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Abstract—A Unmanned aerial vehicle (UAV)-assisted mobile
edge computing (MEC) scheme with simultaneous wireless infor-
mation and power transfer (SWIPT) is proposed in this paper.
Unlike existing MEC-WPT schemes that disregard the downlink
period for returning computing results to the ground equipment
(GEs), our proposed scheme actively considers and capitalizes
on this period. By leveraging the SWIPT technique, the assistant
UAV can simultaneously transmit energy and the computing
results during the downlink period. In this scheme, our objective
is to maximize the remaining energy among all GEs by jointly
optimizing computing task scheduling, UAV transmit and receive
beamforming, BS receive beamforming, GEs’ transmit power and
power splitting ratio for information decoding, time scheduling,
and UAV trajectory. We propose an alternating optimization
algorithm that utilizes the semidefinite relaxation (SDR), singular
value decomposition (SVD), and fractional programming (FP)
methods to effectively solve the non-convex problem. Numerous
experiments validate the effectiveness of the proposed scheme.

Index Terms— Mobile edge computing (MEC), simultaneous
wireless information and power transfer (SWIPT), unmanned
aerial vehicle (UAV).

I. INTRODUCTION

The technology of mobile edge computing (MEC) enables
users to offload computing tasks to the nearby edge servers for
processing, which significantly reduces the computing latency
and the energy consumption of the user devices. The practical
applications and future development trends of MEC have been
extensively studied in [1]. In general, edge computing servers
are fixed on the ground in the traditional MEC systems,
potentially resulting in limited service coverage. Integrating
unmanned aerial vehicles (UAVs) with MEC can overcome
these limitations, enhancing coverage and improving the effi-
ciency of the MEC system due to their impressive mobility
and flexibility. Specifically, in [2], the authors explored a
MEC framework supported by a UAV, where the UAV can
act as a computing server to assist ground equipment (GE)
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in processing computing tasks and serve as a relay to further
offload GEs’ computation tasks to the base station (BS).

While the MEC technology is capable of processing GEs’
computation tasks remotely, it cannot work well in scenarios
where the GEs’ battery power is insufficient and may de-
mand additional energy to sustain normal operations including
task offloading. Hence, leveraging the technology of wireless
charging into the MEC systems can help address this energy-
insufficiency problem [3]–[6]. In [4], a UAV-enabled MEC
system is explored, where the UAV initially charges the GEs
using wireless power transfer (WPT), and then each GE sends
its tasks to the UAV for processing. The maximization of the
computation energy efficiency for a non-orthogonal multiple
access (NOMA)-based WPT-MEC network is studied in [5].
Additionally, a UAV-MEC system with WPT from UAV to
GEs as well as from BS to UAV is explored in [6].

Note that most existing MEC works assume that the sizes of
the computation results are small, and thus the downlink period
for returning these results to GEs is usually ignored. This
assumption does not align with some practical applications
with large volumes of computation results. For the applications
such as high-resolution image processing, the UAV or the BS
assists in processing the image data from GEs, and the sizes
of the computing results may exceed those initial offloaded
data [7]. To guarantee the accuracy, it is necessary to consider
the downlink period for transmitting the task results from the
UAV or BS to GEs in certain practical scenarios. Moreover,
we can capitalize on the technology of the simultaneous
wireless information and power transfer (SWIPT) to transmit
energy and results data simultaneously while still meeting the
computation latency requirements during this period, aiming
at enhancing the efficiency and accuracy of the system.

Motivated by the above analysis, we explore a UAV-assisted
MEC system considering both uplink and downlink periods.
The contributions of this paper are summarized below.

• We investigate a practical scenario of UAV-assisted MEC
network considering both uplink computation offloading
and downlink results transmission. The SWIPT technol-
ogy is leveraged for simultaneously downlink energy and
data transmission, so as to improve system efficiency.

• An optimization problem is established aiming at maxi-
mizing the minimum remaining energy among all GEs,
through jointly designing the computing task scheduling,
transmit and receive beamforming of UAV, receive beam-
forming of BS, transmit and receive power splitting ratio
of GEs, time scheduling, and UAV trajectory.

• To effectively solve the formulated non-convex optimiza-
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tion problem, we propose an alternating optimization al-
gorithm based on semidefinite relaxation (SDR), singular
value decomposition (SVD) and fractional programming
(FP) techniques. With these methods, the closed-form
expressions of uplink-period beamforming, the optimal
resource allocation, the downlink-period beamforming
solution and the UAV trajectory are respectively derived
in four sub-problems with less complexity and higher ac-
curacy. The simulation results indicate that the proposed
UAV-assisted MEC-SWIPT scheme can significantly out-
perform the benchmark schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1. The model of UAV-assisted MEC-SWIPT system.

As depicted in Fig. 1, we consider a UAV-assisted MEC-
SWIPT network, which consists of a BS co-located with a
MEC server, a UAV, and K GEs. Each GE k ∈ K , {1, ...,K}
has a computation-intensive task that is bit-wise independent
and requires extra electrical supply to maintain normal opera-
tions. We assume that the direct links between GEs and the BS
are blocked by buildings. The assistant UAV, equipped with L
antennas, acts as a relay to send GEs’ offloaded tasks to the
BS for processing during the uplink period. Additionally, the
SWIPT technology is leveraged by the UAV to transmit the
computation results back to the GEs and engage in wireless
charging for GEs simultaneously during the downlink period.
The BS is equipped with a uniform rectangular array of
M = MxMy antennas, respectively with Mx and My elements
along each x-direction and y-direction.

The system is modeled in a three-dimensional (3D) Eu-
clidean coordinate system for all nodes. We divide the flight
time T into N time slots, each slot n ∈ N , {1, · · · , N} with
the length of δ = T

N , where δ is sufficiently small such that
the UAV’s location can be assumed to be unchanged during
each slot. The BS and GE k ∈ K are located horizontally
at sb = (xb, yb) and sk = (xk, yk), with zero vertical
coordinates. The UAV is assumed to fly at a fixed altitude
H > 0 and its horizontal locations at the n-th time slot
are denoted as q [n] = (xu[n], yu[n]). The initial and final
horizontal locations of the UAV are set as qI = (xI, yI) and
qF = (xF, yF), respectively, and the maximum flight speed of
the UAV is assumed to be Vmax. Hence, the UAV must satisfy
the following mobility constraints

∥q [n+ 1]− q [n]∥ ≤ δVmax, ∀n = 1, · · · , N − 1, (1)
q [1] = qI, q [N ] = qF. (2)

A. Channel Model
Similar to [8], we adopt the Rician channel to model the

GE-UAV links and the UAV-BS link. Therefore, we have

hz[n] =

√
β0

d2z[n]

(√ ζ

1 + ζ
hLoS
z [n] +

√
1

1 + ζ
hNLoS
z [n]

)
, (3)

where z ∈ {{k, u} , {u,b}} indicates the subscripts of the GE
k-UAV and the UAV-BS links, β0 is the average channel power
gain at a reference distance of 1 meter (m), ζ denotes the
Rician factor. Besides, dk,u[n] =

√
∥q [n]− sk∥2 +H2 and

du,b[n] =
√
∥q [n]− sb∥2 +H2 are the distances from GE k

to the UAV and from the UAV to the BS, respectively.
For the Line of Sight (LoS) component, we have hLoS

k,u [n] =[
1, e−j 2π

λ dΦk,u[n], . . . , e−j 2π
λ d(L−1)Φk,u[n]

]T ∈ CL×1, where λ
represents the carrier wavelength, d is the uniform distance
between antennas, and Φk,u[n] =

xu[n]−xk

dk,u[n]
indicates the cosine

of the angle of arrival (AoA) for the signal from GE k to
the UAV. In addition1, HLoS

u,b [n] = ϕb,r[n]ϕ
H
u,b[n] ∈ CMxMy×L,

where ϕu,b[n] =
[
1, e−j 2π

λ dφub[n], . . . , e−j 2π
λ d(L−1)φub[n]

]T ∈
CL×1 denotes the array response with respect to (w.r.t.) the
angle of departure (AoD) for the signal from the UAV to the
BS with φub[n] = xb−xu[n]

du,b[n]
being the cosine of the AoD,

and ϕb,r[n] =
[
1, e−j 2π

λ dφbr,x[n], . . . , e−j 2π
λ d(Mx−1)φbr,x[n]

]T ⊗[
1, e−j 2π

λ dφbr,y[n], . . . , e−j 2π
λ d(My−1)φbr,y[n]

]T ∈ CMxMy×1 indi-
cates the receive array response at the BS, with φbr,x[n] =
sinϖ[n] sinΘ[n] and φbr,y[n] = sinϖ[n] cosΘ[n] respectively
denoting the vertical and horizontal AoAs of the signals
from the UAV to the BS. Here we have sinϖ[n] = H

du,b[n]
,

sinΘ[n] = xb−xu[n]√
∥q[n]−sb∥2

, and cosΘ[n] = yb−yu[n]√
∥q[n]−sb∥2

.

Without loss of generality, we assume that the Non-LoS
(NLoS) components hNLoS

k,u [n] ∈ CL×1 and HNLoS
u,b [n] ∈ CM×L

follow the complex normal distributions of CN (0, IL) and
CN (0, IM×L), respectively. It is assumed that the channel
reciprocity holds for all the uplink and downlink channels con-
sidered in this paper. For simplicity of expression, we define
Hu,b [n] = Hu,b [n] du,b [n] and hk,u [n] = hk,u [n] dk,u [n].

B. Computation and SWIPT Models
Base on the above analysis, the signal-to-interference-plus-

noise ratio (SINR) of GE k’s signal recovered at the UAV in
time slot n for k ∈ K and n ∈ N can be expressed as

rk[n] =

Ek[n]
to[n]

∣∣vH
k [n]hk,u [n]

∣∣2∑K
j ̸=k

Ej [n]
to[n]

∣∣vH
k [n]hj,u [n]

∣∣2 + ∥vk [n]∥2σ2
, (4)

where vk[n] ∈ CL×1 represents the receive beamforming
vector at the UAV for GE k, while Ek[n] and to[n] respectively
denote the transmit energy consumption of GE k and the al-
located time for uplink offloading at time slot n. Additionally,
σ2 indicates the noise power at the receiver.

Furthermore, the transmission rate of the UAV for uplink
task offloading to the BS at time slot n can be written as

Ro,u [n] = B log2 det (IM +Θo,u[n]) , ∀n, (5)

1We use the capital letter Hu,b to represent the UAV-BS channel considering
the fact that it is a matrix instead of a vector.



3

where Θo,u[n] = UH
BS[n]Hu,b[n]UUAV[n]U

H
UAV[n]H

H
u,b[n]UBS[n](

σ2UH
BS[n]UBS[n]

)−1, with UUAV[n] ∈ CL×L being the
transmit covariance matrix of the UAV and UBS[n] ∈ CM×M

denoting the BS’s receive covariance matrix. The allocated
time for UAV’s offloading is denoted as tu[n] in slot n.

Considering the downlink period for transmitting the com-
putation results from the BS to GEs via the UAV, we assume
that each GE applies the power splitting (PS) protocol to
coordinate the processes of information decoding and energy
harvesting from the received signal relayed by the UAV [9].
The received signal at GE k is split to the information decoder
(ID) and the energy harvester (EH) by a power splitter. Define
ρk[n] as the portion of the signal power to the ID, while the
remaining power is used by the EH. Therefore, the SINR and
the harvested energy of GE k at time slot n are given by

ru,k[n] =
ρk [n] |hH

k,u[n]wk [n] |2

ρk [n]
(∑K

j ̸=k |hH
k,u[n]wj [n] |2 + σ2

k

)
+ δ2k

, (6)

Ehar
k [n] = tdζk (1− ρk [n])

( K∑
j=1

|hH
k,u [n]wj [n] |2+σ2

k

)
, (7)

where wk [n] ∈ CL×1 denotes the transmit beamforming of
the UAV for GE k and td ∈ [0, δ] indicates the predetermined
time for the downloading period in each time slot. σ2

k is the
noise power at GE k, while δ2k represents the additional noise
power introduced by the ID at GE k. Besides, 0 < ζk ≤ 1 is
the energy conversion efficiency at the EH of GE k.

Let Lc,k [n] and Lo,k [n] respectively represent the local
computing and the offloaded task bits at time slot n. We
assume that each GE has a required volume of computing
task bits to be handled in each time slot, denoted as Γ . Thus,
we have the following task requirement constraints:

Lc,k [n] + Lo,k [n] ≥ Γ , ∀k, ∀n. (8)

Denote the maximum CPU frequency of GE k as Fmax
k , then

we have the following local computing resource constraints:

Lc,k[n] ≤ δFmax
k /Ck, ∀k, ∀n, (9)

where Ck is the number of required CPU cycles for computing
one task bit at GE k. Based on [2], the energy consumption
of GE k for local computing can be expressed as

Ecomp
k [n] = L3

c,k [n]C
3
kςk/δ

2, ∀k,∀n, (10)

where ςk is the effective capacitance coefficient of GE k.
Let Lo,u [n] denote the task bits that the UAV further offloads

to the BS for processing at time slot n. In this paper, we
assume that the computing time at the BS and the transmission
time from the BS to the UAV are negligible. Then we have
the following causal constraints for the offloading process:

Lo,k[n] ≤ to[n]B log2 (1 + rk [n]) , ∀k, ∀n, (11)
Lo,u [n] ≤ tu[n]Ro,u [n] , ∀n, (12)∑K

k=1
Lo,k[n] ≤ Lo,u[n], ∀n, (13)

θLo,k[n] ≤ tdB log2(1 + ru,k[n]), ∀k, ∀n, (14)

where θ represents the uniform size ratio of the calculation
results to the computation tasks.

C. Problem Formulation
We introduce an auxiliary variable η to denote the minimum

remaining energy among all GEs as shown in constraint (15c).
Hence, the problem for maximizing η can be formulated as

(P1) max
Ψ

η (15a)

s.t. (1), (2), (8), (9), (11)− (14), (15b)

η ≤
N∑

n=1

Ehar
k [n]− Ecomp

k [n]− Ek[n], ∀k, (15c)

to[n] + tu[n] ≤ δ − td, ∀n, (15d)

tr(UUAVU
H
UAV) ≤ Pmax

UAV , ∀n, (15e)∑K

j=1

∣∣wH
j [n]wj [n]

∣∣2 ≤ Pmax
UAV , ∀n, (15f)

0 ≤ Ek[n] ≤ Pmax
k to[n], ∀n, ∀k, (15g)

0 ≤ ρk [n] ≤ 1, ∀k, ∀n. (15h)

where constraints in (15d) ensure that the time allocated for
uplink and downlink periods does not exceed the duration
of each time slot. Additionally, (15e) and (15f) represent the
power constraints of the UAV for uplink and downlink trans-
missions, while (15g) includes the offloading power constraints
for GE k, where Pmax

UAV and Pmax
k are the maximum transmit

power of the UAV and the GE k, respectively. In addition, Ψ =
{vk [n] ,UUAV [n] ,UBS [n] , η, to [n] , tu [n] , Ek [n] , Lc,k [n] ,
Lo,k [n] , ρk [n] ,wk [n] ,q [n]}k∈K,n∈N denotes the compact
set of the optimization variables. It is easy to note that the
formulated problem (P1) is non-convex because of the strong
couplings among variables in constraints (11)-(14).

III. ALGORITHM DESIGN AND ANALYSIS

In this section, we propose an alternating optimization al-
gorithm to solve the problem (P1). We divide the optimization
variables into four blocks, i.e., the uplink-period beamforming
design set Ψ1 = {vk [n] ,UUAV [n] ,UBS [n]}, the resource
allocation set Ψ2 = {η, to[n], tu[n], Ek[n], Lc,k[n], Lo,k[n]},
the downlink-period beamforming and GEs’ PS design set Ψ3

= {η, ρk[n],wk [n]}, and UAV trajectory design set Ψ4 = {η,
q[n]}. Therefore, we decompose (P1) into the following four
subproblems, which are analyzed and solved as follows.

1) Subproblem for Optimizing the Uplink-Period Beam-
forming Design Set Ψ1: We employ the zero-forcing (ZF)
technique to obtain vk[n] and the Singular Value Decompo-
sition (SVD)-based approach to analyze the transmission rate
from the UAV to the BS. Based on [9], [10], we can derive
the closed-form beamforming solutions as

vk[n] = Υk[n]Υ
H
k [n]hk,u[n]/∥Υk[n]Υ

H
k [n]hk,u [n]∥, (16)

UBS[n] = [ξ1, . . . , ξM ], UUAV[n] = [ξ̂1, . . . , ξ̂L], (17)

where Υk[n] denotes the orthogonal basis for the null space of
H

H

k,u[n] = [h1,u [n] , ...,hk−1,u [n] ,hk+1,u [n] , ...,hK,u [n]]
H .

In addition, ξm ∈ RM×1 and ξ̂l ∈ RL×1 are the normalized
eigenvectors corresponding to the m-th and l-th eigenvalues
of Hu,b [n]H

H

u,b [n] and H
H

u,b [n]Hu,b [n], respectively.
Hence, after applying the zero-forcing receive beamforming

at the UAV, the offloading SINR for GE k in equation (4) can
be further transformed as the following equation:
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rk [n] =

Ek[n]
to[n]

∣∣vH
k [n]hk,u [n]

∣∣2
σ2

, (18)

where vk[n] is given in (16) and we have ∥vk [n]∥2 = 1.
Actually, the channel matrix Hu,b [n] can be divided into

several parallel sub-channels through SVD. Then the transmis-
sion rate from the UAV to BS given in (5) can be equivalently
re-formulated as follows

Ro,u[n] =

τ [n]∑
i=1

Blog2

(
1 +

λiE
i
UAV [n]

tu[n]d2u,b[n]σ
2

)
, (19)

where τ [n] represents the rank of Hu,b [n], and λi denotes
the square of the i-th singular value of Hu,b [n]. In addition,
Ei

UAV [n] signifies the transmit energy assigned by the UAV to
the i-th sub-channel at the n-th time slot. This SVD decoupling
will significantly simplify the solving process of the following
sub-problems and reduce the computational complexity.

2) Subproblem for Optimizing the Resource Allocation Set
Ψ2: To facilitate the subsequent analysis, we introduce a new
variable Li

o,u[n], indicating the offloaded task bits from UAV to
BS using the i-th sub-channel at time slot n. Additionally, we
define a new optimization set for subproblem (P2), denoted as
Ψ′

2 =
{
Ψ2, {Li

o,u[n], E
i
UAV[n]}∀i,n

}
. For any given variable

sets Ψ1, Ψ3 and Ψ4, the corresponding subproblem (P2) for
optimizing Ψ′

2 can be expressed as

(P2) max
Ψ′

2

η (20a)

s.t. (8), (9), (11), (13), (14), (15d), (15g), (15c), (20b)

Lo,u [n] ≤
∑τ [n]

i=1
Li

o,u[n], ∀n, (20c)

Li
o,u[n] ≤ tu[n]Blog2

(
1 +

λiE
i
UAV [n]

tu[n]d2u,b[n]σ
2

)
, ∀n, ∀i, (20d)∑τ [n]

i=1
Ei

UAV[n] ≤ Pmax
UAV tu[n], ∀n. (20e)

Since f(x, t) = tlog(1 + x/t) is a joint concave function
w.r.t. x and t for case of x, t ≥ 0 [11], then the constraints
(11), (14), and (20d) are convex versus the variables in Ψ′

2.
Therefore, problem (P2) is a standard convex problem that can
be effectively solved by the existing tools, such as CVX.

3) Subproblem for Optimizing the Downlink-Period Beam-
forming and GEs’ PS Design Set Ψ3: By defining Wk[n] =
wk[n]w

H
k [n], Hk,u[n] = hk,u[n]h

H
k,u[n], and introducing an

auxiliary variable ρ̃k [n] that satisfys eρ̃k[n] = ρk [n], then
the constraints (14), (15c) and (15f) can be respectively re-
expressed as follows:

tr (Hk,u [n]Wk [n]) ≥
(
2

θLo,k[n]

tdB − 1
)
× (21)(∑K

j ̸=k
tr (Hk,u [n]Wj [n])+

(
δ2k + σ2

)
e−ρ̃k[n]

)
, ∀n,

N∑
n=1

tdζk
(
1− eρ̃k[n]

)( K∑
j=1

tr (Hk,u [n]Wj [n]) + σ2
k

)
(22)

− Etotal
k [n] ≥ η, ∀k,∑K

j=1
tr (Wj [n]) ≤ Pmax

UAV, ∀n, (23)

where Etotal
k [n] = Ecomp

k [n] + Ek[n] denotes the total energy
consumption of GE k for computing and offloading at time
slot n. Furthermore, in order to deal with the coupling rela-
tionship between eρ̃k[n] and

∑K
j=1 tr (Hk,u [n]Wj [n]) + σ2

k,
we introduce a slack variable Ωk [n]. Then the constraint (22)
can be re-expressed as the form in (24)-(25):

N∑
n=1

tdζk
(
eΩk[n] − eρ̃k[n]+Ωk[n]

)
− Etotal

k [n] ≥ η, ∀k, (24)

eΩk[n] ≤
( K∑

j=1

tr (Hk,u [n]Wj [n]) + σ2
k

)
, ∀k, ∀n. (25)

Hence, for any given variable sets Ψ1, Ψ′
2 and Ψ4, the

subproblem (P3) for optimizing Ψ3 can be expressed as

(P3) max
Ψ′

3={Wk[n],ρ̃k[n],Ωk[n]}∀k,n,η
η (26a)

s.t. (21), (23), (24), (25), (26b)

0 ≤ eρ̃k[n] ≤ 1, ∀k, ∀n, (26c)
Wk [n] ≽ 0, ∀k, ∀n, (26d)
Rank(Wk [n]) = 1, ∀k, ∀n, (26e)

which is still a non-convex optimization because of the con-
straints (24) and (26e). Fortunately, eΩk[n] in (24) is a convex
function w.r.t Ωk [n], and thus we can obtain its lower bound
via its first-order Taylor expansion, which is given by

ξ1 (Ωk [n]) = eΩ
(m)
k [n] + eΩ

(m)
k [n]

(
Ωk [n]−Ω

(m)
k [n]

)
, (27)

where Ω
(m)
k [n] is the obtained solution at the m-th iteration.

By using ξ1 (Ωk [n]) in (24) and dropping the rank-1
constraint (26e), the SDR form of problem (P3) is given as

(P3.1) max
Ψ′

3={Wk[n],ρ̃k[n],Ωk[n]}∀k,n,η
η (28a)

s.t. (21), (23), (25), (26c), (26d), (28b)
N∑

n=1

tdζk
(
ξ1 (Ωk [n])− eρ̃k[n]+Ωk[n]

)
− Etotal

k [n] ≥ η, ∀k.

(28c)

It can be verified that problem (P3.1) is a standard convex
problem that can be solved by CVX. Additionally, ρk [n]
can be obtained according to eρ̃k[n] = ρk [n]. However, the
solution to (P3.1) may conflict with the rank-1 constraint (26e)
in problem (P3). Fortunately, we can provide a method to
directly construct the solution satisfying the rank-1 constraints
based on the solution of (P3.1) in the following Theorem 1.

Theorem 1. Suppose that the optimal feasible solution of
problem (P3.1) are W∗

k[n] ,ρ̃∗k [n] and Ω∗
k [n]. There exists

W⋆
k[n] satisfying Rank(W⋆

k[n]) = 1 while the other variables
ρ̃∗k [n] and Ω∗

k [n] are still feasible solutions to the problem
(P3.1). The corresponding W∗

k[n] is given by

W⋆
k [n] =

W∗
k [n]hk,u [n]h

H
k,u [n]W

∗
k [n]

hH
k,u [n]W

∗
k [n]hk,u [n]

. (29)

Proof: According to (29), hH
k,u [n]W

⋆
k [n]hk,u [n] =

hH
k,u [n]W

∗
k [n]hk,u [n], and tr(W⋆

k [n]) = tr(W∗
k [n]) always

hold, which indicates that W⋆
k[n], ρ

∗
k[n], and Ω∗

k [n] are still
optimal solutions to (P3.1). The proof has been completed.
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4) Subproblem for Optimizing the UAV Trajectory Design
Set Ψ4: For any given variable sets Ψ1, Ψ′

2 and Ψ′
3, the

subproblem to solve Ψ4 can be expressed as follows:

(P4) max
Ψ4

η (30a)

s.t.
N∑

n=1

td(1− ρk[n])ζk

( K∑
j=1

|hH

k,u[n]wj [n]|2

d2k,u[n]
+ σ2

k

)
− Etotal

k [n] ≥ η, ∀k, (30b)

d2k,u [n] ≤
Ek [n]

∣∣vH
k [n]hk,u [n]

∣∣2
to [n]σ2

k

(
2

Lo,k[n]

to[n]B − 1
) , ∀k, ∀n, (30c)

d2k,u [n] ≤
−ρk [n] |h

H

k,u [n]wk [n] |2(
ρk [n]σ2

k + δ2k
) +

ρk [n] |h
H

k,u [n]wk [n] |2(
2

θLo,k[n]

tdB − 1
)
(ρk [n]σ2

k + δ2k)

, ∀k,∀n, (30d)

d2u,b [n] ≤ EUAV
i [n]λi/σ

2tu [n]
(
2

Li
o,u[n]

tu[n]B − 1
)
, ∀n,∀i. (30e)

Note that the non-convexity of problem (P4) comes from the
fractional constraint (30b). We further employ the fractional
programming (FP) theory [12] to solve it, through which the
constraint (30b) can be transformed into the following form:

N∑
n=1

td (1− ρk [n]) ζk

( K∑
j=1

|hH

k,u [n]wj [n] |2Λk [n] + σ2
k

)
− Etotal

k [n] ≤ η, ∀k, (31)

where Λk [n] = 2yk [n] − y2k [n] d
2
u,k [n] with yk [n] being an

auxiliary variable. Given the trajectory of the UAV at the m-th
iteration, i.e., q(m) [n], the optimal yk [n] can be updated by

yk [n] =
1

∥q(m) [n]− sk∥2 +H2
. (32)

It can be noted that problem (P4) with the constraint (31)
is a convex optimization problem. Therefore, this form of
problem (P4) can be solved by utilizing the solvers like CVX.
The complete iterative optimization algorithm with FP method
to solve sub-problem (P4) is outlined in Algorithm 1.

Algorithm 1: Algorithm for Sub-Problem (P4)

1: For given variable sets Ψ1, Ψ2, Ψ3, initialize q(0)[n]
into feasible values; set ι = 0.

2: repeat
3: Given q(ι), update yk [n] by (32).
4: Update q(ι+1)[n] by solving problem (P4) with (31).
5: Set ι = ι+ 1.
6: Until: the algorithm converges; output q(ι)[n].

5) Proposed Iterative Optimization Algorithm and Analysis:
Based on the above analysis, we summarize the proposed iter-
ative algorithm for solving initial problem (P1) in Algorithm
2. Note that the convergence of the proposed algorithm can
be guaranteed, since we can always find a solution not worse
than that of the previous iteration through this algorithm.

Algorithm 2: Algorithm for Initial Problem (P1)

1: Initialize Ψ
(0)
1 , Ψ(0)

2 Ψ
(0)
3 and Ψ

(0)
4 as feasible solution;

set m = 0.
2: repeat
3: Given

(
Ψ

(m)
2 ,Ψ

(m)
3 ,Ψ

(m)
4

)
, obtain Ψ

(m+1)
1 according

to (16) and (17) respectively.

4: Given
(
Ψ

(m+1)
1 ,Ψ

(m)
3 ,Ψ

(m)
4

)
, obtain Ψ

′(m+1)
2 by

solving problem (P2) with CVX.

5: Given
(
Ψ

(m+1)
1 ,Ψ

′(m+1)
2 ,Ψ

(m)
4

)
, obtain Ψ

′(m+1)
3 by

solving problem (P3.1) with SDR method and construct
a solution satisfying constraint (26e) in Theorem 1.

6: Given
(
Ψ

(m+1)
1 ,Ψ

′(m+1)
2 ,Ψ

′(m+1)
3

)
, obtain Ψ

(m+1)
4 by

using Algorithm 1.
7: Set m = m+ 1.
8: Until: the algorithm converges; output Ψ.

The computational complexity of the proposed Algorithm
2 primarily arises from Step 4 to Step 6 for solving problems
(P2) to (P4). Note that there are a total of O2 = (1 +
2N + 3KN + 2ΣN

n=1τ [n]) variables in Ψ′
2, and thus the

computational complexity of Step 4 for solving the convex
problem (P2) with the interior point method in CVX is
O2 = O(O3.5

2 ). Similarly, problems (P3.1) and (P4) have
O3 = (1 + NK + KNL2) and O4 = (1 + 2N) variables,
then the computational complexity of Step 5 and Step 6 are
respectively O3 = O(I3(O

3.5
3 )) and O4 = O(I4(O

3.5
4 )),

where I3 and I4 are the corresponding number of iterations.
In summary, the computational complexity of Algorithm 2 for
solving the initial problem (P1) is Ototal = (I(O2+O3+O4)),
where I denotes the number of outer iterations.

IV. SIMULATION RESULTS

In this section, we simulate the case of K= 4 GEs with
the coordinates of (−10, −12), (−5, −9), (5, −14), (13, −12)
respectively. Besides, the other simulation parameters are set
as Ck = 1000, β0 = −20 dB, σ2

k= −60 dBm, σ2 = −60 dBm,
δ2k = −50 dBm, B = 10 MHz, ζ = 10 dB, ςk = 10−28, θ =
10−5, Fmax

k = 2 GHz, Pmax
k = 1 W, Mx = 4, My = 4, δ =

0.5s, T= 10s, td = 0.5δ, ζk = 0.8, qI= (−10, −14), qF= (15,
−7), sb = (3, −5) and Vmax = 5m/s.
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Fig. 2. The convergence performance of the proposed algorithm.

The curves in Fig. 2 illustrate the convergence performance
of the proposed algorithm across different numbers of UAV
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and Γ = 1Mb.
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Fig. 5. UAV trajectory versus the UAV altitude
with Γ = 1Mb, L = 8 and Pmax

UAV = 50W.

antennas and levels of transmit power. It is evident that, re-
gardless of these variations, the values of minimum remaining
energy initially increase and then gradually converge as the
iteration increases, which can clearly verify the convergence
of the proposed algorithm. In addition, the performance of the
proposed scheme can be highly improved with larger number
of UAV antennas or transmit power.

In Fig. 3, the performances of different schemes versus
the varying numbers of UAV antennas are presented. The
scheme without trajectory design refers to fixing the UAV’s
trajectory as the initial trajectory, while the scheme without
time design refers to setting to and tu as 0.25δ. The scheme
without rho design refers to setting ρk as 0.1 for k ∈ K,
while the SCA scheme refers to optimizing the trajectory
using the Successive Convex Approximation (SCA) method,
representing a lower bound of the original problem. The
performance of all schemes improves as the number of UAV
antennas increases, as more antennas provide greater flexibility
for beamforming. The proposed scheme is always superior to
the other benchmark schemes, demonstrating its effectiveness
in performance enhancement. The scheme without trajectory
design exhibits inferior performance compared to our proposed
scheme, suggesting that the UAV trajectory design can signif-
icantly improve the overall system performance. Furthermore,
the scheme without rho design also exhibits a significant
performance loss in comparison with the proposed scheme,
which highlights the critical importance of designing the value
of {ρk} based on the requirements of the SWIPT networks.

We present the effects of transmit power on performance
in Fig. 4 w.r.t. the number of UAV antennas. At low power
levels, the system performance does not significantly improve
with the increasing of antennas. However, as the power level
increases, the system performance improves more significantly
with the increasing number of UAV antennas. Especially when
the power is 50W, the performance of the 16-antenna system
improves by 254% compared to the 4-antenna system.

In Fig. 5, we compare the UAV trajectory at different
altitudes. At an altitude of 5m, the UAV travels to each GE
in sequence before flying to the final location. However, at
altitudes of 10m or 20m, the UAV’s trajectory tends to follow
a more central route among GEs. As the altitude increases,
the relative difference of distances between the UAV and
GEs become smaller, making the more central trajectory more
conducive to system performance.

V. CONCLUSIONS

In this paper, we propose a UAV-assisted MEC-SWIPT
scheme, which enables the UAV to simultaneously transmit
energy and computing results to GEs through the SWIPT
technology. Then, we design an alternating optimization al-
gorithm to maximize the minimum remaining energy among
all GEs. The effectiveness of the proposed scheme is vali-
dated by comparing it with the baseline schemes. Simulation
results show that the system performance can be significantly
enhanced by designing UAV trajectories and GEs’ PS ratio for
information decoding. Additionally, the effect of the number of
UAV antennas on system performance is also being examined.
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