI, PWSI, DCHI in 3D features space
	3.2.1 Normalization of images features
	3.2.2 Derivation of ECHI
	3.2.3 Derivation of DCHI
	3.2.4 Derivation of PWSI

	3.3 Evaluation of ECHI, DCHI and PWSI for drought monitoring

	4 Results and analysis
	4.1 Parameterization of ECHI, DCHI, PWSI
	4.2 Validation using measured soil water content in agricultural meteorological stations
	4.3 Comparison with existing popular drought indices
	4.4 Drought monitoring in a whole drought process of winter wheat

	5 Discussions
	5.1 Potential improvements for agricultural drought monitoring
	5.2 Field management

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References
	Further reading


