
Generated using the official AMS LATEX template v6.1

Challenges and opportunities offered by geostationary space observations1

for air quality research and emission monitoring2

Tai-Long He,★a,b Glenn-Michael Oomen,★c Idir Bouarar,d Kelly Chance,e Cathy Clerbaux,f,g3

David P. Edwards,h Henk Eskes,i Benjamin Gaubert,h Claire Granier,j,k,l Marc Guevara,m4

Daniel J. Jacob,b Jennifer Kaiser,n,o Jhoon Kim,p Shobha Kondragunta,q Xiong Liu,e Kazuyuki5

Miyazaki,r Eloise A. Marais,s Rokjin Park,t Vincent-Henri Peuch,u Gabriele Pfister,h Andreas6

Richter,v Trissevgeni Stavrakou,c Wenfu Tang,h Raid M. Suleiman,e Alexander J. Turner,a Ben7

Veihelmann,w Zhao-Cheng Zeng,x Guy P. Brasseur,d8

★ These authors contributed equally to this work.9

a Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA10

b John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,

02138, USA

11

12

c Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium13

d Max Planck Institute for Meteorology, Hamburg, Germany14

e Smithsonian Astrophysical Observatory (SAO), Center for Astrophysics — Harvard &

Smithsonian, Cambridge, MA 02138, USA

15

16
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ABSTRACT: Space-borne remote sensing of atmospheric chemical constituents is crucial for

monitoring and better understanding global and regional air quality. Since the 1990s, the continuous

development of instruments onboard low-Earth orbit (LEO) satellites has led to major advances

in air quality research by providing daily global measurements of atmospheric chemical species.

The next generation of atmospheric composition satellites measures from the geostationary Earth

orbit (GEO) with hourly temporal resolution, allowing the observation of diurnal variations of air

pollutants. The first two instruments of the GEO constellation coordinated by the Committee on

Earth Observation Satellites (CEOS), the Geostationary Environment Monitoring Spectrometer

(GEMS) for Asia and the Tropospheric Emissions: Monitoring Pollution (TEMPO) for North

America, were successfully launched in 2020 and 2023, respectively. The European component,

Sentinel-4, is planned for launch in 2025. This work provides an overview of satellite missions for

atmospheric composition monitoring and the state of the science in air quality research. We cover

recent advances in retrieval algorithms, the modeling of emissions and atmospheric chemistry,

data assimilation, and the application of machine learning based on satellite data. We discuss

the challenges and opportunities in air quality research in the era of GEO satellites, and provide

recommendations on research priorities for the near future.
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SIGNIFICANCE STATEMENT: Space-borne measurements of the chemical composition of the57

atmosphere are crucial for understanding and forecasting air quality. With the next generation58

of atmospheric composition satellites measuring from the geostationary Earth orbit, air quality59

research has entered a new era. We provide an overview of the constellation of satellites for60

atmospheric composition monitoring and review the latest advances in satellite-driven air quality61

research. We identify the challenges and opportunities for a better exploitation of the wealth of62

satellite data from a geostationary perspective.63

CAPSULE: The International Space Science Institute International Expert Team has reviewed64

recent advances and discussed challenges and opportunities in air quality research in the era of65

geostationary atmospheric composition satellites.66

1. Introduction67

Air pollution is one of the leading causes of global premature mortality and economic damages68

(Cohen et al. 2017; Dechezleprêtre et al. 2019). Space-borne remote sensing instruments have69

played a key role in monitoring atmospheric composition since the 1990s (Burrows et al. 1999;70

Bovensmann et al. 1999; Drummond and Mand 1996; Veefkind et al. 2006, 2012; Zoogman et al.71

2017; Levelt et al. 2018; Kim et al. 2020, among others). Satellite observations have been used72

with sophisticated models to help develop policies to reduce emissions (e.g., Duncan et al. 2016;73

Jiang et al. 2018), improve our knowledge about air pollution (e.g., Fu et al. 2007; Silvern et al.74

2019; Yang et al. 2023b), and better forecast air quality (e.g., Peuch et al. 2022; Eskes et al. 2024).75

Efficient reduction of air pollution often contributes to the reduction of co-emitted greenhouse gases76

(GHGs) and towards the mitigation of climate change (West et al. 2013; Miyazaki and Bowman77

2023).78

Efforts have been made to improve the observation of atmospheric composition from space over79

the past two decades. The TROPOspheric Monitoring Instrument (TROPOMI; 2017–present;80

Veefkind et al. 2012) is the first to provide daily global multi-constituent measurements at a sub-81

10 km spatial resolution (Veefkind et al. 2012), which helps to reveal detailed linkages between82

human activities and air quality (e.g., Riess et al. 2022; Martı́nez-Alonso et al. 2023; Zuo et al.83

2023). The next generation of atmospheric composition monitoring satellites measures column84

abundances of trace gases from the geostationary Earth orbit (GEO). The first two GEO atmospheric85
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composition satellites, GEMS (Geostationary Environment Monitoring Spectrometer; Kim et al.86

2020) for Asia and TEMPO (Tropospheric Emissions: Monitoring of Pollution; Zoogman et al.87

2017) for North America, were successfully launched in 2020 and 2023, respectively. The European88

component, Sentinel-4, is planned for launched in 2025 (Stark et al. 2013). Ongoing LEO missions89

have been proposed to sustain atmospheric composition observations outside the GEO domains.90

The International Space Science Institute (ISSI) offers the platform to facilitate international col-91

laboration on interdisciplinary research in space science. The ISSI International Expert Team 48992

(Brasseur and Granier 2020) recently assessed advancements in the use of space-borne instruments93

to improve air quality characterization and forecasts. We summarize the discussion and conclusions94

from the ISSI Team 489 Workshop (2023) in this paper to provide an overview of the opportunities95

and challenges arising in the era of GEO atmospheric composition satellites. The recently launched96

and scheduled satellite instruments motivate us to review the state of air quality research based on97

satellite observations. We cover advances in the development of retrieval algorithms, modeling98

and forecasting of air quality, data assimilation, and machine learning applications. We conclude99

with recommendations for research priorities for the near future to better exploit GEO satellite100

atmospheric composition observations.101

2. Constellation of LEO and GEO atmospheric composition satellites102

a. Heritage of LEO satellites103

Column concentrations of short-lived air pollutants, including tropospheric ozone (O3), nitrogen104

dioxide (NO2), sulfur dioxide (SO2), formaldehyde (HCHO), and aerosols, are retrieved in the105

ultraviolet (UV), visible (Vis), and near-infrared (NIR) spectral bands from nadir-viewing satellite106

instruments. NASA’s Backscatter UV (BUV) instruments were the first satellite missions measuring107

total ozone columns since the 1970s (Mateer et al. 1971; Heath et al. 1975; Frederick et al. 1986;108

Bhartia et al. 2013). As shown in Table 1, satellites in low-Earth obit (LEO) provide a nearly109

daily global coverage and their spatial resolution has improved over time. Compared to GOME110

(1995–2011; Burrows et al. 1999), the GOME-2 series (2006–present; Munro et al. 2016) measure111

at four times higher spatial resolution, and the Ozone Monitoring Instrument (OMI; 2004–present;112

Veefkind et al. 2006) has a further improved spatial resolution (13×24 km2). Measurements made113

by GOME, GOME-2, SCIAMACHY (2002–2012; Bovensmann et al. 1999), and OMI include114
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important chemical species for atmospheric chemistry and have greatly advanced our understanding115

of air quality (e.g., Duncan et al. 2016; Levelt et al. 2018). TROPOMI (2017–present) onboard the116

Copernicus Sentinel-5 Precursor (Sentinel-5P) mission measures from UV-Vis-NIR to short-wave117

infrared (SWIR), which allows the measurements of an extended list of trace gases (Veefkind et al.118

2012). Its unprecedented resolution of 3.5× 5.5 km2 and the high signal-to-noise ratio reveal119

enriched details of air pollution, which has greatly advanced air quality research in recent years120

(e.g., Fioletov et al. 2020; Stavrakou et al. 2020; Riess et al. 2022).121

Infrared (IR) instruments also provide measurements about atmospheric composition. The122

MOPITT (Measurements Of Pollution In The Troposphere; 1999–present; Drummond et al. 2022;123

Buchholz et al. 2021) instrument measures carbon monoxide (CO) from the short-wave infrared and124

thermal infrared (TIR), and was one of the first satellite instruments that tracked global pollution125

transport. The Infrared Atmospheric Sounding Interferometer (IASI; 2006–present; Clerbaux126

et al. 2009) instruments were launched on the Metop (Meteorological Operational satellite) series,127

measuring meteorological variables, air pollutants, and greenhouse gases from the TIR with a128

12 km footprint resolution. To date, 33 chemical species have been detected above the IASI129

instrumental noise level (Clarisse et al. 2011; Franco et al. 2018). As a companion to IASI, a series130

of TIR instruments have been launched by NASA and NOAA, the Atmospheric Infrared Sounder131

(AIRS; 2002–present; Lambrigtsen et al. 2004) on Aura, and NOAA’s Cross-track Infrared Sounder132

(CrIS; 2011–present; Han et al. 2013).133

Nadir-viewing LEO satellites provide valuable information on the seasonal and interannual134

variability of atmospheric composition. Rapid changes in emissions are detected, often in real-135

time, as demonstrated during the lockdowns in response to the COVID-19 spread (Bauwens et al.136

2020; Liu et al. 2020a; Gkatzelis et al. 2021, among others). The LEO satellites provide decades137

of atmospheric composition measurements since the 1990s, allowing trend analysis at different138

spatial scales (e.g., Lamsal et al. 2015; Duncan et al. 2016; Stavrakou et al. 2018; Hedelius et al.139

2021).140

b. GEO satellites for atmospheric chemistry145

Atmospheric composition measurements from GEO satellites greatly expand the global observing146

system for air quality. They can provide continuous observations during daytime hours (24 hours147
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Fig. 1. (Top) Domain and coverage of the GEO satellites. Background is annual mean TROPOMI NO2

tropospheric columns in 2022. Regions not covered by the GEO satellites are shaded in gray. (Bottom) Spatial

and temporal resolution of space-borne instruments for atmospheric composition measurements. Figure adapted

from Fig. 1 in Kim et al. (2020).

141

142

143

144

in the TIR). The geostationary orbit is 36 000 km from the Earth, as compared to ∼500 km for148

LEO, but the weaker photon flux is compensated by a long staring capability so that pixel sizes149

and precisions from LEO and GEO atmospheric composition instruments are comparable. The150

same suite of species observable from LEO is also observable from GEO but with much higher151

data density over the field of regard. The field of regard for a geostationary instrument can be152

as large as one third of the Earth, although smaller domains are used in the geostationary air153

quality constellation (see Figure 1) to increase data density and achieve finer pixel resolution.154
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Geostationary satellites observe from fixed longitudes in an equatorial plane, which means that155

they have highest resolution at the Equator and limited observation capability for latitudes poleward156

of 60 degrees.157

The Geostationary Interferometric Infrared Sounder (GIIRS) onboard China’s FengYun-4 satel-158

lite series (FY-4A/B) is the first GEO hyperspectral infrared sounder. FY-4A and FY-4B currently159

operate at 86.5°E and 105°E, respectively. The GIIRS observations cover most of East Asia with160

a focus on China, with a 2-hour observing cycle. GIIRS measures at a 12 km spatial resolution at161

nadir and was recently used to retrieve ammonia (NH3; Clarisse et al. 2021; Zeng et al. 2023b),162

CO (Zeng et al. 2023a), and formic acid (HCOOH; Zeng et al. 2024). The GIIRS onboard FY-4B163

(GIIRS/FY-4B; 2021–present) demonstrates improved sensitivity, better spatial resolution, and164

higher accuracy compared to GIIRS/FY-4A (2016–present;Yang et al. 2017). FY-4A/B also carry165

the Advanced Geostationary Radiation Imager (AGRI) that measures in Vis and IR.166

GEMS is the first component of the GEO air quality constellation (see Fig. 1) and measures167

aerosols, O3, NO2, SO2, HCHO, and glyoxal (CHOCHO), over Asia. It measures in UV-Vis with168

a spectral resolution of 0.6 nm and a spatial resolution of 3.5 km (NS) × 7.7 km (EW) at Seoul. It169

operates above 128.2°E, covering a field of regard from east of Japan to western India (75–145°E)170

and from Mongolia to Indonesia (45°N–5°S). GEMS is the first satellite observing the diurnal171

variation of air pollution in Asia, including urban pollution, power plants, industrial activities,172

ship emissions, wildfires, Asian dust, and volcanic eruptions. Figure 2A shows tropospheric NO2173

columns measured by GEMS for July 2023. Asian megacities are observed as pollution hot spots.174

The diurnal column variations of tropospheric NO2 columns in Seoul, Beijing and New Delhi show175

large disparities due to regional differences in emissions, chemistry, and transport (see Figure 2C).176

NASA’s first Earth Venture Instrument (EVI), TEMPO is hosted onboard the Intelsat-40e satellite177

operating above 91°W. Compared to GEMS, TEMPO has a similar spectral resolution and an178

additional Vis-NIR channel to enhance retrieval sensitivity for tropospheric O3 (Zoogman et al.179

2017) and aerosols (Chen et al. 2021a). TEMPO scans North America from east to west hourly180

with a spatial resolution of 2.1 km (NS) × 4.75 km (EW) at the center of the field of regard181

(see Figure 2). TEMPO started its nominal operation in October 2023. The Beta version of data182

products was released on NASA’s Atmospheric Science Data Center (ASDC) in May 2024 (see183

Table 2). Figure 2 shows TEMPO tropospheric NO2 columns with marked pollution hot spots184
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including the Northeast Corridor, the Canadian oil sands, and the Los Angeles Basin. The observed185

diurnal variations of tropospheric NO2 in New York City and Los Angeles for 17–24 December186

2023 show large regional differences as seen by GEMS (see Figure 2B). TEMPO can also measure187

the spectral signatures of nighttime lights and differentiate lighting types (Carr et al. 2017).188

c. Future missions193

The Copernicus Sentinel-4 mission will cover Europe, parts of North Africa and parts of the194

Atlantic (see Figure 1) centered at a fixed longitude of 0 degrees, with an hourly measuring195

frequency similar to GEMS and TEMPO. The operational products include NO2, O3, SO2, aerosols,196

as well as the VOC (Volatile Organic Compound) tracers HCHO and CHOCHO. The first Meteosat197

Third Generation Sounder (MTG-S1) satellite, expected to be launched in 2025, will carry a198

Sentinel-4 instrument on board as well as the Infra-Red Sounder (IRS) (Coopmann et al. 2023).199

The IRS has an observational coverage including the entire Africa and Europe. It will measure200

every 30 minutes above Europe, and one hour elsewhere in the field of regard, which could be201

useful for species with a strong diurnal variability such as NH3 (see Clarisse et al. 2023).202

The Geostationary eXtended Observations (GeoXO) mission, NOAA’s next generation GEO203

constellation covering the Western Hemisphere, is scheduled for launch in the early 2030s (Lindsey204

et al. 2024). The central GeoXO platform (operating above ∼105°W) will carry an atmospheric205

composition instrument (ACX) in the UV-Vis, as well as a hyperspectral IR sounder (GXS) for206

measurements of CO, NH3, isoprene, and other VOCs. GeoXO will also carry an imager on207

board, similar to the Geostationary Operational Environmental Satellites-16 (GOES-16) Advanced208

Baseline Imager (ABI) currently used in various applications. For example, Zhang et al. (2022)209

and O’Dell et al. (2024) estimated surface particulate matter (PM2.5) concentrations using aerosol210

optical depth measurements from GOES-16 and GOES-17. Watine-Guiu et al. (2023) also showed211

the potential of using the GOES constellation to monitor methane point sources.212

IASI-new generation (IASI-NG, Clerbaux and Crevoisier 2013; Crevoisier et al. 2014) is the213

follow-on program for IASI, which will be flown onboard the Metop Second Generation (Metop-214

SG) satellites. The first Metop-SG platform is planned to be launched in 2025 to LEO and will also215

carry the Copernicus Sentinel-5 mission. IASI-NG will have higher spectral resolution and signal-216

10



Fig. 2. (A) Illustration of tropospheric NO2 column densities measured by TEMPO (left) and GEMS (right).

Tropospheric NO2 column densities measured over selected cities are shown on top. (B and C) Hourly tropo-

spheric NO2 column density measurements show diurnal and weekly cycles over large cities. The TEMPO data

set used in this figure is preliminary and unvalidated, and is used for illustration purposes only.

189

190

191

192
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to-noise ratio relative to IASI, providing better sensitivity near the surface and an improved vertical217

resolution of retrievals. Detection of weak absorbers (e.g., NH3 and SO2) will also improve.218

3. Advances in air quality research using space-borne measurements219

Over the past few decades, advances in atmospheric composition satellites have set the stage220

for air quality research and emission monitoring. The wealth of space observations has driven221

progress across all aspects of the research process. In this section, we provide an overview of222

recent advances in satellite-based air quality research. In Section 3.a, we review recent progress223

in the retrieval of atmospheric composition abundances from satellite measurements. In Sections224

3.b and 3.c, we introduce efforts to improve emission estimation and data assimilation techniques,225

respectively. Finally, in Section 3.d, we discuss the applications of machine learning in air quality226

research.227

a. Improved retrieval algorithms228

Technological innovations and increasing quality requirements are driving the science of satellite229

retrievals forward. For example, significant improvements have been made on retrieval algorithms230

for TROPOMI since its launch in 2017, with a focus on better constrained uncertainties and reduced231

biases (Theys et al. 2021; Heue et al. 2022; Van Geffen et al. 2022, among others). Besides an232

improved degradation correction (Ludewig et al. 2020) and better consistency among retrieval233

products (Tilstra et al. 2024), new retrievals from TROPOMI measurements were developed, e.g.,234

solar induced fluorescence (SIF; Guanter et al. 2021), aerosol optical depth (Torres et al. 2020),235

glyoxal (CHOCHO; Alvarado et al. 2020; Lerot et al. 2021), and nitrous acid (HONO; Theys et al.236

2020). An overview of key air pollutants retrieved from space measurements is shown in Table 2.237

The TROPOMI data products are carefully validated and validation reports are released regularly.238

As such, TROPOMI has been used as the reference and transfer standard for the development of239

GEMS retrieval algorithms. The first evaluation of GEMS retrievals using TROPOMI and ground-240

based measurements showed a good consistency (Baek et al. 2023; Kim et al. 2023). GEMS241

measurements captured clear seasonal variations over cities, as well as hourly variations that are242

also seen in ground-based remotely sensed columns (Lee et al. 2024). The list of GEMS retrievals243
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was recently extended to SO2 (Park and Jeong 2021), aerosols (Cho et al. 2023; Park et al. 2023),244

and glyoxal (Ha et al. 2024).245

Continued efforts to improve retrieval algorithms have led to new data products for older missions246

like OMI, e.g., SO2 (Li et al. 2022) and O3 (Bak et al. 2024). Thermal infrared measurements are247

now better utilized to monitor extreme events, such as wildfires (Vu Van et al. 2023; Luo et al. 2024)248

and volcanic activities (Taylor et al. 2018). Notably, the phenomenal 2022 Hunga Tonga–Hunga249

Ha’apai eruption was well observed by thermal infrared spectrometers (e.g., Wright et al. 2022).250

The IASI NH3 and ethylene (C2H4) retrievals were used to identify point sources from industrial251

and agricultural sectors (Van Damme et al. 2018; Franco et al. 2022).252

The signal-to-noise ratio remains a limiting factor for the retrieval of weakly-absorbing trace253

gases (e.g., formaldehyde, SO2, and NH3). Some recent studies average satellite measurements254

over longer time periods to obtain a significant signal (e.g., Van Damme et al. 2018). For more255

strongly absorbing gases, like NO2, sources of retrieval uncertainties include surface reflectivity,256

clouds and aerosols, and aspects like thermal contrast for infrared measurements. Atmospheric257

profiles have a strong impact on retrievals in the UV-Vis due to the altitude dependency of Rayleigh258

scattering, which becomes more important as the spatial resolution increases (Lamsal et al. 2021).259

Averaging kernels have been used in the validation of retrievals and data assimilation to account260

for the information content of the retrievals (Eskes and Boersma 2003).261

To use satellite data at a higher spatial resolution, new oversampling methods have been developed262

(Valin et al. 2013; Fioletov et al. 2015; Sun et al. 2018; Van Damme et al. 2018; Clarisse et al. 2019,263

among others). For retrievals over emission hotspots, the assumptions about the vertical distribution264

of gases (averaging kernels and air mass factors) are particularly important for the quantification265

of tropospheric amounts and diurnal variations (Yang et al. 2023b). Regional models capable266

of achieving 10 km resolution are being used to provide a priori information for high-resolution267

retrieval products (e.g., Liu et al. 2020b for NO2 in Asia, and Douros et al. (2023) for NO2 in268

Europe).269

b. Estimation of emissions270

The development of emission inventories remains challenging due to the large number of species271

taken into account, the variety of emission sources, and because the a priori information is typically272
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collected by networks that are spatially and temporally sparse (Granier et al. 2023; Sindelarova273

et al. 2023). For instance, the activity data and emission factors for anthropogenic emissions274

are available from diverse agencies, such as the International Energy Agency, but public access275

to this information is often limited. The development of open-source databases has been led by276

intergovernmental organizations, e.g., the Intergovernmental Panel on Climate Change Emissions277

Factor Database (IPCC EFDB) or the United Nations Framework Convention on Climate Change278

(UNFCCC), both of which are built on the data released in national reports. Global emission279

inventories are generally available with a delay of three to four years. To support policy-making and280

air quality applications, techniques have been developed to extrapolate emissions to the most recent281

years (Soulie et al. 2023). The development of emission inventories also need to incorporate a finer282

temporal resolution and detailed categorization by specific emission sectors. To this end, temporal283

profiles based on statistical information (e.g., traffic counts) and meteorological parametrizations284

are typically considered (e.g., Guevara et al. 2021). Additional constraints on temporal profiles285

can be obtained from the hourly GEO observations, especially the diurnal variations of emissions286

(Park et al. 2024). Table 3 lists the main publicly available emission inventories, covering both287

pollutants and greenhouse gases at global and regional scales.288

Large discrepancies have been highlighted among emission inventories due to differences in the289

activity data and emission factors (Elguindi et al. 2020; Granier et al. 2023). Complementary to290

the emission inventories, a growing number of studies (cf. Section 3.c) use satellite observations291

and inverse modeling techniques to estimate emissions, namely NOx (e.g., Stavrakou et al. 2008;292

Kurokawa et al. 2009; Miyazaki et al. 2017; Jiang et al. 2022; Plauchu et al. 2024; van der A et al.293

2024), VOCs (e.g., Millet et al. 2008; Stavrakou et al. 2012; Marais et al. 2012; Bauwens et al.294

2016; Cao et al. 2018; Oomen et al. 2024; Müller et al. 2024), CO (e.g., Arellano et al. 2004;295

Müller et al. 2018; Qu et al. 2022b) and greenhouse gases (e.g., Wang et al. 2018; Lu et al. 2021).296

Figure 3 illustrates a comparison of NOx emissions in China from 2000 to 2020 from several297

emission inventories and satellite-based emission estimates (Elguindi et al. 2020). The differences298

between various estimates remain significant, especially for the trends, which underscores the need299

for continued efforts on mitigating uncertainties in emissions.300

The development of new retrievals (see Section 3.a) has advanced emission estimates from both305

natural and anthropogenic sources. For example, the new TROPOMI HONO retrieval product306
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Fig. 3. Comparison of annual mean NOx emissions in China from 2000 to 2020 (in Tg NOx-NO/yr) from

several datasets. Solid and dashed lines represent emission inventories and satellite-based emission estimates,

respectively. The references for the emission estimates are shown in the legend on top. Figure adapted from

Elguindi et al. (2020).

301

302

303

304

shows intense emissions in wildfire plumes, accounting for a substantial share of total hydroxyl307

radical (OH) production from natural sources (Theys et al. 2020). The first global satellite isoprene308

retrievals from CrIS (Fu et al. 2019), combined with HCHO observations, have been used to309

constrain isoprene emissions and atmospheric oxidation (Wells et al. 2020). These analyses reveal310

significantly underestimated isoprene emissions in emission inventories, particularly in tropical311

regions (Wells et al. 2020). The use of satellite retrievals has also proven to be crucial for312

identifying seasonalities and weekly patterns in emissions, providing complementary information313

to temporal profiles derived from activity data. This is particularly valuable for sources with314

limited activity information, such as those in the agricultural sector (e.g., Damme et al. 2022).315

Wind rotation method is another important advancement that estimates point source emissions by316

resolving emission plumes aligned with the wind direction (e.g., Beirle et al. 2011; Valin et al.317

2013; Fioletov et al. 2015; Clarisse et al. 2019).318
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Fig. 4. Evolution of the spatial resolution of space-based NO2 data assimilation studies over the past two

decades. Orange symbols denote global studies, blue symbols denote regional studies. Circles describe data

assimilation systems in which only NO2 is assimilated. Squares represent multi-species data assimilation studies.

The size of the symbol represents the temporal scale.

329

330

331

332

c. Advances in data assimilation319

Data assimilation in air quality research combines observations with chemical transport models320

(CTMs) to produce an analysis of the state of atmospheric composition (e.g., Carmichael et al.321

2008; Lahoz and Schneider 2014). Areas of application include air quality forecasting (e.g., Inness322

et al. 2015), inverse modeling of emissions and other model parameters, and constructing reanalyses323

of atmospheric composition. Numerous advances have been achieved in data assimilation in the324

past decades, owing to improved satellite retrievals, better parameterized models, and advanced325

assimilation techniques (Sandu and Chai 2011; Streets et al. 2013; Bocquet et al. 2015). For326

examples shown in Figure 4, the assimilation of space-based NO2 data has evolved to increasingly327

high spatial resolution in recent years.328
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Data assimilation techniques solve for the statistically optimal solution based on observations333

and models (Kalnay et al. 2007). Filtering approaches such as the ensemble Kalman filter (EnKF)334

capture chemical non-linearities using an ensemble of models and estimate emissions at regional335

(Tang et al. 2013; Yumimoto et al. 2014; Gaubert et al. 2020; Feng et al. 2020; Dai et al. 2021;336

van der Graaf et al. 2022) and global (Miyazaki et al. 2012, 2020a; Gaubert et al. 2023) scales.337

The 4D-Var method utilizes the adjoint of forward models to minimize the model-observation338

mismatch. Although the development of adjoint models can be complex and running them can be339

computationally costly, 4D-Var has been successfully implemented for various applications (Elbern340

et al. 2000; Müller and Stavrakou 2005; Henze et al. 2007). 4D-Var is also used in the Integrated341

Forecasting System (IFS) of the European Union’s Copernicus Atmosphere Monitoring Service342

(CAMS) (Inness et al. 2015, 2019, 2022).343

Simultaneous joint assimilations of multiple species, such as CO/NO2 (Müller and Stavrakou344

2005), HCHO/CHOCHO (Stavrakou et al. 2009; Cao et al. 2018), SO2/NO2 (Qu et al. 2019;345

Wang et al. 2020), and NO2/CO/SO2 (Miyazaki et al. 2017, 2020a,b), have shown to improve data346

assimilation results, as it accounts for the impact of emission changes on the chemical lifetimes347

of various species. Specifically, assimilating short-lived species can help better characterize the348

budget of longer-lived gases (e.g., Gaubert et al. 2017; Zheng et al. 2019). To address the increased349

computational cost of multi-species data assimilation, hybrid approaches combining 3D-Var and350

mass balance have been recently developed to improve the computational efficiency (Li and Xiao351

2019; Chen et al. 2021b).352

d. Application of machine learning353

Machine learning has recently become a popular choice for satellite retrievals due to its higher354

computational efficiency with respect to traditional retrieval methods. One of the first machine355

learning applications widely used in data products is the operational IASI NH3 retrievals based on356

neural networks (Whitburn et al. 2016; Van Damme et al. 2017). Following that, new data products357

have been developed for IASI, e.g., the acetone and ethylene retrievals (Franco et al. 2019, 2022),358

and the CrIS data products (Wells et al. 2022, 2024).359

An emerging application of machine learning studies is the estimation of surface concentrations360

using neural networks and tree-based models for PM2.5 (Di et al. 2019; Wei et al. 2020; Pendergrass361
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et al. 2022), O3 (Sayeed et al. 2021; Betancourt et al. 2022), NO2 (Di et al. 2020; Ghahremanloo362

et al. 2021; Chan et al. 2021), CO (Han et al. 2022; Chen et al. 2024), and CH4 (Balasus et al.363

2023). These studies rely on the fusion of data from multiple sources and show improved skill364

compared to conventional approaches (Balasus et al. 2023; Oak et al. 2024; Huang et al. 2024).365

Other research directions include the development of surrogate models or modules in conventional366

modeling systems with an improved efficiency (Keller and Evans 2019; Kelp et al. 2020, 2022; He367

et al. 2024b). Using machine learning to understand drivers of air pollution (Zhang et al. 2023;368

Ma et al. 2023; Wang et al. 2024) and conduct trend analysis (He et al. 2022a; Pendergrass et al.369

2022, 2024; Li et al. 2023a) are other intriguing directions. The potential of machine learning in370

the inverse modeling of emissions has also been explored (Huang et al. 2021; He et al. 2022b).371

4. Challenges and opportunities in the era of geostationary space observations372

Space observations from GEO offer a number of opportunities for improved characterization of373

air quality and emissions as compared to LEO observations. The higher observation density due to374

more frequent return times allows for higher precision. It also facilitates cloud clearing, meaning375

an increased probability of observing a cloud-free scene in a certain location (or adjacent locations)376

over a certain time period. The continuous observation available from GEO instruments enables377

the tracking of pollution transport on meso- and synoptic scales. Multiple measurements during the378

day provide information on the diurnal variations of emissions and chemical evolution. However,379

there are also important challenges in the retrieval and the interpretation of GEO observations.380

Next, we elaborate on the opportunities and challenges in retrieval development (Section 4.a),381

atmospheric composition modeling (Section 4.b), data assimilation (Section 4.c), and machine382

learning applications for GEO observations (Section 4.d), and we discuss air quality research for383

large world regions that are not covered by the planned GEO satellite constellation (Section 4.e).384

a. Retrievals385

For GEO observations, not only do the pollutant concentrations change over the day, but the386

position of the Sun, the surface temperature, the vertical mixing of the atmosphere, and meteorology387

also change. These parameters are either input variables or impact the a priori vertical profile of388
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the trace gases being retrieved, of which the hourly variations need to be accounted for in retrieval389

algorithms.390

An important aspect is the variation in surface reflectivity for UV-Vis retrievals. Larger reflec-391

tivity increases the sensitivity of satellite measurements to trace gases close to the surface, and392

not considering the diurnal variations in surface reflectivity could lead to artifacts in the retrieved393

diurnal variation of pollutants. While surface reflectivity information is available from satellite ob-394

servations, the temporal and spatial resolution may not be sufficient, and uncertainties can be large395

for individual observations. A similar problem exists for TIR retrievals, where surface radiation396

emission is strongly dependent on temperature.397

A second challenge is the diurnal variation due to vertical mixing, which can change the sensitivity398

of the satellite measurements to different vertical layers in the atmosphere (Yang et al. 2023a). For399

UV-Vis retrievals, sensitivity is usually lowest close to the surface, and a shallow boundary layer in400

the morning reduces sensitivity compared to a fully developed boundary layer in the afternoon. The401

situation can further be complicated by residual aerosols above the boundary layer. Similar issues402

are expected from the combination of vertical trace gas distributions and temperature profiles for403

TIR observations. To account for these effects, atmospheric models used as a priori information in404

retrievals must reflect the diurnal evolution of the boundary layer, which can be challenging over405

complex urban areas and terrain.406

The viewing geometry from GEO can also present challenges, especially for higher latitudes407

and at the edges of the field of regard. For UV-Vis observations, large viewing zenith angles408

can lead to increased scattering in the atmosphere and reduced sensitivity to trace gases near the409

surface. The effect is further amplified by the presence of aerosols and clouds. In addition, spatial410

oversampling is generally of limited use for GEO observations due to the constant ground pixel411

pattern, as reported in Lange et al. (2024) for the case of GEMS. A possible solution would be412

to adjust the latitudinal pointing and longitudinal sampling of GEO measurements, but this may413

complicate the interpretation of the observed diurnal variations and affect the aerosol and cloud414

measurements, which depend on accurate surface reflectance characterization.415

For some trace gases, such as O3 and NO2, significant amounts are present in both the troposphere416

and the stratosphere. This necessitates a stratospheric correction, which, in the case of GEO417

observations, also needs to account for the diurnal change of the stratospheric amounts. This is418
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particularly relevant for small signals, which are more affected by uncertainties in the stratospheric419

correction.420

Given the challenges outlined above, robust calibration and validation of GEO observations421

becomes essential to ensure a consistent retrieval quality across different sensors and GEO regions.422

The calibration and validation efforts for GEO observations will build on the experience from423

heritage LEO missions (CEOS 2019). These efforts should be supplemented by intensive ground-424

based and aircraft validation campaigns to evaluate the diurnal patterns measured by the GEO425

satellites (see e.g. Kim et al. 2023; Lee et al. 2024; Lange et al. 2024; Ha et al. 2024). LEO426

air quality missions will serve as a traveling standard for the inter-comparability of the different427

GEO instruments. Further efforts should focus on the development of an harmonized framework428

for the processing, validation, and publication of all data products from the constellation of GEO429

composition observations (CEOS 2019).430

The availability of multiple measurements per day also provides opportunities for improved431

retrieval techniques. For example, the nearly simultaneous observation of contiguous scenes432

facilitates cloud slicing, where differences in column amounts above optically thick clouds are used433

to provide information on vertical distribution (Marais et al. 2021). Imagers and spectrometers on434

GEO platforms, combined with LEO missions, will deliver measurements of multiple chemical435

species over emission hotspots across a broad spectral range. This expanded coverage has the436

potential to enable the retrieval of new information and deepen our understanding of emission437

activities.438

b. Modeling439

GEO composition observations will be useful for the evaluation of high-resolution regional and440

local chemical transport models, and specifically to compare calculated diurnal variations with the441

hourly data provided by the retrievals. The measured variations in column concentrations may be442

very different from the time evolution of surface concentrations (e.g., Tang et al. 2021). A full443

understanding of the observed diurnal variation is not straightforward because, in addition to the444

time-evolving forcing from solar radiation, it is driven by other factors such as local emissions,445

boundary layer meteorology, etc. (Edwards et al. 2024). One challenge is to improve the represen-446

tation of small-scale dynamical features in the planetary boundary layer, including the formation of447
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the heat island in urban areas, the development of convective cells and local cloudiness, the impact448

of topography and buildings on the small-scale flow, and the influence of diurnal varying coastal449

circulation cells.450

Regional chemical-meteorological models at a spatial resolution of typically 1 to 5 km are used to451

provide background information on the chemical composition; they are now often complemented452

by numerical simulations of large eddies in the boundary layer in order to resolve their impact453

on the reaction rates and on chemical segregation associated with emission heterogeneity in a454

complex urban canopy (Wang et al. 2022). Street network models such as the MUNICH model455

(Kim et al. 2018) provide the distribution of chemically reactive pollutants along street canyons.456

The success of such approaches depends on the availability of detailed high-resolution (better than457

1 km) emission inventories, which are usually not yet available.458

Recent efforts have led to the development of global multi-scale models with grid refinement459

capabilities over selected geographical regions. An irregular model grid with a grid refinement460

capability over the three regions covered by GEMS, TEMPO and Sentinel-4 has been developed461

as part of the next-generation community modeling infrastructure, MUSICA (the Multi-Scale462

Infrastructure for Chemistry and Aerosols; Pfister et al. 2020). Its purpose is to insert high-463

resolution regional information provided by the GEO satellites in a global modeling framework464

that accounts for large-scale transport and distant influences on chemical species (Pfister et al.465

2020).466

c. Data assimilation467

There are several challenges related to the assimilation of GEO observations. The efficient468

assimilation of such dense observations will require high-resolution forecast models and appropriate469

data assimilation techniques, in addition to a flexible system handling multiple satellite sensors470

from both GEO and LEO. As summarized below, further innovations are needed to take advantage471

of GEO satellite observations with data assimilation.472

(1) Parameter estimation: In tropospheric chemistry, boundary conditions, reaction rates, and473

emissions often play an important role, whereas the role of initial conditions is limited due to rapid474

chemical reactions (Sandu and Chai 2011; Goris and Elbern 2013). Dense observations from GEO475

satellites may allow for detailed parameter estimation beyond a few key chemical species, improved476
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sectoral emissions estimates (Qu et al. 2022a; Gaubert et al. 2023), and speciation information477

for VOCs and aerosols. They can also be used to correct for meteorological parameters such as478

horizontal wind (Liu et al. 2021).479

(2) Data assimilation methodology: With greater observational coverage and high measurement480

accuracy, local emission sources could be estimated using computationally efficient approaches481

such as the mass balance approach (e.g., Cooper et al. 2017; Qu et al. 2019), or by making use482

of trajectories to describe the non-local relation between emissions and concentrations (e.g., van483

der A et al. 2024). Nevertheless, flow-dependent background covariance, including covariance484

among chemical species, is essential to integrate multiple-species information and their spatial485

distributions. DA techniques also need to account for diurnal changes in chemistry, emissions,486

and measurement characteristics (e.g., Timmermans et al. 2019; Shu et al. 2023). Efficient non-487

Gaussian methods such as particle filters may also be needed for high-resolution DA (Valmassoi488

et al. 2023).489

(3) Plume analysis and emission estimates: The latest GEO and LEO satellite composition490

observations are able to resolve plumes of urban emissions, major point sources and even individual491

ships. Computationally efficient techniques such as plume fitting (e.g., Fioletov et al. 2017), the492

flux-divergence technique (e.g., Beirle et al. 2023), or the integrated mass enhancement method493

(e.g., Varon et al. 2018; He et al. 2024a) have been successful in providing emission estimates494

for short-lived and long-lived tracers at the instrumental resolution. A major challenge for short-495

lived compounds like NO2 is to account for the non-linear chemistry in plumes, leading to a496

heterogeneous plume composition and lifetime (Krol et al. 2024), and to determine how these local497

effects impact global or regional data assimilation systems.498

(4) Combination of multiple observing systems: LEO composition observations provide con-499

straints on long-range transport (Miyazaki et al. 2022) and reduce model errors in regions con-500

strained by GEO composition observations. Well-validated LEO data can be used to benchmark501

GEO composition observations, for example, as an anchor for DA bias correction. As the spatial502

resolution of both forecast models and satellites increases, assimilation of in situ and satellite503

observations will be another effective approach to improve analysis, especially near the surface.504

New technical challenges for simultaneous assimilation include appropriate background error co-505
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variance at multiple scales and error statistics including representative errors of each measurement506

(Wang and Wang 2023).507

d. Machine learning508

For future applications of machine learning in air quality research, the differences between LEO509

and GEO viewing geometries need to be accounted for. Solar zenith angle and viewing zenith510

angle could have greater importance when constructing machine learning models for retrieving511

atmospheric composition from GEO satellites. Diurnal variations in related physical parameters512

should also be captured by input variables for machine learning models for GEO composition513

satellites.514

Recent applications of machine learning for LEO atmospheric composition satellites have focused515

on concentration estimation and the development of surrogate models. More efforts are needed in516

applying machine learning to inverse modeling of emissions. Specifically, further development of517

explainable machine learning models is necessary to enhance the interpretability and robustness518

of emission estimates.519

Despite the challenges, geostationary atmospheric composition satellites offer opportunities to520

further advance innovation in future machine learning applications. For example, machine learning521

is effective in anomaly detection and pattern recognition, both making it well-suited for monitoring522

extreme events (e.g., wildfires and volcano eruptions). Its scalability to the high temporal and523

spatial resolution of GEO composition measurements can be critical for real-time decision-making524

and mitigating the impacts of extreme events.525

The generalizability of machine learning is another key strength that enhances data fusion.526

Recent studies indicate that integrating multi-source measurements using machine learning can527

help reduce discrepancies between different datasets (Balasus et al. 2023; Oak et al. 2024; Huang528

et al. 2024). Integrating LEO composition measurements can play a critical role in improving the529

consistency of composition measurements made by different GEO satellites.530

e. Atmospheric composition monitoring for other regions of the world531

Space-borne instruments in LEO have been vital for addressing data sparsity in large parts of532

the world, in particular for the African and South American continents and parts of Asia. These533

25



regions will continue to rely on LEO instruments, as the planned GEO satellite constellation mainly534

covers the Northern Hemisphere (Paton-Walsh et al. 2022). The validation of both LEO and GEO535

observations and the derived products is also rare across the tropics and Southern Hemisphere. Such536

validation requires routine surface observations and aircraft campaigns to profile the troposphere537

under a range of representative conditions (Tang et al. 2023).538

The Sentinel-4 GEO composition instrument will observe a portion of North Africa, and the539

IRS on the same platform will provide observations of infrared-absorbing compounds like CO and540

NH3. CO observations over Africa will be vital for understanding inefficient combustion sources,541

including biomass burning for agricultural practices in Africa (Andreae 2019), burning of waste542

(Wiedinmyer et al. 2014), and from other inefficient combustion practices (Marais and Wiedin-543

myer 2016; Bockarie et al. 2020). High-frequency NH3 observations are well timed to coincide544

with agricultural intensification that includes the use of synthetic nitrogen fertilizer and intensive545

livestock farming (Hickman et al. 2021). A demonstration of the utility of GEO observations of546

NH3 and CO for informing diurnal changes in abundances, precursor emissions, and pollution547

transport patterns over Africa would aid in advocating for dedicated GEO instruments over Africa548

and South America. However, the long delay between mission concept and launch means missing549

out on advancing understanding in regions of the world during a period of unprecedented popula-550

tion growth and land use changes. An advisory committee comprising researchers, academics and551

satellite instrument developers has been formed to propose GEO missions over Africa and South552

America, but a greater representation of researchers from these regions is needed to inform the553

development of a fit-for-purpose mission (Marais and Chance 2015).554

5. Conclusions and recommendations555

The implementation of GEO satellites for atmospheric composition monitoring opens new per-556

spectives for air quality research. The first two GEO composition satellites over Asia and North557

America have demonstrated the measurement of diurnal variation of chemical species, thereby558

providing unprecedented information on the diel evolution of emissions, photochemical processes559

and the effects of atmospheric dynamics over large regions. However, the development of retrievals560

and the validation of these GEO satellite composition data is still ongoing, as there is still room561

for improvement. Furthermore, the European component of the GEO constellation in Sentinel-4 is562
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expected to be launched in 2025. The exploitation of measurements conducted by GEO satellites563

presents new challenges and several priority tasks can therefore be highlighted for future research.564

• Retrieval algorithms need to be carefully adapted to the GEO composition observations.565

Specifically, the diurnal variations of various parameters used in the retrieval, such as surface566

reflectivity and vertical mixing, need to be resolved. Additionally, the viewing geometry can567

present difficulties due to the large zenith angles of GEO instruments compared to nadir-568

viewing satellites, hence correcting for these effects at the edges of the field of regard is569

necessary.570

• The hourly temporal resolution of GEO observations gives crucial information on diurnal571

profiles of emissions of atmospheric pollutants. In order to leverage this aspect in emission572

inversion studies and reduce the delay in the delivery of emission inventories, temporal profiles573

for different sectors in emission inventories need to be provided.574

• Global and regional models should be adapted to be more compatible with the GEO at-575

mospheric composition satellites. Continuous model development, especially regarding the576

fine-scale chemical processes, is essential for retrievals, air quality forecasting, and data577

assimilation in the era of GEO satellites for atmospheric composition monitoring.578

• Data assimilation methods need to be adapted to the geostationary case. Specifically, more579

computationally efficient methods should be explored in order to optimally process the high580

data volume. The co-existence of LEO and GEO measurements in the same area opens581

possibilities to assimilate both datasets simultaneously, along with ground-based and aircraft582

data. Deriving emissions from point sources from plume estimation methods also provides a583

promising avenue, considering the higher temporal resolution of observations.584

• The computational efficiency and generalizability of machine learning make it a valuable585

area for further exploration. In addition to recent applications of machine learning in retrieval586

algorithm development and surface concentration estimation, greater efforts should be directed587

toward inverse modeling of emissions and the development of explainable models.588

Finally, it is crucial to keep improving the accessibility of satellite measurements to agencies589

in charge of air quality management, especially for regions lacking the capability to establish590
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observation networks. Future GEO satellites should provide data over Africa, South America,591

Southern Asia, Australia, New Zealand, and other regions not covered by the current observing592

capabilities.593
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