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Abstract

We used an untargeted mass spectrometric approach, tandem mass tag (TMT) proteomics, for the
identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238
cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative (GENFI) were analysed, including
107 presymptomatic (44 C9orf72, 38 GRN, 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, 11
MAPT) mutation carriers as well as 76 mutation-negative controls (‘non-carriers’). We found shared
and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered
in symptomatic mutation carriers compared to non-carriers, we found a set of proteins including
neuronal pentraxin 2 (NPTX2) and fatty acid binding protein 3 (FABP3) shared across all three genetic
forms, as well as in patients with Alzheimer’s disease from previously published datasets. We observed
differential changes in lysosomal proteins among symptomatic mutation carriers with marked
abundance decreases in MAPT carriers, but not other carriers. Further, we identified mutation-
associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene co-
expression network analysis combined with gene ontology annotation revealed clusters of proteins
enriched in neurodegeneration and glial responses, as well as synapse-, or lysosome-related proteins
indicating that these are the central biological processes affected in genetic FTD. These clusters
correlated with measures of disease severity and associated with cognitive decline. This study revealed
distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the
pathological processes involved in the disease. Additionally, we identified proteins that warrant further

exploration as diagnostic and prognostic biomarker candidates.

One sentence summary: Both distinct and common cerebrospinal fluid proteomic signatures were

observed in the different genetic forms of frontotemporal dementia.
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Main Text:

INTRODUCTION

Frontotemporal dementia (FTD) is an umbrella term referring to a group of progressive
neurodegenerative disorders, which typically present with behavioral changes (behavioral variant,
(bvFTD), language problems (primary progressive aphasia, PPA), or motor impairment (either

FTD with amyotrophic lateral sclerosis or FTD with parkinsonism)) (7). Although less common than
Alzheimer’s disease (AD), dementia with Lewy bodies and vascular dementia, FTD is a leading cause
of early onset dementia (2). The underlying molecular basis of FTD is complex, but most cases can be
attributed to a frontotemporal lobar degeneration (FTLD) pathology, with cellular inclusions of tau,
TAR DNA-binding protein 43 (TDP-43) or FET proteins (FUS (Fused in sarcoma), EWS (Ewing
sarcoma) and TAF15 (TATA-binding associated factor 15)) (3). Unlike AD, around a third of FTD
cases have a genetic cause, with the most common mutations occurring in three genes: GRN
(progranulin) and C90rf72 (chromosome 9 open reading frame 72), both of which are typically
accompanied by an underlying TDP-43 proteinopathy, as well as MAPT (microtubule-associated

protein tau), manifesting as tauopathy (7, 4).

In FTD, the complex relationship between clinical presentations and underlying molecular pathology
poses a challenge for its diagnosis and treatment. AD can be viewed as a successful example of how
the introduction of cerebrospinal fluid (CSF) biomarker-assisted diagnosis has led to recent
therapeutic advances (35) with the potential to revolutionise its treatment. In the case of FTD, however,
the historic lack of biomarkers, as well as the complex relationship between clinical symptomatology
and underlying pathophysiology have so far hampered such advancements. Nonetheless, there are
biomarkers that show promise also in the context of FTD. Neurofilament light chain (NfL) has
emerged as a promising, although disease-nonspecific, biomarker in differentiating FTD from primary
psychiatric causes of behavioral symptoms (6) and, due to plasma NfL increasing in concentration in
the presymptomatic phase of genetic FTD, also as a biomarker to detect neurodegeneration onset and
disease intensity (7). Although there are indications that group-level concentrations of NfL are highest

(at least in plasma) in GRN carriers (8), NfLL cannot be used to identify the underlying pathology. For
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this purpose, mutation- or pathology-specific biomarkers are needed, with current examples being
limited, such as low plasma/CSF progranulin as indication of an underlying GRN mutation resulting
in haploinsufficiency (9, 10); or promising new results on TDP-43 or 3R/4R tau protein in plasma-
derived extracellular vesicles (11), that need further replication. Due to the lack of an antemortem
gold standard for FTLD-tau and TDP-43 pathologies, sporadic FTD is likely not an ideal model to
develop novel biomarkers at present. In familial FTD, however, the clear relationship between genetic

mutation and resulting pathology may provide a context that allows the identification of such markers.

Previous studies using antibody-based methods (/12—14) or mass spectrometric techniques (15, 16)
have identified several FTD biomarker candidates, including neurofilament light, medium (NfM), and
heavy (NfH), neuronal pentraxins, chitinase-3-like protein 1 (CHI3L1, also known as YKL-40), and
ubiquitin carboxy-terminal hydrolase L1 (UCHL1). However, none of these proteins have proven
specific for either FTLD or its subtypes, with similar alterations being seen in other neurodegenerative

disorders, such as AD, Creutzfeldt-Jakob disease or ALS (14, 17-21).

In this study, we adopted an untargeted proteomics approach, using high-resolution mass
spectrometry combined with tandem mass tag (TMT), to measure CSF proteins in a large, well-
characterised genetic FTD cohort: the Genetic FTD Initiative (GENFI) study. We aimed to measure
changes in low-abundant proteins not previously implicated in FTD to identify proteomic signatures
of symptomatic groups carrying the most common genetic mutations causing FTD and therefore
potentially distinguish specific underlying pathologies. Furthermore, we explored CSF proteomic
changes that may identify mutation carriers at the presymptomatic stage of the disease, as has been
done previously in autosomal dominant AD (22). Lastly, we investigated alterations of biological
pathways in FTD, as mirrored in the CSF proteome, and their association with relevant clinical

parameters and cognitive decline.
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RESULTS
We analyzed a total of 238 CSF samples from 71 CY90rf72 expansion carriers, 55 GRN mutation
carriers, and 36 MAPT mutation carriers, including both presymptomatic and symptomatic carriers in

each group, as well as 76 asymptomatic non-carriers (Table 1).

Key methodological information of this study is summarized in Fig. 1, and specific descriptions for
each analysis are detailed in the Materials and Methods and Supplementary Methods sections. Having
prepared and analyzed all study samples using protocols previously described and developed by our
laboratory (23-25), we initially explored differential protein abundances among symptomatic groups
to assess wide-spread CSF proteomic changes in the context of different underlying pathologies and
compared those to AD. Next, we utilised linear models to discern mutation-associated proteins
already changed at the presymptomatic disease stage. Furthermore, employing weighted gene co-
expression network analysis (WGCNA), we aimed to elucidate pathophysiological features associated
with genetic mutations, as well as the cross-sectional correlations of protein networks with measures
of cognitive function and brain volume. Finally, to investigate the prognostic properties of protein

networks, we assessed their association with cognitive decline.

After outlier exclusion and removal of proteins with high missingness, we identified and obtained
quantitative information for 1981 CSF proteins. First, we compared our TMT dataset to existing
biomarker data from the same sample cohort. TMT CSF neurofilament light chain (NEFL; henceforth
used interchangeably with protein abbreviation, NfLL) measurements strongly correlated with plasma
NfL measurements acquired on the Single molecule array (Simoa, Quanterix) platform (R=0.62,
P<0.001; fig. STA). The relative protein abundances of 14-3-3 epsilon (referred to as YWHAE)
(R=0.39, P<0.001; fig. S1B), neuronal pentraxin 2 (NPTX2) (R=0.8, P<0.001; fig. S1C), and neuronal
pentraxin receptor (NPTXR) (R=0.68, P<0.001; fig. S1D) also correlated significantly with previous
data from the same cohort, acquired using targeted mass spectrometric analysis (26). The strong
correlations of TMT relative protein abundances with measures acquired on two independent

platforms indicate good analytical precision of our results.
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Cerebrospinal fluid proteomes differ across symptomatic FTD mutation carrier groups

Linear regression analysis, including age and sex as covariates, was used to perform group
comparisons between non-carriers and symptomatic mutation carriers. In the case of symptomatic
MAPT mutation carriers, 58 proteins significantly differed in abundance compared with non-carriers
(Fig. 2A; Table S1A), whereas the abundance of 138 and 385 proteins was significantly altered in
symptomatic GRN (Fig. 2B; Table S1B) and C90rf72 mutation carriers (Fig. 2C; Table S1C)

compared to non-carriers, respectively (Pugjus<0.05).

Next, to strengthen our findings, we compared our results to those from an external cohort consisting
of symptomatic GRN carriers (n=11) and healthy non-carriers (n=12) (27) whose CSF proteome was
measured with label-free mass spectrometry. Most proteins were commonly quantified in both
studies, of which 73 proteins were significantly changed in both datasets (Punadjusea<0.05) (fig. S2,
Table S2), with log, fold changes being strongly correlated between the studies (R=0.87, P<0.001)

(fig. S2).

From the 25 hits that presented the largest log, fold changes in each symptomatic mutation group
(Table S3), a list of proteins was compiled (excluding overlap between groups) denoting
corresponding protein abundance fold changes compared with non-carriers in a heatmap (Fig. 2D;
Table S3). As expected, the three neurofilaments, NfL, NfM and NfH, alongside YKL-40 (CHI3L1),
exhibited the greatest fold change in abundance across most symptomatic groups when compared to
non-carriers, with NfL. abundances being up to 7.4-times higher in symptomatic GRN carriers in
comparison to non-carriers. Other proteins showing a notable positive fold change in symptomatic
mutation carriers included the spectrins (SPTBN1, SPTANT1) as well as UCHL1 (ubiquitin C-terminal
hydrolase 1), FABP3 (fatty acid binding protein 3), PEA15 (Proliferation and apoptosis adaptor
protein 15) and several 14-3-3 proteins (YWHAZ, YWHAG, YWHAE). Proteins that were lower in
abundance across symptomatic mutation carriers compared with non-carriers included the synaptic
proteins NPTXR, NPTX2 and NPTX1, as well as PCSK2 (proprotein convertase subtilisin/kexin type

2) and PENK (proenkephalin). Furthermore, GRN relative abundance levels was lower in GRN
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mutation carriers. Most proteins showed the same directionality of abundance fold change across the
three mutation carrier groups except for a few proteins. These include GRN, which showed opposite
direction of change in symptomatic C90rf72 and GRN carriers (both Py4us<0.05), and the lysosomal
proteins deoxyribonuclease 2 (DNASE2) and phospholipase B domain containing 2 (PLBD2), which

were selectively decreased in symptomatic MAPT carriers.

Proteomic similarities and differences between genetic FTD and sporadic AD

Since some of the proteins quantified in this study are expected to change also in other
neurodegenerative disorders, we compared the summary statistics of our differential abundance
analyses of symptomatic FTD mutation carrier groups with summary statistics of previously
published TMT proteomics datasets from two distinct AD studies: the European Medical Information
Framework (EMIF) CSF study (25) and a CSF proteomics study performed by Higginbotham and
colleagues (28). Of the about 1192 proteins quantifiable in all three studies, (Fig. 3A; Table S4A,
Table S4B and Table S5), only 6 were significantly changed in all groups (Paqus<0.05) (YWHAZ,
YWHAG, UCHL1, NPTXR, NPTX2 and FABP3, Fig. 3, B and C; Table S5). Conversely, many
proteins were distinctly changed in each FTD mutation carrier group (Fig. 3, B and C, Table S5), with
more widespread changes being found in symptomatic C90rf72 carriers (calretinin [CALB2], sortilin
1 [SORT1] and roundabout guidance receptor 1 [ROBO1]) compared with GRN (transmembrane
protein 132A [TMEMI132A], ring finger protein [RNF13] and chitinase 3 like 2 [CHI3L2]) and MAPT
(hexosaminidase subunit alpha [HEXA], semaphorin 6A [SEMAG6A] and cathepsin D [CTSD])
carriers. Proteins shared between C90rf72 and GRN carriers included many proteins involved in
lysosomal processes (GRN, cathepsin S [CTSS], lysosomal-associated membrane protein 1
[LAMP1)). Proteins uniquely changed in both AD studies included neurogranin (NRGN) and SPARC
related modular calcium binding 1 (SMOC1), both previously shown to increase in response to
amyloid pathology (29). Only two proteins were distinctly changed in all symptomatic FTD mutation
carrier groups (CD44 and follistatin like 4 [FSTL4]), likely reflecting the different processes involved

in these disease-causing mutations.
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Mutation-associated proteomic changes are evident in presymptomatic disease mutation
carriers

Having compared proteomic alterations of symptomatic FTD subtypes and their overlap with AD, we
next set out to determine changes in protein abundances associated with a specific genetic
background, regardless of affectation (presence or absence of symptoms). The presence of symptoms
is expected to coincide with diverse neurodegenerative processes impacting the CSF proteome and
obscuring potential mutation-related changes. Thus, to investigate proteomic alterations attributable to
each underlying pathogenic mutation, we (i) fitted linear models combining all study participants,
testing the effect of genetic mutation on protein abundances while adjusting for affectation (Fig. 4,
Table S6) and (ii) compared CSF proteomes of presymptomatic individuals with non-carriers for each
genetic group separately (fig. S3-S8, Table S7A-S7C). This approach yielded several proteins
strongly associated with either C9orf72 (Fig. 4A), GRN (Fig. 4B) or MAPT (Fig. 4C) mutation status,
of which the top five proteins for each association were chosen for visual display. Standardised f
coefficients indicate the strength of the association respectively and are depicted in a forest plot for
ease of comparison. The protein most strongly associated with C9orf72 mutation status was CALB2
(Fig. 4A, standardised =0.77, Paqjus<<0.01), which could also be found among the top changed
proteins in the analysis of presymptomatic C9orf72 carriers vs. non-carriers (Fig. S5 and S8).
Numerous proteins found to be associated with C90rf72, such as glucose-6-phosphate isomerase
(GPI), hexokinase 1 (HK1) (Fig. 4A, fig. S8), and phosphoglycerate kinase 1 (PGK1) (fig. S8) are key
enzymes of the glycolysis pathway, hinting at early metabolic disturbances. The proteins CALB2,
HK1, and PGK1 demonstrated a stepwise increase in abundance from non-carriers over
presymptomatic to symptomatic C9orf72 carriers (fig. S8), further underlining their implication in
C9orf72-related disease processes.

Reflecting the GRN haploinsufficiency, the protein most strongly associated with GRN mutation
status was GRN itself, (Fig. 4B, fig. S4 and S7, standardised f=-1.59, Pa.q4ju<0.01), followed by
NAGA (alpha-N-acetylgalactosaminidase) (standardised f=0.71, Pagjusv=0.04) and RNF13
(standardised f=0.64, Pagjus=0.09). RNF13, though narrowly failing to reach the significance

threshold of 0.05 after multiple testing correction in the combined analysis, was found to be

10
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significantly changed in the presymptomatic GRN carrier vs. non-carrier analysis (fig. S4, Pagjus=0.03)
and increased in abundance across the GRN disease continuum (fig. S7). The proteins most strongly
associated with MAPT mutation status were PEA15 (Fig. 4C, standardised £=0.9, Pagjus<0.01) and
SEMAGA (standardised f=-0.82, Pagjustc<0.05). PEA15 was also significantly altered in the comparison
between presymptomatic MAPT carriers vs. non-carriers (fig. S3, Pagjus=0.02) and increased in
abundance from the presymptomatic to symptomatic disease stage (fig. S6). Due to concerns of
family membership adversely affecting our results, we conducted sensitivity analyses adopting the
same linear models as in the main analysis but including one member from each family. These

analyses presented similar results (Table S8, A to E).

Protein networks reveal pathology-specific pathophysiological alterations and correlate with
clinical parameters

Having studied the proteomic signatures of each genetic group, we further explored the biological
processes implicated in these proteomic changes by performing WGCNA (fig. S9 t0S23). WGCNA is
an analysis tool aimed at reducing the complexity of a proteomics dataset by breaking it down into
gene ontology (GO)-annotated protein clusters. These protein modules consist of highly co-correlated
proteins likely reflecting similar biological processes. We identified a total of 14 protein modules,
including a group of 645 proteins that could not be assigned to any of the modules and a module
containing contaminants from the laboratory environment. The modules varied in size from 14 to 349
proteins with a median module size of 52 proteins (Table S9). We determined the biological relevance
of each protein module utilising GO analysis of its constituent proteins and selected the most
representative term for module annotation (fig. S12 to S23). Furthermore, we identified the hub
proteins of each module, indicating the proteins most strongly correlating (R>0.7) with the module’s
first principal component (Eigenprotein value), as most representative and important proteins of the
respective module.

Figure 5A shows a selection of six protein modules and their corresponding Eigenprotein values
(representative abundance values) plotted across all genetic groups as well as non-carriers. One

module, which we termed ‘Core markers’ of neurodegenerative disease, consisted of 15 proteins and

11
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was most strongly increased in abundance in each genetic group at the symptomatic stages when
compared to non-carriers. The strong difference between non-carriers and presymptomatic MAPT
carriers is largely influenced by age. It included YWHAG, NEFL, CHI3L1, NEFM and YWHAZ as
hub proteins. These proteins were also among the top hits in the differential abundance analysis and
had the highest fold change in symptomatic mutation carriers compared with non-carriers (Fig. 2D).
As expected, many proteins belonging to the ‘Core markers’ module were also seen among the
proteins overlapping between the three genetic forms and were found to be altered in the CSF of AD

patients in the EMIF and Higginbotham studies (Fig. 3B and 3C).

Correlating the ‘Core marker’ Eigenprotein values with clinical parameters in both presymptomatic
and symptomatic mutation carriers (Fig. 5B) revealed a strong positive association of the module with
both plasma NfL (R=0.86, Paqjuss<0.0001) and the National Alzheimer's Coordinating Center's
Frontotemporal Lobar Degeneration plus clinical dementia rating sum of boxes (FTLD-CDR-SOB)
disease severity scores (R=0.67, Paqjus<<0.0001) as well as a negative association with MMSE scores
(R=-0.53, Pa4jusc<0.0001) and regional brain volumes. The ‘Core markers’ module also positively
correlated with estimated years until disease onset (EYO) in presymptomatic individuals (R=0.68,

Padjust<0.000 1 )

Besides the ‘Core markers’ module, Eigenprotein values for both the ‘Actin binding” module and the
“Stress response’ module were higher across symptomatic mutation carrier groups (albeit not
statistically significant), suggesting common pathophysiological alterations in these processes (Fig.
5A). Both modules, along with the ‘Glycosaminoglycan processing’ module (Fig. S24D), showed a

similar correlation pattern to the ‘Core markers’ module.

Conversely, the ‘Synapse’ module, containing proteins such as CHGB, SHISA6, CADM3, CADM1
and GPR158 showed lower Eigenprotein values in all symptomatic mutation carrier groups compared
with non-carriers, although changes were not significant. Its correlation pattern with clinical

parameters was inverse compared to the ‘Core markers’ module, exhibiting negative correlations with
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age, plasma NfL and FTLD-CDR-SOB scores, and positive correlations with MMSE scores and brain
volumes (Fig. 5B), similarly to the ‘Neuronal development’ and the ‘Extracellular matrix 1’ modules
(fig. S24B and E). The ‘Neuronal development’ module contained several proteins considered to be
markers of synaptic loss (NPTX2 and NPTXR, among others) and was significantly lower in

symptomatic C9orf72 carriers (Padjus<0.05).

We also identified a module associated with lysosomal proteins (‘Lysosome’ module), for which
Eigenprotein values were selectively decreased in symptomatic MAPT mutation carriers compared to
non-carriers (Pagjust<0.05). They were also slightly decreased in presymptomatic MAPT individuals,
albeit without statistical significance (P=0.79). The hub proteins were determined to be SIAE (sialic
acid acetylesterase), hexosaminidase subunit beta (HEXB), HEXA, DNASE2 and PLBD2, all of
which are implicated in lysosomal processes. These specific changes in MAPT mutation carriers in
DNASE2 and PLBD2 were already evident in the heatmap (Fig. 2D) contrasting symptomatic
mutation carrier groups. Other lysosomal proteins found to be commonly changed in GRN and
C9orf72 carriers (LAMP1 and CTSS, Fig. 3) were not part of the ‘Lysosome’ module, suggesting
different subpopulations of lysosomal proteins, which might be reflective of distinct biological
processes. The ‘Lysosome’ module did not correlate with markers of neurodegeneration, cognitive

decline or brain atrophy.

The ‘Immune response’ module contained proteins related to the complement pathway and the
immune system. For all symptomatic groups, there was a visible trend of increase in these clusters
when compared to non-carriers, however, these differences were not statistically significant (P>0.05).

This module showed similar correlation patterns with clinical features to the ‘Core markers’ module.

Protein networks associate with cognitive decline in mutation carriers
To evaluate the prognostic properties of protein networks, the module Eigenprotein values of
mutation carriers with cognitive evaluation at the time of lumbar puncture (LP) (n=146, mean number

of annual visits = 2.7, range 1-5) were modelled with FTLD-CDR-SOB score as outcome. In
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agreement with analyses of cross-sectional cognitive scores, higher ‘Core markers’ Eigenprotein
values were most strongly associated with higher FTLD-CDR-SOB scores, reflecting poorer cognitive
outcomes (standardised f=0.83, P<0.001; Fig. 6A). A similar but less prominent pattern was seen for
the ‘Actin binding’ module (standardised =0.50, P<0.001; Fig. 6B). Conversely, lower Eigenvalues
of the ‘Synapse’ module were associated with increasing FTLD-CDR-SOB scores (standardised f=-
0.49, P<0.001; Fig. 6C). This indicated that lower ‘Synapse’ Eigenprotein values were associated
with worse cognitive outcomes. Further, ‘Semaphorin signalling’, ‘Neuronal development’,
‘Extracellular Matrix 1°, ‘Lysosome’ and ‘Immune response’ module Eigenprotein values were also
significantly (all P<0.05) associated with cognitive decline (Fig. 6D; for full model output, see Table

S10).
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DISCUSSION

The present study offers a detailed and untargeted account of the CSF proteomic signatures in genetic
FTD. By including participants from the well-characterised GENFI cohort, with presymptomatic and
symptomatic carriers of pathogenic mutations in the three genes comprising the overwhelming
majority of genetic FTD, we covered most of the clinical continuum as well as its underlying genetic
causes. Our analytical approach allowed us to uncover proteomic changes beyond known CSF and
blood biomarkers, such as NfL, GFAP, and progranulin, suggesting potential pathology- and FTD-

specific biomarkers.

To assess both differences and similarities across the FTD spectrum, we explored the proteome of
each genetic group through separate analyses. Employing differential protein abundance analysis, we
found several proteins that were altered in all symptomatic mutation carriers. Among these proteins,
many of the top hits were neuronal proteins known to be increased in CSF in several
neurodegenerative diseases, including neurofilaments (NfL, NfM and NfH), and 14-3-3 proteins
(YWHAZ, YWHAG) (17, 18, 30). NfL (both when measured in CSF and plasma) has especially been
suggested to be of diagnostic, prognostic and theragnostic value in FTD, as both this and other studies
find large fold changes (seemingly most pronounced in GRN carriers) compared with healthy controls
and even other brain-related conditions, which bears important implications for differential diagnoses
(7, 30, 31). The decreased relative abundances of neuronal pentraxins (NPTX1, NPTX2) and their
receptor (NPTXR), previously reported to be decreased in genetic FTD (15, 26, 32) and other
neurodegenerative diseases (718, 33), further emphasises the presence of synaptic changes in FTD.
These markers displayed a similar fold change in the study of FTD-GRN by Pesdmaa et al. (27),
which we used to validate our findings. In addition, changes shared between groups included proteins
recently suggested to be associated with astrocytic and microglial responses in AD as well as FTD-
TDP brains, such as rab GDP dissociation inhibitor alpha (GDI1), FABP3, and CD44 (34). Although
not significantly changed in either the EMIF or Higginbotham study, CD44 antigen has been shown to
play a role in neuroinflammation in AD, in relation to disease associated microglia (DAM) (34, 35)

and their communication with astrocytes (36), as well as in GRN deficient animal models (37).
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Despite not being specific to glial responses in FTD, the clear increases seen in symptomatic FTD
suggest that CD44 may be a promising fluid-based marker to index such glial changes in future trials.
Of note, GDI1, FABP3, and CD44 were also identified as microglial activation-dependent markers in

the study by Pesdmaa et al. (27).

Many of the proteins found to be clearly altered in all groups of symptomatic carriers were assigned to
the ‘Core markers’ module in the protein network analysis (YWHAG, NfL, UCHL-1, FABP3,
CHI3L1, CD44). Several of these ‘Core marker’ proteins (FABP3, UCHL1 and YWHAG, among
others) were also shown to be changed in abundance in the CSF of AD patients, as evident by the
EMIF and Higginbotham studies (25, 28). Together, these findings support the strong
neurodegenerative and glial component of both diseases and highlight that, despite AD and FTD
being separate disease entities, they appear to share common downstream pathophysiological features.
Of note, the ‘Core markers’ also reflected disease severity and imaging measures of
neurodegeneration and proved to be the protein network most closely linked to cognitive decline and
estimated years until disease onset highlighting the prognostic value of markers reflecting

neurodegenerative and neuroinflammatory processes.

Besides the ‘Core markers’ module, we identified several other protein modules seemingly altered
across several groups in the FTD spectrum compared with non-carriers, with constituent proteins
relating to the synapse ('Synapse’ module), in line with results shown in the heatmap (Fig. 2), actin
binding and stress response. Lower relative abundances of the ‘Synapse’ Eigenprotein values also
predicted cognitive decline in mutation carriers. Although these protein networks strongly correlated
with clinical and neuroimaging features, abundance differences compared with non-carriers were
rendered non-significant, likely due to their association with age. Of note, the synaptic protein
neurogranin (NRGN) as well as the extracellular matrix protein SMOC]1 were not altered in any of the
groups of symptomatic genetic FTD mutation carriers but altered in both AD studies. This is in line
with previous research (29) and suggests their specificity for amyloid-related changes in AD.

Conversely, the protein FSTL4 was found to be changed in all groups of symptomatic FTD mutation
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carriers but not AD, hinting at its potential specificity for FTD. Knowledge is still limited on the
extent to which this protein is associated with neurodegenerative disorders, although one small study

reported lower protein abundances of FSTL4 in patients with ALS (38).

As this study aimed to look beyond proteomic alterations shared between FTD subtypes as well as
AD, we also investigated the differences across genetic forms of FTD and their expected underlying
pathologies. We identified lysosomal proteins with the potential to separate processes implicated in
MAPT mutation carriers but not the other two groups. Decreased DNSAE2 and PLBD2 (which show
divergent patterns in symptomatic GRN and C90rf72 carriers as shown in Fig. 2B) appear to be
specifically related to the presence of tau pathology, without the amyloid background observed in AD
(as evident in Fig. 3). This was further supported by PLBD2 and DNASE2 being among the hub
proteins in the ‘lysosome’ module, driving the marked Eigenprotein value decrease in MAPT mutation
carriers (Fig. 5G). Indeed, evidence suggests that PLBD2 and DNASE2 play a role in lysosomal
processes (39—42). These results were unexpected, given the evidence of lysosomal dysfunction in
GRN mutation carriers, but not in MAPT mutation carriers, due to the role of progranulin in the
endolysosomal pathway (43, 44). Nonetheless, tau protein has been previously implicated in the
trafficking of autophagic vesicles and autolysosome fusion (45—47), suggesting that a reduction of
proteins related to the endolysosomal pathway in MAPT may indicate a potential dysregulation in this
system. Lysosomal acid phosphatase 2 (ACP2) (48), a member of the ‘lysosome’ module, was found
to be downregulated in presymptomatic MAPT carriers, which aligns with the changes seen in the
protein networks found in symptomatic carriers. This dysregulation might be different from that
observed in C90rf72 and GRN carriers, in which there was a selective increase for some lysosomal
proteins (LAMP1 and CTSS) not belonging to the ‘Lysosome’ module and thus displaying a different

correlation pattern.

In analyses stratifying groups by mutation irrespective of symptomatology, we observed a stepwise
abundance increase across the disease continuum in PEA15, an astroglial protein associated with glial

responses (34), being more strongly associated with MAPT mutation carriership than with GRN and
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C90rf72. In GRN carriers, the expected decrease in GRN concentrations was observed (70) in both
presymptomatic and symptomatic GRN carriers. Further, we found increased concentrations of
RNF13 in both presymptomatic and symptomatic GRN carriers, which might be reflecting an
underlying alteration in the ubiquitin system (49), not as well captured in MAPT and C9orf72 carriers.
Further, we discovered several proteins that were changed in C90rf72 expansion carriers, including
PGK1 which was elevated not only in presymptomatic carriers in comparison with non-carriers but
also showed a stepwise increase across the disease continuum. In addition, CALB2 as well as HK1
were elevated in presymptomatic C90rf72 carriers and, like PGK1, their relative abundances appeared
to increase with disease progression. Both HK1 and PGK1 are key enzymes of the glycolysis pathway
suggesting that a dysregulation of the glucose metabolism might be an early feature of C90rf72-
related FTD (50). HK1 and CALB2 were also selected as two of the top proteins in analyses
comparing mutation carriers irrespective of underlying symptomatology, indicating their stronger

association with a C9orf72 mutation.

This study has limitations. The identification of a lower number of proteins that were changed in
MAPT mutation carriers in comparison with GRN and C9orf72 mutation carriers may be biased due to
the lower number of participants in this group. C90rf72 seems to be the most common genetic cause
of FTD worldwide, followed by GRN and then MAPT (1), and this trend is reflected in the recruitment
of the GENFI study. Due to the structure of participant recruitment in the GENFI cohort, some
participants from the same family were included in the study. Family members may share genetic and
environmental factors to a greater degree than the general population, which may bias the results.
However, we conducted sensitivity analyses that included only one member from each family, with
comparable results.

Although genetic FTD offers the unique advantage of linking proteomic changes to pathological
alterations antemortem, specifically distinguishing between tau and TDP-43 pathology, it cannot be
excluded that observed proteomic changes are, in fact, specific to the underlying genetic mutation and

not necessarily transferable to the resulting pathology in sporadic FTD.
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Further, although both the EMIF and Higginbotham ef a/. studies employed similar statistical and
mass spectrometric methods, it is likely that some of the differences seen between studies are due to
varying power to detect proteomic alterations.

Finally, the age-difference between symptomatic carriers and non-carriers may have resulted in age
influencing the interpretation of results. However, including age as a covariate in all relevant analyses

is likely to mostly mitigate this potential issue.

To conclude, this study explored the CSF proteome in genetic FTD and found distinct changes
occurring already in presymptomatic mutation carriers indicating early lysosomal dysfunction and
alterations in proteins involved in glucose metabolism, with more widespread proteomic differences
during the symptomatic stage of the disease. We found that proteomic profiles largely overlapped
between the different causes of FTD as well as with AD, especially with respect to synaptic loss, glial
responses and neurodegenerative processes. Furthermore, we discovered that certain lysosomal
proteins are strongly associated with MAPT-mutation carriers, hinting at their potential value in
distinguishing underlying FTD pathologies. Taken together, our results can inform the development
of targeted assays that could be of value in clinical scenarios as well as in research aiming to better

understand these diseases.
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MATERIALS AND METHODS

Study design

The objective of this study was to explore the CSF proteomic signatures of the three most common
genetic pathogenic mutations in FTD. To this end, 238 CSF samples from an ongoing case-control study
cohort of genetic FTD, the GENFI cohort, were employed. Participants of the GENFI cohort were
recruited from 14 GENFI centres, distributed across Europe and Canada, since 2012. One CSF sample
per participant, generally obtained upon the first (baseline) visit, was included in the present cross-
sectional study. The samples were randomised for measurement and the researchers were blinded for
genetic status and genetic mutations at the time of the experiment. No prior calculations were performed
to determine cohort size; all available samples were included in the study. The presence of batch effects
and sample outliers were investigated using hierarchical clustering and principal component analysis
before and after normalization. The proteomic experiments were conducted in one replicate. No
participants were excluded. London Queen Square Ethics committee as well as local ethics committees
at each site approved the study. The study complies with the Declaration of Helsinki. All participants
provided written informed consent at enrolment including consent to publication. This study adhered to

the STROBE reporting guidelines for observational studies.

Participants and sample collection

Participants were recruited from the GENFI study, which includes individuals with a diagnosis of
FTD due to a pathogenic mutation in MAPT, GRN, or C9orf72 (symptomatic mutation carriers), at-
risk first-degree relatives (presymptomatic mutation carriers), and non-carriers (mutation-negative
first-degree relatives from the same families). Demographics of the cohort are described in Table 1.
Participants were assessed using a standardised history and examination and were classified as
symptomatic if they met consensus diagnostic criteria (57, 52). The CDR Dementia Staging
Instrument with National Alzheimer Coordinating Centre Frontotemporal Lobar Degeneration
component (CDR® plus NACC FTLD) was used to assess disease severity, and the CDR® plus

NACC FTLD sum of boxes (SOB) was used for quantitative analyses in this paper. Participants
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underwent Volumetric T1-weighted MRI scans. More details on clinical evaluation and imaging can

be found in Supplementary Methods.

CSF collection and sample preparation

CSF was collected in polypropylene tubes through a lumbar puncture and centrifuged to remove
insoluble material and cells. Supernatants were aliquoted and stored at -80 °C within 2 hours after
collection. CSF samples (25 uL) were reduced by the addition of Tris(2)-carboxyethylphosphine
(TCEP) in sodium deoxycholate (DOC), and triethylammonium bicarbonate (TEAB) to a final
concentration of 5 mM TCEP (1% DOC, 100 mM TEAB). Following incubation at 55 °C for one
hour, samples were equilibrated to room temperature (RT). Carbamidomethylation was performed by
adding iodoacetamide to a concentration of 10 mM and subsequently incubating the reaction mixture
in the dark for 30 min at RT. Trypsin (100 pg per vial; Promega) was dissolved in resuspension buffer
(Promega) and 1.5 pg were added for overnight digestion at 37 °C. The following day, TMTpro
reagents (TMT 18plex, Thermo Fisher, 5 mg) were dissolved in 200 pL acetonitrile (ACN) having
been equilibrated to RT. Samples were randomised across TMT sets and TMT labelling was
performed by adding 10 uL of TMT reagent to each sample. Per set, a global internal standard (GIS;
pool of all cohort samples) was included as the last TMT channel (135N) for reference and
normalisation. The reaction mixture was incubated for one hour under constant agitation and
afterwards the labelling process was quenched by the addition of hydroxylamine to a final
concentration of 0.2% (v/v). Following an incubation period of 30 min, samples were combined into
18-plex sets and subsequently acidified with 0.5 M hydrochloric acid to precipitate DOC as well as
diluted with 0.1% trifluoroacetic acid (TFA). To remove DOC, TMT sets were centrifuged at 4000*g
for 15 min at 4 °C and the resulting supernatant was subjected to desalting by solid phase extraction
(SPE). Desalting was performed on reversed-phase C18 cartridges (Sep-Pak C18 light) with a vacuum
manifold. The columns were first washed with 2*1000 puL 0.1% TFA in 80% ACN and then
equilibrated with 2*1000 pL 0.1% TFA. After sample loading, the column was again washed twice
with 1000 pL 0.1% TFA and finally peptides were eluted with 0.1% TFA, 80% ACN. The eluate was

split into three aliquots of equal volume, dried by vacuum centrifugation, and stored at -20 °C.
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Plasma NfL and other CSF marker measurements are detailed in Supplementary Methods.

Offline high-pH reverse phase HPLC sample fractionation

Offline high-pH HPLC fractionation was performed on an UltiMate™ 3000 Nano LC system. Each
TMT set aliquot was dissolved in 22 puL of 2.5 mM NH4OH of which 20 uL were injected to be
separated on an XBridge BEH C18 column (pore size: 130 A, inner diameter: 4.6 mm). Peptide
elution was accomplished using the following gradient: Buffer B was increased from 1% to 45% over
a 65-minute period (flow rate of 100 pL/min), while Buffer C was maintained at 10% (Buffer A: H,O,
Buffer B: 84% ACN, Buffer C: 25 mM NH;OH). Resulting fractions were collected circling over two
rows in a 96-well microtiter plate at 1 min intervals, yielding 24 concatenated fractions. Subsequent
column cleaning was performed at 90% B and 10% C for 10 minutes followed by an equilibration at
1% B and 10% C for 10 minutes. All fractions were subjected to vacuum centrifugation and stored

dry at -20 °C until subsequent LC-MS analysis.

Liquid chromatography-mass spectrometry (LC-MS)

Fractions were dissolved in 50 puL 0.05% TFA, 0.1% bovine serum albumin (loading buffer) and
loaded on a nano-LC (Ultimate RSLC Nano, Thermo Scientific) equipped with a C18 trap column
(PepMap Acclaim 300 pm mm * 5 mm, Thermo Scientific) and C18 separation column (PepMap
Acclaim 75 pm * 500 mm, Thermo Scientific), connected to an Orbitrap Fusion™ Lumos™ Tribrid™
mass spectrometer (Thermo Scientific), fitted with an Easy Spray Source and a high-field asymmetric
waveform ion mobility spectrometry (FAIMS) unit for spatial ion separation. Peptides were separated
according to the following gradient: 5 min, 4% B; 6 min, 10% B; 74 min, 40% B; 75 min, 100% B
(Buffer A: 0.1% FA; Buffer B: 84% ACN, 0.1% FA). In the positive ion mode, alternating MS/MS
cycles (cycle time = 1.5 s) were performed at compensation voltages (CV) of CV=-70 V, CV =-50 V.
A full Orbitrap MS scan was recorded with the parameters specified as follows: R =120 k, AGC
target = 100%, max injection time = 50 ms. The full MS scan was then followed by data dependent
Orbitrap MS/MS scans set to the following parameters: R = 50 k, AGC target = 200%, max. injection

time = 120 ms, isolation window = 0.7 m/z, activation type = HCD.
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Statistical analysis

All statistical analyses were performed with R version 4.1.2. For basic demographic variables,
Omnibus Kruskal-Wallis tests were performed for continuous variables, whereas Fisher’s exact tests
were used for categorical variables. Unless otherwise specified, Spearman correlations were used to
test associations between continuous variables. To assess differentially abundant proteins across the
diagnostic groups, linear regression models were built with the log,-transformed value of the
measured protein abundance as dependent variable, testing the effect of the diagnostic group, and
adjusting for both age and sex as covariates. Resulting P-values were adjusted with the Benjamini-
Hochberg procedure to account for multiple testing. Statistical significance (o)) was set at a two-sided
P<0.05. To ensure a minimum number of observations per group, proteins with a high fraction of
missing values (>75% of participants) were excluded from the regression analysis. Additionally,
group-wise outlier removal of protein measurements (+/- 1.5*IQR) was performed prior to regression
analysis as the presence of outliers can severely affect resulting test statistics potentially increasing
the rate of false negatives in the initial biomarker discovery phase. For all subsequent statistical
analyses as well as boxplots shown in this paper, outliers were not removed. Linear models (also
adjusted for age and sex) including only one member from each family were performed in
comparisons when more than 5 participants were available in both groups. To identify mutation-
specific signatures, linear models were fitted including protein abundance as a dependent variable
while evaluating the effect of each mutation group including affectation (absence/presence of
symptoms) as well as age and sex as covariates. To identify subsets of co-correlated proteins relating
to pathophysiological features of genetic FTD, we performed network analysis (WGCNA) followed
by GO annotation of the output modules. The prognostic properties of protein networks were
evaluated using linear mixed effects models. The specifics of each of these methods are described in

Supplementary Methods.
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Figures and tables

Tables

Table 1. Baseline demographic characteristics of the GENFI cohort. Abbreviations: MMSE, mini
mental state examination; FTLD-CDR-SOB, frontotemporal lobar degeneration national Alzheimer's

disease coordinating centre + clinical dementia rating sum of boxes; NfL, neurofilament light.

Characteris  Overall, Non- Presympto Presympto Presympto Symptom  Symptom  Symptom  P-value?
tic N = carrier, matic matic GRN, matic MAPT, atic atic GRN, atic
2387 N=76" C9orf72,N = N = 38’ N = 257 C9orf72, N =17’ MAPT, N
441 N =27’ =117
Age, 48 43 43 (33, 50 (37, 42 (33, 58 64 63 <0.
years (38 (38 50) 56) 46) (55, (58, (59, 001
. . 70) 67) 66)
58) 53)
Sex, 10 33 19 18 9 (36%) 16 8 5 0.8
male 8 43 (43%) (47%) (59%) (47%) (45%)
(45 %)
%)
Educat 15 15 14 (12, 15 (13, 15 (13, 13 14 (9, 13 0.01
ion, (12 (12 16) 16) 16) (11, 15) (12, 9
years , , 14) 16)
16) 17)
Plasm 8 7 8 (6, 10) 8 (5,10) 6(59) 40 44 20 <0.
a NfL, (6, (5, (21, (37, (18, 001
pg/mL 15) 10) 55) 69) 23)
MMSE 30. 30. 30.0 30.0 30.0 26.0 23.0 24.5 <0.
0 0 (29.0, (29.0, (29.0, (20.3, (20.5, (17.8, 001
(28 (29 30.0) 30.0) 30.0) 28.8) 28.0) 27.0)
.0, .0,
30. 30.
0) 0)
CDR 0.0 0.0 0.0 (0.0, 0.0 (0.0, 0.0 (0.0, 11.5 10.0 7.5 <0.
FTLD (0. (0. 0.5) 0.0) 0.5) 48, 48, (3.3, 001
SOB 0, 0, 15.5) 13.0) 10.6)
1.0 0.0

T Median (IQR); n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test
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Figure Legends
GENFI cohort (n=238) | Sample 1
Multiplex sample Liquid chromatography fractionation
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v l == \
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rmemm 5 J

Fig. 1. Key information about participants, proteomics workflow and data analysis.

This figure shows the TMT tandem mass spectrometry (MS/MS) proteomics workflow, in which
samples were pre-processed and labelled with 18 different isobaric TMTpro tags (TMTpro 18-plex)
and combined into multiplex samples to allow for relative quantification and simultaneous analysis of
the 18 individual samples. This process was then repeated until all 238 samples were labelled with
isobaric tags. Next, each multiplex sample was fractionated using offline high-pH liquid
chromatography (HP-LC) to reduce sample complexity, and each fraction was subsequently analyzed
by LC-MS/MS. The data analysis conceptually consisted of four steps: 1) Investigating differences in
protein abundances in mutation carriers compared with non-carriers and 2) determining FTD-subtype
specific proteomic signatures employing linear models, 3) protein network analysis to investigate
mutation and pathology-specific pathophysiological features as well as finally 4) correlating these
protein clusters with clinical parameters and cognitive decline to discern clinically relevant changes.
Abbreviations: TMT, tandem mass tag; FTD, frontotemporal dementia; MS, mass spectrometry;
MAPT, microtubule associated protein tau; GRN, progranulin; C9orf72, chromosome 9 open reading

frame 72; GENFI, GENetic Frontotemporal dementia Initiative.
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Fig. 2. Volcano plots and heat map displaying top protein hits in symptomatic mutation carriers
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(A — C) Volcano plots showing proteomic differences in symptomatic MAPT (A), GRN (B) and
C90rf72 (C) mutation carriers based on linear regression analysis with age and sex as covariates.
Differences were considered significant if Benjamini-Hochberg (false discovery rate [FDR]) adjusted
P-values were <0.05. (D) The heatmap displays the 25 proteins in each group that had the lowest
FDR-adjusted P-values in linear regression analysis, resulting in 62 proteins when accounting for
overlapping proteins among groups. The log, fold abundance change between non-carriers and the
respective mutation carrier group is colour-coded; proteins higher or lower in abundance in
symptomatic mutation carriers vs. non-carriers are shown in red and blue, respectively. Note that not
all proteins listed in D were significantly altered in all groups. * Pugjus<0.05, ** Pugjus<0.01, ***

Pogjusi<0.001. Details on exact P-values and log, fold change can be found in Table S1A-S1C.
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Fig. 3. Cross cohort comparisons of symptomatic genetic FTD with AD.

(A) Venn diagram with proteins measured in GENFI, the EMIF cohort (25) and Higginbotham et al.

(28). The overlap (n=1192) represents proteins quantified in all studies. (B) Upset plot of
differentially expressed proteins (FDR-adjusted P<0.05) for symptomatic C90rf72, MAPT, GRN
mutation carriers and for patients with AD from the Higginbotham and EMIF cohort. The upper,
vertical bars show the number of differentially expressed proteins exclusive to one patient group
or shared between groups. The left horizontal bars represent the total number of proteins with
Pagjus<0.05 comparing each group with control individuals. Intersections of clinical interest are
color-coded. Intersections only containing 1 protein are not displayed in the figure. (C) Selection
of proteins in intersections from the upset plot in panel B that are of clinical interest, as well as
proteins specifically altered in one group. Proteins included in each of these intersections, as well
as those not displayed, can be found in Table S5. Abbreviations: GENFI, GENetic
Frontotemporal dementia Initiative; EMIF, European Medical Information Framework; AD,

Alzheimer's disease.
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Fig. 4. Identification of mutation-associated proteins. (A to C) Left: Forest plots of the top five

proteins most strongly associated with C90rf72 (A), GRN (B), and MAPT (C) mutation. For the

identification of mutation-associated proteins, linear models were fitted testing the effect of mutation

carrier group on protein abundance, including affectation (presence/absence of symptoms) as well as

age and sex as covariates. Non-carriers served as reference group. Coefficients with an adjusted

P<0.05 are depicted as coloured points and 95% CI were added. Standardised f estimates including

corresponding Benjamini-Hochberg-adjusted P-values for each association and mutation group were

reported. Right: Boxplots of two manually selected proteins across the entire cohort. The dotted line

denotes the median log.-transformed protein abundance value of the non-carrier group. Abbreviations:

CI, confidence interval.
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Fig.5. Weighted gene co-expression network modules show mutation/pathology-specific changes

and correlate with relevant clinical parameters.

(A) Employing Weighted gene co-expression network analysis (WGCNA), we identified 14 distinct

highly correlated modules of proteins. For this figure, six modules of particular interest were selected
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and their Eigenprotein values were plotted across the entire cohort: ‘Core markers’, ‘Actin binding’,
“Stress response’, ‘Synapse’, ‘Lysosome’, ‘Immune response’. Modules were named in accordance
with gene ontology (GO) terms mapped to their constituent proteins. Framed boxes contain the
names of the top five hub proteins of each module, as determined by having the highest module
membership value (kME). P-values for respective group comparisons vs. non-carriers are derived
from linear regression analyses with post hoc Tukey’s honestly significant difference (HSD) to adjust
for multiplicity. Boxplots of the remaining modules can be found in Fig. S24. * P<0.05, ** P<0.01,
*a% P<0.001, **** P<0.0001. (B) Heatmap of correlation parameters of module Eigenproteins with
different clinical measures. Spearman’s rho values are colour-coded, and the corresponding
Bonferroni-corrected P-values are included in parentheses for each tile. To evaluate the association of
protein modules with clinical parameters at different time points of the disease continuum,
correlations were performed in an indicated subset of individuals only. Abbreviations: FTLD-CDR-
SOB, frontotemporal lobar degeneration clinical dementia rating sum of boxes; EYO, estimated years

to disease onset; GAG, Glycosaminoglycan; MMSE, Mini Mental State Examination.
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Fig 6. Weighted gene co-expression network modules predict cognitive change in genetic FTD.
The plots show estimates of the fixed effect (standardised module Eigenprotein value*time in years
from baseline) of linear mixed effects models with FTLD-CDR-SOB as dependent variable in mutation
carriers (n=146). The models included standardised Eigenprotein values*time, age, sex, years of
education and affectation at baseline (presymptomatic/symptomatic) as independent variables. Panels

(A-C) Estimates of ME values for ‘Core biomarkers’ (A), ‘Actin binding’ (B), and ‘Synapse’ (C)
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1246  modules from separate models. The colours visualise the estimated cognitive trajectories at Z-scored
1247  baseline Eigenprotein values ranging from -1 to 2 SD from the mean. (D) Forest plot of the standardised
1248  p estimates and 95% CI of each module Eigenprotein value*time. The filled points denote statistically

1249  significant (P<0.05) interaction terms.
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Supplementary Methods

Fluid, imaging and cognitive biomarker collection and processing.

Participants also had plasma samples collected as part of the GENFI protocol. Plasma was
collected, processed, and stored in aliquots at -80°C according to standardised procedures.
Plasma neurofilament light chain (NfL) levels were correlated (Spearman’s correlation) with
TMT relative reporter ion intensities of CSF NfL (n=163). Plasma NfL concentration was
measured with Single molecule array (Simoa) technology using the Neurology 4-Plex A kit
(Quanterix, Billerica, USA) on an HD-X Analyzer following the manufacturer’s instructions
(Quanterix, Billerica, USA). Measurements were completed in duplicate (all CVs below
15%) over a total of 3 batches, each with an 8-point calibration curve tested in triplicate and 2
controls tested in duplicate, as reported before (7).

In addition, TMT tryptic peptide measurements of the synaptic proteins 14-3-3 epsilon
([R].IISSIEQK.[E], n=119), neuronal pentraxin 2 ([K].VAELEDEK.[S], n=181) and
neuronal pentraxin receptor ((RL.NNYMYAR.[V], n=169) were correlated with
corresponding tryptic peptide measurements as performed in the publication Sogorb-Esteve et
al, 2020 (26). In brief, to 100 pL of CSF, a mixture of stable-isotope-labeled peptides
(internal standard) was added (25 pL, 0.032 pmol/uL, JPT Peptide Technologies, Berlin,
Germany; SpikeTides L). This was then followed by a stepwise protocol of reduction,
alkylation, and tryptic digestion, and lastly solid-phase extraction for purification purposes.
LC-MS/MS analysis was performed using a microflow HPLC, equipped with a Hypersil
Gold reversed-phase column (100 x 2.1 mm, particle size 1.9 um, Thermo Fisher Scientific),
and a Triple Quadrupole mass spectrometer (6495 Triple Quadrupole LC/MS system, Agilent
Technologies). To monitor the performance of the assay over time, quality control (QC)
sample replicates were injected at regular intervals during runs. The panel of synaptic

markers included: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-
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synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation
inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding
protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTXT1),
and neuronal pentraxin 2 (NPTX2).

Volumetric T1-weighted MRI scans were bias field corrected and parcellated using the
geodesic information flow algorithm (53). From this parcellation, the volumes of the bilateral
frontal, temporal, parietal ad occipital cortices and of the whole brain were extracted and
expressed as a percentage of the total intracranial volume, which was computed with SMP12
v6470 (Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London,
UK) running under Matlab R201b (Math Works, Natick, MA, USA) (54).

The standardized GENFI clinical assessment included a history, examination, cognitive
assessment (including Mini-Mental State Examination [MMSE]), FRS, and the CDR plus
NACC FTLD rating scale. Mutation carriers were classified into asymptomatic, prodromal,
or symptomatic if they scored 0, 0.5, or > 1, respectively, on the CDR plus NACC FTLD
global score. As part of the GENFI clinical assessment, the CDR plus NACC FTLD was
administered as per standard protocol (interviewing both the participant and an informant
separately) including the core cognitive and functional domain items from the CDR
(memory, orientation, judgment and problem solving, community affairs, hobbies, personal
care), and the two-clinician judgment (global) scores from the NACC FTLD for behavior and

language.

Data processing and normalisation
All RAW files were processed using Proteome Discoverer Version 2.5.0.400 (Thermo
Scientific). The most confident centroid integration method with an integration tolerance of

20 ppm was employed to perform peak integration for reporter ion quantification. Peptides
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were identified searching against the UniProtKB Swiss-Prot (TaxID = 9606, Homo sapiens)
database utilising the SequestHT search engine with search parameters specified as follows:
precursor Am tolerance = 5 ppm, fragment Am tolerance = 0.02 Da, missed cleavages = 2,
min. peptide length = 6, fixed modifications = carbamidomethyl, TMTpro (peptide N-
terminus, K residues). Percolator was used for peptide scoring, filtering peptide spectral
matches and peptides to a false discovery rate (FDR) of <1%. Peptides were then assembled
into proteins based on their uniqueness (unique peptides). In the event of redundancy,
peptides were assigned to a protein sequence in accordance with the principle of parsimony
(razor peptides).

For data normalisation, individual protein abundances were divided by their corresponding
set-wise global internal standard (GIS) protein measurement. Each obtained protein ratio was
then additionally divided by the respective sample median, accounting for aberrant
differences in total protein amount. Finally, all data was transformed into a logz-space.
Potential batch effects and sample outliers were assessed by performing a principal
component (PCA) analysis (Fig. S25) and hierarchical clustering considering all sample-wise

protein abundances.

Weighted gene co-expression network analysis (WGCNA) and correlation with clinical
parameters

Weighted gene co-expression networks were constructed using the R package WGCNA (55).
Due to the limited sample sizes of individual diagnostic groups, a network including all
samples of the present cohort was built. Following the removal of proteins with missing
values in >50% of all study participants, the optimal soft threshold power was chosen as the
power at which scale free topology R? approached an asymptote at around 0.9 and the mean

and median connectivity were <100. A signed network was built using the
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WGCNA::blockwiseModules function with the following settings: soft threshold power = 14,
deepSplit = 4, corType = bicor, minModuleSize = 10, mergeCutHeight = 0.2,
pamRespectsDendro TRUE, pamStage TRUE, maxPOutliers p < 0.05, reassignThreshold =
0.05. In brief, a robust correlation metric insensitive to outliers (bicor) is used to compute the
correlation between all pairs of proteins. Next, the resulting correlation matrix is transformed
into an adjacency matrix raising the co-expression similarities to the determined soft
threshold power. The adjacency matrix is then used to construct a topological overlap matrix
(TOM), reflecting the relative interconnectedness of each protein. Finally, hierarchical
protein clustering is performed on the corresponding topological overlap dissimilarity
measure (1-TOM), resulting in module construction via dynamic tree cutting. A total of 14
modules could be identified, including a grey module (645 proteins) containing proteins that
could not be assigned to any of the modules and a module containing contaminants from the
laboratory environment (tan module). In a next step, module Eigenproteins corresponding to
the module’s first principal component were identified. Protein module membership kME
was determined by performing Pearson correlation of each protein with each module
Eigenprotein. Proteins with a kKME > 0.7 were considered as the module’s respective hub
proteins. Module Eigenproteins of different subsets of the cohort (presymptomatic and/or
symptomatic mutation carriers) were correlated (Spearman rank-order correlation) with
clinical parameters. Significance levels were adjusted with Bonferroni correction to account
for multiple testing. To investigate the prognostic properties of module Eigenprotein values
in mutation carriers, separate linear mixed effects models for each module Eigenprotein value
were fitted including only mutation carriers (both symptomatic and presymptomatic carriers)
with cognitive score (FTLD-NACC+CDR-SOB) as dependent variable. Fixed effects
included the interaction of module Eigenprotein value*time (years since baseline), with age,

sex, years of education and cognitive status (symptomatic or presymptomatic) as covariates.
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All models included random intercepts and slopes for each participant. To enable
comparability between models, module Eigenprotein values were standardised. These

analyses were performed using the /me4 package in R.

Gene ontology analysis of WGCNA modules

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web
server for functional enrichment analysis (56). g:Profiler performs statistical
overrepresentation analysis utilising cumulative hypergeometric probability, also known as
Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein
list. Calculated P-values represent the probability of randomly drawing n or more proteins in
a subset of proteins (WGCNA modules) annotating to a specific GO term from the total
number of proteins identified in the study. Multiple testing correction was performed with the
method of Benjamini and Hochberg with a threshold of <0.05 to apply a less stringent
approach for obtaining corrected P-values. GO results were then filtered to reduce
redundancy and highlight driver terms, i.e. representative GO terms for a larger group of
terms, as described in (56). Terms best representing the proteins in a respective module were

chosen for module annotation.
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Figure S1. Correlation between biomarkers when measured with TMT-based proteome-wide
quantification and targeted techniques. (A to D) Correlations between Neurofilament light
(A), 14-3-3 protein epsilon (B), Neuronal pentraxin-2 (C) and Neuronal pentraxin receptor
(D) abundances measured in the same samples with tandem mass tag (TMT)-based
quantification on the x-axis and single molecule array (Simoa) (A) or multiple reaction
monitoring (MRM)-based (B-D) quantification on the y-axis. All measurements except for
Simoa Neurofilament light, which was carried out in plasma, were made in cerebrospinal

fluid using mass spectrometric methods.
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Figure S2. (A) Cross-cohort comparisons of CSF proteomic changes in symptomatic GRN
carriers. Venn diagram showing the number of proteins quantified in the current study (red), a
published label-free mass spectrometry dataset of symptomatic GRN carriers and non-carriers
from the ALLFTD cohort (grey), with the number of proteins quantified in both studies being
shown in grey/red. (B) Number of proteins significantly changed in unadjusted ANOVA
analysis in the same studies. At the bottom of the panel, a selection of proteins changed in
both studies are shown. Gene names highlighted in bold denote proteins with false discovery
rate (FDR)-corrected P-values <0.05 in linear regression analyses with age and sex as
covariates in the GENFI cohort. (C) Correlation between log> fold changes between
symptomatic GRN carriers of proteins in GENFI and ALLFTD cohorts (Spearman R = 0.87,
P<0.0001). Proteins with ANOVA P-values <0.05 in both studies are shown in blue, whereas
proteins not matching this criterion are shown in grey. Spearman correlation was performed
in this subset of proteins. Abbreviations; GENetic Frontotemporal dementia Initiative,

GENFI; European Medical Information Framework.
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Figure S3. Volcano plot showing proteins changed in presymptomatic MAPT carriers vs.
non-carriers. The volcano plot displays an overview of the altered proteins in
presymptomatic MAPT mutation carriers when compared with non-carriers based on an
analysis of covariance (ANCOVA) with age and sex as covariates. P-values were corrected
for multiple testing according to the Benjamini-Hochberg method. Pagjust cut-oft: 0.05.
Abbreviations: neurofilament light, NEFL; ACP2, Acid Phosphatase 2, Lysosomal; PEA15,
Astrocytic phosphoprotein PEA-15; ANTXR2, ANTXR Cell Adhesion Molecule 2; CBR1,
Carbonyl reductase 1; BAMBI, BMP And Activin Membrane Bound Inhibitor.
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Figure S4. Volcano plot showing proteins changed in presymptomatic GRN carriers vs. non-
carriers. The volcano plot displays an overview of the altered proteins in presymptomatic
GRN mutation carriers when compared with non-carriers based on an analysis of covariance
(ANCOVA) with age and sex as covariates. P-values were corrected for multiple testing
according to the Benjamini-Hochberg method. Pagjusccut-off: 0.05. Abbreviations:
Progranulin, GRN; LNPEP, Leucyl and Cystinyl Aminopeptidase; RNF13, Ring Finger
Protein 13; GPRC5B, G Protein-Coupled Receptor Class C Group 5 Member B.
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Figure SS. Volcano plot showing proteins changed in presymptomatic C9orf72 carriers vs.
non-carriers. The volcano plot displays an overview of the altered proteins in presymptomatic
C9orf72 mutation carriers when compared with non-carriers based on an analysis of
covariance (ANCOVA) with age and sex as covariates P-values were corrected for multiple
testing according to the Benjamini-Hochberg method. Pagjust cut-off: 0.05. Abbreviations:
CXADR Ig-Like Cell Adhesion Molecule, CXADR; Phosphoglycerate Kinase 1, PGK1;
Malic enzyme 1, ME1; Calretinin, CALB2; Aldo-keto reductase family 1, AKR1B1;
Tubulin-specific chaperone A, TBCA; Hexokinase 1; HK1.
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Figure S6. Proteins changed in presymptomatic MAPT carriers vs. non-carriers extracted
from Figure S3. Overview of the altered proteins in presymptomatic MAPT mutation carriers
when compared with controls based on an analysis of covariance (ANCOVA) with age and
sex as covariates and post hoc Tukey’s honest significant difference (HSD). (A) NEFL; (B)
ACP2; (C) PEALS; (D) ANTXR2; (E) CBRI1, and (F) BAMBI in non-carriers,
presymptomatic and symptomatic MAPT carriers. Abbreviations: neurofilament light, NEFL;
ACP2, Acid Phosphatase 2, Lysosomal; PEA1S5, Astrocytic phosphoprotein PEA-15;
ANTXR2, ANTXR Cell Adhesion Molecule 2; CBR1, Carbonyl reductase 1; BAMBI, BMP
And Activin Membrane Bound Inhibitor. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
Note: Non-significant comparison in tile F is due to the presence of outliers which were

removed for analyses performed for Figure S3.

61



1488
1489

1490
1491
1492
1493
1494
1495
1496
1497
1498

>
N
<

Relafve poteinabundance

o
3

(@)

Relafve pioteinabundance

=N
[&)]

=N
o

2.0

1.54

1.04

GRN
*kkk
L
| | ’ PY
- - 1 o0
“afee ?
o\‘o\ oQ§ 0‘2‘%
\O& \06\
@é 2
Q
RNF13
T 1
*%
H
fe
53 !
|
u
&‘0\ oQ§ Co‘z‘e
\O(Q \06\
) 2
Q¥

B LNPEP
2.04 ®
[0]
[$]
c
8
e
3 1.5
©
c
o ol
2
2 1.0
K
2 o
0.5
00 "\30 ‘.\30
2 2
0& O&
x> x>
@Q &Q
@dﬁ %>
Q
D,o. GPRC5B
[0}
[$]
c
8
5 1.5 : N
§ ' %
5
o
o
o
= " - o
T 1.0 ‘ |
[0
4
\ ®
Y [ J
&P N ©
2 2
0@ O&
A x>
& &
) SN
Q€

Figure S7. Proteins changed in presymptomatic GRN carriers vs. non-carriers extracted from

Figure S4. Overview of the altered proteins in presymptomatic GRN mutation carriers when

compared with controls based on an analysis of covariance (ANCOVA) with age and sex as

covariates and post hoc Tukey’s honest significant difference (HSD). Panels show (A) GRN,
(B) LNPEP, (C) RNF13, and (D) GPRC5B in non-carriers, presymptomatic and symptomatic
GRN carriers. Abbreviations: Progranulin, GRN; LNPEP, Leucyl and Cystinyl

Aminopeptidase; RNF13, Ring Finger Protein 13; GPRC5B, G Protein-Coupled Receptor

Class C Group 5 Member B. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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1500 Figure S8. Proteins changed in presymptomatic C9orf72 carriers vs. non-carriers extracted
1501  from Figure S5. Overview of the altered proteins in presymptomatic C9orf72 mutation

1502  carriers when compared with controls based on an analysis of covariance (ANCOVA) with
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age and sex as covariates and post hoc Tukey’s honest significant difference (HSD). Panels
show (A) CXADR; (B) PGKI1, (C) ME1, (D) CALB2, (E) AKR1B1, (F) TBCA and (G) HK1
in non-carriers, presymptomatic and symptomatic C9orf72 carriers. Abbreviations: CXADR
Ig-Like Cell Adhesion Molecule, CXADR; Phosphoglycerate Kinase 1, PGK1; Malic
enzyme 1, MEI; Calretinin, CALB2; Aldo-keto reductase family 1, AKR1B1; Tubulin-
specific chaperone A, TBCA; Hexokinase 1; HK1. * p<0.05, ** p<0.01, *** p<0.001, ****
p<0.0001. Note: Non-significant comparison in tile C is due to the presence of outliers which

were removed for analyses performed for Figure S5.
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Figure S9. Cluster dendrogram of the weighted gene co-expression network analysis

(WGCNA). Cluster dendrogram and color representation of the network modules produced

by average linkage hierarchical clustering of proteins based on their topological overlaps.
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Figure S10. Clustering of module Eigenproteins of the weighted gene co-expression network

analysis (WGCNA). Hierarchical clustering of module Eigenproteins identified in the
WGCNA.
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Figure S11. Determination of soft-threshold power in weighted gene co-expression network
analysis (WGCNA). This figure shows the scale-free topology index (A) and mean

connectivity (B) for each power value between 1 and 22. The R? cut-off was drawn at 0.875.
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Figure S12. Gene ontology terms associated with the ‘Semaphorin signaling’ (red) module.
Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web
server for functional enrichment analysis. g:Profiler performs statistical overrepresentation
analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed
test, to calculate the significance of functional terms in the input protein list. Multiple testing
correction was performed with the method of Benjamini and Hochberg with a threshold of
<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value
while the x-axis highlights the category of all corresponding GO terms. GO results were then
filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S13. Gene ontology terms associated with the ‘Synapse’ (brown) module. Gene

ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web server for

functional enrichment analysis. g:Profiler performs statistical overrepresentation analysis

utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed test, to

calculate the significance of functional terms in the input protein list. Multiple testing

correction was performed with the method of Benjamini and Hochberg with a threshold of

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value

while the x-axis highlights the category of all corresponding GO terms. GO results were then

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S14. Gene ontology terms associated with the ‘Neuronal development’ (blue) module.

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed

test, to calculate the significance of functional terms in the input protein list. Multiple testing

correction was performed with the method of Benjamini and Hochberg with a threshold of

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value

while the x-axis highlights the category of all corresponding GO terms. GO results were then

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S15. Gene ontology terms associated with the ‘Protein processing’ (yellow) module.
Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web
server for functional enrichment analysis. g:Profiler performs statistical overrepresentation
analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed
test, to calculate the significance of functional terms in the input protein list. Multiple testing
correction was performed with the method of Benjamini and Hochberg with a threshold of
<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value
while the x-axis highlights the category of all corresponding GO terms. GO results were then
filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S16. Gene ontology terms associated with the ‘Core markers’ (greenyellow) module.
Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web
server for functional enrichment analysis. g:Profiler performs statistical overrepresentation
analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed
test, to calculate the significance of functional terms in the input protein list. Multiple testing
correction was performed with the method of Benjamini and Hochberg with a threshold of
<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value
while the x-axis highlights the category of all corresponding GO terms. GO results were then
filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S17. Gene ontology terms associated with the ‘Stress response’ (magenta) module.
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Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed

test, to calculate the significance of functional terms in the input protein list. Multiple testing

correction was performed with the method of Benjamini and Hochberg with a threshold of

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value

while the x-axis highlights the category of all corresponding GO terms. GO results were then

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S18. Gene ontology terms associated with the ‘Actin binding’ (pink) module. Gene

ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web server for

functional enrichment analysis. g:Profiler performs statistical overrepresentation analysis

utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed test, to

calculate the significance of functional terms in the input protein list. Multiple testing

correction was performed with the method of Benjamini and Hochberg with a threshold of

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value

while the x-axis highlights the category of all corresponding GO terms. GO results were then

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S19. Gene ontology terms associated with the ‘GAG processing’ (salmon) module.
Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web
server for functional enrichment analysis. g:Profiler performs statistical overrepresentation
analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed
test, to calculate the significance of functional terms in the input protein list. Multiple testing
correction was performed with the method of Benjamini and Hochberg with a threshold of
<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value
while the x-axis highlights the category of all corresponding GO terms. GO results were then
filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S20. Gene ontology terms associated with the ‘Extracellular matrix 1’ (green)

Mgy, o, C
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module. Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a

web server for functional enrichment analysis. g:Profiler performs statistical
overrepresentation analysis utilising cumulative hypergeometric probability, also known as
Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein
list. Multiple testing correction was performed with the method of Benjamini and Hochberg

with a threshold of <0.05. The y-axis of the plot displays the negative decadic logarithm of

the adjusted p-value while the x-axis highlights the category of all corresponding GO terms.

GO results were then filtered to reduce redundancy and highlight driver terms, i.e.

representative GO terms for a larger group of terms (displayed in the list below the plot).
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Figure S21. Gene ontology terms associated with the ‘Lysosome’ (purple) module. Gene

ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web server for

functional enrichment analysis. g:Profiler performs statistical overrepresentation analysis

utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed test, to

calculate the significance of functional terms in the input protein list. Multiple testing

correction was performed with the method of Benjamini and Hochberg with a threshold of

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value

while the x-axis highlights the category of all corresponding GO terms. GO results were then

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a

larger group of terms (displayed in the list below the plot).
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Figure S22. Gene ontology terms associated with the ‘Extracellular matrix 2’ (black)

module. Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a

web server for functional enrichment analysis. g:Profiler performs statistical
overrepresentation analysis utilising cumulative hypergeometric probability, also known as

Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein

list. Multiple testing correction was performed with the method of Benjamini and Hochberg

with a threshold of <0.05. The y-axis of the plot displays the negative decadic logarithm of

the adjusted p-value while the x-axis highlights the category of all corresponding GO terms.

GO results were then filtered to reduce redundancy and highlight driver terms, i.e.

representative GO terms for a larger group of terms (displayed in the list below the plot).
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1686

1687  Figure S23. Gene ontology terms associated with the ‘Immune response’ (turquouise)

1688 module. Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a
1689  web server for functional enrichment analysis. g:Profiler performs statistical

1690  overrepresentation analysis utilising cumulative hypergeometric probability, also known as
1691  Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein
1692  list. Multiple testing correction was performed with the method of Benjamini and Hochberg
1693  with a threshold of <0.05. The y-axis of the plot displays the negative decadic logarithm of
1694  the adjusted p-value while the x-axis highlights the category of all corresponding GO terms.
1695 GO results were then filtered to reduce redundancy and highlight driver terms, i.e.

1696  representative GO terms for a larger group of terms (displayed in the list below the plot).
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Figure S24. Remaining WGCNA modules that are not depicted in the main body of the

manuscript. Eigenprotein values obtained through weighted gene co-expression network

analysis (WGCNA), plotted across the continuum of controls as well as presymptomatic and

symptomatic mutation carriers. The plots represent Eigenprotein values for (A) ‘Semaphorin

signaling’, (B) ‘Neuronal development’, (C) ‘Protein processing’, (D) ‘GAG processing’, (E)

‘Extracellular matrix 1°, and (F) ‘Extracellular matrix 2” modules. Hub proteins are displayed

in boxes. *P < (.05 compared with non-carriers.
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Figure S25. Evaluation of TMT batch effect and sample outliers prior to (A) and after

normalization (B) via PCA. PCA was performed on all participants (n=238) of the GENFI

cohort including proteins without missingness. (A) Before normalisation, inter-sample

variance was high: Most samples separated along PC 1, which accounted for 70% of the total

variance. Moreover, batches clustered together. (B) Upon normalisation, overall sample

variance (PC1=23% and PC2=6%) and clustering of batches were reduced.
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