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ARTICLE INFO ABSTRACT

Keywords: Few-shot image classification is a challenging topic in pattern recognition and computer vision. Few-shot fine-
Few-shot learning grained image classification is even more challenging, due to not only the few shots of labelled samples but
Fine-grained image classification also the subtle differences to distinguish subcategories in fine-grained images. A recent method called task

Metric-based methods discrepancy maximisation (TDM) can be embedded into the feature map reconstruction network (FRN) to

generate discriminative features, by preserving the appearance details through reconstructing the query image
and then assigning higher weights to more discriminative channels, producing the state-of-the-art performance
for few-shot fine-grained image classification. However, due to the small inter-class discrepancy in fine-grained
images and the small training set in few-shot learning, the training of FRN+TDM can result in excessively
flexible boundaries between subcategories and hence overfitting. To resolve this problem, we propose a
simple scheme to amplify inter-class discrepancy and thus improve FRN+TDM. To achieve this aim, instead
of developing new modules, our scheme only involves two simple amendments to FRN+TDM: relaxing the
inter-class score in TDM, and adding a centre loss to FRN. Extensive experiments on five benchmark datasets
showcase that, although embarrassingly simple, our scheme is quite effective to improve the performance of
few-shot fine-grained image classification. The code is available at https://github.com/Airgods/AFRN.git.

1. Introduction enhance ProtoNet by generating more representative prototypes [3].
The matching networks (MatchingNet) [4] utilise a bidirectional LSTM
Few-shot fine-grained image classification is a challenging task network to map the support set and an attention mechanism-based
that draws wide attention in the pattern recognition and computer LSTM to map the query set, and adopt the cosine similarity as the
vision communities. Although deep neural networks learnt from a metric function. In addition to the common metric functions, Zhang
large amount of labelled training data can provide impressive image et al. [5] propose a new metric function EMD, which assigns different
classification performances, few-shot learning that trains a model with weights to different positions of the image and calculates the best
little labelled data for each class remains difficult. Moreover, the fine- matching between the image blocks of the support set and the query
grained setting brings further challenges, as each class is divided to a set to represent their similarities. To maintain feature discriminability,
large number of subcategories, which makes the inter-class discrepancy Nguyen et al. [6] propose the square root of the sum of the Euclidean
even smaller and the classification task much harder. distance and the norm distance as the metric function. Similarities
Metric-based methods are effective for few-shot learning [1]. They between images can also be measured via a properly structured neural
aim to learn a metric function to measure the similarities/dissimilarities network [7].
between different classes and assign the test image to the class with the However, when the high similarities between subclasses are not
highest similarity or lowest dissimilarity. For example, the prototypical carefully considered, metric-based methods can fail to classify fine-
networks (ProtoNet) proposed by Snell et al. [2] adopt the average of grained images. Thus it is crucial to extract features with strong dis-
features of all images from the same class in the support set as the criminative power to distinguish the ultra-fine differences between

prototype of that class, and assign the query image to the class with the

subclasses. Li et al. introduce the bi-similarity network (BSNet) with
shortest Euclidean distances from the class prototypes. Recent works
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Fig. 1. An illustration of the motivation of the adaptive feature map reconstruction network (AFRN). The solid circles, triangles and diamonds represent the instances from three
classes, respectively, and the transparent circle, triangle and diamond represent the corresponding prototypes of the three classes, respectively. In (a), we depict a challenging
classification task, with severe overlapping between the three classes in the original features space. This challenge is partially resolved by FRN in (b), because the appearance
details of images are well preserved by reconstruction, which potentially makes the embedded features more discriminative. In (c), TDM is incorporated to FRN to assign high
weights to channels with strong discriminative abilities, and thus the classes become more separable. Finally, in (d), AFRN further improves FRN+TDM by amplifying the inter-class

discrepancy, and thus the three classes can be more easily distinguished.

two similarity metrics to learn such discriminative features [8]. Huang
et al. propose the low-rank pairwise aligned bilinear network (LR-
PABN), which utilises bilinear pooling operations to distinguish support
and query images [9]. Huang et al. also propose the targeted alignment
network (TOAN), which can increase the inter-class variation by ex-
tracting discriminative fine-grained features while reducing intra-class
variation by matching support and query features [10].

There is a problem in many previous metric-based learning al-
gorithms that the input to the metric function has to be reshaped
to vectors, resulting in deficient spatial information. To resolve this
problem, Wertheimer et al. [11] propose a novel metric-based classi-
fication mechanism, feature map reconstruction networks (FRN), for
few-shot learning. FRN predicts the membership of the query image by
reconstructing the query feature map via the pooled support features
of each class. The idea behind FRN is that the query feature map is
expected to be well reconstructed by the support features from the
correct class with the smallest reconstruction error. Hence, through the
reconstruction process, FRN can well preserve the appearance details of
the images.

However, in FRN, all channels are treated equally with the same
weights, without stressing the different importance of different chan-
nels. Hence, Lee et al. [12] propose the task discrepancy maximisation
(TDM) module to identify channels with high discriminative power and
assign higher weights to these channels to improve the classification
results of few-shot methods, such as FRN, for fine-grained images.
TDM produces channel weights for both support and query sets via
the support attention module (SAM) and the query attention module
(QAM), respectively. SAM provides class-wise channel weights to high-
light the discriminative channels to distinguish between classes, while
QAM provides object-wise channel weights to focus more on the object-
relevant channels. Lee et al. [12] demonstrate that by incorporating
TDM to FRN, namely FRN+TDM, a state-of-the-art performance of
few-shot fine-grained image classification can be achieved.

However, due to the small inter-class discrepancy omnipresent in
fine-grained images and the small training set in the setting of few-
shot learning, FRN+TDM can produce excessively flexible boundaries
between subcategories and hence overfitting. To resolve this problem,
we propose a simple scheme to amplify inter-class discrepancy and thus
improve FRN+TDM. To this end, instead of developing new modules to
further enhance the extraction of discriminative features, our scheme
only involves two simple amendments to FRN+TDM: relaxing the inter-
class score in TDM, and adding a centre loss to FRN. We name the
network incorporating our scheme to FRN+TDM the adaptive feature
map reconstruction network (AFRN).

The centre loss [13] aims to achieve intra-class compactness by
penalising the distance between the learnt features and their corre-
sponding class centres, which is vital to distinguish subclasses with high
similarity normally occurring in fine-grained image classification. In

Fig. 1, we illustrate the motivation of AFRN by a challenging classifica-
tion of three overlapping classes, which is typical in fine-grained image
classification with small inter-class discrepancy. By involving the centre
loss in AFRN, we expect that the three classes can be intra-class more
compact and thus inter-class more separated to make the classification
easier. Moreover, in Fig. 2, we demonstrate one real-data example of
the discriminative features extracted by FRN, FRN+TDM and AFRN on
four subclasses of airplanes. The original FRN focuses on the airplanes
as well as the nuisance backgrounds; incorporating TDM can improve
this situation with less focus on the backgrounds; while, in comparison,
AFRN can identify the most discriminative features with the least focus
on the backgrounds. For instance, in class 2, the background in the
lower right corner is least highlighted in our method.

More importantly, we observe that FRN+TDM can produce exces-
sively flexible boundaries between subcategories and thus overfitting,
as the inter-class score in TDM to measure the discrepancy between
classes is the Euclidean distance between one class and its nearest class.
Such an inter-class score can result in extremely flexible classification
boundaries for fine-grained images and thus overfitting to the seen
classes in the training set. In few-shot fine-grained learning, this prob-
lem is severer, because in the test phase, few-shot learning aims to
classify the novel set with completely different classes from those in
the training set. Thus we propose to relax the inter-class score in TDM
simply to the Euclidean distance between one class and its furthest class,
to mitigate the potential overfitting to a large extent. This amendment
makes the original TDM module a relaxed TDM module.

In summary, the main contributions of our work are as follows.

» We propose AFRN, a simple scheme to amplify inter-class dis-
crepancy and thus improve the few-shot fine-grained image clas-
sification. Our scheme only involves two simple amendments to
FRN+TDM: relaxing the inter-class score in TDM, and adding a
centre loss to FRN.

By relaxing the inter-class score in TDM, we are able to remark-
ably mitigate the negative impact, from the overfitting to the seen
training set of fine-grained subclasses, on the inference of unseen
novel classes in the few-shot learning setting.

By incorporating the guidance of the centre loss to FRN, we
are able to enhance the discriminative power of the learnt fea-
tures for fine-grained image classification, through enlarging the
omnipresent subtle distances between fine-grained subclasses.
The experiments on five benchmark fine-grained datasets demon-
strate that our scheme, although very simple, is quite effec-
tive to improve the performance of few-shot fine-grained image
classification.

The rest of the paper is organised as follows. In Section 2, we discuss
the literature that is closely related to our work. The technical details
of FRN+TDM and AFRN are presented in Section 3. In Section 4, we
demonstrate the superior classification performances of AFRN through
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Fig. 2. Examples of the features captured by FRN, FRN+TDM and AFRN on four subclasses of airplanes. Apparently, FRN focuses on the objects as well as the nuisance background.
Involving TDM in FRN makes the features more discriminative and the focus on background is reduced slightly. In comparison, our AFRN can identify the most discriminative

features to distinguish the subclasses with the least focus on the background.

extensive experimental results and ablation studies. Lastly, we draw
conclusions in Section 5.

2. Related work
2.1. Metric-based few-shot methods for image classification

Metric-based few-shot methods aim to learn discriminative feature
embeddings that can be well generalised to new classes based on a
predefined or a learnt distance metric, such as Euclidean distance [2],
cosine distance [14], hyperbolic distance [15], or distance parame-
terised by neural networks [16]. MatchingNet [4] adopts the cosine
similarity to assign the label of the query image. ProtoNet [2] calculates
prototypes as the average features of each class in the support set and
assign the query image to the nearest class prototype by Euclidean
distance. Instead of using a predefined metric, RelationNet [16,17]
utilises a neural network to compute the nonlinear similarities between
different samples. Moreover, Satorras and Estrach propose to utilise
graph neural networks to measure the similarities between images [18].
A large amount of work has also been done to extend the metric-
based methods for fine-grained images. For example, BSNet involves
two similarity metrics to learn discriminative features [8] and LRPABN
adopts bilinear pooling operations [9].

2.2. Feature alignment-based few-shot methods for image classification

Feature alignment methods usually aim to align the object positions
between the support and query sets to improve the classification per-
formance [19]. CrossTransformers (CTX) [20] utilises the transformer-
based network to explore the spatially-correlated features and calcu-
late the similarity between two images. A more recent transformer-
based method is QSFormer [21], which effectively learns consistent
representations of the support and query sets via the global sample
transformer and the local patch transformer. Dynamic meta-filter
(DMF) [22] considers both channel-wise and spatial-wise alignments
by neural ordinary differential equation. Relational embedding network
(RENet) utilises the self-correlational representation (SCR) module and
the cross-correlational attention (CCA) module, where the SCR module

transforms the basic feature maps into self-correlational tensors and
extracts structural patterns, while the CCA module calculates the cross-
correlations between images and generates common attention between
them. FRN [11] aligns the features maps of the query image and the
support set via reconstructing the query image based on the pooled
support features, where the ridge regression-based reconstruction with
close-form solutions makes the process efficient. Besides the L, norm
adopted in FRN, Sun et al. [23] propose to utilise the L, ; norm for fea-
ture reconstruction. To alleviate overfitting of the reconstruction-based
methods, Li et al. [24] propose the self-reconstruction network that
can diversify the query features by reconstructing the query features
by themselves.

3. Methodology
3.1. Problem definition

Few-shot learning aims to learn discriminative knowledge from a
small amount of labelled data to classify test instances from new tasks.
In few-shot learning, the dataset is usually divided into a base set
Dpg, a validation set D, and a novel set D,-, where the classes of
the three subsets do not intersect. Few-shot learning learns from the
tasks on Dy to classify instances of new tasks on D, . The instances
in Dy, assist to find the best model during the training process. In this
paper, we follow the classic setting of N-way K-shot, i.e. the model
is trained by the support set, S = {x;,y,}"X, of N classes with K
instances each class, and evaluated on the query set of the same classes
inS, Q= {x;y };V X4 of N classes with ¢ instances each class. The
classification performance of the trained model is finally tested on D,
with its average classification accuracy as the performance measure.

3.2. FRN+TDM

In metric-based few-shot learning methods, reshaping feature maps
to feature vectors as input to metric function can lead to loss of spatial
details. FRN [11] aims to resolve this problem by reconstructing every
location of the query feature map by the pooled support features from
each class through ridge regression. The class membership of the query
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instance is then assigned based on the reconstruction error. However,
in FRN, all channels are treated equally with the same weights, which
cannot stress the regions with high discriminative abilities. To identify
the discriminative regions, the TDM module can be embedded in the
FRN framework.

Specifically, TDM [12] takes the features extracted from the embed-
ding module to calculate the task-wise channel weight vector g, of the
nth class as a linear combination of the support weight vector ﬁf and
the query weight vector g2:

B,=aBs +(1-a)p? eRE, 1

where a € [0,1] is a hyper-parameter. ﬁf and B9 are obtained from
the support attention module (SAM) and the query attention module
(QAM), respectively, based on the task-wise intra-class scores r;“tra and
inter-class scores r,il“te’.

The input to SAM is the prototype of each class P, € RHXWXC,
i.e. the average of all support set instances in the nth class. The cth
element of r,i,““"i is then calculated as

rintra — 1

e HXW

where H and W are the height and width of the feature maps, C
is the number of channels, P,, € RP>W js the cth channel of the
nth prototype and M, € R¥*W is the average of the channels in
P, ie M, = %ZCCZI P,.. Thus ri"™@ measures the dispersion of
the channels in the prototype of each class. On the contrary, the cth
element of r,il“ter involves information from different classes:

”Pn,c _Mnllg’ 2)

i 1 .
rmter = min
me H X W 1<I<N,n#l

”Pn,c _Mlllgv 3

where M, denotes the mean spatial features of the /th class. It is clear
that ™€ measures the difference between each channel and its closest
mean spatial features of a different class. Finally, we obtain g as

ﬂ: — r](ginter(r,i‘nter)) +(1- ”)(gintra(r'ilntra))’ 4

where g™ and g™ are fully-connected blocks and € [0,1]. We
adopt the same structure for g as in [12].

Since the labels of query images are unknown, only the intra-class
score is involved in QAM:

i 1
,intra _

Q¢ T HXW
where P, . is the cth channel of the query feature maps and My, is the
mean of all channels of P,. Then, B2 is calculated as

1Pg _MQ”%s %)

Be = gQ(I‘g‘tra), (6)

where g@ is a fully-connected block with the same structure as giter
and gintra, By substituting Egs. (4) and (6) to Eq. (1), we obtain the
task-wise weights g,,.

In FRN+TDM, suppose the pooled support features of the nth class
is §,, € RIKXHXW)XC while the query features are Q € RUHXWXC_Q is
reconstructed by each S, via ridge regression:

W = argmin Q- WS, |} + AIWIE, @

where W € RUDXWXEXHXW) ig the weight matrix and 4 is a non-
negative value that controls the contribution of the ridge penalty. The
reconstructed query image by the nth class is calculated as

Q,=Ws,. ®

Then, the task-wise weight vector g, is applied to the original and
the reconstructed query feature maps to re-weight the channels:

Q, = (Iwaﬁ,{) 0Q,
Q, =UywB)0Q, )

where 1,y is a vector of H X W 1s and O is the element-wised
Hadamard product.
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Lastly, to assign the class membership of the jth query image, we
calculate its probability of belonging to the nth class as

o140

—,
p
Q)

P(y; = nlx;) = — (10)

Zn’e[l,N] €

where d(Q, Q) = H:(W Q- Q:,II% and y is a non-negative parameter.
The training process of FRN+ TDM is guided by the cross-entropy

loss and the auxiliary loss in FRN:

Lppy = Lep + Laux

Ngq
=— Y log(P(; = y;1x,)
Jj=1

)

n€[l,N]n'€[1,N],n' #n

18,8112, an
where §, is the row-normalised S,

3.3. Adaptive feature map reconstruction network (AFRN)

Although FRN+TDM has achieved a state-of-the-art performance in
few-shot fine-grained image classification, due to the small inter-class
discrepancy omnipresent in fine-grained images and the small training
set in the setting of few-shot learning, the training of FRN+TDM can
still result in excessively flexible boundaries between subcategories
and hence overfitting to the seen subclasses in the training set. To
mitigate this issue, we propose a simple scheme to amplify inter-class
discrepancy and thus improve FRN+TDM. Our scheme only involves
two simple amendments to FRN+TDM: relaxing the inter-class score in
TDM, and adding a centre loss to FRN. We call the network incorporat-
ing our scheme to FRN+TDM the adaptive feature map reconstruction
network (AFRN). The structure of AFRN is illustrated in Fig. 3.

3.3.1. Relaxing inter-class score in TDM

In Eq. (3), riy‘};er measures the minimum distance between each
channel and its closest mean spatial features of a different class. There-
fore, the classes that are mostly difficult to distinguish are specifically
considered. However, this may lead to extremely flexible classification
boundaries in the setting of fine-grained image classification, which is
even severer in the few-shot setting where the classes in the base set
and the novel set are not the same, due to the overfitting to the seen
subclasses in the base set. To mitigate this problem, we propose the
relaxed TDM by revising the calculation of r;‘fcter in Eq. (3) as

i 1
,inter _ max  ||P. . — M3 12

e T HXW ISISN,n#I” ne = Milly (12)
In this way, rilncter measures the differences between classes that are less
difficult to distinguish, which makes the classification boundaries less
flexible and thus mitigates the overfitting to a large extent.

3.3.2. Adding centre loss to FRN
The centre loss L measures the intra-class variation of each class,
which is calculated as

Ng
Ler = 2 1Q;-C, 113, as)

j=1
where Cy/ denotes the centre of the y;th class, and Q; represents the
feature of the jth query. To effectively update the centre, we compute
the centre as the average of the query samples in one task.

Hence, the total loss function of AFRN is a simple amendment to
that of FRN in Eq. (11):

Lyprn = Lprn +VvLcr- 14)
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Fig. 3. The structure of AFRN with an example of 2-way 5-shot classification. The embedded features of the support set and the query set are input to the FRN and the relaxed
TDM modules. The FRN module reconstructs the query feature map by the pooled support features of each class and output the reconstructed query feature maps Q, and Q,. The
relaxed TDM module produce the task-wise channel weights §, and B,. Then, the original query feature map Q and the reconstructed Q, are re-weighted by §, to obtain Q] and
()’1' . Similarly, Q and Q, are re-weighted by g, to obtain Q; and Q; Lastly, the two pairs of re-weighted query features are used to obtain probabilities in Eq. (10) to assign the

membership of the query image.

4. Experiments

In this section, we empirically demonstrate the superior classifi-
cation performance of AFRN on five fine-grained image datasets, by
comparing it with eight state-of-the-art methods: MatchingNet [4],
ProtoNet [2], CTX [20], DeepEMD [5], RENet [25], MixFSL [26],
FRN [11] and FRN+ TDM [12].

4.1. Datasets

We choose five publicly-available benchmark datasets for few-shot
image classification, namely CUB-200-2011 [27], aircraft [28], Oxford
flowers [29], Stanford cars [30] and Stanford dogs [31]. We name these
datasets CUB, aircraft, flowers, cars and dogs for short hereafter.

The CUB dataset contains 200 species of birds, with a total of 11,788
images. We randomly divide the 200 categories into the training,
validation and test sets, each consisting of 100, 50 and 50 categories,
respectively.

The aircraft dataset has 100 classes of aircrafts, with a total of
10,000 images. We randomly divide the dataset into the training set
with 50 classes, the validation set with 25 classes and the test set with
25 classes.

The flowers dataset consists of 102 categories of flowers with 8189
images. Each type of flower consists of 40 to 258 images, mainly
featuring common British flowers. We randomly select 51 classes as the
training set, 26 classes as the validation set, and 25 classes as the test
set.

The cars dataset includes 196 classes of cars, with a total of 16,185
images. We randomly divide the dataset into the training set with 130
classes, the validation set with 17 classes and the test set with 49
classes.

The dogs dataset contains 120 breeds of dogs, with a total of 20,580
images. We randomly divide the 120 categories into the training set

with 60 categories, the validation set with 30 categories and the testing
set with 30 categories.

4.2. Implementation details

We adopt ResNet-12 as the backbone with the same implementation
details as in [28,32,33]. The ResNet-12 backbone consists of 4 residual
blocks, and each residual block has 3 convolutional layers. We adopt
the leaky ReLU with « = 0.1 and 2 x 2 max pooling. We also adopt
the deep block from the original implementation [28,32,33], so the
output size of each residual block is 64, 160, 320 and 640. Therefore,
the shape of the output feature map of an input image of size 84 x 84
is 640 x 5 x 5. During the training process, we implement the standard
data augmentation step, including random cropping, horizontal flipping
and colour jittering, as in [5,28,34,35].

Following [14,33], we train ResNet-12 for 1200 epochs and reduce
the learning rate proportionally at the 400th and 800th epochs. We
use the validation set to select the best performing model during the
training process and validate every 20 epochs. We train the models with
the 10-way 5-shot setting and test the models with the 5-way 1-shot and
5-way 5-shot setting.

For AFRN, we follow TDM [12] to set « = = 0.5, and set v = 0.05.
In Section 4.5, we will show the robustness of v.

AFRN and FRN+TDM have the same amount of parameters and they
have the same FLOPs. For the 5-way 1-shot task with 16 query images,
their FLOPs is 299.6G per task while for the 5-way 5-shot setting with
16 query images, their FLOPs is 370G per task.

4.3. Comparison with the state-of-the-art methods
We report the classification accuracies of AFRN and the eight state-

of-the-art methods on five fine-grained image datasets in Table 1.
Obviously, our method can beat all state-of-the-art methods on the
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Table 1

5-way few-shot classification accuracies on the CUB, aircraft, flowers, cars and dogs datasets with the ResNet-12 backbone. The best classification accuracies are labelled in bold

fonts.
Method CUB Aircraft Flowers Cars Dogs

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [4]* 71.87 + 0.24 85.08 + 0.24 56.74 + 0.87 73.75 + 0.69 71.89 + 0.90 85.46 + 0.59 45.29 + 0.82 64.00 + 0.74 66.48 + 0.88 79.57 + 0.63
ProtoNet [2]* 81.02 + 0.20 91.93 + 0.11 46.68 + 0.81 71.27 + 0.27 75.41 + 0.22 89.46 + 0.14 82.29 + 0.20 93.11 + 0.10 73.81 + 0.21 87.39 + 0.12
CTX [20]* 80.39 + 0.20 91.01 + 0.11 65.60 + 0.25 80.20 + 0.25 - - 85.03 + 0.19 92.63 + 0.11 73.22 + 0.22 85.90 + 0.13
DeepEMD [5]* 75.59 + 0.30 88.23 + 0.18 - - 70.00 + 0.35 83.63 + 0.26  73.30 + 0.29 88.37 + 0.17 70.38 + 0.30 85.24 + 0.18
RENet [25]* 77.45 + 0.45 90.50 + 0.26 59.16 + 0.47 76.48 + 0.37 79.91 + 0.42 92.33 + 0.22 79.66 + 0.44 91.95 + 0.22 71.69 + 0.47 85.60 + 0.30
MixFSL [26]° 64.53 + 0.92 80.67 + 0.64 60.55 + 0.86 77.57 + 0.69 72.60 + 0.91 86.52 + 0.65 58.15 + 0.87 80.54 + 0.63 67.26 + 0.90 82.05 + 0.56
FRN [11]° 82.33 + 0.19 92.02 + 0.11 70.26 + 0.22 83.58 + 0.14 81.68 + 0.20 92.61 + 0.11 86.59 + 0.18 95.01 + 0.08 76.49 + 0.21 88.22 + 0.12
FRN+TDM [12]° 83.31 + 0.19 92.70 + 0.10 70.61 + 0.21 84.53 + 0.13 82.95 + 0.19 93.61 + 0.10 89.38 + 0.16 96.98 + 0.06 76.67 + 0.21 88.53 + 0.12
Ours 83.95 + 0.18 93.17 + 0.10 72.19 + 0.21 85.59 + 0.13 83.59 + 0.19 94.05 + 0.09 89.27 + 0.16 96.89 + 0.06 77.01 + 0.21 88.60 + 0.12

2 Methods denote our implementations.

Table 2

The results of the one-sided paired r-test of comparing the classification accuracies of our method with those of the state-of-the-art methods in
Table 1. The null hypothesis H is paprn < H,,» Where u is the mean classification accuracy and m € {MatchingNet, ProtoNet, CTX, DeepEMD,

RENet, MixFSL, FRN, FRN+TDM}.

Ours vs. MatchingNet ProtoNet CTX DeepEMD RENet MixFSL FRN FRN+TDM

p value 1x1073 7% 1073 3.9%107° 28x107* 2.8x107* 1L4x107* 33x107° 7x1073

Reject at 1% level v v v v v v v
CUB-200-2011 Aircraft CUB-200-2011 Aircraft

1-shot

5-shot

FRN+TDM

Ours(AFRN)

Fig. 4. The visualisations of the confusion matrices of AFRN and FRN+ TDM on the CUB and aircraft datasets under the 5-way 1-shot and 5-way 5-shot settings. Deep red stripes
on the diagonal and deep blue stripes on the off-diagonal elements suggest good classification.

Table 3
The ablation study on the relaxed TDM module and the centre loss.
Relaxed TDM Centre loss CUB Aircraft
1-shot 5-shot 1-shot 5-shot
(@) - - 83.31 + 0.19 92.70 + 0.10 70.61 + 0.21 84.53 + 0.13
(b) v - 83.73 + 0.12 92.86 + 0.10 71.59 + 0.22 85.06 + 0.13
© - v/ 83.77 + 0.18 93.09 + 0.10 71.05 + 0.21 84.58 + 0.13
()] 4 v 83.95 + 0.18 93.17 + 0.10 72.19 + 0.21 85.59 + 0.13

CUB, aircraft, flowers and dogs dataset, while providing competitive
classification results with FRN+ TDM on the cars dataset. This demon-
strates the effectiveness of involving the centre loss and the relaxed
TDM module. To have a deep insight to the results, we compare the
visualisations of the confusion matrices of AFRN and FRN+ TDM in
Fig. 4 on the CUB and aircraft datasets. It is clear that AFRN is better
than FRN+ TDM on the two datasets with more deep red stripes or
higher values on the diagonals. To confirm that AFRN is significantly
better than the state-of-the-art methods, we perform one-sided paired ¢-
test to compare the classification accuracies of AFRN and those of other
methods in Table 1, with a null hypothesis H, of upprn < #,,» Where u

is the mean classification accuracy and m € {MatchingNet, ProtoNet,
CTX, DeepEMD, RENet, MixFSL, FRN, FRN+TDM}. The results are
sumarised in Table 2. Clearly, H, can be rejected at 1% level for all
methods compared, suggesting that the classification accuracy of AFRN
is significantly better than those of other methods.

4.4. Ablation studies
Here we explore the impacts of the relaxed TDM module and the

centre loss on the classification performance and report the results on
the CUB and aircraft datasets in Table 3. For the relaxed TDM column,
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- Stanford-Cars

Fig. 5. The visualisation of the discriminative features extracted by FRN, FRN+ TDM and AFRN (‘Ours’) on the CUB and cars datasets. AFRN focuses on the most discriminative

regions compared with FRN and FRN+ TDM.

Table 4
The effect of v in (14) of the AFRN loss.
v CUB Flowers
1-shot 5-shot 1-shot 5-shot
0.5 83.22 + 0.19 92.75 + 0.10 82.75 + 0.19 93.46 + 0.10
0.05 83.95 + 0.18 93.17 + 0.10 83.59 + 0.19 94.05 + 0.09
0.005 83.69 + 0.18 93.07 + 0.10 82.35 + 0.20 93.22 + 0.10

‘~’ represents adopting the original TDM module while ‘v’ is for the
proposed relaxed TDM module. For the centre loss column, ‘-’ is to
train the model by the original FRN loss in (11) while ‘/’ represents
training the model by the AFRN loss in (14). Thus, scenario-(a) corre-
sponds to FRN+TDM while scenario-(d) represents AFRN. Clearly, the
classification accuracy of TDM can be raised by only modifying the
inter-class score via the relaxed TDM in scenario-(b). It is worth noting
that, for the 1-shot classification of the aircraft dataset, the accuracy
is improved greatly by almost 1%, suggesting that the subcatergories
of aircraft are highly similar and the relaxed score is required to
reduce potential overfitting. In scenario-(c), when we only involve the
additional centre loss, the improvement is more substantial for the CUB
dataset, suggesting that the variation within each subcategory of the
CUB dataset is relatively large and thus making intra-class variation
smaller via centre loss is beneficial. Finally, utilising the relaxed TDM
module as well as the centre loss can provide the best classification
accuracies.

4.5. The effect of v in (14)

In this section, we present the effect of v in (14), i.e. the parameter
controlling the contribution of the centre loss, on the classification per-
formance. The classification accuracies of the CUB and flowers datasets
for three values of v, 0.5, 0.05 and 0.005, are summarised in Table 4. It
shows that 0.05 is a proper choice. In addition, the accuracies of using
the three values of v are all higher than or competitive with FRN+ TDM.

Table 5

The classification accuracies of FRN, FRN+TDM and AFRN (‘Ours’) on two coarse-
grained datasets, mini-ImageNet and FC100, with the ResNet-12 backbone. The best
classification accuracies are labelled in bold fonts.

mini-ImageNet FC100

1-shot 5-shot 1-shot 5-shot
FRN 63.26 + 0.21 77.68 + 0.15 40.31 + 0.17 55.34 + 0.17
FRN+TDM 62.18 + 0.20 78.41 + 0.15 39.84 + 0.17 54.16 + 0.17
Ours 62.78 + 0.20 78.60 + 0.15 40.09 + 0.18 54.38 + 0.18

4.6. The visual comparisons of FRN, FRN+ TDM and AFRN

4.6.1. Visualisation of discriminative features

To demonstrate that AFRN can focus on the most discriminative re-
gions for classification, we visually compare the discriminative regions
identified by FRN, FRN+ TDM and AFRN, following the Grad-CAM
technology [36] in Fig. 5. For the CUB and cars datasets, we randomly
select 10 images for visualisation. We can observe that FRN tends to
focus on both the objects and irrelevant backgrounds. FRN+ TDM can
improve this by identifying smaller discriminative regions, while AFRN
can usually make the areas even smaller by focusing on the highly
discriminative ones.

4.6.2. Visualisation of feature embeddings

To further show that AFRN can amplify the inter-class discrepancy,
we visualise the feature embeddings learnt by FRN, FRN+ TDM and
AFRN via t-distributed stochastic neighbour embedding (+-SNE) [37] in
Fig. 6. The results of the flowers and aircraft datasets are presented
in the first and second rows in Fig. 6, respectively. For each dataset,
we randomly select five classes with 16 test samples each and label
them by different colours. The five classes are severely mixed in FRN
while better separated in FRN+ TDM. Obviously, the best separation of
the classes is achieved by FRN: the inter-class discrepancy is amplified,
which also supports our motivation in Fig. 1.

4.7. Discussion

In this section, we further test the ability of AFRN to classify
coarse-grained data, where larger categories or super-categories with
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Fig. 6. The visualisation of the feature embeddings of FRN, FRN+ TDM and AFRN (‘Ours’) on the flowers and aircraft datasets. AFRN can provide the best separation of different

classes. Images from the same classes are labelled by the same colour.

large intra-class variations are considered. We adopt two benchmark
coarse-grained datasets, the mini-ImageNet dataset [4] and the FC100
dataset [38]. The mini-ImageNet dataset contains 60,000 images dis-
tributed evenly over 100 classes. We randomly divide the dataset to
a training set with 64 classes, a validation set with 16 classes and a
test set with 20 classes. The FC100 dataset has 100 object categories
which are merged to 20 super-categories. We randomly divide it to a
training set with 12 super-categories containing 60 object categories, a
validation set with 4 super-categories containing 20 object categories
and a test set with 4 super-categories containing 20 object categories.

The classification accuracies of FRN, FRN+TDM and AFRN on
coarse-grained datasets are reported in Table 5. Clearly, the original
FRN dominates FRN+TDM and AFRN in most scenarios, except for the
classification of 5-shot mini-ImageNet. However, we note that AFRN
performs slightly better than FRN+TDM in all cases, which demonstrate
that the two amendments also work on coarse-grained data, but not
effective enough to beat the original FRN. One explanation to this result
is that TDM or relaxed TDM put too much attention on few channels
while ignore information from other channels that may be valuable for
coarse-grained data. Thus, they perform worse than the original FRN
when all channels are considered equally.

5. Conclusions

In this paper, we propose AFRN, a simple scheme to amplify the
inter-class discrepancy and thus improve the classification performance
of FRN+TDM on few-shot fine-grained images. To mitigate the poten-
tial overfitting to the seen subclasses, we propose to relax the inter-class
score in TDM. To enlarge the subtle differences between the subclasses
of fine-grained images, we propose to incorporate the centre loss to
FRN. Extensive experiments on five fine-grained datasets showcase that
our scheme can produce the state-of-the-art performance, verified by
statistical tests. Results in ablation study also reveal the effectiveness of
each amendment. Moreover, we note one limitation of our method on
classifying coarse-grained data, which we identify as our future work.
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