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‭Abstract‬

‭Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during‬

‭the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread,‬

‭quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in‬

‭which a panel of primers is used for multiplex amplification of fragments across an entire genome, was‬

‭the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method‬

‭led to its implementation in academic and public health laboratories across the world and adaptation to a‬

‭broad range of viral pathogens.However, similar methods are not available for larger bacterial genomes,‬

‭for which whole-genome sequencing typically requires‬‭in vitro‬‭culture. This increases costs, error rates‬

‭and turnaround times. The need to culture poses particular problems for medically important bacteria such‬
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‭as‬‭Mycobacterium tuberculosis,‬‭which are slow to grow and challenging to culture. As a proof of concept,‬

‭we developed two novel amplicon panels for‬‭Streptococcus‬‭pneumoniae‬‭and‬‭Mycobacterium tuberculosis‬‭,‬

‭which enabled recovery of whole bacterial genomes without culturing. Applying our amplicon panels to‬

‭clinical samples, we show the ability to classify pathogen subgroups and to reliably identify markers of‬

‭drug resistance. Development of this work in clinical settings has the potential to tailor disease‬

‭interventions and treatment regimes for these high priority pathogens.‬

‭Introduction‬

‭In recent years, whole-genome amplicon sequencing has been adopted as a standard technique for‬

‭genomic surveillance of infectious disease. Initially developed for genomic surveillance of the 2016 Zika‬

‭epidemic‬‭[1]‬‭, where low viraemia had precluded direct sequencing of clinical samples even where‬

‭infection had been confirmed. Amplicon sequencing uses multiplex PCR of tiled overlapping regions of a‬

‭target genome to recover whole genomes from samples of low concentration or complex backgrounds.‬

‭This has proven particularly useful for sequencing remnant samples from diagnostic tests, and its use in‬

‭the ‘artic’ protocol for sequencing SARS-CoV-2‬‭[2]‬‭has led to it being deployed in thousands of public‬

‭health laboratories around the world, facilitating true global surveillance of viral dynamics‬‭[3]‬‭. The ease,‬

‭reliability and low cost of this approach has seen its adaptation to a broad range of viral pathogens both in‬

‭respiratory disease‬‭[4,5]‬‭and beyond‬‭[6,7]‬‭.  However, viral infections are by no means the only cause of‬

‭global morbidity; more than half of all infectious disease-related deaths are caused by 33 bacterial‬

‭pathogens, with‬‭Streptococcus pneumoniae‬‭alone estimated‬‭to be responsible for more than 800,000‬

‭deaths per year‬‭[8]‬‭.‬

‭As with viral pathogens, sequencing of bacteria can enable reconstruction of transmission chains for‬

‭targeting interventions and routine surveillance of pathogen diversity for vaccine design or monoclonal‬

‭antibody targeting. It can also be uniquely informative for the detection of drug resistance in bacteria,‬

‭allowing insights into the horizontal transfer of antimicrobial resistance genes and potentially enabling‬
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‭more effective tailored treatment regimes‬‭[9]‬‭. However, the relatively laborious process of isolating and‬

‭culturing patient samples means this is typically only performed where a small number of samples can be‬

‭highly informative, such as in outbreaks of food-borne pathogens‬‭[10–12]‬‭, or drug-resistant nosocomial‬

‭infections‬‭[13–15]‬‭. This kind of approach is far less appropriate for a bacterium with high rates of‬

‭commensal and asymptomatic transmission such as‬‭S.‬‭pneumoniae‬‭, and it would be entirely‬

‭cost-prohibitive in the 24 low- and middle-income countries (LMICs) in which it is the leading cause of‬

‭death‬‭[8]‬‭. A disease such as tuberculosis (TB) has similarly high burden and low detection rates. In‬

‭addition,‬‭Mycobacterium tuberculosis‬‭has low genomic‬‭diversity, making traditional approaches, such as‬

‭restriction fragment length polymorphism (RFLP), spoligotyping, and variable number tandem repeat‬

‭(VNTR) less precise‬‭[16]‬‭. A notoriously slow growth rate means it can take weeks to detect, let alone‬

‭sequence, a TB infection‬‭[16]‬‭. Though whole genome sequencing (WGS) of‬‭M. tuberculosis‬‭has‬

‭demonstrated clear application to detecting superspreading‬‭[17]‬‭, or distinguishing recrudescence from‬

‭reinfection‬‭[18]‬‭, the difficulties of culturing‬‭M. tuberculosis‬‭means these studies have typically been‬

‭performed retrospectively. The use of WGS to inform outbreak investigations as they occur has been‬

‭limited to high-resource settings such as the United Kingdom‬‭[19]‬‭. Adapting the techniques used for viral‬

‭pathogens to bacterial pathogens, enabling rapid culture-free sequencing from minimal input volumes and‬

‭the use of remnant tests and other passive surveillance techniques, could be transformative for bacterial‬

‭genomic epidemiology.‬

‭We present here the first use of amplicon-based WGS for the sequencing of two bacterial pathogens of‬

‭major public health importance. We have designed tiling amplicon schemes for‬‭S. pneumoniae‬‭serotype 3‬

‭and‬‭M. tuberculosis‬‭. These assays are able to generate‬‭complete genome coverage from samples with‬

‭minimal input concentrations without any requirement for bacterial culturing. We show recovery of‬

‭genomic data from a broad range of sample types, including saliva, sputum, nasopharyngeal swabs and‬

‭remnant diagnostic tests, and further show that this genomic data can reliably perform‬‭in-silico‬‭lineage‬‭or‬

‭serotype assignment to enable the surveillance of bacterial transmission dynamics. We show that our TB‬
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‭amplicon panel can be applied directly to sputum samples to identify clinically relevant phenotypes such‬

‭as antimicrobial susceptibility within days of sample collection, and can detect resistance loci that were‬

‭not found by rapid diagnostics. We hope that this work will not only generate opportunities for future‬

‭genomic epidemiology of‬‭S. pneumoniae‬‭and‬‭M. tuberculosis‬‭,‬‭but will also provide a roadmap for the‬

‭development of amplicon sequencing for other clinically important bacterial pathogens.‬

‭Results‬

‭In silico‬‭predictions indicate broad applicability‬‭of amplicon schemes across clades‬

‭In order to design primer schemes with efficient amplification of diverse target sequences, we‬

‭downloaded a selection of whole-genome sequences available on public repositories for both‬‭M.‬

‭tuberculosis‬‭(n=489,‬‭Supplemental file 1a‬‭) and‬‭S.‬‭pneumoniae‬‭(n=490,‬‭Supplemental file 1b‬‭). For‬‭S.‬

‭pneumoniae‬‭, we assembled these sequences into a ‘metaconsensus’‬‭sequence, a reference-guided core‬

‭genome with SNPs and indels replaced with ‘N’. PrimalScheme was run on the output of this, in order to‬

‭design primers which cover the core‬‭S. pneumoniae‬‭genome and avoid variant sites. Because‬‭M.‬

‭tuberculosis‬‭has very little within-species diversity‬‭outside of the repetitive hypervariable PE/PPE/PGRS‬

‭regions, PrimalScheme was run directly on the H37Rv reference genome after masking PE/PPE/PGRS‬

‭regions and sites with known resistance-related polymorphisms to avoid primers being designed at these‬

‭loci.‬

‭For both pathogens, we selected a small number of genetically diverse sequences from the larger set of‬

‭publicly-available sequences to predict coverage beyond the sequences used for primer panel design. As‬

‭expected, predicted amplicon coverage was highest against the strains used for panel design (‬‭Sp‬‭:CC180:‬

‭98.93%;‬‭Mt‬‭/H37Rv: 94.31%) -‬‭M. tuberculosis‬‭coverage‬‭is reduced due to omission of PE/PPE regions‬

‭from the design, which account for 8-10% of the genome‬‭[20]‬‭. However, predicted coverage in‬‭M.‬

‭tuberculosis‬‭remained high across all 7 lineages‬ ‭(>= 94.23%) and in the‬‭M. canetti‬‭outgroup (89.44%),‬

‭while‬‭S. pneumoniae‬‭fell sharply across the clade‬‭(>=89.44) and in the‬‭S. mitis‬‭outgroup (32.18%)‬
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‭(Figure 1)‬‭. Average nucleotide identity fell less across the clade for‬ ‭M. tuberculosis‬‭(99.98-99.27%) than‬

‭S. pneumoniae‬‭(98.76-92.51%), however pangenome size‬‭and similarity was markedly different between‬

‭the two species, with‬‭M. tuberculosis‬‭having a smaller‬‭relative pangenome (4,335 total genes and a mean‬

‭genome size of 4,067 genes, a ratio of approximately 1.07, compared to 3,942 total genes and a mean‬

‭genome size of 2,071 genes for‬‭S. pneumoniae,‬‭a ratio‬‭of approximately 1.90) and, as a result, far more‬

‭sharing of genes with the reference strain (4,002-4,050) than‬‭S. pneumoniae‬‭(1,705-1,793). Our findings‬

‭suggest panel applicability is largely affected by genome rearrangement rather than increases in genetic‬

‭distance.‬

‭Amplicon sequencing enables recovery of whole genomes from diverse and minimal-input bacteria‬

‭samples‬

‭To determine our ability to enrich target genomes from within diverse sample sources, for‬‭S. pneumoniae‬‭,‬

‭we sequenced DNA from cultured isolates, nasopharyngeal (NP) swabs, saliva samples, and‬

‭culture-enriched saliva and NP swabs using our amplicon panel and standard metagenomic sequencing.‬

‭For‬‭M. tuberculosis‬‭, we sequenced DNA from cultured isolates and sputum samples using the same‬

‭amplicon sequencing workflow, with and without adding amplicon panel primers, as well as standard‬

‭metagenomic sequencing.‬

‭For‬‭S. pneumoniae‬‭-positive samples, despite high species‬‭diversity in each sample type, increases in the‬

‭proportion of reads mapping to the target genome were seen for both saliva and nasopharyngeal swabs‬

‭compared to standard metagenomic sequencing, alongside an additional increase in related‬‭Streptococcus‬

‭species‬‭(Figure 2a-b)‬‭; this is particularly noticeable‬‭within saliva samples, which are expected to have‬

‭high complements of‬‭S. oralis‬‭and‬‭S. mitis. S. pneumoniae‬‭read recruitment was high among cultured‬

‭isolates regardless of amplification protocol.‬

‭Comparisons of amplified and unamplified‬‭M. tuberculosis‬‭-positive‬‭sputum samples demonstrated‬

‭dramatic increases in coverage for amplified samples as compared to the same samples without‬

‭amplification‬‭(Figure 2c-d)‬‭. While only 2/10 of unamplified samples achieved more than 75% coverage,‬
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‭9/10 of the amplified samples sequenced above this threshold, with 7 of those generating more than 95%‬

‭coverage. The remaining sample achieved 33% coverage amplified, and negligible coverage unamplified.‬

‭Metagenomic sequencing indicated lower overall species diversity for TB sputum samples, yet successful‬

‭amplification from samples containing both commensal and pathogenic bacteria including‬‭Streptococcus,‬

‭Pseudomonas, Actinomycetes‬‭and‬‭Schaalia spp‬‭.‬

‭We assessed the limits of detection for each amplicon panel by sequencing serial 10-fold dilutions of 6‬

‭cultured samples of each bacteria using both amplified and unamplified sequencing approaches. For‬‭M.‬

‭tuberculosis‬‭, high genome coverage (>95%) was observed‬‭in all amplified samples above 100 genome‬

‭copies per microlitre (GC/µL), compared to 10,000 GC/µL for unamplified samples‬‭(Fig S1)‬‭.‬

‭Amplicon derived data enables phylogenetic classification and population delineation of‬‭M.‬

‭tuberculosis‬

‭Lineages of‬‭M. tuberculosis‬‭were called with the Mykrobe package‬‭[21]‬‭, which assigned all samples to‬

‭lineages 2 (sublineage 2.2.1) or 4. Mykrobe performed equally well in high coverage samples, regardless‬

‭of whether these were derived from cell culture or sputum. We derived maximum likelihood phylogenies‬

‭using IQ-tree‬‭[22]‬‭including all sequenced specimens and the broad reference set of‬‭M. tuberculosis‬

‭sequences used for primer design (‬‭Supplemental Figure‬‭2; Supplemental file 1a‬‭). In all cases the‬

‭primary lineage predicted by Mykrobe aligned with lineages from a maximum-likelihood tree, though in‬

‭some cases secondary lineages were predicted based on minor variants which did not concord with the‬

‭ML tree.‬

‭Lineage calling for‬‭S. pneumoniae‬‭was largely unsuccessful.‬‭Culture-derived samples could be assigned‬

‭to serotype using either PneumoKITy‬‭[23]‬‭or PopPunk‬‭[24]‬‭, however none of the lineage callers‬

‭(PneumoKITy‬‭[23]‬‭, PopPunk‬‭[24]‬‭, SRST2‬‭[25]‬‭) were able to assign lineages to any of the direct clinical‬

‭samples from saliva or nasopharyngeal swabs. While our data did indicate coverage of the 7 major‬‭S.‬

‭pneumoniae‬‭housekeeping genes (‬‭aroE, gdh, gki, recP, spi, xpt, ddl‬‭) lineage predictions may have been‬

‭impaired by the high concentration of commensal bacteria in the enriched samples.‬
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‭Direct sputum sequencing for TB detects markers of antimicrobial resistance to first-line therapies‬

‭For‬‭M. tuberculosis‬‭, sequencing data was high-quality‬‭enough to produce a prediction for all template‬

‭dilutions from cultured isolates with at least 10 GE/µL starting quantity (‬‭Figure 3, Supplemental Figure‬

‭3‬‭). While we do not have access to phenotypic susceptibility‬‭results for these isolates, predictions were‬

‭internally consistent for all template dilutions above 100 GE/µL (though there was some variability‬

‭between partial vs full resistance calling) with the exception of streptomycin. DNA was extracted directly,‬

‭without culturing, from 60 sputum specimens with a range of acid-fast bacilli semi-quantitative‬

‭measurements (e.g., 1+ to 3+); sequencing data was high-quality enough to produce a drug susceptibility‬

‭prediction for 53/60 sputum specimens. Of the 7 specimens which failed, (Yale-TB121, Yale-TB123,‬

‭Yale-TB149, Yale-TB150) had starting quantities (following extraction) below 10 GE/uL. None of the‬

‭other 3 (Yale-TB126, Yale-TB139, Yale-TB148) have GenXpert results available as comparison. Several‬

‭different extraction methods were used (detailed in‬‭Supplemental table S1b‬‭) as it was not clear what‬

‭method would perform best; all 20 specimens extracted with the final protocol, which included a‬

‭NALC-NaOH treatment to deplete non-mycobacterial DNA, had adequate data to predict resistance.‬

‭In-silico‬‭antibiotic resistance screening in‬‭S. pneumoniae‬‭identified resistance to several second-line and‬

‭broad-spectrum antibiotics, including Lincosamides, Macrolides, and Fluoroquinolones in 9/9 culture‬

‭isolate samples, 7/9 culture enriched samples, 14/15 saliva samples, and 0/3 nasopharyngeal samples.‬

‭Percent coverage and percent identity toward resistance genes (‬‭RlmAII‬‭,‬‭patA‬‭,‬‭patB‬‭, and‬‭pmrA‬‭) ranged‬

‭from 76.33% to 100% (mean = 94.85%) and 99.24% to 100% (mean 93.87%) for cultured isolates,‬

‭75.04% to 100% (mean 90.6%) and 78.43% to 88.93% (mean 83.72%) for culture-enriched samples, and‬

‭75.21% to 100% (mean 93.91%) and 82.84% to 99.38% (mean 92.57%) for saliva samples, respectively.‬

‭On average, samples contained at least 3 resistance genes (‬‭Supplemental Table 3)‬‭. We identified several‬

‭virulence factors including capsular polysaccharides, many of which are associated with TIGR4 (Serotype‬

‭4) and‬‭Streptococcus pyogenes‬‭, suggesting prior capsular‬‭switching and horizontal gene transfer events,‬
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‭highlighting the ability of amplicon sequencing to pick up on the genetic diversity and evolutionary‬

‭adaptability of‬‭S. pneumoniae‬‭.‬

‭Discussion‬

‭Tiled amplicon sequencing of pathogens has proven extremely useful for reconstructing disease spread‬

‭and gaining insight into transmission patterns for a variety of viruses‬‭[26]‬‭. The 2020 SARS-CoV-2‬

‭pandemic stimulated a global effort to adopt these methods and use genomics to track and monitor the‬

‭virus; however, it has not previously been applied to the significantly larger and often more complex‬

‭genomes of bacteria. Our work here, in which we have successfully used a tiled amplicon approach to‬

‭sequence two pathogenic bacteria from specimens with minimal input DNA and demonstrated the ability‬

‭to identify clades and markers of drug resistance, could have a major impact on disease control for these‬

‭two species.‬

‭Both‬‭S. pneumoniae‬‭and‬‭M. tuberculosis‬‭are pathogens‬‭of prime public health importance.‬‭S. pneumoniae‬

‭is responsible for more than 800,000 deaths per year, with the majority of these resulting from respiratory‬

‭tract infections in children under five‬‭[8]‬‭, and vaccine design is guided by ongoing genomic sequencing‬

‭[27]‬‭. Prior to the Covid-19 pandemic, TB was the world’s leading cause of death from a single infectious‬

‭agent, causing more than a million deaths per year‬‭[28]‬‭. Despite the availability of vaccines, treatment,‬

‭and significant funding‬‭[29]‬‭, we continue to miss WHO targets for reductions in TB incidence and death‬

‭by wide margins, indeed cases have risen worldwide over the past 2 years‬‭[30]‬‭.‬

‭Antimicrobial resistance is a critical issue in treating and controlling TB, due to the prevalence of‬

‭resistance to first line drugs and the length, cost, and complexity of treatment regimes‬‭[31]‬‭. Despite the‬

‭introduction of shorter regimens, the time taken to find an effective treatment can be long, and incomplete‬

‭treatment remains a problem‬‭[32]‬‭. For this reason, the WHO now recommends the use of targeted‬

‭sequence-based diagnostics for rapid drug susceptibility testing for patients who are at high risk of, or‬
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‭have already experienced, treatment failure‬‭[33]‬‭. However designing such an assay is not simple; more‬

‭than 40 separate loci, each containing numerous individual mutations, have been implicated in drug‬

‭resistance‬‭[34]‬‭, and uncertainty can be higher for new or second line drugs‬‭[35]‬‭. Whole-genome‬

‭sequencing works around these limitations of targeted amplicon sequencing. As data are being generated‬

‭across the entire genome, drug susceptibility predictions can be improved and expanded bioinformatically‬

‭as new genetic markers are discovered without updating primers, unlike existing targeted‬

‭sequencing-based diagnostics.‬

‭The required time, infrastructure, and costs for tiled amplicon sequencing are almost identical to targeted‬

‭amplicons; the additional data generated through WGS can be used along with phenotypic drug‬

‭susceptibility to expand our understanding of the genetic markers of drug resistance, especially for‬

‭third-line or novel drugs, increasing the accuracy of predictions over time‬‭[20]‬‭.‬

‭Whole genome sequencing obviates the need to design a targeted assay and can also return resistance‬

‭predictions within days of a positive culture. However, the requirement of most existing WGS approaches‬

‭to first grow a culture sample means that the overall sample-to-sequence turnaround time for‬‭M.‬

‭tuberculosis‬‭is measured in weeks or months‬‭[19]‬‭and significant biases can be introduced during the‬

‭culturing process itself‬‭[20]‬‭. Direct WGS without culture does not consistently produce data of high‬

‭enough quality for resistance prediction or thorough epidemiologic investigation‬‭[36,37]‬‭, is limited to‬

‭specimens with a high bacterial load‬‭[37]‬‭, or relies on expensive techniques such as hybrid capture‬‭[38]‬‭.‬

‭We have demonstrated tiled amplicon sequencing directly from sputum specimens, without culture, can‬

‭be used to make accurate drug susceptibility predictions and lineage assignments for the majority (53/60)‬

‭of specimens, unlike prior whole-genome sequencing approaches‬‭[19,36–39]‬‭. For a notoriously‬

‭slow-growing organism such as‬‭M. tuberculosis‬‭, eliminating‬‭this step reduces the time from sample‬

‭collection to genome from weeks to days. Not only could patients receive appropriate antibiotics sooner,‬

‭but genomic epidemiology could be used in real-time to inform outbreak investigations‬‭[40,41]‬‭and public‬

‭health measures to reduce spread‬‭[42,43]‬‭.‬
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‭Despite more consistent coverage across‬‭in vitro‬‭and‬‭in silico‬‭predictions, gaps remain in our coverage‬‭of‬

‭the‬‭M. tuberculosis‬‭genome in the PE/PPE regions.‬‭While these are frequently omitted from‬‭M.‬

‭tuberculosis‬‭analyses, increasing evidence of functions in host cell invasion‬‭[44]‬‭and importance for‬

‭vaccine design‬‭[45]‬‭suggest inclusion of these regions in future iterations of this amplicon panel would be‬

‭a significant improvement.‬

‭Nevertheless the comparison between our results for‬‭S. pneumoniae‬‭and‬‭M. tuberculosis‬‭is instructive.‬

‭Neither panel showed high rates of amplicon dropout when faced with targets which had drifted from the‬

‭reference strain (a regular issue with viral amplicon panels). However,‬‭in silico‬‭predictions suggest a‬

‭weaker applicability of the amplicon panel in species which undergo significant levels of recombination‬

‭and horizontal gene transfer, and our inability to reliably recover serotype and resistance loci in‬‭S.‬

‭pneumoniae‬‭supports this conclusion. Indeed,‬‭S. pneumoniae‬‭exhibits extremely high levels of horizontal‬

‭gene transfer, not only within the species, but also with frequently co-occurring commensal bacteria such‬

‭as‬‭S. mitis‬‭and‬‭S. oralis‬‭[46,47]‬‭. This species may simply not be a suitable target for this approach, where‬

‭metagenomic or hybrid capture-based sequencing may be more appropriate.‬

‭Faced with both drift and genomic rearrangement, designing primers that target conserved motifs will rely‬

‭upon databases of previously sequenced genomes to allow us to determine circulating genetic diversity.‬

‭Rapid improvements in sequencing and assembly technology have generated vast databases of assembled‬

‭genomes; while these resources are not comprehensive, their bias towards improved representation of‬

‭species of clinical interest‬‭[48]‬‭suggests this will not be a limiting factor in panel design.‬

‭An alternative consideration is targeting bacteria which do not undergo significant levels of horizontal‬

‭gene transfer, and the ratio of genome to pangenome size is likely to be a key metric for our ability to‬

‭design an amplicon panel. This ratio is highly sensitive to the diversity of habitats in which the pathogen‬
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‭is found: free living or commensal species gain particularly large pangenomes to enable adaptation to‬

‭diverse environments; intracellular pathogens show strong purifying selection, low effective population‬

‭sizes and low genome:pangenome ratios‬‭[49]‬‭.‬‭M. tuberculosis‬‭, an obligate pathogen and intracellular‬

‭bacterium which has been extensively sequenced‬‭[50]‬‭, has little horizontal gene transfer, and remains a‬

‭major threat to human life‬‭[30]‬‭, may be archetypal, however other intracellular pathogens such as‬‭Yersinia‬

‭pestis‬‭,‬‭Listeria monocytogenes‬‭,‬‭Legionella pneumophila‬‭,‬‭and‬‭Chlamydia trachomatis‬‭are suitable targets.‬

‭The widespread use of tiled amplicon sequencing for pathogen genomics during the Covid-19 pandemic‬

‭has ensured that this method is trusted, understood, and easily implemented in academic and public health‬

‭laboratories worldwide. As the focus now turns to adapting this capacity to other public health threats‬‭[3]‬‭,‬

‭it is important to prioritize the development of tools for global priority pathogens that can be implemented‬

‭in the regions suffering the greatest burden. Genomic surveillance of TB has demonstrated capacity to‬

‭guide TB interventions in high income countries‬‭[17,18]‬‭; the reductions in cost and turnaround time‬

‭afforded by tiled amplicon sequencing could enable this to be implemented in LMICs with high TB‬

‭burden. Just four countries (India, Bangladesh, Indonesia, Democratic Republic of the Congo) account for‬

‭over half of all TB deaths;  all have seen prior in-country amplicon sequencing of SARS-CoV-2‬‭[51–54]‬

‭suggesting a ready capacity for tiling amplicon sequencing of‬‭M. tuberculosis‬‭. Extensive use of‬

‭alternative sequencing methods such as Oxford Nanopore in these regions‬‭[51,53,55]‬‭suggest adaptation‬

‭to cheaper and more portable sequencing platforms may further increase surveillance capacity.‬

‭Barriers to clinical application are necessarily higher‬‭[56]‬‭; if diagnostics and resistance prediction are to‬

‭be used to tailor treatment regimes it is vital that they can be shown to work reliably in a range of likely‬

‭scenarios: paucibacillary infections; mixed‬‭M. tuberculosis‬‭strains; mixed‬‭M. tuberculosis‬‭and‬

‭non-tuberculosis mycobacteria; partial and incomplete resistance. Despite this complex landscape, the‬

‭capacity of culture-free‬‭M. tuberculosis‬‭sequencing to allow early diagnosis and resistance detection could‬

‭be transformative. Not only by increasing completion rates of TB treatment at the patient level‬‭[57]‬‭, but‬

‭by preventing the further transmission of MDR-TB at the population level‬‭[58,59]‬‭. A comprehensive‬
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‭evaluation of culture-free sequencing methods in a clinical environment should be a priority for TB‬

‭control.‬

‭Materials and Methods‬

‭Ethics statement‬

‭All specimens were discarded and de-identified specimens used previously for diagnostic testing or‬

‭IRB-approved human subjects research in accordance with Yale University IRB-exempt protocol‬

‭#2000033281.‬‭S. pneumoniae‬‭specimens were remnant‬‭specimens collected from‬‭study participants‬

‭enrolled and sampled in accordance with the Yale University Humans Investigation Committee-approved‬

‭protocol #2000027690.‬‭M. tuberculosis‬‭specimens from‬‭Moldova were remnant specimens collected from‬

‭study participants enrolled and sampled in accordance protocol #2000023071 approved by Yale‬

‭University Human Investigations Committee and the Ethics Committee of Research of the‬

‭Phthisiopneumology Institute in Moldova.‬‭M. tuberculosis‬‭specimens from Peru were remnant specimens‬

‭collected from study participants enrolled in accordance with protocol #204749 approved by the‬

‭Institutional Committee on Research Ethics at Cayetano Heredia University, Peru.‬

‭Primer design‬

‭We downloaded all available‬ ‭S. pneumoniae‬‭Serotype 3 contigs (n=490;‬‭Supplemental file 1b‬‭) from the‬

‭Global Pneumococcal Sequencing (GPS) database‬‭[60]‬‭on 02FEB2023. We downloaded raw reads for‬‭M.‬

‭tuberculosis‬‭sequences from a previously described globally representative dataset‬‭[50]‬‭(n=489;‬

‭Supplemental file 1a‬‭) from the European Nucleotide Archive (ENA) at EMBL-EBI. For both targets, we‬

‭downloaded complete reference genomes from the National Center for Biotechnology Information‬

‭(NCBI) GenBank (OXC141; accession NC_017592 and H37Rv; accession NC_000962.3).‬

‭For‬‭M. tuberculosis‬‭, variants were called against‬‭the reference using Snippy and time-resolved‬

‭maximum-likelihood tree was built using our variant call file, along with sample data generated from‬

‭Augur (v.22.4.0), IQ-Tree (v.2.23), and TreeTime (v.0.10.1). Representative sequences (n=6) were‬
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‭selected from across this tree using Parnas (v.0.1.4), to cover >50% of the expected overall diversity. We‬

‭used these representatives to create an‬‭M. tuberculosis‬‭core genome assembly using Snippy.‬

‭For‬‭S. pneumoniae‬‭, consensus genome sequences were‬‭generated (n=4) with Snippy (v.4.6.0).‬

‭Tiled primer schemes (target amplicon size 2kb) were designed for both‬‭S. pneumoniae‬‭and‬‭M.‬

‭tuberculosis‬‭(excluding PE/PPE and repeat regions) using PrimalScheme‬‭[1]‬‭. Primers were ordered at‬

‭100uM and 200uM in IDTE for‬‭S. pneumoniae‬‭and‬‭M. tuberculosis‬‭,‬‭respectively. Primer pools consisted‬

‭of an equal volume of each primer and were used for amplification without further dilution.‬

‭Clinical specimens‬

‭S. pneumoniae‬‭samples consisted of DNA extracted from‬‭raw saliva (15), nasopharyngeal swabs in viral‬

‭transport media (VTM) (6), culture-enriched bacteria (16), and cultured pure isolates (9). All saliva‬

‭specimens had a paired cultured specimen cultured from the saliva (either culture enriched or cultured‬

‭isolate); six also had a paired nasopharyngeal swab collected simultaneously from the same patient, three‬

‭of which were sequenced with and without amplification. A full list of‬‭S. pneumoniae‬‭samples and‬

‭descriptions can be found in‬‭Supplemental‬‭Table S1a‬‭.‬‭DNA was extracted from 200uL of each sample‬

‭using the MagMAX Ultra viral/pathogen nucleic acid isolation kit (Thermo Fisher Scientific) using a‬

‭KingFisher Apex instrument (Thermo Fisher Scientific) and quantified using two qPCR primer/probe‬

‭pairs,‬‭lytA‬‭[61]‬‭and‬‭piaB‬‭[62]‬‭as described previously‬‭[63]‬‭.‬

‭M. tuberculosis‬‭samples consisted of DNA extracted‬‭from positive solid or liquid cultures from sputum‬

‭and DNA extracted directly from sputum specimens. Extracts from culture consisted of remnant‬

‭specimens from a prior study in Moldova, where sputum specimens were tested at a number of diagnostic‬

‭centers in Moldova by microscopy, Xpert, and culture and positive cultures sent to the National TB‬

‭Reference Laboratory in Chisnau for extraction by the‬‭cetyltrimethylammonium bromide (‬‭CTAB) method‬

‭as described previously‬‭[42]‬‭.  Extracts from sputum consisted of specimens collected in Peru after routine‬

‭diagnostics had been carried out and TB confirmed. In order to test the efficiency of different methods for‬

‭extracting DNA from sputum, each specimen was split into two and processed with two different‬

‭protocols. A total of 30 unique sputum specimens were processed with two protocols each, and a total of‬

‭309‬

‭310‬

‭311‬

‭312‬

‭313‬

‭314‬

‭315‬

‭316‬

‭317‬

‭318‬

‭319‬

‭320‬

‭321‬

‭322‬

‭323‬

‭324‬

‭325‬

‭326‬

‭327‬

‭328‬

‭329‬

‭330‬

‭331‬

‭332‬

‭333‬

‭334‬

https://paperpile.com/c/WjlohK/RoEn7
https://paperpile.com/c/WjlohK/htJjt
https://paperpile.com/c/WjlohK/vRrmu
https://paperpile.com/c/WjlohK/fOZ1j
https://paperpile.com/c/WjlohK/YNkgH


‭6 different protocols were tested. A full list of all‬‭M. tuberculosis‬‭samples and the extraction methods‬

‭used can be found in‬‭Supplemental‬‭Table S1b‬‭, and a‬‭detailed description of extraction methods can be‬

‭found in‬‭Supplemental Methods 1‬‭. Following extraction,‬‭DNA was quantified with a mycobacterium‬

‭tuberculosis-complex specific, fluorescence-based real-time PCR assay on the Bio-Rad CFX96‬

‭instrument‬‭[64]‬‭.‬

‭Metagenomic sequencing‬

‭For‬‭S. pneumoniae‬‭, 1-3ng of each sample (up to 4uL‬‭for samples which were undetectable) and a negative‬

‭template control (4uL H2O) underwent tagmentation for 5 minutes followed by a magnetic bead cleanup.‬

‭Then, samples were amplified with Nextera dual-index adapters followed by a second magnetic bead‬

‭cleanup. Each sample was quantified with a Qubit fluorometer and 5ng of each library were pooled‬

‭together (up to 4uL for undetectable samples). The pooled libraries underwent a final 0.7X bead clean up,‬

‭then were quantified on a Qubit fluorimeter and quality and fragment distribution verified using an‬

‭Agilent Bioanalyzer. For‬‭M. tuberculosis‬‭, samples‬‭were prepared as described for amplicon sequencing,‬

‭but with the addition of sterile water in place of PCR primer pools for both amplification reactions.‬

‭Amplicon sequencing‬

‭Amplicon DNA was prepared using the Illumina COVIDSeq DNA prep kit with primer pools for either‬‭S.‬

‭pneumoniae‬‭or‬‭M. tuberculosis‬‭alongside a negative template control as performed previously‬‭[65]‬‭.‬

‭Template DNA from each specimen was amplified in two separate PCRs, one reaction for each primer‬

‭pool. For each sample, equal amounts of each PCR product were combined and the 2kb amplification‬

‭products underwent tagmentation for 3 minutes followed by a bead cleanup and library amplification with‬

‭Illumina index adapters. Equal volumes of the fragmented and indexed library for each sample was‬

‭pooled, followed by size-selective bead cleanup for DNA fragments between 300-600 bp. The final‬

‭pooled library was quantified with a Qubit fluorometer and dsDNA High-Sensitivity Assay kit, and the‬

‭fragment distribution verified on an Agilent Bioanalyzer and high-sensitivity DNA kit. Pooled libraries‬

‭were sequenced on an Illumina NovaSeq (paired-end 150) with an average of 10 million reads per library.‬
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‭Alignments & Calling‬

‭Reads were aligned to the appropriate reference (‬‭S.‬‭pneumoniae‬‭: CC180 (Serotype 3);‬ ‭M. tuberculosis:‬

‭H37Rv) using BWA-MEM (v.2.2.1)‬‭[66]‬‭and SAMtools (v1.15.1)‬‭[67]‬‭. Amplicon sequencing data were‬

‭filtered (using defaults; Q>20 over a sliding window of 4, minimum read length 50% of the average‬

‭length). TB primer sequences were trimmed using iVar (v.1.4.2)‬‭[68]‬‭. Metagenomic sequences were‬

‭trimmed and filtered for quality and length (<100bp), using Trim Galore (v.0.6.10)‬‭[69]‬‭.  Variants were‬

‭called and filtered (Phred score Q>10 and read depth >10) using BCFtools‬‭[70]‬‭. Read subsampling, depth,‬

‭and coverage was calculated using SAMtools‬‭[67]‬‭. Raw reads were directly submitted to the CZID‬

‭mNGS Illumina pipeline‬‭[71]‬‭for microbial composition characterization within samples. Further data‬

‭analyses and visualizations were carried out in Rstudio (v.2024.04.2+764)‬‭[72]‬‭using the tidyverse suite‬

‭(v.2.0.0)‬‭[73]‬‭.‬

‭Off-target amplification prediction‬

‭For each amplicon panel, off-target amplification was assessed‬‭in-silico‬‭against a set of related genomes.‬

‭For each species we compiled a genome cluster consisting of the reference genome, 12 representative‬

‭near-neighbor genomes, and an outgroup (‬‭Supplemental‬‭Table 2‬‭). The pangenome for each cluster was‬

‭calculated using Roary (v.3.13.0)‬‭[74]‬‭and assembled a maximum-likelihood (ML) phylogeny using‬

‭FastTree (v.2.1.11)‬‭[75]‬‭. Average nucleotide distance was calculated between out references and all other‬

‭genomes in the cluster using FastANI (v.1.34)‬‭[76]‬‭. Off-target amplification was inferred by primer‬

‭alignment using Bowtie (v.1.3.1)‬‭[77]‬‭; amplicons were predicted for any properly oriented amplicon pairs‬

‭within 2,200 bp.‬

‭Serotyping, lineage assignment, and resistance prediction‬

‭S. pneumoniae‬‭isolates were‬‭de novo‬‭assembled with Shovill (v.1.1.0)‬‭[78]‬‭.‬‭In-silico‬‭multi-locus‬

‭sequencing types (MLST) were assigned with mlst (v.2.23.0)‬‭[79]‬‭. Global pneumococcal sequencing‬

‭clusters (GPSCs) were assigned with poppunk (v.2.7.0)‬‭[24]‬‭.‬‭In-silico‬‭screening of contigs for‬‭S.‬

‭pneumoniae‬‭antimicrobial and virulence genes was done using ABRicate (v1.0.1)‬‭[80]‬‭and appropriate‬

‭AMR databases‬‭[81–84]‬‭. For M. tuberculosis, Mykrobe‬‭[21]‬‭was used to both assign lineages and predict‬
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‭resistance using the built-in panel “202309” for tuberculosis‬‭[85]‬‭. As a comparison, a time-resolved‬

‭maximum-likelihood tree was built using our variant call file, along with sample data generated from‬

‭Augur (v.22.4.0), IQ-Tree (v.2.23), and TreeTime (v.0.10.1). Tree visualisations were done using Auspice‬

‭(v2.57.0).‬
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‭Figures‬

‭Figure 1:‬‭In silico‬‭modeling indicates broad applicability‬‭across diverse TB clades‬

‭Pangenome representation of (A)‬‭S. pneumoniae‬‭whole‬‭genome sequences (n=13) and‬‭S. mitis‬‭outgroup‬

‭(Accession: AP023349) and (B)‬‭M. tuberculosis‬‭whole‬‭genome sequences (n=13) and‬‭M. canetti‬‭outgroup‬

‭(Accession: NC_019950). Starred phylogenetic tree tips mark the reference sequences used for primer‬

‭design. Shaded bar graphs (middle) denote genes shared amongst clades, color denotes average nucleotide‬

‭identity. Predicted amplicon coverage (right) is shown in grey with forward and reverse amplicon pairs‬
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‭displayed above and below the line. A table of the sequences used in this analysis can be found at‬

‭Supplemental Table 2‬‭.‬

‭Figure 2: Tiled amplicon sequencing enables recovery of whole genome sequences from TB sputum‬

‭Comparisons between amplified and unamplified clinical samples were made for both species with regard‬

‭to metagenomics (a,c), via the CZID metagenomics pipeline, and overall genome coverage (b,d).‬‭S.‬

‭pneumoniae‬‭samples from multiple sample types from‬‭matched patients (a-b) showed increases in‬

‭genome coverage and depth for all sample types, despite simultaneous amplification of closely related‬

‭taxa.‬‭M. tuberculosis‬‭samples taken from direct sputum‬‭sequencing (c-d) show dramatic increases in‬

‭genome coverage, with 8/10 samples generating more than 80% coverage after amplification with our‬

‭protocol, and a ninth sample generating 78% coverage despite a significant infection with‬‭Schaalia‬

‭odontolytica‬‭.‬
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‭Figure 3: Amplicon sequencing predicts TB antimicrobial resistance‬‭in-silico‬‭.‬

‭Predicted susceptibility to 15 anti-TB drugs by amplicon sequencing for DNA extracted from sputum‬

‭without prior culture using our optimised extraction protocol, showing detection of Streptomycin and‬

‭combined Rifampicin / Isoniazid resistance.‬
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