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MovE YourR Bopy! LOW-FREQUENCY AMPLITUDE AND SYNCOPATION
INCREASE GROOVE PERCEPTION IN HOUSE MusIC
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STUDIES DEMONSTRATE THAT LOW FREQUENCIES
and syncopation can enhance groove—the pleasurable
urge to move to music. This study examined the simul-
taneous effect of low-frequency amplitude and synco-
pation on groove by manipulating basslines in house
music, a subgenre of electronic dance music (EDM).
One hundred and seventy-nine participants listened to
20 novel house music clips in which basslines were
manipulated across two levels of low-frequency ampli-
tude and syncopation. Music and dance-related experi-
ence, as well as genre preferences, were also assessed.
Groove perception was most pronounced for house
tracks combining high low-frequency amplitude (LFA)
and high syncopation, and least pronounced for tracks
with low LFA, irrespective of syncopation. Exploratory
correlation analysis revealed that groove perception is
influenced by listeners’ preferences for energetic and
rhythmic music styles, their urge to dance, and their
propensity to experience an emotional connection to
music. Our findings reveal that the urge to move when
listening to music is shaped by the interplay of rhythmic
complexity and sonic texture, and is influenced by
dance and music experiences and preferences.
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OVEMENT IS A NECESSARY COMPONENT OF

l \ / I creating and performing music (Clynes, 1986;
Clynes & Nettheim, 1982; Jensenius & Wan-

derley, 2010; Keller & Rieger, 2009; Palmer, 2013; Repp,
1993; Todd, 1995; Zatorre et al., 2007). Yet, merely lis-
tening to music can also evoke the pleasurable urge to
move (Farnell, 1999; Hodges, 2009; Levitin et al., 2018).
Across cultures, music and dance are strongly related

(Blacking, 1995; Kaeppler, 2000; Nettl, 2000; Savage
et al., 2015; Trehub et al., 2015). Music can elicit move-
ment before birth (Lopez-Teijon et al., 2015) and, with
sufficient exposure, can continue to do so throughout
infancy and adulthood (Hargreaves & Lamont, 2017;
Lamont, 2016; Parncutt, 2006, 2016; Trehub, 2016).

Moving to music involves the entrainment of neural
oscillations to musical rhythm (Calderone et al., 2014;
Chang et al., 2016; Fujioka et al., 2012; Trost et al., 2017;
Trost & Vuilleumier, 2013). In groups listening to music,
spontaneous movement takes many forms, including
head-nodding (Swarbrick et al., 2018) and finger or foot
tapping (Levitin et al., 2018; Zeiner-Henriksen, n.d.).
Sensorimotor synchronization to auditory rhythms
also occurs when people walk (Moumdjian et al,,
2018; Styns et al., 2007) and during collaborative per-
formance (Rasch, 2001) or exercise (Hallett & Lamont,
2017). Exercising to music can even increase stamina
(Barney et al., 2012; Bigliassi et al., 2017; Karageorghis
et al., 2012; Rendi et al., 2008)—particularly when the
movements are intentionally synchronized to the
music’s pulse (Bacon et al., 2012; Bood et al., 2013)
or when the music is familiar (Nakamura et al., 2010;
Silva et al., 2021).

Overall, the relationship between music and
movement is mediated by the synchronization of
auditory and motor processing in the brain (Heckner
et al,, 2021; Kornysheva et al., 2010; Li et al., 2023; Lima
et al., 2016; Nelson et al., 2013; Schneider & Mooney;,
2015). This interplay is foundational to the phenome-
non known as “groove,” where music induces a pleasur-
able sensation that compels a listener to not only move,
but also align their movements with the rhythm.

GROOVE

Groove (Janata et al., 2012; Madison, 2001; Senn et al.,
2020; Witek, 2009) and music rated as groovy can
engage reward networks (Matthews et al., 2020), evoke
spontaneous body movement (Janata et al., 2012;
Madison, 2001; Witek, 2009) and is modulated by
rhythmic complexity, including syncopation (Madison
& Sioros, 2014), harmonic complexity (Matthews et al.,
2019), and beat salience (Madison et al., 2011). How-
ever, the findings of Senn et al. (2018) did not support

Music Perception, VOLUME 42, I1SSUE 2, PP. 95-108, 1ssN 0730-7829, ELECTRONIC ISSN 1533-8312. © 2024 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ALL
RIGHTS RESERVED. PLEASE DIRECT ALL REQUESTS FOR PERMISSION TO PHOTOCOPY OR REPRODUCE ARTICLE CONTENT THROUGH THE UNIVERSITY OF CALIFORNIA PRESS’S
REPRINTS AND PERMISSIONS WEB PAGE, HTTPS://ONLINE.UCPRESS.EDU/JOURNALS/PAGES/REPRINTSPERMISSIONS. DOI: https://doi.org/10.1525/Mp.2024.42.2.95

Gz0z Areniga4 01 uo Jesn uopuo 8bs)j00 Ausseniun Aq Jpd 662 2y 20z dw/.50078/56/2/2/pd-aonie/dw/npe-ssaidon-auluo//:dny woy pspeojumoq


https://online.ucpress.edu/journals/pages/reprintspermissions
https://doi.org/10.1525/mp.2024.42.2.95

96  Sean-Lee Duncan & Guido Orgs

a simple link between groove and beat saliency. Instead,
the authors argue that this relationship is influenced by
individual differences and music genre. They also noted
that inconsistencies in existing groove research could
stem from varying methodologies, musical repertoires,
and participants’ cultural backgrounds. For example,
groove perception may be shaped by individual differ-
ences in dance experience (O’Connell et al., 2022).

Earlier studies claimed that microtiming deviations
enhance groove (Alén, 1995; Keil, 1995; Monson,
2009; Progler, 1995), whereas later research supported
the contrary (Butterfield, 2010; Davies et al., 2013;
Madison et al., 2011)—with only small micro-timing
effects seen in participants categorized as musical
experts (Kilchenmann & Senn, 2015). Additionally,
music loudness does not appear to predict groove (Lenc
et al., 2018; Stupacher et al.,, 2016). However, positive
associations have been observed between groove and:
1) RMS energy (Tomic & Janata, 2008), 2) RMS vari-
ability (Stupacher et al., 2014), 3) spectral flux (Alluri &
Toiviainen, 2010; Burger et al., 2012; Stupacher et al.,
2013), and 4) low-frequency energy (Burger et al.,
2013). Overall, studies have demonstrated that groove
is attributable to specific rhythmic and frequency-based
musical features, including syncopation and low-
frequency amplitude (LFA).

SYNCOPATION
Early literature defined syncopation as “a violation of
expectancy of rhythmical events over a perceived metre”
(Longuet-Higgins & Lee, 1984). Alternatively, syncopa-
tion has been defined as the “absence of notes at strong
metric locations and the presence of notes at weak met-
ric locations” (Sadie & Tyrrell, 2000).

Syncopation has been shown to exhibit an inverted
U-shape relationship with groove such that medium
syncopation levels elicit the highest perceived groove
scores. This relationship holds across different musical
stimuli, for example, when listening to piano melodies
(Sioros et al., 2014) or funk drum breaks (Witek et al.,
2014). Using a variety of drum patterns from differ-
ent musical styles, Senn et al. (2018) reported that
syncopation-induced groove also depends on musical
expertise, familiarity with the musical stimuli, and
genre preferences.

Syncopation can be quantified as rhythmic complexity,
(Gomez et al., 2007). Existing models of complexity
include LHL (Longuet-Higgins & Lee, 1984), Keith’s
measure of syncopation (KTH: Keith, 1991), Pressing’s
Cognitive Complexity model (PRS: Jeffrey Pressing,
1999), Metric Complexity (TMC: Toussaint, 2002),
Off-Beatness (TOB: Toussaint, 2005), Weighted

Note-to-Beat Distance (WNBD: Gomez et al., 2005),
SG (Sioros & Guedes, 2011), Syncopation Index (Witek
et al., 2014), the Revised Syncopation Index (Hoesl &
Senn, 2018), and Perceived Complexity (Senn et al.
2023). These models calculate complexity using algo-
rithms based on one or more of the following metrics:
1) predefined weighting of strong/weak metric beats,
2) metric position of notes/rests, 3) metric position of
neighbouring notes, 4) note length/velocity, and 5) per-
ceived syncopation.

Research into the contextual influence of syncopation
on groove suggests that its effects are modulated by
musical harmony (Matthews et al., 2019) and that phys-
iological and neural responses to groove are enhanced
by rhythms with moderate complexity (Matthews et al.,
2020). The predictive coding rhythmic incongruity
(PCRI) model suggests that rhythmic discrepancies
introduced by syncopation engage the brain’s predictive
mechanisms, evidenced by larger event-related poten-
tials (Vuust et al,, 2018). In line with previous studies,
Vuust et al. (2018) found that moderate levels of synco-
pation offer an optimal challenge to these predictions,
in turn enhancing positive affect.

In summary, current evidence supports the role of
syncopation as a predictor of groove. However, its
impact on groove may extend beyond simple rhythmic
variation to involve interactions within a broader musi-
cal and perceptual context (Matthews et al., 2019). The
present study focuses on the potential interaction
between syncopation and low-frequency amplitude.

LOW-FREQUENCY AMPLITUDE (LFA)

Low-frequency amplitude (LFA) has also been linked to
spontaneous movement. Stupacher et al. (2016) found
that music incorporating lower frequency instruments
resulted in higher reported groove, higher tapping
velocities, and increased time-keeping accuracy. LFA
has also been shown to enhance neural tracking of the
musical beat (Hove et al., 2014; Lenc et al., 2018).

Van Dyck et al. (2013) observed that body movement
increased as bass drum levels in dance music rose
slowly. Furthermore, bass drum events positively corre-
lated with the intensity and quantity of spontaneous
movement. Similarly, Burger et al. (2013) observed
a positive association between low-frequency flux and
head movement speed when participants danced to
popular music.

Low frequencies can be both heard and felt. Hove
et al. (2020) found that bass frequencies within the
5-130 Hz range, presented via vibrotactile stimulation,
led to increased body movement, forceful tapping, and
higher ratings of groove and enjoyment compared to
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a control condition in which listeners only received
auditory input. Similarly, Cameron et al. (2022) showed
that low-frequency sounds within the 8-37 Hz range in
a live concert setting, activated via very low frequency
(VLF) speakers, increase audience dance movements,
even when they cannot be perceived auditorily. These
findings underline the role of bass in music as a catalyst
for movement, leveraging both its audible and physical
sensations to foster an embodied connection to rhythm
and enhance musical engagement.

Interestingly, high bass levels have also been
associated with an increased sense of power, a greater
likelihood to take initiative, and heightened illusory
control (Hsu et al., 2015). Furthermore, such levels cor-
relate with elevated risk-taking behaviours and bol-
stered self-confidence (Brodsky et al., 2018), which
Lovatt (2018) identifies as a key element in acting upon
dance impulses.

These findings highlight the importance of a band’s
rhythm section—typically comprising low-frequency
producing instruments—to convey groove and entice
dancing (Hove et al., 2014; Sadie & Tyrrell, 2000). More-
over, a positive association between low-frequency
amplitude and groove may explain the steady increase
in popular music bass levels (Hove et al., 2019). Overall,
evidence supports the idea that increased low-frequency
amplitude enhances groove and movement-to-music
synchronization.

To study how LFA and syncopation influence groove
perception, we focus on house music, a subgenre of
electronic dance music where LFA and syncopation typ-
ically feature as prominent characteristics (Hawkins,
2003; Papenburg & Schulze, 2016).

ELECTRONIC DANCE MUSIC (EDM)

Electronic dance music (EDM)—a music style
encompassing several subgenres and typically created
using drum machines, synthesisers, samplers, oscilla-
tors, and filters (Snoman, 2012)—is a compelling genre
for studying groove perception. Electronic instruments
can create a broader range of frequencies, greater spec-
tral flux, and more dynamic sound shaping than
acoustic instruments (Dayal & Ferrigno, 2012). Fur-
thermore, electronic instruments can produce more
precise rhythmic timing—a factor shown to enhance
groove (Butterfield, 2010; Davies et al., 2013; Madison
et al., 2011).

Interestingly, the development of the breakdown,
buildup, and drop are notable musical features in EDM
that shape listeners’ expectations through a structured
journey of tension and release (Solberg, 2014). The
application of these sonic advancements and music
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devices in EDM has been shown to elicit energizing
and uplifting experiences marked by increased skin
conductance activity, bodily sensations of pleasure, and
body movement (Solberg & Dibben, 2019; Solberg &
Jensenius, 2017).

In a motion analysis groove study, Burger and
Toiviainen (2020) observed that EDM generated signif-
icantly more body movement in young people (mean
age 24 years, SD = 3.3) than jazz, funk, and Latin. When
comparing audio filters applied to EDM basslines,
Lustig and Tan (2020) found that participants rated
low-pass and non-filtered basslines significantly higher
(than high-pass and band-pass filters) for pleasure and
groove. Interestingly, when incorporating EDM music
clips covering a variety of subgenres, Wesolowski and
Hofmann (2016) found that increased bass did not
always correlate with increased groove. Specifically,
higher groove-related ratings were reported for items
featuring “non-isochronous” basslines compared to
“isochronous” basslines.

In summary, evidence suggests that music with
greater low-frequency amplitude and syncopation of
basslines can enhance listener groove perception, which
is defined as the urge to move. However, Wesolowski
and Hofmann (2016) suggest an interplay between
low frequencies and rhythm in EDM basslines, demon-
strating that mere bass presence, especially when
characterised by low rhythmic complexity, does not
necessarily enhance groove.

In this study, we examine how the combination of
LFA and syncopation influences groove perception by
using carefully designed music clips in the style of the
popular EDM genre house music (Ayres, 2014; Bidder,
1999). First, we predict groove perception will increase
with higher LFA and more syncopation. Second, high
LFA might heighten the perceptual salience of syncopa-
tion, thereby increasing its effect. Alternatively, synco-
pation and LFA might influence groove perception
independently. Finally, we predict that perceived groove
in house music will be influenced by individual differ-
ences, specifically by listeners’ preference for EDM
music styles (Lustig & Tan, 2020; Senn et al., 2018) and
their prior experience with dance (Rose et al., 2020) and
music (Miillensiefen et al., 2014a).

Method

PARTICIPANTS
Following approval from Goldsmiths University of
London’s ethics commiittee, we recruited participants via
social media. All participants were entered into a prize
draw for one of four £50 Amazon gift vouchers. In total,
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179 people participated in the study, including 76
women, 98 men, two non-binary individuals, and three
who did not disclose their gender. Ages ranged from
18 to 70 years (M = 34.1, SD = 12.3). Music (M = 3.35,
SD = 1.7) and dance training scores (M = 2.08,
SD = 1.45) were calculated from the Gold-MSI
(Miillensiefen et al., 2014b) and Gold-DSI (Rose et al.,
2020), respectively. Eight people reported minor hearing
problems but were not excluded from the study.

DESIGN

This study used a fully-factorial, randomized 2 x 2
within-subject design in preparation for a repeated
measures ANOVA. The two within-subject factors,
low-frequency amplitude (LFA) and syncopation, were
manipulated across two levels to create four experimen-
tal conditions: 1) high LFA + high syncopation, 2) high
LFA + low syncopation, 3) low LFA + high syncopation,
and 4) low LFA + low syncopation. Factor manipulations
were solely applied to the basslines of custom-designed
house music stimuli. The dependent variable—urge to
move—was reported by participants via a 5-point Likert
scale. Additionally, to explore the role of individual dif-
ferences, we computed correlations between groove
scores from the highest-rated experimental condition
with musical preference (STOMP: Rentfrow & Gosling,
2003), music sophistication (Gold-MSI: Miillensiefen
et al,, 2014b), and dance sophistication (Gold-DSI: Rose
et al., 2020).

POWER ANALYSIS
Power analysis was performed using G*Power Version
3.1.9.6. assuming statistical analysis using a 2 x 2 within-
subject ANOVA. Partial eta squared was estimated
at 11p2 = .01 based on results from one bass-related
(Stupacher et al., 2016) and one syncopation-related
(Witek et al., 2014) groove study. A small effect size was
calculated from Stupacher et al. (2016), who showed
that participants exposed to low-frequency stimuli
reported higher groove scores than those exposed to
high-frequency stimuli (d = 0.13). Cohen’s d was cal-
culated as d = X1 - X2 / SDpoo1ea (Cohen, 1992). Addi-
tionally, using an online effect size calculator (Uanhoro,
2017), a large effect size (111,2 = .24) was obtained from
Witek et al. (2014), who reported a significant main
effect of syncopation on groove, F(1.62, 79.15) =
15.73, p < .001. Thus, G* Power calculated a minimum
sample size of 137 (o = .05, power = .8).

MATERIALS
Twenty short house-style music clips were created
in Logic Pro X. A Roland TR-8S drum machine

(preset TR-909) was used to produce an authentic,
house-style drum sound (Felton, 2016; Snoman,
2012). Furthermore, consistent with house music, clips
featured constant quarter-note bass drum events, a 4/4
time signature at 126 bpm—within an optimal range for
groove perception (Etani et al., 2018), and were quan-
tized to a 16th note grid (Felton, 2016; Snoman, 2012).

We created five music clips for each experimental
condition, beginning with the factor-level combination:
high LFA + high syncopation. Each clip included three
instruments: drums, bass, and piano. Piano sounds var-
ied across clips, while drum and bass sounds remained
consistent. Audio files of stimuli, spectrograms illustrat-
ing LFA manipulations, and MIDI piano rolls illustrat-
ing syncopation manipulations are available in the
Supplementary Material accompanying this paper at
online.ucpress.edu/mp.

High syncopation was achieved by placing bass notes
on weak metric positions and rests on strong metric
positions (Fitch & Rosenfeld, 2007; London, 2004,
p- 107; Sadie & Tyrrell, 2000). Low syncopation was
achieved by shifting off-beat notes to positions of stron-
ger metric weight (Gomez et al.,, 2007). Low LFA was
achieved by applying a 200 Hz low-frequency cut
(48 dB/Oct, 0.71 Q) to basslines. This frequency choice
was guided by the recognised definition of low
frequencies — 60 to 250 Hz. Moreover, using 200 Hz—
approximately G3, the uppermost string on a bass
guitar—reinforced ecological validity by ensuring the
experimental manipulations reflected frequencies
commonly encountered in musical contexts.

All 20 clips, each 15 seconds long, were exported from
Logic Pro as 44.1 kHz, 160 kbps mp3 files. Ecological
validity was further enhanced by five music experts’
verification of the authentic house style of the clips.
Diagrams of MIDI syncopation manipulations, spectro-
grams of LFA and syncopation manipulations, and four
example stimuli (one for each condition) are available in
the Supplementary Material. Quantitative values reflect-
ing syncopation manipulations were calculated using
SynPy (Song et al., 2015); see Table 1. All house music
clips are openly available at OSF (https://osf.io/4nc53/?
view_only=833df7920c1c4a7788f074b2cfff8c8f).

PROCEDURE

The online experiment was delivered using Qualtrics. At
the beginning of the session, participants completed
three demographic questions followed by an audio
device test. The test aimed to confirm the suitability
of their chosen listening device and facilitate setting
appropriate volume levels. Participants were instructed
to use earphones or headphones instead of their
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TABLE 1. Quantification of High and Low Syncopation
LHL PRS SG T™C TOB WNDB

High 4 962 161 425 3 0.33
A Low -1 325 0 0 1.5 0.06

High 5 10.72 1.3 525 275 0.52
B Low -1 456 —0.29 0 2.25 0.18

High 4 925 136 45 3 0.46
C Low -1 4 —0.08 0 2 0.21
High 625 15 2.52 7 4 0.5
D Low -1 2 0 0 2 0
g High 5 928 184 525 125  0.52
Low -1  3.69 0 0 125  0.11

Note. A - E represent the five music clips where syncopation manipulations
were performed. LHL = Longuet-Higgins & Lee, 1984; PRS = Pressing, 1997;
TMC = Metric Complexity - Toussaint, 2002; SG = Sioros & Guedes, 2011;
TOB = Off-Beatness - Toussaint, 2005; WNBD = Weighted Note-to-Beat Distance -
Gomez 2005.

smartphone speaker to better differentiate the presence
of low frequencies (Villalba & Lleida, 2011). The test
audio consisted of a one-minute sequence comprising
two alternating sine waves (32.7 Hz and 43.65 Hz at
—8 dBFS). The lower tone (C1) represented the lowest
frequency to which participants would be exposed. The
second tone (F1) was used to prevent monotony and
maintain participant engagement, enhancing the test’s
reliability. Gain was set to —8 dBFS to reflect the high
LFA manipulation. Participants were instructed to fol-
low a four-step procedure: 1) connect their earphones
or headphones to their device, 2) turn down the device
volume, 3) press play on the media bar, and 4) slowly
increase the volume until the tones could be heard at
a moderately loud yet comfortable level.

The main part of the experiment consisted of 20 fully
randomized music clips, five per experimental condi-
tion. Urge to move was assessed using the question,
“How much do you agree with the following statement?
This music evokes the sensation of wanting to move
some part of my body.” This question was selected from
Senn et al.’s (2020) three-item scale for “urge to move”
as it directly addresses the core aspect of groove under
investigation. Senn et al. (2020) explicitly endorsed the
use of a single question to measure the “urge to move,”
highlighting that this, along with the other two state-
ments (“This music is good for dancing” and “I cannot
sit still while listening to this music”) demonstrated
strong correlations with the sub-construct in their con-
firmatory factor analysis (o0 > .91). Participants
responded on a 5-point Likert scale (1 = strongly
disagree, 5 = strongly agree).
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After rating the urge to move for all clips, participants
completed the Gold-MSI (Miillensiefen et al., 2014b)
and the Gold-DSI (Rose et al., 2020) to assess individual
differences in dance and music experience. The Gold-
MSI comprises six subscales: active engagement, percep-
tual abilities, music training, singing abilities, emotional
engagement with music, and general music sophistica-
tion. The Gold-DSI consists of five subscales: body
awareness, social dancing, urge to dance, dance training,
and observational dance experience. Finally, participants
completed the Short Test of Music Preferences
(STOMP: Rentfrow & Gosling, 2013), which comprises
four subscales: reflective & complex, intense & rebellious,
upbeat & conventional, and energetic & rhythmic.

DATA SCREENING AND ANALYSES
Urge to move scores for each participant were obtained
by averaging responses across the five house clips for all
four experimental conditions. Subsequently, data were
imported into Jamovi 2.0.0.0 for statistical analysis.
Missing data (n = 13) accounted for 0.07% of total data
and only occurred in Gold-MSI responses. Missing data
was replaced using mean substitution of participant
scores from the relevant item (Downey & King, 1998;
Roth & Switzer, 1995). Additionally, data from partici-
pants who scored uniformly across all items or com-
pleted the study in under five minutes were excluded
from analysis, as this indicated a lack of careful engage-
ment with the experiment, which was necessary to
obtain meaningful results.

Parametric analysis was deemed suitable given that
the processed Likert scale data comprised multiple
related items (Carifio & Perla, 2008; Pell, 2005). In prep-
aration for performing a two-way repeated-measures
ANOVA, the assumption of a normally distributed
dependent variable was checked. The assumption of
sphericity was automatically met since this was
a repeated measure design with only two levels (Hinton
et al., 2004; Minke, 1997).

A visual inspection of histograms for urge to move
across all four experimental conditions revealed nega-
tive skew. However, skewness across conditions (min =
—1.21, max = 1.44, M = —0.32, SD = 0.61) fell within
an acceptable range (Byrne, 2013; George & Mallery,
2010; Hair et al., 2009; Orcan, 2020). Attempts to
improve skewness through log-transform were unsuc-
cessful, so were not preserved. Moreover, some authors
advise against using log transformation for skewed
Likert data (Feng et al., 2014; Games & Lucas, 1966;
Glass et al., 1972; O’Hara & Kotze, 2010). Kurtosis
values (min = —1.08, max = 2.82, M = 0.2, SD =
0.94) were also deemed acceptable (Hair et al., 2009).
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TABLE 2. Descriptive Statistics for Groove Across LFA and Syncopation

95% CI

M SD Lower Upper Min Max Skew p2
High LFA + high sync 418 0.63 4.09 428 2 5 ~0.82 —0.58
High LFA + low sync 4.06 0.7 3.96 4.17 1.8 5 —0.67 —-0.2
Low LFA + high sync 3.93 0.77 3.81 4.04 1.4 5 —0.67 0.15
Low LFA + low sync 3.89 0.75 3.78 4 1.6 5 —-0.6 0.04
Note. LFA = low-frequency amplitude, sync = syncopation, f2 = Kkurtosis.
In any case, it has been documented that parametric 431
tests such as ANOVAs are robust against violations of ol
normality, ordinal scale data, and small sample sizes '
(Gaito, 1980; Glass et al., 1972; Harwell et al., 1992; 2 4]
Lindquist, 1953; Lix et al., 1996; Norman, 2010; Pearson, % Syncopation
1931; Schmider et al,, 2010; Srivastava, 1959). S 401 Lo Symoonation

In line with the primary hypotheses, a two-way >
repeated-measures ANOVA was performed to test for 1
main and interaction within-subject effects of LFA and .
syncopation factors on urge to move. See Table 2 for . .
High LFA Low LFA

descriptive statistics for urge to move across LFA and
syncopation. Generalized eta squared was calculated to
facilitate the comparison of effect sizes with studies
using different designs (Bakeman, 2005; Lakens, 2013;
Olejnik & Algina, 2003). Finally, to explore the role of
individual differences in groove perception of house
music, we conducted a simple Pearson correlation
between urge to move scores in the high syncopation
+ high LFA condition, dance and music experience, and
genre preferences. All Gold-DSI, Gold-MSI, and
STOMP subscales were included.

Results

In line with our hypotheses, urge to move increased
with LFA and syncopation. The ANOVA revealed both
a significant main effect of LFA, F(1, 178) = 42.19,
p < .001, np2 = .192, #’c = .022) and a main effect of
syncopation, F(1, 178) = 11.88, p < .001, np2 = .063,
7’6 = .003. The interaction between LFA and synco-
pation_on urge to move, F(1, 178) = 4.29, p = .04,5,” =
024, n° = .001, was marginally significant. See Figure 1.
Post hoc Tukey tests were performed to explore the
significance and direction of simple effects and pair-
wise comparisons.

Post hoc tests confirmed that urge to move scores for
high LFA and low LFA were significantly different,
(MD = 0.216, SE = 0.033), #(178) = 6.50, Pk, <-001.
Urge to move scores for high syncopation and low syn-
copation were also significantly different, (MD = 0.08,
SE = 0.02), t(178) = 3.45, pyyke, <.001. In support of

LFA

FIGURE 1. Interaction of LFA and syncopation on groove.
Note: LFA = low-frequency amplitude. Error bars represent confidence
intervals.

the hypotheses, the largest mean across factor-level
combinations was high LFA + high syncopation,
(M = 4.18, SD = 0.63) + 0.05, 95% CI [4.09, 4.28].
Additionally, the largest mean difference of the four
factor-level combinations was between high LFA + high
syncopation and low LFA + low syncopation, (MD = 0.3,
SE = 0.04), t(178) = 7.11, p < .001. Conversely, the
smallest difference was between low LFA + high synco-
pation and low LFA + low syncopation, (MD = 0.04,
SE = 0.03), #(178) = 1.24, p < .604. See Table 3 for
pairwise comparisons.

Nonparametric Durbin-Conover pairwise compari-
sons revealed a corroboratory pattern of results. In par-
ticular, the largest difference between conditions was
observed between high LFA + high syncopation and low
LFA + low syncopation, DC = 7.81, p <.001. The smal-
lest absolute difference was between low LFA + high
syncopation and low LFA + low syncopation; and was
not significant, DC = 1.12, p = .265. See Table 4 for
a complete list of nonparametric pairwise comparisons.

Finally, we conducted exploratory correlational
analyses to assess the strength of association between
urge to move scores in the high-LFA + high syncopation
condition and Gold-MSI, Gold-DSI and STOMP sub-
scales. A Bonferroni-corrected significance level was
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TABLE 3. Tukey Pairwise Comparisons for LFA and Syncopation
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Comparison MD SE t p
high LFA high sync - low LFA low sync 0.3 0.04 7.11 <.001
high LFA high sync - low LFA high sync 0.26 0.04 6.98 <.001
high LFA low sync - low LFA low sync 0.17 0.04 4.29 <.001
high LFA high sync - high LFA low sync 0.12 0.03 3.99 <.001
low LFA high sync - high LFA low sync 0.14 0.04 3.47 .004
low LFA high sync - low LFA low sync 0.04 0.03 1.24 604

Note. LFA = low-frequency amplitude, sync = syncopation, MD = mean difference, SE = standard error.

p-values adjusted for multiple comparisons using Tukey correction.

TABLE 4. Durbin-Conover Pairwise Comparisons

Comparison DC p
High LFA high sync - low LFA low sync 7.81 <.001
High LFA high sync - low LFA high sync 6.69 < .001
High LFA high sync - high LFA low sync 4.12 <.001
High LFA low sync - low LFA low sync 3.69 < .001

High LFA low sync - low LFA high sync 2.57 .01
Low LFA high sync - low LFA lowsync 1.12  .265

Note. LFA = low-frequency amplitude, sync = syncopation, DC = Durbin-Conover
statistic. p values adjusted for multiple comparisons using Bonferroni correction.

applied at p < (.05 /16) = .003125. Subscales that
exhibited the highest positive association with the urge
to move as induced by house music featuring high
LFA + high syncopation basslines were STOMP: ener-
getic & rhythmic, r = .456, Gold-MSI: emotional engage-
ment with music, r = .324, Gold-DSI: urge to dance,
r =.321, Gold-DSI: body awareness, r = .27. See Table 5
for a full list of Gold-DSI, Gold-MSI, and STOMP
descriptive statistics and Pearson’s correlations with
high LFA + high syncopation-induced urge to move,
corrected for multiple comparisons.

Discussion

This study aimed to understand if and how low-
frequency amplitude (LFA) and syncopation impact
groove perception in electronic dance music (EDM),
specifically house music. Groove—the urge to move—
was operationally defined as “the sensation of wanting
to move some part of one’s body in response to music”
(Senn et al., 2020).

Our findings show that a combination of high LFA
(Lustig & Tan, 2020) and high syncopation (Wesolowski
& Hofmann, 2016) produces the highest perceived
groove scores in our house music clips. Moreover, LFA
and syncopation show a tendency to interact: greater
LFA appears to heighten the saliency of syncopation,
as groove perception for house tracks with low LFA was

TABLE 5. Pearson Correlations for High LFA + High Syncopation-
Induced Urge to Move

M SD r p
STOMP-ER 559 098 0465 < .001*
MSI-EM 581 0.87 0324  <.001*
DSI-UD 468 122 0321  <.001*
DSI-BA 446 12 0.27 <.001*
STOMP-RC 521 1.05 0.25 <.001*
MSI-PA 534 095 0244  <.001*
DSI-SD 432 15 0.243 001*
MSI-SA 436 096 0.239 .001*
MSI-GM 432 1.09 0.236 001*
STOMP-UC 451 119 0.215 004
MSI-AE 429  1.06 0213 004
DSI-ODE 371 124 0.122 104
MSI-MT 335 171 0.099 0.189
STOMP-IR 476 138 0.073 0.331
DSI-DT 206 145  —0.02 0.787

Note. Dance Sophistication Index (DSI): BA = body awareness, DT = dance training,
ODE = observational dance experience, SD = social dancing, UD = urge to dance.
STOMP: ER = energetic & rhythmic, IR = intense & rebellious, RC = reflective &
complex, UC = upbeat & conventional. Musical Sophistication Index (MSI): AE =
active engagement, GM = general musical sophistication, PA = perceptual abilities,
MT = music training, SA = singing ability, EM = emotional engagement with music.
* Significant at Bonferroni-corrected significance level (p < (.05 /16) = .003125)

unaffected by our syncopation manipulation. Our
results thus help explain why bass instruments often
convey rhythmic aspects of music (Sadie & Tyrrell,
2000) and how increasing bass levels in popular music
may be linked to production techniques used to entice
dancing (Hove et al., 2019).

Additionally, we explored the role of individual
differences in groove perception and found that groove
perception is associated with a preference for energetic
and rhythmic styles of music (Lustig & Tan, 2020; Senn
et al,, 2018), a general urge to dance (Janata et al., 2012;
Witek et al., 2014), and an emotional connection to
music (Huron, 2006; Senn et al., 2020; Solberg &
Dibben, 2019; Solberg & Jensenius, 2017). Dance expe-
rience, in particular, is rarely assessed in research on
music perception. Yet, in keeping with more recent
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work, our study suggests that the urge to dance, social
dancing, and body awareness may be important predic-
tors of groove experience (Foster Vander Elst et al.,
2021; Nave-Blodgett et al., 2021; O’Connell et al.,
2022). However, given that we did not include covari-
ates in our power analysis, our findings are exploratory.
More research is needed to confirm the role of individ-
ual trait differences in groove perception.

Our findings align with previous research demon-
strating the significant impact of LFA on enhancing
groove. Specifically, studies have demonstrated 1)
increased groove and tapping velocities through expo-
sure to instruments producing low frequencies (Stupa-
cher et al,, 2016), 2) that bass drums in dance music are
likely to elicit spontaneous movement (Van Dyck et al.,
2013), and 3) a positive correlation between low-
frequency energy and head movement speed during
dance (Burger et al.,, 2013). Additionally, LFA has been
observed to improve neural entrainment to musical
rhythms (Lenc et al., 2018) and augment rhythmic
accuracy (Hove et al., 2014). These findings support
our conclusion that EDM basslines with higher
LFA significantly contribute to an increased sense
of groove.

Regarding syncopation, our findings align with
previous literature showing that varying levels of rhyth-
mic complexity enhance groove perception. Specifically,
our results corroborate studies indicating that non-
isochronous EDM basslines (Wesolowski & Hofmann,
2016), highly syncopated drum beats (Senn et al., 2018;
Witek et al., 2014), and syncopated piano melodies
(Sioros et al., 2014) contribute to increased groove
compared to their isochronous or less syncopated
counterparts.

However, previous studies have shown that
syncopation exhibits an inverted-U shape on groove,
such that medium syncopation levels elicit higher
groove scores than low or high syncopation (Sioros
et al., 2014; Witek et al., 2014, 2017). As our primary
research interest was to understand the relationship
between LFA and syncopation, we only used two levels
of syncopation. It is, therefore, possible that groove per-
ception would have been lower had we included more
extreme levels of syncopation. However, in house music,
where a quarter-note bass drum consistently empha-
sises strong beats, it is also possible that a highly syn-
copated bassline would not exceed the optimal groove
threshold as defined by Witek et al.’s (2014) inverted-U
curve theory. Furthermore, more extreme variations of
syncopation might have led participants to not classify
the musical excerpts as representative of the genre,
house. However, as confirmed by independent experts,

our syncopation manipulations were within the range to
be classified as house music.

Arguably, our findings do not easily map onto other
studies with more than two syncopation levels; however,
we calculated and documented syncopation levels (Song
et al., 2015) using six different models (Gomez et al.,
2005; Longuet-Higgins & Lee, 1984; Pressing, 1999;
Sioros & Guedes, 2011; Toussaint, 2002, 2005). Together
with reported generalized effect sizes (Olejnik & Algina,
2003), these measures of syncopation support compar-
ing our findings to other existing and future studies.

We would like to highlight a few limitations of our
study. First, during the listening task, participants could
proceed to the following music clip before the current
clip had finished playing. This aspect increased the
potential for participants to not listen to the complete
track. However, we excluded data from participants who
scored the same for all items or completed the study in
under five minutes, as these patterns suggested a lack of
careful engagement with the musical stimuli.

Second, we did not include aesthetic or pleasure
ratings in this study, as we wanted to avoid the
influence of aesthetic judgements on groove ratings;
people might have rated individual excerpts as groo-
vier because they liked them, not because they per-
ceived more groove. Moreover, a positive relationship
between groove perception and pleasure is already well
established (Matthews et al., 2020); for example, syn-
copation alone can evoke powerfully positive emotions
(Huron, 2006; Witek, 2017; Witek et al., 2014), and
increased bass correlates with positive aesthetic appre-
ciation (Hove et al., 2020; Lustig & Tan, 2020). None-
theless, the influence of emotional musical connection,
the urge to dance, and the trait preference for energetic
music on groove perception in our study support
a link between groove and pleasure (Solberg, 2014;
Solberg & Dibben, 2019) and are in keeping with find-
ings that participating in EDM events can enhance
social, musical, and emotional experiences (Cannon &
Greasley, 2021).

A third limitation is the binary nature of our synco-
pation manipulation. This design means we cannot pro-
duce a predictive groove model that links objective
rhythmic complexity to subjective groove. Fourth, we
used a 5-point Likert scale instead of the 7-point scale
used by Senn et al. (2020). This decision was made to
reduce respondent time and survey fatigue, aiming to
keep the study duration within the advertised 20 min-
utes. This design choice may have limited our capacity
for direct comparisons with research employing the
original scale; however, evidence suggests that five and
seven-point scales are highly correlated (Colman et al.,
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1997) and produce the same mean scores once re-scaled
(Dawes, 2008).

Additionally, our study manipulated bassline
syncopation, whereas previous studies manipulated the
syncopation of snare and bass drums (Witek et al., 2014,
2017) or piano melodies (Sioros et al., 2014). Future
work could use a more fine-grained syncopation manip-
ulation in EDM to more precisely predict how varia-
tions in syncopation influence the groove experience
across different musical genres and musical timbre.

Finally, we observed only a weak interaction between
LFA and syncopation. Arguably, participants in our
online study used a variety of headphones and ear-
phones with unique specifications to complete this
study, introducing variability into our LFA amplitude
manipulation. While this may have reduced the overall
interaction effect, the pattern of results across all pair-
wise comparisons is consistent and robust; that is, the
same in both parametric and nonparametric compari-
sons. Our results clearly show a mutually enhancing
effect of high LFA and high syncopation on groove
perception, even under the relatively unconstrained
conditions of an online study and relatively liberal
inclusion criteria. Therefore, follow-up studies under
more controlled lab conditions are needed to confirm
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that LFA modulates the effect of syncopation on groove
perception.

In conclusion, our study shows that higher LFA
and syncopation of basslines in house music increase
the urge to dance. Furthermore, perceived groove
showed significant positive associations with a prefer-
ence for energetic and rhythmic music styles, a gen-
eral desire to dance, and an emotional connection to
music. We conclude that the interplay of highly syn-
copated basslines, accompanied by a steady, low-
syncopated rhythmic foundation not only maintains
but enhances the sensation of groove, especially in
people who enjoy dancing to music, thereby high-
lighting the close yet often understudied connection
between music and dance.
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