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Abstract— In robotics, acquiring new skills through Imitation
Learning (IL) is crucial for handling diverse complex tasks.
However, model-free IL faces challenges of data inefficiency
and prolonged training time, whereas model-based methods
struggle to obtain accurate nonlinear models. To address these
challenges, we developed Neural ODE-based Imitation Learning
(NODE-IL), a novel model-based imitation learning framework
that employs Neural Ordinary Differential Equations (Neu-
ral ODEs) for learning task dynamics and control policies.
NODE-IL comprises (1) Dynamic-NODE for learning the con-
tinuous differentiable task’s transition dynamics model, and
(2) Control-NODE for learning a long-horizon control policy
in an MPC fashion, which are trained holistically. Extensively
evaluated on challenging manipulation tasks, NODE-IL demon-
strates significant advantages in data efficiency, requiring less
than 70 samples to achieve robust performance. It outperforms
Behavioral Cloning from Observation (BCO) and Gaussian
Process Imitation Learning (GP-IL) methods, achieving 70%
higher average success rate, and reducing translation errors
for high-precision tasks, which demonstrates its robustness
and accuracy, as an effective and efficient imitation learning
approach for learning complex manipulation tasks.

I. INTRODUCTION

Learning physical skills has been a long-standing chal-
lenge in robotics, driven by the huge potential of deploying
highly autonomous robots across industries. Recently, Re-
inforcement Learning (RL) serves as a powerful paradigm
to acquire both manipulation and locomotion skills [1], [2]
through trial-and-error to discover optimal policies. However,
in addition to demanding computational resources, RL faces
limited data efficiency and a high sensitivity to reward
design, which makes alternative solutions more attractive
where demonstration of desired tasks and behaviors can be
reasonably accessible or available.

Learning through imitation – the ability to mimic and
learn from an expert or teacher, is a fundamental aspect of
human learning. Model-free imitation learning algorithms are
capable of acquiring such abilities in numerous tasks, ranging
from playing simple games [3], [4] to complex robot manip-
ulation [5], [6] and locomotion [7], [8]. The simplest form
of model-free imitation learning is behavior cloning (BC),
which focuses on learning a mapping from state to action
through a supervised learning [3], [4], [5], [6]. However,
although the BC methods are efficient and adaptive, they may
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Fig. 1: NODE-IL has two Neural ODEs: (1) Dynamic-NODE
for learning task dynamics, and (2) Control-NODE for
learning a long-horizon control policy, using less than 70
trajectories to learn a robust policy for the target task.

become problematic where the assumptions made during
the training phase can quickly become outdated, leading
to poor performance. Another typical model-free imitation
learning algorithm is generative adversarial imitation learn-
ing (GAIL) [9], [10], [11], [12]. Despite of its robustness
and generalization, GAIL methods require massive time and
memory resources. This requirement stems from GAIL’s
reliance on an internal RL loop with random exploration.

Although BC-like methods such as Dataset Aggrega-
tion (DAgger) [13] and GAIL-like methods show great
capacity for solving specific robot learning tasks, they pre-
dominantly focus on replicating the external behavior of the
target agent and often ignore the underlying dynamics of
specific tasks, which are crucial for effective control. Recent
works have been focused on model-based imitation learning
(MBIL). The performance of model-based imitation learning
largely depends on the accuracy of the built model, however,
obtaining an accurate model could be difficult, especially
when dealing with a complex robotic system.

Many MBIL methods like model-based Gaussian pro-
cess (GP) IL [14] and Behavioral Cloning from Obser-
vation (BCO) [3], have recently been pivotal in robotic
manipulation. However, the limitations are magnified when
it comes to learning high-precision tasks efficiently. High-
precision tasks require precise control over movements and
forces, which can be significantly affected by the discrete
nature of traditional time-stepping methods. These methods



often struggle with capturing the complex dynamics and
continuous variability inherent in real-world environments,
leading to suboptimal performance in tasks that demand high
levels of precision and adaptability.

To address these issues, we introduce Neural ODE-based
Imitation Learning, NODE-IL, a novel model-based imi-
tation learning framework that employs Neural Ordinary
Differential Equations (Neural ODEs) [15], [16] for learning
the task dynamics as well as the control policy. Specifi-
cally, NODE-IL comprises two main components: Dynamic-
NODE for learning a continuous and differentiable task
transition dynamics model and Control-NODE for learning
a long-horizon control policy in a Model Predictive Con-
trol (MPC) fashion. Firstly, to capture the physical infor-
mation embedded in the expert demonstration, we leverage
the Dynamic-NODE to accurately and efficiently learn a
continuous transition dynamics model for specific tasks. Sec-
ondly, the Control-NODE is designed to learn a long-horizon
control policy by interacting with the pre-trained Dynamic-
NODE, which serves as the system model. Benefiting from
the continuous, differentiable, and accurate transition model
learned by Dynamic-NODE and, the MPC strategy, the
Control-NODE is able to efficiently learn accurate and robust
control policy, which can significantly mitigate compound
errors in long-horizon imitation learning tasks. The overall
architecture of the proposed framework is depicted in Fig. 1.

Our contributions are as follows:
• We developed a novel model-based imitation learning

framework, NODE-IL, which incorporates Neural ODEs
consisting of Dynamic-NODE for learning a continuous
and differentiable transition dynamics model of tasks, and
Control-NODE for learning a long-horizon control policy
in an MPC fashion.

• Training via this holistic formulation enables efficient
learning of physical interactions with three times fewer
demonstrations, compared to state-of-the-art BCO, GP-IL,
BC and GAIL. NODE-IL generates optimal control se-
quences in an MPC fashion that effectively mitigates
compound errors, resulting in more stable and robust
performance.

II. RELATED WORKS

A. Imitation Learning

There are two main paradigms in imitation learning:
model-free and model-based imitation learning. For example,
the prevailing methods such as BC [17] and GAIL [10]
are model-free imitation learning (MFIL) methods. These
methods focus on imitating the behavior of experts without
explicitly modeling the dynamics of the targeted tasks,
requiring the collection of demonstration data for learning
a category of skills [18], [19].

Additionally, MFIL methods generally suffering from data
inefficiency and limited generalization beyond the types of
skills of skill features that were not demonstrated before.
Recent research [13], [20], [21] has been focused on model-
based imitation learning (MBIL), which aims to leverage the

physical information embedded in the expert demonstration
and learn a model of task dynamics. Theoretically, MBIL
methods are more efficient and generalizable as they can
learn a compact representation of the system dynamics,
which serves as a prior to enabling efficient policy learning
and significantly improves the robustness and generalization
of the learned policy. However, how to build an accu-
rate model for the system dynamics still remains an open
question, especially for tasks involving complex nonlinear
dynamics (e.g. complex robot system with multiple objects).

B. Neural Ordinary Differential Equations

Stemming from the physical modeling of nonlinear dy-
namical system [22], [23], previous works [24] choose
second-order ODE to represent intricate robot system. These
methods solve the second-order ODE using analytical meth-
ods such as the Hamiltonian method [24], [25] and the
Lagrangian method [26], [27], which may lead to high-
dimensional state spaces that are computationally challeng-
ing to solve.

Recently, Neural Ordinary Differential Equations (Neural
ODEs) was first proposed in [15], which interprets the
forward pass of a ResNet [28] as solving a nonlinear ODE.
The advent of Neural ODEs provides an efficient and ef-
fective way to model complex nonlinear dynamical systems,
benefiting from adaptive time-stepping. The following work
in [29] augmented the vanilla Neural ODEs by adding null
space, which is capable of modeling any complex nonlinear
dynamical system [30], [31]. Recently, Neural ODEs have
been widely used in robotics research [21], [32], [33], show-
ing great potential for modeling and controlling complex
robot systems.

III. METHODOLOGY

A. Overview of NODE-IL

Our proposed NODE-IL framework has two primary
components. First, a Neural ODE (i.e. Dynamic-NODE) is
utilized to model a continuous task dynamics of a robotic
system based on observed demonstrations under the Markov
decision process (MDP) assumption: the next state only de-
pends on the current state and the selected action. Basically,
the Dynamic-NODE is trained to approximate the continuous
and differentiable nonlinear ODE, which governs the task
dynamics, by learning a function fθdyn : xt, ut → xt+1,
where xt and ut stand for state and action at time t,
respectively. Second, we employ another Neural ODE (i.e.
Control-NODE) to learn a long-horizon control policy. The
training objective of Control-NODE is to learn a function
fθctrl : x0, g → ÛN = {u0, · · · , uN−1}, where g stands
for the goal condition, x0 stands for the initial observation
of the system, ÛN stands for the predicted N-step action se-
quence. The Dynamic-NODE and Control-NODE are trained
in a mutually beneficial fashion. Specifically, Control-NODE
gains from the precise state transition models generated by
Dynamic-NODE, while Dynamic-NODE, in turn, benefits
from the robust control policies formulated by Control-
NODE. During the test phase, the Control-NODE directly
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Fig. 2: The proposed method comprises two Neural ODEs: (a) learning the internal dynamics of the target task; (b) learning
the MPC control strategy. (c) The inference pipeline generates control actions in an MPC fashion, which can use less than
70 trajectories and efficiently learn a robust policy for the target task.

interacts with the simulation and performs in MPC fashion.
For state observation xt, the Control-NODE receives (xt , g)
and outputs {ut, · · · , uN−1} and only the first output (i.e. ut)
of Control-NODE will be fed into the simulation to control
the agent. Overall, with all the main components and designs,
our proposed NODE-IL is capable of achieving data-efficient
imitation on complex robot manipulation tasks.

B. Dynamic-NODE

The target of our Dynamic-NODE is to learn the in-
ternal dynamics of the task under the control signals in
a continuous-time fashion. However, as the control signal
may vary over time, modeling long-horizon dynamics is
difficult and may lead to accumulated errors. Thus, we made
a basic assumption: the control signal is static over a short
time interval τ . Based on this assumption, the target of our
Dynamic-NODE is cast into modeling the single-step internal
dynamics under the given control signals. To implement the
Dynamic-Node, we adopt an augmented Neural ODE [16]
as the Dynamic-NODE, which augments the vanilla Neural
ODE by adding a null space. This augmented Neural ODE
demonstrates superior capability in accurately modeling intri-
cate dynamical systems. The architecture of Dynamic-NODE
is presented in Fig. 2(a).

Let f be the nonlinear ordinary differential equation
that governs the internal dynamics of the target system. A
time-dependent multilayer perceptron (MLP) is used in our
Dynamic-NODE as an estimator fθdyn , which approximates
the target ordinary differential equation f by solving initial
value problem (IVP), ∂x(t)

∂t = fθdyn(x(t), uti , t), where the
initial value x(t) = xt is the observation of the system state
at time t, ut stands for the input control signal. Then, the
system state at time ti+1 can be obtained by integrating the
ordinary differential function, which is mathematically done
by invoking a numerical ODE solver,

x̂ti+1 = ODESolver(fθdyn , (xti , uti), (ti, ti+1))

≃ xti +

∫ ti+1

ti

fθdyn(xti , uti , τ)dτ
. (1)

TABLE I: Training and model hyperparameters of Dynamic-
NODE and Control-NODE

Hyperparameter Value
Num. of hidden neuron (fθdyn ) 320

Num. of hidden layer (fθdyn ,fθctrl ) 3
Num. of hidden neuron (fθctrl ) 640

activation ReLU&Tanh
optimizer RMSProp

learning rate 1e-3
learning rate decay 0.1 per 100 epochs

weight decay 1e-4
batch size 16

total iterations 10k

In our framework, Runge-Kutta of Dormand-Prince [34]
ODE solver is used to solve the Neural ODE together
with the adjoint method [35] – more efficient and memory-
friendly solving process. The accept tolerance and reject
tolerance of the ODE solver are set to 1e − 3. The train-
ing objective of Dynamic-NODE is to minimize the mean
squared errors (MSE loss) between predicted state x̂ti+1 and
its corresponding ground truth xti+1 . The training and model
hyperparameters of Dynamic-NODE are listed in Table I.

C. Control-NODE

In order to leverage the learned Dynamic-NODE fθdyn , we
design a model-based controller, Control-NODE, which is
both data-efficient and robust with regard to system errors
in the learned dynamics model. The target of Control-
NODE in our proposed NODE-IL is to learn an optimized
control policy π by interacting with the pre-trained Dynamic-
NODE, which represents the task dynamics as a nonlinear
differential equation parameterized by θdyn. Similar to the
Dynamic-NODE, an augmented Neural ODE [16] is used to
approximate the optimized control policy fθctrl ≃ π.

The training process of Control-NODE is conducted
iteratively over demonstration trajectories by interacting
with the pre-trained Dynamic-NODE, as illustrated in
Fig. 2(b). Given the initial state, x0, and the goal con-
dition, g, the Control-NODE predicts the action sequence,
ÛN = {u0, · · · , uN−1} over a predefined finite horizon, N ,
subject to Dynamic-NODE (fθdyn : xt, ut → xt+1, ). Then,
each action in ÛN is fed into the Dynamic-NODE together
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with the current state prediction to generate the estimation
of the next state iteratively, and is mathematically written as:

ÛN = ODESolver(fθctrl , x0, g, (t0, · · · , tN−1)),

For ût ∈ ÛN , x̂t+1 = Dynamic-NODE(xt, ût),

where, xt =

{
x0, if t = 0

Dynamic-NODE(xt−1, ût−1), if t > 0

.

(2)
Therefore, after iterating over ÛN , the output action se-
quence of Control-NODE is translated into a state sequence
X̂N = {x̂1, · · · , x̂N}. The training objective of Control-
NODE is to minimize the pair-wise MSE loss between the
predicted state sequence X̂N and their corresponding ground
truth XN , plus a terminal cost term. α and β serve as
weighting coefficients that indicate the relative significance
of each loss component. In our setting, α is set to 500, and
β is set to 100.

argmin
θctrl

(α||X̂N −XN ||2︸ ︷︷ ︸
MSE loss

+β||x̂N − xN ||2︸ ︷︷ ︸
terminal cost

) (3)

IV. EXPERIMENTS

In this section, we first introduce the tasks we used to
evaluate our proposed NODE-IL, including rigid-body ma-
nipulation and soft-body manipulation. Based on the level of
control precision required by these tasks, they can be further
divided into high-precision tasks and normal-precision tasks.
Then, we present our data collection and processing pipeline.
After that, we present both visual results and statistical
results of our NODE-IL on these tasks. Moreover, we present
the comparison between NODE-IL against the BC and GAIL
methods in terms of both successful rate and precision.

A. Tasks

We evaluate NODE-IL on five robot manipulation tasks
with a Franka robot in the SAIPEN physics simulation en-
gine [36], including: Peg Insertion, Kits Assembling, Beaker

Filling, Hanging, and Excavating. These tasks can be cate-
gorized into high-precision tasks (Peg Insertion, Kits Assem-
bling, Beaker Filling) and normal-precision tasks (Hanging,
and Excavating). For high-precision tasks, the robots need
to reach the goal condition with a small error tolerance
while in the normal-precision tasks, the error tolerance
is bigger. Therefore, the translation error, rotation error,
and success rate are used as the evaluation metrics for
high-precision tasks, while only the success rate is used
for normal-precision tasks. Moreover, to demonstrate the
generalization of our proposed NODE-IL, both soft-object
manipulation (Beaker Filling, Hanging, and Excavating) and
rigid-object manipulation (Peg Insertion, Kits Assembling)
tasks are included. Details of each task are introduced in the
following paragraphs:

Peg Insertion. The goal of this task is to successfully
insert a peg into the hole in the target box. The dimension
of the peg’s insertion face is 25×25mm, while the dimension
of the hole is 34×34mm, meaning the error tolerance during
insertion is 9mm along each axis. The initial state of this
task includes 3D positions of the end-effector, peg position,
and target hole position.

Kits Assembling. The success criteria of the task is to
determine whether the kit is placed in the corresponding
target position while the shift between object and goal in the
X-Y plane is smaller than 20mm, and the orientation shift
is smaller than 10◦. The initial state of this task includes 3D
positions of the end-effector and the position pair of the kit
and its target.

Beaker Filling. The task is to fill soft materials (e.g. clay)
into a beaker. The task success is assessed by the percentage
of soft materials filling inside the beaker, and we set this
clearance threshold to 90%. The initial state of this task
includes 3D positions of the end-effector and beaker.

Excavating. Normal-precision task. The objective of the
task is to scoop up a certain amount of soft materials. Instead
of specifying the number of particles, we define the depth
that the end-effector would dig as the criteria. It would be
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Fig. 5: The success rate with different numbers of demonstrations over five manipulation tasks. Our model outperforms
GP-IL, BCO, BC and GAIL. The average success rate on normal-precision tasks is higher than that on high-precision tasks.

considered as a successful trial if the end-effector digs deeper
than a specific depth. The initial state, thus, includes the
position of the end-effector and pool, as well as the depth
information that the end-effector is about to reach.

Hanging. Normal-precision task. The goal of this task is to
hang a towel onto a rod safely and stably. The success criteria
of this task is that the towel can stay on the rod when robot
drops off the towel. As the task does not involve grasping
the towel, the initial state only includes the 3D positions of
the end-effector and the target rod.

B. Data Collection and Processing

The raw expert demonstrations are generated by perform-
ing state-based Reinforcement Learning using implementa-
tions from stable-baselines3 [37] benchmark. We first extract
the action sequence, which contains the positions of all robot
joints, from each expert demonstration. Then, to reduce the
dimension and increase the computational efficiency, each
action in an action sequence is converted to a Tool Center
Point (TCP) including the 3D position and rotation of the
end-effector, which is written as uTCP

t = {pt, Rt, ψ}, where
pt = (xt, yt, zt) denotes the 3D position of the end-effector,
the Rt = (α, β, γ) denotes the 3D rotation of the end-
effector, and the ψ stands for a binary identifier which has
value -1 or 1, identifying the state of gripper, where -1 means
the gripper is closed and 1 means opened. The ψ is ignored
in tasks that do not involve the grasping process. Notably,
the pt and Rt are further normalized to range [−1, 1] by
the conversion tool provided by ManiShill2 benchmark [38].
The state sequence is a Box space carrying TCP, object and
target positions.

Since our targeted tasks are long-horizon and require mul-
tiple skills, we adopt a skill-decoupling strategy to decouple
the whole demonstration sequence into segments that can
be completed by individual skills. For completing a multi-
skill task, we train separate NODE-ILs for each skill. For
example, for the peg insertion and assembling kits task,
we split these two tasks into three sub-tasks: (1) reaching,
(2) grasping, and (3) reaching for the target. In order to
precisely split the expert demonstrations, we conduct two
different strategies for tasks with and without the grasping
process. For those tasks with a grasping process (e.g. peg
insertion and assembling kits), we split the demonstration
sequence according to the state of the gripper, as the state
of the gripper will switch from 1 to -1 when the robot starts
to grasp the target object. For those tasks without a grasping
process (e.g. Beaker Filling, hanging, and excavating), the
distance between the end-effector and the target position is
used to split the raw demonstration sequence. The snapshots
and information of each task are presented in Fig. 3.

C. Inference with NODE-IL

The inference pipeline of NODE-IL is illustrated in
Fig. 2(c). As we mentioned in Sections III-A and III-C,
during the test phase, the Control-NODE directly interacts
with the simulation environment in an MPC fashion, which
results in a most robust performance. Given the current
state xt and goal condition g, which can be obtained from
the simulator, the Control-NODE predicts a finite action
sequence UN

t = {ut, · · · , ut+N−1}. Then, only the first
action item ut = (pt, Rt, ψ) is fed into the simulator. Then,
an internal controller, which is provided by the ManiSkill2



TABLE II: Comparison of success rate on all five tasks.
Model Peg Insertion Kits Assembling Beaker Filling Excavating Hanging

BC [38] 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.05± 0.02
GAIL [38] 0.07± 0.02 0.13± 0.02 0.18± 0.03 0.3± 0.07 0.22± 0.12
BCO [3] 0.01± 0.01 0.02± 0.01 0.14± 0.02 − −

GP-IL [39] 0.47± 0.01 0.41± 0.02 0.61± 0.02 − −
NODE-IL 0.88 ± 0.02 0.80 ± 0.03 0.67 ± 0.04 0.94 ± 0.03 0.95 ± 0.02

TABLE III: Comparison of translation errors on High-
precision tasks.

Model Peg Insertion Kits Assembling Beaker Filling
BC [38] 0.31m± 0.08 0.22m± 0.03 0.24m± 0.07

GAIL [38] 0.089m± 0.022 0.046m± 0.012 0.065m± 0.013
BCO [3] 0.30± 0.11 0.17± 0.05 0.051± 0.013

GP-IL [39] 0.025± 0.009 0.028± 0.012 0.027± 0.009
NODE-IL 0.016m ± 0.003 0.018m ± 0.007 0.017m ± 0.008

TABLE IV: Dynamic GP-IL and Dynamics-NODE com-
parisons on Peg Insertion and Kits Assembling tasks. ET

denotes the trajectory translation error in meter, ER denotes
the rotation error in degree, and RS denotes the success rate.

Dynamics Model Peg Insertion Kits Assembling
ET

m↓ ER
◦↓ RS↑ ET

m↓ ER
◦↓ RS↑ Ttrain

GP-IL 0.018± 0.002 2.3± 0.8 0.47± 0.01 0.022± 0.004 4.3± 1.8 0.41± 0.02 3h
NODE 0.016 ± 0.003 2.3 ± 1.1 0.88 ± 0.02 0.018 ± 0.007 4.2 ± 2.7 0.80 ± 0.03 45 mins

benchmark converts the input pt and Rt to the positions of all
robot joints, which can be directly executed by the simulator.
The state of the robot system at the next timestep t+ 1 can
be observed after executing the ut. By iterating the above
steps, the Control-NODE can predict an optimized trajectory
for achieving the goal condition.

D. Quantitative Results and Comparison

To statistically demonstrate the advancement of our pro-
posed NODE-IL, we conducted extensive simulations on
the targeted tasks mentioned in Section IV-A and compared
our NODE-IL with GP-IL, BCO, BC and GAIL methods.
Notable, the official implementations of BC and GAIL from
ManiSkill2 are used for training [38]. The GAIL implemen-
tation in ManiSkill2 is improved by incorporating the Soft-
Actor Critic (SAC) [40] to provide dense reward. We also
modified the GP-IL by plugging dynamics GP into NODE-
IL architecture and replacing Dynamic-NODE. To ensure a
fair comparison, the size of the training dataset is consistent
across all methods. For each task, we collect 100 trajectories
and randomly split them into the training set (70 trajectories)
and the testing set (30 trajectories). We first train our NODE-
IL on the training set with fixed 10k iterations and then
evaluate it on the testing set to calculate the quantitative
results. This process is repeated five times for each task
with different random train-test splits, and the mean values
of each metric are reported. Furthermore, to examine the
performance and efficiency of NODE-IL due to Dynamic-
NODE, we conducted evaluation of Dynamic-NODE against
Dynamic GP.

The quantitative results, including the success rates on five
tasks, and the translation errors on the high-precision tasks,
are demonstrated in Table II and Table III, respectively. It can
be seen that NODE-IL significantly outperforms the selected
MFIL and MBIL method [38] in terms of both success rate
and translation errors on all challenging tasks (see Fig. 4
and Fig. 5). Specifically, NODE-IL can reach an overall 80%

Fig. 6: Success rate of Peg Insertion and Kits Assembling
tasks over increasing noise levels.
success rate on high-precision tasks and over 90% on normal-
precision tasks, while the BC and BCO method nearly failed
on all tasks, and the GAIL method only reaches an overall
17.4% success rate. Although GP-IL achieves around 50%
average success rate on three high-precision tasks and offers
better stability in dynamic modeling, it requires dense com-
putational resources. The performance analysis in Table IV
shows that Dynamic-NODE is 75% more efficient than GP-
IL in terms of computational efficiency.. Additionally, to
illustrate the data efficiency of our proposed NODE-IL and
compare it against the BC, GAIL, BCO and GP-IL method,
we present plots in Fig. 5 that present success rates of
NODE-IL, BC, and GAIL against the number of demon-
strations used for training. As shown in Fig. 5, our method
is capable of efficiently learning a robust control policy from
only 70 demonstrations and reaching an average success rate
of 85% over five tasks, which surpasses the BC method
and GAIL method with a significant margin. Moreover, we
observed that NODE-IL has a non-zero success rate when
the number of demonstrations is 20, while the success rate
of BCO, BC and GAIL methods drops to zero. Notably, we
also observed that GAIL can reach a success rate close to
our NODE-IL only by learning from more than ten times
demonstrations (1000 vs. 70), meaning that our method has
superior data efficiency.

TABLE V: Results of ablation study on Peg Insertion and
Kits Assembling tasks.

Method Peg Insertion Kits Assembling
ET

m↓ ER
◦↓ RS↑ ET

m↓ ER
◦↓ RS↑

NODE-IL 0.016 ± 0.003 2.3 ± 1.1 0.88 ± 0.02 0.018 ± 0.007 4.2 ± 2.7 0.82 ± 0.04
- w/o Dynamic-NODE 0.021± 0.008 3.5± 1.1 0.84± 0.03 0.020± 0.008 5.1± 3.1 0.75± 0.09
- w random noise σ = 0.1 0.016± 0.004 2.6± 1.2 0.78± 0.04 0.020± 0.006 5.4± 3.1 0.70± 0.05
- w random noise σ = 0.2 0.018± 0.009 2.8± 1.7 0.64± 0.04 0.19± 0.005 6.1± 3.9 0.58± 0.02

V. ABLATION STUDY

We conducted an ablation study on peg insertion and
kits assembling tasks to justify (i) the effectiveness of the
learned Dynamic-NODE as well as (ii) demonstrate the
robustness of our NODE-IL: We add random gaussian noise
X ∼ N (µ, σ2) on the state observations from simulation
during the testing phase, where µ = 0. We conducted
experiments with σ = [0.1, 0.2, 0.3, 0.4, 0.5], separately on
selected high-precision tasks. The quantitative results of the
ablation study are presented in Table V and Fig. 6. The
results of (i) show that interacting with a learned dynamics
model can improve the performance of NODE-IL by 5.5
percent, which supports the effectiveness and necessity of a
learned dynamics model. Moreover, the results of (ii) show



that our NODE-IL is able to learn a control policy that
is robust to random noise when σ is smaller than 0.2.
Overall, our ablation study supports the framework design
and robustness of NODE-IL.

VI. CONCLUSION

This work presents a novel model-based imitation learning
framework, NODE-IL, leveraging Neural ODEs to learn
task dynamics and control policies. Our framework consists
of (1) Dynamic-NODE for learning the continuous task tran-
sition dynamics from expert demonstrations, and (2) Control-
NODE for learning a long-horizon control policy and inter-
acting with the environment in an MPC fashion.

Results from extensive experiments demonstrate the ad-
vancement of our NODE-IL on five challenging robot ma-
nipulation tasks, showing that our NODE-IL can efficiently
learn robust control policy from less than 70 demonstra-
tions, which is ten times less than previous MFIL methods.
Moreover, our NODE-IL significantly surpasses the BCO,
GP-IL methods in terms of success rate (50% higher on
average) and translation errors (60% improvement). In fu-
ture work, we will explore NODE-IL’s scalability to more
complex tasks, such as multi-agent interactions and dynamic
environments, while integrating with reinforcement learning
and unsupervised methods to enhance data efficiency and
adaptability. We also aim to improve computational effi-
ciency and real-time adaptability, and work on the sim-to-real
transfer for real-world deployments.
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