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Abstract 101 

We used an untargeted mass spectrometric approach, tandem mass tag (TMT) proteomics, for the 102 

identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 103 

cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative (GENFI) were analysed, including 104 

107 presymptomatic (44 C9orf72, 38 GRN, 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, 11 105 

MAPT) mutation carriers as well as 76 mutation-negative controls (‘non-carriers’). We found shared 106 

and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered 107 

in symptomatic mutation carriers compared to non-carriers, we found a set of proteins including 108 

neuronal pentraxin 2 (NPTX2) and fatty acid binding protein 3 (FABP3) shared across all three genetic 109 

forms, as well as in patients with Alzheimer’s disease from previously published datasets. We observed 110 

differential changes in lysosomal proteins among symptomatic mutation carriers with marked 111 

abundance decreases in MAPT carriers, but not other carriers. Further, we identified mutation-112 

associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene co-113 

expression network analysis combined with gene ontology annotation revealed clusters of proteins 114 

enriched in neurodegeneration and glial responses, as well as synapse-, or lysosome-related proteins 115 

indicating that these are the central biological processes affected in genetic FTD. These clusters 116 

correlated with measures of disease severity and associated with cognitive decline. This study revealed 117 

distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the 118 

pathological processes involved in the disease. Additionally, we identified proteins that warrant further 119 

exploration as diagnostic and prognostic biomarker candidates.  120 

 121 

 122 

One sentence summary: Both distinct and common cerebrospinal fluid proteomic signatures were 123 

observed in the different genetic forms of frontotemporal dementia. 124 

  125 
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Main Text: 126 

INTRODUCTION 127 

Frontotemporal dementia (FTD) is an umbrella term referring to a group of progressive 128 

neurodegenerative disorders, which typically present with behavioral changes (behavioral variant, 129 

(bvFTD), language problems (primary progressive aphasia, PPA), or motor impairment (either 130 

FTD with amyotrophic lateral sclerosis or FTD with parkinsonism)) (1). Although less common than 131 

Alzheimer’s disease (AD), dementia with Lewy bodies and vascular dementia, FTD is a leading cause 132 

of early onset dementia (2). The underlying molecular basis of FTD is complex, but most cases can be 133 

attributed to a frontotemporal lobar degeneration (FTLD) pathology, with cellular inclusions of tau, 134 

TAR DNA-binding protein 43 (TDP-43) or FET proteins (FUS (Fused in sarcoma), EWS (Ewing 135 

sarcoma) and TAF15 (TATA-binding associated factor 15)) (3). Unlike AD, around a third of FTD 136 

cases have a genetic cause, with the most common mutations occurring in three genes: GRN 137 

(progranulin) and C9orf72 (chromosome 9 open reading frame 72), both of which are typically 138 

accompanied by an underlying TDP-43 proteinopathy, as well as MAPT (microtubule-associated 139 

protein tau), manifesting as tauopathy (1, 4).  140 

 141 

In FTD, the complex relationship between clinical presentations and underlying molecular pathology 142 

poses a challenge for its diagnosis and treatment. AD can be viewed as a successful example of how 143 

the introduction of cerebrospinal fluid (CSF) biomarker-assisted diagnosis has led to recent 144 

therapeutic advances (5) with the potential to revolutionise its treatment. In the case of FTD, however, 145 

the historic lack of biomarkers, as well as the complex relationship between clinical symptomatology 146 

and underlying pathophysiology have so far hampered such advancements. Nonetheless, there are 147 

biomarkers that show promise also in the context of FTD. Neurofilament light chain (NfL) has 148 

emerged as a promising, although disease-nonspecific, biomarker in differentiating FTD from primary 149 

psychiatric causes of behavioral symptoms (6) and, due to plasma NfL increasing in concentration in 150 

the presymptomatic phase of genetic FTD, also as a biomarker to detect neurodegeneration onset and 151 

disease intensity (7). Although there are indications that group-level concentrations of NfL are highest 152 

(at least in plasma) in GRN carriers (8), NfL cannot be used to identify the underlying pathology. For 153 
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this purpose, mutation- or pathology-specific biomarkers are needed, with current examples being 154 

limited, such as low plasma/CSF progranulin as indication of an underlying GRN mutation resulting 155 

in haploinsufficiency (9, 10); or promising new results on TDP-43 or 3R/4R tau protein in plasma-156 

derived extracellular vesicles (11), that need further replication. Due to the lack of an antemortem 157 

gold standard for FTLD-tau and TDP-43 pathologies, sporadic FTD is likely not an ideal model to 158 

develop novel biomarkers at present. In familial FTD, however, the clear relationship between genetic 159 

mutation and resulting pathology may provide a context that allows the identification of such markers. 160 

 161 

Previous studies using antibody-based methods (12–14) or mass spectrometric techniques (15, 16) 162 

have identified several FTD biomarker candidates, including neurofilament light, medium (NfM), and 163 

heavy (NfH), neuronal pentraxins, chitinase-3-like protein 1 (CHI3L1, also known as YKL-40), and 164 

ubiquitin carboxy-terminal hydrolase L1 (UCHL1). However, none of these proteins have proven 165 

specific for either FTLD or its subtypes, with similar alterations being seen in other neurodegenerative 166 

disorders, such as AD, Creutzfeldt-Jakob disease or ALS (14, 17–21). 167 

 168 

In this study, we adopted an untargeted proteomics approach, using high-resolution mass 169 

spectrometry combined with tandem mass tag (TMT), to measure CSF proteins in a large, well-170 

characterised genetic FTD cohort: the Genetic FTD Initiative (GENFI) study. We aimed to measure 171 

changes in low-abundant proteins not previously implicated in FTD to identify proteomic signatures 172 

of symptomatic groups carrying the most common genetic mutations causing FTD and therefore 173 

potentially distinguish specific underlying pathologies. Furthermore, we explored CSF proteomic 174 

changes that may identify mutation carriers at the presymptomatic stage of the disease, as has been 175 

done previously in autosomal dominant AD (22). Lastly, we investigated alterations of biological 176 

pathways in FTD, as mirrored in the CSF proteome, and their association with relevant clinical 177 

parameters and cognitive decline. 178 

  179 
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RESULTS 180 

We analyzed a total of 238 CSF samples from 71 C9orf72 expansion carriers, 55 GRN mutation 181 

carriers, and 36 MAPT mutation carriers, including both presymptomatic and symptomatic carriers in 182 

each group, as well as 76 asymptomatic non-carriers (Table 1).   183 

 184 

Key methodological information of this study is summarized in Fig. 1, and specific descriptions for 185 

each analysis are detailed in the Materials and Methods and Supplementary Methods sections. Having 186 

prepared and analyzed all study samples using protocols previously described and developed by our 187 

laboratory (23–25), we initially explored differential protein abundances among symptomatic groups 188 

to assess wide-spread CSF proteomic changes in the context of different underlying pathologies and 189 

compared those to AD. Next, we utilised linear models to discern mutation-associated proteins 190 

already changed at the presymptomatic disease stage. Furthermore, employing weighted gene co-191 

expression network analysis (WGCNA), we aimed to elucidate pathophysiological features associated 192 

with genetic mutations, as well as the cross-sectional correlations of protein networks with measures 193 

of cognitive function and brain volume. Finally, to investigate the prognostic properties of protein 194 

networks, we assessed their association with cognitive decline.  195 

 196 

After outlier exclusion and removal of proteins with high missingness, we identified and obtained 197 

quantitative information for 1981 CSF proteins. First, we compared our TMT dataset to existing 198 

biomarker data from the same sample cohort. TMT CSF neurofilament light chain (NEFL; henceforth 199 

used interchangeably with protein abbreviation, NfL) measurements strongly correlated with plasma 200 

NfL measurements acquired on the Single molecule array (Simoa, Quanterix) platform (R=0.62, 201 

P<0.001; fig. S1A). The relative protein abundances of 14-3-3 epsilon (referred to as YWHAE) 202 

(R=0.39, P<0.001; fig. S1B), neuronal pentraxin 2 (NPTX2) (R=0.8, P<0.001; fig. S1C), and neuronal 203 

pentraxin receptor (NPTXR) (R=0.68, P<0.001; fig. S1D) also correlated significantly with previous 204 

data from the same cohort, acquired using targeted mass spectrometric analysis (26). The strong 205 

correlations of TMT relative protein abundances with measures acquired on two independent 206 

platforms indicate good analytical precision of our results. 207 
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Cerebrospinal fluid proteomes differ across symptomatic FTD mutation carrier groups  208 

Linear regression analysis, including age and sex as covariates, was used to perform group 209 

comparisons between non-carriers and symptomatic mutation carriers. In the case of symptomatic 210 

MAPT mutation carriers, 58 proteins significantly differed in abundance compared with non-carriers 211 

(Fig. 2A; Table S1A), whereas the abundance of 138 and 385 proteins was significantly altered in 212 

symptomatic GRN (Fig. 2B; Table S1B) and C9orf72 mutation carriers (Fig. 2C; Table S1C) 213 

compared to non-carriers, respectively (Padjust<0.05).  214 

 215 

Next, to strengthen our findings, we compared our results to those from an external cohort consisting 216 

of symptomatic GRN carriers (n=11) and healthy non-carriers (n=12) (27) whose CSF proteome was 217 

measured with label-free mass spectrometry. Most proteins were commonly quantified in both 218 

studies, of which 73 proteins were significantly changed in both datasets (Punadjusted<0.05) (fig. S2, 219 

Table S2), with log2 fold changes being strongly correlated between the studies (R=0.87, P< 0.001) 220 

(fig. S2).  221 

 222 

From the 25 hits that presented the largest log2 fold changes in each symptomatic mutation group 223 

(Table S3), a list of proteins was compiled (excluding overlap between groups) denoting 224 

corresponding protein abundance fold changes compared with non-carriers in a heatmap (Fig. 2D; 225 

Table S3). As expected, the three neurofilaments, NfL, NfM and NfH, alongside YKL-40 (CHI3L1), 226 

exhibited the greatest fold change in abundance across most symptomatic groups when compared to 227 

non-carriers, with NfL abundances being up to 7.4-times higher in symptomatic GRN carriers in 228 

comparison to non-carriers. Other proteins showing a notable positive fold change in symptomatic 229 

mutation carriers included the spectrins (SPTBN1, SPTAN1) as well as UCHL1 (ubiquitin C-terminal 230 

hydrolase 1), FABP3 (fatty acid binding protein 3), PEA15 (Proliferation and apoptosis adaptor 231 

protein 15) and several 14-3-3 proteins (YWHAZ, YWHAG, YWHAE). Proteins that were lower in 232 

abundance across symptomatic mutation carriers compared with non-carriers included the synaptic 233 

proteins NPTXR, NPTX2 and NPTX1, as well as PCSK2 (proprotein convertase subtilisin/kexin type 234 

2) and PENK (proenkephalin). Furthermore, GRN relative abundance levels was lower in GRN 235 
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mutation carriers. Most proteins showed the same directionality of abundance fold change across the 236 

three mutation carrier groups except for a few proteins. These include GRN, which showed opposite 237 

direction of change in symptomatic C9orf72 and GRN carriers (both Padjust<0.05), and the lysosomal 238 

proteins deoxyribonuclease 2 (DNASE2) and phospholipase B domain containing 2 (PLBD2), which 239 

were selectively decreased in symptomatic MAPT carriers.  240 

 241 

Proteomic similarities and differences between genetic FTD and sporadic AD 242 

Since some of the proteins quantified in this study are expected to change also in other 243 

neurodegenerative disorders, we compared the summary statistics of our differential abundance 244 

analyses of symptomatic FTD mutation carrier groups with summary statistics of previously 245 

published TMT proteomics datasets from two distinct AD studies: the European Medical Information 246 

Framework (EMIF) CSF study (25) and a CSF proteomics study performed by Higginbotham and 247 

colleagues (28). Of the about 1192 proteins quantifiable in all three studies, (Fig. 3A; Table S4A, 248 

Table S4B and Table S5), only 6 were significantly changed in all groups (Padjust<0.05) (YWHAZ, 249 

YWHAG, UCHL1, NPTXR, NPTX2 and FABP3, Fig. 3, B and C; Table S5). Conversely, many 250 

proteins were distinctly changed in each FTD mutation carrier group (Fig. 3, B and C, Table S5), with 251 

more widespread changes being found in symptomatic C9orf72 carriers (calretinin [CALB2], sortilin 252 

1 [SORT1] and roundabout guidance receptor 1 [ROBO1]) compared with GRN (transmembrane 253 

protein 132A [TMEM132A], ring finger protein [RNF13] and chitinase 3 like 2 [CHI3L2]) and MAPT 254 

(hexosaminidase subunit alpha [HEXA], semaphorin 6A [SEMA6A] and cathepsin D [CTSD]) 255 

carriers. Proteins shared between C9orf72 and GRN carriers included many proteins involved in 256 

lysosomal processes (GRN, cathepsin S [CTSS], lysosomal-associated membrane protein 1 257 

[LAMP1]). Proteins uniquely changed in both AD studies included neurogranin (NRGN) and SPARC 258 

related modular calcium binding 1 (SMOC1), both previously shown to increase in response to 259 

amyloid pathology (29). Only two proteins were distinctly changed in all symptomatic FTD mutation 260 

carrier groups (CD44 and follistatin like 4 [FSTL4]), likely reflecting the different processes involved 261 

in these disease-causing mutations.   262 

 263 
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Mutation-associated proteomic changes are evident in presymptomatic disease mutation 264 

carriers  265 

Having compared proteomic alterations of symptomatic FTD subtypes and their overlap with AD, we 266 

next set out to determine changes in protein abundances associated with a specific genetic 267 

background, regardless of affectation (presence or absence of symptoms). The presence of symptoms 268 

is expected to coincide with diverse neurodegenerative processes impacting the CSF proteome and 269 

obscuring potential mutation-related changes. Thus, to investigate proteomic alterations attributable to 270 

each underlying pathogenic mutation, we (i) fitted linear models combining all study participants, 271 

testing the effect of genetic mutation on protein abundances while adjusting for affectation (Fig. 4, 272 

Table S6) and (ii) compared CSF proteomes of presymptomatic individuals with non-carriers for each 273 

genetic group separately (fig. S3-S8,  Table S7A-S7C). This approach yielded several proteins 274 

strongly associated with either C9orf72 (Fig. 4A), GRN (Fig. 4B) or MAPT (Fig. 4C) mutation status, 275 

of which the top five proteins for each association were chosen for visual display. Standardised β 276 

coefficients indicate the strength of the association respectively and are depicted in a forest plot for 277 

ease of comparison. The protein most strongly associated with C9orf72 mutation status was CALB2 278 

(Fig. 4A, standardised β=0.77, Padjust<0.01), which could also be found among the top changed 279 

proteins in the analysis of presymptomatic C9orf72 carriers vs. non-carriers (Fig. S5 and S8). 280 

Numerous proteins found to be associated with C9orf72, such as glucose-6-phosphate isomerase 281 

(GPI), hexokinase 1 (HK1) (Fig. 4A, fig. S8), and phosphoglycerate kinase 1 (PGK1) (fig. S8) are key 282 

enzymes of the glycolysis pathway, hinting at early metabolic disturbances. The proteins CALB2, 283 

HK1, and PGK1 demonstrated a stepwise increase in abundance from non-carriers over 284 

presymptomatic to symptomatic C9orf72 carriers (fig. S8), further underlining their implication in 285 

C9orf72-related disease processes. 286 

Reflecting the GRN haploinsufficiency, the protein most strongly associated with GRN mutation 287 

status was GRN itself, (Fig. 4B, fig. S4 and S7, standardised β=-1.59, Padjust<0.01), followed by 288 

NAGA (alpha-N-acetylgalactosaminidase) (standardised β=0.71, Padjust=0.04) and RNF13 289 

(standardised β=0.64, Padjust=0.09). RNF13, though narrowly failing to reach the significance 290 

threshold of 0.05 after multiple testing correction in the combined analysis, was found to be 291 
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significantly changed in the presymptomatic GRN carrier vs. non-carrier analysis (fig. S4, Padjust=0.03) 292 

and increased in abundance across the GRN disease continuum (fig. S7). The proteins most strongly 293 

associated with MAPT mutation status were PEA15 (Fig. 4C, standardised β=0.9, Padjust<0.01) and 294 

SEMA6A (standardised β=-0.82, Padjust<0.05). PEA15 was also significantly altered in the comparison 295 

between presymptomatic MAPT carriers vs. non-carriers (fig. S3, Padjust=0.02) and increased in 296 

abundance from the presymptomatic to symptomatic disease stage (fig. S6). Due to concerns of 297 

family membership adversely affecting our results, we conducted sensitivity analyses adopting the 298 

same linear models as in the main analysis but including one member from each family. These 299 

analyses presented similar results (Table S8, A to E). 300 

 301 

Protein networks reveal pathology-specific pathophysiological alterations and correlate with 302 

clinical parameters 303 

Having studied the proteomic signatures of each genetic group, we further explored the biological 304 

processes implicated in these proteomic changes by performing WGCNA (fig. S9 toS23). WGCNA is 305 

an analysis tool aimed at reducing the complexity of a proteomics dataset by breaking it down into 306 

gene ontology (GO)-annotated protein clusters. These protein modules consist of highly co-correlated 307 

proteins likely reflecting similar biological processes. We identified a total of 14 protein modules, 308 

including a group of 645 proteins that could not be assigned to any of the modules and a module 309 

containing contaminants from the laboratory environment. The modules varied in size from 14 to 349 310 

proteins with a median module size of 52 proteins (Table S9). We determined the biological relevance 311 

of each protein module utilising GO analysis of its constituent proteins and selected the most 312 

representative term for module annotation (fig. S12 to S23). Furthermore, we identified the hub 313 

proteins of each module, indicating the proteins most strongly correlating (R>0.7) with the module’s 314 

first principal component (Eigenprotein value), as most representative and important proteins of the 315 

respective module.  316 

Figure 5A shows a selection of six protein modules and their corresponding Eigenprotein values 317 

(representative abundance values) plotted across all genetic groups as well as non-carriers. One 318 

module, which we termed ‘Core markers’ of neurodegenerative disease, consisted of 15 proteins and 319 
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was most strongly increased in abundance in each genetic group at the symptomatic stages when 320 

compared to non-carriers. The strong difference between non-carriers and presymptomatic MAPT 321 

carriers is largely influenced by age. It included YWHAG, NEFL, CHI3L1, NEFM and YWHAZ as 322 

hub proteins. These proteins were also among the top hits in the differential abundance analysis and 323 

had the highest fold change in symptomatic mutation carriers compared with non-carriers (Fig. 2D). 324 

As expected, many proteins belonging to the ‘Core markers’ module were also seen among the 325 

proteins overlapping between the three genetic forms and were found to be altered in the CSF of AD 326 

patients in the EMIF and Higginbotham studies (Fig. 3B and 3C). 327 

 328 

Correlating the ‘Core marker’ Eigenprotein values with clinical parameters in both presymptomatic 329 

and symptomatic mutation carriers (Fig. 5B) revealed a strong positive association of the module with 330 

both plasma NfL (R=0.86, Padjust<0.0001) and the National Alzheimer's Coordinating Center's 331 

Frontotemporal Lobar Degeneration plus clinical dementia rating  sum of boxes (FTLD-CDR-SOB) 332 

disease severity scores (R=0.67, Padjust<0.0001) as well as a negative association with MMSE scores 333 

(R=-0.53, Padjust<0.0001) and regional brain volumes. The ‘Core markers’ module also positively 334 

correlated with estimated years until disease onset (EYO) in presymptomatic individuals (R=0.68, 335 

Padjust<0.0001). 336 

 337 

Besides the ‘Core markers’ module, Eigenprotein values for both the ‘Actin binding’ module and the 338 

‘Stress response’ module were higher across symptomatic mutation carrier groups (albeit not 339 

statistically significant), suggesting common pathophysiological alterations in these processes (Fig. 340 

5A). Both modules, along with the ‘Glycosaminoglycan processing’ module (Fig. S24D), showed a 341 

similar correlation pattern to the ‘Core markers’ module. 342 

 343 

Conversely, the ‘Synapse’ module, containing proteins such as CHGB, SHISA6, CADM3, CADM1 344 

and GPR158 showed lower Eigenprotein values in all symptomatic mutation carrier groups compared 345 

with non-carriers, although changes were not significant. Its correlation pattern with clinical 346 

parameters was inverse compared to the ‘Core markers’ module, exhibiting negative correlations with 347 
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age, plasma NfL and FTLD-CDR-SOB scores, and positive correlations with MMSE scores and brain 348 

volumes (Fig. 5B), similarly to the ‘Neuronal development’ and the ‘Extracellular matrix 1’ modules 349 

(fig. S24B and E). The ‘Neuronal development’ module contained several proteins considered to be 350 

markers of synaptic loss (NPTX2 and NPTXR, among others) and was significantly lower in 351 

symptomatic C9orf72 carriers (Padjust<0.05).   352 

 353 

We also identified a module associated with lysosomal proteins (‘Lysosome’ module), for which 354 

Eigenprotein values were selectively decreased in symptomatic MAPT mutation carriers compared to 355 

non-carriers (Padjust<0.05). They were also slightly decreased in presymptomatic MAPT individuals, 356 

albeit without statistical significance (P=0.79). The hub proteins were determined to be SIAE (sialic 357 

acid acetylesterase), hexosaminidase subunit beta (HEXB), HEXA, DNASE2 and PLBD2, all of 358 

which are implicated in lysosomal processes. These specific changes in MAPT mutation carriers in 359 

DNASE2 and PLBD2 were already evident in the heatmap (Fig. 2D) contrasting symptomatic 360 

mutation carrier groups. Other lysosomal proteins found to be commonly changed in GRN and 361 

C9orf72 carriers (LAMP1 and CTSS, Fig. 3) were not part of the ‘Lysosome’ module, suggesting 362 

different subpopulations of lysosomal proteins, which might be reflective of distinct biological 363 

processes. The ‘Lysosome’ module did not correlate with markers of neurodegeneration, cognitive 364 

decline or brain atrophy. 365 

 366 

The ‘Immune response’ module contained proteins related to the complement pathway and the 367 

immune system. For all symptomatic groups, there was a visible trend of increase in these clusters 368 

when compared to non-carriers, however, these differences were not statistically significant (P>0.05). 369 

This module showed similar correlation patterns with clinical features to the ‘Core markers’ module. 370 

 371 

Protein networks associate with cognitive decline in mutation carriers 372 

To evaluate the prognostic properties of protein networks, the module Eigenprotein values of 373 

mutation carriers with cognitive evaluation at the time of lumbar puncture (LP) (n=146, mean number 374 

of annual visits = 2.7, range 1-5) were modelled with FTLD-CDR-SOB score as outcome. In 375 
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agreement with analyses of cross-sectional cognitive scores, higher ‘Core markers’ Eigenprotein 376 

values were most strongly associated with higher FTLD-CDR-SOB scores, reflecting poorer cognitive 377 

outcomes (standardised β=0.83, P<0.001; Fig. 6A). A similar but less prominent pattern was seen for 378 

the ‘Actin binding’ module (standardised β=0.50, P<0.001; Fig. 6B). Conversely, lower Eigenvalues 379 

of the ‘Synapse’ module were associated with increasing FTLD-CDR-SOB scores (standardised β=-380 

0.49, P<0.001; Fig. 6C). This indicated that lower ‘Synapse’ Eigenprotein values were associated 381 

with worse cognitive outcomes. Further, ‘Semaphorin signalling’, ‘Neuronal development’, 382 

‘Extracellular Matrix 1’, ‘Lysosome’ and ‘Immune response’ module Eigenprotein values were also 383 

significantly (all P<0.05) associated with cognitive decline (Fig. 6D; for full model output, see Table 384 

S10).  385 

  386 
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DISCUSSION 387 

The present study offers a detailed and untargeted account of the CSF proteomic signatures in genetic 388 

FTD. By including participants from the well-characterised GENFI cohort, with presymptomatic and 389 

symptomatic carriers of pathogenic mutations in the three genes comprising the overwhelming 390 

majority of genetic FTD, we covered most of the clinical continuum as well as its underlying genetic 391 

causes. Our analytical approach allowed us to uncover proteomic changes beyond known CSF and 392 

blood biomarkers, such as NfL, GFAP, and progranulin, suggesting potential pathology- and FTD-393 

specific biomarkers.  394 

 395 

To assess both differences and similarities across the FTD spectrum, we explored the proteome of 396 

each genetic group through separate analyses. Employing differential protein abundance analysis, we 397 

found several proteins that were altered in all symptomatic mutation carriers. Among these proteins, 398 

many of the top hits were neuronal proteins known to be increased in CSF in several 399 

neurodegenerative diseases, including neurofilaments (NfL, NfM and NfH), and 14-3-3 proteins 400 

(YWHAZ, YWHAG) (17, 18, 30). NfL (both when measured in CSF and plasma) has especially been 401 

suggested to be of diagnostic, prognostic and theragnostic value in FTD, as both this and other studies 402 

find large fold changes (seemingly most pronounced in GRN carriers) compared with healthy controls 403 

and even other brain-related conditions, which bears important implications for differential diagnoses 404 

(7, 30, 31). The decreased relative abundances of neuronal pentraxins (NPTX1, NPTX2) and their 405 

receptor (NPTXR), previously reported to be decreased in genetic FTD (15, 26, 32) and other 406 

neurodegenerative diseases (18, 33), further emphasises the presence of synaptic changes in FTD.                                                                                                                                                   407 

These markers displayed a similar fold change in the study of FTD-GRN by Pesämaa et al. (27), 408 

which we used to validate our findings. In addition, changes shared between groups included proteins 409 

recently suggested to be associated with astrocytic and microglial responses in AD as well as FTD-410 

TDP brains, such as rab GDP dissociation inhibitor alpha (GDI1), FABP3, and CD44 (34). Although 411 

not significantly changed in either the EMIF or Higginbotham study, CD44 antigen has been shown to 412 

play a role in neuroinflammation in AD, in relation to disease associated microglia (DAM) (34, 35) 413 

and their communication with astrocytes (36), as well as in GRN deficient animal models (37). 414 
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Despite not being specific to glial responses in FTD, the clear increases seen in symptomatic FTD 415 

suggest that CD44 may be a promising fluid-based marker to index such glial changes in future trials. 416 

Of note, GDI1, FABP3, and CD44 were also identified as microglial activation-dependent markers in 417 

the study by Pesämaa et al. (27). 418 

 419 

Many of the proteins found to be clearly altered in all groups of symptomatic carriers were assigned to 420 

the ‘Core markers’ module in the protein network analysis (YWHAG, NfL, UCHL-1, FABP3, 421 

CHI3L1, CD44). Several of these ‘Core marker’ proteins (FABP3, UCHL1 and YWHAG, among 422 

others) were also shown to be changed in abundance in the CSF of AD patients, as evident by the 423 

EMIF and Higginbotham studies (25, 28). Together, these findings support the strong 424 

neurodegenerative and glial component of both diseases and highlight that, despite AD and FTD 425 

being separate disease entities, they appear to share common downstream pathophysiological features. 426 

Of note, the ‘Core markers’ also reflected disease severity and imaging measures of 427 

neurodegeneration and proved to be the protein network most closely linked to cognitive decline and 428 

estimated years until disease onset highlighting the prognostic value of markers reflecting 429 

neurodegenerative and neuroinflammatory processes.   430 

 431 

Besides the ‘Core markers’ module, we identified several other protein modules seemingly altered 432 

across several groups in the FTD spectrum compared with non-carriers, with constituent proteins 433 

relating to the synapse ('Synapse’ module), in line with results shown in the heatmap (Fig. 2), actin 434 

binding and stress response. Lower relative abundances of the ‘Synapse’ Eigenprotein values also 435 

predicted cognitive decline in mutation carriers. Although these protein networks strongly correlated 436 

with clinical and neuroimaging features, abundance differences compared with non-carriers were 437 

rendered non-significant, likely due to their association with age. Of note, the synaptic protein 438 

neurogranin (NRGN) as well as the extracellular matrix protein SMOC1 were not altered in any of the 439 

groups of symptomatic genetic FTD mutation carriers but altered in both AD studies. This is in line 440 

with previous research (29) and suggests their specificity for amyloid-related changes in AD. 441 

Conversely, the protein FSTL4 was found to be changed in all groups of symptomatic FTD mutation 442 
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carriers but not AD, hinting at its potential specificity for FTD. Knowledge is still limited on the 443 

extent to which this protein is associated with neurodegenerative disorders, although one small study 444 

reported lower protein abundances of FSTL4 in patients with ALS (38).  445 

 446 

As this study aimed to look beyond proteomic alterations shared between FTD subtypes as well as 447 

AD, we also investigated the differences across genetic forms of FTD and their expected underlying 448 

pathologies. We identified lysosomal proteins with the potential to separate processes implicated in 449 

MAPT mutation carriers but not the other two groups. Decreased DNSAE2 and PLBD2 (which show 450 

divergent patterns in symptomatic GRN and C9orf72 carriers as shown in Fig. 2B) appear to be 451 

specifically related to the presence of tau pathology, without the amyloid background observed in AD 452 

(as evident in Fig. 3). This was further supported by PLBD2 and DNASE2 being among the hub 453 

proteins in the ‘lysosome’ module, driving the marked Eigenprotein value decrease in MAPT mutation 454 

carriers (Fig. 5G). Indeed, evidence suggests that PLBD2 and DNASE2 play a role in lysosomal 455 

processes (39–42). These results were unexpected, given the evidence of lysosomal dysfunction in 456 

GRN mutation carriers, but not in MAPT mutation carriers, due to the role of progranulin in the 457 

endolysosomal pathway (43, 44). Nonetheless, tau protein has been previously implicated in the 458 

trafficking of autophagic vesicles and autolysosome fusion (45–47), suggesting that a reduction of 459 

proteins related to the endolysosomal pathway in MAPT may indicate a potential dysregulation in this 460 

system. Lysosomal acid phosphatase 2 (ACP2) (48), a member of the ‘lysosome’ module, was found 461 

to be downregulated in presymptomatic MAPT carriers, which aligns with the changes seen in the 462 

protein networks found in symptomatic carriers.  This dysregulation might be different from that 463 

observed in C9orf72 and GRN carriers, in which there was a selective increase for some lysosomal 464 

proteins (LAMP1 and CTSS) not belonging to the ‘Lysosome’ module and thus displaying a different 465 

correlation pattern.  466 

 467 

In analyses stratifying groups by mutation irrespective of symptomatology, we observed a stepwise 468 

abundance increase across the disease continuum in PEA15, an astroglial protein associated with glial 469 

responses (34), being more strongly associated with MAPT mutation carriership than with GRN and 470 
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C9orf72. In GRN carriers, the expected decrease in GRN concentrations was observed (10) in both 471 

presymptomatic and symptomatic GRN carriers. Further, we found increased concentrations of 472 

RNF13 in both presymptomatic and symptomatic GRN carriers, which might be reflecting an 473 

underlying alteration in the ubiquitin system (49), not as well captured in MAPT and C9orf72 carriers. 474 

Further, we discovered several proteins that were changed in C9orf72 expansion carriers, including 475 

PGK1 which was elevated not only in presymptomatic carriers in comparison with non-carriers but 476 

also showed a stepwise increase across the disease continuum. In addition, CALB2 as well as HK1 477 

were elevated in presymptomatic C9orf72 carriers and, like PGK1, their relative abundances appeared 478 

to increase with disease progression. Both HK1 and PGK1 are key enzymes of the glycolysis pathway 479 

suggesting that a dysregulation of the glucose metabolism might be an early feature of C9orf72-480 

related FTD (50). HK1 and CALB2 were also selected as two of the top proteins in analyses 481 

comparing mutation carriers irrespective of underlying symptomatology, indicating their stronger 482 

association with a C9orf72 mutation. 483 

 484 

This study has limitations. The identification of a lower number of proteins that were changed in 485 

MAPT mutation carriers in comparison with GRN and C9orf72 mutation carriers may be biased due to 486 

the lower number of participants in this group. C9orf72 seems to be the most common genetic cause 487 

of FTD worldwide, followed by GRN and then MAPT (1), and this trend is reflected in the recruitment 488 

of the GENFI study.  Due to the structure of participant recruitment in the GENFI cohort, some 489 

participants from the same family were included in the study.  Family members may share genetic and 490 

environmental factors to a greater degree than the general population, which may bias the results. 491 

However, we conducted sensitivity analyses that included only one member from each family, with 492 

comparable results.  493 

Although genetic FTD offers the unique advantage of linking proteomic changes to pathological 494 

alterations antemortem, specifically distinguishing between tau and TDP-43 pathology, it cannot be 495 

excluded that observed proteomic changes are, in fact, specific to the underlying genetic mutation and 496 

not necessarily transferable to the resulting pathology in sporadic FTD.  497 
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Further, although both the EMIF and Higginbotham et al. studies employed similar statistical and 498 

mass spectrometric methods, it is likely that some of the differences seen between studies are due to 499 

varying power to detect proteomic alterations.  500 

Finally, the age-difference between symptomatic carriers and non-carriers may have resulted in age 501 

influencing the interpretation of results. However, including age as a covariate in all relevant analyses 502 

is likely to mostly mitigate this potential issue. 503 

 504 

To conclude, this study explored the CSF proteome in genetic FTD and found distinct changes 505 

occurring already in presymptomatic mutation carriers indicating early lysosomal dysfunction and 506 

alterations in proteins involved in glucose metabolism, with more widespread proteomic differences 507 

during the symptomatic stage of the disease. We found that proteomic profiles largely overlapped 508 

between the different causes of FTD as well as with AD, especially with respect to synaptic loss, glial 509 

responses and neurodegenerative processes. Furthermore, we discovered that certain lysosomal 510 

proteins are strongly associated with MAPT-mutation carriers, hinting at their potential value in 511 

distinguishing underlying FTD pathologies. Taken together, our results can inform the development 512 

of targeted assays that could be of value in clinical scenarios as well as in research aiming to better 513 

understand these diseases.   514 

  515 
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MATERIALS AND METHODS 516 

Study design 517 

The objective of this study was to explore the CSF proteomic signatures of the three most common 518 

genetic pathogenic mutations in FTD. To this end, 238 CSF samples from an ongoing case-control study 519 

cohort of genetic FTD, the GENFI cohort, were employed. Participants of the GENFI cohort were 520 

recruited from 14 GENFI centres, distributed across Europe and Canada, since 2012. One CSF sample 521 

per participant, generally obtained upon the first (baseline) visit, was included in the present cross-522 

sectional study. The samples were randomised for measurement and the researchers were blinded for 523 

genetic status and genetic mutations at the time of the experiment. No prior calculations were performed 524 

to determine cohort size; all available samples were included in the study. The presence of batch effects 525 

and sample outliers were investigated using hierarchical clustering and principal component analysis 526 

before and after normalization. The proteomic experiments were conducted in one replicate. No 527 

participants were excluded. London Queen Square Ethics committee as well as local ethics committees 528 

at each site approved the study. The study complies with the Declaration of Helsinki. All participants 529 

provided written informed consent at enrolment including consent to publication. This study adhered to 530 

the STROBE reporting guidelines for observational studies. 531 

 532 

 533 

Participants and sample collection 534 

Participants were recruited from the GENFI study, which includes individuals with a diagnosis of 535 

FTD due to a pathogenic mutation in MAPT, GRN, or C9orf72 (symptomatic mutation carriers), at-536 

risk first-degree relatives (presymptomatic mutation carriers), and non-carriers (mutation-negative 537 

first-degree relatives from the same families). Demographics of the cohort are described in Table 1.  538 

Participants were assessed using a standardised history and examination and were classified as 539 

symptomatic if they met consensus diagnostic criteria (51, 52). The CDR Dementia Staging 540 

Instrument with National Alzheimer Coordinating Centre Frontotemporal Lobar Degeneration 541 

component (CDR® plus NACC FTLD) was used to assess disease severity, and the CDR® plus 542 

NACC FTLD sum of boxes (SOB) was used for quantitative analyses in this paper. Participants 543 



21 

underwent Volumetric T1-weighted MRI scans. More details on clinical evaluation and imaging can 544 

be found in Supplementary Methods.  545 

 546 

CSF collection and sample preparation 547 

CSF was collected in polypropylene tubes through a lumbar puncture and centrifuged to remove 548 

insoluble material and cells. Supernatants were aliquoted and stored at -80 °C within 2 hours after 549 

collection. CSF samples (25 µL) were reduced by the addition of Tris(2)-carboxyethylphosphine 550 

(TCEP) in sodium deoxycholate (DOC), and triethylammonium bicarbonate (TEAB) to a final 551 

concentration of 5 mM TCEP (1% DOC, 100 mM TEAB). Following incubation at 55 °C for one 552 

hour, samples were equilibrated to room temperature (RT). Carbamidomethylation was performed by 553 

adding iodoacetamide to a concentration of 10 mM and subsequently incubating the reaction mixture 554 

in the dark for 30 min at RT. Trypsin (100 µg per vial; Promega) was dissolved in resuspension buffer 555 

(Promega) and 1.5 µg were added for overnight digestion at 37 °C. The following day, TMTpro 556 

reagents (TMT 18plex, Thermo Fisher, 5 mg) were dissolved in 200 µL acetonitrile (ACN) having 557 

been equilibrated to RT. Samples were randomised across TMT sets and TMT labelling was 558 

performed by adding 10 µL of TMT reagent to each sample. Per set, a global internal standard (GIS; 559 

pool of all cohort samples) was included as the last TMT channel (135N) for reference and 560 

normalisation. The reaction mixture was incubated for one hour under constant agitation and 561 

afterwards the labelling process was quenched by the addition of hydroxylamine to a final 562 

concentration of 0.2% (v/v). Following an incubation period of 30 min, samples were combined into 563 

18-plex sets and subsequently acidified with 0.5 M hydrochloric acid to precipitate DOC as well as 564 

diluted with 0.1% trifluoroacetic acid (TFA). To remove DOC, TMT sets were centrifuged at 4000*g 565 

for 15 min at 4 °C and the resulting supernatant was subjected to desalting by solid phase extraction 566 

(SPE). Desalting was performed on reversed-phase C18 cartridges (Sep-Pak C18 light) with a vacuum 567 

manifold. The columns were first washed with 2*1000 µL 0.1% TFA in 80% ACN and then 568 

equilibrated with 2*1000 µL 0.1% TFA. After sample loading, the column was again washed twice 569 

with 1000 µL 0.1% TFA and finally peptides were eluted with 0.1% TFA, 80% ACN. The eluate was 570 

split into three aliquots of equal volume, dried by vacuum centrifugation, and stored at -20 °C. 571 
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Plasma NfL and other CSF marker measurements are detailed in Supplementary Methods. 572 

 573 

Offline high-pH reverse phase HPLC sample fractionation 574 

Offline high-pH HPLC fractionation was performed on an UltiMate™ 3000 Nano LC system. Each 575 

TMT set aliquot was dissolved in 22 µL of 2.5 mM NH4OH of which 20 µL were injected to be 576 

separated on an XBridge BEH C18 column (pore size: 130 Å, inner diameter: 4.6 mm). Peptide 577 

elution was accomplished using the following gradient: Buffer B was increased from 1% to 45% over 578 

a 65-minute period (flow rate of 100 µL/min), while Buffer C was maintained at 10% (Buffer A: H2O, 579 

Buffer B: 84% ACN, Buffer C: 25 mM NH4OH). Resulting fractions were collected circling over two 580 

rows in a 96-well microtiter plate at 1 min intervals, yielding 24 concatenated fractions. Subsequent 581 

column cleaning was performed at 90% B and 10% C for 10 minutes followed by an equilibration at 582 

1% B and 10% C for 10 minutes. All fractions were subjected to vacuum centrifugation and stored 583 

dry at -20 °C until subsequent LC-MS analysis. 584 

 585 

Liquid chromatography-mass spectrometry (LC-MS) 586 

Fractions were dissolved in 50 µL 0.05% TFA, 0.1% bovine serum albumin (loading buffer) and 587 

loaded on a nano-LC (Ultimate RSLC Nano, Thermo Scientific) equipped with a C18 trap column 588 

(PepMap Acclaim 300 µm mm * 5 mm, Thermo Scientific) and C18 separation column (PepMap 589 

Acclaim 75 µm * 500 mm, Thermo Scientific), connected to an Orbitrap FusionTM LumosTM TribridTM 590 

mass spectrometer (Thermo Scientific), fitted with an Easy Spray Source and a high-field asymmetric 591 

waveform ion mobility spectrometry (FAIMS) unit for spatial ion separation. Peptides were separated 592 

according to the following gradient: 5 min, 4% B; 6 min, 10% B; 74 min, 40% B; 75 min, 100% B 593 

(Buffer A: 0.1% FA; Buffer B: 84% ACN, 0.1% FA). In the positive ion mode, alternating MS/MS 594 

cycles (cycle time = 1.5 s) were performed at compensation voltages (CV) of CV=-70 V, CV = -50 V. 595 

A full Orbitrap MS scan was recorded with the parameters specified as follows: R = 120 k, AGC 596 

target = 100%, max injection time = 50 ms. The full MS scan was then followed by data dependent 597 

Orbitrap MS/MS scans set to the following parameters: R = 50 k, AGC target = 200%, max. injection 598 

time = 120 ms, isolation window = 0.7 m/z, activation type = HCD. 599 
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 600 

Statistical analysis 601 

All statistical analyses were performed with R version 4.1.2. For basic demographic variables, 602 

Omnibus Kruskal-Wallis tests were performed for continuous variables, whereas Fisher’s exact tests 603 

were used for categorical variables. Unless otherwise specified, Spearman correlations were used to 604 

test associations between continuous variables. To assess differentially abundant proteins across the 605 

diagnostic groups, linear regression models were built with the log2-transformed value of the 606 

measured protein abundance as dependent variable, testing the effect of the diagnostic group, and 607 

adjusting for both age and sex as covariates. Resulting P-values were adjusted with the Benjamini-608 

Hochberg procedure to account for multiple testing. Statistical significance (α)	was set at a two-sided 609 

P<0.05. To ensure a minimum number of observations per group, proteins with a high fraction of 610 

missing values (>75% of participants) were excluded from the regression analysis. Additionally, 611 

group-wise outlier removal of protein measurements (+/- 1.5*IQR) was performed prior to regression 612 

analysis as the presence of outliers can severely affect resulting test statistics potentially increasing 613 

the rate of false negatives in the initial biomarker discovery phase. For all subsequent statistical 614 

analyses as well as boxplots shown in this paper, outliers were not removed. Linear models (also 615 

adjusted for age and sex) including only one member from each family were performed in 616 

comparisons when more than 5 participants were available in both groups. To identify mutation-617 

specific signatures, linear models were fitted including protein abundance as a dependent variable 618 

while evaluating the effect of each mutation group including affectation (absence/presence of 619 

symptoms) as well as age and sex as covariates. To identify subsets of co-correlated proteins relating 620 

to pathophysiological features of genetic FTD, we performed network analysis (WGCNA) followed 621 

by GO annotation of the output modules. The prognostic properties of protein networks were 622 

evaluated using linear mixed effects models.  The specifics of each of these methods are described in 623 

Supplementary Methods.  624 

 625 

 626 

 627 
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Figures and tables  1118 

 1119 

Tables 1120 

Table 1. Baseline demographic characteristics of the GENFI cohort. Abbreviations: MMSE, mini 1121 

mental state examination; FTLD-CDR-SOB, frontotemporal lobar degeneration national Alzheimer's 1122 

disease coordinating centre + clinical dementia rating sum of boxes; NfL, neurofilament light.  1123 

 1124 

Characteris
tic 

Overall, 
N = 
2381 

Non-
carrier, 
N = 761 

Presympto
matic 

C9orf72, N = 
441 

Presympto
matic GRN, 

N = 381 

Presympto
matic MAPT, 

N = 251 

Symptom
atic 

C9orf72, 
N = 271 

Symptom
atic GRN, 
N = 171 

Symptom
atic 

MAPT, N 
= 111 

P-value2 

Age, 
years 

48 
(38

, 
58) 

43 
(38

, 
53) 

43 (33, 
50) 

50 (37, 
56) 

42 (33, 
46) 

58 
(55, 
70) 

64 
(58, 
67) 

63 
(59, 
66) 

<0.
001 

Sex, 
male 

10
8 

(45
%) 

33 
(43
%) 

19 
(43%) 

18 
(47%) 

9 (36%) 16 
(59%) 

8 
(47%) 

5 
(45%) 

0.8 

Educat
ion, 
years 

15 
(12

, 
16) 

15 
(12

, 
17) 

14 (12, 
16) 

15 (13, 
16) 

15 (13, 
16) 

13 
(11, 
14) 

14 (9, 
15) 

13 
(12, 
16) 

0.01
9 

Plasm
a NfL, 
pg/mL 

8 
(6, 
15) 

7 
(5, 
10) 

8 (6, 10) 8 (5, 10) 6 (5, 9) 40 
(21, 
55) 

44 
(37, 
69) 

20 
(18, 
23) 

<0.
001 

MMSE 30.
0 

(28
.0, 
30.
0) 

30.
0 

(29
.0, 
30.
0) 

30.0 
(29.0, 
30.0) 

30.0 
(29.0, 
30.0) 

30.0 
(29.0, 
30.0) 

26.0 
(20.3, 
28.8) 

23.0 
(20.5, 
28.0) 

24.5 
(17.8, 
27.0) 

<0.
001 

CDR 
FTLD 
SOB 

0.0 
(0.
0, 
1.0
) 

0.0 
(0.
0, 
0.0
) 

0.0 (0.0, 
0.5) 

0.0 (0.0, 
0.0) 

0.0 (0.0, 
0.5) 

11.5 
(4.8, 
15.5) 

10.0 
(4.8, 
13.0) 

7.5 
(3.3, 
10.6) 

<0.
001 

1 Median (IQR); n (%) 
2 Kruskal-Wallis rank sum test; Fisher’s exact test 
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Figure Legends 1130 

 1131 

Fig. 1. Key information about participants, proteomics workflow and data analysis. 1132 

This figure shows the TMT tandem mass spectrometry (MS/MS) proteomics workflow, in which 1133 

samples were pre-processed and labelled with 18 different isobaric TMTpro tags (TMTpro 18-plex) 1134 

and combined into multiplex samples to allow for relative quantification and simultaneous analysis of 1135 

the 18 individual samples. This process was then repeated until all 238 samples were labelled with 1136 

isobaric tags. Next, each multiplex sample was fractionated using offline high-pH liquid 1137 

chromatography (HP-LC) to reduce sample complexity, and each fraction was subsequently analyzed 1138 

by LC-MS/MS. The data analysis conceptually consisted of four steps: 1) Investigating differences in 1139 

protein abundances in mutation carriers compared with non-carriers and 2) determining FTD-subtype 1140 

specific proteomic signatures employing linear models, 3) protein network analysis to investigate 1141 

mutation and pathology-specific pathophysiological features as well as finally 4) correlating these 1142 

protein clusters with clinical parameters and cognitive decline to discern clinically relevant changes. 1143 

Abbreviations: TMT, tandem mass tag; FTD, frontotemporal dementia; MS, mass spectrometry; 1144 

MAPT, microtubule associated protein tau; GRN, progranulin; C9orf72, chromosome 9 open reading 1145 

frame 72; GENFI, GENetic Frontotemporal dementia Initiative.  1146 
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 1149 

Fig. 2. Volcano plots and heat map displaying top protein hits in symptomatic mutation carriers 1150 

vs non-carriers. 1151 
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(A – C) Volcano plots showing proteomic differences in symptomatic MAPT (A), GRN (B)  and 1152 

C9orf72 (C) mutation carriers based on linear regression analysis with age and sex as covariates. 1153 

Differences were considered significant if Benjamini-Hochberg (false discovery rate [FDR]) adjusted 1154 

P-values were <0.05. (D) The heatmap displays the 25 proteins in each group that had the lowest 1155 

FDR-adjusted P-values in linear regression analysis, resulting in 62 proteins when accounting for 1156 

overlapping proteins among groups. The log2 fold abundance change between non-carriers and the 1157 

respective mutation carrier group is colour-coded; proteins higher or lower in abundance in 1158 

symptomatic mutation carriers vs. non-carriers are shown in red and blue, respectively. Note that not 1159 

all proteins listed in D were significantly altered in all groups. * Padjust<0.05, ** Padjust<0.01, *** 1160 

Padjust<0.001. Details on exact P-values and log2 fold change can be found in Table S1A-S1C.  1161 
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 1180 

Fig. 3. Cross cohort comparisons of symptomatic genetic FTD with AD. 1181 

(A) Venn diagram with proteins measured in GENFI, the EMIF cohort (25) and Higginbotham et al. 1182 

(28). The overlap (n=1192) represents proteins quantified in all studies. (B) Upset plot of 1183 

differentially expressed proteins (FDR-adjusted P<0.05) for symptomatic C9orf72, MAPT, GRN 1184 

mutation carriers and for patients with AD from the Higginbotham and EMIF cohort. The upper, 1185 

vertical bars show the number of differentially expressed proteins exclusive to one patient group  1186 

or shared between groups.  The left horizontal bars represent the total number of proteins with 1187 

Padjust<0.05 comparing each group with control individuals. Intersections of clinical interest are 1188 

color-coded. Intersections only containing 1 protein are not displayed in the figure. (C) Selection 1189 

of proteins in intersections from the upset plot in panel B that are of clinical interest, as well as 1190 

proteins specifically altered in one group. Proteins included in each of these intersections, as well 1191 

as those not displayed, can be found in Table S5.  Abbreviations: GENFI, GENetic 1192 

Frontotemporal dementia Initiative; EMIF, European Medical Information Framework; AD, 1193 

Alzheimer's disease. 1194 
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1195 

Fig. 4. Identification of mutation-associated proteins. (A to C) Left: Forest plots of the top five 1196 

proteins most strongly associated with C9orf72 (A), GRN (B), and MAPT (C) mutation. For the 1197 

identification of mutation-associated proteins, linear models were fitted testing the effect of mutation 1198 

carrier group on protein abundance, including affectation (presence/absence of symptoms) as well as 1199 

age and sex as covariates. Non-carriers served as reference group. Coefficients with an adjusted 1200 

P<0.05 are depicted as coloured points and 95% CI were added. Standardised β estimates including 1201 

corresponding Benjamini-Hochberg-adjusted P-values for each association and mutation group were 1202 

reported. Right: Boxplots of two manually selected proteins across the entire cohort. The dotted line 1203 

denotes the median log₂-transformed protein abundance value of the non-carrier group. Abbreviations: 1204 

CI, confidence interval. 1205 
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 1206 

Fig.5. Weighted gene co-expression network modules show mutation/pathology-specific changes 1207 

and correlate with relevant clinical parameters. 1208 

(A) Employing Weighted gene co-expression network analysis (WGCNA), we identified 14 distinct 1209 

highly correlated modules of proteins. For this figure, six modules of particular interest were selected 1210 
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and their Eigenprotein values were plotted across the entire cohort: ‘Core markers’,  ‘Actin binding’,  1211 

‘Stress response’,  ‘Synapse’, ‘Lysosome’,  ‘Immune response’. Modules were named in accordance 1212 

with gene ontology (GO) terms mapped to their constituent proteins.  Framed boxes contain the 1213 

names of the top five hub proteins of each module, as determined by having the highest module 1214 

membership value (kME). P-values for respective group comparisons vs. non-carriers are derived 1215 

from linear regression analyses with post hoc Tukey’s honestly significant difference (HSD) to adjust 1216 

for multiplicity. Boxplots of the remaining modules can be found in Fig. S24. * P<0.05, ** P<0.01, 1217 

*** P<0.001, **** P<0.0001. (B) Heatmap of correlation parameters of module Eigenproteins with 1218 

different clinical measures. Spearman’s rho values are colour-coded, and the corresponding 1219 

Bonferroni-corrected P-values are included in parentheses for each tile. To evaluate the association of 1220 

protein modules with clinical parameters at different time points of the disease continuum, 1221 

correlations were performed in an indicated subset of individuals only. Abbreviations: FTLD-CDR-1222 

SOB, frontotemporal lobar degeneration clinical dementia rating sum of boxes; EYO, estimated years 1223 

to disease onset; GAG, Glycosaminoglycan; MMSE, Mini Mental State Examination.  1224 
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 1239 

Fig 6. Weighted gene co-expression network modules predict cognitive change in genetic FTD. 1240 

The plots show estimates of the fixed effect (standardised module Eigenprotein value*time in years 1241 

from baseline) of linear mixed effects models with FTLD-CDR-SOB as dependent variable in mutation 1242 

carriers (n=146). The models included standardised Eigenprotein values*time, age, sex, years of 1243 

education and affectation at baseline (presymptomatic/symptomatic) as independent variables.  Panels 1244 

(A-C) Estimates of ME values for ‘Core biomarkers’ (A), ‘Actin binding’ (B), and ‘Synapse’ (C) 1245 
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modules from separate models. The colours visualise the estimated cognitive trajectories at Z-scored 1246 

baseline Eigenprotein values ranging from -1 to 2 SD from the mean. (D)  Forest plot of the standardised 1247 

β estimates and 95% CI of each module Eigenprotein value*time. The filled points denote statistically 1248 

significant (P<0.05) interaction terms. 1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 

 1256 

 1257 

 1258 

 1259 

 1260 

 1261 

 1262 

 1263 

 1264 

 1265 

 1266 

 1267 

 1268 

 1269 

 1270 

 1271 

 1272 



50 

Supplementary Materials for 1273 

 1274 

Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic 1275 

frontotemporal dementia subtypes  1276 

 1277 

Sogorb-Esteve A, Weiner S and Simrén J et al.   1278 

 1279 

The PDF file includes:  1280 

Supplementary methods 1281 

Supplementary Figures S1-S25 1282 

References 53-56 1283 

 1284 

Other Supplementary Material for this manuscript includes the following:  1285 

Supplementary data file – Tables S1-S10 1286 

Reproducibility checklist 1287 

 1288 

  1289 



51 

Supplementary Methods 1290 

 1291 

Fluid, imaging and cognitive biomarker collection and processing. 1292 

Participants also had plasma samples collected as part of the GENFI protocol. Plasma was 1293 

collected, processed, and stored in aliquots at -80°C according to standardised procedures. 1294 

Plasma neurofilament light chain (NfL) levels were correlated (Spearman’s correlation) with 1295 

TMT relative reporter ion intensities of CSF NfL (n=163). Plasma NfL concentration was 1296 

measured with Single molecule array (Simoa) technology using the Neurology 4-Plex A kit 1297 

(Quanterix, Billerica, USA) on an HD-X Analyzer following the manufacturer’s instructions 1298 

(Quanterix, Billerica, USA). Measurements were completed in duplicate (all CVs below 1299 

15%) over a total of 3 batches, each with an 8-point calibration curve tested in triplicate and 2 1300 

controls tested in duplicate, as reported before (7). 1301 

In addition, TMT tryptic peptide measurements of the synaptic proteins 14-3-3 epsilon 1302 

([R].IISSIEQK.[E], n=119), neuronal pentraxin 2 ([K].VAELEDEK.[S], n=181)  and 1303 

neuronal pentraxin receptor ([R].NNYMYAR.[V], n=169) were correlated with 1304 

corresponding tryptic peptide measurements as performed in the publication Sogorb-Esteve et 1305 

al, 2020 (26). In brief, to 100 µL of CSF, a mixture of stable-isotope-labeled peptides 1306 

(internal standard) was added (25 µL, 0.032 pmol/µL, JPT Peptide Technologies, Berlin, 1307 

Germany; SpikeTides L). This was then followed by a stepwise protocol of reduction, 1308 

alkylation, and tryptic digestion, and lastly solid-phase extraction for purification purposes. 1309 

LC-MS/MS analysis was performed using a microflow HPLC, equipped with a Hypersil 1310 

Gold reversed-phase column (100 × 2.1 mm, particle size 1.9 µm, Thermo Fisher Scientific), 1311 

and a Triple Quadrupole mass spectrometer (6495 Triple Quadrupole LC/MS system, Agilent 1312 

Technologies). To monitor the performance of the assay over time, quality control (QC) 1313 

sample replicates were injected at regular intervals during runs. The panel of synaptic 1314 

markers included: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-1315 
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synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation 1316 

inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding 1317 

protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), 1318 

and neuronal pentraxin 2 (NPTX2).  1319 

Volumetric T1-weighted MRI scans were bias field corrected and parcellated using the 1320 

geodesic information flow algorithm (53). From this parcellation, the volumes of the bilateral 1321 

frontal, temporal, parietal ad occipital cortices and of the whole brain were extracted and 1322 

expressed as a percentage of the total intracranial volume, which was computed with SMP12 1323 

v6470 (Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London, 1324 

UK) running under Matlab R201b (Math Works, Natick, MA, USA) (54).  1325 

The standardized GENFI clinical assessment included a history, examination, cognitive 1326 

assessment (including Mini-Mental State Examination [MMSE]), FRS, and the CDR plus 1327 

NACC FTLD rating scale. Mutation carriers were classified into asymptomatic, prodromal, 1328 

or symptomatic if they scored 0, 0.5, or ≥ 1, respectively, on the CDR plus NACC FTLD 1329 

global score. As part of the GENFI clinical assessment, the CDR plus NACC FTLD was 1330 

administered as per standard protocol (interviewing both the participant and an informant 1331 

separately) including the core cognitive and functional domain items from the CDR 1332 

(memory, orientation, judgment and problem solving, community affairs, hobbies, personal 1333 

care), and the two-clinician judgment (global) scores from the NACC FTLD for behavior and 1334 

language. 1335 

 1336 

Data processing and normalisation 1337 

All RAW files were processed using Proteome Discoverer Version 2.5.0.400 (Thermo 1338 

Scientific). The most confident centroid integration method with an integration tolerance of 1339 

20 ppm was employed to perform peak integration for reporter ion quantification. Peptides 1340 
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were identified searching against the UniProtKB Swiss-Prot (TaxID = 9606, Homo sapiens) 1341 

database utilising the SequestHT search engine with search parameters specified as follows: 1342 

precursor Δm tolerance = 5 ppm, fragment Δm tolerance = 0.02 Da, missed cleavages = 2, 1343 

min. peptide length = 6, fixed modifications = carbamidomethyl, TMTpro (peptide N-1344 

terminus, K residues). Percolator was used for peptide scoring, filtering peptide spectral 1345 

matches and peptides to a false discovery rate (FDR) of <1%. Peptides were then assembled 1346 

into proteins based on their uniqueness (unique peptides). In the event of redundancy, 1347 

peptides were assigned to a protein sequence in accordance with the principle of parsimony 1348 

(razor peptides). 1349 

For data normalisation, individual protein abundances were divided by their corresponding 1350 

set-wise global internal standard (GIS) protein measurement. Each obtained protein ratio was 1351 

then additionally divided by the respective sample median, accounting for aberrant 1352 

differences in total protein amount. Finally, all data was transformed into a log2-space. 1353 

Potential batch effects and sample outliers were assessed by performing a principal 1354 

component (PCA) analysis (Fig. S25) and hierarchical clustering considering all sample-wise 1355 

protein abundances. 1356 

 1357 

Weighted gene co-expression network analysis (WGCNA) and correlation with clinical 1358 

parameters 1359 

Weighted gene co-expression networks were constructed using the R package WGCNA (55). 1360 

Due to the limited sample sizes of individual diagnostic groups, a network including all 1361 

samples of the present cohort was built. Following the removal of proteins with missing 1362 

values in >50% of all study participants, the optimal soft threshold power was chosen as the 1363 

power at which scale free topology R2 approached an asymptote at around 0.9 and the mean 1364 

and median connectivity were <100. A signed network was built using the 1365 
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WGCNA::blockwiseModules function with the following settings: soft threshold power = 14, 1366 

deepSplit = 4, corType = bicor, minModuleSize = 10, mergeCutHeight = 0.2,  1367 

pamRespectsDendro TRUE, pamStage TRUE, maxPOutliers p < 0.05, reassignThreshold = 1368 

0.05. In brief, a robust correlation metric insensitive to outliers (bicor) is used to compute the 1369 

correlation between all pairs of proteins. Next, the resulting correlation matrix is transformed 1370 

into an adjacency matrix raising the co-expression similarities to the determined soft 1371 

threshold power. The adjacency matrix is then used to construct a topological overlap matrix 1372 

(TOM), reflecting the relative interconnectedness of each protein. Finally, hierarchical 1373 

protein clustering is performed on the corresponding topological overlap dissimilarity 1374 

measure (1-TOM), resulting in module construction via dynamic tree cutting. A total of 14 1375 

modules could be identified, including a grey module (645 proteins) containing proteins that 1376 

could not be assigned to any of the modules and a module containing contaminants from the 1377 

laboratory environment (tan module). In a next step, module Eigenproteins corresponding to 1378 

the module’s first principal component were identified. Protein module membership kME 1379 

was determined by performing Pearson correlation of each protein with each module 1380 

Eigenprotein. Proteins with a kME > 0.7 were considered as the module’s respective hub 1381 

proteins. Module Eigenproteins of different subsets of the cohort (presymptomatic and/or 1382 

symptomatic mutation carriers) were correlated (Spearman rank-order correlation) with 1383 

clinical parameters. Significance levels were adjusted with Bonferroni correction to account 1384 

for multiple testing.  To investigate the prognostic properties of module Eigenprotein values 1385 

in mutation carriers, separate linear mixed effects models for each module Eigenprotein value 1386 

were fitted including only mutation carriers (both symptomatic and presymptomatic carriers) 1387 

with cognitive score (FTLD-NACC+CDR-SOB) as dependent variable. Fixed effects 1388 

included the interaction of module Eigenprotein value*time (years since baseline), with age, 1389 

sex, years of education and cognitive status (symptomatic or presymptomatic) as covariates. 1390 
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All models included random intercepts and slopes for each participant. To enable 1391 

comparability between models, module Eigenprotein values were standardised. These 1392 

analyses were performed using the lme4 package in R.  1393 

 1394 

Gene ontology analysis of WGCNA modules 1395 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1396 

server for functional enrichment analysis (56). g:Profiler performs statistical 1397 

overrepresentation analysis utilising cumulative hypergeometric probability, also known as 1398 

Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein 1399 

list. Calculated P-values represent the probability of randomly drawing n or more proteins in 1400 

a subset of proteins (WGCNA modules) annotating to a specific GO term from the total 1401 

number of proteins identified in the study. Multiple testing correction was performed with the 1402 

method of Benjamini and Hochberg with a threshold of <0.05 to apply a less stringent 1403 

approach for obtaining corrected P-values. GO results were then filtered to reduce 1404 

redundancy and highlight driver terms, i.e. representative GO terms for a larger group of 1405 

terms, as described in (56). Terms best representing the proteins in a respective module were 1406 

chosen for module annotation. 1407 

 1408 

 1409 
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 1410 
Figure S1. Correlation between biomarkers when measured with TMT-based proteome-wide 1411 

quantification and targeted techniques. (A to D) Correlations between Neurofilament light 1412 

(A), 14-3-3 protein epsilon (B), Neuronal pentraxin-2 (C) and Neuronal pentraxin receptor 1413 

(D) abundances measured in the same samples with tandem mass tag (TMT)-based 1414 

quantification on the x-axis and single molecule array (Simoa) (A) or multiple reaction 1415 

monitoring (MRM)-based (B-D) quantification on the y-axis. All measurements except for 1416 

Simoa Neurofilament light, which was carried out in plasma, were made in cerebrospinal 1417 

fluid using mass spectrometric methods.  1418 
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      1419 

 1420 

 1421 

1422 
Figure S2. (A) Cross-cohort comparisons of CSF proteomic changes in symptomatic GRN 1423 

carriers. Venn diagram showing the number of proteins quantified in the current study (red), a 1424 

published label-free mass spectrometry dataset of symptomatic GRN carriers and non-carriers 1425 

from the ALLFTD cohort (grey), with the number of proteins quantified in both studies being 1426 

shown in grey/red. (B) Number of proteins significantly changed in unadjusted ANOVA 1427 

analysis in the same studies. At the bottom of the panel, a selection of proteins changed in 1428 

both studies are shown. Gene names highlighted in bold denote proteins with false discovery 1429 

rate (FDR)-corrected P-values <0.05 in linear regression analyses with age and sex as 1430 

covariates in the GENFI cohort. (C)  Correlation between log2 fold changes between 1431 

symptomatic GRN carriers of proteins in GENFI and ALLFTD cohorts (Spearman R = 0.87, 1432 

P<0.0001). Proteins with ANOVA P-values <0.05 in both studies are shown in blue, whereas 1433 

proteins not matching this criterion are shown in grey. Spearman correlation was performed 1434 

in this subset of proteins. Abbreviations; GENetic Frontotemporal dementia Initiative, 1435 

GENFI; European Medical Information Framework.  1436 

 1437 

 1438 

 1439 

 1440 

 1441 
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 1442 

 1443 

 1444 
Figure S3. Volcano plot showing proteins changed in presymptomatic MAPT carriers vs. 1445 

non-carriers.  The volcano plot displays an overview of the altered proteins in 1446 

presymptomatic MAPT mutation carriers when compared with non-carriers based on an 1447 

analysis of covariance (ANCOVA) with age and sex as covariates. P-values were corrected 1448 

for multiple testing according to the Benjamini-Hochberg method. Padjust cut-off: 0.05. 1449 

Abbreviations: neurofilament light, NEFL; ACP2, Acid Phosphatase 2, Lysosomal; PEA15, 1450 

Astrocytic phosphoprotein PEA-15; ANTXR2, ANTXR Cell Adhesion Molecule 2; CBR1, 1451 

Carbonyl reductase 1; BAMBI, BMP And Activin Membrane Bound Inhibitor. 1452 

 1453 

  1454 
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 1455 

 1456 

Figure S4. Volcano plot showing proteins changed in presymptomatic GRN carriers vs. non-1457 

carriers. The volcano plot displays an overview of the altered proteins in presymptomatic 1458 

GRN mutation carriers when compared with non-carriers based on an analysis of covariance 1459 

(ANCOVA) with age and sex as covariates. P-values were corrected for multiple testing 1460 

according to the Benjamini-Hochberg method. Padjustcut-off: 0.05. Abbreviations: 1461 

Progranulin, GRN; LNPEP, Leucyl and Cystinyl Aminopeptidase; RNF13, Ring Finger 1462 

Protein 13; GPRC5B, G Protein-Coupled Receptor Class C Group 5 Member B. 1463 
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 1465 
Figure S5. Volcano plot showing proteins changed in presymptomatic C9orf72 carriers vs. 1466 

non-carriers. The volcano plot displays an overview of the altered proteins in presymptomatic 1467 

C9orf72 mutation carriers when compared with non-carriers based on an analysis of 1468 

covariance (ANCOVA) with age and sex as covariates P-values were corrected for multiple 1469 

testing according to the Benjamini-Hochberg method. Padjust cut-off: 0.05. Abbreviations: 1470 

CXADR Ig-Like Cell Adhesion Molecule, CXADR; Phosphoglycerate Kinase 1, PGK1; 1471 

Malic enzyme 1, ME1; Calretinin, CALB2; Aldo-keto reductase family 1, AKR1B1; 1472 

Tubulin-specific chaperone A, TBCA; Hexokinase 1; HK1. 1473 
 1474 
  1475 
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 1476 
Figure S6. Proteins changed in presymptomatic MAPT carriers vs. non-carriers extracted 1477 

from Figure S3.  Overview of the altered proteins in presymptomatic MAPT mutation carriers 1478 

when compared with controls based on an analysis of covariance (ANCOVA) with age and 1479 

sex as covariates and post hoc Tukey’s honest significant difference (HSD). (A) NEFL; (B) 1480 

ACP2; (C) PEA15; (D) ANTXR2; (E) CBR1, and (F) BAMBI in non-carriers, 1481 

presymptomatic and symptomatic MAPT carriers. Abbreviations: neurofilament light, NEFL; 1482 

ACP2, Acid Phosphatase 2, Lysosomal; PEA15, Astrocytic phosphoprotein PEA-15; 1483 

ANTXR2, ANTXR Cell Adhesion Molecule 2; CBR1, Carbonyl reductase 1; BAMBI, BMP 1484 

And Activin Membrane Bound Inhibitor. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 1485 

Note: Non-significant comparison in tile F is due to the presence of outliers which were 1486 

removed for analyses performed for Figure S3.  1487 
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 1488 
Figure S7. Proteins changed in presymptomatic GRN carriers vs. non-carriers extracted from 1489 

Figure S4.  Overview of the altered proteins in presymptomatic GRN mutation carriers when 1490 

compared with controls based on an analysis of covariance (ANCOVA) with age and sex as 1491 

covariates and post hoc Tukey’s honest significant difference (HSD). Panels show (A) GRN, 1492 

(B) LNPEP, (C) RNF13, and (D) GPRC5B in non-carriers, presymptomatic and symptomatic 1493 

GRN carriers. Abbreviations: Progranulin, GRN; LNPEP, Leucyl and Cystinyl 1494 

Aminopeptidase; RNF13, Ring Finger Protein 13; GPRC5B, G Protein-Coupled Receptor 1495 

Class C Group 5 Member B. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 1496 

 1497 

  1498 
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 1499 
Figure S8. Proteins changed in presymptomatic C9orf72 carriers vs. non-carriers extracted 1500 

from Figure S5. Overview of the altered proteins in presymptomatic C9orf72 mutation 1501 

carriers when compared with controls based on an analysis of covariance (ANCOVA) with 1502 



64 

age and sex as covariates and post hoc Tukey’s honest significant difference (HSD). Panels 1503 

show (A) CXADR; (B) PGK1, (C) ME1, (D) CALB2, (E) AKR1B1, (F) TBCA and (G) HK1 1504 

in non-carriers, presymptomatic and symptomatic C9orf72 carriers. Abbreviations: CXADR 1505 

Ig-Like Cell Adhesion Molecule, CXADR; Phosphoglycerate Kinase 1, PGK1; Malic 1506 

enzyme 1, ME1; Calretinin, CALB2; Aldo-keto reductase family 1, AKR1B1; Tubulin-1507 

specific chaperone A, TBCA; Hexokinase 1; HK1. * p<0.05, ** p<0.01, *** p<0.001, **** 1508 

p<0.0001. Note: Non-significant comparison in tile C is due to the presence of outliers which 1509 

were removed for analyses performed for Figure S5. 1510 

 1511 

 1512 

 1513 

 1514 

 1515 
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 1537 

 1538 
Figure S9. Cluster dendrogram of the weighted gene co-expression network analysis 1539 

(WGCNA). Cluster dendrogram and color representation of the network modules produced 1540 

by average linkage hierarchical clustering of proteins based on their topological overlaps. 1541 

  1542 
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 1543 
Figure S10. Clustering of module Eigenproteins of the weighted gene co-expression network 1544 

analysis (WGCNA).  Hierarchical clustering of module Eigenproteins identified in the 1545 

WGCNA. 1546 

  1547 
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 1548 
Figure S11. Determination of soft-threshold power in weighted gene co-expression network 1549 

analysis (WGCNA). This figure shows the scale-free topology index (A) and mean 1550 

connectivity (B) for each power value between 1 and 22. The R2 cut-off was drawn at 0.875. 1551 
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 1553 
Figure S12. Gene ontology terms associated with the ‘Semaphorin signaling’ (red) module. 1554 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1555 

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation 1556 

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed 1557 

test, to calculate the significance of functional terms in the input protein list. Multiple testing 1558 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1559 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1560 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1561 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1562 

larger group of terms (displayed in the list below the plot). 1563 

  1564 
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 1565 
Figure S13. Gene ontology terms associated with the ‘Synapse’ (brown) module. Gene 1566 

ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web server for 1567 

functional enrichment analysis. g:Profiler performs statistical overrepresentation analysis 1568 

utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed test, to 1569 

calculate the significance of functional terms in the input protein list. Multiple testing 1570 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1571 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1572 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1573 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1574 

larger group of terms (displayed in the list below the plot). 1575 
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 1577 

 1578 
Figure S14. Gene ontology terms associated with the ‘Neuronal development’ (blue) module. 1579 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1580 

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation 1581 

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed 1582 

test, to calculate the significance of functional terms in the input protein list. Multiple testing 1583 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1584 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1585 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1586 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1587 

larger group of terms (displayed in the list below the plot). 1588 
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 1590 
Figure S15. Gene ontology terms associated with the ‘Protein processing’ (yellow) module. 1591 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1592 

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation 1593 

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed 1594 

test, to calculate the significance of functional terms in the input protein list. Multiple testing 1595 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1596 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1597 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1598 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1599 

larger group of terms (displayed in the list below the plot). 1600 

  1601 



72 

 1602 
Figure S16. Gene ontology terms associated with the ‘Core markers’ (greenyellow) module.  1603 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1604 

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation 1605 

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed 1606 

test, to calculate the significance of functional terms in the input protein list. Multiple testing 1607 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1608 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1609 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1610 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1611 

larger group of terms (displayed in the list below the plot). 1612 

  1613 



73 

 1614 
Figure S17. Gene ontology terms associated with the ‘Stress response’ (magenta) module. 1615 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1616 

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation 1617 

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed 1618 

test, to calculate the significance of functional terms in the input protein list. Multiple testing 1619 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1620 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1621 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1622 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1623 

larger group of terms (displayed in the list below the plot). 1624 
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 1626 
Figure S18. Gene ontology terms associated with the ‘Actin binding’ (pink) module.  Gene 1627 

ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web server for 1628 

functional enrichment analysis. g:Profiler performs statistical overrepresentation analysis 1629 

utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed test, to 1630 

calculate the significance of functional terms in the input protein list. Multiple testing 1631 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1632 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1633 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1634 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1635 

larger group of terms (displayed in the list below the plot). 1636 
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 1638 
Figure S19. Gene ontology terms associated with the ‘GAG processing’ (salmon) module.  1639 

Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web 1640 

server for functional enrichment analysis. g:Profiler performs statistical overrepresentation 1641 

analysis utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed 1642 

test, to calculate the significance of functional terms in the input protein list. Multiple testing 1643 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1644 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1645 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1646 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1647 

larger group of terms (displayed in the list below the plot). 1648 
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 1650 
Figure S20. Gene ontology terms associated with the ‘Extracellular matrix 1’ (green) 1651 

module.  Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a 1652 

web server for functional enrichment analysis. g:Profiler performs statistical 1653 

overrepresentation analysis utilising cumulative hypergeometric probability, also known as 1654 

Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein 1655 

list. Multiple testing correction was performed with the method of Benjamini and Hochberg 1656 

with a threshold of <0.05. The y-axis of the plot displays the negative decadic logarithm of 1657 

the adjusted p-value while the x-axis highlights the category of all corresponding GO terms. 1658 

GO results were then filtered to reduce redundancy and highlight driver terms, i.e. 1659 

representative GO terms for a larger group of terms (displayed in the list below the plot). 1660 
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 1662 
Figure S21. Gene ontology terms associated with the ‘Lysosome’ (purple) module.  Gene 1663 

ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a web server for 1664 

functional enrichment analysis. g:Profiler performs statistical overrepresentation analysis 1665 

utilising cumulative hypergeometric probability, also known as Fisher’s one-tailed test, to 1666 

calculate the significance of functional terms in the input protein list. Multiple testing 1667 

correction was performed with the method of Benjamini and Hochberg with a threshold of 1668 

<0.05. The y-axis of the plot displays the negative decadic logarithm of the adjusted p-value 1669 

while the x-axis highlights the category of all corresponding GO terms. GO results were then 1670 

filtered to reduce redundancy and highlight driver terms, i.e. representative GO terms for a 1671 

larger group of terms (displayed in the list below the plot). 1672 
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 1674 
Figure S22. Gene ontology terms associated with the ‘Extracellular matrix 2’ (black) 1675 

module.  Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a 1676 

web server for functional enrichment analysis. g:Profiler performs statistical 1677 

overrepresentation analysis utilising cumulative hypergeometric probability, also known as 1678 

Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein 1679 

list. Multiple testing correction was performed with the method of Benjamini and Hochberg 1680 

with a threshold of <0.05. The y-axis of the plot displays the negative decadic logarithm of 1681 

the adjusted p-value while the x-axis highlights the category of all corresponding GO terms. 1682 

GO results were then filtered to reduce redundancy and highlight driver terms, i.e. 1683 

representative GO terms for a larger group of terms (displayed in the list below the plot). 1684 
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 1686 
Figure S23. Gene ontology terms associated with the ‘Immune response’ (turquouise) 1687 

module.  Gene ontology (GO) analysis of WGCNA modules was conducted with g:Profiler, a 1688 

web server for functional enrichment analysis. g:Profiler performs statistical 1689 

overrepresentation analysis utilising cumulative hypergeometric probability, also known as 1690 

Fisher’s one-tailed test, to calculate the significance of functional terms in the input protein 1691 

list. Multiple testing correction was performed with the method of Benjamini and Hochberg 1692 

with a threshold of <0.05. The y-axis of the plot displays the negative decadic logarithm of 1693 

the adjusted p-value while the x-axis highlights the category of all corresponding GO terms. 1694 

GO results were then filtered to reduce redundancy and highlight driver terms, i.e. 1695 

representative GO terms for a larger group of terms (displayed in the list below the plot). 1696 

 1697 

 1698 
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 1703 

 1704 

 1705 
Figure S24. Remaining WGCNA modules that are not depicted in the main body of the 1706 

manuscript. Eigenprotein values obtained through weighted gene co-expression network 1707 

analysis (WGCNA), plotted across the continuum of controls as well as presymptomatic and 1708 

symptomatic mutation carriers. The plots represent Eigenprotein values for (A) ‘Semaphorin 1709 

signaling’, (B) ‘Neuronal development’, (C) ‘Protein processing’, (D) ‘GAG processing’, (E) 1710 

‘Extracellular matrix 1’, and (F) ‘Extracellular matrix 2’ modules. Hub proteins are displayed 1711 

in boxes. *P < 0.05 compared with non-carriers. 1712 
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 1719 
Figure S25. Evaluation of TMT batch effect and sample outliers prior to (A) and after 1720 

normalization (B) via PCA. PCA was performed on all participants (n=238) of the GENFI 1721 

cohort including proteins without missingness. (A) Before normalisation, inter-sample 1722 

variance was high: Most samples separated along PC 1, which accounted for 70% of the total 1723 

variance. Moreover, batches clustered together. (B) Upon normalisation, overall sample 1724 

variance (PC1=23% and PC2=6%) and clustering of batches were reduced. 1725 
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