How is CO₂ transported? A guest lecture for students at the Politecnico di Milano 2 December 2021 Sergey Martynov Chemical Engineering Department University College London The contents of this presentation are the sole responsibility of the author and do not necessarily reflect the opinion of the European Union. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418 - CO₂ transport for CCS problem statement - Modes of CO₂ transport pipelines, trucks, trains and ships - 3 CO₂ transport in CCS clusters - 4 Summary ## Why CO₂ transport? Capture of anthropogenic CO₂ emitted from industrial processes (e.g., methane reforming, ammonia production, steel, cement, etc) and power plants CO₂ geological storage Implementation of CCS requires not only capture and storage facilities, but also the development of robust, safe and economic CO₂ transport infrastructure ## Demand for transport of CO₂ for CCUS Capture of cal Gt CO₂ / year as part of CCS in 2050 #### Demand for transport of CO₂ for CCUS #### CO₂ commercial use: - ✓ Enhanced oil recovery (EoR), - food and beverage industries, - ✓ horticulture, - ✓ refrigeration (R744), - supercritical solvent extraction, - ✓ fire extinguishing, - ✓ welding - ✓ . The global current market for CO₂ as an industrial gas is several 10 Mt/year (excluding EOR and urea production) is very small compared to *ca* 1Gt/ year planned CO₂ capture in CCS Although mature CO₂ transportation solutions already exist, the roll-out of CCS requires highly efficient and economic solutions at **high TRL** for **large scale transport of CO₂**, with improved efficiency, operability and safety #### Modes of transport of industrial fluids #### Onshore transport: - Modular transport: Tanks carried by trucks, railway carriages, barges (solids, liquid, compressed gas cylinders); - Pipelines: Stainless steel/ carbon steel pipelines/ composite corrosion resistant pipelines (low-pressure gasphase and high-pressure densephase, slurries); #### Offshore transport: - Shipping of liquefied gases - Subsea pipelines # Properties of CO₂ fluid # Properties of CO₂ fluid CO₂ properties in dense-phase and supercritical states may differ significantly from those of gases and liquids. # CO₂ processing facilities hazards CO₂ as a substance is not toxic, but CO₂ facilities can carry hazards due to: - CO₂ asphyxiation, - high pressure, - low temperature, - presence of toxic impurities in the CO₂ stream Impacts of CO₂ concentration in air on human health Lu, H., Ma, X., Huang, K., Fu, L., & Azimi, M. (2020). Carbon dioxide transport via pipelines: A systematic review. *Journal of Cleaner Production*, *266*, 121994. ## CO₂ pipeline transportation – existing experience CO₂ pipelines in North America (USA and Canada): - since 1972 (Canyon Reef pipeline), - more than **6,500 km** of onshore high-pressure pipelines, - transport ca 68 Mt/yr of CO₂ for EOR, - purified CO₂ (>95% CO₂): naturally occurring (Cortez, Sheep Mt, Bravo, Central Basin pipelines) and from gasification plants (Canyon Reef, Weyburn, Val Verde, Bairoil pipleines), - in sparsely populated areas. | Pipeline | Location | Operator | Capacity | Length | Year finished | Origin of CO ₂ | |----------------------|--------------|----------------------------------|--------------------------------------|--------|---------------|---------------------------| | | | | (MtCO ₂ yr ¹) | (km) | | | | Cortez | USA | Kinder Morgan | 19.3 | 808 | 1984 | McElmoDome | | Sheep Mountain | USA | BP Amoco | 9.5 | 660 | - | Sheep Mountain | | Bravo | USA | BP Amoco | 7.3 | 350 | 1984 | Bravo Dome | | Canyon Reef Carriers | USA | Kinder Morgan | 5.2 | 225 | 1972 | Gasification plants | | Val Verde | USA | Petrosource | 2.5 | 130 | 1998 | Val Verde Gas Plants | | Bati Raman | Turkey | Turkish Petroleum | 1.1 | 90 | 1983 | Dodan Field | | Weyburn | USA & Canada | North Dakota
Gasification Co. | 5 | 328 | 2000 | Gasification Plant | | Total | | | 49.9 | 2591 | | | Kinder Morgan to expand CO2 pipeline network. https://www.worldpipelines.com/ #### CO₂ pipeline transportation – existing experience #### CO₂ pipeline systems worldwide | Country | System | Length
(km) | Capacity
(Mt/year) | |-------------------------|--|----------------|-----------------------| | United States | Permian Basin (West Texas, New Mexico, Colorado) | 4 180 | | | | Gulf Coast (Mississippi, Louisiana, East Texas) | 1 190 | | | | Rocky Mountains (Colorado, Wyoming, Montana) | 1 175 | | | | Midcontinent (Oklahoma, Kansas) | 770 | | | | Other (North Dakota, Michigan) | 345 | | | Canada | Alberta Carbon Trunk Line | 240 | 14.6 | | | Quest | 84 | 1.2 | | | Saskatchewan | 66 | 1.2 | | | Weyburn | 330 | 2 | | Norway | Hammerfest | 153 | 0.7 | | Netherlands | Rotterdam | 85 | 0.4 | | United Arab
Emirates | Abu Dhabi | 45 | | | Saudi Arabia | Uthmaniyah | 85 | | Source: IEA analysis based on IEAGHG (2013), CO₂ pipeline infrastructure report 2013/18 and Peletiri, Rahmanian and Mujtaba (2018), CO₂ Pipeline Design: A Review. Typical specifications for dense phase CO₂ (liquid/ supercritical) transport pipelines: - Temperatures: 4°C to 40°C - Pressures: 86 bar to 200 bar - Flow speed: ca 1.5 m/s #### CO₂ pipeline transportation – future needs On a global scale the CO₂ transport for CCS would require 95,000 – 550,000 km of pipes (Element Energy, 2010) IOGP (2019). The potential for CCS and CCU in Europe. #### Is CO₂ pipeline transportation safe? CO₂ specific design and operation considerations made to minimise the risks of: - formation of two-phase liquid-vapour flow; - rapid transients in the flow, - significant cooling in the flow, causing: - formation of solid phase CO₂ (dry ice); - embrittlement of the pipeline materials. - fracture propagation along the pipeline; - accidental discharge of CO₂ from a pipeline constructed in populated areas; - corrosion in presence of H₂O, SO_x, O₂; - hydrates formation. > DNV (2010). Design and Operation of CO2 Pipelines. Recommended Practice DNV-RP-J202. Propagated rupture in CO₂ Aursand et al. /Engineering Structures 123 (2016) 192-212 Release of 3.8 tons of Supercritical CO₂ from a large-scale pipeline (DUT, COZQUEST) CO2 pipeline corrosion https://www.aboutcorrosion.com/2014 /11/12/carbon-dioxide-corrosion- Hydrates formation in pipelines Zarinabadi & Samimi (2011). Australian J. of Basic & Applied Sci, 5(12): 741-745 #### CO₂ road transport Existing experience: Refrigerated liquid CO₂ transport in tanks mounted on trucks or trailers Pressure: ca 20 bar Temperature: saturation (ca -20 °C) Capacity: 2 m³ to 35 m³ Vehicle speed: up to ca 100 km/hr Similar applies to railway/ barge transport https://tomcosystems.com/product/co2-transportation/ https://www.bnhgastanksindia.com/liquid-carbon-dioxide-transport-tanks #### CO₂ ship transport Past experience: LNG transport Developing solutions: transport of refrigerated liquid CO₂ Pressure: 7 bar to 15 bar Temperature: -50 °C to -30 °C Capacity: 4,500 m³ to 30,000 m³ Vessel speed: 16.5 knots ~ 30 km/hr https://www.energynewsbulletin.net/ https://www.offshore-energy.biz/mitsubishishipbuilding-secures-aip-for-lco2-carrier-cargotank/ # CO₂ ship transport design & operation The CO₂ interim storage and offloading in a port https://splash247.com/japanese-utility-firm-readies-first-liquefied-co2-shipping-terminal/ #### The offshore CO₂ unloading system - a submerged turret loading (STL) system; - cargo, booster and injection pumps; - a CO₂ heating system on the ship; - a flexible riser and pipelines to the platform;. Aspelund, et al. (2006). Ship transport of CO2: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. *Chem Eng Res & Design*, 84(9 A), 847–855. #### Safe operation of CO₂ storage tanks Very slow rate of CO₂ sublimation Clayton, W. E., & Griffin, M. L. (1994). Catastrophic failure of a liquid carbon dioxide storage vessel. *Process Safety Progress*, 13(4), 202–209. Rapid decompression below the triple point: - Very low temperatures - · 'Dry ice' formation inside the pipe - Thermal fatigue of steel - Brittle fracture propagation - Blockage of safety relief valves - Over-pressure during refilling process Overpressure accidents and dry ice formation can be prevented by following the standards and operation guidelines for CO₂ storage vessels and tanks #### Cost of CO₂ transport Cost and capacity for transportation alternatives at 250 km. Svensson et al. 2004, Energy Conv. & Managem. 45, 2343–2353 Costs for onshore pipelines, offshore pipelines and ship transport. Doctor, R., et al. (2005). Transport of CO2. In IPCC Special Report on Carbon dioxide Capture and Storage. #### CO₂ transport in CCS clusters Industrial clusters (red) and storage sites (green) around the North Sea Modular transport of liquefied CO₂ Pipeline transport of CO₂ Hybrid transport of CO₂ ## Comparison of CO₂ transport modes #### Advantages - Continuous operation - Large transport capacity - Low costs - Flexible transport route selection - Use of existing road transport infrastructure - Use of existing railway infrastructure - Flexible transport route selection - Moderate capacities High capital costs - Affected by weather/traffic - High operating costs - Limited to locations with existing railways - Temperature and pressure control for loading/unloading facilities # Thank you Questions?