
Vol.:(0123456789)

Automated Software Engineering (2025) 32:31
https://doi.org/10.1007/s10515-025-00501-z

Reinforcement learning for mutation operator selection
in automated program repair

Carol Hanna1 · Aymeric Blot2 · Justyna Petke1

Received: 30 July 2024 / Accepted: 23 February 2025
© The Author(s) 2025

Abstract
Automated program repair techniques aim to aid software developers with the chal-
lenging task of fixing bugs. In heuristic-based program repair, a search space of
mutated program variants is explored to find potential patches for bugs. Most com-
monly, every selection of a mutation operator during search is performed uniformly
at random, which can generate many buggy, even uncompilable programs. Our
goal is to reduce the generation of variants that do not compile or break intended
functionality which waste considerable resources. In this paper, we investigate the
feasibility of a reinforcement learning-based approach for the selection of mutation
operators in heuristic-based program repair. Our proposed approach is program-
ming language, granularity-level, and search strategy agnostic and allows for easy
augmentation into existing heuristic-based repair tools. We conducted an extensive
empirical evaluation of four operator selection techniques, two reward types, two
credit assignment strategies, two integration methods, and three sets of mutation
operators using 30,080 independent repair attempts. We evaluated our approach on
353 real-world bugs from the Defects4J benchmark. The reinforcement learning-
based mutation operator selection results in a higher number of test-passing vari-
ants, but does not exhibit a noticeable improvement in the number of bugs patched
in comparison with the baseline, uniform random selection. While reinforcement
learning has been previously shown to be successful in improving the search of evo-
lutionary algorithms, often used in heuristic-based program repair, it has yet to dem-
onstrate such improvements when applied to this area of research.

Keywords  Automated program repair · Machine learning · Mutation operators ·
Genetic improvement · Reinforcement learning

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-025-00501-z&domain=pdf

	 Automated Software Engineering (2025) 32:31 31   Page 2 of 33

1  Introduction

Fixing bugs remains a largely manual and tedious process that often requires
more time than is available to software developers Weiß et al. (2007); Böhme
et al. (2017). With the fast-evolving industry, this leads to the deployment of bug-
prone products in an attempt to meet release deadlines Liu et al. (2021); Tassey
(2002). Research in the area of automated program repair (APR) aims to address
this issue by automating the process of finding suitable patches for bugs in soft-
ware systems.

The classification of APR approaches differs in the literature. According to a
recent survey Le Goues et al. (2019), the proposed approaches in the field of APR
span across three main areas: constraint-based, learning-based, and heuristic-
based techniques. Constraint-based approaches use the semantics of the buggy
program to produce a constraint, then synthesise repairs that satisfy it Xuan et al.
(2018). Learning-based end-to-end repair techniques predict patches for buggy
programs by learning features of the faulty code sections as well as their correct
(developer-written) fixes Chen et al. (2022). Among APR approaches, heuristic-
based APR has seen the earliest and thus far most industrial uptake, including
being first applied in the context of a management system for a medical applica-
tion Haraldsson et al. (2017), or more recently being used for automated end-to-
end repair at scale at Meta Marginean et al. (2019) or targeting frequently occur-
ring bugs at Bloomberg Kirbas et al. (2020).

Heuristic-based APR uses search strategies, such as genetic program-
ming Koza (1994) or local search Hoos and Stützle (2004), to navigate the space
of software variants. These approaches require a test oracle for the buggy pro-
gram to assess the correctness of the software variants. The oracle contains pass-
ing test cases and at least one failing test case that demonstrates the bug. As a first
step, fault localisation techniques are employed to pinpoint the suspicious code
sections. A program variant is created through the selection of a suspicious code
location as well as a mutation operator to be applied at the location. The most
common mutation operators are deletion, insertion, and replacement of fragments
of code. A large population of candidate variants is produced through this pro-
cess and validated against the test oracle to determine their fitness. The process is
repeated until a suitable patch that passes all of the test cases is found.

In heuristic-based APR, the choice between the mutation operators in most
approaches is random, causing the search to over-explore some operators that
empirically lead to more failing software variants. As a result, more incorrect
patches are produced and more resources are wasted which hinders the effi-
cacy and efficiency of the technique. Smigielska et al. Smigielska et al. (2021)
improved on this by implementing a uniform selection strategy where the prob-
ability for each operator to get selected is proportional to the size of its respective
search space. Alternatively, Soto et al. Soto and Le Goues (2018) used developer
bug fix history to determine a fairer distribution of operators.

A variety of mutation operators is necessary for a diversified search space.
However, if the application of the mutation operators throughout the search

Automated Software Engineering (2025) 32:31 	 Page 3 of 33  31

process is not optimised, this can create many incompatible variants which will
delay or even prevent finding a correct patch. While previous work Smigielska
et al. (2021); Soto and Le Goues (2018) does address this concern, the proba-
bilities for each operator remain predetermined and fixed throughout the search.
Therefore, the online feedback of the search is not used to further tune the prob-
abilities for the selection of each operator. Moreover, the optimal probabilities for
the different operators are likely different for every software. We aim to tune the
operators accordingly so that the search behaves at its best for the software that is
currently being processed. Given that evolutionary computation is often used in
APR as the search strategy, we drew inspiration from there. We found that aug-
menting a reinforcement learning agent to optimise the selection process of the
mutation operators has been implemented for evolutionary algorithms Costa et al.
(2008); Fialho et al. (2009, 2010); Thierens (2005); Murata and Ishibuchi (1996);
Eiben et al. (2007); Pettinger (2002), differential evolution Sharma et al. (2019),
and evolutionary programming Zhang and Lu (2008). To the best of our knowl-
edge, this is yet to be applied for APR.

Our paper aims to tackle this gap in the literature by proposing a reinforcement
learning based technique to inform the selection of mutation operators in heu-
ristic-based APR to improve both the efficiency and efficacy of the process. We
implemented two credit assignment techniques: average and exponential recency-
weighted average credit assignment and four reinforcement learning-based muta-
tion operator selection strategies: probability matching, adaptive pursuit, epsilon-
greedy multi-armed bandit, and upper confidence bound. We experimented with
two types of rewards: raw fitness values and fitness values relative to the parent.
The activation point of the technique during the search process is also configured
to best fit the context. We analysed the efficacy and efficiency of the different
techniques to find the best strategy for guiding the search process in heuristic-
based APR.

Our empirical results show that while the RL-guided mutation operator selec-
tion did generate more test-passing variants over the random one, it did not
exhibit an improvement in the number of bugs patched. We hypothesize this could
be due to the coarseness of the fitness function (Boolean value) which was not as
effective in guiding the learning of the reinforcement agent. Although more fine-
grained fitness functions have not shown positive results in this field Guizzo et al.
(2021). Therefore, more work is needed to understand how to improve mutation
operator selection during GI search.

To sum up, the contributions of our work are:

1.	 A novel reinforcement learning-based approach for mutation selection in heuris-
tic-based program repair;

2.	 An extensible implementation of multiple selection techniques, credit assign-
ment policies, reward calculations, and integration strategies in a state-of-the-art
heuristic-based APR tool;

3.	 An evaluation on 353 bugs from a popular APR benchmark.

	 Automated Software Engineering (2025) 32:31 31   Page 4 of 33

The rest of this paper is structured as follows: Section 2 presents the results of a
literature review we conducted on the relevant topics, Sect. 3 presents background
information, Sect. 4 presents our approach, Sect. 5 presents our research questions,
Sect. 6 presents our methodology for answering the research questions, Sect.s 7 pre-
sents the results of the experiments, Sect. 8 presents a discussion of the observed
results, Sect. 9 presents the related work we found through our literature review,
Sect. 10 presents the threats to validity, and finally Sect. 11 presents the conclusions
and future work.

2 � Literature review

To establish which mutation operator strategies would improve the efficiency and
efficacy of search-based APR, we conducted a literature review. We focused on the
two main areas that relate to this work: mutation operators and machine learning in
the fields of automated program repair and genetic improvement.1

The literature review was conducted over four popular computer science search
engines: IEEE Xplore, ACM Digital Library, ScienceDirect, and the DBLP Com-
puter Science Bibiliography (details of the search are depicted in Table 1). All
searches were conducted on 25/04/2024. The scope that we used for relevancy
encapsulated all conference, workshop, and journal papers as well as PhD theses
published by the search date from the fields of genetic improvement, evolutionary
programming, and genetic algorithms.

The first keyword that we used was the exact phrase “mutation operators". After
filtering for relevancy, we conducted a second filtering to find papers that involved
mutation rate alteration. After we finished this primary search stage, we searched
the bibliographies of the identified relevant papers (snowballing) and found 24 addi-
tional papers that met our paper selection criteria.

We then conducted a second search on the exact phrases “machine learning"
and “program repair" using the same relevancy scope. To find the core papers here,
we considered papers that use machine learning to improve the process of finding
source-level repair candidates of existing software. The primary search for these
keywords concluded with 20 papers. From these, the ones that apply machine
learning based approaches to mutation selection are specifically for evolutionary
computation.

Our literature review revealed there are four popular approaches for reinforce-
ment based mutation selection, which we describe in the following section. None
of these, however, have been applied to improve mutation selection strategies for
improvement of existing software. We are thus the first to do so for the problem of
automated program repair.

1  Details about the papers found are presented in Related Work (Sect. 9).

Automated Software Engineering (2025) 32:31 	 Page 5 of 33  31

3 � Background

Next, we discuss the key ideas in heuristic-based automated program repair
(APR) and reinforcement learning (RL) that are relevant as background for our
proposed approach.

Table 1   Literature review search results for relevant work on mutation operator selection

Keyword ‘mutation operators’

Source Filters Papers Relevant
found papers

IEEE Xplore All Metadata 985 32
ACM Digital Title OR 240 14
Library Abstract
ScienceDirect Title, 898 12

abstract or
author-
specified
keywords

DBLP Default 208 12
Total number of papers 2331 70
Distinct number of papers 65
Distinct number of papers on mutation selection 22
New Papers after snowballing round 1 14
New Papers after snowballing round 2 7
New Papers after snowballing round 3 3
Total number of distinct papers 46

 Keyword ‘machine learning’ AND ‘program repair’

Source Filters Papers Relevant
found papers

IEEE Xplore All Metadata 33 17
ACM Digital Title OR 16 8
Library Abstract
ScienceDirect Title, 3 1

abstract or
author-
specified
keywords

DBLP Default 3 2
Total number of papers 55 27
Distinct number of papers 24
Distinct number of papers on mutation selection 20

	 Automated Software Engineering (2025) 32:31 31   Page 6 of 33

3.1 � Heuristic‑based program repair

Heuristic-based program repair navigates the search space of software variants in
order to find software that fixes a given bug Le Goues et al. (2019). The method
is usually composed of three main stages. Given a buggy input program and its
test oracle, the suspicious statements in the code are detected through the first fault
localisation step. In the second stage, program variants are created by selecting
mutation operators and applying them to the target locations to mutate them. Finally,
the variants are all verified against the provided test oracle. A fitness function meas-
ures the viability of each variant based on the number of passing test cases and is
used to guide the search strategy.

The two most commonly employed search strategies are local search Qi et al.
(2014) and genetic programming Yuan and Banzhaf (2018). Local search is a heu-
ristic approach to optimisation problems in which small and random local modifica-
tions are iteratively applied to find better solutions Hoos and Stützle (2004). As for
genetic programming, a population of candidate programs is created through evolv-
ing the source code using steps inspired by biological evolution Koza (1994).

Our review of APR tools in the literature (Sect. 6.1) revealed that tools based on
genetic programming are more common, thus we provide here more details on this
search strategy. Traditionally, the genetic programming search strategy is compro-
mised of 3 evolutionary steps: selection, crossover, and mutation. In the selection
stage, the variants with the highest fitness in the population are selected. From there,
the crossover transformation is applied to the population of variants in pairs. The
result of crossing over two variants is a new offspring variant. In the mutation step,
individual variants are mutated to create a second set of offspring variants.

Most commonly, a program statement is mutated through a random choice
between one of the following three options: deleting the statement entirely, inserting
another statement chosen from elsewhere in the code after the current statement, or
replacing the current statement with a different one.

More recent heuristic-based APR research improve upon this by using developer
behaviour information during the search Soto (2019), improving the fitness func-
tion Le (2016), addressing issues of overfitting Smith et al. (2015), and proposing
different mutation operators Kim et al. (2013). However, the choice between the
selection of the mutation options remains predominantly random with very few
papers addressing improvements on this choice Smigielska et al. (2021); Soto and
Le Goues (2018). We propose the augmentation of reinforcement learning strategies
to optimise the selection of mutation operators during the search process.

3.2 � Reinforcement learning

In reinforcement learning (RL) Sutton and Barto (2018), sequential decision making
is applied to problems where resources must be allocated between a finite number
of conflicting choices. Given N different action choices where only partial histori-
cal information is known about each, the idea is to predict the best possible series

Automated Software Engineering (2025) 32:31 	 Page 7 of 33  31

of actions in order to maximise the cumulative outcome. Ideally, over time as more
choices are made, the overall gain is optimised.

Balancing the exploration-exploitation tradeoff is at the core of RL techniques.
Exploitation of actions that the algorithm has sufficient historical information about
allows for a reliable estimation of the expected rewards. However, exploration is
necessary in order to collect this information and optimise the selection of future
actions. Choosing to exclusively exploit or explore actions will yield sub-optimal
results.

RL-based approaches have been used to improve the mutation operator selec-
tion stage in evolutionary computation in the past Fialho et al. (2009); Maturana
et al. (2009); Costa et al. (2008); Thierens (2005). In these works, the integration of
such techniques is shown to outperform standard methods and optimise the selec-
tion of operators throughout the search. In this section, we detail the state-of-the-art
RL algorithms that have been applied in this context as well as various variants for
reward calculation and quality estimation from the literature.

3.2.1 � Rewards

Multiple variations have been suggested for the calculation of the reward values that
the actions receive in the RL algorithm. This can be the raw fitness itself, but usu-
ally it is the fitness improvement in reference to another individual. The reference
individual can either be the offspring’s ancestor Fialho et al. (2009), the currently
most fit individual in the population Davis (1989), or even the median fitness of
the population Julstrum (1995). With this approach, an offspring that does not show
an improvement is disregarded. In addition to just reflecting the fitness, the com-
pass Maturana and Saubion (2008) technique also takes into account the popula-
tion’s diversity. Beyond just considering quality (through fitness and execution time
for example), they consider this additional dimension. Using these two different cri-
teria of quality and diversity they are able to fine-tune the exploration-exploitation
balance to allocate appropriate application rates to each operator.

3.2.2 � Estimating action qualities

In this section, we discuss two techniques for estimating the qualities of actions Sut-
ton and Barto (2018). In the first technique, the estimated quality for an action A
at time step t + 1 is the average of the rewards that the action has received until
time step t (Equation 1). This approach is appropriate for stationary environments
where the distribution of the rewards is not altered over time. Alternatively, expo-
nential recency-weighted average accounts for dynamic environments where the
reward probabilities are non-stationary. With this approach, the estimated quality for
an action A at time step t + 1 is calculated according to Eq. 2 such that QA(0) = 1
and RA(t) and QA(t) are the reward and predicted quality for action A at time step t
respectively. This equation introduces hyper-parameter � , which controls the learn-
ing rate.

	 Automated Software Engineering (2025) 32:31 31   Page 8 of 33

3.2.3 � Reinforcement learning algorithms

We present the state-of-the-art reinforcement learning techniques used for evolution-
ary strategies in the literature: probability matching, adaptive pursuit, and bandit-
based algorithms.

Probability matching (PM) (sometimes also referred to as Thompson Sampling
or Posterior Sampling) is a simple technique that is widely observed in biological
processes. With this approach, the probability of taking an action mirrors the prob-
ability of getting rewarded for it. Specific implementation details differ in the litera-
ture; in this paper we follow Thierens et al. Thierens (2005) as their work applies
to operator selection in genetic algorithms, often used in heuristic-based APR. To
ensure that all actions continue to be explored throughout the search, they introduce
a minimum probability value, Pmin . Given Pmin and N actions, the probability for an
action A at time t with the estimated quality QA(t) gets calculated according to Eq. 3.

Adaptive pursuit (AP) Thierens (2005) aims to solve the probability matching (PM)
slow convergence issue by introducing a “winner takes all” strategy. As with PM,
the actions are selected according to their probabilities. However, the probability of
an action A at time step t+1 is calculated according to Eq. 4. The action M is the
action with highest quality value. This algorithm introduces a new hyper-parameter
� and a maximum probability value Pmax.

Bandit algorithms are the state-of-the-art approach to mutation operator selection
in genetic algorithms. In this paper, we experiment with two different variations:
epsilon-greedy and upper confidence bound which have been shown successful in
related work Fialho et al. (2009); Maturana et al. (2009); Costa et al. (2008).

The greedy bandit algorithm Sutton and Barto (2018) tends to favour exploita-
tion of the best observed action thus far. Often as a result, the current best observed
action keeps getting re-selected which prevents the algorithm from converging
towards the best action. The epsilon-greedy Sutton and Barto (2018) improves
on this by adding the option of exploration with a constant probability. With the
epsilon-greedy algorithm, a random number between 0 and 1 is generated. If the
generated number is less than � , then an action is selected at random. Otherwise,

(1)QA(t + 1) =

∑i=t

i=1
RA(i)

t

(2)QA(t + 1) = QA(t) + �[RA(t) − QA(t)]

(3)PA(t) = Pmin + (1 − N ∗ Pmin)
QA(t)

∑i=N

i=1
Qi(t)

(4)PA(t + 1) =

{

PA(t) + �[Pmax − PA(t)] if A = M

PA(t) + �[Pmin − PA(t)] otherwise

Automated Software Engineering (2025) 32:31 	 Page 9 of 33  31

the action with the highest quality (predicted reward) is greedily selected. Within
bandit-based approaches the different action choices are referred to as arms.

The upper confidence bound (UCB) Auer et al. (2002) has been proven to opti-
mise the cumulative gain and convergence rate. Given N actions, Equation 5 pre-
sents the UCB action selection at time t for action A where QA(t) is the action’s esti-
mated quality, E is a constant balancing exploration-exploitation tradeoff, and nA
is the number of times that arm A has been played. The chosen arm at time t is the
one that maximises the result of Formula 5. In the initialization phase, each arm is
chosen once to collect initial awards. This ensures that nA is always larger than 0 and
that the UCB algorithm formula can be applied.

4 � Approach

In this work, we use reinforcement learning at the mutation operator selection stage
of heuristic-based APR.

4.1 � RL‑guided mutation operator selection

Our approach uses reinforcement learning to augment the mutation operator selec-
tion process in heuristic-based APR. Every mutation operator is associated with a
score used to guide the overarching APR search process. This score is updated every
time this operator is selected using the fitness of the associated variant, thus improv-
ing following selections.

We implement the four most commonly used strategies in heuristic numerical
optimisation problems: selection based on probability matching, adaptive pursuit,
epsilon-greedy bandits, and upper confidence bound bandits. We chose these opera-
tor selection strategies, in particular, as these are simple, yet shown successful in
the context of genetic algorithms Thierens (2005); Costa et al. (2008) — a search
strategy frequently used in heuristic-based APR. We are also the first to apply these
in this context, thus it is yet unclear which ones, or variants thereof, would be suc-
cessful. For each of the above techniques, we experiment with an operator’s reward
as the raw fitness value or the fitness value relative to the parent and its credit being
either based on exponential recency-weighted average or the average of the rewards
(see Sects. 3.2.1 and 3.2.2). The variation in the credit assignment technique will
inform whether the search process is stationary or dynamic.

This technique can be augmented into any heuristic-based APR tool that uses
mutation operators. This is because we do not limit the number of actions (mutation
operator options) to any specific value. We do, however, explore tuning the approach
depending on the number of operators. We did this to investigate how to best apply

(5)QA(t) + E ∗

�

log
∑j=N

j=1
nj

nA

	 Automated Software Engineering (2025) 32:31 31   Page 10 of 33

the technique depending on the number of mutation operators the underlying tool
implements.

4.2 � Credit assignment

When thinking about credit assignment in adaptive operator selection there are four
main choices that must be made Fialho et al. (2009).

Firstly, which type of reward will be used? As this is the first paper to attempt
reinforcement learning-based mutation operator selection in the context of auto-
mated program repair, we experimented with the two most simple approaches: the
raw fitness value of the individual and the relative fitness of the individual in refer-
ence to its direct parent. For an action A at time step t, we calculate the relative fit-
ness R�

A
(t) according to Eq. 6. This representation allows us to avoid negative num-

bers while still accounting for the exact level of improvement or deterioration in the
offspring.

Secondly, which operators to reward during the search? Most commonly, only
the operator that was used to create the offspring gets a reward. However, alterna-
tives suggest rewarding the older ancestors of the offspring as well since they also
had a part in its creation Fialho et al. (2009). Later work suggested that reward-
ing older individual’s operators in that way is less effective Barbosa and Medeiros
(2000). Therefore, we only award the direct operator that was applied to create the
offspring.

Thirdly, how will the rewards accumulate throughout the search? For each
operator type, we can simply assign it its most recently received reward. We can
also average all of the rewards that it has ever received. Since older rewards might
be less relevant, Thierens et al. Thierens (2005) assign a window with a fixed size N
where only the last N rewards contribute to the average. An improvement was made
on this by Fialho et al. Fialho et al. (2009) to use an extreme-based credit assign-
ment which is based on the assumption that infrequent large improvements in the
fitness are more significant that frequent smaller ones Whitacre et al. (2006). We
experiment with two simple strategies in this paper: using the average reward or the
exponential recency-weighted average (see Sect. 3.2.2). Using these strategies, we
are able to calculate the estimated quality of each mutation operator. Experimenting
with both of these strategies will help us better understand how stationary/dynamic
the search process is in APR.

Finally, at which points in the search should the credit assignment occur?
An option would be to do so immediately after each operator is applied. This would
mean that every time an operator is selected to create a variant, the variant’s fitness
would be evaluated and used to update the credit of the operator. Another approach
would be to do this in batches, i.e., after a constant or variable number of variants.
We experiment with both options.

(6)R�

A
(t) =

{

RA(t)

RA(t−1)
ifRA(t − 1) ≠ 0,

RA(t) otherwise

Automated Software Engineering (2025) 32:31 	 Page 11 of 33  31

5 � Research questions

In heuristic-based APR the variety of mutation operators increases the chances of
patching bugs Kim et al. (2013). However, this is at the cost of a much larger search
space, and a slower search as a result. We explore whether an RL-based mutation
operator selection solution can better guide the search and mitigate this slowdown.

RQ1: Which credit assignment technique is suitable for mutation selection
in heuristic-based APR? The choice of RL credit assignment strategy depends
on whether the expected reward values can change over the course of the search.
We compare the performance of two main stationary and dynamic methods to
determine the environment type in heuristic-based APR.

RQ2: Which mutation operator selection strategy is best in heuristic-
based APR? RL has a long history of various selection strategies. We investigate
the efficacy and efficiency of four different strategies that have been shown to
be effective in similar contexts and compare with the standard operator selection
technique in heuristic-based APR.

RQ3: How does efficacy/efficiency of RL-based mutation selection in heu-
ristic-based APR change with increase in the number of mutation operators?
The addition of more fine-grained mutation operators that target specific bugs
could improve efficacy but impede efficiency of traditional heuristic-based APR
by creating a larger search space. We investigate whether this issue can be fixed
by our RL-based approach.

RQ4: To what extent does RL-based mutation operator selection improve
the bug fixing ability of heuristic-based APR? Through online feedback of the
search process, we hypothesise that the probability distribution of the mutation
operators will be tuned to favour the more effective ones for the given buggy pro-
gram, thus improving performance.

6 � Methodology

Next we describe our methodology for answering RQs. First, we conduct a pre-
study, where we fine-tune learning rate � (see Equation 2) values for each of the
four selection strategies. We use 10% of the dataset for these preliminary experi-
ments. While the optimal dataset size for parameter tuning remains an open prob-
lem, running these experiments on the full dataset would be too costly and would
risk overfitting to the benchmark.

To answer RQ1, we run each RL algorithm with both of the credit assignment
techniques on a variety of real-world bugs from an APR benchmark. For each opera-
tor selection strategy, we analyse its efficiency and efficacy when combined with the
various credit assignment techniques. We then compare each of the optimal com-
binations of operator selection and credit assignment identified from RQ1 with the
baseline, i.e., without using RL. To answer RQ3, we explore the effect of changing
the number of arms on the efficacy and efficiency rates of the proposed approach.

	 Automated Software Engineering (2025) 32:31 31   Page 12 of 33

For the preliminary experiments and the first three research questions, we use the
raw fitness value as the reward as it is the most simple strategy. We chose to assign
credit to the operators at the end of each generation in batch at this stage to avoid too
frequent updates that might overfit. Furthermore, most heuristic-based APR work
relies on genetic programming which evolves populations of variants, already pro-
viding a natural division into batches.

For RQ4, we use the optimal settings of credit assignment and operator selection.
In answering this question, we add experimentation for the reward types and inte-
gration strategy and compare our proposed approach with the baseline. We assess
the quality of the patches by running the patched code on a second set of evaluation
held-out test suites, which is a common strategy for patch evaluation in heuristic-
based APR Motwani et al. (2022); Soto and Le Goues (2018); Soto (2019) (further
details on patch correctness evaluation in Sect. 6.3).

We use the same measures for efficacy and efficiency to answer all of the research
questions. Efficacy is measured by assessing the number of bugs for which a patch
was generated, the frequency of such successful repair attempts for each bug, as well
as patch quality, measured on held-out evaluation test suites. As for the efficiency
measure we use the median and average numbers of individuals evaluated until a
test-suite adequate patch is found.

6.1 � Tool

The field of APR has seen increasing growth in the last few years, with now tens of
tools available2 to automate the task of bug fixing program-repair.org (2023). After
a thorough review of the heuristic-based APR literature, we found that JaRFly Mot-
wani et al. (2022) would be the best fit for our implementation. JaRFly is a novel
open-source framework for search-based APR. It implements all three statement-
level mutations that are used in GenProg Le Goues et al. (2012) and TrpAutoRe-
pair Qi et al. (2013): append, delete, and replace. It also implements 18 PAR tem-
plates Kim et al. (2013) such as null checker and object initializer. JaRFly is well
documented and very modular, making it an excellent candidate for extensibility.

When choosing a mutation operator to apply, JaRFly currently implements two
options. The default is a uniform probability across all available mutations. They
also allow for a probability distribution based on a probabilistic model. The model
was created by mining open source repositories and analysing the frequency in
which developers apply each of the available mutations Soto and Le Goues (2018).
We chose to use the uniform distribution approach as the baseline because the results
that were reported show that operator selection informed by the probabilistic model
generated a smaller number of patches than the uniform distribution Soto (2019).

JaRFly Modifications: We implement a third reinforcement-based option in
JaRFly that selects the mutation operator based on their current saved probabilities.
These probabilities can be calculated according to any combination between the four

2  Refer to our tool comparison report for full details: https://​github.​com/​carol​hanna​01/​jarFly-​learn​er/​
blob/​opera​tor-​selec​tion/​repor​ts/​Tools.​pdf

https://github.com/carolhanna01/jarFly-learner/blob/operator-selection/reports/Tools.pdf
https://github.com/carolhanna01/jarFly-learner/blob/operator-selection/reports/Tools.pdf

Automated Software Engineering (2025) 32:31 	 Page 13 of 33  31

operator selection strategies, the two credit assignment strategies, the two reward
calculation techniques, and the two activation point variations. We implement each
algorithm separately and depending on the mode with which the repair attempt was
launched, the correct algorithm gets activated to set the probability values in the
search process. We used the JaRFly fitness value as is in our implementation. The
fitness value in JaRFly is calculated on the basis of the number of passing tests in
the provided test suite.

Running the experiments revealed some bugs in the underlying code. We were
able to locate five bugs that were causing uncaught exceptions in the execution of
the code. These bugs are likely due to the changing version of external libraries
that JaRFly depends on, e.g., in one of the cases this caused a change in the treat-
ment of two-dimensional array identifiers. Patches for these bugs were added and
can be found in our artefact. JaRFly does implement 18 PAR templates. PAR tem-
plates Kim et al. (2013) are fix patterns learned from human-written patches. Cur-
rently the most recent version has a bug that throws a NullPointerException within
some scenarios of the application when 3 of the PAR templates generate variants,
namely Parameter Replacer, Adder, and Remover. Therefore, we exclude these 3
PAR templates from all of our experiments. It is important to note that this exclusion
was across all of the experiments that we ran and thus does not invalidate the results
we obtained.

6.2 � Benchmark

We considered various benchmarks for evaluation through the overview that the
program repair website program-repair.org (2023) provides. However, we chose
Defects4J as it is currently the most comprehensive and popular dataset for evalu-
ating Java APR tools Martinez and Monperrus (2016); Yuan and Banzhaf (2018)
which allows us to be able to compare our results with the state-of-the-art. Addi-
tionally, Defects4J was used to evaluate the tool that we chose to implement our
approach in, JaRFly Motwani et al. (2022), which allows for a direct comparison.

Our paper uses the most recent (2.0.0) version of Defects4J Defects4J (2023)
for evaluation. Defects4J is a collection of real-world Java bugs from open-source
repositories. Each defect in the dataset includes the defective version of code, its
developer-fixed version, as well as test oracles. There are two types of tests that
accompany every Defects4J bug: developer written tests as well as the infrastructure
for generating automated tests using EvoSuite EvoSuite (2023) or Randoop Ran-
doop (2023).

To fairly evaluate our approach, we used the exact Defects4J bugs that were used
for the baseline JaRFly program. At the time that the JaRFly framework was evalu-
ated, version 1.1.0 was used which consisted of 395 bugs. Given that the Mockito
project was excluded in the JaRFly paper, we did not consider it. Finally, we omit-
ted the four bugs that have since been deprecated. We evaluated our approach on
the 353 remaining bugs. The JaRFly paper reports to be able to successfully repair
49 out of these bugs using the GenProg algorithm and an additional 15 active bugs
using PAR templates. The breakdown of the bugs is presented in Table 2.

	 Automated Software Engineering (2025) 32:31 31   Page 14 of 33

We chose not to extend our experiments to the entire 835 bugs of the latest
Defects4J dataset, as it would have more than doubled the already very consequent
computational budget involved. Indeed, with over 30,080 repair attempts and an
average running time of about an hour per attempt (see Sect. 7) it amounts to about
3.5 years of continuous computation, or in our case multiple months of active cluster
usage.

6.3 � Experimental set up

To answer our research questions, we ran the latest version of JaRFly. We used the
default uniform selection strategy to get a baseline, before enabling the implemented
RL-approaches.

Search settings: For each bug, 20 repair attempts were launched independently,
to account for the heuristic nature of the underlying genetic algorithm. The search
parameters were set to the same values as specified in the original paper of JaR-
Fly Motwani et al. (2022). As such, each repair attempt was bound to 10 generations
with a population size of 40. Since we were not able to run our experiments in the
identical environment of JaRFly in terms of the hardware specifications, we elimi-
nated the four-hour timeout per repair attempt and ran all experiments to comple-
tion of the 10 generations instead. JaRFly provides a replication package LASER-
UMASS (2020) which includes the bugs that were successfully repaired as well as
scripts for launching the tool to repair a specific bug. These scripts were used both
for replicating their results and for conducting our experiments.

Hyper-parameter settings: The various reinforcement learning algorithms that we
experiment with in this paper introduce hyper-parameters. Table 3 depicts the dif-
ferent parameters that are associated with the different algorithms (see Sect. 3.2 for
more details on the parameters and formulas). The values of the parameters in the
table are those used in the literature Thierens (2005); Fialho et al. (2009).

As for the learning rate � (from the exponential recency-weighted average for-
mula — see Sect. 3.2.2), we conducted preliminary experiments to tune its value
for each experiment type on a subset of bugs from the Defects4J dataset. The sub-
set includes 5 diverse bugs which constitute just over 10% of the 49 bugs that the
baseline in JaRFly successfully repaired. Each of these five bugs was the first in

Table 2   Breakdown of the Defects4J bugs that were used in the JaRFly study Motwani et al. (2022) and
patched using their tool

Project Currently Patched Patched
Active bugs (GenProg) (PAR)

JFreeChart 26 6 7
Closure compiler 131 15 20
Apache commons lang 64 9 12
Apache commons math 106 18 23
Joda-Time 26 1 2
Total 353 49 64

Automated Software Engineering (2025) 32:31 	 Page 15 of 33  31

lexicographical order from those that the baseline in JaRFly correctly patched from
each of the five projects (Table 2). The five bugs we used in the experiment were:
Chart 1, Closure 102, Lang 10, Math 18, Time 19. For each of the four operator
selection strategies, we conducted four experiments using four learning rate values
for a total of 16 preliminary experiments. The value that we found in the literature
for the learning rate in this context is 0.8 Thierens (2005). We experimented further
with the learning rates 0.2, 0.4, and 0.6. Each repair attempt was repeated 20 times,
to account for the heuristic nature of JaRFly’s genetic programming algorithm.
Overall, in this preliminary study, we conducted 1600 repair runs.

We conduct statistical tests on the results of these preliminary experiments. Given
that our data is not normally distributed (as per the Shapiro Test Razali and Wah
(2011)), is continuous data, from independent samples, and compares over 3 groups,
we utilized the Kruskal-Wallis Test McKight and Najab (2010).

RQ1 and RQ2: To answer the first 2 research questions, we activated our modi-
fied version of JaRFly with the 3 simple mutation operators from GenProg: insert,
delete, replace (see Sect. 3.1) as these are the most commonly used and would pro-
vide a foundation to build on for evaluation. The evaluation for these 2 RQs was on
the 49 bugs that the original JaRFly paper reports to repair using the GenProg algo-
rithm excluding the 5 bugs that were used for the preliminary experiments for a total
of 44 bugs. As explained in Sect. 6, at this stage we used the raw fitness value as the
reward and assigned credits to the operators every generation.

RQ3: The experimentation for RQ3 was extended to include the 15 PAR tem-
plates that are implemented in JaRFly for a total of 18 mutation operators. There-
fore, evaluation for RQ3 was conducted on all of the bugs that were repaired with
either GenProg or PAR operators in JaRFly for a total of 64 bugs excluding the 5
bugs that were used for the preliminary experiments for a total of 59 bugs. Experi-
mentation for RQ1-3 is limited to a small number of bugs to avoid over-fitting and
find the best RL strategy for the ultimate task of repair which we investigate in RQ4.

RQ4: Given that we update weights after each generation, we note that it might
not be enough time to evaluate all 18 mutation operators and learn optimal rewards.
Moreover, several of the 18 operators naturally belong into groups, e.g., some
manipulate parameter values, while others are concerned with bound checks. There-
fore in RQ4, we activate the RL algorithm in the search using 3 different sets of
arms for further evaluation:

Table 3   Hyper-parameter values for the PM, AP, epsilon-greedy, and UCB algorithms; N: no. of muta-
tions

Name Associated algorithms Value

P
min

PM, AP 1

2N

P
max

PM, AP 1 − (N − 1) ∗ P
min

� AP 0.8
� epsilon-greedy 0.2
E UCB 10.0

	 Automated Software Engineering (2025) 32:31 31   Page 16 of 33

1.	 3 arms: 3 GenProg mutations
2.	 18 arms: 3 GenProg mutations + 15 PAR templates
3.	 7 arms: 3 GenProg mutations + 15 PAR templates aggregated into four groups.

The third set of arms groups together PAR templates that pertain to bugs within
a similar category. We divide the PAR templates into four groups: functions
and expressions (FunRep, ExpRep, ExpAdd, ExpRem), bound and null checks
(NullCheck, RangeCheck, SizeCheck, LBoundSet, UBoundSet, OffByOne), casting
and initialisation (CastCheck, ObjInit, CasterMut, CasteeMut), and multi-line edits
(SeqExch). The mutations are chosen and applied as normal in the search algorithm.
However, each operator’s credit gets assigned to its respective group. From there, an
operator’s probability for selection is what was assigned to the arm of the group that
the operator belongs to.

We experimented with two reward types: raw fitness and fitness relative to parent
as well as two modes for assigning credit: credit assignment after every generation
and after every mutation. We extend the evaluation to 353 bugs from the Defects4J
benchmark.

We evaluate the correctness of the patches produced by our approach according
to the same methodology used in JaRFly Motwani et al. (2022) for a fair compari-
son. The authors of JaRFly use two versions of the automated test generation tool
EvoSuite EvoSuite (2023) to create held-out evaluation test suites. They created
evaluation test suites for 71 defects from Defect4J that passed their criteria for state-
ment coverage which are publicly available LASER-UMASS (2020). For each
patch, if the defect had an evaluation test suite, we applied the patch to the defect
and executed both sets of tests (v1.0.3 and v1.0.6) on the patched code. From there,
we compared the quality scores of patches. The quality score for a patch is: TPass

TTotal

where TPass is the number of tests that passed and TTotal is the total number of test
cases.

Environment Experiments were conducted on a cluster of 1028 compute nodes
with varying specifications. RAM size ranged from 16GB to 375GB and local SSD
disk space ranged from 80GB to 780GB. All CPUs were from the Intel Xeon pro-
cessors range from a variety of generations with the number of cores ranging from
4 to 48. This did not affect the results as we ran all repair attempts to completion of
the 10 generations.

7 � Results

Overall, a total of 30,080 independent repair attempts were conducted. Computation
time for each repair attempt ranged, on average, from 45 minutes to 1.5 hours, up to
12 hours in longest runs. Overall, the experiments took multiple months of cluster
usage equalling to 3.5 years of continuous computation.

Automated Software Engineering (2025) 32:31 	 Page 17 of 33  31

7.1 � Preliminary experiments

The results of the parameter tuning preliminary experiments described in Sect. 6.3
are depicted in Table 4. We used these experiments to determine the optimal learn-
ing rate value for credit assignment using the exponential recency-weighted average
for each operator selection strategy independently.

All 16 of the experiments that we set up at this stage had both higher successful
repair attempts than the baseline and lower medians for the repair variant number.
For each operator selection strategy, we chose the learning rate value that maxim-
ised the number of successful repair attempts. Given this criteria, for the probability
matching and UCB algorithms we found that the optimal � value is 0.8. As for adap-
tive pursuit, it is 0.2 and for epsilon-greedy it is 0.4. These are the experimental set
ups that we proceeded with.

We utilized the Kruskal-Wallis statistical test McKight and Najab (2010) on the
success rates of the different settings to confirm our decision. When checking for a
statistical difference between the 4 algorithms (PM, UCB, AP, Epsilon-Greedy), we
found a p-value of 0.019 which confirms that using the different algorithms in this
context results in statistically different success rates. However, when using the same

Table 4   Preliminary experiment results: experiment type, learning rate ( � ), percentage of repair attempts
producing a test-suite adequate patch, number of bugs patched, average/median number of variants eval-
uated until first patch

Highest/lowest values, results of our approach in comparison with baselines

Repair Type � Success rate Bugs patched
(/5)

Avg.
Variant

Med.
Variant

Baseline - 30% 4 177 171.5
PM 0.2 33% 3 154 131.0

0.4 27% 3 141 80.0
0.6 28% 3 178 93.0
0.8 34% 4 136 138.0

UCB 0.2 36% 4 154 136.0
0.4 34% 4 145 103.5
0.6 36% 4 139 119.5
0.8 38% 4 155 117.0

AP 0.2 35% 4 127 79.0
0.4 33% 3 130 78.0
0.6 28% 3 141 77.0
0.8 31% 3 142 79.0

epsilon-greedy 0.2 24% 4 136 123.0
0.4 28% 4 133 97.5
0.6 30% 3 156 140.0
0.8 18% 3 103 90.0

	 Automated Software Engineering (2025) 32:31 31   Page 18 of 33

test to check the statistical difference between the 4 learning rates (0.2, 0.4, 0.6, 0.8)
on the same success rates, we found a p value of 0.874 which shows that there is not
enough of a statistical difference between them.

As an example, Fig. 1 provides a visual representation of how the credits assigned
to the different mutation operators changed throughout the search for the epsilon-
greedy algorithm3. We can see that the learning rate 0.2 was too slow since the
credits of the values stay somewhat stagnant, whereas with learning rate 0.6 it’s too
noisy. This conclusion complements the results that we saw for the number of suc-
cessful repair attempts for this experiment, in which learning rate 0.4 was optimal.

7.2 � RQ1: Best credit assignment technique

The results of the experiments with average and exponential recency-weighted aver-
age credit assignment are presented in Table 5. Interestingly, we can see that in all
of the experiments the success rate of the repair attempts is higher with the aver-
age credit assignment than with the exponential recency-weighted average credit
assignment. Moreover, we can see that for PM and UCB, the number of unique bugs
that were fixed is higher as well. Therefore, average credit assignment is best suited
for PM, UCB, and the epsilon-greedy algorithms whereas for AP, the exponential
recency-weighted average is better.

We investigated the discrepancy for the unique number of bugs patched in the
adaptive pursuit results and found that there were 3 bugs that were successfully
patched in combination with the exponential recency-weighted average credit
assignment that were not patched in combination with the average credit assign-
ment. However, for these bugs, only 1 or 2 repair attempts successfully generated
patches. i.e., their patches are harder to find in the search space. AP with the aver-
age credit assignment might have failed to produce these patches due to limiting the
number of repair attempts to 20 in our experiments. We can thus conclude that the
search process in heuristic-based APR is stationary.

RQ1: Average credit assignment is best suited for heuristic-based APR. Thus,
the search process in heuristic-based APR is stationary.

Fig. 1   Mutation operators credit as a function of the variant number for the successful variant with the
epsilon-greedy algorithm with varying learning rates (results are averaged over all runs). The credit val-
ues were sampled at the creation time of each variant (when a mutation is applied to a variant) before the
selection stage, therefore the number of variants presented in the graph exceeds the population size. For
the top suubfirgure, the trends present the results for the delete operator, append operator, and replace
operator from top to bottom respectively. For the bottom two subfigures, the trends present the results for
the delete operator, replace operator, and append operator from top to bottom respectively

▸

3  The rest of the plots for PM, AP, and UCB can be found in the project’s repository.

Automated Software Engineering (2025) 32:31 	 Page 19 of 33  31

	 Automated Software Engineering (2025) 32:31 31   Page 20 of 33

7.3 � RQ2: best operator selection technique

To fairly compare with the baseline in answering RQ2, we tried to replicate the base-
line results from the JaRFly paper by running the 49 bugs (Sect. 6.2) that the authors
report to generate patches for using the GenProg setting excluding the 5 bugs used
in the preliminary experiments for a total of 44 bugs. Our results are presented in
Table 6. When attempting to replicate the results, we were only able to generate a
patch for 38 out of the 44 bugs. Since we used the exact search parameter settings
and seeds that were used in JaRFly, we think that the discrepancy is likely due to the
removal of the 3 PAR templates (as explained in Sect. 6.1) as well as mismatched
versions (see details in Sect. 10), and heuristic nature of the search. The latest ver-
sions of JaRFly and Defects4J were used in our experiments. We observed variance
even when the same seeds were used.

To answer this question, we compared all of the RL algorithms with their optimal
credit assignment technique that was identified in RQ1 (Table 5). For PM, we can
see that 38 unique bugs were patched which is the same as the baseline. However,
the success rate of the overall repair attempts was 1.2% lower. As for UCB, only 36
unique bugs were patched, but the overall success rate was 2.7% higher. AP had 37
unique bug patches, one less that the baseline, with a 0.3% decrease in overall suc-
cess rate. Finally, with the epsilon-greedy experiment 39 unique bugs were patched
(1 more than the baseline) with a 4% higher success rate for repair attempts. Given
these results, it is evident that in our experiments, the epsilon-greedy algorithm with
average credit assignment exhibited the best performance.

Figure 2 shows the trend for the credits assigned to the different mutation opera-
tors within the epsilon greedy algorithm. As observed in previous work Petke et al.
(2023), the deletion operator performs best and thus receives higher credit values
throughout the search.

Table 5   RQ1 & RQ2. Repair attempts with average and exponential recency-weighted average credit
assignment

Highest/lowest values, results of our approach in comparison with baselines

Repair type � Success rate Bugs patched
(/44)

Avg. Variant Med. Variant

Average credit assignment
PM – 43.1% 38 93 62
UCB – 47.0% 36 120 84
AP – 44.8% 35 89 49
epsilon-greedy – 48.3% 39 107 101
Exponential recency-weighted average credit assignment
PM 0.8 43.3% 35 102 68
UCB 0.8 43.1% 35 115 73
AP 0.2 44.0% 37 95 63
epsilon-greedy 0.4 45.2% 40 107 70

Automated Software Engineering (2025) 32:31 	 Page 21 of 33  31

Fig. 2   Trend of the credit assigned to mutation operators as the variant number increases for average
credit assignment and epsilon-greedy operator selection. The trends present the results for the delete
operator, replace operator, and append operator from top to bottom respectively

Table 6   RQ2 &RQ3: Results of the uniform operator selection baseline with the 3 GenProg mutations as
well as with the additional 15 PAR templates

Mutations Success rate Bugs patched Avg. variant Med. variant

GenProg 44.3% 38/44 102 52
GenProg and PAR 36.3% 49/59 120 74

Table 7   RQ2. Results for the intersection of the 35 common bugs that were patched in all of the experi-
ments

Highest/lowest values, results of our approach in comparison with baselines

Repair type Credit assign-
ment

Success rate Avg. Variant Med. Variant

Baseline – 58.6% 105 57.5
PM A 57.9% 97 50.0
UCB A 64.0% 125 85.5
AP W 58.7% 99 61.0
epsilon-greedy A 63.9% 109 76.0

	 Automated Software Engineering (2025) 32:31 31   Page 22 of 33

Since the bugs that were patched with each experiment varied, we had to look
at the intersection of the 35 common bugs that were patched in all of the experi-
ments including the baseline in order to conduct an efficiency analysis. The results
of the overall comparison are presented in Table 7. We can see that PM with aver-
age credit assignment was the only experiment to achieve lower median and average
numbers than the baseline for the variant numbers of successful patches. However, it
is important to note that the success rate of the experiments varied. Therefore, while
the epsilon-greedy experiment does have higher median and average values for the
variant number of the patches, this might be due to the higher success rate which
skewed the values.

RQ2: Epsilon-greedy is the most effective mutation operator selection strat-
egy, while probability matching is the most efficient for heuristic-based APR.

7.4 � RQ3: Additional mutation operators

Given that the epsilon-greedy algorithm with the average credit assignment was the
best strategy in answering RQ2, we proceed with this technique for experimentation
with additional operators.

We run the experiment using 15 PAR templates (recall Sect. 6.1 where we detail
that the remaining 3 templates were excluded in our study) and the 3 GenProg muta-
tions for a total of 18 mutation operators. The experiment resulted in a success rate
of 35.5% and patches for 47 unique bugs. As for efficiency, the average variant num-
ber for variants that resulted in a patch was 129 and the median 83. When compar-
ing with the JaRFly results with 18 arms in Table 6, we can see that our approach
did not improve the results of the standard selection strategy. Our approach with 18
arms was able to solve two bugs fewer and the success rate for repair attempts was
also 0.8% lower.

RQ3: With the addition of 15 arms, reinforcement learning-guided mutation
operator selection does not patch more bugs than the standard operator selec-
tion strategy.

7.5 � RQ4: RL‑aided selection performance

The results of RQ3 evidence that a drastic increase in the number of mutation opera-
tors lowers the efficacy and efficiency of the approach. To control the number of
arms in the RL algorithm, we decided to experiment with separating the PAR tem-
plates into groups (details in Sect. 6.3). We additionally experiment with a second
type of reward which is based on the fitness of the variant in reference to its direct
parent in the mutation step (recall Sect. 3.2.1). Finally, we alter the rate of learning
and experiment with two more aggressive approaches for the reinforcement learn-
ing. The first approach considers recalculating the mutation operator probabili-
ties after every mutation instead of every generation. The second recalculates the
probabilities every generation, but decreases the population within each one. Since
our experiments set a bound of 40 on the population size and a bound of 10 on the

Automated Software Engineering (2025) 32:31 	 Page 23 of 33  31

number of generations, we flip these values and launch repair attempts bound to a
population size of 10 over 40 generations.

Table 8 presents the results of the mini-experiments that we ran to test the addi-
tional settings of grouped mutations, reward types, and aggressive learning. These
experiments were on the same sample of five bugs that was used in the prelimi-
nary experiments for tuning the learning rate (recall Sect. 6.3). The results confirm
that increasing the number of arms from 3 to 18 does hinder the performance of
the approach. However, we can also see that keeping the 18 mutations but group-
ing them into 7 arms instead does greatly improve the results. The more aggressive
learning achieved both through a smaller generation size or adjusting the operator
probabilities after every mutation yielded worse results.

From here, we proceeded with additional experimentation on the two most suc-
cessful experiments (emboldened in Table 8). Table 9 presents the results of these
two experiments on the dataset of 59 bugs (64 that were reported as patched using
GenProg and PAR in JaRFly minus the 5 we used for the preliminary experiments).
The experiment with the fitness relative to the parent as the reward achieved a 3.2%
increase in the success rate of the repair attempts and patched 2 additional bugs.
Therefore, we decided to test it on the additional 289 bugs that the JaRFly reports
to not be able to generate patches for with GenProg and PAR (recall Table 2). Our
approach produced 80 patches for 10 bugs from the set that JaRFly didn’t patch. We

Table 8   RQ4. Results of mini-experiments on the sample of 5 bugs for 3, 18, and 7 arms

Highest/lowest values, results of our approach in comparison with baselines

Arms Generations Activation Reward Success Bugs patched Avg. variant Med. variant

3 10 Every Gen. Raw 32% 4 176 123
10 Every Gen. Relative 32% 4 218 152
10 Every Mut. Raw 0% 0 - -
40 Every Gen. Raw 16% 3 158 120

18 10 Every Gen. Raw 31% 3 116 92
10 Every Gen. Relative 31% 4 219 133
10 Every Mut. Raw 0% 0 - -
40 Every Gen. Raw 15% 3 175 129

7 10 Every Gen. Raw 43% 4 145 108.5
10 Every Gen. Relative 43% 4 229 186
10 Every Mut. Raw 0% 0 - -
40 Every Gen. Raw 18% 3 178 101.5

Table 9   RQ4. Results for the epsilon-greedy operator selection algorithm with 7 arms (GenProg and
grouped PAR Mutations) with raw/relative fitness run on the 59 bugs

Reward type Success rate Bugs patched Avg. variant Med. variant

Raw 34.3% 44 123 81
Relative 37.5% 46 176 120

	 Automated Software Engineering (2025) 32:31 31   Page 24 of 33

then reran those 289 bugs for the baseline and found 93 patches for 23 unique bugs.
However, after manual investigation of the patches, we found that only 2 of the 93
patches in the baseline were correct and corresponded to 1 unique bug. None of the
patches generated using the RL strategy were correct.

We follow the patch evaluation methodology of JaRFly Motwani et al. (2022)
to assess the quality of the patches generated by our approach. We assess the qual-
ity of 487 patches that correspond to the 51 defects that the epsilon-greedy oper-
ator selection algorithm with average credit assignment, relative fitness values as
the reward and 7 arms generated on the benchmark including the PAR templates
(recall Table 9). Table 10 presents the results of the quality scores of the defects. We
remove the 2 patches generated for the Time 19 bug from our analysis as they did
not pass any test in the evaluation test suite. The results do not show improvement
in the minimum, maximum, median, or average quality values. However, we can
see that the percentage of patches that were evaluated to have 100% quality is 34%
which is significantly higher than JaRFly.

RQ4: Reinforcement learning-aided mutation operator selection is compara-
ble in terms of bugs fixed to the baseline standard uniform selection approach,
though we observe more test-passing variants generated.

8 � Discussion

In this work we explored whether RL-based operator mutation selection leads to
more effective and efficient program repair in search-based APR.

Based on our results (recall Sect. 7.2), we deduce that the environment in heu-
ristic-based APR is stationary, i.e., the optimal probabilities for the arms in the
RL algorithms do not change over time. The probability matching algorithm had
the lowest success rate in our experiments as it is the most simple approach (recall
Sect. 3.2). Adaptive pursuit performed slightly better which can be explained by the
improvement this algorithm accounts for in the convergence rate. The UCB algo-
rithm improves the success rate even further. This can likely be contributed to the
fact that it has been proven to optimise the convergence rate regarding the cumula-
tive gain Auer et al. (2002). However, to do so, the UCB algorithm continues to
tune the exploration-exploitation tradeoff as the search progresses. Given that the

Table 10   RQ4. Comparison of quality values, and percentage of patches with 100% quality between our
approach and the quality results presented in the JaRFly paper Motwani et al. (2022)

Highest/lowest values, results of our approach in comparison with baselines

Repair Min. Mean Median Max. 100% Quality

JaRFly GenProg 64.8% 95.7% 98.4% 100% 24.3%
JaRFly PAR 64.8% 96.1% 98.5% 100% 13.8%
RL-based APR 63.5% 95.8% 98.5% 100% 34.0%

Automated Software Engineering (2025) 32:31 	 Page 25 of 33  31

environment in heuristic-based APR is stationary, we hypothesize that this simply
added noise to the learning process and made UCB to over-exploit.

The results demonstrate (Sect. 7.3) that the most effective mutation operator
selection strategy (epsilon-greedy) is not the same as the most efficient (PM) which
stems from the exploration-exploitation tradeoff. Algorithms that favour exploitation
are less effective at finding patches for difficult-to-patch defects since they do not
explore the search space as extensively. However, their more exploitative nature will
allow them to find the patches for easier-to-patch defects more quickly.

Increasing the number of mutation operators from three to eighteen greatly
increased the search space and effectively slowed our approach’s learning rate. How-
ever, grouping mutations that target similar defect types together into a single arm
representation within the RL algorithm showed an improvement as the power of the
PAR fix templates was maintained while controlling the noise that the large number
of arms added.

Fig. 3   Bug Math 35 patch generated using JarFly with random operator selection

Fig. 4   Bug Math 35 Developer-written patch

Fig. 5   Bug Math 35 patch generated using JarFly with epsilon-greedy guided mutation operator selection

	 Automated Software Engineering (2025) 32:31 31   Page 26 of 33

As explained in Sect. 7.5, there were 289 bugs that the baseline reported not to
fix in the original paper. We reran the tool on these bugs and manually evaluated the
patches generated. Our manual investigation revealed that 2 correct patches were
produced and that they correspond to the same bug. We present a successfully gen-
erated patch example by the baseline JarFly in Fig. 3 and the corresponding patch
written by developers for the same bug in Fig. 4. We can see that instead of a direct
call to the setter function with the corresponding argument, the body of the callee
function was inserted instead which results in semantically equivalent code. We then
present a patch generated by the best RL-guided setup of epsilon-greedy operator
selection with average credit assignment, and grouped PAR template mutation oper-
ators in Fig. 5. We can see that while the patch does include the correct change, it
also adds incorrect code into another part of the code and thus ultimately produces
an incorrect patch.

Results show that while the RL approach generated more test-passing variants,
it did not significantly improve the number of bugs patched. We hypothesize that
this is due to three different reasons. Firstly, since we limit the number of genera-
tions to 10 in the experiments, the learning might have been too slow to begin taking
effect. Thus, such an approach may only be effective in cases where the search is
very long and the probabilities are learned quickly. Secondly, the fitness function in
this instance might be too coarse to effectively guide the learning. Finally, the type
of edit may not be a sufficient source of information to steer the random edit genera-
tion toward the search sub-space containing the correct patch.

Addressing the first theory of extending the time budget is too computationally
costly to explore in this work (see Sect. 6.2). We leave this to be explored in future
work. We considered exploring the second theory of refining the fitness functions
as this is what drastically diffrentiates APR from evolutionary algorithms in other
contexts. In the domain of automated program repair, fitness evaluation is frequently
binary in nature based on whether a program passes all the tests in a test suite. Pre-
vious work has explored a finer-grained approach that accounts for varying failure
types showing lack of clear improvement Guizzo et al. (2021); Bian et al. (2021).
Given negative results in previous work and computational costs, we decided to not
explore this path in this study.

We were most interested in exploring option 3, which is that the type of edit
alone is not sufficient to steer the learning. We thus decided to conduct an experi-
ment to explore whether enriching the reinforcement learning algorithm with addi-
tional information would yield better results. We implemented functionality to allow
the reinforcement learning agent to differentiate between different mutation targets.
We consider 3 categories of code locations: special locations (break statement, con-
tinue statement, throw statement, variable/array initializer), single-line locations,
(all other single statement mutation locations which don’t fall in the “special” cat-
egory), and multi-line locations (blocks of code such as conditionals and loops). For
each mutation, the reinforcement learning agent now has 3 arms, one for each of the
location categories. Once a mutation and a location to be mutated is selected, the
reinforcement learning agent identifies the category of the location and the type of
mutation selected and a reward is given to the relevant arm. With this, we were able
to insert context on the code being mutated to the RL agent and further fine-grain

Automated Software Engineering (2025) 32:31 	 Page 27 of 33  31

the process. We conduct an experiment of this setup on using the previously identi-
fied best combination of configuration: epsilon-greedy algorithm with average credit
assignment and relative fitness applied every generation. We set the experiment to
the 3 standard insert, replace, and delete mutations resulting in 9 arms for the RL
algorithm (3 mutation operators x 3 code location categories).

Unfortunately, only 30 out of the 44 bugs were patched with this new set up
with a 45.1% success rate, an average of 96 for the successful variant number and
a median of 29. When comparing with the results in Table 5, it is clear that this
direction is less successful as this combination was previously able to patch 39 bugs
with a 48.3% success rate. This might be due to the fact that the additional context
added here does not align with the underlying factors that lead to successful patches.
The categories of locations added complexity to the reinforcment learning algorithm
without providing sufficient correlation to the qualities that contribute to plausible
patches. Future work can explore other contextual information that may better guide
the learning and search through different or more refined code location categories
than the ones that we explore here.

Out of all APR approaches to-date, heuristic-based techniques have been the most
adopted in industial settings Kirbas et al. (2020); Haraldsson et al. (2017); Margin-
ean et al. (2019) (with Marginean et al. (2019) using multiple approaches). We pose
this is largely due to heuristic-based techniques not requiring a training stage, a pre-
trained model, or constraint solvers. We recognise the potential in their continued
scaling while accounting for the high success rates of end-to-end learning-based
strategies and large language models Sobania et al. (2023); Jiang et al. (2021); Zhu
et al. (2021); Xia and Zhang (2022).

9 � Related work

Our literature review revealed four popular approaches for RL-based mutation selec-
tion. None of these, however, have been applied to improve mutation selection strat-
egies for improvement of existing software. We are the first to do so for the problem
of APR.

Mutation operators: Papers that investigate varying operator probabilities Tuson
and Ross (1996); Murata and Ishibuchi (1996) and tuning parameters generally Aleti
and Moser (2016); Moazen et al. (2023) in the field of genetic algorithms have been
around for decades Stanczak et al. (1999); Julstrom (1997). These works generally
focus on the adaptive operator selection based on a probability matching strategy
that references the fitness improvements of the individuals Vafaee et al. (2008);
Soria-Alcaraz et al. (2014). Thierens et al. propose an alternative to this through
their adaptive pursuit strategy Thierens (2005). Other papers focused on the muta-
tion operator specifically both in the field of genetic algorithms Hesser and Mäinner
(1991); Ali and Brohi (2013) and genetic programming Anik and Ahmed (2013);
Hong et al. (2014). The shortcomings of mutation operation, particularly in promot-
ing diversity for GP Jackson (2011) are discussed in the literature as well. Glick-
man et al. Glickman et al. (2000) and Friedrich et al. Friedrich et al. (2018) address
issues such as premature convergence and local optima escape.

	 Automated Software Engineering (2025) 32:31 31   Page 28 of 33

Multiple studies alter operator probabilities using reinforcement learning Yu
and Lu (2023); Yu and Zhou (2023); Yu et al. (2024). These studies address both
credit assignment strategies as well as operator selection techniques, therefore they
are particularly relevant to our paper Awad et al. (2022); Li et al. (2023); Zhang
et al. (2023). More specifically, extensive research has been done on operator selec-
tion strategies that use multi-armed bandits Costa et al. (2008); Fialho et al. (2009,
2010); Thierens (2005); Murata and Ishibuchi (1996); Eiben et al. (2007); Pettinger
(2002); Maturana et al. (2009). These paper mainly focus on augmenting evolution
strategies in the context of numerical optimisation.

In the field of APR specifically, we found some work by Le Goues et al. Le Goues
et al. (2012) on operator design choices. Smigielska et al. Smigielska et al. (2021)
propose a uniform strategy when choosing operators. Enhancements were suggested
using probabilistic models Soto and Le Goues (2018), program context Wen et al.
(2018); Ullah et al. (2023), and bug fix history Le et al. (2016). Soto et al. Soto
(2019) further propose a set of techniques for enhancing the quality of patches. All
of this work focuses on a fixed distribution of probabilities for operator selection.
Our work takes this a step further by using reinforcement learning to modify this
distribution during search.

Machine learning for APR: The utility of the machine learning component varies
from predicting patch correctness Schramm (2017); Tian et al. (2023), to predicting
the type of fault Valueian et al. (2022), to predicting whether continuing the search
process will result in a repair Le (2016). Existing work guides the search process by
learning from code patterns and features Chen et al. (2022); Valueian et al. (2022),
bug reports Liu et al. (2013), program namespace Parasaram et al. (2023), or context
and statistics Jiang et al. (2019); Yu et al. (2023). Ji et al. Ji et al. (2022) applies pro-
gram synthesis to the problem of automated program repair. Conner et al. Connor
et al. (2022) use neural machine translation models that generate edit operations for
patching bugs instead of translating from the buggy to fixed source code directly.
Additional work focuses on more specific types of repair, e.g., for conditional state-
ments Gopinath et al. (2016), compilation errors Ahmed et al. (2022), API mis-
uses Wu et al. (2022), or specific program languages Lajko et al. (2022). Finally,
more recent work also include repair based on generative language models Kang
and Yoo (2023); Xia et al. (2023) as well as more interactive user-centric techniques
Liu et al. (2024); Geethal et al. (2023).

10 � Threats to validity

External threats: Defects4J is composed of real-world bugs and is a widely used
benchmark in the literature. However, there always remains a threat of generalis-
ability. Moreover, our methodology uses Java which may not generalise to other
programming languages. Our choices of benchmark and language enable direct
comparison with state-of-the-art approaches. We do not limit our approach to any
specific benchmark, programming language, or tool therefore these threats can be
mitigated through additional implementations.

Automated Software Engineering (2025) 32:31 	 Page 29 of 33  31

Internal threats: Our experiments were conducted on a cluster of computation
nodes with varying specifications. We mitigated this threat by comparing the variant
number of the successful patch instead of execution time to measure efficiency.

Threats to construct validity: The results of the JaRFly baseline were not repro-
duced despite using the same search parameters. Since our approach uses the most
recent version of both JaRFly and Defects4J, the discrepancy is likely due to a ver-
sion issue, the heuristic nature of search, and the omission of 3 of the PAR tem-
plates as explained in Sect. 6.1. Patch quality assessment remains an open question
in the field. We mitigate the threat of potential overfitting by evaluating the patches
on held-out evaluation test suites, and by manual evaluation of final test-passing
variants.

11 � Conclusions and future work

In this work, we introduce a reinforcement learning approach for mutation operator
selection in heuristic-based automated program repair. We conducted an extensive
empirical evaluation, spanning four learning algorithms and two credit assignment
techniques, and assessed the effect of reward types, number of mutation operators,
and activation points on the performance. Our findings reveal that this approach
is comparable in terms of bugs fixed to the baseline standard uniform selection
approach, despite RL-based selection generating more test-passing variants.

However, our analysis suggests several avenues for future investigation. Firstly,
the RL mechanism may not have sufficient time to significantly influence the proba-
bility of generating the correct edit within our budget-limited experiment. Secondly,
the fitness of variants may not serve as the most efficient reward source during learn-
ing. Lastly, uncertainty remains regarding the effectiveness of only using edit types
to steer the search towards correct solutions.

In summary, our study provides valuable insights into RL-aided mutation opera-
tor selection whilst also underscoring the complexity inherent to automated program
repair. Future research efforts should strive to address these challenges, through
innovative methodologies that balance computational efficiency with robustness in
identifying correct patches.

Acknowledgements  This work was supported by EPSRC grant EP/P023991/1.

Author contributions  C.H. is the student who conducted the experiments and wrote the main parts of the
manuscript. A.B. was an advisor on the project. He contributed to all the sections of the paper and edited
the manuscript over multiple iterations. J.P. is the supervisor for this project that proposed this approach.
She contributed to all the sections of the paper and edited the manuscript over multiple iterations. All
authors reviewed the manuscript.

Data availability  All source code, supplementary materials, and instructions needed to replicate our
results are publicly available at: https://​github.​com/​carol​hanna​01/​jarFly-​learn​er/​tree/​opera​tor-​selec​tion.
Results available separately on Zenodo at: https://​zenodo.​org/​recor​ds/​75799​47.

Declarations 

Conflict of interest  Justyna Petke is a Deputy-Editor-in-Chief of the ASE journal.

https://github.com/carolhanna01/jarFly-learner/tree/operator-selection
https://zenodo.org/records/7579947

	 Automated Software Engineering (2025) 32:31 31   Page 30 of 33

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed, T., Ledesma, N.R., Devanbu, P.: Synshine: Improved fixing of syntax errors. IEEE TSE (2022)
Aleti, A., Moser, I.: A systematic literature review of adaptive parameter control methods for evolution-

ary algorithms. ACM Comput. Surv. 49(3), 1 (2016)
Ali, K.I., Brohi, K.: An adaptive learning automata for genetic operators allocation probabilities. FIT, pp.

55–59 (2013)
Anik, M.T.A., Ahmed, S.: A mixed mutation approach for evolutionary programming based on guided

selection strategy. ICIEV (2013)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach.

Learn. 47(2), 235–256 (2002)
Awad, A., Hawash, A., Abdalhaq, B.: A genetic algorithm (GA) and swarm based binary decision dia-

gram (BDD) reordering optimizer reinforced with recent operators. IEEE TEVC (2022)
Barbosa, H.J.C., Medeiros, A.: On adaptive operator probabilities in real coded genetic algorithms. Work-

shop on Advances and Trends in Artificial Intelligence for Problem Solving (2000)
Bian, Z., Blot, A., Petke, J.: Refining fitness functions for search-based program repair. ICSE (2021)
Böhme, M., Soremekun, E.O., Chattopadhyay, S., Ugherughe, E., Zeller, A.: Where is the bug and how is

it fixed? An experiment with practitioners. ESEC/FSE, pp. 117–128 (2017)
Chen, L., Pei, Y., Pan, M., Zhang, T., Wang, Q., Furia, C.A.: Program repair with repeated learning. IEEE

TSE (2022)
Connor, A., Harris, A., Cooper, N., Poshyvanyk, D.: Can we automatically fix bugs by learning edit oper-

ations? SANER, pp. 782–792 (2022)
Costa, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed

bandits. GECCO, pp. 913–920 (2008)
Davis, L.: Adapting operator probabilities in genetic algorithms. In: International Conference on GA, pp.

61–69 (1989)
Defects4J: Defects4J – version 2.0.0. https://​github.​com/​rjust/​defec​ts4j/. Accessed 2rd Feb 2023 (2023)
Eiben, A.E., Horvath, M., Kowalczyk, W., Schut, M.C.: Reinforcement learning for online control of evo-

lutionary algorithms. LNAI 4335, 151–160 (2007)
EvoSuite: Automatic Test Suite Generation for Java. https://​www.​evosu​ite.​org/. Accessed 2rd Feb 2023

(2023)
Fialho, Á., Schoenauer, M., Sebag, M.: Analysis of adaptive operator selection techniques on the royal

road and long K-path problems. GECCO (2009)
Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive operator selection. GECCO

(2010)
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and extreme value-based

rewards for adaptive operator selection in evolutionary algorithms. LNTCS 5851, 176–190 (2009)
Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attraction with heavy-tailed

mutation operators. GECCO, pp. 293–300 (2018)
Geethal, C., Bohme, M., Pham, V.T.: Human-in-the-loop automatic program repair. IEEE Trans. Softw.

Eng. 49, 4526–4549 (2023). https://​doi.​org/​10.​1109/​TSE.​2023.​33050​52
Glickman, M.R., Glickman, M.R., Sycara, K.: Reasons for premature convergence of self-adapting muta-

tion rates. IEEE CEC, pp. 62–69 (2000)
Gopinath, D., Wang, K., Hua, J., Khurshid, S.: Repairing intricate faults in code using machine learning

and path exploration. ICSME (2016)

http://creativecommons.org/licenses/by/4.0/
https://github.com/rjust/defects4j/
https://www.evosuite.org/
https://doi.org/10.1109/TSE.2023.3305052

Automated Software Engineering (2025) 32:31 	 Page 31 of 33  31

Guizzo, G., Blot, A., Callan, J., Petke, J., Sarro, F.: Refining fitness functions for search-based automated
program repair: A case study with arja and arja-e. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12914
LNCS, pp. 159–165 (2021) https://​doi.​org/​10.​1007/​978-3-​030-​88106-1_​12/​FIGUR​ES/1

Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.I., Siggeirsdottir, K.: Fixing bugs in your sleep: how
genetic improvement became an overnight success. GECCO, pp. 1513–1520 (2017)

Hesser, J., Mäinner, R.: Towards an optimal mutation probability for genetic algorithms. LNCS 496,
23–32 (1991)

Hong, L., Drake, J.H., Özcan, E.: A step size based self-adaptive mutation operator for Evolutionary Pro-
gramming. GECCO, pp. 1381–1387 (2014)

Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann Pub-
lishers Inc., 340 Pine Street, 6th Floor, San Francisco, CA 94104 (2004)

Jackson, D.: Mutation as a diversity enhancing mechanism in genetic programming. GECCO (2011)
Ji, S., Choi, S.-M., Ko, S.-K., Kim, D., Im, H.: RepCoder: An automated program repair framework for

probability-based program synthesis. ACM/SIGAPP SAC (2022)
Jiang, N., Lutellier, T., Tan, L.: Cure: Code-aware neural machine translation for automatic program

repair. ICSE, pp. 1161–1173 (2021)
Jiang, J., Ren, L., Xiong, Y., Zhang, L.: Inferring program transformations from singular examples via

big code. ASE (2019)
Julstrom, B.A.: Adaptive operator probabilities in a genetic algorithm that applies three operators. ACM

SAC, pp. 233–238 (1997)
Julstrum, B.A.: What have you done for me lately? Adapting operator probabilities in a steady-state

genetic algorithm. In: International Conference on GA, pp. 81–87 (1995)
Kang, S., Yoo, S.: Glad: Neural predicate synthesis to repair omission faults. In: Proceedings - Inter-

national Conference on Software Engineering, pp. 320–321 (2023) https://​doi.​org/​10.​1109/​ICSE-​
COMPA​NION5​8688.​2023.​00087

Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written patches.
ICSE (2013)

Kirbas, S., Windels, E., Mcbello, O., Kells, K., Pagano, M., Szalanski, R., Nowack, V., Winter, E., Coun-
sell, S., Bowes, D., Hall, T., Haraldsson, S., Woodward, J.: On the introduction of automatic pro-
gram repair in bloomberg. IEEE Software (2020)

Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat.
Comput. 4(2), 87–112 (1994)

Lajko, M., Csuvik, V., Vidacs, L.: Towards javascript program repair with generative pre-trained trans-
former (GPT-2). International Workshop on APR, pp. 61–68 (2022)

LASER-UMASS: Artifact replication repository for the study on quality of automated program repair on
real-world defects. https://​github.​com/​LASER-​UMASS/​JavaR​epair-​repli​cation-​packa​ge. Accessed
2rd Feb 2023 (2020)

Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair. Communications of the ACM
(2019)

Le Goues, C., Wemer, W., Forrest, S.: Representations and operators for improving evolutionary software
repair. GECCO, pp. 959–966 (2012)

Le Goues, C., Nguyen, T.V., Forrest, S., Weimer, W.: GenProg: A generic method for automatic software
repair. IEEE TSE 38(1), 54–72 (2012)

Le, X.-B.D.: Towards efficient and effective automatic program repair. ASE (2016)
Le, X.B.D., Lo, D., Le Goues, C.: History driven program repair. SANER 1, 213–224 (2016)
Li, T., Meng, Y., Tang, L.: Scheduling of continuous annealing with a multi-objective differential evolu-

tion algorithm based on deep reinforcement learning. ASE (2023)
Liu, C., Cetin, P., Patodia, Y., Chakraborty, S., Ding, Y., Ray, B.: Automated Code Editing with Search-

Generate-Modify (2024). https://​doi.​org/​10.​1109/​TSE.​2024.​33763​87. arXiv:​ 2306.​06490
Liu, C., Lu, J., Li, G., Yuan, T., Li, L., Tan, F., Yang, J., You, L., Xue, J.: Detecting TensorFlow Program

Bugs in Real-World Industrial Environment. ASE, pp. 55–66 (2021)
Liu, C., Yang, J., Tan, L., Hafiz, M.: R2Fix: Automatically generating bug fixes from bug reports. ICST

(2013)
Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A., Scott, A.: Sapfix: Auto-

mated end-to-end repair at scale. ICSE-SEIP (2019)
Martinez, M., Monperrus, M.: ASTOR: A program repair library for Java (Demo). ISSTA, pp. 441–444

(2016)

https://doi.org/10.1007/978-3-030-88106-1_12/FIGURES/1
https://doi.org/10.1109/ICSE-COMPANION58688.2023.00087
https://doi.org/10.1109/ICSE-COMPANION58688.2023.00087
https://github.com/LASER-UMASS/JavaRepair-replication-package
https://doi.org/10.1109/TSE.2024.3376387
http://arxiv.org/abs/2306.06490

	 Automated Software Engineering (2025) 32:31 31   Page 32 of 33

Maturana, J., Fialho, Á., Saubion, F., Schoenauer, M., Sebag, M.: Extreme compass and dynamic multi-
armed bandits for adaptive operator selection. GEC, pp. 365–372 (2009)

Maturana, J., Saubion, F.: A compass to guide genetic algorithms. LNCS 5199, 256–265 (2008)
McKight, P.E., Najab, J.: Kruskal–Wallis test. Corsini Encycl. Psychol. (2010). https://​doi.​org/​10.​1002/​

97804​70479​216.​CORPS​Y0491
Moazen, H., Molaei, S., Farzinvash, L., Sabaei, M.: PSO-ELPM: PSO with elite learning, enhanced

parameter updating, and exponential mutation operator. Inf. Sci. 628, 70–91 (2023)
Motwani, M., Soto, M., Brun, Y., Just, R., Le Goues, C.: Quality of automated program repair on real-

world defects. IEEE TSE 48(2), 637–661 (2022)
Murata, T., Ishibuchi, H.: Positive and negative combination effects of crossover and mutation operators

in sequencing problems. IEEE CEC, pp. 170–175 (1996)
Parasaram, N., Barr, E.T., Mechtaev, S.: Rete: Learning namespace representation for program repair. In:

Proceedings—International Conference on Software Engineering, pp. 1264–1276 (2023) https://​doi.​
org/​10.​1109/​ICSE4​8619.​2023.​00112

Petke, J., Alexander, B., Barr, E.T., Brownlee, A.E.I., Wagner, M., White, D.R.: Program transforma-
tion landscapes for automated program modification using gin. Empir. Softw. Eng. 28, 1–41 (2023).
https://​doi.​org/​10.​1007/​S10664-​023-​10344-5/​TABLES/9

Pettinger, J.E., R.E.: Controlling genetic algorithms with reinforcement learning. GECCO (2002)
program-repair.org: Benchmarks for automated program repair. https://​progr​am-​repair.​org/​bench​marks.​

html. Accessed 2rd Feb 2023 (2023)
program-repair.org: Tools for automated program repair. https://​progr​am-​repair.​org/​tools.​html. Accessed

on 2rd Feb 2023 (2023)
Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on automated program repair.

ICSE, pp. 254–265 (2014)
Qi, Y., Mao, X., Lei, Y.: Efficient automated program repair through fault-recorded testing prioritization.

IEEE ICSM, pp. 180–189 (2013)
Randoop: Automatic unit test generation for Java. https://​rando​op.​github.​io/​rando​op/. Accessed 2rd Feb

2023 (2023)
Razali, N.M., Wah, Y.B.: Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and ander-

son-darling tests. J. Stat. Model. Anal 2, 21–33 (2011)
Schramm, L.: Improving performance of automatic program repair using learned heuristics. ESEC/FSE

(2017)
Sharma, M., López-Ibáñez, M., Komninos, A., Kazakov, D.: Deep reinforcement learning based param-

eter control in differential evolution. GECCO, pp. 709–717 (2019) arXiv:​1905.​08006
Smigielska, M., Blot, A., Petke, J.: Uniform edit selection for genetic improvement: empirical analysis of

mutation operator efficacy. International Workshop on GI, 1–8 (2021)
Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse than the disease? Overfitting in auto-

mated program repair. ESEC/FSE, pp. 532–543 (2015)
Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of the automatic bug fixing performance of

chatgpt. In: Proceedings - 2023 IEEE/ACM International Workshop on Automated Program Repair,
APR 2023, pp. 23–30 (2023) https://​doi.​org/​10.​1109/​APR59​189.​2023.​00012

Soria-Alcaraz, J.A., Ochoa, G., Carpio, M., Puga, H.: Evolvability metrics in adaptive operator selection.
GECCO, pp. 1327–1334 (2014)

Soto, M., Le Goues, C.: Using a probabilistic model to predict bug fixes. SANER 2018-March, pp. 221–
231 (2018)

Soto, M.: Improving patch quality by enhancing key components of automatic program repair. ASE, pp.
1230–1233 (2019)

Stanczak, J.T., Mulawka, J.J., Verma, B.K.: Genetic algorithms with adaptive probabilities of operator
selection. ICCIMA, pp. 464–468 (1999)

Sutton, R.S., Barto, A.G.: Reinforcement Learning An Introduction. MIT Press, Cambridge (2018)
Tassey, G.: The economic impacts of inadequate infrastructure for software testing. NIST (2002)
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. GECCO, pp. 1539–1546 (2005)
Tian, H., Liu, K., Li, Y., Kader, A., Koyuncu, A., Habib, A., Li, L., Wen, J., Klein, J., Bissyandé, T.F.:

The best of both worlds: Combining learned embeddings with engineered features for accurate pre-
diction of correct patches. ACM TOSEM 1 (2023)

Tuson, A., Ross, P.: Cost based operator rate adaptation: an investigation. LNCS 1141, 461–469 (1996)
Ullah, M.R., Chowdhury, N.S., Tawsif, F.M.: Impact of combining syntactic and semantic similarities on

patch prioritization while using the insertion mutation operators. SEKE, pp. 190–195 (2023)

https://doi.org/10.1002/9780470479216.CORPSY0491
https://doi.org/10.1002/9780470479216.CORPSY0491
https://doi.org/10.1109/ICSE48619.2023.00112
https://doi.org/10.1109/ICSE48619.2023.00112
https://doi.org/10.1007/S10664-023-10344-5/TABLES/9
https://program-repair.org/benchmarks.html
https://program-repair.org/benchmarks.html
https://program-repair.org/tools.html
https://randoop.github.io/randoop/
http://arxiv.org/abs/1905.08006
https://doi.org/10.1109/APR59189.2023.00012

Automated Software Engineering (2025) 32:31 	 Page 33 of 33  31

Vafaee, F., Xiao, W., Nelson, P.C., Zhou, C.: Adaptively evolving probabilities of genetic operators.
ICMLA, pp. 292–299 (2008)

Valueian, M., Vahidi-Asl, M., Khalilian, A.: SituRepair: incorporating machine-learning fault class pre-
diction to inform situational multiple fault automatic program repair. Int. J. Critic. Infrastruct. Pro-
tect. 37, 100527 (2022)

Weiß, C., Premraj, R., Zimmermann, T., Zeller, A.: How long will it take to fix this bug? MSR (2007)
Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.C.: Context-aware patch generation for better automated

program repair. ICSE 2018-Janua, pp. 1–11 (2018)
Whitacre, J.M., Pham, T.Q., Sarker, R.A.: Use of statistical outlier detection method in adaptive evolu-

tionary algorithms. GECCO (2006)
Wu, D., Shen, B., Chen, Y., Jiang, H., Qiao, L.: Automatically repairing tensor shape faults in deep learn-

ing programs. Inf. Softw. Technol. 151, 107027 (2022)
Xia, C.S., Wei, Y., Zhang, L.: Automated program repair in the era of large pre-trained language models.

In: Proceedings—International Conference on Software Engineering, pp. 1482–1494 (2023) https://​
doi.​org/​10.​1109/​ICSE4​8619.​2023.​00129

Xia, C.S., Zhang, L.: Less training, more repairing please: Revisiting automated program repair via zero-
shot learning. ESEC/FSE, pp. 959–971 (2022)

Xuan, J., Martinez, M., Demarco, F., Clément, M., Lamelas, S., Durieux, T., Berre, D.L., Monperrus, M.:
Nopol: automatic repair of conditional statement bugs in java programs. IEEE TSE 43, 34–55 (2018)

Yu, Z., Martinez, M., Chen, Z., Bissyandé, T.F., Monperrus, M.: Learning the relation between code fea-
tures and code transforms with structured prediction. IEEE TSE, pp. 1–29 (2023)

Yu, X., Lu, Y.: Reinforcement learning-based multi-objective differential evolution for wind farm layout
optimization. Energy 284, 129300 (2023). https://​doi.​org/​10.​1016/J.​ENERGY.​2023.​129300

Yu, X., Zhou, J.: A robust method based on reinforcement learning and differential evolution for the opti-
mal photovoltaic parameter extraction. Appl. Soft Comput. 148, 110916 (2023). https://​doi.​org/​10.​
1016/J.​ASOC.​2023.​110916

Yu, X., Hu, Z., Luo, W., Xue, Y.: Reinforcement learning-based multi-objective differential evolution algo-
rithm for feature selection. Inf. Sci. 661, 120185 (2024). https://​doi.​org/​10.​1016/J.​INS.​2024.​120185

Yuan, Y., Banzhaf, W.: ARJA: Automated repair of java programs via multi-objective genetic program-
ming. IEEE TSE (2018) arXiv:​1712.​07804

Zhang, Z., Tang, Q., Chica, M., Li, Z.: Reinforcement learning-based multiobjective evolutionary algo-
rithm for mixed-model multimanned assembly line balancing under uncertain demand. IEEE Trans.
on Cybernetics, pp. 1–14 (2023)

Zhang, H., Lu, J.: Adaptive evolutionary programming based on reinforcement learning. Inf. Sci. 178(4),
971–984 (2008)

Zhu, Q., Sun, Z., Xiao, Y.A., Zhang, W., Yuan, K., Xiong, Y., Zhang, L.: A syntax-guided edit decoder
for neural program repair. ESEC/FSE, pp. 341–353 (2021)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Carol Hanna1 · Aymeric Blot2 · Justyna Petke1

 *	 Carol Hanna
	 carol.hanna.21@ucl.ac.uk

	 Aymeric Blot
	 aymeric.blot@univ-rennes.fr

	 Justyna Petke
	 j.petke@ucl.ac.uk

1	 University College London, London, England, UK
2	 Université de Rennes, Rennes, France

https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1016/J.ENERGY.2023.129300
https://doi.org/10.1016/J.ASOC.2023.110916
https://doi.org/10.1016/J.ASOC.2023.110916
https://doi.org/10.1016/J.INS.2024.120185
http://arxiv.org/abs/1712.07804

	Reinforcement learning for mutation operator selection in automated program repair
	Abstract
	1 Introduction
	2 Literature review
	3 Background
	3.1 Heuristic-based program repair
	3.2 Reinforcement learning
	3.2.1 Rewards
	3.2.2 Estimating action qualities
	3.2.3 Reinforcement learning algorithms

	4 Approach
	4.1 RL-guided mutation operator selection
	4.2 Credit assignment

	5 Research questions
	6 Methodology
	6.1 Tool
	6.2 Benchmark
	6.3 Experimental set up

	7 Results
	7.1 Preliminary experiments
	7.2 RQ1: Best credit assignment technique
	7.3 RQ2: best operator selection technique
	7.4 RQ3: Additional mutation operators
	7.5 RQ4: RL-aided selection performance

	8 Discussion
	9 Related work
	10 Threats to validity
	11 Conclusions and future work
	Acknowledgements
	References

