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Lowering the environmental externalities of business operations while preserving firms’ value is a
challenging task that involves complex sustainability decisions. These decisions require navigating
highly interconnected choices of actions and goals that characterise companies’ sustainability
behaviour. Here, we develop an empirical framework to investigate the implications of choice
interdependence on companies’ integrated financial and environmental performance. Our results
suggest that the sustainability choices of companies in energy and energy-intensive sectors emerge
from effective decision-making processes and have a larger impact on performance than random
allocation of actions. However, comparing the behaviour of companies in our sample with hypothetical
quasioptimal (“satisficing”) choices, we observe a considerable under-performance, a low choice
differentiation across the population, a significant over-investment in risk mitigation activities, and
under-investment in developing innovation capabilities. Overall, our study provides a framework for
evaluating companies’ contribution to a sustainable low-carbon transition and highlights critical gaps

in corporates’ environmental actions.

Companies in energy and energy-intensive industries provide essential
services to modern societies"”. However, their business activities are also the
primary sources of greenhouse gas (GHG) emissions’”, and depletion of
natural resources®’. Therefore, balancing the profitable production of goods
and services with a reduction of the environmental externalities of business
operations of companies in the energy and energy-intensive industries is a
central challenge in the transition to a low-carbon economy*"’.

Addressing this challenge requires effective sustainable decision-
making processes which, in turn, hinge upon the ability to identify envir-
onmental management practices and organisational changes that align
companies’ economic interests with broader environmental needs'’™", e.g,,
the optimum levels of investment in maintenance capital expenditure,
sustainable growth opportunities, and stakeholder engagement activities.
However, identifying effective changes in business approaches to environ-
mental sustainability issues is challenging due to the strong interconnections
among corporate choices of investments in strategic actions and the het-
erogeneous implications of choices’ interdependency for companies’ inte-
grated financial and environmental performance (henceforth “integrated
performance”).

From a theoretical standpoint, it is well-recognised that understanding
the importance of heterogeneous impacts of trade-offs and interconnections
of corporate choices on companies’ integrated performance is crucial for

effective sustainable decision-making"*"". For example, finding the opti-
mum balance between investment in decarbonisation strategies and direct
return of capital to shareholders, a typical issue for energy companies', is
contingent on several other firms’ characteristics, financial choices, and
macroeconomic conditions, such as firms’ revenue, debt levels and envir-
onmental policy landscapes. Similarly, budgeting constraints and capital
structure choices influence investment in sustainability projects hetero-
geneously depending on firms’ exposure to Environmental, Social and
Governance (ESG) risks, volatility, and discount rates'®. However, choice
interdependency is systematically overlooked in empirical sustainable
finance, management, and strategy science studies, which are primarily
based on linear assumptions and, therefore, discount complex hetero-
geneous effects of corporate actions on firms’ value.

Against this backdrop, the objective of this work is to develop an
empirical framework to assess the effectiveness of corporate sustainability
choices in determining companies’ integrated performance by explicitly and
systematically accounting for their interdependencies. Applying our fra-
mework to a sample of large global publicly traded corporations in the
energy and energy-intensive industries, we empirically quantify the level of
choices’ interdependency and estimate their effectiveness in increasing
firms’ financial and environmental value. We then investigate the extent to
which corporate actions deviate from hypothetical quasioptimal
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(“satisficing”) choices and identify the source of deviations. Overall, our
work provides a framework for assessing companies’ contributions to the
low-carbon transition and can be used to guide changes in corporate
decision-making processes.

Results

Theoretical background and overview of the framework

Before presenting our results, we provide a theoretical overview of our
framework and how it differs from previous studies that investigate the role
of choices’ interdependency on corporate outcomes. Then, we provide a
qualitative description of our empirical approach. Further details on the
methodology can be found in ‘Methods’ and the Supplementary
Information.

Frameworks that study the impact of interactions among choice
variables on corporates’ outcomes in organisation studies are often inspired
by Wright’s notion of fitness landscapes”. In particular, most previous
works build on ref. 20, which, in turn, builds on Kauffman’s NK model*' that
we here briefly summarise. Broadly speaking, the fitness of a system (e.g., an
organisation) is proportional to its likelihood of survival within a given
environment, and it is a function that maps attributes (e.g., a series of
corporate choices) to outcomes (e.g., a firm’s performance). While attributes
can, in principle, be in one of several states, in the original NK model and
most of its applications, each of the N attributes can exist in either of two
states, e.g., zero or one”’. The interdependencies between the attributes are
regulated by a variable K, i.e. the higher the value of K, the higher the
interactions between the different attributes N. K plays a crucial role in the
NK model since it correlates to another important property of fitness
landscapes, their surface ruggedness. Like rugged surfaces, rugged land-
scapes are those where nearby states can differ significantly in fitness value
due to the presence of interactions among attributes. Ruggedness is an
important property of NK models because it strongly influences agents’
dynamics on the landscapes™**.

The NK model has been particularly successful in the organisation,
strategy and management literature because it incorporates several concepts
that are relevant for effective decision-making processes”. Most impor-
tantly, system-level outcomes depend on the interactions between multiple
components of the system”. Strong interactions (high ruggedness) make
managerial decision-making complex because combinatorial tasks become
significantly more difficult when changes in one choice variable can have
consequences on its interconnected components”.

Identifying financial and nonfinancial choices that align companies’
economic interests with broader environmental needs is a combinatorial
task with nontrivial interactions among choice variables. Hence, it is a
problem that can be studied under the lens of fitness landscape analysis.
Against this backdrop, in this work, we conceptualise an organisation as a
complex adaptive system evolving in highly uncertain economic, policy, and
business environments. Changes in corporate sustainable behaviours (i.e.,
the specific choices of sustainability actions and goals) can be seen as
adaptive (non-adaptive) steps that increase (decrease) companies’ fitness
within their environment. We consider the fitness of an organisation—its
likelihood of survival—to be proportional to the integrated financial and
nonfinancial value it creates. In this work, we use idiosyncratic price returns
to measure the value generated to investors and GHG emissions reduction
capabilities to measure the value generated to the environment, albeit the
framework, conceptually, can be extended to other stakeholders if accurate
measurements of the value returned to them can be obtained.

Our study differs from previous works in two main aspects. First, our
framework is purely empirical. We start from observations of N attributes
(sustainability choices, financial characteristics, and fixed effects) and we
then estimate, non-parametrically, the level and structure of the interactions
among them (i.e., the variable K in the NK framework and the underlying
data-generating process). Therefore, the structural properties of the land-
scape, such as the relative importance of each attribute to the overall fitness
and the level of interactions among attributes, are empirical characteristics
of our sample, not properties of a model. Indeed, most of our empirical

results will focus on analysing these characteristics, which are important for
the potential implications of our understanding of firms’ decision-making
processes and experimentation in a highly rugged empirical landscape™.
This is in stark contrast with most previous works in organisation and
management science that are mostly based on theoretical modelling and
numerical simulations™”””, with only a few exceptions that involve
experimentation (see refs. 27,28, for example).

Second, to the best of our knowledge, no previous empirical study has
used fitness landscape theories to analyse corporate sustainability choices
and their performance implications. While our framework uses fitness
landscapes as sensitising concepts™, it provides a new lens to study this
central problem in sustainable business studies, a lens that explicitly
accounts for the complexity involved in sustainable decision-making. To
showcase the possible implications of our framework, in the last section of
this manuscript, we provide an application to illustrate how our approach
can be used to identify deviations of corporate sustainability choices from,
hypothetical, quasioptimal (“satisficing”) behaviours.

In the following two sections, we provide an overview of our empirical
process, which is divided into two steps: (1) an estimation and character-
isation of the fitness landscape to quantify the level of choices’ inter-
dependency and their relevance for firms’ integrated performance and (2)
an exploration of the landscape to search for quasioptimal solutions and
identify gaps between observed and quasioptimal choices. For ease of
exposition, the description of our framework is mostly qualitative. Technical
details can be found in Supplementary sections S2 and S3.

Overview of the study: estimation of the fitness function

We start by representing the integrated financial and environmental per-
formance (P) of a company as a function (F) of its sustainability behaviour
(B), financial behaviour and assets characteristics (X)), and fixed effects (S).
Namely:

Pt+l Zf(Bt,X“S)-{—St (1)

Where F is the fitness function to be estimated empirically. We impose a
time lag between the dependent and independent variables because we do
not expect that the effects of sustainability and financial choices are reflected
in contemporaneous prices or sustainability outcomes. Indeed, the effect of
behaviour on emissions can even be studied on multiple lags, but for sim-
plicity here we only focus on a one year lag. The performance P, our
objective function, is either a financial measure (f, yearly idiosyncratic equity
returns), an environmental measure (e, negative changes in GHG emis-
sions), or a mixture of the two (see Data for the definitions of the variables):

P=Wf+(1-We @)

Where W is the weight given to the financial performance and ranges
between zero and one. For 0<)V<1, F is a return measure that weight
returns to shareholders with the value returned to the environment and local
communities. W = 0, 1 instead corresponds to a purely environmental and
financial return measure, respectively. We are interested in studying the
characteristics of fitness as a function of the combination of financial and
environmental performance because we do not have a clear prior expecta-
tion for the objective of companies’ sustainable choices. We expect a trade-
off between financial and nonfinancial objectives because sustainability can
have economic costs and advantages”, but the relative importance of
financial and environmental considerations in this trade-off is unclear.
Therefore, to limit the number of ex-ante assumptions in our analyses, we
will present all our results as a function of W, the weight given to the
financial performance.

In (1), we assume that the performance of an organisation is a function
of its sustainability behaviour (B) and a set of companies’ characteristics
(X}, S). The sustainability behaviour of a company is defined as the parti-
cular combinations of actions that a company implements in a given year to
meet sustainability goals. In section ‘Behavioural dataset’ we provide a

npj Climate Action| (2025)4:25


www.nature.com/npjclimataction

https://doi.org/10.1038/s44168-025-00222-9

Article

Fig. 1 | Sustainability behaviour of companies in
our sample. The figure shows the Sankey diagram of
the behavioural matrix that characterises the sus-
tainability behaviour of companies in our sample.
The full behavioural matrix is shown in Supple-
mentary Fig. S2. Each line in the diagram represents
an action (left) undertaken to address one of the
three macro environmental challenges (right). The
colours of the macro challenges on the right hand
side are based on the most prevalent actions
implemented to address them.
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Fig. 2 | Schematic view of the search process. The a)
figure provides a visual aid to illustrate our frame-
work. a A simplified sustainability fitness landscape.
The z-axis is the performance measure, hence peaks
represent local and global optima. The x and y axes
are the behavioural dimensions. The blue sphere
represents the position of a hypothetical company
on the landscape. In our search process we start from
the proximity of the blue sphere, and we search a
quasioptimal solution, which is the closest solution
that lies above the cost constraint represented by the
grey plane in (b) (e.g., the green sphere).

b)

Global Optimum
Threeshold plane K

Quasioptimal Solutior

detailed explanation of the data we use to characterise companies’ beha-
viour. Briefly, the dataset is generated using large language models to analyse
sustainability reports and extract sustainability initiatives. These initiatives
are then categorised in nine types of actions (e.g., investment in R&D
projects, replacement of existing assets) and their most closely related
Sustainable Development Goal (SDG). The SDGs are subsequently grouped
into environmental challenges as explained in section ‘Behavioural dataset’.
The company-year combination of all actions and challenges form a par-
ticular configuration of a matrix called behavioural matrix, B, that char-
acterises the sustainability behaviour of a company. Figure 1 shows the
Sankey diagram of the matrix after aggregating data over the full sample.
Notice that the activities considered in this work are not exhaustive. They
focus exclusively on actions that address core business operations and
exclude stakeholder engagement activities. This is a necessary limitation to
manage the dimensionality of the problem and it should be addressed in
future works.

While the behavioural matrix keeps track of the total number of
company-year initiatives; in the following, we characterise the sustainability
behaviour with an on-and-off (binary) allocation of initiatives. That is, we
cast the behavioural matrix, 3, of each company and year into a binary
matrix where each entry (i.e., each combination of actions and sustainability

challenges) takes the value of one if the company has taken more initiatives
than the 75th percentile of the yearly distribution of initiatives. Results
are robust to different choices of the threshold, as we will show in the
section ‘Model validation and performance implications of sustainability
choices. We call this binary allocation matrix A, and therefore
P = F(A,, X,,S) + €,. Here we focus on binary allocations for three
reasons: (1) in the dataset we do not discriminate initiatives based on their
complexity and costs, we simply assume that if there has been an activity
implemented to meet a particular SDG target then there was a managerial
effort behind the decision which is here considered as part of the behaviour;
(2) optimisation processes to identify quasioptimal solutions are more likely
to converge towards the relevant local optima as the search space is sig-
nificantly smaller; (3) the vast majority of previous studies in organisational
adaptation, corporate strategy and theoretical works on NK models, have
also focused on binary allocations™*™*,

In the fitness function (1) we also account for several companies
characteristics (X, S) including Size, Invested Capital, tangible assets over
total book assets (Tangibility), capital structure choices (Market Leverage,
dividends per share, shares issuance and buyback), time and geography
fixed effects, see section ‘Fundamental, market, and environmental data’ for
the definition of the variables and section ‘Model specification’ for an
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explanation of their role in the model. To estimate empirical fitness land-
scapes (F) we use random forests with a feature selection step in the cross-
validation. In Supplementary section S2 we provide a discussion of the
implication of different estimation strategies.

Here we provided an overview of the landscape estimation process. In
the next section, we provide a qualitative overview of the search process for
quasioptimal solutions over the landscape. In Supplementary section S3 we
provide quantitative details.

Overview of the study: exploration of the landscape

Our objective function F in (1) is a fitness function that maps financial and
nonfinancial choices as well as firms’ characteristics to the fitness (perfor-
mance) of a company. Focusing on nonfinancial choices, the set of all
choices of sustainability actions and goals (sustainability behaviours) and
their associated performance values creates a sustainability fitness landscape
(henceforth “fitness landscape”) as schematically shown in Fig. 2. The
landscape is made of peaks, troughs, and valleys. Observed behaviours are
located somewhere across the landscape (e.g., the blue sphere in Fig. 2a), and
our task is to find the closest fittest region of the landscape (closest peaks)
that a focal company can reach under costs constraints, implemented here
as a constraint on the difference between the number of initiatives of the
solutions in the fittest regions and the number of initiative of the focal firm.
To search optimal solutions over the landscape we use genetic algorithms
(GA) as explained in Supplementary section S3, which also provides greater
details on the process.

Cost constraints are a crucial feature of our framework. While the
theoretical local optima we are searching for are local peaks on the land-
scape, our final solution (i.e. the final optimal behaviour) will not necessarily
lie on any of the peaks. Indeed, if the search process finds a solution that is
within a reasonable margin of the local optimal fitness, but significantly
closer to the observed sustainability behaviour (in terms of cosine similar-
ity), we will choose the closest solution rather than the fittest. This choice is
in line with the behavioural view of strategic management, which assumes
that sub-optimal outcomes are embraced by the company if they are above a
minimum level”. The choice also aligns with Simon’s satisficing principle™,
which states that under bounded rationality, agents facing complex tasks
must do with satisficing solutions”. Graphically, one can imagine drawing a
plan in the landscape which is within an e from the global optima and
accepting all solutions above the plane (whether on a peak or not). Among
all these solutions, we then pick the closest to the observed behaviour as
shown in Fig. 2b. In what follows we will call these “satisficing” solutions
“quasioptimal” solutions.

The fitness landscape lives in a (JA| + |X| + |S|) + 1 dimensional
space. However, in our process, we only search for quasioptimal allocations
of actions and goals while keeping all the other variables (financial decisions
and exogenous factors) fixed at their observed values (in Discussion we
discuss the implications of this choice). That is, we fix the values in the
| X+ |S| dimensions and search over binary combinations in the
remaining |.A| dimensions (i.e. 2 possible allocations). Hence, although
the landscape itselfis the same for every company and it is estimated over the
full sample, the constrained quasioptimal behaviour for any given company
can live around different peaks depending on the value of the fixed
dimensions (i.e., on the idiosyncrasies of the companies), as also discussed in
Supplementary section S2. Notice as well that here we present an analogy
with fitness landscapes only for ease of exposition. In reality, given the
environment-dependency of sustainability behaviours and their pay-off, it
would be more appropriate to refer to our function as a fitness seascape, a
concept introduced in ref. 38 to describe time-dependent selection processes
in non-equilibrium adaptation dynamics. Indeed, in our analysis the fitness
landscape does vary in time since we carry on the estimation on a rolling
basis to account for yearly changes in business and policy environments (see
Supplementary section S3).

Finally, we would like to stress that given the number of dimensions in
the search space, and the approximations we made to accept solutions that
are not necessarily on the global or any local peak, there is no guarantee that
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Fig. 3 | Randomisation tests. The Figure shows the results of the randomisation
tests described in the section ‘Validation and randomisation tests’. The y-axis is the
difference between the expected performance of a company and the expected per-
formance of the same company under the permutation (blue) and constrained
randomisation (red) tests. Error bars are 1.96 times bootstrapped standard errors of
the medians.

the final quasioptimal behaviours are close to being optimal in the classic
sense of Pareto optimality. Therefore, our optimisation approach should be
seen as a guided search for more fitted or satisficing choices rather than a
rigorous mathematical approach. We discuss this critical point in further
depth in the ‘Discussion’. We now turn to the presentation of the results.

Model validation and performance implications of sustainability
choices

To present our results we start with an analysis of the validity of our
empirical specification, and an investigation of the importance of compa-
nies’ sustainability choices, and their interdependency, in determining
integrated performance. Then, we use our framework to identify deviations
in companies’ sustainability choices from hypothetical quasioptimal
decisions.

Our framework requires estimating fitness functions on empirical data,
and then iteratively evaluating the functions on unobserved behaviours.
Hence, we start our analysis by evaluating the generalisation skills of our
model as explained in Supplementary section S4. Results are shown in
Supplementary Fig. S4, which show the distribution of out-of-sample cor-
relation coefficients between predicted and observed performances in a
series of validity tests over random sub-samples. The generalisation skills of
the model are generally high for the task at hand (p ~ 0.3), and, importantly,
higher than those of a linear model evaluated on the same sub-samples, as
shown in Supplementary Fig. S6.

The behavioural dimensions account for ~30% of the total feature
importance in the model, suggesting that changes along these dimensions
have a substantial impact on integrated performance (Supplementary
Fig. S5). However, feature importance analyses provide limited infor-
mation on the economic significance of the impact of the empirical
choices on performance. Hence, to quantify this impact, we compare the
performance implications of companies’ choices with the implications of
random choices sampled as explained in the section ‘Validation and
randomisation tests’. Results are shown in Fig. 3. The panel shows that the
sustainability choices made by companies in our sample are associated
with a higher performance than what the same companies would have
achieved had they randomly allocated initiatives across actions and goals.
The effects are small (20-100 basis points) but statistically significant, and
the results are supported by the robustness analyses shown in Supple-
mentary Figs. S8 and S9.

Interdependent choices and estimation of performance gaps

Our results suggest that corporate sustainability choices have a measurable
impact on integrated performance. In this section, we measure the extent to
which the impact depends on choices’ interdependency. Supplementary
Fig. S6 shows that non-parametric models are able to predict out-of-sample
performances substantially better than linear models. This result suggests
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Fig. 4 | Empirical measures of landscapes’ rug- a) b)
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within behavioural dimensions (y-axis) as function ’ ¢ w=o0
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section ‘Empirical ruggedness’. The colours of the N ¢ w=075
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Fig. 5 | Performance gap and behavioural diversity. a Illustrates the gap between
the expected performance of the model under companies' choices and the perfor-
mance associated with hypothetical quasioptimal (“satisficing”) choices. Error bars
are 95% bootstrapped confidence intervals. b The distribution of the behavioural

diversity of the quasioptimal solutions (green) and the empirical observations (blue
line). Behavioural diversity is defined as Hamming distance across binary alloca-
tions. The middle lines of the box plots are median lines, and the edges of the boxes
are the quartile range: the 25th and 75th percentile.

that the data-generating process includes interactions and nonlinearities,
which cannot be captured under linearity assumptions. In the language of
fitness landscape analysis, this result suggests that the underlying landscapes
are rugged since ruggedness emerges from interactions among attributes
(features) on the landscapes. To confirm this hypothesis, we explicitly
estimate the ruggedness of the landscapes using the methodologies descri-
bed in the section ‘Empirical ruggedness’. That is, we use the correlation of
fitness effects of one or multiple mutations as proposed in ref. 39 (hereafter
1 — y) and the r/s ratio”. The first measure characterises ruggedness across
the behavioural dimensions. The second measure also includes interactions
with and within financial choices.

Figure 4a shows the ruggedness (1 — y) as function of the number of
mutations. The black dotted line shows the theoretical expectation from a
smooth (non-epistatic and purely additive) landscape. The panel shows that
ruggedness increases as a function of the number of mutations, which is a
typical trend in NK models with K > 0. However, the baseline values of
1 — y for a few points mutations are low, suggesting a low level of interaction
effects within the behavioural dimensions. Figure 4b shows the value of r/s as
a function of the performance measure. The estimated values of the r/s ratio
imply large ruggedness levels and, therefore, substantial interactions when
accounting for financial choices. As a frame of reference, a House-of-Card
(HoC) model, which is a completely random landscape with r/s — oo for
N — o*!, with the same number of dimensions of our empirical framework
and same variance of the empirical fitness, has an average /s ratio of ~12
(black dotted line).

Note that while we report the ruggedness values for each landscape
(performance measure), we caution against drawing conclusions from
comparing these values. The comparison could be misleading because the
nature of the noise processes in the emission and financial measures are
different, and ruggedness measures are strongly influenced by the origin of

the noise in the data-generating processes”. In Supplementary section S5,
we discuss this point in further depth.

Given the ruggedness of the landscapes, it is unlikely that the optimi-
sation process converges to global optima®. However, we can still analyse
the characteristics of the solutions that are closest to the observed behaviours
under cost constraints (quasioptimal solutions, green sphere in Fig. 2) and
their relationship with observed performances. Figure 5a shows the differ-
ences (performance gap) between the expected performance of the model
under companies’ choices and the performance associated with hypothetical
quasioptimal choices, across the performance measures (x-axis). Impor-
tantly, the performance gap between companies’ sustainability choices and
their quasioptimal counterpart is, on average and in absolute value, sub-
stantially larger than the gap generated by differences between observed
choices and random allocation of actions (Fig. 3). In Supplementary Fig. S11
we show that, while quasioptimal solutions are characterised by a larger
number of initiatives (twice as many, on average, as the empirical alloca-
tions), the source of out-performance is likely the particular allocation
structure, not the total effort. Interestingly, we have found that the bulk of
the distributions (the interquartile range) of performance values in the
quasioptimal regions are all positive, ie., conditioning on the observed
assets” characteristics and financial choices, behavioural changes can allow
companies to escape low-performance regions (Supplementary Fig. S10).

Figure 5b shows the behavioural diversity of quasioptimal solutions
(green) versus the behavioural diversity of empirical observations (blue
line). Behavioural diversity is defined as average differences (in terms of
Hamming distance between binary allocations) of the behaviours of com-
panies across the population. The panel shows that quasioptimal solutions
are significantly more heterogeneous across companies than empirical
behaviours, i.e., empirically, we observe a substantial degree of similarity
across companies’ choices, while solutions in higher performance regions in
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Fig. 6 | Behavioural gaps. The figure shows the full sl T
distribution of the differences between the relative

efforts of companies in our sample and the relative 50
effort of quasioptimal solutions, along the environ- 25
mental challenges (top figure) and empirical o]
mechanisms (bottom figure) by performance mea-
sure (x-axis). Positive values indicate under-
investment and negative values indicate over-
investment with respect to the quasioptimal solu-
tions (see section ‘Estimations of behavioural gaps’).
The middle lines of the box plots are median lines,
the green triangles are means, and the edges of the
boxes are the quartile range: the 25th and 75th
percentile.
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the landscapes are characterised by a greater diversification of behaviour
across the sample.

Identification of behavioural gaps

The performance gap shown in Fig. 5 provides an estimation of the potential
benefits of effective changes in corporate sustainability choices. However, it
does not inform us about the type of changes that need to be implemented to
gain those benefits. To identify effective changes, we now study the gap
between the sustainability choices of companies in our sample and the
choices associated with the quasioptimal solutions, what we call the beha-
vioural gap (see section ‘Estimations of behavioural gaps’ for a description of
the estimation process). First, we notice that, in our empirical landscapes,
there is a strong (conditional) correlation between distances in the beha-
vioural space and companies’ performance (see Supplementary section S6
and Supplementary Table S3). That is, within the same landscape, com-
panies closer to quasioptimal behaviours exhibit better performance. In
Supplementary section S7, we show that while the correlation between
companies’ performance and distances in the behavioural space is required
to draw meaningful conclusions from the observations of behavioural gaps,
in rugged landscapes, this correlation is not guaranteed.

Figure 6 shows the full distribution of the behavioural gaps across
companies in our sample. Supplementary Fig. S12 and Supplementary
Table S4 show the gaps aggregated at the population level and their statistical
significance, as explained in the section ‘Estimations of behavioural gaps’.
Positive (negative) values in the figure indicate average under (over)-
investment, of our sample of companies, in a particular environmental
challenge (top) and empirical mechanism (bottom) with respect to the
quasioptimal solutions. The empirical mechanisms are defined in section
‘Data’ and follow a similar categorisation as the one suggested in ref. 12.

The figures show that, on average, companies over-invest in sustain-
ability initiatives aimed at addressing sustainable consumption and pro-
duction challenges (top figure) as well as risk mitigation activities (bottom
figure). On the other hand, we have found substantial average under-
investments in innovation capacities, biodiversity, and water and energy
challenges. Importantly, most of the deviations from quasioptimal beha-
viours are statistically and economically significant, and the signs of the
behavioural gaps are consistent across the performance measures.

Discussion

Identifying the extent to which the sustainability choices of large global
corporations in energy and energy-intensive sectors effectively increase
firms’ integrated performance, and what type of choices would lead to better
outcomes, is crucial for assessing companies’ contributions to the

sustainability transition, and driving changes in corporate decision-making
processes. In this work, we developed an empirical framework to identify the
performance implications of companies’ sustainability choices and their
deviations from hypothetical quasioptimal decisions. Here, we discuss the
implications of our results, the limitations of our study and opportunities for
further research.

First, we have found that corporate sustainability choices have a
measurable impact on companies’ integrated financial and environmental
performance. That is, the behavioural dimensions play a significant role in
the model, and the integrated performance implied by observed behaviours
are, on average, larger than those expected from random allocations of
actions across sustainability challenges (Fig. 3). This result, which is robust
to different randomisation strategies, suggests that, on average across our
sample, sustainable management practices do not result from random
investments across sustainability areas but instead emerge from effective
decision-making processes. However, it is important to notice that, while
statistically significant, the differences between the performance associated
with empirical and random allocations, are economically small (20-100
basis points on average).

Second, we have found that empirical sustainability fitness landscapes
are rugged (i.e., are shaped by interactions among companies’ choices), and
the ruggedness is greater when we account for interactions across all the
dimensions (behavioural and financial, Fig. 4). Indeed, interactions within
behavioural dimensions have a substantial impact on fitness only when they
involve several interactions among sustainability choices. Theoretical stu-
dies and numerical simulations in organisation science have often assumed
the existence of surface ruggedness in companies’ fitness landscapes™”.
More recently, experimental studies are providing evidence in support to
this assumption under controlled settings”**. However, to the best of our
knowledge, no previous study has tested for and estimated a magnitude of,
ruggedness in empirical landscapes in sustainability studies. Here, on the
other hand, we provide empirical evidence using a global and longitudinal
dataset that covers the major energy-producing and consuming companies.

Beyond theoretical considerations, these empirical results have two
important practical implications. First, our analysis suggests that inter-
connections between sustainability and financial choices are crucial to
determining companies’ integrated performance. This result provides a
potential explanation for why studies that discount interactions among
corporate choices only explain a small fraction of how companies’ sus-
tainability investments impact performance'”. Second, our work provides a
framework to study adaptation dynamics—the relative importance of dif-
ferent search strategies, such as long-jumps or local searches™**”, to
respond to sustainability challenges—in rugged landscapes from an

npj Climate Action| (2025)4:25


www.nature.com/npjclimataction

https://doi.org/10.1038/s44168-025-00222-9

Article

empirical standpoint. Studying adaptation dynamics is beyond the scope of
this manuscript, which focuses on the characterisation of landscape struc-
tures. However, we believe it is an important avenue for future research.

The rest of our analyses focused on the characterisation of the qua-
sioptimal behaviours and the behavioural gaps, i.e., the difference between
quasioptimal and observed sustainability choices. First, while our results
suggest that companies’ sustainability choices are, on average, more effective
than random choices (Fig. 3), the gap between empirical performances and
their quasioptimal counterpart is, on average, substantially larger (Fig. 5a
and Supplementary Fig. S10). Put differently, the integrated performance of
companies in our sample benefits from realised investments in sustainability
issues, but the benefit is substantially lower than it could potentially be under
more effective sustainability decision-making processes.

Second, we have found that the population of quasioptimal solutions
are characterised by much greater behavioural diversity than empirically
observed (Fig. 5b). That is, while companies in our sample tend to converge
toward shared “best practices” centred around specific types of sustainability
choices (e.g., investment in modification of assets and procedures); the
results from the search process over the landscape suggest that companies
can potentially lead to better outcomes by employing diverse and context-
specific sustainability choices. This result is not surprising when seen in light
of the diverse challenges that companies face. Factors such as financing
constraints, national environmental policies and production needs can
strongly influence the company-level impact of different behavioural
choices. Yet, we do not see these differentiations in the empirical observa-
tions. There could be multiple factors that explain homogeneity in empirical
behaviours. Most importantly, stakeholders™ pressure could push compa-
nies to implement choices that (1) conform their actions with those of peers
and competitors and (2) have financially relevant implications, such as
reducing exposure to physical and transition risk. We believe that explaining
the causes of this homogeneity can be an interesting future avenue of
research.

To identify the sources of deviation from quasioptimal outcomes, we
analysed the gap between observed corporate choices and choices associated
with the quasioptimal solutions. Our analysis shows that our sample is stuck
in a sub-optimal over-investment in activities aimed at achieving efficiencies
in their internal production methods at the expense of more needed
investment in developing innovation capabilities (Fig. 6). Our result adds to
the mounting evidence pointing to the necessity for greater and better-
targeted investment in innovation practices observed in both the private and
public sectors™*.

Whilst our approach produces several interesting results, there are a
number of important limitations that must be considered. Here, we list four
of them, which we believe are particularly relevant to address. First, this is an
observational study, hence we cannot guarantee that our results have an
unbiased causal interpretation (see section ‘Model specification’ for further
discussions). Second, we identify sustainability behaviours based on self-
disclosed information. Hence, our results are liable to greenwashing by firms
in their reporting. To limit the impact of greenwashing we (1) strictly define
sustainability initiatives as actions already implemented by firms and
exclude commitments as well as target-setting processes (2) take binary
allocation matrices based on sample thresholds (see discussion in section
‘Overview of the study: estimation of the fitness function’), which implicitly
requires companies to have invested a substantial amount of effort into a
sustainability issue. However, greenwashing is a crucial issue for studies that
rely on self-disclosed information and further research is needed to better
differentiate greenwashing statements from effective actions.

Third, measuring environmental performance is a notoriously chal-
lenging task'. Our nonfinancial performance measure is expressed in terms
of changes in GHG emissions. However, (1) it excludes downstream Scope 3
emissions, which are notoriously difficult to measure reliably but the
reduction of which is one of the greatest challenges for energy companies;
(2) because of data availability, we have ignored other critical environmental
aspects such as water consumption, waste production and management, the
effect of business activities on biodiversity, water and land pollution. These

variables are difficult to measure systematically, but they are crucial in
assessing the impact of business operations on global and local environ-
ments. Further research can address this issue by developing more accurate
environmental performance measures.

Fourth, in this work, we focused on the optimisation of sustainability
choices, keeping financial decisions, such as the issuance and repurchase of
common shares and dividend payment, fixed. This choice significantly
reduces the complexity of the search process, because financing choices are
continuous and without well-defined search ranges. However, in real set-
tings, sustainability decisions are not taken by a company as a residual after
financing choices, therefore accounting for the optimisation of financial
aspects could potentially change the characteristics of the quasioptimal
behaviours (but, notably, not the structure of the landscape, which is derived
using all the dimensions). Future research is needed to address this
important limitation.

In this context, as discussed in the section ‘Overview of the study:
exploration of the landscape’, the optimisation approach presented in this
work should be seen as a guided search of more fitted solutions rather than a
rigorous mathematical process. We believe that further developments of
optimisation approaches, such as, for example, more guided searches that
explicitly account for feature relevance and financial dimensions, should not
come at the expense of empirical realities. In other words, the problem we
are after, just as many other problems in the social sciences, is not a well-
posed mathematical issue but rather an empirical question that might not
have a well-defined quantifiable solution. Therefore, it should be addressed
with a combination of qualitative and quantitative approaches*. This
consideration should be taken into account when designing better optimi-
sation approaches in follow-up studies.

Finally, this work provides opportunities for scholars interested in
leveraging our empirical approach to further our understanding of orga-
nisational adaptation to systemic, socio-economic and environmental
challenges. For example, future research could expand our approach by (1)
explicitly exploring adaptation dynamics on the landscapes, (2) extending
companies’ objectives by integrating additional sustainability dimensions in
the performance measures, (3) broadening the choices’ dimensions to
include a more comprehensive set of actions and (4) developing meth-
odologies that explicitly identify the structure of choices’ interconnections to
pinpoint the behavioural drivers of corporate outcomes.

In summary, our study provides an empirical framework to study the
interdependence among corporate sustainability choices, and their impli-
cations on integrated financial and environmental performance. Our results
suggest that, while the sustainability choices of companies in crucial sectors
for the low-carbon transition have an impact on their integrated perfor-
mance, they still lag behind quasioptimal behaviours, which require a
greater diversification of choices across the population and investments in
developing innovation capabilities.

Methods

Data

Here we describe our datasets, starting from the behavioural dataset
underpinning our empirical approach. Because we are interested in com-
paring sustainability behaviours across multiple companies, we focus on a
limited number of sectors with comparable business needs, namely
Industrial, Material, Energy, and Utilities. Companies in these sectors are
similar in that production relies significantly on tangible assets, is energy-
intensive, and costs strongly depend on commodity prices. To identify
companies within these sectors we use the Global Industry Classification
Standard (GICS).

Behavioural dataset. To characterise corporate sustainability behaviour
(the interconnected choices of actions to address environmental chal-
lenges), we use the dataset developed in ref. 31. For clarity, here we
provide a brief overview of the data-generating process and our own
variable definition, which builds on it. The main unit of analysis is a
sustainability initiative, which is defined as an activity that a company is
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pursuing with the intent to directly address sustainability goals. A sus-
tainability initiative can, but does not necessarily also have to, have a
business objective. Importantly, the initiatives refer to activities that a
company has already completed or is actively pursuing. Statements of
intent and goal-setting are not classified as initiatives. Examples of
activities include R&D expenditure in sustainable products, associations
with local communities, institutions, and peers, or development of new
sustainable products. A detailed description of the activities can be found
in Supplementary section S1. The choices of the activity types is aligned
with common taxonomies in the corporate sustainability literature (see,
for example, ref. 12). However, as discussed in the section ‘Overview of
the study: estimation of the fitness function’, in the main analyses we
exclude stakeholder engagement activities in order to limit the dimen-
sionality of the problem, and focus exclusively on actions that address
core business operations.

The data-generating process consists of three classification tasks. First,
sentences are extracted from corporate sustainability reports and classified
as whether or not they describe an initiative. Then, those sentences classified
as initiatives are merged with their surrounding context (preceding and
following sentences) and are classified based on the activity type and the
most closely related Sustainable Development Goal (SDG). Each classifi-
cation step uses a combination of BERT and a RoBERTa-based model
trained on ~50,000 sentences as explained in ref. 31. The sustainability
reports are collected from Refinitiv (which provides URL to the raw data of
their ESG sample), Corporate Register (which provides sustainability
reports of a large sample of global firms), and crawled from the internet.

The algorithm output is a vector of activity-SDG where each entry
counts the number of initiatives a given company has undertaken in a
particular year. We then cast this vector into a matrix, that we call beha-
vioural matrix, where the rows are activities organised in nine categories (see
Supplementary section S1), and the columns are the six environmental
SDGs most closely related to the goal of the activities. In this work, we focus
solely on environmentally-related SDGs. Specifically, we focus on SDG 6
(Clean Water), 7 (Clean energy), 9 (Industry, Innovation, and Infra-
structure), 12 (Responsible consumption and production), 14 (Life below
water) and 15 (Life on land). Importantly, we excluded SDG 13 because
most of its targets are related to country-level activities. In the main text, we
define a sustainability behaviour as a particular configuration of the beha-
vioural matrix, i.e. a specific set of sustainability initiatives. Put differently,
the sustainability behaviour of a company is characterised by a specific
combination of choices on which initiatives are important and which are not
to address environmental challenges.

Because some SDGs have aligned targets, and to reduce the dimen-
sionality of our dataset, in this study, we group the SDGs based on the
environmental challenges they are meant to address. Specifically, we group
SDGs 6 and 7 into a category called “Clean water and energy”. The goals of
these two SDGs include facilitating the transition towards cleaner energy
and water systems and widening access to these resources to local com-
munities. We cast SDGs 9 and 12 into a category called “Responsible con-
sumption & production”. The goals of these two SDGs include achieving
sustainable changes and innovation in production processes and con-
sumption. Finally, we pool SDGs 14 and 15, which aim to preserve and
regenerate marine and terrestrial ecosystems, into a category called “Bio-
diversity”. In some of our results, but not in the estimation processes, we also
pool together the activity types in two macro-categories following a logic
inspired by ref. 12. Specifically, we consider investments in R&D, new
products, the establishment of new associations and the creation of new
organisational structures as investments in innovation capacities. We then
consider employee training, the adoption of standards and rules, assessment
and measurement, modification of procedures, and the implementation of
asset modifications to be risk mitigation activities.

Fundamental, market, and environmental data. We source compa-
nies’ fundamentals from COMPUSTAT and Refinitiv. We define Size as
the log of sales (SALE, in USD) adjusted for inflation; Invested Capital is

long-term debt (DLTT), plus short-term debt (DLC), plus shareholders’
equity (CEQ) plus cash and short-term investments (CHE); Tangibility is
property plant and equipment (PPENT, in USD) divided by book assets
(AT, in USD). Dividend per common share (DPSComGrossIssue) and
net cashflow from issuance and retirement of preferred and common
stocks (StockTotIssuanceRetNetCF) are from Refinitiv, which had a
larger global coverage than COMPUSTAT for these two variables. Data
to calculate market leverage also are from Refinitiv. Specifically, market
leverage is long-term plus short-term debt (F.DebtTot) divided by the
market value of assets: total assets (F.TotAssets) — book equity
(F.TotShHoldEq) + market equity (F.MktCap).

We collect equity data from Refinitiv. Here, we focus on idiosyncratic
price returns because we are interested in understanding the relationship
between corporate choices and their outcome. Therefore, we want to
remove those systemic components that could bias our results. Following
standard approaches, idiosyncratic returns are calculated as the residual of a
rolling window time-series regression of realised price returns on value-
weighted market returns. Because our sample includes companies from
different geographies, to account for regional differences in returns, we run a
series of independent CAPM regressions for companies in each macro-
region: Americas (including North and South America), Europe, and Asia-
Pacific after estimating a market factor for each region separately.

Emission data are from TruCost, which is a major data provider of
emission data in the climate finance literature*>*. Specifically, we measure
GHG emissions as Direct plus first-tier indirect emissions which are defined
as GHG protocol scope 1 emissions, plus any other emissions derived from a
wider range of GHGs relevant to a company’s operations, plus GHG pro-
tocol scope 2 emissions, plus the company’s first-tier upstream supply chain.
We focus on these categories of emissions because they can be directly
related to management practices. Our emission performance measure is
constructed as yearly percentage changes in GHG emissions intensity
(emission per unit of sales) multiplied by minus one, so that, just as when
measuring financial returns, negative changes are associated with negative
outcomes. We use companies’ revenue as an intensity scaler because it is the
most common metric for intensity calculation purposes over large samples
of firms in climate finance**” when production data are difficult to obtain
systematically.

To match companies across different datasets, we first create a global
mapping of ISIN and company names into the COMPUSTAT gvkey
identifier. Then, we use this identifier as a matching key. The final sample
consists of 7644 reports (company-year observations) from 1793 companies
in the observation period 2012-2021 (note that emission and return data are
estimated up to 2022). Figure 1 shows the Sankey diagram of the behavioural
matrix of our sample (Supplementary Fig. S2), Supplementary Table S1,and
S2 show a series of summary statistics of our sample.

Model specification

In the estimation of (1) we control for companies’ sustainability choices as
well as a series of asset characteristics and financial choices. Specifically, we
control for: Size, Invested Capital, tangible assets over total book assets
(Tangibility), Market Leverage, dividends per share, shares issuance and
buyback relative to revenue, time and geography fixed effects. Size is an
important confounder because larger companies tend to be more likely to
undertake and profit from corporate sustainability (CS) activities due to the
economy of scale involved in acquiring CS resources. We control for
investment intensity (investment over revenue) because invested capital can
be allocated in either direction, i.e., it can be used to finance operations that
increase/decrease value and emissions (it affects the dependent variable), but
also to finance sustainability efforts (it affects the independent variables
related to the sustainability initiatives). Tangibility is also an important
driver of emissions. Companies whose value depends mostly on tangible
assets will have greater production needs (e.g., energy to power factories)
and, therefore, greater environmental impact. Properties, plants and
equipment also require maintenance and innovation and, therefore, more
initiatives.
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In the control set, we also include variables that reflect active financing
choices, in particular, capital structure choices. Specifically, we include the
leverage ratio, dividend payout, and share buybacks. Capital structure
choices have an impact on equity value®. However, financing choice also
impacts sustainability behaviour because debt constraints and active choices
of returning capital to investors might require redirecting capital away from
sustainability projects'>’. Therefore, financing choices constrain sustain-
ability behaviours and impact returns, i.e., they can act as confounders of our
effect of interest. We also include geographies and year-fixed effects to
account for systematic differences among companies, e.g., regulatory fra-
meworks and policies’” incentives that can change across the years and cross-
sectionally across geographies. We do not control for companies’ fixed effect
for two reasons: (1) some companies go in and out of the sample, therefore
for some observations, we have a limited number of years (and so sub-
tracting average values to include firms’ fixed effects would not be a well-
defined operation’'), and (2) the number of initiatives are variables mea-
sured with error, and firms fixed effects can significantly increase the noise
to signal ratio in the presence of measurement error™. Finally, since emis-
sion data are a combination of estimated and reported emissions, we also
include a fixed effect to differentiate observations with fully reported
emissions, fully estimated emissions and emissions that are calculated as a
combination of estimated and reported data. Information on the source of
emission data is from TruCost.

Overall, our model includes variables related to sustainability beha-
viour, assets” characteristics (revenue, investment intensity, and tangibility),
and firms’ financial choices (leverage, dividend payout, and shares’ buy-
back). Clearly, there can be other (omitted) factors that drive both sus-
tainability behaviour and companies’ performance. Therefore, we do not
claim that our estimations have an unbiased causal interpretation. Causality
claims require much larger datasets and potentially the implementation of
controlled experiments. Omitted variables are a crucial issue when esti-
mating the impact of strategies on performance. However, while less
appreciated, including variables that are thought to be, but instead are not,
confounders can also induce significant biases in the estimations (see ref. 53
for a theoretical discussion and ref. 54 for an empirical example). Generally,
if we do not know the exact structure of the data-generating process, any
control variable we include or exclude from the model can potentially
induce a bias. This reasoning motivated us to select a subset of variables we
could theoretically identify as confounders based on results from previous
studies'”. Notice as well that, in the estimation of the model we run an
additional feature selection step on the pre-selected features in order to
balance the need to include explanatory variables with the generalisation
capacities of the model.

Empirical characterisations of the landscapes
In the following sections we describe our empirical strategies to validate our
approach and to measure the structural properties of the landscapes.

Validation and randomisation tests. Our results have meaningful
interpretations if and only if (1) the model exhibits a significant out-of-
sample prediction power and (2) the behavioural dimensions (activity
types and environmental challenge) play a significant role in the data-
generating process, as estimated from the model. Therefore, before
analysing the structure of the landscape and the behavioural gaps, we
need to ensure the validity of these two conditions. The out-of-sample
tests are standard machine learning exercises and, for clarity, are
described in Supplementary section S4. Results are shown in Supple-
mentary Fig. S4. Here, we describe our strategy for evaluating the role of
the behavioural dimensions in the model.

If the model in (1) has a strong prediction power but one that is solely
attributable to the non-behavioural dimensions, then the empirical sus-
tainability fitness landscapes do not have a meaningful interpretation.
Therefore we need to ensure that the behavioural dimensions play a sig-
nificant role in the model. Unfortunately, unlike linear models, with non-
parametric models, there is no standard way to assess the significance of

specific dimensions. A widely used approach when using random forests
is to estimate the relative importance of individual (or a group of)
features™. However, while providing useful information, feature impor-
tance estimation on its own does not provide a meaningful scale to assess
the extent to which changes in input influence outcomes. To address this
limitation, we build a series of tests to determine the empirical implica-
tions of changes in behavioural choices on the overall outcome of the
model. Specifically, we build two tests to measure the differences between
the expected outcome of empirical companies’ choices with the expected
outcome of alternative choices: (1) a permutation test and (2) a con-
strained randomised test.

In the permutation test, we keep the companies’ number of (binary)
initiatives fixed, but we randomise their distribution across the behavioural
dimensions. Then, we estimate the performances of the permuted obser-
vations and compare them with their observed counterpart (ie.,
Fopserved — F permuted)- Because the permutation test relies on evaluations of
the model on the behavioural dimensions, we only include companies in the
top 25th percentile of the distribution of the number of initiatives to ensure
enough diversity in the allocations of empirical and random initiatives. In
the constrained randomised test, we perform the same analysis, on the
whole sample, but we keep the sample average number of allocations, (A)g,
fixed. That is, we randomly sample an observation, and we replace the
observed allocations with a fully randomised one by sampling zeros and
ones with probability 1 — (A)g and (A)g, respectively. Then we compare
the performances of the fully randomised observations with their empirical
counterpart (i.e., F observed — F randomised )- Finally, we repeat the permutation
and constrained randomised test 20,000 times. Figure 3 shows the results of
the tests as median deviations over all iterations, and their 1.96 bootstrapped
standard errors.

Empirical ruggedness. One of the most important properties of fitness
landscapes is their surface ruggedness, which influences the adaptation
dynamics and trajectories of the agents evolving over it. Within an NK
framework, surface ruggedness can be measured by estimating the
interdependencies variable K, which measures the level of interactions
among loci (N). The higher the value of K, the greater the ruggedness.
Empirically, in low-dimensional landscapes, ruggedness can be
approximated by the number of local peaks. However, as the number of
dimensions increases, exhaustive explorations of the landscape necessary
to enumerate local peaks become unfeasible. Following refs. 40,56, here
we measure empirical ruggedness using the roughness to slope (r/s) ratio
and the correlation of fitness effects, y”, which are both measures pro-
portional to the level of epistasis (interactions) present in the landscape.

To estimate ruggedness along the behavioural dimensions (the level of
interactions), we measure the effect of a fixed mutation on two allocations
separated by a single mutation. Following ref. 39, this effect, denoted by y, is
defined as p(6(a), 8(a;)), where p is the Pearson correlation coefficient, a,
denotes an allocation that differs from the focal allocation a by one muta-
tion, and §(a) = F(a;) — F(a). An interesting property of y is that its
deviation from one is proportional to standard measures of epistasis™, i.e.,
the higher the level of 1 — y, the higher the ruggedness of the landscape®.
Therefore, in the following, we will show our results as a function of 1 — y.In
particular, we will show the value of 1 — y as a function of the number of
mutations implemented by randomly mutating a fixed number of alloca-
tions and re-estimating the fitness value. Following ref. 39, we expect that in
rugged landscapes, the value of 1 — y increases with the number of muta-
tions. We repeat the estimation of 1 — y 500 times for each number of
mutations, and we construct percentile bootstrapped confidence intervals.
Specifically, at each iteration, we re-sample 90% of the dataset, with repla-
cement, and we use the lower and upper 5th percentile of the distribution of
the statistics as the lower and upper bound of the mean. We use boot-
strapping to estimate uncertainty because 1 — y is bounded below by zero.

1 — y provides an estimate of the interconnections (and ruggedness)
among sustainability choices. To estimate ruggedness across all the land-
scape features (behavioural, financial and fixed effects), we use the r/s ratio.
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The ratio is estimated by dividing the standard deviation of the residuals of a
linear (purely additive and non-epistatic) estimation of the landscape by the
average of the absolute values of the coefficients of the regression***. To
estimate the uncertainty around the r/s ratio, we use (95%) percentile
bootstrapped confidence intervals.

Estimations of behavioural gaps

For each performance measure (i.e., weight to the financial performance in
(1)), we estimate the fitness function on a rolling window using the whole
sample. Then, we calculate the quasioptimal behaviour for each firm as
explained in section ‘Overview of the study: Exploration of the landscape’
and Supplementary section S3. Differences between the company-level
observed behaviours and the company-level quasioptimal behaviours are
expressed as deviations of relative efforts. Relative effort is defined as follows:
for each company i and year ¢, we take the sum of the binary allocations over
a particular action or environmental challenge and divide it by the total
allocations for that particular i, ¢ pair. For example, if a company allocates
two actions to address biodiversity challenges (e.g., r&d investments and
asset modification) in year ¢, while allocating 10 (binary) actions overall in
the same year, then the relative effort to address biodiversity challenges
would be 0.2. If the quasioptimal relative effort was (for example) 0.4, the
company would be under-investing in biodiversity by 0.2. We compute this
behavioural gap for every company-year in our sample by environmental
challenge and action type. Population-level statistics are the simple sample
average of the company-level behavioural gaps. To assess the statistical
significance of the behavioural gaps, we ran a t-test between the distributions
of relative effort in the empirical and observed allocations. Results of the
t-tests are shown on top of the bars in Supplementary Fig. S12 and in
Supplementary Table S4.

Data availability

The binarised behavioural dataset used in this study is available at: https://
doi.org/10.7910/DVN/BXRTWé6. Other datasets used in this study include
COMPUSTAT, TruCost, and Refinitiv. Because these datasets are pro-
prietary and covered by licenses, we cannot share them. However, in the
‘Data’ section, we describe in detail how to reproduce our sample so that
readers with valid licenses can reproduce our entire dataset.

Code availability
The code to reproduce our results is available at: https://doi.org/10.7910/
DVN/BXRTW6.
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