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ABSTRACT
Alzheimer's disease (AD) brain markers are needed to select people with early-stage AD for clinical trials and as quantitative 
endpoint measures in trials. Using 10 clinical cohorts (N = 9140) and the community volunteer UK Biobank (N = 37,664) we 
performed region of interest (ROI) and vertex-wise analyses of grey-matter structure (thickness, surface area and volume). We 
identified 94 trait-ROI significant associations, and 307 distinct cluster of vertex-associations, which partly overlap the ROI 
associations. For AD versus controls, smaller hippocampus, amygdala and of the medial temporal lobe (fusiform and para-
hippocampal gyri) was confirmed and the vertex-wise results provided unprecedented localisation of some of the associated 
region. We replicated AD associated differences in several subcortical (putamen, accumbens) and cortical regions (inferior pa-
rietal, postcentral, middle temporal, transverse temporal, inferior temporal, paracentral, superior frontal). These grey-matter 
regions and their relative effect sizes can help refine our understanding of the brain regions that may drive or precede the 
widespread brain atrophy observed in AD. An AD grey-matter score evaluated in independent cohorts was significantly asso-
ciated with cognition, MCI status, AD conversion (progression from cognitively normal or MCI to AD), genetic risk, and tau 
concentration in individuals with none or mild cognitive impairments (AUC in 0.54–0.70, p-value < 5e-4). In addition, some 
of the grey-matter regions associated with cognitive impairment, progression to AD (‘conversion’), and cognition/functional 
scores were also associated with AD, which sheds light on the grey-matter markers of disease stages, and their relationship 
with cognitive or functional impairment. Our multi-cohort approach provides robust and fine-grained maps the grey-matter 
structures associated with AD, symptoms, and progression, and calls for even larger initiatives to unveil the full complexity 
of grey-matter structure in AD.

1   |   Introduction

Research into Alzheimer's disease (AD) aetiology suggests that 
the underlying neuropathology (toxic amyloid-β [Aβ] species 
and hyperphosphorylated tau protein accumulation) can be ob-
served many years (possibly decades) before the first symptoms 
of cognitive or functional decline (Jack et al. 2010; Villemagne 
et al. 2013). Accumulation of Aβ and tau is thought to result in 

synaptic, neuronal and axonal damage, leading to grey-matter 
atrophy, typically seen first in the hippocampus and medial 
temporal lobe (Frisoni et al. 2010; Jack et al. 2010). These brain 
changes progressively tap into the ‘brain reserve’ (Fratiglioni 
and Wang 2007), which could explain the delay between brain 
atrophy and onset of mild cognitive impairment, which itself can 
precede AD diagnosis by a few years (Apostolova 2016; Frisoni 
et al. 2010; Jack et al. 2010).

https://ida.loni.usc.edu/collaboration/access/www.fnih.org
http://www.alzheimersdata.org
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Recent clinical trials testing new drugs for AD focus on indi-
viduals with early AD (mild cognitive impairment or mild de-
mentia) (van Dyck et al. 2023). Hence, AD imaging biomarkers 
are needed to improve disease staging (Matsuda 2016), iden-
tify trial participants, and could also serve as secondary end-
points in trials to evaluate the effect of treatment/intervention 
on the brain (van Dyck et  al.  2023). In research, brain bio-
markers may be used to study AD risk in cohorts where the 
information was not collected or available, and to prioritise 
the disease-relevant brain regions in molecular analyses (e.g., 
omics).

PET (positron emission tomography) is considered the brain 
imaging modality of choice for Alzheimer's in that it can mea-
sure Aβ, tau or fluorodeoxyglucose (synaptic dysfunction) (Jack 
et al. 2010). However, the radiochemistry availability and cost 
limit its use in research and the number of scans available. In 
comparison, structural MRI (sMRI) can provide biomarkers of 
early AD, is less invasive and leverages scans that have been ex-
tensively collected in both clinical and research settings. In ad-
dition, sMRI can capture grey-matter changes regardless of the 
underlying neuropathological processes and is hence potentially 
more sensitive (Bejanin et al. 2017; Chételat et al. 2010; Frisoni 
et al. 2009).

Several studies have identified brain regions more susceptible 
to grey-matter atrophy in Alzheimer's disease. Early atrophy 
of hippocampus, amygdala and medial temporal lobe (ento-
rhinal, parahippocampus gyri) has been well documented, 
and even confirmed by neuronal counts in autopsies (Johnson 
et al. 2012). Atrophy has also been reported in the posterior 
cingulate, precuneus and in the rest of the temporal lobe, or 
in the sensory and primary motor cortex although they are 
thought to appear later in the disease progression (Johnson 
et al. 2012; van Oostveen and de Lange 2021). However, most 
of these neuroimaging studies have relied on a single neuroim-
aging cohort and the reported levels of regional atrophy vary 
widely from one study to the next (e.g., hippocampal reduction 
reported between 15% and 25%, yearly rate of atrophy between 
3% and 5%) (Johnson et al. 2012), which may reflect different 
disease severity or stages in the sample, but may also reflect 
a lack of precision of the effect sizes estimated from small 
samples (Marek et al. 2022). In addition, there is currently no 
multi-cohort agnostic study of structural AD brain markers 
(e.g., similar to that of the ENIGMA consortium Thompson 
et al. 2020), that can quantify the relative associations of the 
different brain regions, provide robust maps of associations 
(generalizable to other cohorts) and detect novel associations 
by boosting statistical power (Marek et  al.  2022; Smith and 
Nichols 2018). To answer this challenge, we have gathered al-
most 10,000 scans from 10 clinical cohorts (and > 37,000 from 
the UK Biobank), to perform exploratory analyses of brain 
markers of Alzheimer's disease. We have used the ENIGMA 
processing pipelines to extract grey-matter measurements to 
make our results comparable with those obtained by the con-
sortium on other disorders of the brain (Thompson et al. 2020).

Neuroimaging studies of AD progression from MCI or cogni-
tively normal (CN) (and more generally of early stages of AD) 
can shed light on early brain markers, which are of greater 

clinical interest. However, they are limited by small sam-
ple sizes that reflect the difficulty, and cost associated with 
following individuals prospectively, over years. As a conse-
quence, only the hippocampus and entorhinal cortex have 
been confidently linked to Alzheimer's conversion (i.e., pro-
gression from MCI or CN to AD related dementia) (Lombardi 
et al. 2020), and predictors based on brain structure currently 
exhibit low robustness and performance (Ansart et al. 2021). 
Here, we combined data from several cohorts, to directly in-
vestigate the structural brain markers associated with MCI 
status, Alzheimer's conversion, as well as neuropsycholog-
ical (cognition and functioning) scores. In addition, we sys-
tematically evaluated the (out-of-sample) prediction accuracy 
achieved from the identified biomarkers of Alzheimer's dis-
ease course and quantify their generalizability and possible 
usage in research or clinical trials.

Another limitation of the brain biomarkers identified to date is 
that they comprise broad brain regions or structures (regions of 
interest [ROI]) which lack precision or specificity. For example, 
the medial temporal lobe atrophy reported, does not precisely 
identify the atrophied gyri or the contours of the susceptible re-
gion(s). Lower hippocampal volume in AD is well established, 
and may originate in the CA1 subfield (de Flores, La Joie, and 
Chételat 2015), although it is also observed across most subfields 
(Zhang et al. 2023). More precise association maps (at a voxel/
vertex wise level) are needed, that could reveal disease specific 
signatures in grey-matter structure, beyond the reduction in hip-
pocampal volume (and subfields) that have been found for most 
diseases studied by the ENIGMA (Enhancing Neuro-Imaging 
Genetics through Meta-Analysis) consortium (Thompson 
et al. 2020). To progress this issue, we complemented our ROI 
based analyses by brain wide association studies at a vertex 
level. The large samples sizes we gathered provides improved 
statistical power to detect significant brain regions, despite 
the high multiple testing correction (Smith and Nichols 2018). 
Vertex-wise measurements capture more of the grey-matter 
complexity, than ROI measurements (Couvy-Duchesne, Strike, 
et al. 2020; Fürtjes et al. 2023), which should pave the way to 
more performant brain based predictors (Couvy-Duchesne, 
Strike, et al. 2020).

In our primary analysis, we performed a multi-cohort inves-
tigation of grey-matter structure associated with Alzheimer's 
disease. Our project complements the current ENIGMA ini-
tiatives (Thompson et al. 2020) by extending the analyses to 
Alzheimer's disease. In addition to a Region of Interest (ROI) 
approach, we perform analyses at a vertex level, to identify 
more localised brain markers, that could be more disease 
specific and predictive (Couvy-Duchesne, Strike, et al. 2020; 
Couvy-Duchesne et  al.  2022). To ensure robust results, we 
systematically evaluated replication and out-of-sample pre-
diction that the brain markers can achieve (Couvy-Duchesne 
et al. 2022; Marek et al. 2022). Finally, in a secondary analy-
sis, we investigated the grey-matter associations with several 
disease stages (MCI, conversion), symptoms (cognition, func-
tioning) and AD risk (family history). Together, primary and 
secondary analyses can help identify converging brain bio-
markers and evaluate how they translate into risk prediction 
across disease stages.
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2   |   Material and Methods

2.1   |   Samples

Data from 11 cohorts of older adults that collected structural 
brain MRI (T1w) were used together with clinical informa-
tion or neuropsychological scores of interests (Table  1, see 
Appendix A and Table S1, for details). We included data from 
ADNI (Alzheimer's Disease Neuroimaging Initiative, which 
we split in two cohorts ADNI1 and ADNI2 + GO + 3, based 
on MRI scanners [1.5T vs. 3T]), AIBL (Australian Imaging, 
Biomarker and Lifestyle) (Ellis et  al.  2009), ARWIBO 
(Alzheimer's Disease Repository Without Borders) (Frisoni 
et  al.  2020; Riello et  al.  2005), EPAD (European Prevention 
of Alzheimer's Dementia) (Lorenzini et  al.  2021; Ritchie 
et al. 2020; Solomon et al. 2019), MAS (Sydney Memory and 
Ageing Study) (Kochan et al. 2010; Sachdev et al. 2010; Tsang 
et al. 2013), OASIS3 (Open Access Series of Imaging Studies 
3) (LaMontagne et al. 2018), OATS (Older Adults Twin Study) 
(Koncz et  al.  2018; Sachdev et  al.  2009, 2013), MEMENTO 
(Dufouil et al. 2017) and PISA (Prospective Imaging Study of 
Ageing: Genes, Brain and Behaviour) (Lupton et al. 2020) and 
the UK Biobank (Miller et al. 2016).

We used ADNI1, ADNI2GO3, AIBL, ARWIBO, EPAD, MAS, 
OASIS3 and OATS as discovery samples, which together com-
prise 6981 individuals with usable brain MRI, including 4653 
healthy controls at the time of MRI, 1343 individuals with mild 
cognitive impairment (MCI) and 796 Alzheimer's disease cases 
(Table  1). We sought to replicate the findings in MEMENTO 
(N = 1880) and PISA (N = 279). The UK Biobank is, by far, the 
largest neuroimaging study (N = 37,644), but due to the recruit-
ment strategy (community volunteer, and age range) there were 
no AD cases at the time of imaging, and only a handful of in-
cident cases had been reported at the time of data extraction. 
Thus, we only used the UKB in our analyses of parental history 
(Appendix A, Table 1, Table S1).

2.2   |   Clinical Status and Traits of Interest

We tested for differences in grey-matter structure of individuals 
with Alzheimer's disease to that of healthy controls (AD versus 
HC) and MCI (AD versus MCI), and between MCI and controls 
(MCI versus HC). We also used a 3-point scale: 0 = HC, 1 = MCI, 
2 = AD.

We studied AD conversion (or progression to AD dementia) 
using participants who were recorded as controls and MCI in-
dividuals at the time of brain imaging but who later received a 
diagnosis of Alzheimer's disease and considered different post-
imaging time frames (1, 2, 3, 4 and 5 years). We ensured that 
non-converter individuals had been also followed over the same 
time window.

We studied neuropsychological scales that were available in at 
least 4 out of the 8 discovery cohorts or that were available on 
more than 3000 individuals. Thus, we considered scores from 
the Mini Mental Scale Evaluation (MMSE, available on all co-
horts), Clinical Dementia Rating (CDR), Functional Activity 
Questionnaire (FAQ) that assess dementia symptoms and 

functioning. We also included the Geriatric Depression Scale 
(GDS) and the Neuropsychiatric Inventory Questionnaire 
(NPI-Q) that focus on the psychiatric domains often associ-
ated with Alzheimer's. In addition, we studied memory scores 
such as the Rey Auditory Verbal Learning Test (RAVLT) which 
produces 5 scores of verbal memory (short term memory, work-
ing memory and long-term memory), and the Logical Memory 
scores that target episodic memory (short and long term).

Lastly, we considered self-reported maternal and paternal 
history of Alzheimer's disease. Parental history is available 
on the UK Biobank and could serve as a proxy phenotype for 
Alzheimer's disease in samples that do not contain many cases 
(Marioni et al. 2018).

2.3   |   MRI Acquisition and Processing

We have summarised the MRI acquisition parameters used in 
the different studies in Appendix A. For all samples (except for 
the UKB), we performed the surface based processing of the 
T1w brain MRI using FreeSurfer 6.0 (Fischl  2012), followed 
by the ENIGMA-shape package (https://​enigma.​ini.​usc.​edu/​
ongoi​ng/​enigm​a-​shape​-​analy​sis/​) (Gutman et al. 2013; Gutman 
et al. 2012).

For the UKB, we downloaded the outputs from FreeSurfer 6.0 
processing performed by the UKB (bulk field 20,263), which 
used the T1w but also the T2 Flair images in order to improve 
grey-matter parcellation (Miller et al. 2016). We then conducted 
the ENIGMA-shape processing, to further extract surface-based 
processing of seven subcortical structures.

2.4   |   ROI and Vertex-Wise Grey-Matter 
Measurements

We extracted the Region of Interest (ROI) values (produced by 
FreeSurfer 6.0), of cortical thickness and surface area based on 
the Desikan-Kiliany atlas (Desikan et al. 2006), as well as the 
volume of the seven subcortical structures. This resulted in 150 
ROI measurements of grey-matter structure, which correspond 
to the brain measurements used in previous ENIGMA publica-
tions (Thompson et  al.  2020). Mean and variances of the ROI 
based measurements were comparable between samples, that 
were acquired on different machines (Figure S1).

In addition, we extracted 654,002 vertex-wise measurements, 
which consist in 299,881 cortical vertices (‘fsaverage mesh’) for 
which we have thickness and surface area measurements and 
27,120 subcortical vertices, at which we measure radial thick-
ness and a measure analogous to a surface area (Roshchupkin 
et al. 2016). We have used and evaluated this MRI processing in 
two previous publications (Couvy-Duchesne, Zhang, et al. 2020; 
Couvy-Duchesne et al. 2021).

Using the standardised vertex-wise measurements, we calcu-
lated the brain-relatedness matrix for each sample, which quan-
tifies the similarities between a pair of individuals' grey-matter 
structure (Couvy-Duchesne, Strike, et al. 2020). We excluded the 
pairs of participants that had the extremely similar or dissimilar 

https://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/
https://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/
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grey-matter (8SD from the distribution mean), as they can bias 
results from mixed model analyses. This led to exclusion of 
between 0.3% and 0.9% of the individuals across the different 
samples.

As a check of compatibility of the different datasets, we con-
trasted the mean and variance of the vertex-wise measure-
ments calculated on the healthy individuals from the different 
samples (Figures S2–S5). We observed a great concordance of 
the average vertex values across the different samples. Of note, 
average cortical thickness was larger in the UKB (Figure S3) 
than in the other samples, which is a known consequence of 
the combined use of the T1w and T2-FLAIR images in the 
FreeSurfer processing (Lindroth et  al.  2019). We observed 
some variability of the vertices' variance between samples, 
although concordance remained high (Figures  S2–S5). This 
led us to flag ‘noisy’ vertices that exhibited outlying variance 
in at least one sample (> 6SD from the regression lines shown 
in Figures  S2–S5), which could suggest they are prone to 
measurement error in some of the samples. About 1% of the 
vertices were flagged, equally distributed across each type of 
measurement (Figures  S6 and S7, Table  S2), although some 
brain regions contained a large proportion of flagged verti-
ces (37% of anterior cingulate [thickness] consisted in flagged 
vertices, 35% of entorhinal gyrus [thickness], 18% of tempo-
ral pole [thickness], and 35% of the accumbens [surface area], 
Table  S2). Considering the overall small number of ‘noisy’ 
vertices, we included them in the subsequent analyses, so we 
could evaluate if they were more likely to reach significance 
in association testing.

2.5   |   Methods

We performed association testing within each discovery sam-
ple (Table 1) and meta-analysed the results. We used PISA and 
MEMENTO to replicate the significant associations and to test 
the out-of-sample prediction.

2.5.1   |   Analyses Using Grey-Matter Regions of Interest 
(ROI)

First, we estimated the total association (ROI based morpho-
metricity) between each of our traits of interest and the 150 ROI 
measurements of grey-matter structure (cortical thickness and 
surface area; subcortical volumes). We used multiple regres-
sion, using the lm() function in R (version 4.2.2), and compared 
the full model (ROI and covariates) to a ‘null model’ that only 
included covariates. We reported the difference in adjusted 
R2 between the two models and estimated its standard error 
using bootstrap (boot package). Finally, we tested whether the 
ROI-based R2 (ROI based morphometricity) was significantly 
different from zero using a likelihood ratio test (lmtest pack-
age). From the full model, we also extracted the conditional 
associations between the ROIs and the traits of interests. These 
associations correspond to that of each ROI, while controlling 
for covariates and all other ROIs. We can expect that these as-
sociations are free from redundant (or false positive) associa-
tions that arise from correlated ROI measurements.

Next, we estimated the ROI-traits associations using 150 differ-
ent linear regressions (i.e., one regression per ROI) that control 
for covariates. Unlike for the conditional associations (from 
multiple regression), some of the univariate associations may be 
(in part, or fully) redundant, in that they would tag signal from 
correlated ROIs. We expect the association effect sizes to be 
larger and to be more often significant, compared to the model 
that fits all ROIs at once.

2.5.2   |   Vertex-Wise Association Studies

We first used a General Linear Model (GLM), which has been 
more commonly used in mass-univariate association testing 
and can be written as:

where, y is a vector of size N of the trait of interest, xi is a vector 
of the ith vertex-wise measurement and bi the association effect 
size (between each vertex and the trait of interest) we seek to 
estimate. Z is a matrix of size Nxq of q covariates and c a vec-
tor of the q fixed effects. � is the error term assumed to follow 
� ∼

(

0, Iσ2
�

)

.

In addition, we used a linear mixed model (LMM), which is an 
extension of the GLM that further controls for all vertex-wise 
measurements, fitted as a random effect. We have shown using 
simulations that this approach could remove many redundant 
associations detected by the GLM, some of which are likely to 
be spurious associations caused by imaging confounders re-
sponsible for short and long-range correlations between brain 
measurements(Couvy-Duchesne, Zhang, et  al.  2020; Couvy-
Duchesne et al. 2021). The model becomes:

With, X the Nxp matrix of all standardised vertex-wise mea-
surements, and � a px1vector of random effect assumed to be 
normally distributed with variance σ2

�
: � ∼

(

0, Iσ2
�

)

. Fitting 
X� as a random effect allows for the case where there are 
more vertex-wise measurements than individuals (p > N). The 
variance–covariance matrix for Y is var(Y) = XX�σ2

�
 +Iσ2

�
= B 

p�2
�
 + Iσ2

�
. Here, we recognise B = XX� ∕p as the brain relat-

edness matrix and p�2
�
 the morphometricity (phenotypic 

variance captured by the total association with all vertices) 
(Couvy-Duchesne, Strike, et al. 2020).

In addition, we used a LMM in which we fitted cortical and sub-
cortical measurements, as well as thickness and surface area as 
specific random effects. We found using simulations, that this 
model was best suited to the situation where some modalities 
are not associated with the trait of interest (Couvy-Duchesne, 
Zhang, et al. 2020). The model becomes:

X1, X2, X3, X4 are the matrices of standardised vertex-wise 
measurements from cortical thickness, cortical surface area, 
subcortical thickness and subcortical surface area. Each 

(1)y = xibi + Zc + �

(2)y = xibi + Zc + X� + �

(3)y = xibi + Zc + X1�1 + X2�2 + X3�3 + X4�4 + �
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�j ∼

(

0, Iσ2
�j

)

 (j in 1–4) is the vector or vertex trait associa-
tions specific to each random effect. This means that each σ2

�j
 

quantifies the trait variance that is accounted for by a set of mea-
surements, which can be 0.

LMM and GLM models are implemented in the efficient OSCA 
software, which allows performs hundreds of thousands of tests 
in minutes using low memory (RAM) requirements (Zhang 
et al. 2019).

2.5.3   |   Statistical Testing and Multiple Comparisons 
for Vertex-Wise Models

We performed a χ2 test of the association between the phenotype 
and each vertex 

(

Xi

)

 using that: 
(

bi
SE(bi)

)2

∼ χ2
1
 under the null 

hypothesis of no association. We corrected for multiple testing 
using Bonferroni correction, which allows to control false posi-
tive rate across several surfaces (left and right hemisphere, cor-
tical thickness and area) and may be best suited to analyses on 
unsmoothed data (Nichols and Hayasaka 2003). We further cor-
rected for the number of phenotypes tested (24, Table 1), which 
resulted in a significance threshold of 3.18e-9 for reporting sig-
nificant vertex-wise associations.

Finally, we also applied Random Field Theory (RFT) as an al-
ternative to Bonferroni, which models the spatial autocorrela-
tions of the test statistics across a surface We applied a recent 
implementation of vertex-wise RFT from the NeuroShape tool-
box (https://​github.​com/​nikit​as-​k/​neuro​shape​-​dev/​tree/​main/​
neuro​shape/​​) to our cortical and subcortical surfaces of interest: 
NeuroShape only requires, for each surface, the vertices coor-
dinates and corresponding t-statistic of association. We used a 
significance threshold of 0.05/24/18 = 1.1e-4 to account for the 
number of grey-matter surfaces (18) and traits tested (24).

2.5.4   |   Vertex-Wise Morphometricity

For each trait and each sample, we reported the vertex-wise mor-
phometricity, which corresponds to the total association between 
the trait and all (vertex-wise) measurements(Couvy-Duchesne, 
Strike, et al. 2020; Sabuncu et al. 2016). In practice, morphomet-
ricity is expressed as a proportion of the trait variance (R2) and es-
timated from a mixed model. It can estimated as R2 =

σ2
�

σ2
�
+σ2

�

 for 

model (2), or 
σ2
�1

+σ2
�2

+σ2
�3

+σ2
�4

σ2
�
+σ2

�1
+σ2

�2
+σ2

�3
+σ2

�4
 for model (3) (Couvy-Duchesne, Strike, 

et al. 2020). Model (3) also allows to decompose the morphometric-
ity into the (joint) contributions of each type of measurement (e.g., 

σ2
�1

σ2
�
+σ2

�1
+σ2

�2
+σ2

�3
+σ2

�4

 for the contribution of cortical thickness). The 
difference between vertex-based morphometricity and ROI based 
morphometricity indicates how much information may be lost by 
averaging brain measurements over ROIs, compared to using the 
full (vertex-wise) resolution.

2.5.5   |   Covariates

We considered standard imaging covariates, that were available 
for all samples: age, sex, age2, age × sex, intra-cranial volume 

(ICV, estimated from FreeSurfer 6.0), average cortical thickness 
and total cortical surface area (also estimated from FreeSurfer), 
site/scanner and field strength when pertinent (data sets AIBL, 
OASIS3). We did not consider the extended set of covariates 
that was recently suggested for the UKB (Alfaro-Almagro 
et al. 2021), as they were not available outside of the UKB (e.g., 
time since first scan, head-motion measured from resting-state 
fMRI). When studying neuropsychological scores, we further 
corrected for AD and MCI status, to be able to compare and 
meta-analyse results across cohorts that contain different pro-
portion of cases and MCI (Table 1).

2.5.6   |   Meta-Analysis

We meta-analysed the association maps from the discovery 
samples (ADNI1, ADNI2GO2, AIBL, ARWIBO, EPAD, MAS, 
OASIS3, OATS) using the Inverse Variance Weighted (IVW) ap-
proach, implemented in the R package meta (Balduzzi, Rücker, 
and Schwarzer  2019) (metagen function). We used a random 
effect approach, which considers that the different samples are 
randomly drawn from a global population. In particular, we used 
the REML method, which provides of the most robust estimates 
of the between-study variance (i.e., heterogeneity) (Veroniki 
et al. 2016), and we reported heterogeneity across studies using 
the Q statistic. Our meta-analytic approach is conservative, but 
also ensures the findings are generalisable in that only homoge-
neous association effect sizes across cohorts reach significance.

2.5.7   |   Replication and Out-of-Sample Prediction

We used MEMENTO and PISA to evaluate the stability of the 
morphometricity estimates and the replicability of the signifi-
cant brain-trait associations obtained from the meta-analyses. 
Using PISA, we could attempt to replicate results that involved 
AD cases, RAVLT scores. In MEMENTO, we sought to replicate 
the findings relating to AD conversion and all other neuropsy-
chological scores (e.g., MMSE, CDR, FAQ, logical memory).

We used out-of-sample prediction (into MEMENTO and PISA) 
to compare and validate the findings from the ROI and vertex-
wise association maps. Out-of-sample prediction gives confi-
dence that the identified brain-trait associations are true and 
generalisable. It also quantifies the total association between a 
trait and all grey-matter markers identified in the analyses. We 
used prediction accuracy to compare results obtained using, 
ROI, GLM or LMM association models or using Bonferroni ver-
sus RFT to account for multiple testing.

The linear prediction scores were built using the weights from 
the meta-analysed association maps. For vertex-wise associ-
ation maps, we only included the top vertex per cluster (i.e., 
vertex with the smallest pvalue), as we can assume that the 
other voxels of the cluster tag the same information. We used 
the Bonferroni significance level (3.18e-9) or RFT corrected 
p-value < 0.05 to define significant clusters. We reported the 
prediction accuracy as an R2 (to facilitate comparison with 
morphometricity), which we estimated using a linear model 
that included the covariates.

https://github.com/nikitas-k/neuroshape-dev/tree/main/neuroshape/
https://github.com/nikitas-k/neuroshape-dev/tree/main/neuroshape/
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2.5.8   |   Cross-Trait Prediction

We evaluated how much the brain prediction scores could pre-
dict different—albeit related—phenotypes in MEMENTO and 
PISA. This design can help tackle specific research questions 
about disease subtypes and progression. For example, we evalu-
ated the performance of Alzheimer's brain score to predict levels 
of amyloid beta and tau, which can inform on the relationship 
between grey-matter structure and protein concentration. We 
also investigated if the AD brain score could differentiate MCI 
from controls, predict AD conversion as well as cognition and 
functioning. These results can shed lights on whether the same 
brain regions contribute to disease symptoms, subtypes, pro-
gression, or severity. This cross-trait prediction (a.k.a. transfer 
learning) also leverages that the samples sizes are larger for AD 
versus controls than for conversion or some neuropsychological 
scores, which may produce a more performant predictor, even if 
the trait predicted differs from the one used in training.

3   |   Results

3.1   |   ROI Based and Vertex-Wise Morphometricity

We estimated the morphometricity R2 which quantifies the 
global association between a trait and all grey-matter measure-
ments. We contrasted the morphometricity (Figure 1) obtained 
from vertex-wise data (> 654,000 measurements) from that 
obtained using a ROI representation of the grey-matter (150 

measurements). The difference in morphometricity between 
vertex-wise and ROI analyses indicates how much information 
is lost when reducing the dimensionality of the brain (here by a 
factor 4300 [654,000/150]).

We found that most traits (19 out of 24) exhibited a significant mor-
phometricity (Figure 1, darker colours indicate p-value < 0.05/24; 
full details in Table S3–S5). Vertex-wise morphometricity was 3 to 
21 times larger than the ROI based one (Figure 1). For example, it 
was 3.6 times larger for Alzheimer's case control (‘AD versus HC’), 
14 times larger for the MMSE and 20 times larger for the CDR 
or the FAQ. Vertex-wise morphometricity of Alzheimer's disease 
and conversion was large (100% of variance accounted for when 
considering global brain measurements and vertex-wise mea-
surements, Figure  1), indicating that cases and converters may 
be completely distinguished from controls, based on their grey-
matter structure. In comparison, the vertex-wise morphometricity 
of MCI was lower (AD versus MCI: R2 = 0.64, SE = 0.10; MCI ver-
sus HC: R2 = 0.68, SE = 0.11), and that of neuropsychological scales 
ranged between 0.52 (SE = 0.069, FAQ) and 0.044 (SE = 0.059, 
RAVLT forgetting). Interestingly, family history of Alzheimer's 
disease (whether maternal or paternal) did not exhibit a signif-
icant morphometricity, suggesting the total association is null 
or too small to be detected at the current power. Using the UK 
Biobank, we confirmed that morphometricity of parental history 
was low. Vertex-wise morphometricity of maternal AD was 0.022 
(SE = 0.0054, p-value = 3.8e-5, N = 37,374), and not significantly 
different from zero in paternal AD (R2 = 0.0021, SE = 0.0033,   
p-value = 0.53, N = 31,739).

FIGURE 1    |    Morphometricity from ROI and vertex-wise representation of grey-matter structure. Morphometricity from vertex-wise brain data 
(fitted as a single random effect) is shown in yellow in the upper bar plot, while the ROI based morphometricity is shown in green in the lower bar-
plot. The trait variance accounted for by the global brain measurements (ICV, average cortical thickness and total cortical surface area for left and 
right hemisphere) is shown in purple. Whiskers represent the 95% confidence intervals around the morphometricity estimates. Bars with lighter yel-
low or green colours indicate morphometricity estimate not significant after multiple testing correction (p > 0.05/24). For each bar, morphometricity 
(whether vertex or ROI based) as well as the R2 accounted for by global brain measurement has been estimated in each clinical cohort and combined 
using a meta-analysis. Here, we report the morphometricity of neuropsychological scores (CDR, FAQ, GDS, LM, NPI and RAVLT) controlling for 
AD and MCI status.
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The two vertex-wise models (i.e., fitting all measurements as 
a single random effect, or fitting them as 4 modality-specific 
random effects) yielded comparable morphometricity esti-
mates (Figure  S8). However, we can explore the contribution 
of each modality to the global morphometricity (by looking at 
the variance explained by each modality-specific random ef-
fect, Figure 2). The results indicate that cortical thickness sig-
nificantly (p < 0.05/24/4) contributes to the morphometricity 
of Alzheimer's disease status, AD conversion, CDR, FAQ or 
the MMSE scores. In addition, we could confirm that subcor-
tical thickness and surface area also significantly contribute 
to the morphometricity of Alzheimer's disease. Such analysis 
has a lower power, due to smaller association R2 (compared to 
global morphometricity) and increased multiple testing, mean-
ing that larger samples will be required to precisely estimate 
the contribution of each type of measurement to the global 
morphometricity.

The vertex-wise morphometricity we presented in Figure  1 
was meta-analysed across all the discovery samples, and we 
note that the estimates appeared consistent across the dif-
ferent cohorts, as shown in the forest plots, and estimates of 
between-sample heterogeneity (Figures  S9 and S10). The ex-
ception was for the MMSE and CDR scores, that showed a 
heterogeneous morphometricity across samples, even when 
controlling for disease and MCI status (Figure S10, I2 = 74%, 
Q-test, p-value < 0.05/24). However, the heterogeneity was 
greatly reduced (I2 = 51% and I2 = 23%, p-value > 0.05) when es-
timating the morphometricity with modality-specific random 
effects (Figure S11), even if the meta-analysed result remained 
the same. This confirms the results from our simulations that 
a model with several variance components is more robust at 
estimating morphometricity, as it allows the different types of 
measurements to contribute more or less to the morphomet-
ricity (Couvy-Duchesne et al. 2022; Couvy-Duchesne, Zhang, 
et al. 2020). Finally, we observed that controlling for disease 
status, when studying neuropsychological scores reduced the 
between-cohort heterogeneity of results, as the morphomet-
ricity was inflated in the cohorts that contained Alzheimer's 
cases (Figure S12).

3.2   |   Associations With Global Brain 
Measurements

We tested the associations between global brain measurements 
(ICV, left and right cortical thickness and left and right cortical 
surface area, fitted together in a multiple regression) and our 
phenotypes of interest, to shed light on the ones contributing 
to the variance explained reported in Figures 1 and 2. We con-
trolled for all other covariates in the linear models and meta-
analysed the results across samples. Larger ICV was associated 
with Alzheimer's disease, Alzheimer's conversion (at 3, 4 and 
5 years) and with FAQ score. In addition, Alzheimer's cases also 
exhibited thinner left and right cortex, compared to controls. 
Individuals who converted within 4 years of brain imaging had a 
thinner left cortex. Finally, greater MMSE and RAVLT immedi-
ate memory scores were associated with thicker left cortex, and 
MMSE was further associated with larger left cortical surface 
area (Table S6).

3.3   |   ROI-Based Associations

We sought to identify ROI measurements that contribute to 
the ROI based morphometricity reported in Figure  1. First, 
we focussed on the marginal associations between ROI and 
traits of interest, which are estimated using multiple regres-
sion where all 150 ROI measurements are fitted in a linear 
model, together with the covariates. Of note, these same mod-
els are used in Figure 1 to estimate ROI-based morphometric-
ity. A single association survived multiple testing correction 
(p-value < 0.05/24/150), which suggested that hippocampal 
volume was associated with RAVLT delayed recall score. An 
increase of one SD in hippocampal volume was associated 
with a 0.79-point score increase (SE = 0.17, p-value = 3.3e-6, 
see Figure S13 for forest plot).

Next, we tested the association between traits and each ROI 
measurement, by including a single ROI in the linear model, 
and controlling for covariates. This is the standard approach 
in neuroimaging, for example used in the publications from 
the ENIGMA consortium (Thompson et  al.  2020), although 
we can expect some redundancy in the identified associations. 
This time, we identified 94 trait-ROI associations after con-
trolling for multiple testing (p-value < 0.05/24/150, Table  S7). 
Left hippocampus volume was still associated with RAVL 
delayed recall score (b = 0.79-point increase per volume SD, 
SE = 0.11, p-value = 9.6e-14, Figure S13), but so were right hip-
pocampus (b = 0.62) and right or left amygdala volumes (b = 0.49 
and b = 0.52). Unlike in the multiple regression approach, the 
comparison of Alzheimer's versus healthy controls yielded 32 
significant associations (Figure 3), which include smaller hippo-
campus and amygdala (to a lesser extend smaller putamen and 
accumbens), and reduced temporal lobe (fusiform, middle tem-
poral, inferior temporal, parahippocampal gyri, temporal pole). 
In addition, we also identified larger cortical thickness or surface 
areas in the paracentral, precentral, and postcentral gyri, as well 
as in the pars-opercularis and superior frontal regions (Figure 3).

Alzheimer's disease conversion was associated with thicker 
lateral occipital gyrus, as well as thinner hippocampus, mid-
dle temporal, and fusiform gyri (Figure S14, Table S6). Logical 
memory scores measure how much participants can recall a 
story. Lower immediate and delayed recall were associated with 
smaller hippocampus and thinner entorhinal gyrus, as well as 
an increased precentral gyrus. However, immediate recall was 
further associated with pars triangularis, while delayed recall 
was associated with the amygdala and the parahippocampal 
gyrus (Figure S15). The RAVLT memory scores, that evaluate 
how many words of a list can be remembered, only implicated 
the hippocampus, amygdala, and the entorhinal cortex (for im-
mediate recall) (Figure S15).

Lastly, the CDR, FAQ and MMSE were significantly associated 
with ROIs, mostly found to be associated with Alzheimer's 
disease, even if we controlled for disease status in the anal-
yses (Figure  S16). Associations were found with the hippo-
campus (MMSE), amygdala (MMSE, FAQ), middle temporal 
(CDR, MMSE), entorhinal (FAQ), inferior temporal (FAQ), 
postcentral (MMSE) as well as with the inferior parietal gyrus 
(MMSE).
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3.4   |   Vertex-Based Associations

We performed vertex-based association testing, to identify the 
localised grey-matter regions that contribute to the vertex-wise 
morphometricity. As in the ROI based association testing, we 
performed traditional mass-univariate testing (i.e., testing the 
trait association with a single vertex: GLM model) as well as 
multi-vertex testing (i.e., estimating the trait-vertex association 
controlling for all other vertices: LMM model). We expect the 
GLM to yield more associations, although some would be redun-
dant or confounded as they tag signal from other regions, whose 
association spreads though the brain connectome.

Using Bonferroni correction (p < 3.1e-9), the mass-univariate 
testing identified significant vertices for 16 (out of 24) traits (307 
significant clusters overall). In comparison, the LMM with a 

single random effect, identified significant vertices for only 3 
traits (AD versus HC, conversion at 2 and 3 years; 34 significant 
clusters in total) while the LMM with four random effects only 
found associations with AD versus HC (1 cluster; Figure  S17, 
Table  S8). Thus, when comparing Alzheimer's versus healthy 
controls, the mass univariate model returned 103 significant 
clusters (5523 significant vertex-wise measurements), that indi-
cated smaller (thickness and surface area) bilateral hippocam-
pus, amygdala, putamen and accumbens, as well as thinner 
pallidum (left and right), caudate (left) and lower surface of 
right thalamus. In addition, we observed thinner cortex in the 
temporal lobe (entorhinal, fusiform, parahippocampal, superior 
and middle temporal gyri, temporal pole) as well as associations 
in the insula, posterior cingulate, paracentral and precuneus 
(Table  S9, Figure  4a, also see Figure  S18 for unthresholded 
map). In comparison, the multi-vertex approach (LMM with a 

FIGURE 2    |    Vertex-wise morphometricity broken down into the contributions of each modality of brain measurement. Contributions from the 
different modalities are estimated jointly by fitting each type of measurement as a specific random effect in a mixed model. Significant contributions, 
after multiple testing correction (p < 0.05/24/4) are highlighted by a star.

FIGURE 3    |    Univariate ROI associations with Alzheimer's disease (Alzheimer's vs. healthy controls). Outside view (top panels) and Inside view 
(bottom panels). From left to right: Left cortical thickness, right cortical thickness, left cortical surface, right cortical surface, left subcortical volumes 
and right subcortical volumes. We only show significant ROIs after multiple testing correction (p < 0.05/24/150). The association effect sizes corre-
spond to the effect of 1 SD of ROI on the clinical status (0: Controls, 1: Alzheimer's).
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single random effect) located the significant associations in the 
hippocampus and amygdala (lower thickness and surface area), 
and only implicated the right entorhinal and insula thickness, in 
the cortex (Table S10, Figure 4b).

Compared to MCI, Alzheimer's cases exhibited thinner left 
hippocampus and bi-lateral amygdala. The surface of the left 
hippocampus and right amygdala was also found to be smaller 
(GLM only; Table  S9). Alzheimer's conversion was associated 
with smaller hippocampus and amydgala (using GLM and 
LMM), although the GLM identified many more significant 
clusters within those subcortical structures (Tables S9 and S10). 
In addition, the GLM identified clusters in the left temporal pole 
and right entorhinal that were thinner in converters than non-
converters. Finally, most of the grey-matter regions associated 
with the neuropsychological scales (FAQ, LM-delayed, MMSE, 
RAVLT) were in the hippocampus (Table  S9). The remaining 
significant clusters implicated the putamen, amygdala, and en-
torhinal gyrus (Table S9).

Nine clusters identified with GLM (2.9% of clusters), and three 
clusters found with LMM (8.8% of clusters) contained ‘noisy ver-
tices’ (Tables S9 and S10) which we defined as having variable 
variance across samples. Compared to the overall proportion 
of ‘noisy vertices’ (1.1%) this suggests they are more likely to 
reach significance in the analyses. We also found that RFT to be 
more conservative that Bonferroni's correction for multiple test-
ing (Table S8). Overall, RFT halved the number of significant 
clusters (120 versus 307 using GLM, 12 versus 34 using LMM, 
Table S8). The RFT significance threshold was specific to each 
cortical or subcortical surface. The most lenient RFT threshold 
was for the Accumbens (p-value < 2.9e-11) while the most strin-
gent was for cortical thickness (p-value < 7.7e-16).

3.5   |   Comparison of ROI and Vertex-Wise 
Associations

We represented (Figure 5) how much the significant ROIs co-
localised with clusters found in the mass-univariate vertex-wise 
analysis (GLM), and with those found in the multi-vertex one 
(LMM). We focussed on AD versus HC, which yielded signif-
icant associations in 38 grey-matter regions, across the three 
approaches. Overall, only four (4/38 = 10%) grey-matter regions 
(left and right amygdala and hippocampus) were consistently 
identified across the three analyses. Nine additional grey-matter 
regions (cortical and subcortical) reached significant in the ROI-
based and GLM vertex-wise analysis, and two were identified in 
both GLM and LMM analyses. Thus, only 15 (39%) of the identi-
fied grey-matter regions were significant in at least two analyses 
(Figure 5).

The concordance presented in Figure  5 does not take show 
whether the association was found with volume, thickness, or 
surface area, see detailed Sankey plots for all details (Figure 
S19). Furthermore, several clusters identified using GLM and 
LMM did not overlap, despite being located in the same grey-
matter regions (e.g., hippocampus, Figure S19).

The analyses of Alzheimer's conversion consistently implicated 
the hippocampus (Figure S20), and the GLM and LMM identi-
fied clusters in the amygdala that were not detected in the ROI 
based analysis. Only one of the three LMM-identified cluster (in 
right amygdala thickness) partially overlapped with a GLM clus-
ter (Figure S20).

Similarly, we observed mixed concordance for the ROI and 
GLM findings for the neuropsychological scales (Figures 21–25). 

FIGURE 4    |    Vertex-wise associations with Alzheimer's disease (Alzheimer's versus healthy controls). (a) mass-univariate (GLM) model, where 
the association with each vertex-wise measurement is estimated separately. (b) multi-vertex (LMM) model with a single random effect, where the 
association with each vertex-wise measurement is estimated conditional on all vertices fitted as a random effect. Outside view (top panels) and 
Inside view (bottom panels). From left to right: Left cortical thickness, right cortical thickness, left cortical surface, right cortical surface, left sub-
cortical volumes and right subcortical volumes. We only show in colour the significant vertex-wise measurement after multiple testing correction 
(p < 0.05/24/150). The association effect sizes correspond to cohen's d, that is, the effect of 1 SD of the vertex measurements on the clinical status (0: 
Controls, 1: Alzheimer's).
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Comparison was not possible with the LMM due to the lack of 
significant clusters with this approach.

3.6   |   Grey-Matter Regions Associated With 
Several Traits

The large number of significant clusters found in the subcortical 
volumes (in particular the hippocampus and amygdala) led us to 
investigate whether the same vertices/clusters were associated 
with several traits.

We found a substantial overlap between the vertex-wise mea-
surements associated (using GLM) with the different traits of 
interest (Figure 6). For example, 92% of the associations with 
AD versus MCI were also found in the AD versus HC anal-
ysis, 54% of the associations with conversion at 2 years were 
also found when studying conversion at 3 years, and 74% of 
the measurements associated with conversion at 4 were also 
found for conversion at 5 years. However, conversion at 2 or 
3 years seemed to implicate different brain regions than con-
version at 4 or 5 years (only 3%–4% overlap, but still greater 
than what may be expected by chance). In addition, a signifi-
cant fraction of the vertex-wise measurements associated with 
neuropsychological scales were also significance in AD ver-
sus HC, despite controlling for disease status in the analyses. 
The overlap was particularly important with the FAQ (88% 
of the 57 associations also significant in AD versus HC), or 
the MMSE (18 out of 20 associations (90%) significant in AD 
versus HC). Lastly, we observed significant overlap between 
the brain feature associated with the different memory scores 
(between RAVLT sub-scores and between RAVLT and Logical 
Memory score).

Some brain regions in the hippocampus and amygdala, were 
significantly associated with up to 6 distinct traits (Figure S26, 
Table  S11), and may be of particular interest as they could 
point out to key brain regions associated with Alzheimer's, 

functioning and cognition. For example, a smaller surface 
of left hippocampus (around vertex 776) was associated with 
increased conversion at 3 years and lower memory scores 
(RAVLT—delayed, immediate, learning and forgetting, as 
well as Logical memory delayed recall). In addition, thinner 
right amygdala (around vertex 1133) was associated with in-
creased risk of Alzheimer's (AD versus HC and AD versus 
MCI), lower functioning (FAQ) and memory (RAVLT delayed 
and immediate).

3.7   |   Replication of Associations

We found consistent vertex-based morphometricity estimates 
in the PISA and MEMENTO replication samples, compared 
to those from the meta-analysis (correlation between discov-
ery and replication estimates 0.76 in PISA, 0.74 in MEMENTO, 
Figure  S27). The largest discrepancies were found for MCI 
versus HC, conversion at 1 year, and CDR score, which exhib-
ited a lower morphometricity in MEMENTO than in the meta-
analysis, although this may be due to sample composition and 
recruitment (HC of MEMENTO all have subjective cognitive 
decline). Concordance was also observed for ROI based morpho-
metricity (correlation between discovery and estimates: 0.80 in 
PISA, 0.84 in MEMENTO, Figure S28).

We sought to replicate the 94 ROI associations that were signifi-
cant in the meta-analysis of clinical cohorts (Table S7). In PISA, 
we evaluated 57 associations (based on the phenotypes being 
available), and 12 reached significance (p-value < 0.05/57); 28 
were nominally significant (p-value < 0.05). Beyond signifi-
cance, we found good concordance of the effect sizes between 
discovery and replication (cor = 0.92 between effect size, 
90% had the same sign). The 12 associations that replicated 
corresponded to reduced cortical thickness in Alzheimer's 
(left middle temporal gyrus, right posterior banks of the su-
perior temporal sulcus, right inferior parietal, right inferior 
temporal, right, paracentral, and right postcentral), as well 

FIGURE 5    |    Concordance of brain regions associated with Alzheimer's disease (AD versus HC) across the different analyses (ROI and vertex-wise 
[LMM or GLM]).
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as reduced volumes of hippocampus and amygdala. In ad-
dition, we also replicated the positive associations between 
bilateral hippocampal volume and RAVLT delayed memory 
score (Table  S7). In MEMENTO, we evaluated the other 37 
associations, and 9 reached significance (p-value < 0.05/37; 19 
nominally significant, cor = 0.71 between discovery and rep-
lication effect sizes, 81% of sign concordance). The replicated 
associations confirmed lower hippocampus volume and mid-
dle temporal thickness in AD converters (3 years conversion). 
In addition, logical memory scores (immediate and delayed) 
were associated with hippocampal, and amygdala volumes, as 
well as with entorhinal thickness (Table S7).

At a vertex-wise level using the GLM approach, we replicated 
one association in PISA (left-putamen surface area association 
with AD; p-value < 0.05/183), although 41 (22%) of the tested 
vertices were nominally significant in the replication sample 
suggesting an enrichment, despite a low sample size and statis-
tical power. In MEMENTO, we replicated 65 (54%) associations 
(p-value < 0.05/120), and 83% were nominally significant. The 
replicated associations were with logical memory delayed re-
call score (entorhinal, hippocampus and amygdala) as well as 
with Alzheimer's conversion (bilateral hippocampus, amygdala, 
and right entorhinal gyrus) (Table S9). As per the LMM results, 

we replicated 6 (out of 30%–20%) associations with AD versus 
HC in PISA (p-value < 0.05/30), that corresponded smaller sur-
face area in bilateral hippocampus and left amygdala, as well 
as reduced thickness in left hippocampus and right amygdala. 
In total, 17 (57%) of the associations were nominally significant 
in PISA, and all signs were concordant between discovery and 
replication effect sizes. In addition, we replicated 1 (out of 4) 
association with AD conversion at 3 years, located in the right 
amygdala (thickness).

3.8   |   Out-of-Sample Prediction

To validate but also to compare the different set of results ob-
tained in ROI or vertex-based analyses, we evaluated their pre-
diction accuracy in the PISA and MEMENTO cohorts.

In PISA, we found that the three analyses (ROI, GLM, 
LMM) led to a prediction of Alzheimer's status (versus 
controls), significantly greater than chance. Prediction 
accuracy was comparable across the three predictors as in-
dicated by overlapping confidence intervals: R2

ROI
 = 0.12 

(95% CI 0.05–0.19, p-value = 3.5e-12), R2
GLM

 = 0.07, (95% 
CI 0.01–0.15, p-value = 4.6e-7) and R2

LMM
 = 0.13, (95% CI 

FIGURE 6    |    Proportion of significant vertex-wise measurements (from GLM) also associated with another trait. Each cell indicates the proportion 
of vertex-wise measurement associated with a phenotype (row label), that is also significantly associated with another phenotype (column label). For 
example: 92% of the vertex-wise measurements associated with AD versus MCI are also associated with AD versus HC (first column, second row). 
We only show cells for which the proportion of co-associated vertices was greater than chance (chi-2 test of association, p-value < 0.05/(24*23/2)). 
Significant vertex-wise measurements correspond to those that pass Bonferroni correction using the mass-univariate (GLM) approach. Traits with 
no significant vertex-wise measurements are not shown. The last column shows the number of significant vertex-wise measurement, for context.
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0.05–0.22, p-value = 6.2e-13, which corresponds to OR = 4.1 or 
AUC = 0.71) (Table S12). We also found that the ROI or verti-
ces associated (via GLM) with RAVLT scores had significant 
predictive power in PISA, although prediction accuracy was 
limited (R2 < 0.035, Table S12).

In MEMENTO, the significant brain measurements could sig-
nificantly predict AD conversion, although the best predictor 
was R2

GLM
 = 0.051 (equivalent to AUC = 0.63), for AD conversion 

at 3 years (p-value = 1.6e-21). Overall, the ROI and vertex-wise 
approaches led to comparable prediction (Table  S12). In addi-
tion, we also observed significant prediction accuracy from the 
MMSE and logical memory (immediate recall) brain markers 
(R2 < 0.014).

In addition, we found that the AD versus HC predictors could 
predict several traits and scores in the PISA or MEMENTO 
non-diseased (HC + MCI) group. In PISA, the AD brain risk 
scores were associated with MCI status, presence of memory 
and language impairment, as well as the number of impaired 
cognitive processes. Furthermore, the brain risk scores could 
predict some of the cognition scores (Graded Naming Test, and 
RAVLT scores), as well as the individuals' genetic risk (Figure 7, 
Table S13). In MEMENTO, the AD versus HC predictors could 
significantly predict multi-domain amnestic MCI status, AD 
conversion (at all time frames), a series of neuropsychological 
scores (MMSE, CDR, naming test, visual memory), as well as 
APOE e4 status and total Tau protein level, measured from 
lumbar punction (Figure  7, Table  S13). The AD brain scores 
achieved comparable prediction accuracy (R2 < 0.06) as the spe-
cific predictors of AD conversion or neuropsychological scores 
(MMSE, CDR) (Table S12).

4   |   Discussion

We collated data from 10 cohorts (total N = 9140) to perform a 
well-powered Brain Wide Association Study of the grey-matter 
structure in Alzheimer's disease, progression to AD, and neu-
ropsychological scores. The large sample size and deep clin-
ical characterisation supported identification of identified 
grey-matter markers associated with the different stages of the 
disease: early disease risk (markers of conversion up to 5 years 
prior to diagnosis), non-specific first symptoms (mild cognitive 
impairment), specific memory and functioning complaints, as 
well as (post-)diagnostic markers (Figures 3 and 4) that may be 
indicative of disease progression and severity. Our results sug-
gest some overlap between the grey-matter regions associated 
with early (pre-diagnostic) AD risk, disease progression and 
memory domains (Figure  6, Table  S11), which progresses our 
understanding of the clinical correlates of grey-matter atrophy 
and allows cross-trait prediction. Thus, we showed that brain 
markers associated with disease status could predict global tau 
pathology, AD genetic risk (measured from SNPs), progres-
sion to dementia, and cognitive domains in non-diseased in-
dividuals (Figure  7). Our results are robust and generalisable 
to other cohorts or studies, as shown by the high replication 
rate (Tables S7 and S9) and out-of-sample prediction accuracy 
(Table S12). Another strength of our study is that we performed 
multi-level brain analyses, that is, at a region of interest but also 
at the vertex-wise level. The high-resolution (vertex-wise level) 

analysis increased the characterisation of some of the asso-
ciated brain regions, but also identified of novel brain regions 
that could not be detected using the traditional ROI approach 
(Figure 5).

4.1   |   Medial Temporal Lobe in Alzheimer's' 
Disease

The comparison of AD cases versus healthy controls, yielded 
the most associations, either at the ROI or vertex-wise level 
(Figures 3 and 4). Our ROI-level results confirmed the known 
atrophy of hippocampus volume (cohen's d = −0.17), amygdala 
volume (d = −0.15) and of the medial temporal lobe (e.g., reduced 
thickness in fusiform [d = −0.08] and parahippocampal gyrus 
[d = −0.05]) (Table S7), which are known to play an important 
role in memory processing (Raslau et al. 2015). Previous publi-
cations (Frisoni et al. 2008; Schuff et al. 2009; Vijayakumar and 
Vijayakumar 2012) have reported somewhat larger hippocam-
pal reductions in AD (equivalent to cohen's d in −0.26 −0.36, 
Appendix B), although we can expect their results to be inflated 
by winner's curse due to small sample sizes (Marek et al. 2022), 
the inclusions of more severe cases, or unaccounted sex and age 
differences between cases and controls (Appendix  B). Overall 
the effect sizes we observed in the ROI-based analysis are com-
parable to the ones reported by the ENIGMA consortium on 
Parkinson's disease (Laansma et al. 2021), and for most psychi-
atric disorders (Thompson et al. 2020). All the ROI level associa-
tions (in subcortical and medial temporal cortex) were matched 
by one or several significant clusters in the vertex-wise analysis 
(Tables S9 and S10, Figures 5 and S19) which offers a more fined 
grained localisation of the grey-matter associations. We con-
firmed these brain regions (ROIs) to be implicated in memory 
processes, as indicated by their association with episodic mem-
ory (RAVLT and logical memory scores, Table S7, even after con-
trolling for disease status). Importantly, the entorhinal cortex, 
often reported to be an early site of atrophy (Johnson et al. 2012), 
was not significant in the ROI analysis, but several atrophied 
clusters were found at the vertex-wise level (Figures 5 and S19, 
Tables S9 and S10), which highlights the added value of high-
resolution analyses. The vertex-wise analysis further pinpointed 
localised regions in the amygdala and hippocampus that were 
simultaneously associated with AD status and episodic memory 
scores (Table S11). Furthermore, reduced thickness and surface 
area in parts of the hippocampus and amygdala was observed 
several years prior to the diagnosis (see Table S11 for the list of 
vertex-wise markers of AD versus HC also associated with AD 
conversion, Figures S14 and S20), which confirms that the at-
rophy appears in early stages of the disease process (Johnson 
et al. 2012). Lastly, the vertex-wise associations we observed in 
the hippocampus (Figure 4) resemble that reported in a previ-
ous article (see Figure 5 from Frisoni et al. 2008) that reported 
smaller regional volume in the dorsal (CA1) and ventral parts 
(subiculum and presubiculum).

4.2   |   Associations Between AD and Other Cortical 
and Subcortical Regions

We found associations between AD status and the putamen (ROI 
volume: d = −0.04, and vertex-wise clusters), or the accumbens 
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(ROI volume, d = −0.03) (Figures 3 and 4), which have been pre-
viously reported in smaller studies (de Jong et al. 2008, 2012). In 
addition, atrophy of the basal nuclei in Alzheimer's is thought 
to relate to general cognitive dysfunction (de Jong et al. 2008), 
and apathy (Guo et  al.  2022). Coherent with this hypothesis, 
we found locally reduced right and left putamen thickness, as-
sociated with AD status as well as with impaired functioning 
(Functional Assessment Questionnaire, Table  S11). However, 
we did not replicate the published association with thalamus 
volume (de Jong et al. 2008).

In the cortex, we identified additional regions (ROIs only) 
associated with Alzheimer's disease (Figure 3, Table S7), in-
cluding several (with inferior parietal, postcentral [parietal], 
middle temporal, transverse temporal, inferior temporal [tem-
poral], paracentral, superior frontal [frontal]) that replicated 
in an independent cohort (PISA), which gives confidence in 
the findings. A previous review has suggested that the medial 
and posterior parts of the parietal lobe would be preferentially 
affected in early stages of AD (Jacobs et al. 2012), which does 
not align with our results based on a much larger sample size. 

Our findings in the frontal and temporal lobes might reflect 
disease progression and general decay in cognition and func-
tioning, that these regions encode (Johnson et al. 2012), which 
was corroborated by associations of the same ROI with MMSE 
and CDR scores (Table S7). Although, we cannot rule out that 
some of these findings could be caused by some misdiagnosis 
of frontotemporal dementia or vascular pathology, as screening 
is not systematic across the cohorts, and differential diagnostic 
can be difficult at the early stage of the diseases. Surprisingly, 
we did not find an association between Alzheimer's disease 
and posterior cingulate structure (either at a ROI or vertex-
wise level), a region known to display strong hypometabolic 
(PET) changes in early stages of AD (Minoshima, Foster, and 
Kuhl 1994; Brun and Gustafson 1976). Reduced thickness in 
posterior cingulate has been reported before (Choo et al. 2010; 
Lehmann et  al.  2010; Lerch et  al.  2005), but in small stud-
ies prone to false positive and inflated association estimates 
(Marek et  al.  2022). More work is needed to clarify the link 
between posterior cingulate hypometabolism and grey-matter 
structure, which may only appear in later stages of Alzheimer's 
disease.

FIGURE 7    |    Prediction accuracy of the AD versus HC brain predictors in the non-diseased group of the PISA and MEMENTO study. In PISA (top 
panel) evaluated prediction across 33 traits or scores available in the non-diseased group, and we show the nine for which at least one of the brain-
based prediction returned significant (p < 0.05/33/3). In MEMENTO (bottom panel), we considered 36 traits, and 14 were significantly predicted 
(p < 0.05/36/3) by at least one of the AD versus HC brain predictor. Error bars correspond to the 95% confidence intervals estimated via bootstrap.
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Overall, inconsistent results in the literature can come from 
the use of different cortical atlas, which can capture different 
(non-overlapping) information (Fürtjes et  al.  2023). In addi-
tion, some of the ROI associations we have identified may be 
(partly) redundant with those observed with the medial tem-
poral lobe due to the correlation between ROI measurements. 
Our attempt to estimate the specific ROIs-trait association ap-
peared underpowered (no association reached significance), 
but may be investigated in larger samples, or in post hoc 
analyses.

4.3   |   Grey-Matter Markers of Alzheimer's 
Conversion and Neuropsychological Scores

We also identified brain markers of AD conversion, beyond 
those also associated with Alzheimer's status. They included 
thicker lateral occipital cortex and larger cortical area of the 
middle temporal gyrus (Table  S7), which replicated in the 
MEMENTO cohort. These brain markers could be specific 
to early stages of the disease, and have previously been im-
plicated in object recognition (Grill-Spector, Kourtzi, and 
Kanwisher 2001), but also in face and emotion recognition, as 
well as reading ability (Tanaka 2001). Future studies should 
clarify if these regions remains associated in later stages of 
AD (e.g., at a vertex-wise level), or if these brain markers are 
stage specific. Together, the identified markers of AD con-
version, could significantly predict an individuals' risk of 
receiving a diagnosis within 5 years of the brain MRI, in an 
independent sample (MEMENTO, Table  S12). Prediction ac-
curacy remained modest (R2 < 0.051, i.e., AUC < 0.63, or co-
hen's d < 0.46) and below some of the published results (mean 
AUC = 0.74, range 0.59–100; across 48 studies). However, our 
predictors only include ROIs or vertex-wise measurements 
that reached significance and were not designed to maximise 
prediction accuracy. In addition, the accuracy previously re-
ported is likely optimistic (or overfitted) as predictors were 
trained and evaluated on ADNI only (Ansart et al. 2021).

The brain markers associated with neuropsychological scores 
(after controlling for AD status) shed light on the grey-matter 
circuits associated with cognition domains and functioning. 
Currently, the identified brain regions largely overlapped with 
those found to be associated with AD (Figure 6), although larger 
imaging samples should reveal many more relevant (and spe-
cific) grey-matter regions, as indicated by the gap between mor-
phometricity (Figure 1) and the variance currently explained by 
the identified regions (see prediction R2, Table S12).

4.4   |   Alzheimer's Brain Score Captures Disease 
Risk in Healthy Individuals

The overlapping patterns of association we observed between 
AD and neuropsychological scores (Figure 5) led to performant 
cross-trait prediction, in non-diseased individuals (Figure  7, 
Table S13). Thus, we found that AD brain scores were associated 
with MCI status (memory and language impairments), AD con-
version, AD genetic risk (incl., APOE e4), total Tau level from 
cerebral spinal fluid (associations with phosphorylated Tau 
or Amyloid-beta did not reach significance), and a wide range 

of cognitive scores (Figure 7, Table S13), which can shed light 
on the nature of the AD-related grey-matter markers reported 
above. The robust and transferrable prediction accuracy (across 
traits and samples) suggests that our AD brain scores could be 
used widely, when samples sizes are too small to derive efficient 
predictors of related traits, or when AD status is not collected or 
available. For example, our AD brain score could (partly) differ-
entiate MCI from HC in PISA (Figure 7, Table S13), while the 
direct analysis of MCI versus HC did not yield significant pre-
diction accuracy (Table S12). In addition, the fact that similar 
grey-matter regions are associated with AD and related traits 
warrants the use of multivariate approaches, that could boost 
discovery in future studies.

4.5   |   More Precise Grey-Matter Maps Require 
Larger Samples

Our analysis of almost 10,000 brain MRI has identified many 
associations between grey-matter and our traits of interests 
(94 significant ROIs, 307 clusters of significant vertices, across 
the 24 traits considered). However, our findings fail to account 
for the full morphometricity (either ROI based or vertex-based, 
Figures  1 and 2), suggesting that larger samples are needed 
to identify additional brain regions with smaller effects, or to 
estimate more precisely the association effect sizes. For ex-
ample, the significant ROI associated with AD could explain 
12% (SE = 3.6%) of the variance in case control status in PISA 
(Table S12), while we estimated a ROI based morphometricity of 
21% (SE = 3.6%, Figure 1, Table S4) across the discovery samples 
(R2 = 27%, SE = 7.7% in PISA). Even more strikingly, the signif-
icant vertex-wise measurements accounted for 13% (SE = 4.4%, 
Table S12) of AD variance, well short of the vertex-wise morpho-
metricity of 100% (SE = 6.4%, Figure 1, Table S5).

4.6   |   ROI Versus Vertex-Wise Analyses

We conducted analyses on two scales ROI-wise and vertex-wise. 
Vertex-wise analyses allows detection of more localised associ-
ations at the cost of a higher multiple testing burden. For exam-
ple, some of the ROI detected as significant (e.g., in the frontal 
regions, Figure 5), did not generate significant vertex-wise as-
sociations within the matched regions. However, we found 94 
significant ROI associations (Table S7) but 307 clusters of signif-
icant vertices (Figure 4, Table S9), which indicates that vertex-
wise analysis are also well powered using our current sample 
size. The different number of findings can be explained by the 
fact that vertex-wise analyses allow the detection of several, 
independent clusters of significant vertices within a ROI (e.g., 
Figure S19). For example, when using LMM that limit the de-
tection of redundant associations (Couvy-Duchesne et al. 2022), 
we identified 9 significant clusters associated with AD in the left 
hippocampus. This exemplifies the fact that a lot of the brain 
variation is lost when aggregating vertices across large regions 
(ROI), which results in a ROI based morphometricity 3 to 20 
times lower than the vertex-based morphometricity (Figure 1), 
similar to what we have reported on the UK Biobank (Couvy-
Duchesne, Strike, et al. 2020). In addition, each atlas used to de-
fine the ROIs (here we used Desikan-Killiany) removes signal of 
interest in specific part(s) of the brain (Fürtjes et al. 2023), which 
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likely explains why we have detected significant vertices in ROIs 
that did not reach significance (Figure 5, Figure S19).

In summary, ROI based analyses are best suited to association 
analyses in single cohorts, where statistical power remains lim-
ited. However, they provide a simplified, and limited descrip-
tion of the associations in the brain. In future, as sample sizes 
grow, vertex-wise analyses can unveil more complex patterns of 
associations and should supersede prediction accuracy achieved 
from ROIs. Our results demonstrate that vertex-wise analyses 
can already offer a precise localisation of the brain regions asso-
ciated with diseases and traits, are well powered (with samples 
of several thousands), and yield robust, homogeneous, and re-
producible results.

In addition, our results also echo a recent debate about power 
of brain wide association studies. We observed that the sta-
tistical power depends on the trait studied and was larger for 
case control status (AD versus HC), where contrast is large, 
than for cognition domains (Libedinsky et al. 2022). Yet, our 
analysis suggests that thousands of individuals are required to 
detect robust associations (Marek et al. 2022), especially when 
the number of brain measurement tested is large (Smith and 
Nichols 2018), and that tens of thousands would be necessary 
to further progress our understanding of grey-matter struc-
ture in AD.

4.7   |   GLM Versus LMM in Vertex-Wise Association 
Testing

Compared the current state of the art (GLM), LMM lead to par-
simonious brain maps of associations (30 clusters versus 103 for 
AD versus HC, Tables  S9 and S10), as it controls for all brain 
measurements (fitted as a random effect) which prevents redun-
dant associations from reaching significance (Couvy-Duchesne 
et  al.  2022). For proof, the 30 ‘LMM’ clusters account for the 
same amount of information as the 103 identified using GLM 
(Figure 7, Tables S12 and S13). LMM also offer a more precise 
localization of the associated regions, and can identify several 
independent signals in close vicinity when the GLM detects a 
single large cluster of association (Figures 4 and 5), which aligns 
with results from simulations (Couvy-Duchesne et al. 2022). As 
sample sizes grow, the power to detect smally associated regions 
will increase, leading to detect more redundant regions (in low 
correlation with associated regions) using GLM. Some of the re-
dundant regions may even be false positive, if the correlation be-
tween brain measurements is induced by a confounding factor, 
such as head motion or age (Couvy-Duchesne et al. 2022). LMM 
could overcome these issues and help prioritise key regions of 
AD atrophy that can be used to build interpretable brain-based 
predictors or be followed up in research.

4.8   |   Family History as a Proxy-Phenotype 
for Alzheimer's Disease

Our analysis of maternal and paternal history of Alzheimer's, 
conducted in clinical cohorts as well as in the UK Biobank 
(N = 37,644) indicated a low (almost negligible, R2 < 5%) associ-
ation with grey-matter structure. This result is in line with the 

weak association between familial history and AD status. In 
the UK Biobank, the morphometricity may be further reduced 
due to the relatively young age of the participants (63 years old 
on average), consistent with reports of an age-dependent effect 
of APOE on the brain (Jack et al. 2015; Thompson 2020). Our 
results currently suggest that family history cannot be directly 
used as a proxy phenotype of AD, in order to boost power of brain 
wide association studies, unlike in GWAS (Marioni et al. 2018).

4.9   |   Limitations

In neuroimaging, choices made in image processing can im-
pact the results. We have used a simple, albeit commonly used 
atlas (Desikan et al. 2006) to define our ROIs, which makes our 
results comparable with those published by the ENIGMA con-
sortium. Following a recent article, we can expect that more 
complex atlases (with more ROIs) would capture more trait vari-
ance (morphometricity), although each atlas also captures some 
unique signal, which makes comparison of results across atlases 
difficult (Fürtjes et  al.  2023). In addition, we considered the 
most general and high-dimensional vertex-wise representation 
available in FreeSurfer (‘fsaverage’ with no smoothing applied), 
as we observed that it maximised the morphometricity cap-
tured in the UK Biobank (Couvy-Duchesne, Strike, et al. 2020). 
Our choice led to the identification of many clusters of signif-
icant vertices, but using a simpler mesh (e.g., fsaverage6 with 
only 40,962 vertices per hemisphere) might have resulted in in-
creased statistical power, by reducing the multiple testing bur-
den, while still capturing a large fraction of the morphometricity 
(Figure  1). Smoothing might improve the overlap of signals 
across individuals' maps, although it would likely reduce the as-
sociation effect sizes, with an overall unclear effect on power. In 
general, more work is needed to guide researchers into choosing 
the best image processing (and software), which may vary de-
pending on the objective of the study and the traits of interests. 
This concern can be extended to the choice of harmonisation 
procedure, when dealing with several scanners or cohorts. Here, 
we used covariates (e.g., site, scanner) throughout the analyses, 
and meta-analysed results across cohorts, which yielded robust 
and replicable results. Our results can serve as benchmarks for 
future work that would evaluate the effect of applying more 
advanced harmonisation techniques, such as ‘combat’ (Fortin 
et al. 2018), its extensions or even deep-learning approaches (Hu 
et al. 2023).

Beyond MRI processing, the method used for multiple testing 
comparison can also influence power. RFT can be less stringent 
than Bonferroni, but only on smooth surfaces/volumes (Breznik 
et al. 2020), where the morphometricity (hence overall power) 
is reduced. More work is needed to evaluate which combination 
of MRI processing and multiple testing maximises power. In 
addition, we have used vertex-wise RFT but cluster-based RFT 
(Breznik et al. 2020; Nichols and Hayasaka 2003) and more ad-
vanced implementations (Bowring et al. 2021) may give differ-
ent results. We have not used them here, as they have only been 
implemented to be performed on specific set of surfaces (typi-
cally, only cortical surfaces).

Another possible limitation concerns potential heteroge-
neity of cohorts. While AD status was always based on a 
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clinical assessment (NINCDS/ADRDA, DSM-IV or ICD10 crite-
ria, Appendix A), some cohorts used additional inclusion criteria 
(e.g., MMSE score threshold for dementia severity). In addition, 
Alzheimer's cases, were not systematically screened for other 
dementias, and few had known amyloid status. Fuzzy diagno-
ses can lead to a loss of power, or to detect brain markers as-
sociated with general dementia and less specific to Alzheimer's 
disease. Of note, the modalities of recruitment and the screen-
ing of the healthy controls also varied depending on the cohort 
(Appendix  A), which can further induce variability in the re-
sults. Lastly, MCI were typically defined using the Petersen/
Winblad criteria, but the definition of impairments varied across 
the samples (Appendix A). To ensure reporting of robust results, 
we used a mixed effect meta-analytic approach that models 
between-cohort heterogeneity, to ensure the detected associ-
ations are consistent across samples. In practice, this reduces 
the influence of each cohort (and its specific ascertainment and 
recruitment) on the results. In addition, we validated our find-
ings using independent samples for replication, and prediction 
analyses. As the sample sizes grow, it will be possible to restrict 
the analyses to more uniform cases (e.g., screened for amyloid), 
and to investigate the robustness of the results across specific 
subgroups of interest.

Lastly, we have treated all our traits/diseases as continuous in 
our analyses, meaning that our reported estimates cannot be 
directly converted into odd-ratios (OR), or compared with re-
sults that used a logistic regression. This is because, logistic re-
gression is not routinely implemented for LMM, and effect sizes 
from linear regression can be easily transformed into approxi-
mate OR (Lloyd-Jones et al. 2018).
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