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Abstract

Cognitive impairment (CI) in multiple sclerosis (MS) is only partially explained by whole-brain volume measures, but inde-
pendent component analysis (ICA) can extract regional patterns of damage in grey matter (GM) or white matter (WM) that
have proven more closely associated with CI. Pathology in GM and WM occurs in parallel, and so patterns can span both.
This study assessed whether joint-ICA of GM and WM features better explained cognitive function compared to single-tissue
ICA. 89 people with MS underwent cognitive testing and magnetic resonance imaging. Structural T1 and diffusion-weighted
images were used to measure GM volumes and WM connectomes (based on fractional anisotropy weighted by the number
of streamlines). ICA was performed for each tissue type separately and as joint-ICA. For each tissue type and joint-ICA,
20 components were extracted. In stepwise linear regression models, joint-ICA components were significantly associated
with all cognitive domains. Joint-ICA showed the highest variance explained for executive function (Adjusted R%=0.35)
and visual memory (Adjusted R>=0.30), while WM-ICA explained the highest variance for working memory (Adjusted
R*=0.23). No significant differences were found between joint-ICA and single-tissue ICA in information processing speed
or verbal memory. This is the first MS study to explore GM and WM features in a joint-ICA approach and shows that joint-
ICA outperforms single-tissue analysis in some, but not all cognitive domains. This highlights that cognitive domains are
differentially affected by tissue-specific features in MS and that processes spanning GM and WM should be considered when
explaining cognition.
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Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating
disease of the central nervous system (CNS), characterized
by white matter (WM) and grey matter (GM) lesions and
atrophy, with widespread neuro-axonal loss [1]. MS can
affect numerous CNS functions, but typically presents with
motor or sensory symptoms attributable to brain WM, spinal
cord or optic nerve lesions. However, if assessed, approxi-
mately 40-70% of people with MS have cognitive impair-
ment (CI). Information processing speed, working memory,
visuospatial ability, and executive function are commonly
affected, although the pattern of CI is heterogeneous across
individuals, even within the same clinical phenotype [1-3].
CI can severely impact a person’s quality of life and psy-
chosocial function and is a significant factor associated with
unemployment. Yet, CI in MS remains only partly explained
by current models seeking to link observed brain pathology
with outcomes [4-6].

Magnetic resonance imaging (MRI) measures that are
derived at a whole-brain level, for example, the quantifi-
cation of total WM lesion volume and global GM brain
atrophy, are only partially associated with CI [7, 8]. Given
MS disease effects are not homogeneous across the brain
[9, 10], and different cognitive functions are supported by
distributed but overlapping neural networks, it is unsurpris-
ing that the explanatory ability of whole-brain measures
is limited [11-13]. Using network-based approaches can
improve the ability of MRI measures to explain outcomes
and has shown promise in helping understand CI [14, 15].
For example, independent component analysis (ICA), which
identifies covarying patterns within data, has been success-
fully used to identify networks of GM atrophy in MS. Over-
lapping regional patterns of cortical atrophy corresponding
to the default mode network (DMN) and other known func-
tional networks were associated with cognition [10]. More
recently, using a similar data-driven ICA approach, it has
been found that some GM components, including a corti-
cal-basal ganglia-like network, are associated more closely
with cognitive disability compared to global GM atrophy,
deep GM atrophy and lesion volumes [14]. Furthermore,
ICA GM patterns, including a salience network-like compo-
nent, better predict cognitive worsening over time compared
to whole-brain MRI measure models. A WM ICA study
using tract-based spatial statistics (TBSS) has also found
a relationship with cognitive function. This study extracted
components of microstructural integrity loss in WM tracts,
such as the supratentorial projections and limbic association
tracts, which were found to be associated with executive
function and visuospatial memory, respectively [16].

Studies combining GM and WM have shown that both
tissues provide complementary information. While GM and
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WM pathologies may occur independently (e.g., the accrual
of lesions, which are not closely related in GM and WM
[171), WM and GM are also interrelated, for example, dam-
age in WM tracts is associated with atrophy in connected
brain regions, particularly in RRMS(9). This suggests that
when seeking to explain clinical outcomes, GM and WM
pathology should be considered together, allowing for rela-
tionships between them. Yet to date, ICA studies in MS
have typically considered GM or WM in isolation. Parallel
ICA jointly extracts components from two modalities and
then assesses the correlations between them. The power
of this approach has recently been demonstrated in an MS
study investigating GM atrophy and WM lesion distribution
using parallel-ICA [18]. This study found that components
of WM lesions correlated with components of GM atrophy,
and the WM lesions components could predict progression
of motor function decline in people with relapsing—remit-
ting MS (RRMS). However, this study did not assess other
clinical outcomes, such as cognition, or include people with
primary progressive MS (PPMS) or secondary progressive
MS (SPMS), limiting the generalizability of the findings.
Furthermore, while parallel-ICA can identify relationships
between GM and WM networks of pathology, it identi-
fies links between separately extracted features rather than
directly isolating components with shared GM and WM
features: joint-ICA is a multivariate approach that is able to
address this, as it jointly estimates multimodal components
covarying across participants, which are captured in a shared
loading matrix despite the data being measured with differ-
ent techniques. A single linkage parameter is subsequently
determined for every component and subject. This way,
joint-ICA provides a unit-free approach to characterize latent
factors that connect datasets of entirely different scales. This
method has previously been applied to GM volume and WM
microstructure measures in studies on dementia, bipolar dis-
order, and obsessive—compulsive disorder, and has shown
that joint-ICA components represent distinct shared patterns
of GM and WM pathology in the brain [19-21]. These stud-
ies also found that such shared patterns were associated with
cognitive function.

In the present study, we applied joint-ICA to GM volu-
metric and WM diffusion-weighted imaging (DWI) data. We
chose these two MRI measures as they reflect pathology
mediated through neural networks, specifically neuronal
loss (GM volume) and axonal degeneration (WM DWI
measures). We hypothesized that combining patterns of
GM volume and WM integrity using this data-driven mul-
tivariate approach would, compared with single-tissue ICA,
improve our ability to explain heterogeneity in cognitive
function in MS. To test this hypothesis, we used data from
a diverse cohort of people with RRMS, SPMS, and PPMS
to: 1) establish if patterns of GM and WM changes in MS
can be directly linked through joint-ICA, and if so, whether
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these can be linked with known functional brain networks;
2) investigate whether specific joint-ICA components have
differential relationships with cognitive domains and; 3)
determine if joint-ICA can increase the explained variance
in cognitive function compared to single-tissue GM and WM
ICA.

Methods
Participants

Eighty-nine people with MS were included in this study.
Participants were recruited between 2010 and 2013. Inclu-
sion criteria were; a diagnosis of MS of any type or dura-
tion, age between 18 and 65 years, the ability to give written
informed consent and have an MRI scan. Exclusion criteria
were; any other known neurological disease or medical con-
dition that could affect the brain, pregnancy or breastfeeding.
There were no clinical relapses or steroid treatments in the
30 days prior to assessment of all participants. The cohort’s
demographics are summarized in Table 1. Participants had
a diagnosis of clinically definite MS according to the 2005
McDonald criteria [22]. MS subtypes were classified using
the Lublin—Reingold criteria [23]. All participants gave

written informed consent. This study had research ethics
committee approval (09/HO716/77).

Clinical assessments

All clinical assessments were carried out by a neurologist
or neuropsychologist. Participants were assessed on the
Expanded Disability Status Scale (EDSS) and five cognitive
domains using several tests. Information processing speed
(IPS) was measured by the verbal Symbol Digit Modali-
ties Test (SDMT) [24]. Verbal memory was measured using
the Story Recall Test (SRT) from the Adult Memory and
Information Processing Battery (AMIPB) [25] as well as
the Recognition Memory Test (RMT) for words [26]. Visual
memory was assessed using the RMT for faces [26]. Execu-
tive function (EF) was measured by the Stroop Color-Word
Interference Test [27] and the Hayling Sentence Comple-
tion Test [28]. Working memory was assessed with the Digit
Span test, which is an element of the Wechsler Test of Adult
Reading (WAIS) [29].

Image acquisition
MRI scans were acquired using a 3 T Philips Achieva sys-

tem (Philips Healthcare, Best, The Netherlands) using a
32-channel head-coil. A structural 3D sagittal T1-weighted

Table 1 Demographics, clinical

" T All MS RRMS SPMS PPMS
and cognitive characteristics

Demographics
N 89 53 22 14
Age (years) 46.3 (=10.7) 419 (x£10.1) 54 (£7.24)*** 50.9 (+8.99)**
Sex (male:female) 29: 60 16: 37 7: 15 6: 8

Clinical characteristics
Duration (years) 14.7 (£9.77) 11.6 (+7.93) 24.3 (£9.11)%%* 11.5 (+7.42)"
EDSS (median[range]) 4.5[1-8.5] 2[1-7] 6.5 [4.5-8.5]%** 6 [1.5-6.5]%**
Current DMT use () 44/7/38 36/3/14 8/3/11 0/1/13%%#
(current/previous/never)

Cognitive characteristics
1PS 0 (+1.00) 0.29 (+1.02) -0.54 (+0.84)** -0.24 (+0.80)
Vermem 0(+0.87) 0.15 (+0.80) -0.21 (+0.80) -0.23 (+=1.13)
Vismem 0 (+1.00) 0.22 (+0.92) -0.51 (= 1.04)* -0.03 (+1.05)
EF 0 (+0.59) 0.10 (+0.54) -0.15 (+0.63) -0.14 (+0.69)
Workmem 0 (+1.00) 0.16 (= 1.04) -0.30 (+0.88) -0.11 (=1.01)

Data are presented as mean with standard deviation unless mentioned otherwise. Cognitive characteristics
are presented as z-scores (based on the cohort values) averaged across all tests relating to each cognitive
domain. Differences between groups were compared for age by ANOVA and Tukey HSD post-hoc, for sex
by Chi-square test, for disease duration and EDSS by Kruskal-Wallis tests and Wilcoxon rank-sum tests
post-hoc and for cognitive domain scores by ANCOVA with age as covariate and Tukey HSD post-hoc
when appropriate. *p <0.05, *¥p <0.01, ***p <0.001 compared to RRMS. *p <0.05 #p <0.001 compared
to SPMS. DMT disease-modifying therapy, EDSS Expanded Disability Status Scale, EF executive function,
IPS information processing speed, MS multiple sclerosis, N sample size, PPMS primary progressive multi-
ple sclerosis, RRMS relapsing—remitting multiple sclerosis, SPMS secondary progressive multiple sclerosis,
vermem—yverbal memory, vismem—visual memory, workmem—working memory
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fast field echo (FFE) scan (repetition time (TR)=6.9 ms,
echo time (TE)=3.1 ms, 1 mm?® isotropic, acquisition
time (AT)=6 min 31 s) and a multi-echo proton density
(PD)/T2-weighted scan were obtained (TR =3500 ms,
TE=19/85 ms, 1 X 1 X3 mm> anisotropic, AT=4 min 1 s). A
high angular resolution diffusion imaging (HARDI) scan was
obtained which consisted of a cardiac-gated spin-echo echo-
planar imaging sequence (TR =24 s [depending on cardiac
rate], TE=68 ms, SENSE factor=3.1, 2 mm>, AT =33 min
17 s) with 61 isotropically distributed diffusion-weighting
directions (b= 1200 s/mm?) and 7 non-diffusion-weighted
volumes (h=0 s/mm?). Images were aligned to the anterior
commissure (AC) and posterior commissure (PC) line, to
reduce the impact of head positioning on image analysis.

Image preprocessing

Figure 1 shows a schematic overview of the imaging part
of the study.

T2 hyperintense lesions were manually outlined by an
experienced observer on the PD-weighted images using
the semi-automated edge finding tool of JIM v8.0 (Xinapse
systems, Aldwincle, UK, http://www.xinapse.com). The
lesion masks were then co-registered to the 3D T1-weighted

: N

Preprocessing ICA input

T

1 mm?3 isotropic voxels

N

images using a pseudo-T1 image generated by subtracting
the PD from the T2-weighted image [30]. Lesion masks
were transformed from native space to 3D T1 space using
nearest-neighbor interpolation.

Structural T1-weighted images were segmented, after
N4 bias field correction [31] and lesion filling [32], using
Geodesic Information Flows (GIF) V.3.024 [33]. Lesion fill-
ing was performed with the T2 hyperintense lesions in 3D
T1 space using a multi-timepoint modality—agnostic patch-
based method [32]. GIF, an in-house-developed framework,
used the T1-weighted images for segmentation into proba-
bilistic tissue maps and parcellation into regions as defined
in the Desikan—Killiany—Tourville (DKT) atlas [34]. Tis-
sue volumes were estimated for cortical GM (CGM), deep
GM (DGM), brainstem, WM, cerebral spinal fluid, and the
121 DKT regions (101 representing CGM, 20 representing
DGM, see Supplementary Table 1). CGM and DGM were
combined for further analysis (FSL v.5.0.9). To adjust for
head size, regional volumes were divided by total intracra-
nial volume (TIV) prior to statistical analysis.

For ICA, an established pipeline was used as previ-
ously described [14]. In summary, a study-specific GM
template was created using the Advanced Normalization
Tools (ANTs) software package (https://stnava.github.io/

a hYd N

Statistics

Analysis

Single-tissue

Segmentation and

GM ICA

parcellation with GIF

20 components

Compare
stepwise linear
ss regression model
of ICAs with
cognitive data

Joint-ICA

20 components

DWI

Single-tissue

Probabilistic
tractography Mrtrix3

Fig.1 Outline of the Structural

image
T1-weighted scans and DWI were preprocessed and analyzed using
GIF and Mrtrix3, respectively, leading to subsequent GM volume
and FA-weighted WM connectomes as input for single-tissue and
joint-ICA. The ICAs were run using the Matlab-based Fusion ICA
Toolbox (FIT: http://trendscenter.org/software/fit) with the Fast-ICA

analysis  pipelines.
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WM ICA

20 components

\ AN 4

algorithm, resulting in 20 components per ICA model. A stepwise
linear regression was run to determine which ICA model showed the
highest variance explained in each cognitive domain. DWI diffusion-
weighted imaging, FA fractional anisotropy, GIF Geodesic Informa-
tion Flows, GM grey matter, /CA independent component analysis,
WM white matter
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ANTs/) by randomly selecting 44 participants from the
cohort. The chosen number was evenly distributed across
phenotype groups (RRMS =15, SPMS =15, PPMS = 14).
The 44 lesion-filled T1-weighted images were registered
to MNI152 space by rigid body transformation to create
the study-specific template. All participants’ T1-weighted
lesion-filled images were then non-rigidly registered to this
template. Subsequently, GM probability maps from GIF[33]
were transformed to the template space, using the warping
matrix previously computed for the T1-weighted images. To
account for image deformations after non-linear transforma-
tion, we modulated the GM maps by the Jacobian deter-
minants. Finally, 8 mm smoothing kernel was applied to
account for inter-subject variability.

Diffusion imaging processing

The registration between a subject’s 3D T1-weighted image
and DWI data was undertaken as described by Mulhert et al.
[34]. The 7 non-diffusion-weighted b =0 volumes were
averaged to create a mean b =0 image, which was subse-
quently used to register each of the 61 diffusion-weighted
images to. To accurately propagate the GM tissue segmenta-
tion from T1 to DW space and account for possible distor-
tions, the 3D T1-weighted image was affine registered to
the pseudo-T1 image and the T2-weighted image was first
linearly and then nonlinearly registered to the DWI mean
b=0 scan. All transformations were concatenated in order
to transform the data from native space to DWI space. All
registrations were done using the NiftyReg software package
(http://niftireg.sf.net).

Processing of the HARDI images was performed as pre-
viously described by Charalambous et al. [35]. The images
underwent the standard FSL processing pipeline including
correction for EDDY current distortion, head motion (FSL
v.5.0.9) and echo-planar imaging (EPI) distortions (Brain-
Suite V.15b). We performed probabilistic tractography in
MRtrix3 (V.0.2.14 package), using second-order integration
over Fiber Orientation Distributions (iIFOD2) which was
estimated with constrained spherical deconvolution (CSD).
Probabilistic anatomically constrained tractography (ACT)
was performed using the 121 GM regions of interest (ROIs)
from the DKT atlas, generating 10 million streamlines to
construct a tractogram for each subject. Spherical-decon-
volution Informed Filtering of Tractograms 2 (SIFT2) was
additionally applied to improve fiber accuracy [36]. Frac-
tional anisotropy (FA) maps were generated with dwiten-
sor. White matter connectomes, representing the number of
streamlines and mean FA across tracts in the whole brain,
were extracted as 121 X 121 matrices based on the GM ROIs
from the DKT Atlas.

For ICA input, the number of streamlines and mean FA
connectomes for each subject were combined in Matlab

to derive a single connectome representing the mean FA
weighted by the number of streamlines. WM connectomes
were transformed into adjacency matrices for ICA input.

Independent component analysis

For single tissue as well as joint (GM + WM) ICA, the
Fusion ICA Toolbox (FIT: http://trendscenter.org/software/
fit) was used. For single-tissue ICA components, parallel-
ICA was performed within FIT and the resulting 20 compo-
nents for each tissue type were examined. For multimodal
tissue ICA, the joint-ICA algorithm was utilized with the
fast-ICA algorithm to extract 20 components [37-39]. To
investigate the stability and statistical reliability of compo-
nents derived from ICA, ICASSO was performed 20 times
[40]. ICASSO is a clustering method, repeating iterations of
the ICA several times using random initializations, showing
the similarities between iterations of the same independent
components. Finally, the iteration closest to the average is
used for the outcome, ensuring the generalizability of the
method [38].

Next, to determine which brain regions were represented
by each component, intensity loadings on GM maps were
z-scored and thresholded in Matlab. The image intensities
exhibited a range from -10 to 10 and the z-threshold of IzI> 5
was applied to obtain the highest 50% of loadings, resulting
in GM component maps. The GM component maps were
then overlayed with the DKT atlas, and regions with a mini-
mum overlap of 5% were determined as a significantly con-
tributing ROI of the component.

The WM component vectors were similarly z-scored. The
vectors were then transformed back into a matrix connec-
tome, overlayed with the DKT atlas and visually inspected.
Due to the high dimensionality of data, a conventional 99%
confidence interval threshold was applied to the FA and
streamline values. This approach ensured that input data did
not contain extreme outliers that could be highly influen-
tial in the correlation analyses, while preserving a dynamic
range in exploratory analyses. The resulting values were then
included as WM connections involved in the component.

Statistical analysis

All statistical analysis was performed using Rstudio V.2.6.1.
The normality of variables was assessed using Shap-
iro—Wilks tests and by inspection of histograms. Differences
between groups in age and sex were evaluated using ANOVA
and Chi-square test, respectively. Non-normally distributed
variable disease duration and ordinal variable EDSS were
compared using Kruskal-Wallis tests and Wilcoxon rank-
sum tests post-hoc. Differences in DMT use between groups
were evaluated by Chi-square tests and post-hoc Bonferroni
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correction. Cognitive test scores (uncorrected for age or edu-
cation, as this study did not seek to determine if cognition
was abnormal) were converted into z-scores based on the
cohort values, such that negative z-scores represented lower
scores relative to the mean performance in the cohort. By
converting raw cognitive scores to z-scores, regression coef-
ficients should be more directly comparable across domains.
The z-scores were averaged across all tests relating to each
cognitive domain, yielding a single score per domain per
patient for further analysis. As an exploratory analysis, cog-
nitive domain scores and component loadings between clini-
cal phenotypes (RRMS, PPMS and SPMS) were evaluated
using ANCOVA with age and sex as covariates and Tukey
HSD post-hoc test when appropriate. Subject component
loadings for WM, GM and joint-ICA were transformed into
z-scores. Spearman’s correlation coefficients were calcu-
lated across subject component loadings and CGM volume,
DGM volume, mean FA and number of streamlines across
the whole brain, to investigate component relationships with
tissue values and establish whether components represented
patterns of GM volume or WM microstructural integrity
loss. These whole-brain tissue values were used to determine
the direction of component associations, as using just the
ROIs within each component would have likely resulted in
smaller correlations. However, in each component, volumes
of individual GM ROIs and the number of streamlines and
FA in individual WM connections were also correlated to
the loading factors, to determine the directionality of indi-
vidual corresponding component regions.

Partial correlation was performed between cognitive
scores and component loadings, with age and sex as covari-
ates, to determine the univariate association of the joint-ICA
components with cognitive domains. Pearson’s partial corre-
lation coefficient was calculated for all cognitive domains. A
data-driven stepwise linear regression model was calculated
for joint-ICA components, with age and sex as covariates,
to evaluate which joint-ICA components would best explain
each cognitive domain. Finally, to determine whether joint-
ICA components increased the variance explained com-
pared to single-tissue ICA, a stepwise linear regression for
the single-tissue ICAs was performed. The joint-ICA and
single-tissue ICA models were compared using a likelihood
ratio test. A p<0.05 was considered statistically significant.
Statistical results were corrected for multiple comparisons
with false discovery rate (FDR) unless mentioned otherwise.

@ Springer

Results

People with SPMS have worse clinical and IPS scores
compared to people with RRMS

Exploratory analysis was performed on demographic, clini-
cal and cognitive characteristics for the RRMS (n=153),
SPMS (n=22) and PPMS (n=14) groups (Table 1). Sex
did not significantly differ between groups. A one-way
ANOVA showed group differences for age (F(2,86)=15.03,
p <0.001), with post-hoc tests revealing that people with
SPMS and PPMS were older compared to RRMS (p <0.001
and p <0.01, respectively). Kruskal-Wallis tests revealed
disease duration (H(2)=26.08, p<0.001) and EDSS
(H(2)=9.59, p<0.001) significantly differed between
groups, with the SPMS group having longer disease dura-
tion and higher EDSS compared to RRMS (p <0.001 and
p <0.001, respectively) and PPMS (p <0.001 and p <0.05,
respectively). People with PPMS also had higher EDSS
scores compared to people with RRMS (p <0.01).

For measures of cognition, ANCOVA tests, adjust-
ing for age and sex, revealed a significant main effect of
group for IPS (F(2,84)=6.66, p<0.01) and visual memory
(F(2,84)=4.16, p <0.05) with post-hoc tests revealing that
this was driven by significantly lower scores in individuals
with SPMS compared to those with RRMS (p <0.01 and
p <0.05, respectively). There were no significant differences
between scores in other cognitive domains between groups.

Joint-ICA components reflect biological networks
and uncover patterns of GM and WM features
that are not necessarily apparent in either tissue
alone

Twenty ICA components were derived from the joint-ICA.
Figures 2 and 3 illustrate the pattern of GM and WM con-
tribution to joint-ICA components associated with cogni-
tive data, respectively. For a full illustration of all com-
ponents, please refer to Supplementary Figs. 1 and 2. A
further detailed description of the components is provided
in Table 2. For components 1, 3, 4, 5, 8, 11, 15, and 20, pat-
terns of GM and WM showed alignment, such that the GM
regions associated with each component were complimented
by the presence of WM streamlines that connected with
these regions, although usually the WM element included
more regions. For example, component 3 showed a cingu-
late—frontal pattern, including the frontal medial cortex, pos-
terior and middle cingulate, gyrus rectus, fusiform gyrus,
middle occipital gyrus, lingual gyrus and inferior temporal
gyrus, and WM contributions including tracts that connect
between them. In contrast, components 2, 6, 7, 9, 10, 12,
13, 14,16, 17, 18 and 19 reflected combinations of patterns
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Fig.2 Grey matter elements of the joint-ICA components. Compo-
nents that associated with cognitive domains in either univariate or
multivariate analysis are displayed here. Component 2 is a parietal—
cerebellar component, involving mainly cerebellar lobules VIII-X,
posterior cingulate, precuneus and parietal operculum. A cingulate—
frontal pattern is displayed by component 3, encompassing mainly the
posterior and middle cingulate, medial frontal cortex and gyrus rec-
tus. Component 5 is a posterior parietal-occipital pattern, spanning
mainly the including posterior cingulate, angular gyrus, precuneus,
lingual gyrus and amygdala. Component 6 resembles the default-
mode network (precuneus, posterior cingulate and orbital gyrus) and
salience network (anterior insula and anterior cingulate). A deep grey
matter pattern is shown by component 8, encompassing mainly the
thalamus, amygdala, putamen and caudate nucleus. Component 9 is
a left temporal—cerebellar pattern, representing the cerebellar exte-

of GM and WM that did not spatially align, such that WM
tracts involved in the component did not connect to most of
the GM regions also associated in these components. For
example, the GM regions of component 6 resembled the
default-mode network (DMN) (precuneus, posterior cingu-
late, angular gyrus, inferior medial frontal) and salience net-
work (SN) (anterior cingulate, insula). However, the high-
est loading WM tracts specifically connected several DGM
regions (nucleus accumbens, caudate nucleus and amygdala)
and cerebellar exterior with frontal regions (precentral gyrus
and superior frontal gyrus). A detailed description of the
other components is provided in Table 2.

rior and the left entorhinal area, hippocampus and para-hippocampal
gyrus. Component 10 is a visual-like network, involving the calcar-
ine cortex, occipital fusiform gyrus and thalamus. A cerebellar—infe-
rior occipital pattern was shown by component 14, encompassing
the cerebellum, occipital fusiform gyrus and inferior occipital gyrus.
Component 17 is a cerebellar—temporal—cingulate pattern, involving
mainly the cerebellum, transverse temporal gyrus and posterior cin-
gulate. Component 18 is an opercular—occipital component (frontal
operculum, opercular part of the inferior frontal gyrus, cuneus and
calcarine cortex). Occipital-frontal component 19 involves mainly
the occipital pole, calcarine cortex and subcallosal area. Component
20 is a cerebellar—temporal—occipital pattern, encompassing the cer-
ebellum, lingual gyrus and middle temporal gyrus. /CA independent
component analysis

Joint-ICA components were visually compared to single-
tissue GM and WM components. In GM, 11 of the 20 joint-
ICA components were similar to single-tissue GM (2, 3, 6,
7,8,10, 11, 13, 14, 16 and 17), although the components
usually encompassed more GM regions. For WM, joint-ICA
components (6, 7, 8, 10, 14, 16, 17 and 18) showed similar
patterns to single-tissue WM components. Comparable to
the GM part, the WM part of joint-ICA components gener-
ally showed a more widespread distribution of high-loading
regions, compared to single-tissue WM ICA. In combina-
tion, six joint-ICA components overlapped with both single-
tissue GM and WM components (6, 7, 8, 10, 16 and 17).
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Exploring the differences in components between MS
phenotypes using ANCOVA tests adjusted for age and sex, a
significant difference in loadings was found for components
4 (F(2,84)=4.73, p<0.05) and 20 (F(2,84)=5.68, p<0.01).
A strong trend in difference between phenotypes was
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observed for component 6, but did not reach statistical sig-
nificance (F(2,84)=2.98, p=0.05) (Supplemental Table S3).
Post-hoc tests revealed that people with SPMS had signifi-
cant higher loadings on component 4 compared to PPMS
(p<0.05) and showed a trend in higher loadings compared
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«Fig.3 WM elements of the joint-ICA components. Components that
associated with cognitive domains in either univariate or multivari-
ate analysis are displayed here. WM connectomes are shown with the
node-to-node connections within the 99% confidence interval labeled.
Component 2 involves predominantly connections between the limbic
and DGM regions to frontal and parietal structures. For component
3 WM connections between amygdala, NAcc, CN and CerExt and
precuneus and frontal regions showed highest loadings. The highest
loadings of component 5 were on connections between amygdala,
NAcc, CN and CerExt to frontal regions, thalamus and precuneus.
Component 6 shows the highest loading WM connections connecting
several DGM and cerebellar structures with specifically the precen-
tral and superior frontal gyrus. WM connections of component 8 with
high loadings came from the amygdala, striatum and cerebellum to
temporal regions, parietal and occipital regions. Component 9 shows
the strongest connections between the amygdala, NAcc, CN and Cer-
Ext, precuneus, frontal and temporal regions. A WM pattern between
the DGM structures, cerebellum, temporal regions, SFG and lingual
gyrus was shown by component 10. Component 14 showed high-
loading connections between amygdala, NAcc, CN and cerebellum,
lingual gyrus, parietal and temporal regions. Component 17 showed a
pattern of connections present between the amygdala, NAcc, CN and
cerebellum, temporal lobe structures, lingual and occipital fusiform
gyrus. Component 18 involved mainly connections between several
DGM structures, the cerebellum and frontal regions and the sup-
plementary motor cortex. The WM pattern of component 19 shows
connections between DGM, cerebellum, frontal and parietal regions.
Component 20 involves the highest connections between the amyg-
dala, NAcc, CN and CerExt, precuneus, lingual gyrus and temporal
regions. AC anterior cingulate, Al anterior insula, Amy Amygdala,
aOrbG anterior orbital gyrus, BF basal forebrain, CC calcarine cor-
tex, CerExt cerebellum exterior, CerLob cerebellar lobules, CN
caudate nucleus, COp central operculum, Cun cuneus, FOp frontal
operculum, FusG fusiform gyrus, Hippo hippocampus, GR gyrus
rectus, /CA independent component analysis, /OG inferior occipital
gyrus, ITG inferior temporal gyrus, LG lingual gyrus, MC middle
cingulate, MFG middle frontal gyrus, mOrbG medial orbital gyrus,
msSFG medial segment of the superior frontal gyrus, MTG middle
temporal gyrus, NAcc nucleus accumbens, oFusG occipital fusiform
gyrus, OP occipital pole, opIFG opercular part of the inferior fron-
tal gyrus, OrbG orbital gyrus, Pall pallidum, PCG precentral gyrus,
PoCG postcentral gyrus, POp parietal operculum, PrCun precuneus,
Put putamen, SCA subcallocal area, SFG superior frontal gyrus, SMC
supplementary motor cortex, SOG superior occipital gyrus, SPG
superior parietal gyrus, STG superior temporal gyrus, SupG supra-
marginal gyrus, Thal thalamus, TP temporal pole, tpIFG triangular
part of the inferior frontal gyrus, 7TG transverse temporal gyrus, WM
white matter

to RRMS (p=0.05). People with PPMS had higher load-
ings on component 20 compared to RRMS (p <0.01) and
SPMS (p <0.05). Exploring the strong trend in component
6, post-hoc tests showed that people with SPMS had gener-
ally higher loadings on component 6 compared to people
with RRMS, but this did not reach statistical significance
(p=0.05).

Joint-ICA components show significant associations
with GM volume but, after allowing for FDR,
not with WM measures

Of the 20 components, 12 showed significant associations
with either GM volumes or WM structural integrity. For
simplicity, only statistically significant results are presented
in color in Table 3. For all correlations, see Supplementary
Table S4.

Higher loadings on components 7 (r=0.36, p <0.01;
r=0.25, p<0.05), 8 (r=0.74, p<0.001; r=0.68, p <0.001),
11 (r=0.57, p<0.01; r=0.46, p<0.001), 17 (r=0.60,
p<0.001; »r=0.25, p<0.05) were associated with both
higher CGM and DGM volumes, respectively. Components
3(r=0.35,p<0.01),4 (r=0.27, p<0.05) and 16 (r=0.32,
p <0.05) correlated only with higher DGM volumes. Com-
ponents 2 (r=0.29, p<0.05), 6 (r=0.49, p<0.001), 9
(r=0.54, p<0.001) and 18 (r=0.70, p <0.001) only showed
association with higher CGM volumes, their regions being
predominantly CGM distributed.

Associations between FA values and component loadings
were found for components 3 (r=0.23, p <0.05),9 (r=0.22,
p<0.05) and 12 (r=0.29, p<0.01), and between the num-
ber of streamlines and subject loadings for components 3
(r=0.26, p<0.05) and 7 (r=0.21, p <0.05. However, these
findings did not remain significant after FDR correction.

Which GM ROIs and WM connections in each compo-
nent were individually associated with tissue values is shown
in Table 2.

Joint-ICA components show significant associations
with cognitive measures

Univariate analyses of joint-ICA components, after allowing
for age and sex differences, are shown in Tables 3 and S3.
Component 6 significantly correlated with verbal memory
(r=- 0.33, p<0.05) after FDR correction, while com-
ponents 5 and 9 showed trends in association with visual
memory (r=— 0.31, p=0.05) and EF (r=-0.31, p=0.06),
respectively.

Stepwise linear regression assessing multivariate asso-
ciations of both single-tissue ICA and joint-ICA with each
cognitive domain, with age and sex as covariates, are shown
in Table 4. Stepwise linear regression from both single-
tissue and joint-tissue ICA were compared, showing that
for some, but not all cognitive domains, joint-ICA better
explained outcomes than either GM or WM single-tissue
ICA (Table 4). Visual memory (Adjusted R? (Adj.R%)=0.30)
and EF (Adj.R?>=0.35) were best explained by joint-ICA
compared to GM ICA (p <0.05, p <0.01, respectively) and
WM ICA (p <0.001, p<0.01, respectively). Verbal mem-
ory showed the highest variance explained using joint-ICA
(adjusted R2 (Adj.R2)=0.24), but differences with GM
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Table 2 List of clinically relevant joint-ICA components with their corresponding GM ROIs and top 0.1% WM connections

GM ROIs

‘WM connections

Comp?2

Comp3

Comp5

Comp6

Comp8

Comp9

Precuneust, posterior cingulate?, cerebellar exteriort, cerebellar lobules VIII-X1,
transverse temporal, postcentral gyrus medial segment|, medial frontal cortex?,
parietal operculum|, planum temporalet, and anterior cingulate?

Frontal medial cortex |, posterior? and middle cingulate?, putamen|, pallidum?, thala-
mus?, middle temporal gyrus|, occipital fusiform gyrus|, gyrus rectust, fusiform
gyrust, middle occipital gyrus|, lingual gyrus| and inferior temporal gyrust

Posterior cingulate|, angular gyrust, precuneus |, hippocampus |, amygdala |, parietal
superior gyrus|, lingual gyrus|, fusiform gyrus?, cerebellar exterior|, anterior
cingulate |, medial orbital gyrus|, superior temporal gyrus |, parahippocampal
gyrus|, subcallosal area|, calcarine cortex |, middle| and superior occipital gyrus],

posterior orbital gyrus |

Caudate nucleus |, precuneus |, posterior cingulate|, anterior insula|, anterior cingu-
late|, posterior|, medial | and lateral| orbital gyrus, frontal operculum|, inferior
frontal orbital gyrus?, hippocampus| and middle occipital gyrus|

Thalamus |, caudate nucleus|, putamen |, amygdala|, nucleus accumbens |, hippocam-
pus|, anterior insula], cerebellum lobules VIII-X |, frontal operculum/|, triangular
part inferior frontal gyrus|, anterior| and posterior cingulate| and pallidum

Left entorhinal area|, left parahippocampal gyrus|, amygdala|, hippocampus|,
middle temporal gyrus|, precentral gyrus medial segment], cerebellum exterior |,
caudate nucleus |, temporal pole| and fusiform gyrus|

Left nucleus accumbens
Right amygdala

Left amygdala

Right caudate nucleus
Left caudate nucleus
Right cerebellar exterior
Left cerebellar exterior
Left cerebellar exterior
Left amygdala

Left amygdala

Left caudate

Left caudate

Right cerebellar exterior
Right cerebellar exterior
Left cerebellar exterior
Left cerebellar exterior
Right nucleus accumbens
Right nucleus accumbens
Right nucleus accumbens
Left caudate nucleus
Right cerebellar exterior
Right cerebellar exterior
Left cerebellar exterior
Left cerebellar exterior
Right nucleus accumbens
Left nucleus accumbens
Right amygdala

Right amygdala

Left amygdala

Left amygdala

Right cerebellar exterior
Left cerebellar exterior
Right amygdala

Right amygdala

Right amygdala

Right amygdala

Right amygdala

Left amygdala

Right caudate nucleus
Right anterior insula
Right nucleus accumbens
Right nucleus accumbens
Right nucleus accumbens
Right nucleus accumbens
Left nucleus accumbens
Right amygdala

Right amygdala

Left amygdala

Right superior frontal gyrust
Right superior frontal gyrust
Right superior frontal gyrust
Right superior frontal gyrust
Right superior frontal gyrust
Right superior frontal gyrust
Left middle frontal gyrust
Right superior frontal gyrust
Right precentral gyrus|
Right superior frontal gyrus|
Right precentral gyrus|
Right superior frontal gyrus|
Right precentral gyrus|
Right superior frontal gyrus
Right precentral gyrus|
Right superior frontal gyrus|
Left precuneus?

Left precentral gyrus?

Right superior frontal gyrust
Left precentral gyrus?

Left precentral gyrus?

Right superior frontal gyrus
Left precentral gyrus?

Right superior frontal gyrus|
Right precentral gyrust
Right precentral gyrust
Right precentral gyrust
Right superior frontal gyrust
Right precentral gyrust
Right superior frontal gyrust
Right precentral gyrus?
Right precentral gyrust

Left cerebellar exterior|

Left cuneus|

Right inferior temporal gyrus]
Left lingual gyrus|

Left precuneus|

Left precuneus|

Left lingual gyrus|

Left lingual gyrus|

Left middle frontal gyrus|
Left precuneus|

Left precentral gyrus|

Left superior frontal gyrus|
Left superior frontal gyrus|
Left middle frontal gyrus|
Left superior frontal gyrus|

Left superior frontal gyrus|
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Table 2 (continued)

GM ROIs ‘WM connections
Compl0  Calcarine cortex |, occipital fusiform gyrus|, thalamus|, lingual gyrus|, cuneus, Right nucleus accumbens Right inferior temporal gyrust
precuneus |, inferior occipital gyrus|, cerebellar lobules I-V |, planum temporale |, . o
transverse| and superior temporal gyrus|, gyrus rectus| and posterior cingulate| Right amygdala Right inferior temporal gyrus?
Right amygdala Right middle temporal gyrust
Left amygdala Right inferior temporal gyrust
Left amygdala Right lingual gyrus|
Left caudate nucleus Right inferior temporal gyrust
Right cerebellar exterior Right inferior temporal gyrust
Left cerebellar exterior Right inferior temporal gyrust
Compl4  Occipital fusiform gyrus|, cerebellar vermal lobules I-V |and VIII-X|, posterior cin-  Left nucleus accumbens Left cerebellar exterior]
gulate|, inferior occipital gyrust, medial segment precentral gyrus |, lingual gyrust Right amygdala Right cerebellar exterior|
and cerebellar exterior| N . .
Left amygdala Right cerebellar exterior
Right caudate nucleus Right cerebellar exterior |
Right caudate nucleus Left cerebellar exterior]
Left caudate nucleus Right cerebellar exterior]
Left caudate nucleus Left cerebellar exterior]
Right cerebellar exterior Left cerebellar exterior]
Compl7  Cerebellar lobules I-V |, VIII-X|, VI-VII|, cerebellar exterior |, posterior cingu- Right nucleus accumbens Left lingual gyrus|
late ], temporal transverse gyrus|, postcentral gyrus|, middle cingulate|, orbital Right amygdala Right cerebellar exterior |
part inferior frontal gyrus|, central operculum|, supramarginal gyrus| and planum . .
temporale Right amygdala Left lingual gyrus|
Right caudate nucleus Right cerebellar exterior|
Left caudate nucleus Right cerebellar exterior
Left caudate nucleus Left lingual gyrus|
Right cerebellar exterior Left cerebellar exterior|
Right cerebellar exterior Left lingual gyrus|
Compl8  Cuneus], frontal operculum], opercular part inferior frontal gyrus|, gyrus rectus|, Left nucleus accumbens Right superior frontal gyrus|
precuneus|, fusiform gyrus|, left entorhinal area|, temporal pole |, superior occipi- Right amygdala Right superior frontal gyrus]
tal gyrus|, medial frontal cortex| and calcarine cortex | . .
Left amygdala Right superior frontal gyrus|
Left caudate nucleus Right precentral gyrus|
Left caudate nucleus Right superior frontal gyrus|
Right cerebellar exterior Right precentral gyrus|
Right cerebellar exterior Right superior frontal gyrus|
Left cerebellar exterior Right superior frontal gyrus |
Compl9  Calcarine cortex |, occipital pole|, inferior| and middle occipital gyrus|, lingual Right nucleus accumbens Left superior frontal gyrus|
gyrus?, subcallosal areaf, caudate nucleus?, inferior? and middle temporal gyrust, 1 g amygdala Left superior frontal gyrus|
cerebellar exterior?, medial orbital gyrus? and occipital fusiform gyrus| .
Right caudate nucleus Left precentral gyrus|
Right caudate nucleus Left superior frontal gyrus|
Right cerebellar exterior Left precentral gyrus|
Right cerebellar exterior Left superior frontal gyrus|
Left cerebellar exterior Left precentral gyrus|
Left cerebellar exterior Left superior frontal gyrus|
Comp20  Cerebellar lobules I-V1, VI-VIIf, VIII-X1, cerebellar exteriorf, lingual gyrus?, Left nucleus accumbens Right precentral gyrus|
inferior? and middle occipitalf, inferior? and middle temporal gyrus?, opercular Right amygdala Left precuneus |
part inferior frontal gyrust, anterior cingulatet and fusiform gyrust . .
Right amygdala Right precentral gyrus|
Left amygdala Right middle temporal gyrus|
Left amygdala Right precentral gyrus|

Left caudate nucleus
Right cerebellar exterior

Left cerebellar exterior

Right precentral gyrus|
Right precentral gyrus|
Right precentral gyrus|

Components that associated with cognitive domains in either univariate or multivariate analysis are displayed here. Parcellation masks were over-
layed with the GM part of components, and the connectomes were labelled to identify the regions and connections in each component. Volumes
of GM regions and the number of streamlines and FA for WM connections were correlated with component loadings to identify the directionality
of the tissue values of regions (1 positive correlation or | negative correlation). GM regions are described bilaterally unless mentioned otherwise.
Comp component, FA fractional anisotropy, GM grey matter, ICA independent component analysis, RO! region of interest, WM white matter
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Table 3 Correlation between joint-ICA component loadings, tissue volumes and cognitive domains

GM WM Cognitive domains
CGM DGM FA Streamlines IPS Vermem = Vismem EF Workmem
Comp1 0.05 0.07 0.03 -0.07 -0.06 0.09 -0.00 0.08 0.10
Comp2 0.29* 0.1 0.10 0.17 0.09 -0.07 0.16 0.05 0.04
Comp3 0.06 0.35* 0.23# 0.26# 0.17 -0.07 0.02 0.04 0.1
Comp4 0.20 0.27* 0.08 0.07 0.15 0.08 0.00 0.06 0.04
Comp5 0.02 0.09 0.02 -0.18 0.23# 0.15 0.31# 0.09 -0.02
Comp6 0.49** 0.21# 0.12 0.04 0.26% 0.33* 0.26% 0.23# 0.22%
Comp7 0.36** 0.25* 0.01 0.21# 0.18 0.09 0.13 0.04 0.04
Comp8 0.74** 0.68*** 0.15 0.02 0.20 0.12 0.09 0.04 0.15
Comp9 0.45*** 0.25% 0.22# 0.09 0.19 0.22# 0.05 0.31# 0.22#
Comp10 0.20 0.09 0.00 0.04 -0.02 0.03 0.1 0.19 0.07
Comp11 0.57*** 0.46*** 0.04 -0.09 0.24*# 0.01 0.07 0.22# 0.05
Comp12 -0.04 0.02 0.28# -0.04 0.20 0.04 0.16 0.12 -0.08
Comp13 -0.08 0.15 -0.06 0.06 0.02 0.12 0.09 0.05 0.15
Comp14 0.02 0.07 0.00 0.12 0.16 0.19 0.16 0.18 0.25%
Comp15 0.14 0.04 0.18 0.20 0.12 0.08 0.10 -0.07 0.1
Comp16 0.07 0.32* 0.01 0.20 0.22# -0.01 -0.02 0.1 0.13
Comp17 0.60*** 0.25* 0.18 0.07 0.26* 0.15 0.17 0.10 0.16
Comp18 0.70** 0.16 0.1 0.10 0.10 0.06 0.10 0.09 0.04
Comp19 0.12 0.17 0.04 0.03 0.22# 0.13 0.13 0.08 0.04
Comp20 0.00 0.01 0.17 0.09 0.1 0.10 0.05 0.20 -0.06

To determine the association between joint-ICA components and GM and WM tissue values (CGM volume, DGM volume, mean FA and num-
ber of streamlines across the whole brain) Spearman’s correlation coefficients were calculated. For the association between joint-ICA compo-
nents and the cognitive domains, a partial correlation was performed with age and sex as covariates. Orange and red indicate significant nega-
tive correlations before and after FDR correction, respectively. #p<0.05 before FDR-correction, ##p<0.01 before FDR-correction, *p <0.05,
*#p <0.01, ***p <0.001 after FDR correction. CGM cortical grey matter, Comp component, DGM deep grey matter, EF executive function, FA
fractional anisotropy, GM grey matter, /CA independent component analysis, /PS information processing speed, vermem—verbal memory, vis-
mem—visual memory, workmem—working memory, WM white matter

Table 4 Stepwise linear regression models of joint-ICA and single-tissue ICA components as predictors of cognitive performance

| s | Vermem | Vismem | __EF | Workmem _

GM (Adj. Rz) 0.32%** 0.18*** 0.25*** 0.25** 0.06*

: s
WM (Adj. R?) 0.28*** 0.21*** 0.15** =* |« 0.24*** * 0.23* J* *
% s [ ]
Joint(Adj. R?) 0.31*** 0.24*** 0.30** J* 0.35%* J*. 0.12* _I*
Predictor + Age - 0.02* Sex 0.59**  Comp2 =53¢ Comp6 -1.41** Comp6 -1.75*
B coefficient Comp3  -2.05* Comp6 -2.28*** Comp5 -1.78* Comp8 =LA Comp14  -2.70**
Comp5 -1.78* Comp18 -1.78"* Comp6 -1.83** Comp9 =152%%
Comp14 -2.10* Comp14  -1.97* Comp10 - 1.73**
Comp19 - 1.89** Comp17 - 1.85* Comp20 -1.12*

Comp18 -1.57*

Stepwise linear regression models were performed to determine the variance explained by joint-ICA and single-tissue ICA components for each
cognitive domain. The significant contributing components for the joint-ICA model are shown as predictors. The performance of joint-ICA and
single-tissue ICA models against each other was compared using a likelihood ratio test (significant differences between models are highlighted
by the red brackets). p<0.05%, p<0.01**, p<0.001*** AdjR>—adjusted R?, Comp—component, EF executive function, GM grey matter,
ICA independent component analysis, /PS information processing speed, vermem—verbal memory, vismem—visual memory, WM white matter,
workmem—working memory

and WM ICA were not significant. For working memory,  explained using the single-ICA GM model (Adj.R?>=0.32),
WM ICA (Adj.R*=0.23) explained the most variance and  although this difference was not significant when compared
was significantly higher compared to joint-ICA (p<0.01)  to joint- and WM ICA.

and GM ICA (p <0.01). For IPS the highest variance was
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Discussion

In this study, we investigated whether combining measures
of GM and WM using a joint-ICA approach would extract
novel patterns when compared with single-tissue ICA, and
better explain cognitive function in MS. We found that joint-
ICA identified networks of GM and WM features beyond
those captured by single-tissue ICA, and outperformed
single-tissue ICA in explaining cognition in two of the five
domains assessed (for IPS and verbal memory no model
significantly outperformed one another, while for working
memory single-tissue WM ICA did). These findings show
that features of GM and WM both contribute to explain-
ing cognitive function, but show that their combined effect
can be greater than either alone, depending on the cognitive
domain.

A key aim of this study was to determine whether cova-
rying patterns of GM and WM changes in MS could be
derived using joint-ICA and whether these reflected known
functional brain networks. Of the components derived using
joint-ICA, several appeared to correspond with functional
networks such as the DMN and SN (component 6), a cortico-
basal ganglia network (component 8), cerebellar networks
(components 11 and 20) and visual network (component
19). This supports previous findings that show that GM and
WM pathologies can be interrelated [9], and so suggest-
ing mediation through neural networks. However, not all
joint or single-tissue ICA patterns did so, and it should be
noted that the direct propagation of changes through neural
networks is not the only explanation for co-varying features
[41]. In particular, for ICA patterns confined to or heavily
weighted towards GM or WM other processes may be more
relevant, such as regionally targeted pathology, differential
regional vulnerability to a pathological process [41], or pos-
sible sequential regional pathology [42].

Previous studies using joint-ICA to assess structural MRI
and DWI in dementia, obsessive—compulsive disorder and
bipolar disorder have used TBSS, limiting the search for
covarying patterns to large WM tracts such as the inferior
and superior longitudinal fasciculus and corticospinal tracts,
which will be associated with equivalently large GM regions
[19-21]. In the present work, the joint-ICA was given free
rein to include any GM or WM regions, and the top node-to-
node connections within the 99% confidence interval were
used as strongest contributing to the component. For some
components, the WM tracts did not show alignment with
the GM regions, i.e., the WM streamlines contributing to
a joint-ICA component were not directly connected with
the GM element of the component. Interestingly, some pat-
terns of WM connections were present in multiple joint-ICA
components, e.g., those between DGM structures, cerebellar
exterior and cortical regions like the precuneus, middle and

superior frontal gyrus, precentral gyrus and lingual gyrus.
This suggests that these patterns of WM changes are relevant
to multiple networks. Several of the cortical nodes associ-
ated with these connections, such as the precuneus, superior
frontal gyrus and lingual gyrus, are known hubs in the brain
[43]. Hub alterations are present from early in the disease
and can eventually become functionally overloaded. This
can affect multiple functional and structural networks [44],
which is possibly why connections between them feature in
several joint-ICA components.

Turning to associations between ICA patterns and cogni-
tive outcomes, we found that for three domains joint-ICA
increased the variance explained in a stepwise linear regres-
sion model compared to single-tissue ICA (visual memory,
EF and verbal memory, although for the latter the difference
was not significant). We anticipated that joint-ICA compo-
nents would be more sensitive to patterns of change com-
pared to single-tissue ICA, and that, as these patterns span
both GM and WM, which are both integral in supporting
network function and cognition [14, 16], they would be bet-
ter able to explain cognitive function. However, our hypoth-
esis was not confirmed with working memory, whereby
single-tissue ICA of WM was significantly better able to
explain outcomes. Working memory consists of multiple
stages, and shows a distributed coalition of regions being
recruited across the brain; it is plausible that it is the stabil-
ity and efficiency of connections, rather than GM changes,
that has a dominant effect on impairments in MS and is most
relevant to this function [45, 46]. When considered together,
these findings suggest that for some cognitive functions,
changes in one tissue may be more relevant than in another,
and that in such instances, joint-ICA components simply
dilute findings in the most relevant tissue. It also highlights
that single-tissue and joint ICA are complimentary, rather
than joint-ICA simply being a more sensitive alternative to
single-tissue ICA. This may also help to explain the varied
results in previous research that has sought to capture het-
erogeneity in cognitive domains using either WM integrity
or GM volume alone [10, 14, 16].

In our analysis, we found that twelve components were
associated with cognitive function, either independently
or when combined with other components in multivariate
regression analyses. Of note, replicating previous ICA MRI
observations [14], not all components were linked with
cognitive function. This reminds us that neurological and
cognitive functions are served by specific neural networks,
and whilst these are themselves linked, when seeking to
explain clinical outcomes their contribution may diluted,
or entirely overlooked, in whole-brain measures. Of the
twelve components that did associate with cognition, the
majority demonstrated this with only one cognitive domain,
although several showed associations across multiple cogni-
tive domains. For example, component 5, which represents a
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posterior parietal—occipital pattern, was associated with both
IPS and visual memory. This component includes classical
network hubs such as the precuneus, lingual gyrus and supe-
rior parietal gyrus, and such network hubs are implicated
in several higher-order cognitive processes, and are funda-
mental in integrating neural systems in the brain [43]. Given
this, it is unsurprising that this component was associated
with multiple cognitive domains. Similarly, for component
14, which included cerebellar—inferior occipital regions, sig-
nificant associations to visual and working memory were
observed. Notably, this component included the posterior
cingulate cortex, a key network hub that is implicated in
both cognitive processes, and is likely influential to both
their functioning [47]. For verbal and visual memory, oper-
cular—occipital component 18 predicted the outcomes most
strongly. The association with verbal memory can be attrib-
uted to the inferior frontal pars opercularis, a region that is
fundamental in auditory and speech processing. The asso-
ciation with visual memory is exhibited by the involvement
of the frontal operculum, a region implicated in cognitive
control, and several parieto-occipital regions predominantly
linked to visuospatial functions [48]. The integration of both
the frontal operculum and parieto-occipital regions within
this component supports existing evidence that the frontal
operculum’s cognitive control function particularly applies
in task-dependent activity in posterior networks [48]. Of
note, component 6, which closely aligned to the DMN and
SN networks, was associated with scores on all cognitive
domains, either in univariate or multivariate analysis. This
association with all cognitive domains aligns with previ-
ous research demonstrating that the DMN is associated with
global information integration for conscious processing and
contributes to task performance [49]. A similar DMN com-
ponent relating to several cognitive scores in previous ICA
studies [14] further supports this.

When considering the components that are exclusively
related to one cognitive domain, the patterns of associated
GM and WM were biologically plausible. For example,
components involved in visual memory mainly represented
parietal, occipital, and cerebellar areas that are widely impli-
cated in visual memory or visuospatial function, including
the precuneus [50], lingual gyrus [51], superior parietal
gyrus [52] and occipital fusiform gyrus [53]. Interest-
ingly, the posterior cerebellum, especially lobules VIII-X,
was frequently represented in components associated with
visual memory. Cerebellar atrophy can present early on
in MS [54], and GM changes in the posterior cerebellum
specifically affect cognitive symptoms [55], including visu-
ospatial functions [56, 57], possibly reflecting this in our
components. Finally, higher scores on the EF domain tests
were associated with components that showed high node-to-
node WM connections between the DGM/cerebellum and
the frontal lobe (especially the middle and superior frontal
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gyrus), aligning with previous findings that EF performance
is frequently associated with frontal lobe function [58, 59].
Component 9, exhibiting both univariate and multivariate
association to EF, further supported this by showing high
loadings on GM regions in frontotemporal regions, as well
on the connecting WM tracts between these regions and the
middle and superior frontal gyrus.

To the best of our knowledge, this study marks the first
instance where joint-ICA has been performed in an MS
cohort. We show that for some cognitive outcomes, joint-
ICA components are more closely associated with cognitive
measures than single-tissue ICA components, highlighting
the potential value of this multimodal fusion approach in
studying MS in relation to cognition. However, it should be
kept in mind that the overall adjusted R? were not consist-
ently higher for models with joint-ICA components. Hence,
the present results tell us about patterns of tissue features
being relevant to outcomes, not that features involving GM
and WM are generally more clinically significant. Further-
more, even using such complicated methods, only about a
third of clinical variance was accounted for by either sin-
gle-tissue or joint-ICA measures. It was beyond the scope
of the present study to try to optimize the ICA to explain
variability in clinical outcomes, or assess their independent
contributions to clinical outcomes alongside conventional
MRI measures (such as whole-brain atrophy or WM lesion
loads). Future research could investigate whether the inclu-
sion of additional MRI measures of tissue-specific pathology
significantly improves outcomes, while further exploring
the added value of a joint-ICA approach in explaining both
pathological mechanisms and their assessment in clinical
studies. The diversity of the cohort of people with MS span-
ning all clinical phenotypes, with a wide spread of clinical
outcomes, was a key strength. However, a limitation was the
lack of healthy controls, which prevented us from determin-
ing if there was CI, or if associations between ICA com-
ponents and clinical outcomes were disease-related rather
than normal variations between individuals. Future studies
including healthy controls are needed to resolve these ques-
tions. In addition, the size of the progressive MS subgroups
was relatively small (which, as would be expected from
the natural history, also differed in terms of age, disease
duration, EDSS and cognitive measures). Given this, the
between-group comparisons, although clinically plausible,
should be interpreted with caution. A larger and even more
diverse cohort, including more people with progressive MS
and controls, may be able to identify additional clinically
relevant shared patterns of pathology. Furthermore, there
were insufficient people in the cohort for cross-validation
to test component stability, however, single-tissue GM ICA
findings did replicate previous work, suggesting that the
cohort was sufficiently large to yield reliable results. It is
also reassuring to note that from the joint-ICA components,
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we found eight GM patterns that overlapped with stable GM
components reported by earlier work [14] in a substantially
larger cohort.

In conclusion, GM atrophy and WM structural integrity
are both relevant to cognitive outcomes in MS, albeit to
differing degrees dependent on the specific function being
assessed. For visual memory and EF, it was the combina-
tion of GM and WM features that best explained outcomes,
while for working memory, WM patterns had a dominant
effect. This suggests that cognitive functions are not equally
vulnerable to the same tissue features and that when seek-
ing to explain clinical outcomes in MS, or other diseases
that affect both GM and WM, single-tissue ICA and joint-
ICA should both be used, as either in isolation would offer
a significant incomplete assessment. The present analysis
is based on cross-sectional data, however, in future work it
would be interesting to assess longitudinal changes using a
joint-ICA approach, to determine if GM and WM elements
change sequentially or in parallel, and whether one element
might predict subsequent functional changes while another
mirrors it. A further follow-up of the present cohort has just
been completed and will provide an opportunity to explore
longitudinal changes, albeit with the methodological chal-
lenges of running longitudinal ICA rather than sequential
cross-sectional analyses (for example accounting for changes
in MRI scanner hardware and sequences). This can poten-
tially offer valuable insights into the sequence of pathologi-
cal events in networks and their translations into clinical
outcomes.
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