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ABSTRACT

Alzheimer's disease (AD) brain markers are needed to select people with early-stage AD for clinical trials and as quantitative
endpoint measures in trials. Using 10 clinical cohorts (N=9140) and the community volunteer UK Biobank (N=37,664) we
performed region of interest (ROI) and vertex-wise analyses of grey-matter structure (thickness, surface area and volume). We
identified 94 trait-ROI significant associations, and 307 distinct cluster of vertex-associations, which partly overlap the ROI
associations. For AD versus controls, smaller hippocampus, amygdala and of the medial temporal lobe (fusiform and para-
hippocampal gyri) was confirmed and the vertex-wise results provided unprecedented localisation of some of the associated
region. We replicated AD associated differences in several subcortical (putamen, accumbens) and cortical regions (inferior pa-
rietal, postcentral, middle temporal, transverse temporal, inferior temporal, paracentral, superior frontal). These grey-matter
regions and their relative effect sizes can help refine our understanding of the brain regions that may drive or precede the
widespread brain atrophy observed in AD. An AD grey-matter score evaluated in independent cohorts was significantly asso-
ciated with cognition, MCI status, AD conversion (progression from cognitively normal or MCI to AD), genetic risk, and tau
concentration in individuals with none or mild cognitive impairments (AUC in 0.54-0.70, p-value < 5e-4). In addition, some
of the grey-matter regions associated with cognitive impairment, progression to AD (‘conversion’), and cognition/functional
scores were also associated with AD, which sheds light on the grey-matter markers of disease stages, and their relationship
with cognitive or functional impairment. Our multi-cohort approach provides robust and fine-grained maps the grey-matter
structures associated with AD, symptoms, and progression, and calls for even larger initiatives to unveil the full complexity
of grey-matter structure in AD.

1 | Introduction

Research into Alzheimer's disease (AD) aetiology suggests that
the underlying neuropathology (toxic amyloid-8 [AS] species
and hyperphosphorylated tau protein accumulation) can be ob-
served many years (possibly decades) before the first symptoms
of cognitive or functional decline (Jack et al. 2010; Villemagne
et al. 2013). Accumulation of Af and tau is thought to result in

synaptic, neuronal and axonal damage, leading to grey-matter
atrophy, typically seen first in the hippocampus and medial
temporal lobe (Frisoni et al. 2010; Jack et al. 2010). These brain
changes progressively tap into the ‘brain reserve’ (Fratiglioni
and Wang 2007), which could explain the delay between brain
atrophy and onset of mild cognitive impairment, which itself can
precede AD diagnosis by a few years (Apostolova 2016; Frisoni
et al. 2010; Jack et al. 2010).
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Recent clinical trials testing new drugs for AD focus on indi-
viduals with early AD (mild cognitive impairment or mild de-
mentia) (van Dyck et al. 2023). Hence, AD imaging biomarkers
are needed to improve disease staging (Matsuda 2016), iden-
tify trial participants, and could also serve as secondary end-
points in trials to evaluate the effect of treatment/intervention
on the brain (van Dyck et al. 2023). In research, brain bio-
markers may be used to study AD risk in cohorts where the
information was not collected or available, and to prioritise
the disease-relevant brain regions in molecular analyses (e.g.,
omics).

PET (positron emission tomography) is considered the brain
imaging modality of choice for Alzheimer's in that it can mea-
sure A, tau or fluorodeoxyglucose (synaptic dysfunction) (Jack
et al. 2010). However, the radiochemistry availability and cost
limit its use in research and the number of scans available. In
comparison, structural MRI (sSMRI) can provide biomarkers of
early AD, is less invasive and leverages scans that have been ex-
tensively collected in both clinical and research settings. In ad-
dition, SMRI can capture grey-matter changes regardless of the
underlying neuropathological processes and is hence potentially
more sensitive (Bejanin et al. 2017; Chételat et al. 2010; Frisoni
et al. 2009).

Several studies have identified brain regions more susceptible
to grey-matter atrophy in Alzheimer's disease. Early atrophy
of hippocampus, amygdala and medial temporal lobe (ento-
rhinal, parahippocampus gyri) has been well documented,
and even confirmed by neuronal counts in autopsies (Johnson
et al. 2012). Atrophy has also been reported in the posterior
cingulate, precuneus and in the rest of the temporal lobe, or
in the sensory and primary motor cortex although they are
thought to appear later in the disease progression (Johnson
et al. 2012; van Oostveen and de Lange 2021). However, most
of these neuroimaging studies have relied on a single neuroim-
aging cohort and the reported levels of regional atrophy vary
widely from one study to the next (e.g., hippocampal reduction
reported between 15% and 25%, yearly rate of atrophy between
3% and 5%) (Johnson et al. 2012), which may reflect different
disease severity or stages in the sample, but may also reflect
a lack of precision of the effect sizes estimated from small
samples (Marek et al. 2022). In addition, there is currently no
multi-cohort agnostic study of structural AD brain markers
(e.g., similar to that of the ENIGMA consortium Thompson
et al. 2020), that can quantify the relative associations of the
different brain regions, provide robust maps of associations
(generalizable to other cohorts) and detect novel associations
by boosting statistical power (Marek et al. 2022; Smith and
Nichols 2018). To answer this challenge, we have gathered al-
most 10,000 scans from 10 clinical cohorts (and > 37,000 from
the UK Biobank), to perform exploratory analyses of brain
markers of Alzheimer's disease. We have used the ENIGMA
processing pipelines to extract grey-matter measurements to
make our results comparable with those obtained by the con-
sortium on other disorders of the brain (Thompson et al. 2020).

Neuroimaging studies of AD progression from MCI or cogni-
tively normal (CN) (and more generally of early stages of AD)
can shed light on early brain markers, which are of greater

clinical interest. However, they are limited by small sam-
ple sizes that reflect the difficulty, and cost associated with
following individuals prospectively, over years. As a conse-
quence, only the hippocampus and entorhinal cortex have
been confidently linked to Alzheimer's conversion (i.e., pro-
gression from MCI or CN to AD related dementia) (Lombardi
et al. 2020), and predictors based on brain structure currently
exhibit low robustness and performance (Ansart et al. 2021).
Here, we combined data from several cohorts, to directly in-
vestigate the structural brain markers associated with MCI
status, Alzheimer's conversion, as well as neuropsycholog-
ical (cognition and functioning) scores. In addition, we sys-
tematically evaluated the (out-of-sample) prediction accuracy
achieved from the identified biomarkers of Alzheimer's dis-
ease course and quantify their generalizability and possible
usage in research or clinical trials.

Another limitation of the brain biomarkers identified to date is
that they comprise broad brain regions or structures (regions of
interest [ROI]) which lack precision or specificity. For example,
the medial temporal lobe atrophy reported, does not precisely
identify the atrophied gyri or the contours of the susceptible re-
gion(s). Lower hippocampal volume in AD is well established,
and may originate in the CA1 subfield (de Flores, La Joie, and
Chételat 2015), although it is also observed across most subfields
(Zhang et al. 2023). More precise association maps (at a voxel/
vertex wise level) are needed, that could reveal disease specific
signatures in grey-matter structure, beyond the reduction in hip-
pocampal volume (and subfields) that have been found for most
diseases studied by the ENIGMA (Enhancing Neuro-Imaging
Genetics through Meta-Analysis) consortium (Thompson
et al. 2020). To progress this issue, we complemented our ROI
based analyses by brain wide association studies at a vertex
level. The large samples sizes we gathered provides improved
statistical power to detect significant brain regions, despite
the high multiple testing correction (Smith and Nichols 2018).
Vertex-wise measurements capture more of the grey-matter
complexity, than ROI measurements (Couvy-Duchesne, Strike,
et al. 2020; Fiirtjes et al. 2023), which should pave the way to
more performant brain based predictors (Couvy-Duchesne,
Strike, et al. 2020).

In our primary analysis, we performed a multi-cohort inves-
tigation of grey-matter structure associated with Alzheimer's
disease. Our project complements the current ENIGMA ini-
tiatives (Thompson et al. 2020) by extending the analyses to
Alzheimer's disease. In addition to a Region of Interest (ROI)
approach, we perform analyses at a vertex level, to identify
more localised brain markers, that could be more disease
specific and predictive (Couvy-Duchesne, Strike, et al. 2020;
Couvy-Duchesne et al. 2022). To ensure robust results, we
systematically evaluated replication and out-of-sample pre-
diction that the brain markers can achieve (Couvy-Duchesne
et al. 2022; Marek et al. 2022). Finally, in a secondary analy-
sis, we investigated the grey-matter associations with several
disease stages (MCI, conversion), symptoms (cognition, func-
tioning) and AD risk (family history). Together, primary and
secondary analyses can help identify converging brain bio-
markers and evaluate how they translate into risk prediction
across disease stages.
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2 | Material and Methods
2.1 | Samples

Data from 11 cohorts of older adults that collected structural
brain MRI (T1w) were used together with clinical informa-
tion or neuropsychological scores of interests (Table 1, see
Appendix A and Table S1, for details). We included data from
ADNI (Alzheimer's Disease Neuroimaging Initiative, which
we split in two cohorts ADNI1 and ADNI2+ GO + 3, based
on MRI scanners [1.5T vs. 3T]), AIBL (Australian Imaging,
Biomarker and Lifestyle) (Ellis et al. 2009), ARWIBO
(Alzheimer's Disease Repository Without Borders) (Frisoni
et al. 2020; Riello et al. 2005), EPAD (European Prevention
of Alzheimer's Dementia) (Lorenzini et al. 2021; Ritchie
et al. 2020; Solomon et al. 2019), MAS (Sydney Memory and
Ageing Study) (Kochan et al. 2010; Sachdev et al. 2010; Tsang
et al. 2013), OASIS3 (Open Access Series of Imaging Studies
3) (LaMontagne et al. 2018), OATS (Older Adults Twin Study)
(Koncz et al. 2018; Sachdev et al. 2009, 2013), MEMENTO
(Dufouil et al. 2017) and PISA (Prospective Imaging Study of
Ageing: Genes, Brain and Behaviour) (Lupton et al. 2020) and
the UK Biobank (Miller et al. 2016).

We used ADNI1, ADNI2GO3, AIBL, ARWIBO, EPAD, MAS,
OASIS3 and OATS as discovery samples, which together com-
prise 6981 individuals with usable brain MRI, including 4653
healthy controls at the time of MRI, 1343 individuals with mild
cognitive impairment (MCI) and 796 Alzheimer's disease cases
(Table 1). We sought to replicate the findings in MEMENTO
(N=1880) and PISA (N=279). The UK Biobank is, by far, the
largest neuroimaging study (N=37,644), but due to the recruit-
ment strategy (community volunteer, and age range) there were
no AD cases at the time of imaging, and only a handful of in-
cident cases had been reported at the time of data extraction.
Thus, we only used the UKB in our analyses of parental history
(Appendix A, Table 1, Table S1).

2.2 | Clinical Status and Traits of Interest

We tested for differences in grey-matter structure of individuals
with Alzheimer's disease to that of healthy controls (AD versus
HC) and MCI (AD versus MCI), and between MCI and controls
(MCI versus HC). We also used a 3-point scale: 0=HC, 1=MCI,
2=AD.

We studied AD conversion (or progression to AD dementia)
using participants who were recorded as controls and MCI in-
dividuals at the time of brain imaging but who later received a
diagnosis of Alzheimer's disease and considered different post-
imaging time frames (1, 2, 3, 4 and Syears). We ensured that
non-converter individuals had been also followed over the same
time window.

We studied neuropsychological scales that were available in at
least 4 out of the 8 discovery cohorts or that were available on
more than 3000 individuals. Thus, we considered scores from
the Mini Mental Scale Evaluation (MMSE, available on all co-
horts), Clinical Dementia Rating (CDR), Functional Activity
Questionnaire (FAQ) that assess dementia symptoms and

functioning. We also included the Geriatric Depression Scale
(GDS) and the Neuropsychiatric Inventory Questionnaire
(NPI-Q) that focus on the psychiatric domains often associ-
ated with Alzheimer's. In addition, we studied memory scores
such as the Rey Auditory Verbal Learning Test (RAVLT) which
produces 5 scores of verbal memory (short term memory, work-
ing memory and long-term memory), and the Logical Memory
scores that target episodic memory (short and long term).

Lastly, we considered self-reported maternal and paternal
history of Alzheimer's disease. Parental history is available
on the UK Biobank and could serve as a proxy phenotype for
Alzheimer's disease in samples that do not contain many cases
(Marioni et al. 2018).

2.3 | MRI Acquisition and Processing

We have summarised the MRI acquisition parameters used in
the different studies in Appendix A. For all samples (except for
the UKB), we performed the surface based processing of the
T1lw brain MRI using FreeSurfer 6.0 (Fischl 2012), followed
by the ENIGMA-shape package (https://enigma.ini.usc.edu/
ongoing/enigma-shape-analysis/) (Gutman et al. 2013; Gutman
et al. 2012).

For the UKB, we downloaded the outputs from FreeSurfer 6.0
processing performed by the UKB (bulk field 20,263), which
used the T1w but also the T2 Flair images in order to improve
grey-matter parcellation (Miller et al. 2016). We then conducted
the ENIGMA-shape processing, to further extract surface-based
processing of seven subcortical structures.

2.4 | ROI and Vertex-Wise Grey-Matter
Measurements

We extracted the Region of Interest (ROI) values (produced by
FreeSurfer 6.0), of cortical thickness and surface area based on
the Desikan-Kiliany atlas (Desikan et al. 2006), as well as the
volume of the seven subcortical structures. This resulted in 150
ROI measurements of grey-matter structure, which correspond
to the brain measurements used in previous ENIGMA publica-
tions (Thompson et al. 2020). Mean and variances of the ROI
based measurements were comparable between samples, that
were acquired on different machines (Figure S1).

In addition, we extracted 654,002 vertex-wise measurements,
which consist in 299,881 cortical vertices (‘fsaverage mesh’) for
which we have thickness and surface area measurements and
27,120 subcortical vertices, at which we measure radial thick-
ness and a measure analogous to a surface area (Roshchupkin
et al. 2016). We have used and evaluated this MRI processing in
two previous publications (Couvy-Duchesne, Zhang, et al. 2020;
Couvy-Duchesne et al. 2021).

Using the standardised vertex-wise measurements, we calcu-
lated the brain-relatedness matrix for each sample, which quan-
tifies the similarities between a pair of individuals' grey-matter
structure (Couvy-Duchesne, Strike, et al. 2020). We excluded the
pairs of participants that had the extremely similar or dissimilar
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grey-matter (8SD from the distribution mean), as they can bias
results from mixed model analyses. This led to exclusion of
between 0.3% and 0.9% of the individuals across the different
samples.

As a check of compatibility of the different datasets, we con-
trasted the mean and variance of the vertex-wise measure-
ments calculated on the healthy individuals from the different
samples (Figures S2-S5). We observed a great concordance of
the average vertex values across the different samples. Of note,
average cortical thickness was larger in the UKB (Figure S3)
than in the other samples, which is a known consequence of
the combined use of the Tlw and T2-FLAIR images in the
FreeSurfer processing (Lindroth et al. 2019). We observed
some variability of the vertices’ variance between samples,
although concordance remained high (Figures S2-S5). This
led us to flag ‘noisy’ vertices that exhibited outlying variance
in at least one sample (> 6SD from the regression lines shown
in Figures S2-S5), which could suggest they are prone to
measurement error in some of the samples. About 1% of the
vertices were flagged, equally distributed across each type of
measurement (Figures S6 and S7, Table S2), although some
brain regions contained a large proportion of flagged verti-
ces (37% of anterior cingulate [thickness] consisted in flagged
vertices, 35% of entorhinal gyrus [thickness], 18% of tempo-
ral pole [thickness], and 35% of the accumbens [surface area],
Table S2). Considering the overall small number of ‘noisy’
vertices, we included them in the subsequent analyses, so we
could evaluate if they were more likely to reach significance
in association testing.

2.5 | Methods

We performed association testing within each discovery sam-
ple (Table 1) and meta-analysed the results. We used PISA and
MEMENTO to replicate the significant associations and to test
the out-of-sample prediction.

2.5.1 | Analyses Using Grey-Matter Regions of Interest
(ROI)

First, we estimated the total association (ROI based morpho-
metricity) between each of our traits of interest and the 150 ROI
measurements of grey-matter structure (cortical thickness and
surface area; subcortical volumes). We used multiple regres-
sion, using the Im() function in R (version 4.2.2), and compared
the full model (ROI and covariates) to a ‘null model’ that only
included covariates. We reported the difference in adjusted
R? between the two models and estimated its standard error
using bootstrap (boot package). Finally, we tested whether the
ROI-based R? (ROI based morphometricity) was significantly
different from zero using a likelihood ratio test (Imtest pack-
age). From the full model, we also extracted the conditional
associations between the ROIs and the traits of interests. These
associations correspond to that of each ROI, while controlling
for covariates and all other ROIs. We can expect that these as-
sociations are free from redundant (or false positive) associa-
tions that arise from correlated ROI measurements.

Next, we estimated the ROI-traits associations using 150 differ-
ent linear regressions (i.e., one regression per ROI) that control
for covariates. Unlike for the conditional associations (from
multiple regression), some of the univariate associations may be
(in part, or fully) redundant, in that they would tag signal from
correlated ROIs. We expect the association effect sizes to be
larger and to be more often significant, compared to the model
that fits all ROIs at once.

2.5.2 | Vertex-Wise Association Studies

We first used a General Linear Model (GLM), which has been
more commonly used in mass-univariate association testing
and can be written as:

y=x;b;+Zc+e (@)

where, y is a vector of size N of the trait of interest, x; is a vector
of the ith vertex-wise measurement and b; the association effect
size (between each vertex and the trait of interest) we seek to
estimate. Z is a matrix of size Nxq of q covariates and ¢ a vec-
tor of the q fixed effects. € is the error term assumed to follow

e~ N(0,Ic?).

In addition, we used a linear mixed model (LMM), which is an
extension of the GLM that further controls for all vertex-wise
measurements, fitted as a random effect. We have shown using
simulations that this approach could remove many redundant
associations detected by the GLM, some of which are likely to
be spurious associations caused by imaging confounders re-
sponsible for short and long-range correlations between brain
measurements(Couvy-Duchesne, Zhang, et al. 2020; Couvy-
Duchesne et al. 2021). The model becomes:

y=x;b;+Zc+Xp+¢ @)

With, X the Nxp matrix of all standardised vertex-wise mea-
surements, and f§ a px1lvector of random effect assumed to be
normally distributed with variance ¢2: § ~ N (0, 161232. Fitting
Xp as a random effect allows for the case where there are
more vertex-wise measurements than individuals (p > N). The
variance-covariance matrix for Y is var(Y) = XX’} +Io2 = B
pa§+10§. Here, we recognise B=XX'/p as the brain relat-
edness matrix and po? the morphometricity (phenotypic
variance captured by the total association with all vertices)
(Couvy-Duchesne, Strike, et al. 2020).

In addition, we used a LMM in which we fitted cortical and sub-
cortical measurements, as well as thickness and surface area as
specific random effects. We found using simulations, that this
model was best suited to the situation where some modalities
are not associated with the trait of interest (Couvy-Duchesne,
Zhang, et al. 2020). The model becomes:

y=x;b; +Zc + X;B; + X,8, + X;5B; + X,B, + € ?3)

X,, X,, X; X, are the matrices of standardised vertex-wise
measurements from cortical thickness, cortical surface area,
subcortical thickness and subcortical surface area. Each
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B; ~ N (0, IG;) (j in 1-4) is the vector or vertex trait associa-
tions specific to each random effect. This means that each 0'23‘
quantifies the trait variance that is accounted for by a set of mea-
surements, which can be 0.

LMM and GLM models are implemented in the efficient OSCA
software, which allows performs hundreds of thousands of tests
in minutes using low memory (RAM) requirements (Zhang
et al. 2019).

2.5.3 | Statistical Testing and Multiple Comparisons
for Vertex-Wise Models

We performed a y? test of the association between the phenotype
b,
SE(lbi)
hypothesis of no association. We corrected for multiple testing
using Bonferroni correction, which allows to control false posi-
tive rate across several surfaces (left and right hemisphere, cor-
tical thickness and area) and may be best suited to analyses on
unsmoothed data (Nichols and Hayasaka 2003). We further cor-
rected for the number of phenotypes tested (24, Table 1), which
resulted in a significance threshold of 3.18e-9 for reporting sig-

nificant vertex-wise associations.

2
and each vertex (X;) using that: ( ) ~ %2 under the null

Finally, we also applied Random Field Theory (RFT) as an al-
ternative to Bonferroni, which models the spatial autocorrela-
tions of the test statistics across a surface We applied a recent
implementation of vertex-wise RFT from the NeuroShape tool-
box (https://github.com/nikitas-k/neuroshape-dev/tree/main/
neuroshape/) to our cortical and subcortical surfaces of interest:
NeuroShape only requires, for each surface, the vertices coor-
dinates and corresponding t-statistic of association. We used a
significance threshold of 0.05/24/18 =1.1e-4 to account for the
number of grey-matter surfaces (18) and traits tested (24).

2.5.4 | Vertex-Wise Morphometricity

For each trait and each sample, we reported the vertex-wise mor-
phometricity, which corresponds to the total association between
the trait and all (vertex-wise) measurements(Couvy-Duchesne,
Strike, et al. 2020; Sabuncu et al. 2016). In practice, morphomet-
ricity is expressed as a proportion of the trait variance (R?) aznd es-

s

timated from a mixed model. It can estimated as R*> = for

o2 +02
o2 +062 +0 +0? e
model (2), or 77~ v +e7, for model (3) (Couvy-Duchesne, Strike,
et al. 2020). Model (3) also allows to decompose the morphometric-
ity into the (joint) contributions of each type of measurement (e.g.,

[

W for the contribution of cortical thickness). The
€ 1 2 3 4

difference between vertex-based morphometricity and ROI based
morphometricity indicates how much information may be lost by
averaging brain measurements over ROIs, compared to using the
full (vertex-wise) resolution.

2.5.5 | Covariates

We considered standard imaging covariates, that were available
for all samples: age, sex, age?, age X sex, intra-cranial volume

(ICV, estimated from FreeSurfer 6.0), average cortical thickness
and total cortical surface area (also estimated from FreeSurfer),
site/scanner and field strength when pertinent (data sets AIBL,
OASIS3). We did not consider the extended set of covariates
that was recently suggested for the UKB (Alfaro-Almagro
et al. 2021), as they were not available outside of the UKB (e.g.,
time since first scan, head-motion measured from resting-state
fMRI). When studying neuropsychological scores, we further
corrected for AD and MCI status, to be able to compare and
meta-analyse results across cohorts that contain different pro-
portion of cases and MCI (Table 1).

2.5.6 | Meta-Analysis

We meta-analysed the association maps from the discovery
samples (ADNI1, ADNI2GO2, AIBL, ARWIBO, EPAD, MAS,
OASIS3, OATS) using the Inverse Variance Weighted (IVW) ap-
proach, implemented in the R package meta (Balduzzi, Riicker,
and Schwarzer 2019) (metagen function). We used a random
effect approach, which considers that the different samples are
randomly drawn from a global population. In particular, we used
the REML method, which provides of the most robust estimates
of the between-study variance (i.e., heterogeneity) (Veroniki
et al. 2016), and we reported heterogeneity across studies using
the Q statistic. Our meta-analytic approach is conservative, but
also ensures the findings are generalisable in that only homoge-
neous association effect sizes across cohorts reach significance.

2.5.7 | Replication and Out-of-Sample Prediction

We used MEMENTO and PISA to evaluate the stability of the
morphometricity estimates and the replicability of the signifi-
cant brain-trait associations obtained from the meta-analyses.
Using PISA, we could attempt to replicate results that involved
AD cases, RAVLT scores. In MEMENTO, we sought to replicate
the findings relating to AD conversion and all other neuropsy-
chological scores (e.g., MMSE, CDR, FAQ, logical memory).

We used out-of-sample prediction (into MEMENTO and PISA)
to compare and validate the findings from the ROI and vertex-
wise association maps. Out-of-sample prediction gives confi-
dence that the identified brain-trait associations are true and
generalisable. It also quantifies the total association between a
trait and all grey-matter markers identified in the analyses. We
used prediction accuracy to compare results obtained using,
ROI, GLM or LMM association models or using Bonferroni ver-
sus RFT to account for multiple testing.

The linear prediction scores were built using the weights from
the meta-analysed association maps. For vertex-wise associ-
ation maps, we only included the top vertex per cluster (i.e.,
vertex with the smallest pvalue), as we can assume that the
other voxels of the cluster tag the same information. We used
the Bonferroni significance level (3.18e-9) or RFT corrected
p-value <0.05 to define significant clusters. We reported the
prediction accuracy as an R? (to facilitate comparison with
morphometricity), which we estimated using a linear model
that included the covariates.
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2.5.8 | Cross-Trait Prediction

We evaluated how much the brain prediction scores could pre-
dict different—albeit related—phenotypes in MEMENTO and
PISA. This design can help tackle specific research questions
about disease subtypes and progression. For example, we evalu-
ated the performance of Alzheimer's brain score to predict levels
of amyloid beta and tau, which can inform on the relationship
between grey-matter structure and protein concentration. We
also investigated if the AD brain score could differentiate MCI
from controls, predict AD conversion as well as cognition and
functioning. These results can shed lights on whether the same
brain regions contribute to disease symptoms, subtypes, pro-
gression, or severity. This cross-trait prediction (a.k.a. transfer
learning) also leverages that the samples sizes are larger for AD
versus controls than for conversion or some neuropsychological
scores, which may produce a more performant predictor, even if
the trait predicted differs from the one used in training.

3 | Results

3.1 | ROI Based and Vertex-Wise Morphometricity

We estimated the morphometricity R? which quantifies the
global association between a trait and all grey-matter measure-
ments. We contrasted the morphometricity (Figure 1) obtained
from vertex-wise data (>654,000 measurements) from that
obtained using a ROI representation of the grey-matter (150

measurements). The difference in morphometricity between
vertex-wise and ROI analyses indicates how much information
is lost when reducing the dimensionality of the brain (here by a
factor 4300 [654,000/150]).

We found that most traits (19 out of 24) exhibited a significant mor-
phometricity (Figure 1, darker colours indicate p-value <0.05/24;
full details in Table S3-S5). Vertex-wise morphometricity was 3 to
21 times larger than the ROI based one (Figure 1). For example, it
was 3.6 times larger for Alzheimer's case control (‘AD versus HC),
14 times larger for the MMSE and 20 times larger for the CDR
or the FAQ. Vertex-wise morphometricity of Alzheimer's disease
and conversion was large (100% of variance accounted for when
considering global brain measurements and vertex-wise mea-
surements, Figure 1), indicating that cases and converters may
be completely distinguished from controls, based on their grey-
matter structure. In comparison, the vertex-wise morphometricity
of MCI was lower (AD versus MCI: R?=0.64, SE=0.10; MCI ver-
sus HC: R?=0.68, SE=0.11), and that of neuropsychological scales
ranged between 0.52 (SE=0.069, FAQ) and 0.044 (SE=0.059,
RAVLT forgetting). Interestingly, family history of Alzheimer's
disease (whether maternal or paternal) did not exhibit a signif-
icant morphometricity, suggesting the total association is null
or too small to be detected at the current power. Using the UK
Biobank, we confirmed that morphometricity of parental history
was low. Vertex-wise morphometricity of maternal AD was 0.022
(SE=0.0054, p-value=3.8e-5, N=37,374), and not significantly
different from zero in paternal AD (R?=0.0021, SE=0.0033,
p-value=0.53, N=31,739).

B Global brain measurements
O Vertex-wise morphometricity
Region of Interest morphometricity
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FIGURE1 |

Morphometricity from ROI and vertex-wise representation of grey-matter structure. Morphometricity from vertex-wise brain data

(fitted as a single random effect) is shown in yellow in the upper bar plot, while the ROI based morphometricity is shown in green in the lower bar-
plot. The trait variance accounted for by the global brain measurements (ICV, average cortical thickness and total cortical surface area for left and
right hemisphere) is shown in purple. Whiskers represent the 95% confidence intervals around the morphometricity estimates. Bars with lighter yel-
low or green colours indicate morphometricity estimate not significant after multiple testing correction (p>0.05/24). For each bar, morphometricity
(whether vertex or ROI based) as well as the R? accounted for by global brain measurement has been estimated in each clinical cohort and combined
using a meta-analysis. Here, we report the morphometricity of neuropsychological scores (CDR, FAQ, GDS, LM, NPI and RAVLT) controlling for
AD and MCI status.
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The two vertex-wise models (i.e., fitting all measurements as
a single random effect, or fitting them as 4 modality-specific
random effects) yielded comparable morphometricity esti-
mates (Figure S8). However, we can explore the contribution
of each modality to the global morphometricity (by looking at
the variance explained by each modality-specific random ef-
fect, Figure 2). The results indicate that cortical thickness sig-
nificantly (p<0.05/24/4) contributes to the morphometricity
of Alzheimer's disease status, AD conversion, CDR, FAQ or
the MMSE scores. In addition, we could confirm that subcor-
tical thickness and surface area also significantly contribute
to the morphometricity of Alzheimer's disease. Such analysis
has a lower power, due to smaller association R? (compared to
global morphometricity) and increased multiple testing, mean-
ing that larger samples will be required to precisely estimate
the contribution of each type of measurement to the global
morphometricity.

The vertex-wise morphometricity we presented in Figure 1
was meta-analysed across all the discovery samples, and we
note that the estimates appeared consistent across the dif-
ferent cohorts, as shown in the forest plots, and estimates of
between-sample heterogeneity (Figures S9 and S10). The ex-
ception was for the MMSE and CDR scores, that showed a
heterogeneous morphometricity across samples, even when
controlling for disease and MCI status (Figure S10, I =74%,
Q-test, p-value<0.05/24). However, the heterogeneity was
greatly reduced (I? = 51% and I? = 23%, p-value > 0.05) when es-
timating the morphometricity with modality-specific random
effects (Figure S11), even if the meta-analysed result remained
the same. This confirms the results from our simulations that
a model with several variance components is more robust at
estimating morphometricity, as it allows the different types of
measurements to contribute more or less to the morphomet-
ricity (Couvy-Duchesne et al. 2022; Couvy-Duchesne, Zhang,
et al. 2020). Finally, we observed that controlling for disease
status, when studying neuropsychological scores reduced the
between-cohort heterogeneity of results, as the morphomet-
ricity was inflated in the cohorts that contained Alzheimer's
cases (Figure S12).

3.2 | Associations With Global Brain
Measurements

We tested the associations between global brain measurements
(ICV, left and right cortical thickness and left and right cortical
surface area, fitted together in a multiple regression) and our
phenotypes of interest, to shed light on the ones contributing
to the variance explained reported in Figures 1 and 2. We con-
trolled for all other covariates in the linear models and meta-
analysed the results across samples. Larger ICV was associated
with Alzheimer's disease, Alzheimer's conversion (at 3, 4 and
5years) and with FAQ score. In addition, Alzheimer's cases also
exhibited thinner left and right cortex, compared to controls.
Individuals who converted within 4 years of brain imaging had a
thinner left cortex. Finally, greater MMSE and RAVLT immedi-
ate memory scores were associated with thicker left cortex, and
MMSE was further associated with larger left cortical surface
area (Table S6).

3.3 | ROI-Based Associations

We sought to identify ROI measurements that contribute to
the ROI based morphometricity reported in Figure 1. First,
we focussed on the marginal associations between ROI and
traits of interest, which are estimated using multiple regres-
sion where all 150 ROI measurements are fitted in a linear
model, together with the covariates. Of note, these same mod-
els are used in Figure 1 to estimate ROI-based morphometric-
ity. A single association survived multiple testing correction
(p-value <0.05/24/150), which suggested that hippocampal
volume was associated with RAVLT delayed recall score. An
increase of one SD in hippocampal volume was associated
with a 0.79-point score increase (SE=0.17, p-value =3.3e-6,
see Figure S13 for forest plot).

Next, we tested the association between traits and each ROI
measurement, by including a single ROI in the linear model,
and controlling for covariates. This is the standard approach
in neuroimaging, for example used in the publications from
the ENIGMA consortium (Thompson et al. 2020), although
we can expect some redundancy in the identified associations.
This time, we identified 94 trait-ROI associations after con-
trolling for multiple testing (p-value <0.05/24/150, Table S7).
Left hippocampus volume was still associated with RAVL
delayed recall score (b=0.79-point increase per volume SD,
SE=0.11, p-value =9.6e-14, Figure S13), but so were right hip-
pocampus (b=0.62) and right or left amygdala volumes (b =0.49
and b=0.52). Unlike in the multiple regression approach, the
comparison of Alzheimer's versus healthy controls yielded 32
significant associations (Figure 3), which include smaller hippo-
campus and amygdala (to a lesser extend smaller putamen and
accumbens), and reduced temporal lobe (fusiform, middle tem-
poral, inferior temporal, parahippocampal gyri, temporal pole).
In addition, we also identified larger cortical thickness or surface
areas in the paracentral, precentral, and postcentral gyri, as well
as in the pars-opercularis and superior frontal regions (Figure 3).

Alzheimer's disease conversion was associated with thicker
lateral occipital gyrus, as well as thinner hippocampus, mid-
dle temporal, and fusiform gyri (Figure S14, Table S6). Logical
memory scores measure how much participants can recall a
story. Lower immediate and delayed recall were associated with
smaller hippocampus and thinner entorhinal gyrus, as well as
an increased precentral gyrus. However, immediate recall was
further associated with pars triangularis, while delayed recall
was associated with the amygdala and the parahippocampal
gyrus (Figure S15). The RAVLT memory scores, that evaluate
how many words of a list can be remembered, only implicated
the hippocampus, amygdala, and the entorhinal cortex (for im-
mediate recall) (Figure S15).

Lastly, the CDR, FAQ and MMSE were significantly associated
with ROIs, mostly found to be associated with Alzheimer's
disease, even if we controlled for disease status in the anal-
yses (Figure S16). Associations were found with the hippo-
campus (MMSE), amygdala (MMSE, FAQ), middle temporal
(CDR, MMSE), entorhinal (FAQ), inferior temporal (FAQ),
postcentral (MMSE) as well as with the inferior parietal gyrus
(MMSE).
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FIGURE 2 | Vertex-wise morphometricity broken down into the contributions of each modality of brain measurement. Contributions from the

different modalities are estimated jointly by fitting each type of measurement as a specific random effect in a mixed model. Significant contributions,

after multiple testing correction (p <0.05/24/4) are highlighted by a star.
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and right subcortical volumes. We only show significant ROIs after multiple testing correction (p <0.05/24/150). The association effect sizes corre-
spond to the effect of 1 SD of ROI on the clinical status (0: Controls, 1: Alzheimer's).

3.4 | Vertex-Based Associations

We performed vertex-based association testing, to identify the
localised grey-matter regions that contribute to the vertex-wise
morphometricity. As in the ROI based association testing, we
performed traditional mass-univariate testing (i.e., testing the
trait association with a single vertex: GLM model) as well as
multi-vertex testing (i.e., estimating the trait-vertex association
controlling for all other vertices: LMM model). We expect the
GLM to yield more associations, although some would be redun-
dant or confounded as they tag signal from other regions, whose
association spreads though the brain connectome.

Using Bonferroni correction (p<3.1e-9), the mass-univariate
testing identified significant vertices for 16 (out of 24) traits (307
significant clusters overall). In comparison, the LMM with a

single random effect, identified significant vertices for only 3
traits (AD versus HC, conversion at 2 and 3years; 34 significant
clusters in total) while the LMM with four random effects only
found associations with AD versus HC (1 cluster; Figure S17,
Table S8). Thus, when comparing Alzheimer's versus healthy
controls, the mass univariate model returned 103 significant
clusters (5523 significant vertex-wise measurements), that indi-
cated smaller (thickness and surface area) bilateral hippocam-
pus, amygdala, putamen and accumbens, as well as thinner
pallidum (left and right), caudate (left) and lower surface of
right thalamus. In addition, we observed thinner cortex in the
temporal lobe (entorhinal, fusiform, parahippocampal, superior
and middle temporal gyri, temporal pole) as well as associations
in the insula, posterior cingulate, paracentral and precuneus
(Table S9, Figure 4a, also see Figure S18 for unthresholded
map). In comparison, the multi-vertex approach (LMM with a
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single random effect) located the significant associations in the
hippocampus and amygdala (lower thickness and surface area),
and only implicated the right entorhinal and insula thickness, in
the cortex (Table S10, Figure 4b).

Compared to MCI, Alzheimer's cases exhibited thinner left
hippocampus and bi-lateral amygdala. The surface of the left
hippocampus and right amygdala was also found to be smaller
(GLM only; Table S9). Alzheimer's conversion was associated
with smaller hippocampus and amydgala (using GLM and
LMM), although the GLM identified many more significant
clusters within those subcortical structures (Tables S9 and S10).
In addition, the GLM identified clusters in the left temporal pole
and right entorhinal that were thinner in converters than non-
converters. Finally, most of the grey-matter regions associated
with the neuropsychological scales (FAQ, LM-delayed, MMSE,
RAVLT) were in the hippocampus (Table S9). The remaining
significant clusters implicated the putamen, amygdala, and en-
torhinal gyrus (Table S9).

Nine clusters identified with GLM (2.9% of clusters), and three
clusters found with LMM (8.8% of clusters) contained ‘noisy ver-
tices’ (Tables S9 and S10) which we defined as having variable
variance across samples. Compared to the overall proportion
of ‘noisy vertices’ (1.1%) this suggests they are more likely to
reach significance in the analyses. We also found that RFT to be
more conservative that Bonferroni's correction for multiple test-
ing (Table S8). Overall, RFT halved the number of significant
clusters (120 versus 307 using GLM, 12 versus 34 using LMM,
Table S8). The RFT significance threshold was specific to each
cortical or subcortical surface. The most lenient RFT threshold
was for the Accumbens (p-value < 2.9e-11) while the most strin-
gent was for cortical thickness (p-value < 7.7e-16).
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3.5 | Comparison of ROI and Vertex-Wise
Associations

We represented (Figure 5) how much the significant ROIs co-
localised with clusters found in the mass-univariate vertex-wise
analysis (GLM), and with those found in the multi-vertex one
(LMM). We focussed on AD versus HC, which yielded signif-
icant associations in 38 grey-matter regions, across the three
approaches. Overall, only four (4/38 =10%) grey-matter regions
(left and right amygdala and hippocampus) were consistently
identified across the three analyses. Nine additional grey-matter
regions (cortical and subcortical) reached significant in the ROI-
based and GLM vertex-wise analysis, and two were identified in
both GLM and LMM analyses. Thus, only 15 (39%) of the identi-
fied grey-matter regions were significant in at least two analyses
(Figure 5).

The concordance presented in Figure 5 does not take show
whether the association was found with volume, thickness, or
surface area, see detailed Sankey plots for all details (Figure
S19). Furthermore, several clusters identified using GLM and
LMM did not overlap, despite being located in the same grey-
matter regions (e.g., hippocampus, Figure S19).

The analyses of Alzheimer's conversion consistently implicated
the hippocampus (Figure S20), and the GLM and LMM identi-
fied clusters in the amygdala that were not detected in the ROI
based analysis. Only one of the three LMM-identified cluster (in
right amygdala thickness) partially overlapped with a GLM clus-
ter (Figure S20).

Similarly, we observed mixed concordance for the ROI and
GLM findings for the neuropsychological scales (Figures 21-25).
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FIGURE 4 | Vertex-wise associations with Alzheimer's disease (Alzheimer's versus healthy controls). (a) mass-univariate (GLM) model,

the association with each vertex-wise measurement is estimated separately. (b) multi-vertex (LMM) model with a single random effect, where the
association with each vertex-wise measurement is estimated conditional on all vertices fitted as a random effect. Outside view (top panels) and

where

Inside view (bottom panels). From left to right: Left cortical thickness, right cortical thickness, left cortical surface, right cortical surface, left sub-

cortical volumes and right subcortical volumes. We only show in colour the significant vertex-wise measurement after multiple testing correction

(p<0.05/24/150). The association effect sizes correspond to cohen's d, that is, the effect of 1 SD of the vertex measurements on the clinical status (0:

Controls, 1: Alzheimer's).
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FIGURES5 | Concordance of brain regions associated with Alzheimer's disease (AD versus HC) across the different analyses (ROI and vertex-wise

[LMM or GLM]).

Comparison was not possible with the LMM due to the lack of
significant clusters with this approach.

3.6 | Grey-Matter Regions Associated With
Several Traits

The large number of significant clusters found in the subcortical
volumes (in particular the hippocampus and amygdala) led us to
investigate whether the same vertices/clusters were associated
with several traits.

We found a substantial overlap between the vertex-wise mea-
surements associated (using GLM) with the different traits of
interest (Figure 6). For example, 92% of the associations with
AD versus MCI were also found in the AD versus HC anal-
ysis, 54% of the associations with conversion at 2years were
also found when studying conversion at 3years, and 74% of
the measurements associated with conversion at 4 were also
found for conversion at 5years. However, conversion at 2 or
3years seemed to implicate different brain regions than con-
version at 4 or 5years (only 3%-4% overlap, but still greater
than what may be expected by chance). In addition, a signifi-
cant fraction of the vertex-wise measurements associated with
neuropsychological scales were also significance in AD ver-
sus HC, despite controlling for disease status in the analyses.
The overlap was particularly important with the FAQ (88%
of the 57 associations also significant in AD versus HC), or
the MMSE (18 out of 20 associations (90%) significant in AD
versus HC). Lastly, we observed significant overlap between
the brain feature associated with the different memory scores
(between RAVLT sub-scores and between RAVLT and Logical
Memory score).

Some brain regions in the hippocampus and amygdala, were
significantly associated with up to 6 distinct traits (Figure S26,
Table S11), and may be of particular interest as they could
point out to key brain regions associated with Alzheimer's,

functioning and cognition. For example, a smaller surface
of left hippocampus (around vertex 776) was associated with
increased conversion at 3years and lower memory scores
(RAVLT—delayed, immediate, learning and forgetting, as
well as Logical memory delayed recall). In addition, thinner
right amygdala (around vertex 1133) was associated with in-
creased risk of Alzheimer's (AD versus HC and AD versus
MCI), lower functioning (FAQ) and memory (RAVLT delayed
and immediate).

3.7 | Replication of Associations

We found consistent vertex-based morphometricity estimates
in the PISA and MEMENTO replication samples, compared
to those from the meta-analysis (correlation between discov-
ery and replication estimates 0.76 in PISA, 0.74 in MEMENTO,
Figure S27). The largest discrepancies were found for MCI
versus HC, conversion at 1year, and CDR score, which exhib-
ited a lower morphometricity in MEMENTO than in the meta-
analysis, although this may be due to sample composition and
recruitment (HC of MEMENTO all have subjective cognitive
decline). Concordance was also observed for ROI based morpho-
metricity (correlation between discovery and estimates: 0.80 in
PISA, 0.84 in MEMENTO, Figure S28).

We sought toreplicate the 94 ROl associations that were signifi-
cantin the meta-analysis of clinical cohorts (Table S7). In PISA,
we evaluated 57 associations (based on the phenotypes being
available), and 12 reached significance (p-value <0.05/57); 28
were nominally significant (p-value <0.05). Beyond signifi-
cance, we found good concordance of the effect sizes between
discovery and replication (cor=0.92 between effect size,
90% had the same sign). The 12 associations that replicated
corresponded to reduced cortical thickness in Alzheimer's
(left middle temporal gyrus, right posterior banks of the su-
perior temporal sulcus, right inferior parietal, right inferior
temporal, right, paracentral, and right postcentral), as well
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FIGURE6 | Proportion of significant vertex-wise measurements (from GLM) also associated with another trait. Each cell indicates the proportion

of vertex-wise measurement associated with a phenotype (row label), that is also significantly associated with another phenotype (column label). For
example: 92% of the vertex-wise measurements associated with AD versus MCI are also associated with AD versus HC (first column, second row).
We only show cells for which the proportion of co-associated vertices was greater than chance (chi-2 test of association, p-value <0.05/(24*23/2)).
Significant vertex-wise measurements correspond to those that pass Bonferroni correction using the mass-univariate (GLM) approach. Traits with
no significant vertex-wise measurements are not shown. The last column shows the number of significant vertex-wise measurement, for context.

as reduced volumes of hippocampus and amygdala. In ad-
dition, we also replicated the positive associations between
bilateral hippocampal volume and RAVLT delayed memory
score (Table S7). In MEMENTO, we evaluated the other 37
associations, and 9 reached significance (p-value <0.05/37; 19
nominally significant, cor =0.71 between discovery and rep-
lication effect sizes, 81% of sign concordance). The replicated
associations confirmed lower hippocampus volume and mid-
dle temporal thickness in AD converters (3 years conversion).
In addition, logical memory scores (immediate and delayed)
were associated with hippocampal, and amygdala volumes, as
well as with entorhinal thickness (Table S7).

At a vertex-wise level using the GLM approach, we replicated
one association in PISA (left-putamen surface area association
with AD; p-value <0.05/183), although 41 (22%) of the tested
vertices were nominally significant in the replication sample
suggesting an enrichment, despite a low sample size and statis-
tical power. In MEMENTO, we replicated 65 (54%) associations
(p-value <0.05/120), and 83% were nominally significant. The
replicated associations were with logical memory delayed re-
call score (entorhinal, hippocampus and amygdala) as well as
with Alzheimer's conversion (bilateral hippocampus, amygdala,
and right entorhinal gyrus) (Table S9). As per the LMM results,

we replicated 6 (out of 30%-20%) associations with AD versus
HC in PISA (p-value <0.05/30), that corresponded smaller sur-
face area in bilateral hippocampus and left amygdala, as well
as reduced thickness in left hippocampus and right amygdala.
In total, 17 (57%) of the associations were nominally significant
in PISA, and all signs were concordant between discovery and
replication effect sizes. In addition, we replicated 1 (out of 4)
association with AD conversion at 3years, located in the right
amygdala (thickness).

3.8 | Out-of-Sample Prediction

To validate but also to compare the different set of results ob-
tained in ROI or vertex-based analyses, we evaluated their pre-
diction accuracy in the PISA and MEMENTO cohorts.

In PISA, we found that the three analyses (ROI, GLM,
LMM) led to a prediction of Alzheimer's status (versus
controls), significantly greater than chance. Prediction
accuracy was comparable across the three predictors as in-
dicated by overlapping confidence intervals: R12101:0'12
(95% CI 0.05-0.19, p-value=3.5e-12), R%,,=0.07, (95%

_ 2
CI 0.01-0.15, p-value=4.6e-7) and R{,,,=0.13, (95% CI
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0.05-0.22, p-value = 6.2e-13, which corresponds to OR=4.1 or
AUC =0.71) (Table S12). We also found that the ROI or verti-
ces associated (via GLM) with RAVLT scores had significant
predictive power in PISA, although prediction accuracy was
limited (R?<0.035, Table S12).

In MEMENTO, the significant brain measurements could sig-
nificantly predict AD conversion, although the best predictor
was RéLM:0.051 (equivalent to AUC =0.63), for AD conversion
at 3years (p-value =1.6e-21). Overall, the ROI and vertex-wise
approaches led to comparable prediction (Table S12). In addi-
tion, we also observed significant prediction accuracy from the
MMSE and logical memory (immediate recall) brain markers

(R2<0.014).

In addition, we found that the AD versus HC predictors could
predict several traits and scores in the PISA or MEMENTO
non-diseased (HC+MCI) group. In PISA, the AD brain risk
scores were associated with MCI status, presence of memory
and language impairment, as well as the number of impaired
cognitive processes. Furthermore, the brain risk scores could
predict some of the cognition scores (Graded Naming Test, and
RAVLT scores), as well as the individuals' genetic risk (Figure 7,
Table S13). In MEMENTO, the AD versus HC predictors could
significantly predict multi-domain amnestic MCI status, AD
conversion (at all time frames), a series of neuropsychological
scores (MMSE, CDR, naming test, visual memory), as well as
APOE e4 status and total Tau protein level, measured from
lumbar punction (Figure 7, Table S13). The AD brain scores
achieved comparable prediction accuracy (R?<0.06) as the spe-
cific predictors of AD conversion or neuropsychological scores
(MMSE, CDR) (Table S12).

4 | Discussion

We collated data from 10 cohorts (total N=9140) to perform a
well-powered Brain Wide Association Study of the grey-matter
structure in Alzheimer's disease, progression to AD, and neu-
ropsychological scores. The large sample size and deep clin-
ical characterisation supported identification of identified
grey-matter markers associated with the different stages of the
disease: early disease risk (markers of conversion up to 5years
prior to diagnosis), non-specific first symptoms (mild cognitive
impairment), specific memory and functioning complaints, as
well as (post-)diagnostic markers (Figures 3 and 4) that may be
indicative of disease progression and severity. Our results sug-
gest some overlap between the grey-matter regions associated
with early (pre-diagnostic) AD risk, disease progression and
memory domains (Figure 6, Table S11), which progresses our
understanding of the clinical correlates of grey-matter atrophy
and allows cross-trait prediction. Thus, we showed that brain
markers associated with disease status could predict global tau
pathology, AD genetic risk (measured from SNPs), progres-
sion to dementia, and cognitive domains in non-diseased in-
dividuals (Figure 7). Our results are robust and generalisable
to other cohorts or studies, as shown by the high replication
rate (Tables S7 and S9) and out-of-sample prediction accuracy
(Table S12). Another strength of our study is that we performed
multi-level brain analyses, that is, at a region of interest but also
at the vertex-wise level. The high-resolution (vertex-wise level)

analysis increased the characterisation of some of the asso-
ciated brain regions, but also identified of novel brain regions
that could not be detected using the traditional ROI approach
(Figure 5).

4.1 | Medial Temporal Lobe in Alzheimer's’
Disease

The comparison of AD cases versus healthy controls, yielded
the most associations, either at the ROI or vertex-wise level
(Figures 3 and 4). Our ROI-level results confirmed the known
atrophy of hippocampus volume (cohen's d =-0.17), amygdala
volume (d = —0.15) and of the medial temporal lobe (e.g., reduced
thickness in fusiform [d=-0.08] and parahippocampal gyrus
[d=-0.05]) (Table S7), which are known to play an important
role in memory processing (Raslau et al. 2015). Previous publi-
cations (Frisoni et al. 2008; Schuff et al. 2009; Vijayakumar and
Vijayakumar 2012) have reported somewhat larger hippocam-
pal reductions in AD (equivalent to cohen's d in —0.26 —0.36,
Appendix B), although we can expect their results to be inflated
by winner's curse due to small sample sizes (Marek et al. 2022),
the inclusions of more severe cases, or unaccounted sex and age
differences between cases and controls (Appendix B). Overall
the effect sizes we observed in the ROI-based analysis are com-
parable to the ones reported by the ENIGMA consortium on
Parkinson's disease (Laansma et al. 2021), and for most psychi-
atric disorders (Thompson et al. 2020). All the ROI level associa-
tions (in subcortical and medial temporal cortex) were matched
by one or several significant clusters in the vertex-wise analysis
(Tables S9 and S10, Figures 5 and S19) which offers a more fined
grained localisation of the grey-matter associations. We con-
firmed these brain regions (ROIs) to be implicated in memory
processes, as indicated by their association with episodic mem-
ory (RAVLT and logical memory scores, Table S7, even after con-
trolling for disease status). Importantly, the entorhinal cortex,
often reported to be an early site of atrophy (Johnson et al. 2012),
was not significant in the ROI analysis, but several atrophied
clusters were found at the vertex-wise level (Figures 5 and S19,
Tables S9 and S10), which highlights the added value of high-
resolution analyses. The vertex-wise analysis further pinpointed
localised regions in the amygdala and hippocampus that were
simultaneously associated with AD status and episodic memory
scores (Table S11). Furthermore, reduced thickness and surface
area in parts of the hippocampus and amygdala was observed
several years prior to the diagnosis (see Table S11 for the list of
vertex-wise markers of AD versus HC also associated with AD
conversion, Figures S14 and S20), which confirms that the at-
rophy appears in early stages of the disease process (Johnson
et al. 2012). Lastly, the vertex-wise associations we observed in
the hippocampus (Figure 4) resemble that reported in a previ-
ous article (see Figure 5 from Frisoni et al. 2008) that reported
smaller regional volume in the dorsal (CA1l) and ventral parts
(subiculum and presubiculum).

4.2 | Associations Between AD and Other Cortical
and Subcortical Regions

We found associations between AD status and the putamen (ROI
volume: d=-0.04, and vertex-wise clusters), or the accumbens
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FIGURE7 |

Prediction accuracy of the AD versus HC brain predictors in the non-diseased group of the PISA and MEMENTO study. In PISA (top

panel) evaluated prediction across 33 traits or scores available in the non-diseased group, and we show the nine for which at least one of the brain-

based prediction returned significant (p <0.05/33/3). In MEMENTO (bottom panel), we considered 36 traits, and 14 were significantly predicted
(p<0.05/36/3) by at least one of the AD versus HC brain predictor. Error bars correspond to the 95% confidence intervals estimated via bootstrap.

(ROI volume, d =—0.03) (Figures 3 and 4), which have been pre-
viously reported in smaller studies (de Jong et al. 2008, 2012). In
addition, atrophy of the basal nuclei in Alzheimer's is thought
to relate to general cognitive dysfunction (de Jong et al. 2008),
and apathy (Guo et al. 2022). Coherent with this hypothesis,
we found locally reduced right and left putamen thickness, as-
sociated with AD status as well as with impaired functioning
(Functional Assessment Questionnaire, Table S11). However,
we did not replicate the published association with thalamus
volume (de Jong et al. 2008).

In the cortex, we identified additional regions (ROIs only)
associated with Alzheimer's disease (Figure 3, Table S7), in-
cluding several (with inferior parietal, postcentral [parietal],
middle temporal, transverse temporal, inferior temporal [tem-
poral], paracentral, superior frontal [frontal]) that replicated
in an independent cohort (PISA), which gives confidence in
the findings. A previous review has suggested that the medial
and posterior parts of the parietal lobe would be preferentially
affected in early stages of AD (Jacobs et al. 2012), which does
not align with our results based on a much larger sample size.

Our findings in the frontal and temporal lobes might reflect
disease progression and general decay in cognition and func-
tioning, that these regions encode (Johnson et al. 2012), which
was corroborated by associations of the same ROI with MMSE
and CDR scores (Table S7). Although, we cannot rule out that
some of these findings could be caused by some misdiagnosis
of frontotemporal dementia or vascular pathology, as screening
is not systematic across the cohorts, and differential diagnostic
can be difficult at the early stage of the diseases. Surprisingly,
we did not find an association between Alzheimer's disease
and posterior cingulate structure (either at a ROI or vertex-
wise level), a region known to display strong hypometabolic
(PET) changes in early stages of AD (Minoshima, Foster, and
Kuhl 1994; Brun and Gustafson 1976). Reduced thickness in
posterior cingulate has been reported before (Choo et al. 2010;
Lehmann et al. 2010; Lerch et al. 2005), but in small stud-
ies prone to false positive and inflated association estimates
(Marek et al. 2022). More work is needed to clarify the link
between posterior cingulate hypometabolism and grey-matter
structure, which may only appear in later stages of Alzheimer's
disease.
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Overall, inconsistent results in the literature can come from
the use of different cortical atlas, which can capture different
(non-overlapping) information (Fiirtjes et al. 2023). In addi-
tion, some of the ROI associations we have identified may be
(partly) redundant with those observed with the medial tem-
poral lobe due to the correlation between ROI measurements.
Our attempt to estimate the specific ROIs-trait association ap-
peared underpowered (no association reached significance),
but may be investigated in larger samples, or in post hoc
analyses.

4.3 | Grey-Matter Markers of Alzheimer's
Conversion and Neuropsychological Scores

We also identified brain markers of AD conversion, beyond
those also associated with Alzheimer's status. They included
thicker lateral occipital cortex and larger cortical area of the
middle temporal gyrus (Table S7), which replicated in the
MEMENTO cohort. These brain markers could be specific
to early stages of the disease, and have previously been im-
plicated in object recognition (Grill-Spector, Kourtzi, and
Kanwisher 2001), but also in face and emotion recognition, as
well as reading ability (Tanaka 2001). Future studies should
clarify if these regions remains associated in later stages of
AD (e.g., at a vertex-wise level), or if these brain markers are
stage specific. Together, the identified markers of AD con-
version, could significantly predict an individuals' risk of
receiving a diagnosis within 5Syears of the brain MRI, in an
independent sample (MEMENTO, Table S12). Prediction ac-
curacy remained modest (R?<0.051, i.e., AUC <0.63, or co-
hen's d < 0.46) and below some of the published results (mean
AUC=0.74, range 0.59-100; across 48 studies). However, our
predictors only include ROIs or vertex-wise measurements
that reached significance and were not designed to maximise
prediction accuracy. In addition, the accuracy previously re-
ported is likely optimistic (or overfitted) as predictors were
trained and evaluated on ADNTI only (Ansart et al. 2021).

The brain markers associated with neuropsychological scores
(after controlling for AD status) shed light on the grey-matter
circuits associated with cognition domains and functioning.
Currently, the identified brain regions largely overlapped with
those found to be associated with AD (Figure 6), although larger
imaging samples should reveal many more relevant (and spe-
cific) grey-matter regions, as indicated by the gap between mor-
phometricity (Figure 1) and the variance currently explained by
the identified regions (see prediction R?, Table S12).

4.4 | Alzheimer's Brain Score Captures Disease
Risk in Healthy Individuals

The overlapping patterns of association we observed between
AD and neuropsychological scores (Figure 5) led to performant
cross-trait prediction, in non-diseased individuals (Figure 7,
Table S13). Thus, we found that AD brain scores were associated
with MCI status (memory and language impairments), AD con-
version, AD genetic risk (incl., APOE e4), total Tau level from
cerebral spinal fluid (associations with phosphorylated Tau
or Amyloid-beta did not reach significance), and a wide range

of cognitive scores (Figure 7, Table S13), which can shed light
on the nature of the AD-related grey-matter markers reported
above. The robust and transferrable prediction accuracy (across
traits and samples) suggests that our AD brain scores could be
used widely, when samples sizes are too small to derive efficient
predictors of related traits, or when AD status is not collected or
available. For example, our AD brain score could (partly) differ-
entiate MCI from HC in PISA (Figure 7, Table S13), while the
direct analysis of MCI versus HC did not yield significant pre-
diction accuracy (Table S12). In addition, the fact that similar
grey-matter regions are associated with AD and related traits
warrants the use of multivariate approaches, that could boost
discovery in future studies.

4.5 | More Precise Grey-Matter Maps Require
Larger Samples

Our analysis of almost 10,000 brain MRI has identified many
associations between grey-matter and our traits of interests
(94 significant ROIs, 307 clusters of significant vertices, across
the 24 traits considered). However, our findings fail to account
for the full morphometricity (either ROI based or vertex-based,
Figures 1 and 2), suggesting that larger samples are needed
to identify additional brain regions with smaller effects, or to
estimate more precisely the association effect sizes. For ex-
ample, the significant ROI associated with AD could explain
12% (SE=3.6%) of the variance in case control status in PISA
(Table S12), while we estimated a ROI based morphometricity of
21% (SE =3.6%, Figure 1, Table S4) across the discovery samples
(R?=27%, SE=7.7% in PISA). Even more strikingly, the signif-
icant vertex-wise measurements accounted for 13% (SE=4.4%,
Table S12) of AD variance, well short of the vertex-wise morpho-
metricity of 100% (SE = 6.4%, Figure 1, Table S5).

4.6 | ROI Versus Vertex-Wise Analyses

We conducted analyses on two scales ROI-wise and vertex-wise.
Vertex-wise analyses allows detection of more localised associ-
ations at the cost of a higher multiple testing burden. For exam-
ple, some of the ROI detected as significant (e.g., in the frontal
regions, Figure 5), did not generate significant vertex-wise as-
sociations within the matched regions. However, we found 94
significant ROI associations (Table S7) but 307 clusters of signif-
icant vertices (Figure 4, Table S9), which indicates that vertex-
wise analysis are also well powered using our current sample
size. The different number of findings can be explained by the
fact that vertex-wise analyses allow the detection of several,
independent clusters of significant vertices within a ROI (e.g.,
Figure S19). For example, when using LMM that limit the de-
tection of redundant associations (Couvy-Duchesne et al. 2022),
we identified 9 significant clusters associated with AD in the left
hippocampus. This exemplifies the fact that a lot of the brain
variation is lost when aggregating vertices across large regions
(ROI), which results in a ROI based morphometricity 3 to 20
times lower than the vertex-based morphometricity (Figure 1),
similar to what we have reported on the UK Biobank (Couvy-
Duchesne, Strike, et al. 2020). In addition, each atlas used to de-
fine the ROIs (here we used Desikan-Killiany) removes signal of
interest in specific part(s) of the brain (Fiirtjes et al. 2023), which
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likely explains why we have detected significant vertices in ROIs
that did not reach significance (Figure 5, Figure S19).

In summary, ROI based analyses are best suited to association
analyses in single cohorts, where statistical power remains lim-
ited. However, they provide a simplified, and limited descrip-
tion of the associations in the brain. In future, as sample sizes
grow, vertex-wise analyses can unveil more complex patterns of
associations and should supersede prediction accuracy achieved
from ROIs. Our results demonstrate that vertex-wise analyses
can already offer a precise localisation of the brain regions asso-
ciated with diseases and traits, are well powered (with samples
of several thousands), and yield robust, homogeneous, and re-
producible results.

In addition, our results also echo a recent debate about power
of brain wide association studies. We observed that the sta-
tistical power depends on the trait studied and was larger for
case control status (AD versus HC), where contrast is large,
than for cognition domains (Libedinsky et al. 2022). Yet, our
analysis suggests that thousands of individuals are required to
detect robust associations (Marek et al. 2022), especially when
the number of brain measurement tested is large (Smith and
Nichols 2018), and that tens of thousands would be necessary
to further progress our understanding of grey-matter struc-
ture in AD.

4.7 | GLM Versus LMM in Vertex-Wise Association
Testing

Compared the current state of the art (GLM), LMM lead to par-
simonious brain maps of associations (30 clusters versus 103 for
AD versus HC, Tables S9 and S10), as it controls for all brain
measurements (fitted as a random effect) which prevents redun-
dant associations from reaching significance (Couvy-Duchesne
et al. 2022). For proof, the 30 ‘LMM’ clusters account for the
same amount of information as the 103 identified using GLM
(Figure 7, Tables S12 and S13). LMM also offer a more precise
localization of the associated regions, and can identify several
independent signals in close vicinity when the GLM detects a
single large cluster of association (Figures 4 and 5), which aligns
with results from simulations (Couvy-Duchesne et al. 2022). As
sample sizes grow, the power to detect smally associated regions
will increase, leading to detect more redundant regions (in low
correlation with associated regions) using GLM. Some of the re-
dundant regions may even be false positive, if the correlation be-
tween brain measurements is induced by a confounding factor,
such as head motion or age (Couvy-Duchesne et al. 2022). LMM
could overcome these issues and help prioritise key regions of
AD atrophy that can be used to build interpretable brain-based
predictors or be followed up in research.

4.8 | Family History as a Proxy-Phenotype
for Alzheimer's Disease

Our analysis of maternal and paternal history of Alzheimer's,
conducted in clinical cohorts as well as in the UK Biobank
(N=37,644) indicated a low (almost negligible, R?< 5%) associ-
ation with grey-matter structure. This result is in line with the

weak association between familial history and AD status. In
the UK Biobank, the morphometricity may be further reduced
due to the relatively young age of the participants (63years old
on average), consistent with reports of an age-dependent effect
of APOE on the brain (Jack et al. 2015; Thompson 2020). Our
results currently suggest that family history cannot be directly
used as a proxy phenotype of AD, in order to boost power of brain
wide association studies, unlike in GWAS (Marioni et al. 2018).

4.9 | Limitations

In neuroimaging, choices made in image processing can im-
pact the results. We have used a simple, albeit commonly used
atlas (Desikan et al. 2006) to define our ROIs, which makes our
results comparable with those published by the ENIGMA con-
sortium. Following a recent article, we can expect that more
complex atlases (with more ROIs) would capture more trait vari-
ance (morphometricity), although each atlas also captures some
unique signal, which makes comparison of results across atlases
difficult (Fiirtjes et al. 2023). In addition, we considered the
most general and high-dimensional vertex-wise representation
available in FreeSurfer (‘fsaverage’ with no smoothing applied),
as we observed that it maximised the morphometricity cap-
tured in the UK Biobank (Couvy-Duchesne, Strike, et al. 2020).
Our choice led to the identification of many clusters of signif-
icant vertices, but using a simpler mesh (e.g., fsaverage6 with
only 40,962 vertices per hemisphere) might have resulted in in-
creased statistical power, by reducing the multiple testing bur-
den, while still capturing a large fraction of the morphometricity
(Figure 1). Smoothing might improve the overlap of signals
across individuals' maps, although it would likely reduce the as-
sociation effect sizes, with an overall unclear effect on power. In
general, more work is needed to guide researchers into choosing
the best image processing (and software), which may vary de-
pending on the objective of the study and the traits of interests.
This concern can be extended to the choice of harmonisation
procedure, when dealing with several scanners or cohorts. Here,
we used covariates (e.g., site, scanner) throughout the analyses,
and meta-analysed results across cohorts, which yielded robust
and replicable results. Our results can serve as benchmarks for
future work that would evaluate the effect of applying more
advanced harmonisation techniques, such as ‘combat’ (Fortin
et al. 2018), its extensions or even deep-learning approaches (Hu
et al. 2023).

Beyond MRI processing, the method used for multiple testing
comparison can also influence power. RFT can be less stringent
than Bonferroni, but only on smooth surfaces/volumes (Breznik
et al. 2020), where the morphometricity (hence overall power)
is reduced. More work is needed to evaluate which combination
of MRI processing and multiple testing maximises power. In
addition, we have used vertex-wise RFT but cluster-based RFT
(Breznik et al. 2020; Nichols and Hayasaka 2003) and more ad-
vanced implementations (Bowring et al. 2021) may give differ-
ent results. We have not used them here, as they have only been
implemented to be performed on specific set of surfaces (typi-
cally, only cortical surfaces).

Another possible limitation concerns potential heteroge-
neity of cohorts. While AD status was always based on a
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clinical assessment (NINCDS/ADRDA, DSM-IV or ICD10 crite-
ria, Appendix A), some cohorts used additional inclusion criteria
(e.g., MMSE score threshold for dementia severity). In addition,
Alzheimer's cases, were not systematically screened for other
dementias, and few had known amyloid status. Fuzzy diagno-
ses can lead to a loss of power, or to detect brain markers as-
sociated with general dementia and less specific to Alzheimer's
disease. Of note, the modalities of recruitment and the screen-
ing of the healthy controls also varied depending on the cohort
(Appendix A), which can further induce variability in the re-
sults. Lastly, MCI were typically defined using the Petersen/
Winblad criteria, but the definition of impairments varied across
the samples (Appendix A). To ensure reporting of robust results,
we used a mixed effect meta-analytic approach that models
between-cohort heterogeneity, to ensure the detected associ-
ations are consistent across samples. In practice, this reduces
the influence of each cohort (and its specific ascertainment and
recruitment) on the results. In addition, we validated our find-
ings using independent samples for replication, and prediction
analyses. As the sample sizes grow, it will be possible to restrict
the analyses to more uniform cases (e.g., screened for amyloid),
and to investigate the robustness of the results across specific
subgroups of interest.

Lastly, we have treated all our traits/diseases as continuous in
our analyses, meaning that our reported estimates cannot be
directly converted into odd-ratios (OR), or compared with re-
sults that used a logistic regression. This is because, logistic re-
gression is not routinely implemented for LMM, and effect sizes
from linear regression can be easily transformed into approxi-
mate OR (Lloyd-Jones et al. 2018).
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