

1 Rheology and mechanical properties of limestone calcined clay based engineered cementitious 2 composites with nano CaCO₃

3 Yuting Wang ^a, Meng Chen ^{a,b,*}, Tong Zhang ^a, Mingzhong Zhang ^c

⁴ ^a School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China

⁵ ^b *Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University,
6 Shenyang, 110819, China*

^c Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK

Abstract: The application of binder consisting of limestone, calcined clay and cement (LC^3) promotes the development of low-carbon engineering cementitious composites (ECC). In order to improve the comprehensive properties of LC^3 -ECC, this paper investigates the feasibility of using nano $CaCO_3$ (NC) to replace the limestone powder up to 20% for LC^3 -ECC preparation through rheology and mechanical tests along with the micro-design calculation and microstructure analysis.

14 Results indicate that the yield stress and plastic viscosity of LC³-ECC are largely improved with
15 increasing NC replacement rate. Meanwhile, the compressive, flexural and tensile strengths of LC³-
16 ECC with NC raise firstly and then decline, while the strengths are maximum at NC replacement rate
17 of 5% but the tensile strain capacity remains at 2.3%. The hydration promotion effect and pore
18 structure refinement effect of NC particles improve the mechanical strength of LC³-ECC, but the
19 performance degradation occurs when the replacement rate of the NC exceeds 10%. In
20 micromechanics, the fibre bridging stress of LC³-ECC reinforced by NC with replacement rate of 5%
21 decreases by 18.5% compared to that of without NC, but it grows with the increasing NC replacement
22 rate. In combination with fresh, hardened and microstructure behaviour, LC³-ECC exhibits the
23 optimum mechanical behaviour with the NC replacement rate of 10%–15%.

24 **Keywords:** Engineered Cementitious Composites; Limestone calcined clay cement; Nano CaCO₃;
25 Rheology; Strain hardening behaviour; Micromechanics

* Corresponding author.

E-mail addresses: chenmeng@mail.neu.edu.cn (M. Chen).

28 **1. Introduction**

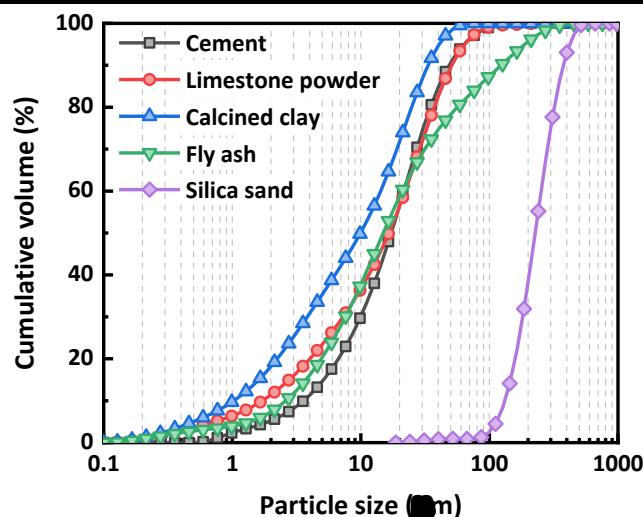
29 Engineered cementitious composites (ECC), also known as strain hardening cementitious
30 composites, is a type of ultra-high toughness materials with excellent deformability and energy
31 absorption [1,2]. Since its development in the 1990s, ECC has achieved exceptional performance in
32 strain hardening behaviour and multiple cracking capacity [3]. Based on the effective bridging effect
33 provided by reinforced fibre such as polyvinyl alcohol (PVA) fibre and polyethylene (PE) fibre, ECC
34 exhibits tensile strain of over 2% and cracking width of less than 100 μm [4,5]. However, due to the
35 more than 50 wt% of binder in ECC, supplementary cementitious materials have been used to replace
36 partial cement for a more environmentally friendly ECC development [6–8]. Among them, limestone
37 calcined clay cement (LC³) has been focused and investigated to have comparable mechanical
38 strength with ordinary cement paste [9,10]. Furthermore, ECC produced with LC³ will have lower
39 energy consumption and carbon emissions while achieving the similar high ductility of typical ECC
40 [11,12].

41 The application of LC³ has various effects on the both fresh and hardened properties of ECC.
42 Owing to the high water absorption and specific surface area of LC³, the flowability of ECC based
43 on LC³ with a mass ratio of 0.15:0.30:0.55 for limestone powder, calcined clay and cement is reduced
44 by 34.6% than that of ordinary Portland cement (OPC) based ECC [13]. Moreover, the yield stress
45 and plastic viscosity of LC³-ECC in the rheological test are also raised by 0.67–1.85 and 0.08–0.85
46 times than that of ordinary ECC, respectively [14]. Hence, LC³ based materials have also been
47 successively utilised as a raw material for 3D printing cementitious materials that have exhibited
48 favourable constructability and printability [15,16]. In terms of hardening properties, the
49 incorporation of LC³ improves the early-age mechanical properties of cementitious materials due to
50 the nucleation sites of low reacted limestone powder [17,18]. With increasing percentage of LC³ in
51 the binders, the compressive strength is decreased due to the free moisture shortage and lower water-
52 to-binder ratio of ECC [19–21]. Meanwhile, the tensile strength of ECC also decreases but the tensile
53 strain capacity shows an improved performance with increasing LC³ content, in which the tensile
54 strain increased by 13.5 times when the strength decreased by 20.8% than OPC-ECC [22]. Besides,
55 LC³ is able to increase the fibre-to-matrix bond strength and fibre pull out energy, which makes it
56 advantageous in the application of high-performance cementitious materials [19].

Nowadays, nanomaterials have been utilised to enhance the microstructure and the chemical reaction of cementitious materials in order to improve their mechanical performance. As an ultrafine materials with nano-sized particles of below 100 nm [23,24], nanomaterials mainly include nano SiO₂ [25,26], nano CaCO₃ [27] and nano TiO₂ [28], etc. In comparison, nano CaCO₃ (NC) is the most widespread, cheapest and widely available nano materials [29,30]. NC can enhance nucleation sites for cement particles and promote the formation of calcium-silicate-hydrate in order to shorten the cement hydration process [31]. In parallel, it improves the alignment position of calcium hydroxide and optimises the interfacial transition zone within the matrix [24]. Furthermore, NC can react with C3A within cement to improve the early strength of cementitious materials [32,33]. The microaggregate effect exhibited by NC optimises the pore size distribution of cementitious materials that improves their strength and durability [29,34]. Therefore, some researchers have been exploring the use of NC to improve the strength properties of ECC. Ding et al. [29] prepared ultra-high performance ECC using NC with more than 8% tensile strain at compressive strengths over 130 MPa, and suggested that the optimum content of NC is 3% by weight of the cement. Khokhar et al. [35] produced ECC directly using 1%–4% NC mixed with calcined clay and cement, where the compressive strength of the mortar increased with increasing NC content and the relationship between the NC content and the mechanical strength of ECC was not shown. Hence, the effect of NC on the macro performance of ECC needs to be systematically investigated through a comprehensive experiment. Considering the similarity between the composition of NC and limestone powder, the design of the proportion of NC is essential for the fresh/hardening properties when using NC to reinforce LC³-ECC, as well as the effect on the microstructure evolution needs to be further explored.

This study focused on the fresh and mechanical behaviour of LC³-ECC in which limestone powder was replaced by NC with ratio of 0, 5%, 10%, 15% and 20 % for each mixture. Firstly, rheological property tests were carried out to determine the flow characteristics of all mixtures. Then, mechanical tests including compressive, flexural and tensile tests were carried out to investigate the effect of NC incorporation on the strength and cracking behaviour of LC³-ECC. Besides, the matrix properties and single-crack tensile behaviour of the LC³-ECC reinforced with NC were determined in order to calculate the micromechanical parameters and assess whether it meets the design criteria. Finally, the phase composition, fibre morphology and microstructure were tested by X-ray

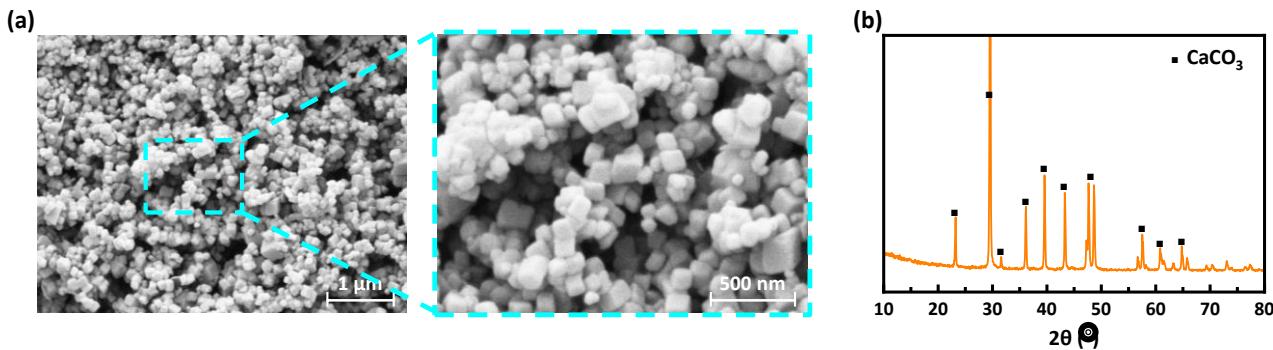
86 diffractometer (XRD), thermal analysis, scanning electron microscope-backscattered electron (SEM-
 87 BSE) and mercury intrusion porosimetry (MIP) to analyse the variation of macro properties from the
 88 micro perspective.


89 **2. Experimental program**

90 *2.1. Raw materials*

91 In this study, the P.I. 42.5 Portland cement, limestone powder and calcined clay were used to
 92 compose the LC³ binder. According to ASTM C618 [36], the fly ash classified as Class F was used
 93 as supplementary cementitious materials. The oxide composition and particle size distribution are
 94 demonstrated at [Table 1](#) and [Fig. 1](#), respectively. The silica sand with particle size of 100–300 μm
 95 was used as fine aggregate. Polycarboxylate-based superplasticisers (SP) and viscosity modifying
 96 admixture (VMA) were used to adjust the workability of fresh mixtures. The oil-treated PVA fibre
 97 was used as reinforced fibre to ensure the toughness and deformability of cementitious composites.
 98 Relevant basic properties of PVA fibre are depicted in [Table 2](#). The NC with particle size of 15–40
 99 nm was used for replacing the limestone powder particles acting as fillers in the matrix and enhancing
 100 the matrix properties, which original morphology and XRD pattern are displayed in [Fig. 2](#).

101 **Table 1** Chemical proportions of raw materials (wt%).


Type/oxide	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	SO ₃	MgO	K ₂ O	TiO ₂	ZrO ₂
Cement	62.67	22.97	5.55	2.90	2.05	1.98	1.12	0.35	0.02
Limestone powder	95.65	0.08	0.10	0.10	–	0.34	0.01	–	0.01
Calcined clay	0.32	49.94	47.57	0.69	–	0.04	0.31	1.03	0.03
Fly ash	3.23	51.34	36.87	0.59	0.26	0.55	1.93	1.90	0.02

102 **Fig. 1.** Particle size distribution of the ingredients.

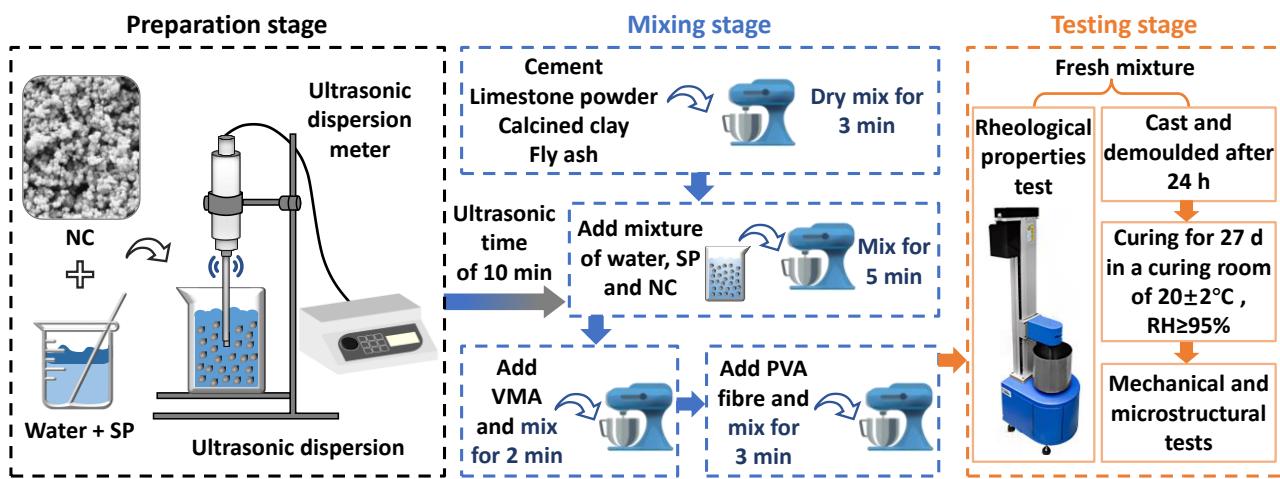
104 **Table 2** Physical and mechanical properties of PVA fibres.

Diameter (μm)	Length (mm)	Density (kg/m ³)	Elastic modulus (GPa)	Tensile strength (MPa)
39	12	1280	40	≥1600

105

106 **Fig. 2.** Morphology and XRD pattern of NC granules.107 *2.2. Mix proportions*

108 The typical LC³ binder system consisting of 55% cement, 30% calcined clay and 15% limestone
 109 powder was regarded as the main reaction ingredients [21,37]. Using it as a reference, NC was used
 110 to replace the limestone powder in the percentages of 0%, 5%, 10%, 15% and 20%. Meanwhile, the
 111 fly ash of 1.2 times weight of the LC³ was used in accordance with the M45-ECC mix proportion.
 112 The weight of silica sand accounted for 0.8 times of the LC³ binder. The ratio of water to binder was
 113 set at 0.25. The content of SP and VMA were maintained at 0.55% and 0.15% by the total weight of
 114 LC³ and fly ash. The PVA fibre content was set as 2 vol% of the total composites. The mix proportions
 115 of all mixtures in this study are listed in **Table 3**. In the example of 'N5', the intended meaning is that
 116 NC will serve as a substitute for the 5% limestone powder content present in the reference group of
 117 'N0'.


118 **Table 3** Mixture proportions of LC³-ECC with NC (kg/m³).

Mixture type	Cement	Calcined clay	Fly ash	Silica sand	Water	SP	VMA	PVA fibre	Limestone powder	NC
N0	299.2	163.2	652.8	435.2	299.2	6.5	1.8	26.0	81.6	0
N5	299.2	163.2	652.8	435.2	299.2	6.5	1.8	26.0	77.52	4.08
N10	299.2	163.2	652.8	435.2	299.2	6.5	1.8	26.0	73.44	8.16
N15	299.2	163.2	652.8	435.2	299.2	6.5	1.8	26.0	69.36	12.24
N20	299.2	163.2	652.8	435.2	299.2	6.5	1.8	26.0	65.28	16.32

119 *2.3. Sample preparation*

120 Owing to the particle size of NC is nano scale, the NC granules agglomeration is easy to occur

121 when it is directly added to the ECC mixing process. Therefore, it is necessary to conduct the disperse
 122 treatment for NC prior to the formal mixing progress. Firstly, the NC with fixed proportion was added
 123 to the corresponding weighed mixture of water and SP, followed by ultrasonic dispersion treatment
 124 for 10 min. Then, the mixing process of LC³-ECC with total time of 13 min was carried out, as
 125 illustrated in [Fig. 3](#). Finally, one part of fresh mixture was used for rheology test after the mixing
 126 process. Another part of mixture was moulded for tested specimen of different sizes and cured for 28
 127 d (1 d for moulding and 27 d for standard curing) until the subsequent mechanical and microscopic
 128 test stage (see [Fig. 3](#)).

130 **Fig. 3.** Sample preparation process of NC reinforced LC³-ECC.

131 *2.4. Test methods*

132 *2.4.1. Rheology test*

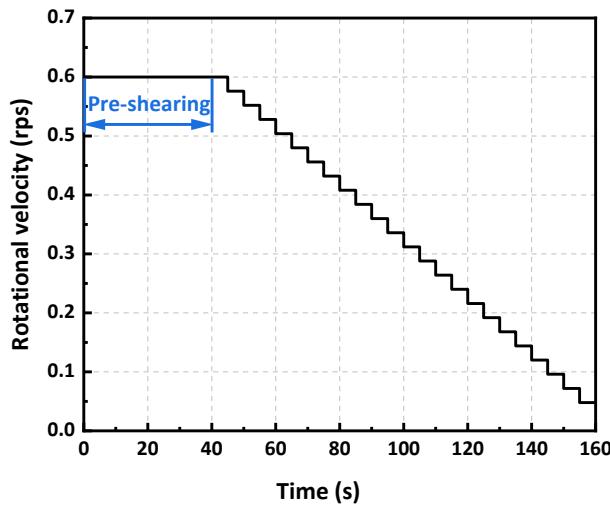
133 In the case of cementitious materials, the rheological properties mainly include static yield stress
 134 (τ_s), dynamic yield stress (τ_d) and plastic viscosity (η) to determine the flowability of fresh mixtures
 135 [\[38\]](#). To measure the rheological properties of fresh NC reinforced LC³-ECC, a rotational rheometer
 136 with cross-shaped blade was employed to achieve the effect of an internal cylindrical shaped rotation.
 137 After the mixing process, the fresh mixtures were poured to the rheometer vessel with 3.6 L capacity
 138 and prepared for formal test. Static yield stress was measured by shear stress increasing test, which
 139 lasted for 60 s at a fixed shear rate of 0.025 rps (corresponding to the shear rate of 0.225 /s) [\[39\]](#). The
 140 static yield stress was calculated from the measured maximum torque (T_{max}) using the following
 141 equation:

142

$$\tau_s = \frac{2T_{max}}{\pi D^3 \left(\frac{H}{D} + \frac{1}{3} \right)} \quad (1)$$

143 where D and H are the diameter and height of the rotating vane, respectively.

144 Different shear programmes (including shear rate ranges, duration of each shear step, temperature,
 145 etc.) can lead to different responses or parametric results, thus a consistent programme should be
 146 maintained when testing different mixtures [40]. After a 40 s of pre-shear stage at a shear rate of 0.6
 147 rps, dynamic yield stress and plastic viscosity of fresh mixtures were tested. The shear stress (τ)
 148 decreased from 0.6 rps to 0.05 rps (corresponding to the shear rate from 5.392 to 0.450 /s) after 24
 149 steps with a residence time of 5 s for each step, as shown in Fig. 4. Then, the corresponding torque
 150 (T) and rotational velocity (N) were measured, as well as the T and N were converted into τ and shear
 151 rate ($\dot{\gamma}$) using Eq. (2) and Eq. (3), respectively [41,42]. The static and dynamic rheological property
 152 tests of all mixtures were repeated three times in the same environment to avoid the erroneous effects
 153 caused by temperature and humidity variations.

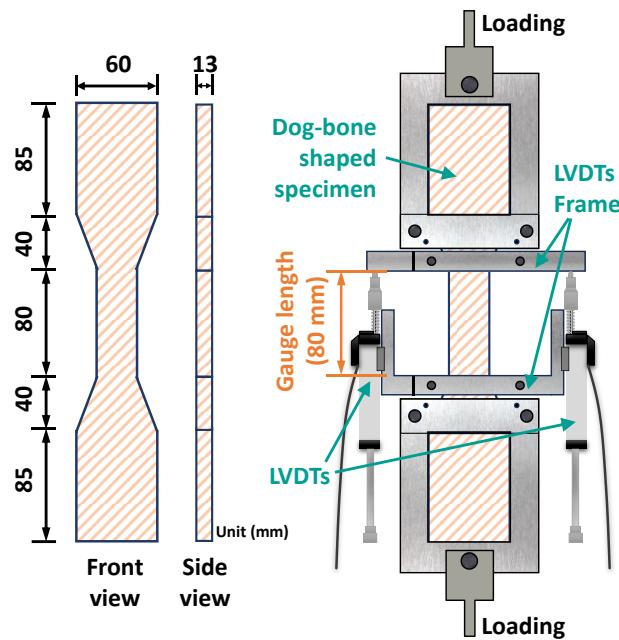

154

$$\tau = \frac{R_0^2 + R_i^2}{4\pi H R_0^2 R_i^2} T \quad (2)$$

155

$$\dot{\gamma} = \frac{R_0^2 + R_i^2}{R_0^2 - R_i^2} 2\pi N \quad (3)$$

156 where R_0 is the inner radius of the rheometer vessel, and R_i is the width of the rotating vane.


157

158 **Fig. 4.** Rheology test protocol.

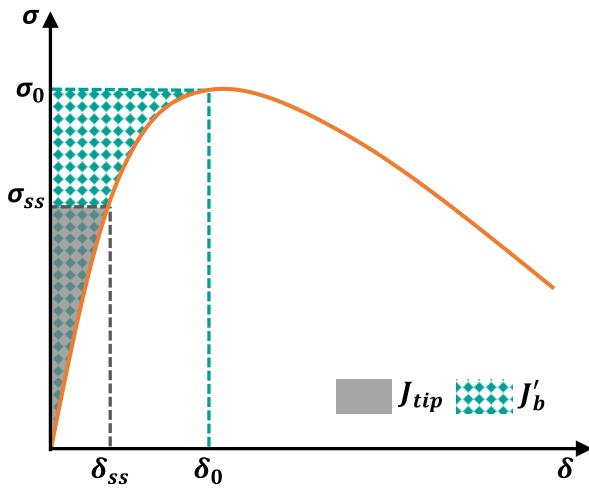
159 *2.4.2. Mechanical tests*

160 The mechanical properties of NC-reinforced LC³-ECC will be evaluated by developing

161 compressive, flexural, and uniaxial tensile tests. Meanwhile, the fracture toughness test of mortar
 162 matrix and single-crack tensile test of ECC were also performed to calculate the micromechanics
 163 design index of all mixtures. The compressive test was conducted on the 50 mm cubes with the
 164 loading rate of 0.3 MPa/s following ASTM C109/C109M-20b [43]. For the flexural test, prism
 165 specimens with size of $160(l) \times 40(b) \times 40(h)$ mm³ were subjected to three-point flexion at a rate of
 166 2.0 mm/min according to GB/T 50081–2019 [44]. Uniaxial tensile tests were carried out on the dog-
 167 bone shaped specimens as per JSCE with loading rate of 0.5 mm/min [45]. Two linear variable
 168 displacement transducers (LVDTs) were arranged on both sides of the test specimen in order to gauge
 169 the strain within its tensile region of 80 mm length, as shown in Fig. 5.

170 **Fig. 5.** Specimen dimension and experimental installation schematic of uniaxial tensile test.

171 Based on the micromechanical theory, ECC is designed to be provided with strain hardening and
 172 multiple cracking features [3]. The strength and energy criteria are the two quantitative conditions for
 173 determining whether a cementitious material satisfies the ECC design standards. Moreover, the two
 174 criteria can be interpreted based on typical tensile stress versus crack opening curves, as plotted in
 175 Fig. 6. The strength criterion (see Eq. (4)) means that the tensile strength of matrix (σ_{fc}) and the
 176 tensile stress to form the first or new crack (σ_c) need to be less than the fibre bridging stress (σ_0) [6].
 177 In turn, the energy criterion (see Eq. (5)) refers to the fact that the tensile residual energy (J'_b)
 178 maximum needs to be greater than the crack tip toughness (J_{tip}), defined as the physical meaning of


180 the two different shaded areas in [Fig. 6](#).

181
$$\sigma_0 > \sigma_{fc}, \sigma_c \quad (4)$$

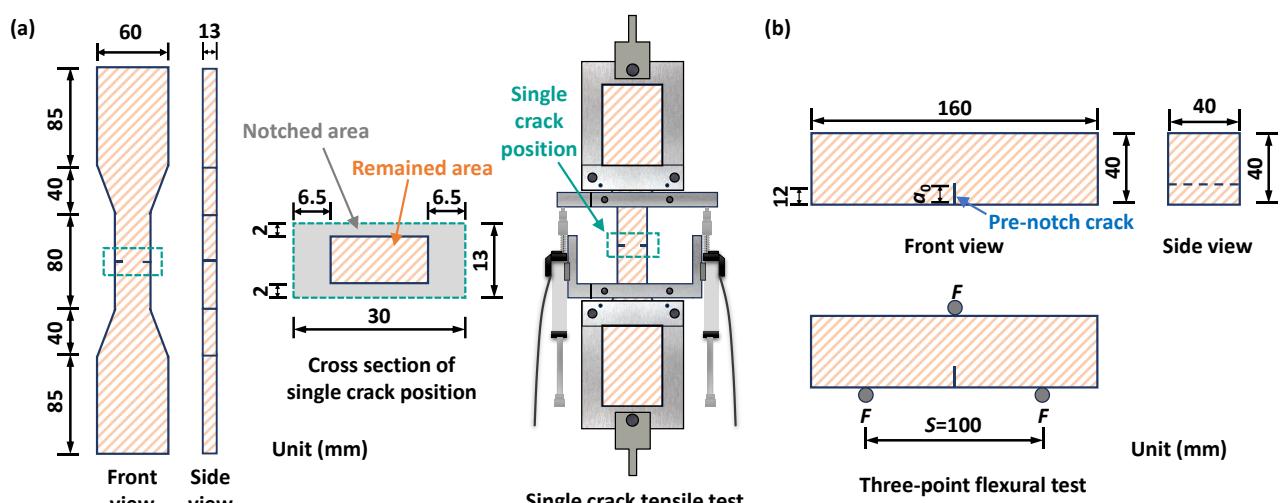
182
$$J'_b \geq J_{tip} = \sigma_{ss}\delta_{ss} - \int_0^{\delta_{ss}} \sigma(\delta) d\delta \approx \frac{K_m^2}{E_m} \quad (5)$$

183
$$\sigma_0\delta_0 - \int_0^{\delta_0} \sigma(\delta) d\delta = J'_b \quad (6)$$

184 where δ_0 is the crack opening corresponding to the σ_0 , δ_{ss} is the crack opening corresponding to
 185 the steady state bridging stress (σ_{ss}), E_m and K_m are the elastic modulus and fracture toughness of
 186 the matrix, respectively.

187

188 **Fig. 6.** Typical stress-crack opening curve for fibre bridging (adapted from Ref. [3]).


189 Based on the both design criteria, pseudo strain-hardening (PSH) indexes can be calculated, i.e.
 190 σ_0/σ_{fc} and J'_b/J_{tip} . The calculated values are used to determine the tensile characteristics of the
 191 mixtures. Therefore, the single crack tensile test of ECC was carried out to obtain the tensile stress-
 192 crack opening width curve and fibre bridging strength. [Fig. 7a](#) displays the single crack tensile test
 193 specimen and tested device. The loading rate was 0.5 mm/min and the amount of displacement change
 194 was measured by LVDTs. The tensile strength and elastic modulus of the matrix were obtained by
 195 conducting tensile tests on the mortar and calculating the slope of stress linearly increasing section of
 196 the curve. For the matrix fracture toughness test, a 12 mm deep crack was prefabricated at the bottom
 197 of the prismatic flexural specimen and three-point flexural loading with a loading rate of 1.0 mm/min
 198 was performed ([Fig. 7b](#)) as per RILEM FMC-50 [46]. The fracture toughness (K_m) can be calculated
 199 according to the following equation by Ref. [47]:

$$200 \quad K_m = \frac{1.5 \left(P_{max} + \frac{mg}{2} \times 10^{-2} \right) \times 10^{-\frac{3}{2}} \times S \times a_0^{\frac{1}{2}}}{bh^2} \times f(\alpha) \quad (7)$$

$$201 \quad f(\alpha) = \frac{1.99 - \alpha(1 - \alpha)(2.15 - 3.99\alpha + 2.7\alpha^2)}{(1 + 2\alpha)(1 - \alpha)^{\frac{3}{2}}} \quad (8)$$

$$202 \quad \alpha = \frac{a_0}{h} \quad (9)$$

203 where P_{max} is the load maximum of the fracture toughness test (N), m is the mass of tested specimen
 204 (kg), S is the span length of the specimen (mm), a_0 is the notch depth, b and h are the width (mm)
 205 and height (mm) of the tested specimen, respectively.

206 **Fig. 7.** Micromechanical test: (a) single crack tensile specimen and test setup; (b) three-point
 207 flexural test for determining fracture toughness.

208 **2.4.3. X-ray diffraction test**

209 To clearly visualise the effect of NC on the physical phase composition, LC³-ECC pastes in the
 210 same mix proportions of mortar were prepared and measured by X-ray diffractometer (Rigaku, Smart
 211 Lab SE). Powder samples with particle size lower than 75 μm obtained from the compressive tested
 212 specimens were scanned from 5° to 65° with a scanning rate of 5°/min in the XRD test.

213 **2.4.4. Thermal analysis**

214 The powder samples of NC reinforced LC³-ECC with particle size lower than 75 μm were tested
 215 by Simultaneous Thermal Analyzer (NETZSCH STA 449F3). Under a continuous nitrogen
 216 atmosphere of 20 ml/min, the precisely weighed samples were loaded into a crucible and heated from
 217 30 °C to 800 °C at a constant heating rate of 10 °C/min. The evolution of mass loss and heat flow

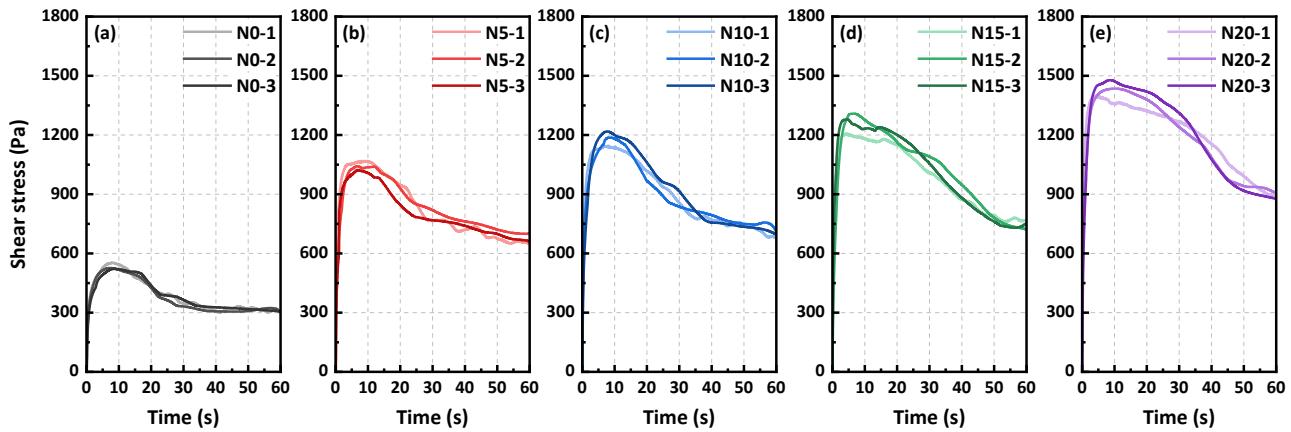
219 with temperature is reflected by the thermogravimetric (TG) and differential scanning calorimetry
220 (DSC) curves to determine the thermal stability of NC reinforced LC³-ECC.

221 *2.4.5. Micromorphology observation*

222 To further observe the microstructural characteristics of NC reinforced LC³-ECC, the samples
223 were taken from the fracture location of tensile tested specimen and were observed by SEM setup of
224 Thermo scientific Apreo 2S. The samples of size up to 1 cm³ were cut and polished, followed by gold
225 spraying treatment of their test planes prior to SEM observation. The bonding position of PVA fibres
226 to matrix was investigated by observing the microstructural features and fibre morphology.
227 Microscopic elements of all mixtures were analysed by energy dispersive spectrometry (EDS)
228 mapping analysis using BRUKER XFLASH 6T/60.

229 *2.4.6. Mercury intrusion porosimetry test*

230 MIP tests were conducted to obtain the pore structure characteristics of NC reinforced LC³-ECC
231 using an AutoPore IV 9500 Hg-porosimeter with pressure range of up to 330 MPa. Tested samples
232 were collected from the previous mechanical experiments and the measurable pore size ranged from
233 500 µm to 0.005 µm.


234 **3. Results**

235 *3.1. Rheology behaviour*

236 *3.1.1. Shear stress-time curves*

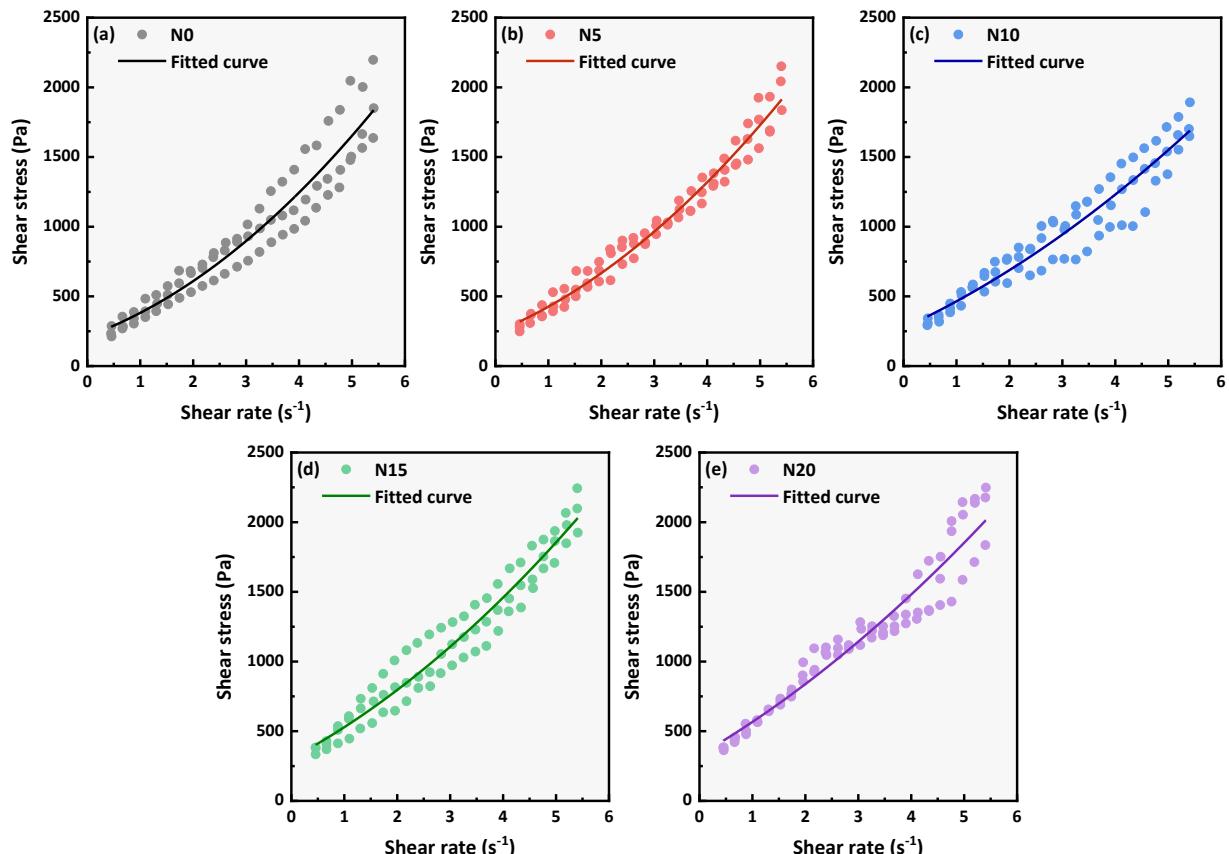
237 Fig. 7 shows the shear stress evolution with shear time of all mixtures. It can be seen that the shear
238 stress exhibits a tendency to increase and then decrease with shear time, which is a rheological
239 characteristic of cementitious materials. The maximum value of the shear stress in the curve is the
240 static yield stress for the mixtures, meaning the critical stress required to start the flow of the mixture
241 from a stationary state [48]. The free water content, flocculation of the particles, and the hydration
242 process in the mixture are the main factors affecting the static yield stress [49,50]. According to the
243 calculations the static yield stresses of N0, N5, N10, N15 and N20 are 533.0 Pa, 1044.2 Pa, 1183.8
244 Pa, 1264.7 Pa and 1437.5 Pa, respectively. Obviously, the static yield stresses of the mixes increased
245 significantly with the increase of NC replacement rate. This is due to the reduction in free water
246 content within the fresh mixture, which can be attributed to the agglomeration of nanoparticles and
247 the increase of adsorbed water on the NC particle surface with large specific surface area [51,52].

248 Furthermore, an increase in the water requirement of the mixture has been observed to enhance the
 249 static yield stress with an escalation in the NC replacement ratio.

250
 251 **Fig. 8.** Shear stress variation with shear time of all mixtures: (a) N0; (b) N5; (c) N10; (d) N15; (e)
 252 N20.

253 *3.1.2. Rheological properties*

254 [Fig. 9](#) displays the shear stress-time variation of all mixtures. According to the modified Bingham
 255 model (see Eq. (10)) [53], the relationship between the derived yield stress and shear rate can be fitted
 256 based on experimental data from three tests. The fitted parameters can be expressed as τ_d and η
 257 values of fresh mixtures.

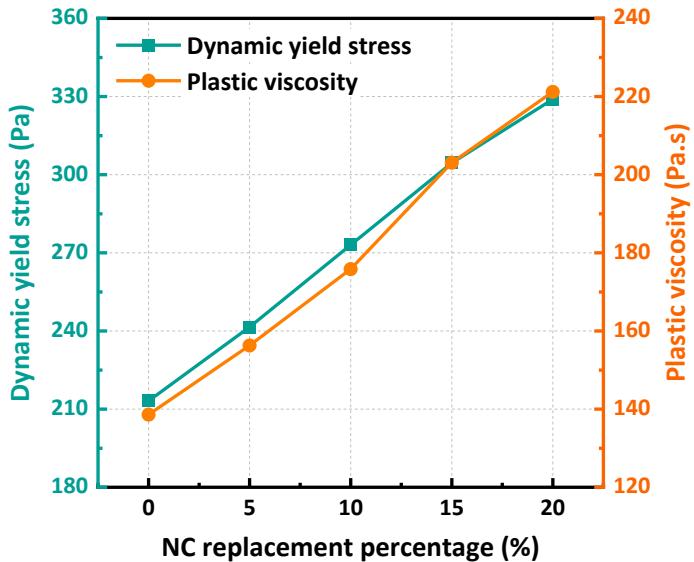

258
$$\tau = \tau_0 + \eta\dot{\gamma} + c\dot{\gamma}^2 \quad (10)$$

259 where τ_0 is the corresponding τ_d of fresh mixture.

260 The fitted data are collated to obtain the rheological properties of NC reinforced LC³-ECC, as
 261 summarised in [Table 4](#). The goodness of fit (R^2) of all mixtures reaches more than 0.8, which can
 262 indicate that the relationship between shear stress and shear rate regression is well fitted under
 263 modified Bingham model. It can be seen from the curves that the rate of increase in shear stress also
 264 shows an improvement as the shear rate increases. This is not only due to the water absorption of by
 265 the high specific surface area of NC, but also possibly due to the resistance created by fibre
 266 entanglement during the mixing process, which will need to be investigated in further experiments.

267 [Fig. 10](#) shows the dynamic yield stress and plastic viscosity of NC reinforced LC³-ECC. Overall, the
 268 dynamic rheological properties are increased by NC incorporation. The LC³-ECC with 5%–20% NC
 269 replacement of limestone powder increases by 13.3%–54.3% and 12.8%–59.6% in dynamic yield
 270 stress and plastic viscosity compared to that of N0, respectively. The plastic viscosity exhibits greater

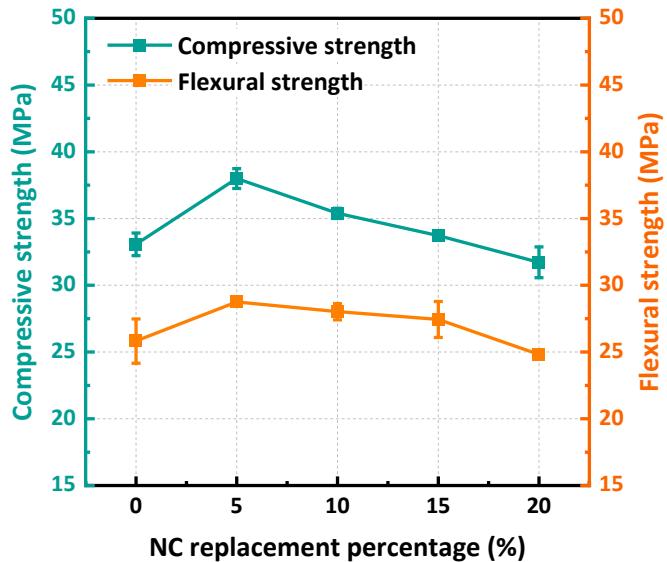
variability than the dynamic yield stress. In comparison to N5, the dynamic yield stresses of N10, N15 and N20 increase by 13.0%, 26.1% and 36.2%, respectively. Correspondingly, the plastic viscosities of counterparts appear to increase by 12.5%, 29.9% and 41.5%, respectively. It is noteworthy that the enhanced rheological characteristics facilitate the utilisation of cementitious materials in additive manufacturing with superior constructability. Furthermore, the augmented plastic viscosity offers a degree of benefit to the fibre dispersion [40], thereby enabling a concurrent optimisation of both the mechanical strength and deformability of the LC³-ECC with NC.


278

279

Fig. 9. Shear stress-rate variation of all mixtures: (a) N0; (b) N5; (c) N10; (d) N15; (e) N20.

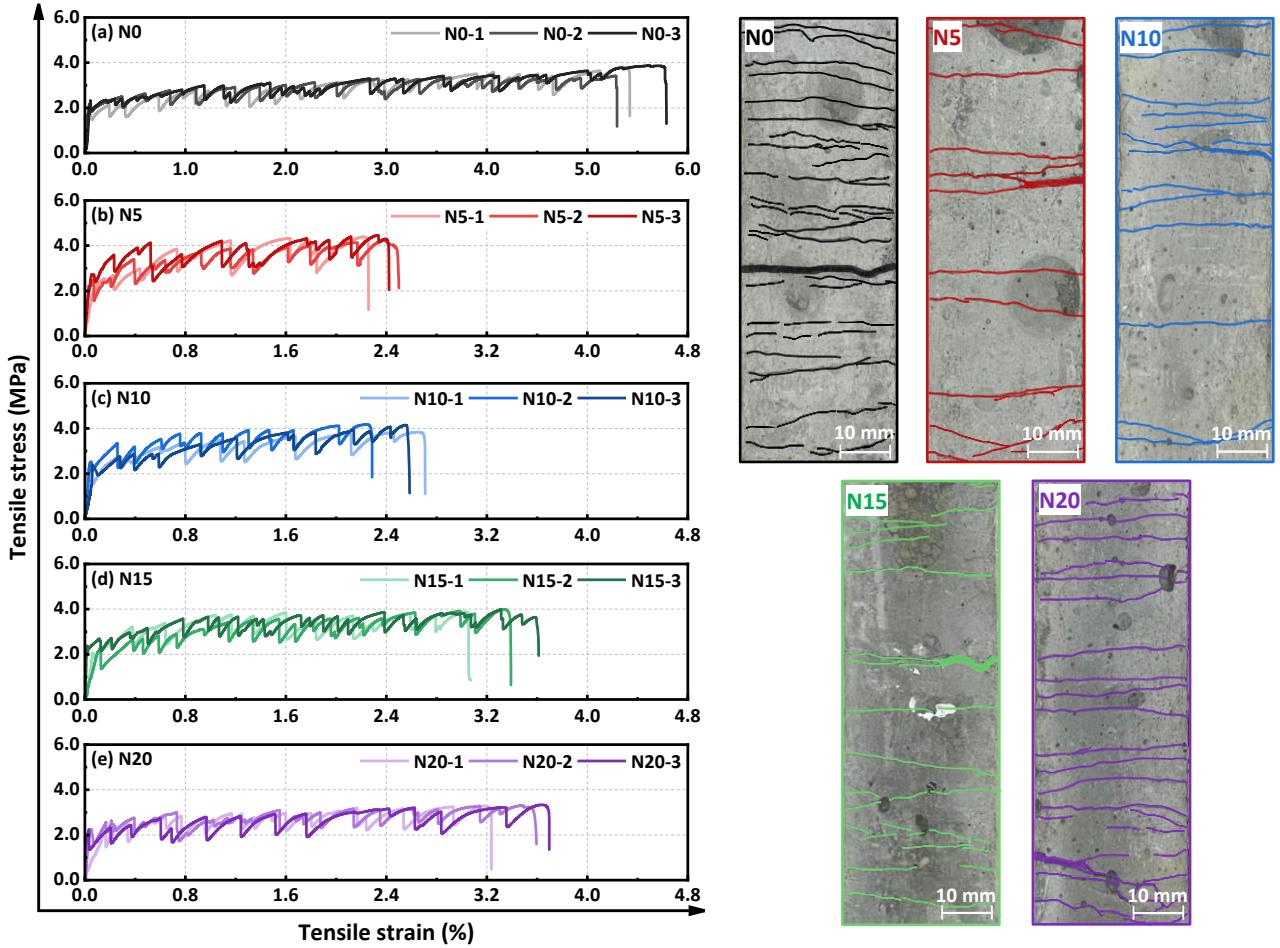
281 **Table 4** Rheological properties of NC reinforced LC³-ECC.


Mixture type	τ_s (Pa)	Fitted equation	τ_d (Pa)	η (Pa.s)	R^2
N0	533.0 ± 13.7	$\tau = 213.1 + 138.6\dot{\gamma} + 29.9\dot{\gamma}^2$	213.1	138.6	0.9083
N5	1044.2 ± 18.7	$\tau = 241.5 + 156.3\dot{\gamma} + 28.3\dot{\gamma}^2$	241.5	156.3	0.9712
N10	1183.8 ± 29.1	$\tau = 273.0 + 175.8\dot{\gamma} + 15.9\dot{\gamma}^2$	273.0	175.8	0.9104
N15	1264.7 ± 42.3	$\tau = 304.5 + 203.0\dot{\gamma} + 21.4\dot{\gamma}^2$	304.5	203.0	0.8408
N20	1437.5 ± 31.9	$\tau = 328.9 + 221.2\dot{\gamma} + 16.7\dot{\gamma}^2$	328.9	221.2	0.9263

282
283 **Fig. 10.** Dynamic yield stress and plastic viscosity of LC³-ECC reinforced by NC of different
284 replacement percentages.

285 *3.2. Compressive and flexural strength*

286 Fig. 11 depicts the compressive and flexural strength variation of LC³-ECC reinforced by NC
287 with different replacement percentages. Overall, the compressive and flexural strengths both shows
288 increasing and then decreasing trends with the growth of NC replacement rate. These two strengths
289 of N5 are the highest in the all mixtures, while the compressive and flexural strength increase by 15.0%
290 and 11.3% compared to that of N0. It can be demonstrated that a NC replacement rate of between 5%
291 and 15% has the effect of enhancing the strength of LC³-ECC. Nevertheless, at a NC replacement
292 percentage of 20%, the strength of LC³-ECC will be inferior to that of the reference mixture (N0). At
293 the physical level, some of the NC can be used as ultra-fine micro-aggregate to fill the voids around
294 the binder particles and reduce the defect size inside the matrix in order to enhance the strength by
295 increasing the ECC compactness [30]. The reduction of mechanical properties caused by excessive
296 NC incorporation can be attributed to two aspects. On the one hand, excessive NC incorporation will
297 rapidly fuse with water, reducing the area and probability of contact between various binder
298 ingredients and water which affects the hydration process [54]. On the other hand, the agglomeration
299 of excessive NC weakens the filling effect and affects the chemical reaction properties [55].
300 Nevertheless, the effect of NC incorporation on flexural strength is significantly greater than that on
301 compressive strength of LC³-ECC.

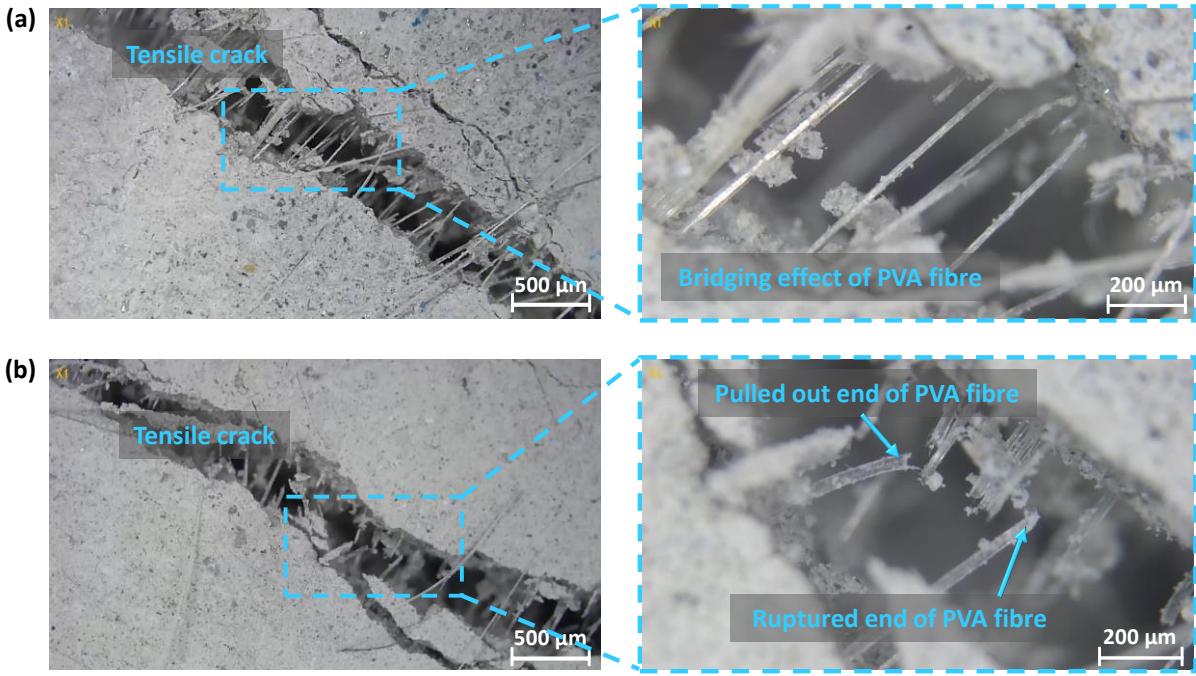

302

303 **Fig. 11.** Compressive and flexural strength of LC^3 -ECC reinforced by NC of different replacement
304 percentages.

305 *3.3. Uniaxial tensile behaviour*

306 *3.3.1. Tensile characteristics*

307 **Fig. 12** illustrates the uniaxial tensile stress-strain curves and the damage morphology in the
308 tensile zone of NC reinforced LC^3 -ECC. It is evident that the curves of all mixtures show a stage of
309 fluctuating change after a linear rise, known as the strain hardening stage. In this stage, the fibres
310 mainly play a bridging role to retard the increase in crack width and form a multiple cracking
311 phenomenon [3,56]. Afterwards, the tensile stress exceeds the fibre bridging stress at a certain
312 position causing the ultimate damage of the tested specimen, which is reflected in an instantaneous
313 drop in tensile stress. A clear distribution of multiple cracks can be observed from the tensile damage
314 pattern, and the final fracture location within the tensile region is valid for testing. It has been
315 demonstrated that an increase in the duration of the strain hardening phase is accompanied by a
316 proportional increase in the number of cracks and a decrease in crack width. The matrix properties
317 are the critical factors affecting tensile behaviour when the same dosage of PVA fibres is used. It can
318 be observed that the incorporation of NC resulted in a slight deterioration in the tensile behaviour of
319 LC^3 -ECC. It is worth mentioning that the crack width in the tensile region decreased and some tiny
320 cracks could not be observed due to unloading at the end of the tensile test, but the surface cracks
321 remained at the micro scale in all the specimens which is beneficial for the mechanical and long-term
322 properties of the LC^3 based material.

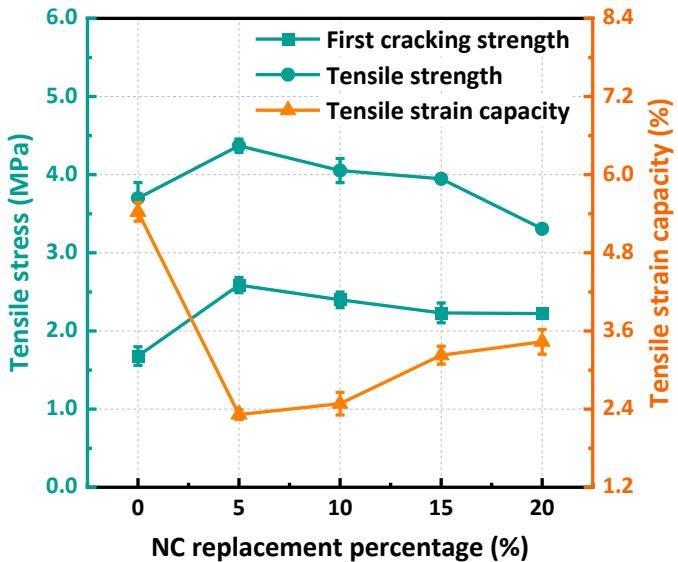

323

324

Fig. 12. Tensile stress-strain curves and failure patterns of NC reinforced LC³-ECC.

325

Microscopic examination of the tensile cracks reveals two types of PVA fibre pattern, fibre
 326 bridging and failure, as shown in [Fig. 13](#). In the initial stage of crack propagation, the PVA fibres de-
 327 bond from the matrix and slip to retard crack width propagation. The fibres perform a bridging
 328 function and absorb and transmit part of the tensile stress, see [Fig. 13a](#). Subsequently, the fibres are
 329 destroyed successively when the stress continually increases, see [Fig. 13b](#). PVA fibres with short
 330 anchorage lengths across the crack are pulled out of the matrix, while those with longer anchorage
 331 lengths are more likely to rupture [\[57\]](#). The damage patterns result in the loss of the fibre bridging
 332 ability and the extended crack suddenly enlarges, leading to the complete destruction of the tensile
 333 tested specimen. Thus, fibre bridging effect at different crack locations is the main contributor to the
 334 formation of multiple cracking phenomenon for NC reinforced LC³-ECC. In the strain hardening
 335 phase of the tensile curves shown in [Fig. 12](#), fibre slippage occurred as the stress increased, whereas
 336 fibre breakage or pull-out happened as the tensile stress decreased. Therefore, fibre-to-matrix
 337 interactions are an important factor affecting the tensile behaviour of NC reinforced LC³-ECC.

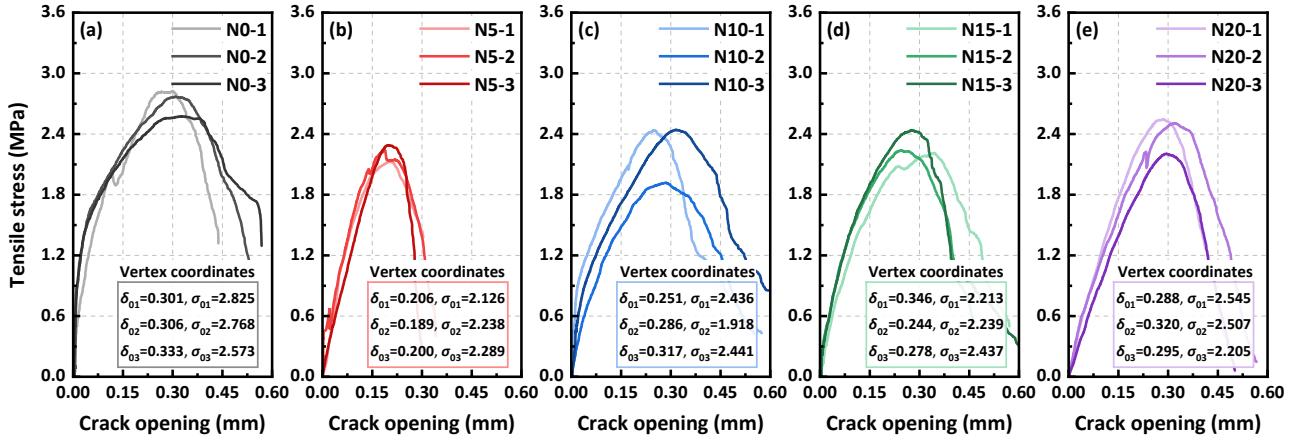


338

339 **Fig. 13.** Fibre appearance at the crack position: (a) bridging effect of PVA fibre; (b) pulled out and
340 ruptured PVA fibre.

341 *3.3.2. Tensile properties*

342 Based on the tensile stress-strain curves, the tensile properties of NC with different replacement
343 rates reinforced LC³-ECC are illustrated in Fig. 14. The first cracking strength and tensile strength
344 are increase and then decline with increasing NC replacement percentage. Correspondingly, the
345 tensile strain capacity shows an opposite trend, which firstly decreases and then increases. The tensile
346 strength of N5 is the highest of all mixtures, while the tensile strain capacity is the worst but still more
347 than 2%. Compared to N0, the tensile strength of N5, N10, N15 and N20 increase by 18.1%, 9.5%,
348 6.8% and -10.5%, respectively. The tensile strain capacity of NC reinforced LC³-ECC reduce by
349 36.8%–57.3% than that of N0. The incorporation of nanomaterials results in enhanced tensile strength,
350 but concurrently the fibre bridging ability is weakened. Partial filling of tiny pores within the matrix
351 by NC is not conducive to fibre slippage, leading to relatively rapid crack expansion manifested as a
352 reduction in strain-hardening capacity. Meanwhile the cement hydration reaction promoted by NC
353 may contribute to an increasing adhesion of the fibre matrix, again adversely affecting the tensile
354 deformation capacity [24]. Nevertheless, all mixtures exhibit significant tensile toughness are more
355 than 200 times that of plain concrete which tensile strain capacity of about 0.01% [3]. Moreover, the
356 N15 mixture has a higher tensile strength than N0 while the tensile strain of N15 reaches 3%.


357

358 **Fig. 14.** Tensile properties of LC³-ECC reinforced by NC of different replacement percentage.

359 *3.4. Micromechanical analysis*

360 *3.4.1. Fibre bridging stress-crack opening curves*

361 **Fig. 15** displays the fibre bridging stress-crack opening displacement curves of all mixtures, which
 362 correspond σ_0 and δ_0 are listed in **Table 5**. The interfacial bonding properties of the fibres to matrix
 363 are primarily reflected in the chemical bonding action and physical anchoring capacity between them
 364 [47]. The increasing stage of tested curve indicates that the stress required to overcome the fibre-
 365 matrix bonding action during the tensile process is increasing, and that the bond strength generated
 366 between them is also improving. In LC³-ECC without NC incorporation, the value of σ_0 is the highest
 367 of all mixtures and thus exhibits a significant strain-hardening capacity in **Section 3.3.1**. It can be
 368 observed that the higher fibre bridging stresses typically result in larger corresponding crack opening
 369 widths. It is postulated that this phenomenon occurs in consequence of the fact that fibre slippage
 370 necessitates the application of greater stresses in comparison to cracking [58]. The fibre bridging
 371 stress and crack opening displacement of NC reinforced LC³-ECC decreased by 11.1%–18.5% and
 372 3.8%–36.7%, respectively, with the most notable decline observed in N5. It is attributed to the
 373 stronger bonding and friction effect which reduces the occurrence of fibre bridging resulting in lower
 374 crack controlled capacity [3], which is the main reason for the poorer tensile strain capacity for N5.
 375 Furthermore, the alteration in the crack opening width is more pronounced in comparison to the fibre
 376 bridging stress, which can be attributed to the consistent incorporation of PVA fibres and the
 377 predominant influence of NC on matrix properties.

378

379 **Fig. 15.** Tensile stress-crack opening displacement curves with vertex coordinates (δ_0 , σ_0) of all
380 mixtures: (a) N0; (b) N5; (c) N10; (d) N15; (e) N20.

381 **Table 5** Results of single crack uniaxial tension.

Mixture type	Fibre birding stress, σ_0 (MPa)	Corresponding crack opening, δ_0 (mm)
N0	2.722 ± 0.108	0.313 ± 0.014
N5	2.218 ± 0.068	0.198 ± 0.007
N10	2.265 ± 0.245	0.284 ± 0.027
N15	2.296 ± 0.100	0.289 ± 0.043
N20	2.419 ± 0.152	0.301 ± 0.014

382 3.4.2. PSH index calculation

383 To further evaluate the tensile properties of NC-reinforced LC³-ECC and whether it satisfies the
384 saturated cracking state, the PSH index is invoked to quantitatively judge the two criterion completion
385 criteria of all mixtures [3]. According to the strength and energy criteria mentioned in [Section 2.4.2](#),
386 the PSH indices are calculated as follows [3,59]:

$$387 \quad PSH \text{ strength} = \frac{\sigma_0}{\sigma_{fc}} \quad (11)$$

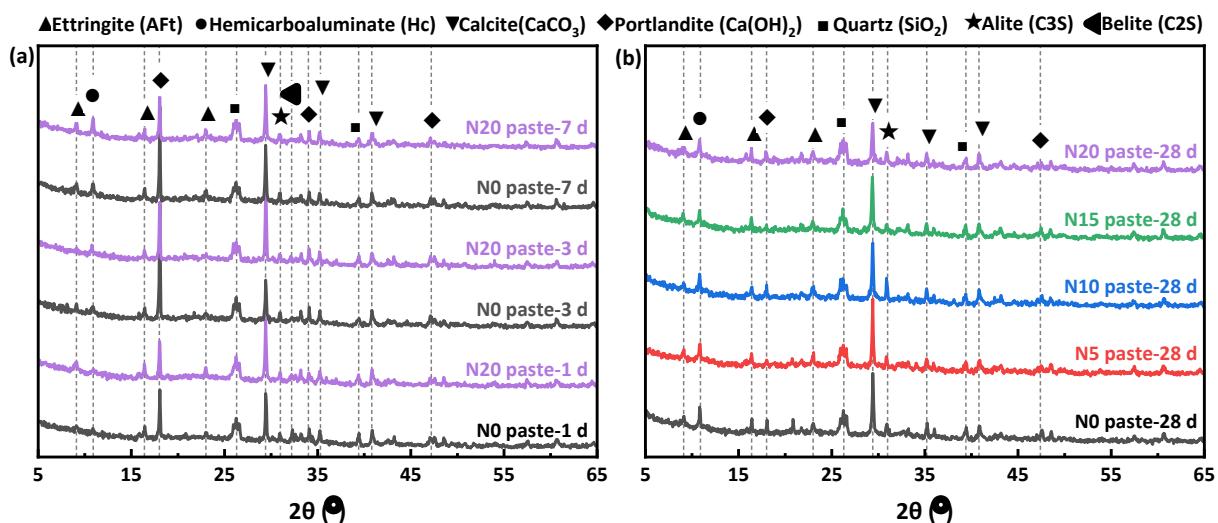
$$388 \quad PSH \text{ energy} = \frac{J'_b}{J_{tip}} \quad (12)$$

389 The experimental results obtained based on fracture toughness testing of the matrix are recorded
390 in [Table 6](#). Then, the value of J_{tip} is determined by combining the elastic modulus measured from
391 the tensile test of mortar matrix, and the calculation of J'_b is obtained by integrating the σ_0 - δ_0 curves.
392 Based on the obtained parameters, the PSH indices are calculated and the relevant data are
393 summarised in [Table 7](#). In accordance with the micromechanical model, the presence of both
394 $\sigma_0/\sigma_{fc} \geq 1$ and $J'_b/J_{tip} \geq 1$ is indispensable for the occurrence of multiple cracking. Nevertheless,

395 experimental evidence has demonstrated that conditions $\sigma_0/\sigma_{fc} \geq 1.3$ and $J'_b/J_{tip} \geq 2.7$ are the
 396 more conservative means of achieving stable tensile strain hardening due to the quality fluctuation of
 397 raw materials [60]. Overall, all mixtures satisfy the PSH energy condition. For the PSH strength
 398 condition, only N5 is not satisfied with a value of 1.05 which shows the lowest strain hardening
 399 behaviour. This phenomenon can be attributed primarily to the strong intermolecular forces that exist
 400 between the fibres and matrix. The incorporation of NC in LC³-ECC resulted in a more pronounced
 401 enhancement in PSH energy values in comparison to PSH strength values, indicating that NC is
 402 relatively more responsive to tensile energy.

403 **Table 6** Fracture toughness of NC reinforced LC³ mortar.

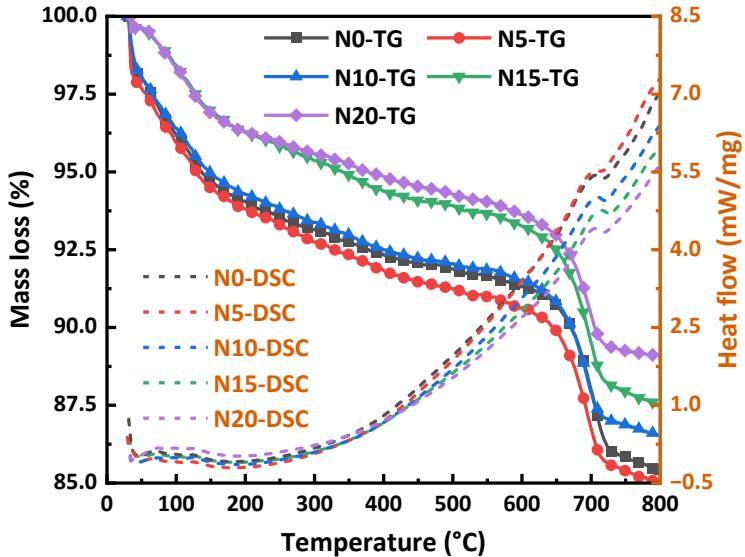
Mixture type	Mass (g)	Peak load (N)	Fracture toughness, K_m (MPa·m ^{1/2})
N0	486.3 ± 5.229	931.7 ± 66.87	0.444 ± 0.032
N5	481.4 ± 3.061	824.3 ± 40.10	0.393 ± 0.019
N10	485.4 ± 6.708	803.3 ± 20.69	0.383 ± 0.010
N15	482.5 ± 4.609	849.3 ± 27.23	0.405 ± 0.013
N20	481.5 ± 8.859	890.5 ± 74.17	0.424 ± 0.035


404 **Table 7** PSH calculation of NC reinforced LC³-ECC.

Mixture type	σ_{fc} (MPa)	PSH strength	J_{tip} (J/m ²)	J'_b (J/m ²)	PSH energy
N0	1.419	1.919 ± 0.076	22.33	203.5	9.113 ± 0.934
N5	2.110	1.051 ± 0.032	12.53	159.1	12.70 ± 1.188
N10	1.640	1.381 ± 0.150	12.86	200.9	15.62 ± 1.201
N15	1.480	1.552 ± 0.068	15.03	206.2	13.72 ± 0.872
N20	1.318	1.836 ± 0.116	16.19	284.0	17.54 ± 0.791

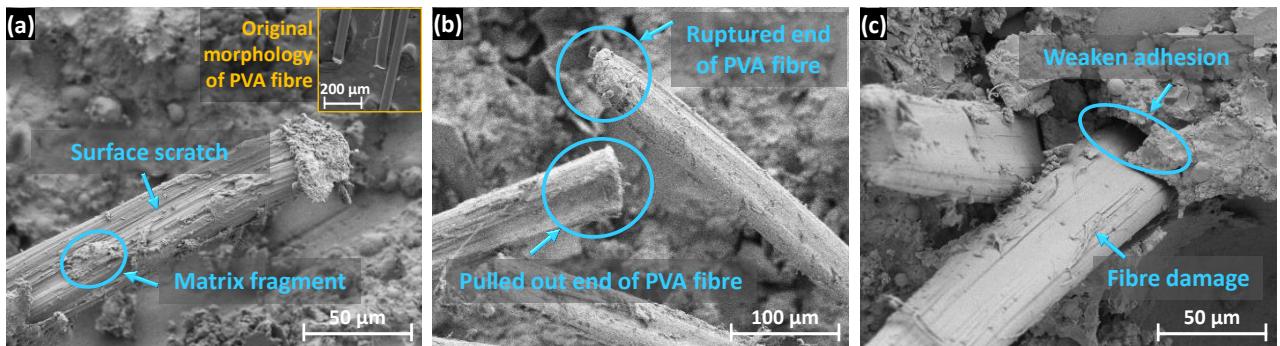
405 *3.5. Phase analysis*

406 [Fig. 16](#) shows the XRD patterns of NC reinforced LC³-ECC paste at different curing ages. The
 407 increase in the diffraction peak intensity of calcium carbonate implies the incorporation of NC
 408 granules. During the first 7 d of curing age (see [Fig. 16a](#)), the diffraction peak intensity of calcium
 409 hydroxide (CH) in N20 is consistently lower than that of N0, indicating that the incorporation of NC
 410 consumes a certain amount of CH during the reaction process [34]. At curing age of 1 d, the contents
 411 of hemicarboaluminate (Hc) in N0 and N20 have little difference, while the diffraction peak intensity
 412 of Hc in N20 is greater than that of N0 at 3 d and 7 d. This indicates that the carbon-aluminate reaction
 413 occurs gradually after more than 24 h of curing age. NC can react with C3A and C4AF and promote
 414 early hydration so that Al cations are mainly immobilised in the carbon-aluminate products [34,61].


415 As shown in Fig. 16b, the diffraction peak intensities of the CH in all mixtures are significantly
 416 reduced, whilst N5 has the highest diffraction intensity of the main calcium carbonate peak. Due to
 417 the amorphous characteristics of non-crystalline components such as calcium-silicate-hydrate (C-S-
 418 H) gels, they have no specific diffraction peaks and the remainder of the carbonate-based hydration
 419 products may be hidden near the diffraction peaks of all calcite [62]. Moreover, NC is capable of
 420 reacting with larger Ca^{2+} precipitated from cement and OH^- from the cement hydration products,
 421 forming many nucleation sites on the surface of calcium ions and contributing to C-S-H gels
 422 generation [24,63].

423 **Fig. 16.** XRD patterns of NC reinforced LC³-ECC paste.

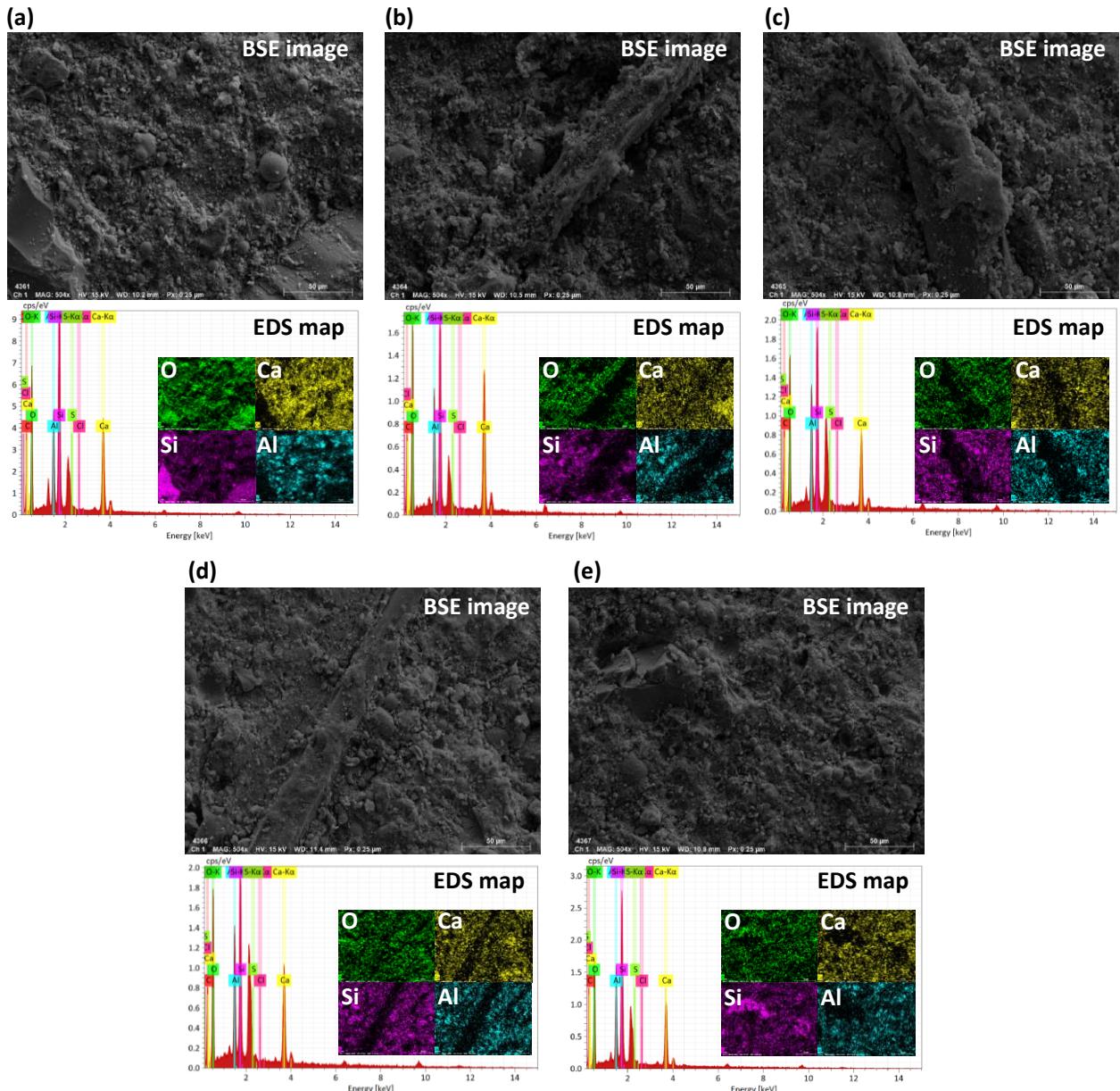
424 Fig. 17 displays the TG and DSC curves of LC³-ECC with NC of different replacement
 425 percentages at elevated temperatures. When the temperature increases from room temperature to
 426 800 °C, the weight loss of N0, N5, N10, N15 and N20 obtained from TG curves is 14.57%, 15.00%,
 427 13.47%, 12.49% and 10.92%, respectively. In the DSC curves, only one obvious exothermic peak is
 428 observed around 700 °C for the decomposition of calcium carbonate without the decomposition of
 429 CH. This indicates that the CH in the NC reinforced LC³-ECC is fully reacted to form carbonate
 430 products. When the NC replacement rate is not more than 10%, the mass loss is not changed
 431 significantly before the temperature reaches 200 °C indicating that the free water contents in the
 432 composites are similar. The mass loss of N15 and N20 before 200 °C is obviously lower than that of
 433 the other mixes, showing that the content of free water in them is significantly reduced due to the
 434 excessive incorporation of NC. Above 200 °C, the hydration products in the ECC decompose


436 successively and the decrease in mass loss is mainly due to the evaporation of bound water and the
 437 escape of CO_2 [56]. The total mass loss of N5 is the largest in all mixtures, indicating that the content
 438 of decomposed hydration products in the matrix is the highest, consistent with the XRD results
 439 showing the highest intensity of carbonate-based phases of N5.

440
 441 **Fig. 17.** TG and DSC curves of NC reinforced LC^3 -ECC.

442 *3.6. Micromorphology appearance*

443 As seen in [Fig. 18](#), the microstructure and fibre morphology within the matrix are observed using
 444 SEM. Matrix fragments and scratches can be clearly seen on the surface of the fibre ([Fig. 18a](#)), which
 445 indicates that the fibres can effectively bond with the matrix and improve the toughness of the
 446 composites. The fibre morphology observed in [Fig. 18b](#) corroborates the two damage modes of fibres
 447 described in [Section 3.3.1](#), i.e. fibre rupture and fibre pull-out. The pull-out ends of the PVA fibres
 448 are relatively flat and not much different from the initial fibre ends, where there are almost no matrix
 449 fragments. The ruptured ends of PVA fibre are spiky and a significant reduction in diameter can be
 450 observed. Herein, the rupture behaviour of PVA fibres indicate a stronger bond to the matrix [64].
 451 Additionally, the presence of conspicuous voids at the site of damaged fibres bonded to the matrix is
 452 evident ([Fig. 18c](#)), which are attributed to fibre slippage and the subsequent spalling of surrounding
 453 fragments in weak zones. The presence of scratches on the fibre surface to varying degrees indicates
 454 that the PVA fibres are able to slip effectively, which is beneficial to the tensile properties of NC
 455 reinforced LC^3 -ECC.

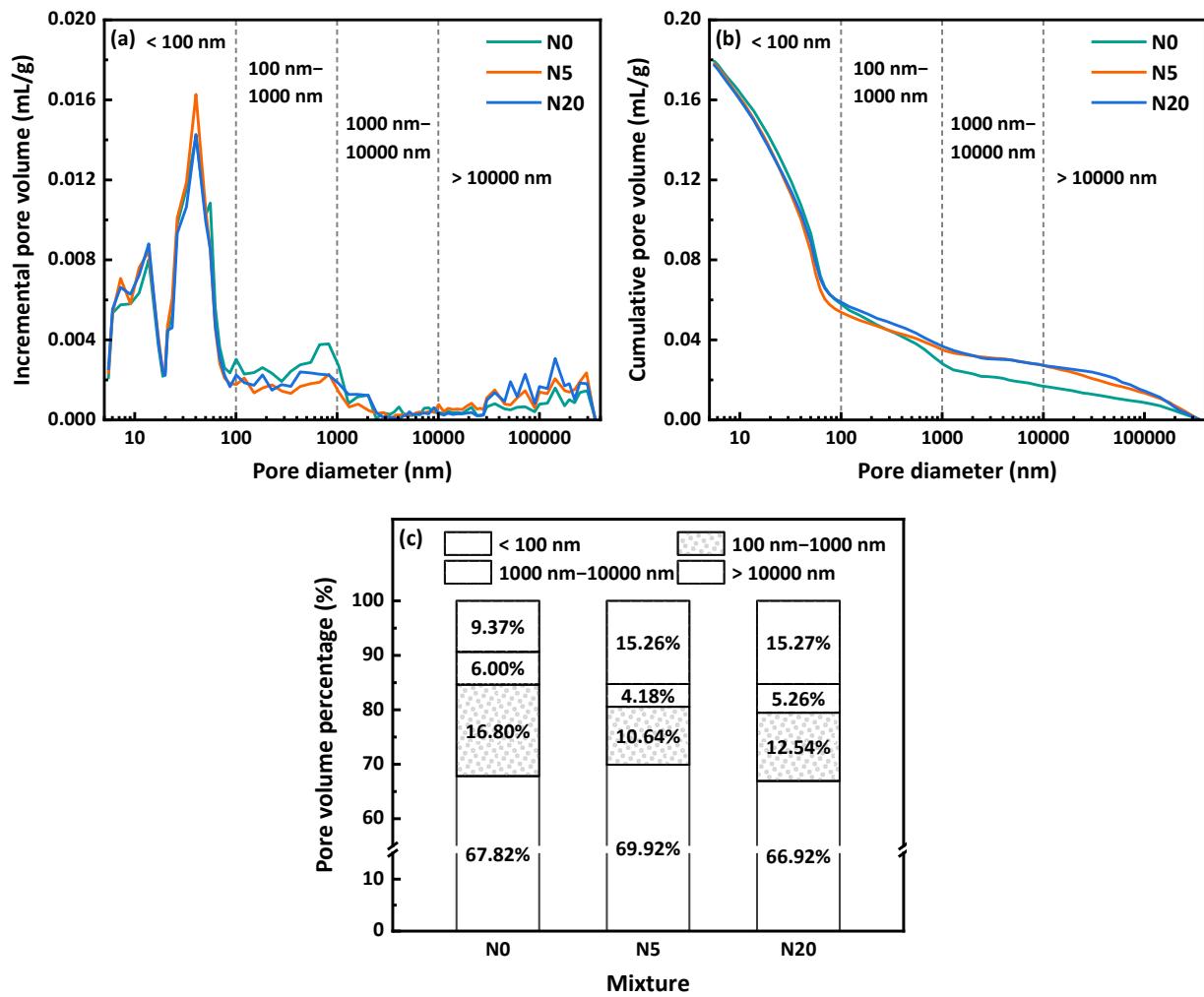


456 **Fig. 18.** SEM images of NC reinforced LC³-ECC: (a) PVA fibre surface; (b) the end of fibre with
457 different failure patterns; (c) fibre-to-matrix bonding position.

458 **Fig. 19** displays the BSE images with EDS map for major elements of all mixtures, and the major
459 element contents are summarised in **Table 8**. Of these, the C element content is unreliable because
460 the fixing adhesive of the samples contained a portion of C during the test. Element Ca derived from
461 calcium hydroxide, calcium carbonate and C-S-H gels has the highest atomic percentage in the N5.
462 The concentration of Si element in the EDS map represents the quartz sand, and the position of the
463 element dispersion is more representative of unreacted ingredients and C-S-H gels. The origin of
464 element Al is partly provided by C-A-S-H gels produced by hydration reactions apart from that
465 contained in fly ash and calcined clay, whereas the percentage of element Al decreases gradually with
466 increasing NC replacement ratio. Hence, the distribution of O, Ca, Si and Al elements can be observed
467 uniformly in the matrix except for the location of fibres and aggregates. Moreover, the PVA fibres are
468 effectively embedded in the matrix. The hydration products and part of the raw materials are
469 uniformly distributed and effectively bonded to the ingredients in the NC reinforced LC³-ECC.
470

471 **Table 8** Spectrum analysis for different samples.

Elem ent	N0		N5		N10		N15		N20	
	Weight /%	Atomic /%								
C	15.73	24.88	19.71	29.97	25.73	37.20	23.29	34.35	16.05	25.46
O	42.34	50.30	43.53	49.67	40.96	44.45	41.81	46.29	40.96	48.77
Ca	18.11	8.59	18.87	8.60	12.62	5.47	14.55	6.43	17.31	8.23
Si	16.77	11.35	10.70	6.96	12.35	7.64	11.98	11.98	16.71	11.34
Al	6.29	4.43	6.65	4.50	7.18	4.62	7.20	4.73	7.88	5.57

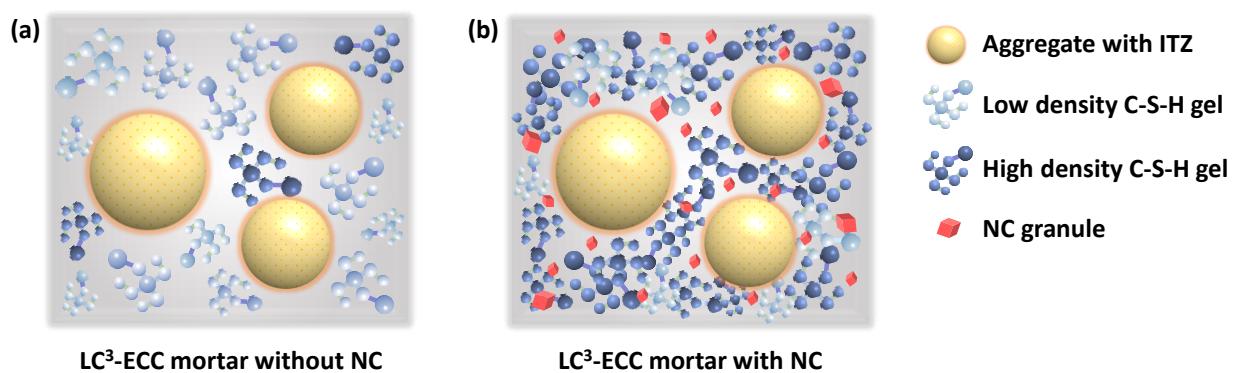

472

473 **Fig. 19.** EDS map based on BSE images of all mixtures: (a) N0; (b) N5; (c) N10; (d) N15; (e) N20.

474 *3.7. Pore structure characterization*

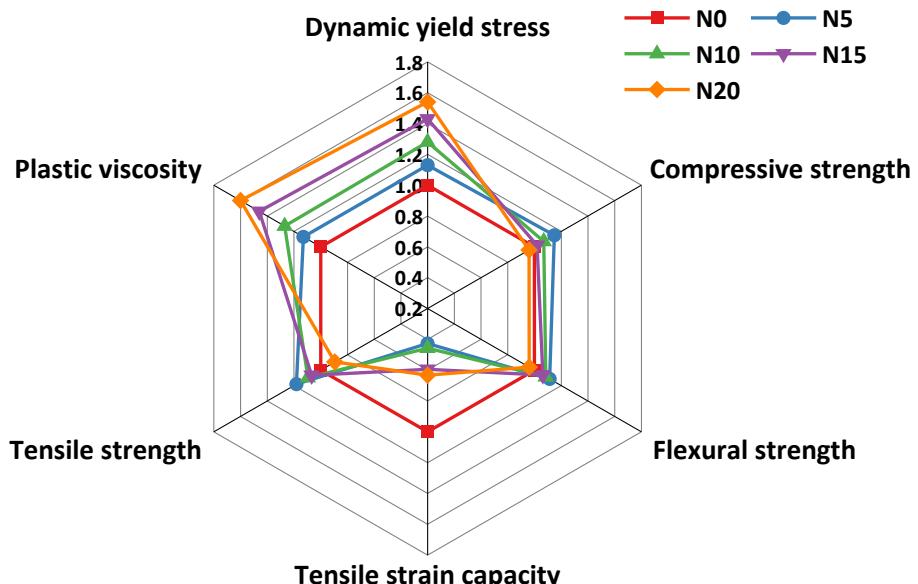
475 [Fig. 20a](#) and [b](#) depict the pore size distribution of LC³-ECC reinforced by NC with replacement
476 limestone powder ratio of 0, 5% and 20%. According to the previous research [56], the pores can be
477 can be classified into four groups depending on the diameter: gel and meso pores (<100 nm), middle
478 capillary pores (100–1000 nm), large capillary pores (1000–10000 nm), and macro pores (>10000
479 nm). The corresponded volume percentages of pore with different sizes are calculated in the [Fig. 20c](#).
480 Based on the tested results, the incorporation of NC has almost little effect on the total porosity of
481 LC³-ECC, while it is influential on the distribution of pore sizes. When NC with a replacement rate
482 of 5% is incorporated, the percentage of capillary pores decreases due to the ability of NC in filling

483 the internal pores while there is an increase in the percentage of gel, meso and macro pores in the
 484 specimen. The nucleation of NC promotes the generation of denser C-S-H gels and increases the
 485 content of prismatic CH [29]. The refinement of CH leads to the overlapping of high-density C-S-H
 486 gels and others products, which increase the amount of gel and meso pores. However, when excessive
 487 NC is added to the matrix, only the percentage of gel and meso pores decreased whereas the
 488 percentage of pores with diameters larger than 100 nm all raised. Among them, the percentage of
 489 medium capillary pores of N20 is still less than that of N0. Thus, the incorporation of NC in LC³-
 490 ECC mainly affects the proportion of macro pores, whilst the variation of NC content is closely
 491 related to the proportion of middle capillary pores. The consistency of the change trend in middle
 492 capillary pores proportion with the mechanical strength of LC³-ECC is essential for its macro
 493 performance.


494

495

496 **Fig. 20.** Pore size distribution of NC reinforced LC³-ECC: (a) incremental pore volume; (b)
 497 cumulative pore volume; (c) pore volume percentage of different sizes.


498 **4. Discussion**

499 As one of the commonly used nano-reinforcing ingredients in cementitious materials, NC results
 500 in the enhancement of the mechanical strength for LC³-ECC when incorporated in the proper amount,
 501 and the effect of which is shown schematically in Fig. 21. During the hydration process, NC could
 502 react with C3A and hydroxide ions inside the matrix (see Fig. 16) as well as forms nucleation sites
 503 on the micro-sized limestone powder, which increases the content of high density C-S-H gels [61,63].
 504 Moreover, NC particles can fill in the cavities of interfacial transition zone between the C-S-H gels
 505 and aggregates [65], refining the pore size distribution of the matrix (see Fig. 20) and allowing a more
 506 uniform distribution of hydration products [24]. The filling and hydration promotion effects of NC
 507 both resulted in an improvement in the mechanical properties of LC³-ECC. When excessive amounts
 508 of NC are incorporated, the NC particles become agglomerated and cannot effectively perform the
 509 filling effect and chemical reaction, resulting in reduced flowability. Moreover, it also influences on
 510 the bridging behaviour of the PVA fibres in LC³-ECC. The effect of NC on the hydration reaction and
 511 microstructure reduces the matrix toughness and fibre-to-matrix bonding strength of LC³-ECC, as
 512 mentioned in Section 3.4. On this basis, ECC materials need to be judged according to design criteria
 513 to measure whether they meet the design requirements. Therefore, the NC has an integrated effect on
 514 the fresh/mechanical properties and microstructure of the LC³ matrix.

515 **LC³-ECC mortar without NC**516 **LC³-ECC mortar with NC**517 **Fig. 21.** Schematic representation of microstructure of LC³-ECC: (a) without NC, (b) with NC.

518 The effect of NC replacement of limestone powder on LC³-ECC is analysed in combination with
 519 fresh and mechanical properties, as presented in Fig. 22. Therein, all values of N0 are set to 1.0 while
 520 the results of LC³-ECC reinforced by NC are adjusted according to the value of N0. The incorporation
 521 of NC increases the static/dynamic yield stress and plastic viscosity of the fresh mixtures, resulting
 in a decrease in the rheological properties of LC³-ECC. This can be attributed to the reduction of free

522 water content inside the matrix due to the particle size grade of NC. Simultaneously, NC is bonded to
 523 the hydration parameters inside the matrix, forming a three-dimensional lattice that improves the
 524 internal interfaces and the overall structure. The NC replacement rate of 5% for LC³-ECC showed
 525 the highest values of all mechanical properties, accompanied by a decrease in the tensile ductility of
 526 ECC. The N5 mixture does not satisfy the strength design criteria according to the results mentioned
 527 in [Section 3.4.2](#). The N10 and N15 mixes have slightly lower strengths than N5, but both are higher
 528 than that of N0. Although the enhancement of NC is not fully realised, there is a combined
 529 improvement in the fresh and hardened properties. It is advantageous for the following rapid
 530 construction of the LC³-ECC. Furthermore, N10 and N15 mixtures fulfil the design criteria to a
 531 greater extent. However, NC does not fully enhance the mechanical performance of LC³-ECC when
 532 the NC replacement rate exceeds 15% up to 20%, probably due to the agglomeration effect of NC
 533 particles resulting in a reduction in the number of actual internal reaction nucleation sites [\[27\]](#).
 534 Therefore, the replacement rate of NC should be maintained at less than 15%. Additionally, an optimal
 535 ratio of enhanced strength or ductility should be selected for practical application based on
 536 engineering requirements.

537
 538 **Fig. 22.** Properties comparison between LC³-ECC and NC reinforced LC³-ECC.

539 **5. Conclusions**

540 This paper systematically investigated the fresh and mechanical properties of LC³-ECC prepared
 541 by replacing limestone powder with NC replacement rate of 0, 5%, 10%, 15% and 20%. The
 542 rheological, compressive, flexural and tensile properties of the NC reinforced LC³-ECC were tested.

543 Furthermore, the macro performance variations were analysed based on the micromechanical
544 parameters and microstructural characterisation. Based on the experimental results, the specific
545 conclusions are summarised below:

- 546 ● The static/dynamic yield strength and plastic viscosity of LC³-ECC increased with increasing
547 NC replacement rate, which is classified by the adsorption of NC on free water and the
548 encapsulation of hydro-molecules by the agglomerated particles. When the NC content was
549 excessive, the change in the rheological properties would affect the practical pouring process of
550 LC³-ECC.
- 551 ● The compressive or flexural strength of LC³-ECC increased and then decreased with the increase
552 of NC replacement rate with a maximum value of N5 mixture, which increased by 15.0% and
553 11.3% than that of N0, respectively. NC improved the hydration process and refined the
554 microstructure of LC³-ECC but an excessive incorporation of NC led to its agglomeration, which
555 interfered with the reaction process and resulted in the strength reduction.
- 556 ● For tensile properties, the incorporation of NC improved the initial and ultimate tensile strengths,
557 but the tensile strain capacity decreased considerably even though it still exceeds 2%. The
558 reinforcement of the LC³-ECC by NC limits the PVA fibre bridging behaviour, leading to a
559 weakening of the controlled ability to crack initiation.
- 560 ● The incorporation of NC consumes a large amount of CH and promotes the generation of
561 hydration products, as well as contributes to the reduction of the capillary pore distribution of
562 LC³-ECC. The NC replacement rate of 5% failed to satisfy the design guidelines for ECC
563 although it had the highest mechanical properties. Thus, the NC replacement rate of about 10%–
564 15% was the optimal range for its reinforcement for LC³-ECC in this work.

565 **Acknowledgements**

566 The authors gratefully acknowledge the financial support by the Liaoning Provincial Natural
567 Science Foundation (2024-MSBA-28), and the Fundamental Research Funds for the Central
568 Universities (N2401001).

569 **References**

570 [1] V.C. Li, C.K.Y. Leung, Steady-State and Multiple Cracking of Short Random Fiber
571 Composites, *J. Eng. Mech.* 118 (1992) 2246–2264. [https://doi.org/10.1061/\(asce\)0733-](https://doi.org/10.1061/(asce)0733-)

572 9399(1992)118:11(2246).

573 [2] D.Y. Yoo, N. Banthia, High-performance strain-hardening cementitious composites with
574 tensile strain capacity exceeding 4%: A review, *Cem. Concr. Compos.* 125 (2022) 104325.
575 <https://doi.org/10.1016/j.cemconcomp.2021.104325>.

576 [3] V.C. Li, Engineered cementitious composites (ECC) : Bendable concrete for sustainable and
577 resilient infrastructure, Springer, 2019. <https://doi.org/10.1007/978-3-662-58438-5>.

578 [4] V.C. Li, From micromechanics to structural engineering-the design of cementitious
579 composites for civil engineering applications, *J. Struct. Mech. Earthq. Eng.* 10 (1993) 37–48.
580 https://doi.org/10.2208/jscej.1993.471_1.

581 [5] C. Lu, J. Yu, C.K.Y. Leung, An improved image processing method for assessing multiple
582 cracking development in Strain Hardening Cementitious Composites (SHCC), *Cem. Concr.*
583 *Compos.* 74 (2016) 191–200. <https://doi.org/10.1016/j.cemconcomp.2016.10.005>.

584 [6] J. Lao, B. Huang, Y. Fang, L. Xu, J. Dai, Strain-hardening alkali-activated fly ash / slag
585 composites with ultra-high compressive strength and ultra-high tensile ductility, 165 (2023)
586 107075. <https://doi.org/https://doi.org/10.1016/j.cemconres.2022.107075>.

587 [7] D. Shoji, Z. He, D. Zhang, V.C. Li, The greening of engineered cementitious composites
588 (ECC): A review, *Constr. Build. Mater.* 327 (2022) 126701.
589 <https://doi.org/10.1016/j.conbuildmat.2022.126701>.

590 [8] N. Shanmugasundaram, S. Praveenkumar, Influence of supplementary cementitious
591 materials, curing conditions and mixing ratios on fresh and mechanical properties of
592 engineered cementitious composites – A review, *Constr. Build. Mater.* 309 (2021) 125038.
593 <https://doi.org/10.1016/j.conbuildmat.2021.125038>.

594 [9] K. Scrivener, F. Martirena, S. Bishnoi, S. Maity, Calcined clay limestone cements (LC³),
595 *Cem. Concr. Res.* 114 (2018) 49–56. <https://doi.org/10.1016/j.cemconres.2017.08.017>.

596 [10] M. Hou, D. Zhang, V.C. Li, Material processing, microstructure, and composite properties of
597 low carbon Engineered Cementitious Composites (ECC), *Cem. Concr. Compos.* 134 (2022)
598 104790. <https://doi.org/10.1016/j.cemconcomp.2022.104790>.

599 [11] J. Yu, D.K. Mishra, C. Hu, C.K.Y. Leung, S.P. Shah, Mechanical, environmental and
600 economic performance of sustainable Grade 45 concrete with ultrahigh-volume Limestone-

601 Calcined Clay (LCC), *Resour. Conserv. Recycl.* 175 (2021) 105846.
602 <https://doi.org/10.1016/j.resconrec.2021.105846>.

603 [12] A. Al-Fakih, M. A. Al-Shugaa, M. A. Al-Osta, B.S. Thomas, Mechanical, environmental,
604 and economic performance of engineered cementitious composite incorporated limestone
605 calcined clay cement: A review, *J. Build. Eng.* 79 (2023) 107901.
606 <https://doi.org/10.1016/j.jobe.2023.107901>.

607 [13] H. Zhu, K. Yu, W. McGee, T.Y. Ng, V.C. Li, Limestone calcined clay cement for three-
608 dimensional-printed engineered cementitious composites, *ACI Mater. J.* 118 (2021) 111–122.
609 <https://doi.org/10.14359/51733109>.

610 [14] W. Chen, J. Dang, H. Du, Using low-grade calcined clay to develop low-carbon and
611 lightweight strain-hardening cement composites, *J. Build. Eng.* 58 (2022) 105023.
612 <https://doi.org/10.1016/j.jobe.2022.105023>.

613 [15] Y. Chen, S. He, Y. Zhang, Z. Wan, O. Çopuroğlu, E. Schlangen, 3D printing of calcined
614 clay-limestone-based cementitious materials, *Cem. Concr. Res.* 149 (2021) 106553.
615 <https://doi.org/10.1016/j.cemconres.2021.106553>.

616 [16] W.J. Long, C. Lin, J.L. Tao, T.H. Ye, Y. Fang, Printability and particle packing of 3D-
617 printable limestone calcined clay cement composites, *Constr. Build. Mater.* 282 (2021)
618 122647. <https://doi.org/10.1016/j.conbuildmat.2021.122647>.

619 [17] L.G. Briendl, F. Mittermayr, A. Baldermann, F.R. Steindl, M. Sakoparnig, I. Letofsky-Papst,
620 I. Galan, Early hydration of cementitious systems accelerated by aluminium sulphate: Effect
621 of fine limestone, *Cem. Concr. Res.* 134 (2020) 106069.
622 <https://doi.org/10.1016/j.cemconres.2020.106069>.

623 [18] D. Jiang, X. Li, Y. Lv, M. Zhou, C. He, W. Jiang, Z. Liu, C. Li, Utilization of limestone
624 powder and fly ash in blended cement: Rheology, strength and hydration characteristics,
625 *Constr. Build. Mater.* 232 (2020) 117228.
626 <https://doi.org/10.1016/j.conbuildmat.2019.117228>.

627 [19] L. Wang, N. Ur Rehman, I. Curosu, Z. Zhu, M.A.B. Beigh, M. Liebscher, L. Chen, D.C.W.
628 Tsang, S. Hempel, V. Mechtkerine, On the use of limestone calcined clay cement (LC³) in
629 high-strength strain-hardening cement-based composites (HS-SHCC), *Cem. Concr. Res.* 144

630 (2021) 106421. <https://doi.org/10.1016/j.cemconres.2021.106421>.

631 [20] J. Yu, H.L. Wu, C.K.Y. Leung, Feasibility of using ultrahigh-volume limestone-calcined clay
632 blend to develop sustainable medium-strength Engineered Cementitious Composites (ECC),
633 *J. Clean. Prod.* 262 (2020) 121343. <https://doi.org/10.1016/j.jclepro.2020.121343>.

634 [21] D. Zhang, B. Jaworska, H. Zhu, K. Dahlquist, V.C. Li, Engineered Cementitious Composites
635 (ECC) with limestone calcined clay cement (LC³), *Cem. Concr. Compos.* 114 (2020)
636 103766. <https://doi.org/10.1016/j.cemconcomp.2020.103766>.

637 [22] H. Zhu, D. Zhang, T. Wang, H. Wu, V.C. Li, Mechanical and self-healing behavior of low
638 carbon engineered cementitious composites reinforced with PP-fibers, *Constr. Build. Mater.*
639 259 (2020) 119805. <https://doi.org/10.1016/j.conbuildmat.2020.119805>.

640 [23] A.G. Mehairi, M.M. Husein, Enhancement of cement properties by means of in situ grown
641 nanoparticles, *Constr. Build. Mater.* 261 (2020) 120496.
642 <https://doi.org/10.1016/j.conbuildmat.2020.120496>.

643 [24] Q. Fu, Z. Zhang, X. Zhao, W. Xu, D. Niu, Effect of nano calcium carbonate on hydration
644 characteristics and microstructure of cement-based materials: A review, *J. Build. Eng.* 50
645 (2022) 104220. <https://doi.org/10.1016/j.jobe.2022.104220>.

646 [25] B. Xi, Y. Zhou, K. Yu, B. Hu, X. Huang, L. Sui, F. Xing, Use of nano-SiO₂ to develop a high
647 performance green lightweight engineered cementitious composites containing fly ash
648 cenospheres, *J. Clean. Prod.* 262 (2020) 121274.
649 <https://doi.org/10.1016/j.jclepro.2020.121274>.

650 [26] J. Wang, X. Wang, S. Ding, A. Ashour, F. Yu, X. Lv, B. Han, Micro-nano scale pore
651 structure and fractal dimension of ultra-high performance cementitious composites modified
652 with nanofillers, *Cem. Concr. Compos.* 141 (2023) 105129.
653 <https://doi.org/10.1016/j.cemconcomp.2023.105129>.

654 [27] Z. Wu, K.H. Khayat, C. Shi, B.F. Tutikian, Q. Chen, Mechanisms underlying the strength
655 enhancement of UHPC modified with nano-SiO₂ and nano-CaCO₃, *Cem. Concr. Compos.*
656 119 (2021) 103992. <https://doi.org/10.1016/j.cemconcomp.2021.103992>.

657 [28] J. Jiang, X. Dong, H. Wang, F. Wang, Y. Li, Z. Lu, Enhanced mechanical and photocatalytic
658 performance of cement mortar reinforced by nano-TiO₂ hydrosol-coated sand, *Cem. Concr.*

659 Compos. 137 (2023) 104906. <https://doi.org/10.1016/j.cemconcomp.2022.104906>.

660 [29] Y. Ding, J.P. Liu, Y.L. Bai, Linkage of multi-scale performances of nano-CaCO₃ modified
661 ultra-high performance engineered cementitious composites (UHP-ECC), Constr. Build.
662 Mater. 234 (2020) 117418. <https://doi.org/10.1016/j.conbuildmat.2019.117418>.

663 [30] M. Sun, J. Zhu, T. Sun, Y. Chen, X. Li, W. Yin, J. Han, Multiple effects of nano-CaCO₃ and
664 modified polyvinyl alcohol fiber on flexure-tension-resistant performance of engineered
665 cementitious composites, Constr. Build. Mater. 303 (2021) 124426.
666 <https://doi.org/10.1016/j.conbuildmat.2021.124426>.

667 [31] D. Pavan Kumar, S. Amit, M. Sri Rama Chand, Influence of various nano-size materials on
668 fresh and hardened state of fast setting high early strength concrete [FSHESC]: A state-of-
669 the-art review, Constr. Build. Mater. 277 (2021) 122299.
670 <https://doi.org/10.1016/j.conbuildmat.2021.122299>.

671 [32] A. Hosan, F.U.A. Shaikh, P. Sarker, F. Aslani, Nano- and micro-scale characterisation of
672 interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes
673 containing nano SiO₂ and nano CaCO₃, Constr. Build. Mater. 269 (2021) 121311.
674 <https://doi.org/10.1016/j.conbuildmat.2020.121311>.

675 [33] S. Kawashima, P. Hou, D.J. Corr, S.P. Shah, Modification of cement-based materials with
676 nanoparticles, Cem. Concr. Compos. 36 (2013) 8–15.
677 <https://doi.org/10.1016/j.cemconcomp.2012.06.012>.

678 [34] S. Yeşilmen, Y. Al-Najjar, M.H. Balav, M. Şahmaran, G. Yıldırım, M. Lachemi, Nano-
679 modification to improve the ductility of cementitious composites, Cem. Concr. Res. 76
680 (2015) 170–179. <https://doi.org/10.1016/j.cemconres.2015.05.026>.

681 [35] S.A. Khokhar, T. Ahmed, R.A. Khushnood, M.U. Basit, Shahnawaz, S. Javed, Development
682 of low carbon engineered cementitious composite (ECC) using nano lime calcined clay
683 cement (nLC³) based matrix, Case Stud. Constr. Mater. 20 (2024) e02669.
684 <https://doi.org/10.1016/j.cscm.2023.e02669>.

685 [36] ASTM C618-17a, Standard Specification for Coal Fly Ash and Raw or Calcined Natural
686 Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2017.

687 [37] H. Zhu, D. Zhang, T. Wang, M. McBain, V.C. Li, Intrinsic self-stressing and low carbon

688 Engineered Cementitious Composites (ECC) for improved sustainability, *Cem. Concr. Res.*
689 149 (2021) 106580. <https://doi.org/10.1016/j.cemconres.2021.106580>.

690 [38] H. Li, L. Zhang, S. Ding, X. Shu, X. Wang, B. Han, Effects and mechanisms of incorporated
691 nanoparticles on the rheological performance of cement pastes, *J. Build. Eng.* 73 (2023)
692 106694. <https://doi.org/10.1016/j.jobe.2023.106694>.

693 [39] Q. Yuan, C. Shi, D. Jiao, *Rheology of Fresh Cement-Based Materials: Fundamentals,*
694 Measurements, and Applications, 2022. <https://doi.org/10.1201/9781003265313>.

695 [40] Z. Tang, C. Litina, A. Al-Tabbaa, Optimisation of rheological parameters and mechanical
696 properties of Engineered Cementitious Composites (ECC) using regression-based models,
697 *Constr. Build. Mater.* 310 (2021) 125281.
698 <https://doi.org/10.1016/j.conbuildmat.2021.125281>.

699 [41] G. Heirman, L. Vandewalle, D. Van Gemert, Ó. Wallevik, Integration approach of the
700 Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric
701 cylinder rheometer, *J. Nonnewton. Fluid Mech.* 150 (2008) 93–103.
702 <https://doi.org/10.1016/j.jnnfm.2007.10.003>.

703 [42] A.R. Arunothayan, B. Nematollahi, K.H. Khayat, A. Ramesh, J.G. Sanjayan, Rheological
704 characterization of ultra-high performance concrete for 3D printing, *Cem. Concr. Compos.*
705 136 (2023) 104854. <https://doi.org/10.1016/j.cemconcomp.2022.104854>.

706 [43] ASTM C109/C109M-20b, Standard test method for compressive strength of hydraulic
707 cement mortars (Using 2-in. Or [50 mm] Cube Specimens), ASTM International, West
708 Conshohocken, PA, 2020.

709 [44] GB/T 50081, Chinese Code for Test Methods of Concrete Physical and Mechanical
710 Properties, Beijing, 2019.

711 [45] JSCE, Recommendations for Design and Construction of High Performance Fiber
712 Reinforced Cement Composites with Multiple Fine Cracks, Japan Soc. of Civil Engineers,
713 Tokyo, 2008.

714 [46] RILEM FMC-50, Determination of the fracture energy of mortar and concrete by means of
715 three-point bend tests on notched beams, 18 (1985) 287–290.

716 [47] H. Zhong, M.Z. Zhang, Effect of recycled tyre polymer fibre on engineering properties of

717 sustainable strain hardening geopolymers, *Cem. Concr. Compos.* 122 (2021)
718 104167. <https://doi.org/10.1016/j.cemconcomp.2021.104167>.

719 [48] M. Chen, L. Yang, Y. Zheng, Y. Huang, L. Li, P. Zhao, S. Wang, L. Lu, X. Cheng, Yield
720 stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with
721 metakaolin related to structural build-up, *Constr. Build. Mater.* 252 (2020) 119090.
722 <https://doi.org/10.1016/j.conbuildmat.2020.119090>.

723 [49] C. Liu, X. Wang, Y. Chen, C. Zhang, L. Ma, Z. Deng, C. Chen, Y. Zhang, J. Pan, N. Banthia,
724 Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological
725 properties, and printability of 3D printing foam concrete, *Cem. Concr. Compos.* 122 (2021)
726 104158. <https://doi.org/10.1016/j.cemconcomp.2021.104158>.

727 [50] K. Pasupathy, S. Ramakrishnan, J. Sanjayan, 3D concrete printing of eco-friendly
728 geopolymers containing brick waste, *Cem. Concr. Compos.* 138 (2023) 104943.
729 <https://doi.org/10.1016/j.cemconcomp.2023.104943>.

730 [51] D.Y. Yoo, T. Oh, N. Banthia, Nanomaterials in ultra-high-performance concrete (UHPC) – A
731 review, *Cem. Concr. Compos.* 134 (2022) 104730.
732 <https://doi.org/10.1016/j.cemconcomp.2022.104730>.

733 [52] K.H. Khayat, W. Meng, K. Vallurupalli, L. Teng, Rheological properties of ultra-high-
734 performance concrete — An overview, *Cem. Concr. Res.* 124 (2019) 105828.
735 <https://doi.org/10.1016/j.cemconres.2019.105828>.

736 [53] A. Yahia, K.H. Khayat, Analytical models for estimating yield stress of high-performance
737 pseudoplastic grout, *Cem. Concr. Res.* 31 (2001) 731–738. [https://doi.org/10.1016/S0008-8846\(01\)00476-8](https://doi.org/10.1016/S0008-8846(01)00476-8).

739 [54] Z. Xu, Z. Zhou, P. Du, X. Cheng, Effects of nano-limestone on hydration properties of
740 tricalcium silicate, *J. Therm. Anal. Calorim.* 129 (2017). <https://doi.org/10.1007/s10973-017-6123-9>.

742 [55] J. Camiletti, A.M. Soliman, M.L. Nehdi, Effect of nano-calcium carbonate on early-age
743 properties of ultrahigh-performance concrete, *Mag. Concr. Res.* 65 (2013) 297–307.
744 <https://doi.org/10.1680/macr.12.00015>.

745 [56] M. Chen, Y. Wang, T. Zhang, M. Zhang, Behaviour of structural engineered cementitious

746 composites under dynamic tensile loading and elevated temperatures, Eng. Struct. 280 (2023)
747 115739. <https://doi.org/10.1016/j.engstruct.2023.115739>.

748 [57] Y. Wang, M. Chen, T. Zhang, M. Zhang, Hardening properties and microstructure of 3D
749 printed engineered cementitious composites based on limestone calcined clay cement, Cem.
750 Concr. Compos. 152 (2024) 105641. <https://doi.org/10.1016/j.cemconcomp.2024.105641>.

751 [58] K.Q. Yu, W.J. Zhu, Y. Ding, Z.D. Lu, J. tao Yu, J.Z. Xiao, Micro-structural and mechanical
752 properties of ultra-high performance engineered cementitious composites (UHP-ECC)
753 incorporation of recycled fine powder (RFP), Cem. Concr. Res. 124 (2019) 105813.
754 <https://doi.org/10.1016/j.cemconres.2019.105813>.

755 [59] E.H. Yang, V.C. Li, Strain-hardening fiber cement optimization and component tailoring by
756 means of a micromechanical model, Constr. Build. Mater. 24 (2010) 130–139.
757 <https://doi.org/10.1016/j.conbuildmat.2007.05.014>.

758 [60] T. Kanda, V.C. Li, Practical design criteria for saturated pseudo strain hardening behavior in
759 ECC, J. Adv. Concr. Technol. 4 (2006) 59–72. <https://doi.org/10.3151/jact.4.59>.

760 [61] K. De Weerdt, M.B. Ben Haha, G. Le Saout, K.O.O. Kjellsen, H. Justnes, B. Lothenbach,
761 Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash,
762 Cem. Concr. Res. 41 (2011) 279–291. <https://doi.org/10.1016/j.cemconres.2010.11.014>.

763 [62] Q. Wang, J. Li, G. Yao, X. Zhu, S. Hu, J. Qiu, P. Chen, X. Lyu, Characterization of the
764 mechanical properties and microcosmic mechanism of Portland cement prepared with soda
765 residue, Constr. Build. Mater. 241 (2020).
766 <https://doi.org/10.1016/j.conbuildmat.2019.117994>.

767 [63] Z. Wu, C. Shi, K.H. Khayat, S. Wan, Effects of different nanomaterials on hardening and
768 performance of ultra-high strength concrete (UHSC), Cem. Concr. Compos. 70 (2016) 24–
769 34. <https://doi.org/10.1016/j.cemconcomp.2016.03.003>.

770 [64] L.Y. Xu, B.T. Huang, V.C. Li, J.G. Dai, High-strength high-ductility Engineered/Strain-
771 Hardening Cementitious Composites (ECC/SUCC) incorporating geopolymer fine
772 aggregates, Cem. Concr. Compos. 125 (2022).
773 <https://doi.org/10.1016/j.cemconcomp.2021.104296>.

774 [65] T. Zhang, H. Wang, M. Chen, L. Niu, W. Zhu, Effect of interfacial characteristics on

775 dynamic splitting behavior of quasi rock-concrete composite layer: Towards resilient tunnel
776 support against rock burst, *Tunn. Undergr. Sp. Technol.* 155 (2025) 106134.
777
778 <https://doi.org/10.1016/j.tust.2024.106134>.