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Abstract

Motivation: Identifying the binding sites of antibodies is essential for developing vaccines and synthetic antibodies. In this article, we
investigate the optimal representation for predicting the binding sites in the two molecules and emphasize the importance of geometric
information.

Results: Specifically, we compare different geometric deep learning methods applied to proteins’ inner (I-GEP) and outer (O-GEP) structures.
We incorporate 3D coordinates and spectral geometric descriptors as input features to fully leverage the geometric information. Our research
suggests that different geometrical representation information is useful for different tasks. Surface-based models are more efficient in predict-
ing the binding of the epitope, while graph models are better in paratope prediction, both achieving significant performance improvements.
Moreover, we analyze the impact of structural changes in antibodies and antigens resulting from conformational rearrangements or reconstruc-
tion errors. Through this investigation, we showcase the robustness of geometric deep learning methods and spectral geometric descriptors to
such perturbations.

Availability and Implementation: The python code for the models, together with the data and the processing pipeline, is open-source and

available at https://github.com/Marco-Peg/GEP.

1 Introduction

Identifying the binding sites of antibodies is essential for de-
veloping vaccines and synthetic antibodies. These binding
sites, called paratopes, can bind to antigens, wherein the cor-
responding binding site is known as the epitope, thus neutral-
izing harmful foreign molecules in the body. Experimental
methods for determining the residues that belong to the para-
tope and epitope are time-consuming and expensive,
highlighting the need for computational tools to facilitate the
rapid development of therapeutics. The recent COVID-19 ep-
idemic highlighted this need further, as mutations in the anti-
gen were shown to impact the binding mechanism,
potentially reducing the efficacy of existing treatments
(Thomson et al. 2021). Predicting the binding sites of an
antibody-antigen interaction requires considering the entire
antigen for epitope prediction and a localized region of the
antibody, known as the complementarity-determining region
(CDR), for paratope prediction.

The shape and structure of molecules play a crucial role
in determining their interactions with other molecules, as
complementary geometric shapes are required for success-
ful binding (Fischer 1894). The use of geometrical informa-
tion is further justified by the emergence of technology
predicting the single-protein structure, such as Alpha-Fold

2 (Jumper et al. 2021), which has comparable accuracy to
experimental methods. The integration of geometric and
structural information in protein-to-protein interaction
studies has led to significant progress (Stark et al. 2022,
Dai and Bailey-Kellogg 2021). While several methods have
concentrated on the 3D graph representation, few methods
(Dai and Bailey-Kellogg 2021, Zhang et al. 2023) have in-
vestigated the 3D surface representation. We aim to assess
the impact of utilizing the geometric representation of the
antigen and antibody in the task of epitope-paratope pre-
diction. Our approach, GEP (geometric epitope—paratope)
prediction, proposes different geometric representations of
the molecules to create accurate predictors for predicting
antibody-antigen binding sites (Fig. 1). In particular, we
recognize the importance of the outer surface of a molecule
in molecular interactions.

Our article introduces several contributions, including the
analysis of the importance of geometric information within
graph learning using equivariant layers for improved predic-
tions. Moreover, we fully leverage molecular geometric infor-
mation by representing molecules as surfaces and employing
spectral geometry techniques, leading to state-of-the-art per-
formance. Additionally, we will provide a novel dataset and a
processing pipeline for PDB molecules, offering molecular
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Figure 1. The GEP model processes an unbound antibody—antigen pair as input, predicting the probability of each residue binding with the counterpart
molecule. Predicted binding residues are visually emphasized by colored circles (blue for antibody CDR and red for the antigen), with the filled circles
indicating the predicted residues. The corresponding bound pair is illustrated on the right.

representations in both graph and surface formats, facilitat-
ing comprehensive cross-method comparisons. The code for
the models and the processing pipeline is open-source and
available at https://github.com/Marco-Peg/GEP

2 Related work

The structure of proteins provides crucial information about
the location and orientation of the binding sites. Various
approaches have been taken in the literature to address the
task of epitope and paratope prediction, including sequential
(Liberis et al. 2018, Deac et al. 2019) and structural
(Krawczyk et al. 2014, Del Vecchio et al. 2022) methods.
Furthermore, geometric deep learning has emerged as a pow-
erful tool for predicting protein-protein interactions (Isert
et al. 2023), with graph-based representations being one of
the most common approaches (Tubiana ez al. 2022, Stark
et al. 2022). These methods leverage the geometric informa-
tion of the molecules to learn complex relationships between
epitopes and paratopes. For instance, some approaches (Del
Vecchio et al. 2022, da Silva et al. 2022) use the graph struc-
ture to compute features based on neighboring residues,
which are then aggregated to highlight the most probable re-
gion of interaction.

An alternative approach is to represent proteins as surfaces.
MaSIF (Gainza et al. 2020) focuses on the more general prob-
lem of protein interaction region prediction and uses a surface
representation learned through convolutions defined on the
surface. PiNet (Dai and Bailey-Kellogg 2021) represents the
protein surface as a point cloud and employs PointNet (Qi
et al. 2017) to classify points as interacting or not. On the
contrary, Zhang et al. (2023) model the surface of a molecule
as a graph and apply an equivariant graph neural network
[EGNN, (Satorras et al. 2021)] for binding site prediction.

Integrating structural and geometric information has
proven to be a promising approach for improving protein in-
teraction prediction. Still, few studies have focused on the
specific case of epitope and paratope prediction (Cia et al.

2023). Our work supports this view by showing that consid-
ering the problem as a geometric one can effectively improve
performance.

3 Motivation

The interactions between molecules are significantly influ-
enced by the configuration and arrangement of their struc-
tures, as successful binding relies on the compatibility of
geometric shapes, as noted by Fischer in 1894 (Fischer 1894).
To accurately predict molecular interactions, it is essential to
incorporate geometric information such as 3D coordinates
and spectral descriptors. Our approach to predicting molecu-
lar interactions integrates this geometric information into the
representation of proteins as graph residues, resulting in a
more enhanced and accurate representation. Furthermore, we
recognize the importance of the outer surface of a molecule in
molecular interactions. To address this, we focus on compu-
tations performed on the outer surface of the molecule and
then map these predictions to the corresponding residues. By
considering the surface of the molecule, we gain valuable
insights into the molecular interactions occurring on the sur-
face and enable the use of geometric deep-learning models to
analyze these interactions. This approach can potentially pro-
vide significant benefits over traditional methods, ultimately
leading to more accurate and efficient predictions of molecu-
lar interactions.

4 Data

We collected a novel dataset of 235 antibody-antigen com-
plexes, with 186 for training and 49 for testing. The training
set is taken from the Epipred dataset (Krawczyk et al. 2014),
while the test set has been selected from the SabDab database
(Dunbar et al. 2014), ensuring that no more than 70% pair-
wise sequence identity similarity existed with the train set.
We opted for this threshold based on analogous studies
(Krawczyk et al. 2014, Pittala and Bailey-Kellogg 2020, da
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Silva et al. 2022, Yin and Pierce 2024) in antibody and anti-
gen, where a minimum similarity cutoff of 70% on the anti-
gen was commonly employed. Notably, our similarity
assessment encompassed both the antibody’s chains and anti-
gen, thereby imposing a stringent criterion. This criterion on
the sequence similarity was chosen to assess the model’s gen-
eralization capability effectively.

Additionally, we utilized a separate validation set consist-
ing of 25 antibody—antigen complexes derived from a subset
of the Docking Benchmark v5 (Vreven et al. 2015), as in
Pittala and Bailey-Kellogg (2020). The selected set has at
most 91% pairwise sequence identity similarity with the
training set.

We further test our models on sequences obtained from the
SabDab database and generated by Alpha-Fold (Yin and
Pierce 2024). In particular, we constructed two subsets of
Protein Data Bank (PDB) complexes based on their accuracy
according to Critical Assessment of Predicted Interactions
(CAPRI) (Lensink ez al. 2020) criteria: one subset containing
48 complexes with acceptable accuracy and at most 75%
pairwise sequence identity similarity with the training set,
and another subset comprising 42 complexes with medium
and high accuracy and at most 80% pairwise sequence iden-
tity similarity.

4.1 Data representation

Comparing methods across different molecular representa-
tions is crucial for advancing research in molecular modeling.
We developed a reusable pipeline that generates a dataset to
evaluate methods using inner and outer structure representa-
tions. For each protein, we construct a residue graph
(Fig. 4b), representing residues as nodes and establishing
edges between the 15 nearest neighboring residues within a
10 A radius. Each residue is characterized by a 28-dimen-
sional physicochemical feature vector. This vector encom-
passes a one-hot encoding of the amino acid, encompassing
20 possible types along with one for an unclassified type.
Additionally, seven other features are included that portray
the physical, chemical, and structural attributes of the amino
acid type (see Supplementary data). These supplementary fea-
tures can be viewed as a consistent embedding, as outlined in
Meiler et al. (2001).

For each protein, we generated a surface mesh (Fig. 4d) us-
ing the PyMOL API with a 1.4 A water probe radius. We as-
sociated each point on the protein’s surface with a residue by
finding the closest atom to that point. This association was
then used to transfer the feature of each residue to the points
on the surface.

5 Method

In our experiments, we considered two scenarios: a protein
represented through its inner structure (I-GEP) and outer
structure (O-GEP). In both cases, we leverage the geometric
information to improve the performance of epitope and para-
tope prediction methods. Details on the methods, including
the detailed model architectures, are reported in the
Supplementary data.

5.1 I-GEP

Our I-GEP model is a method for predicting epitopes and
paratopes using a graph-based approach that captures the in-
ner structure of a protein. The I-GEP model has two main

components: a structural module that computes an embed-
ding for each residue using the graph structure and a graph
attention layer (GAT) that combines information from both
the antigen and antibody residues. It’s crucial to note that our
model processes these protein pairs without any prior knowl-
edge of their interactions.

Specifically, the representation of the antibody and antigen
is passed through a structural module summarizing the fea-
tures of each molecule. We implement this module using a
graph convolution layer (GCN), see Fig. 2a. After passing
through batch normalization, ReLU activation, and a drop-
out layer, the distinct features from both the antibody and
antigen are fused through a two-layer GAT. Finally, the out-
puts of the GCN and the two graph attention layers are
concatenated to generate two separate predictions, one for
the antigen and another for the antibody using a fully con-
nected layer (FC), as shown in Fig. 2.

To improve the accuracy of our predictions, we integrate
geometric information into the I-GEP model using two differ-
ent approaches. In the first approach, EPMP,,., we use graph
convolutional network layers in the structural module as in
EPMP (Del Vecchio et al. 2022), but we include the centered
3D coordinates of residues in the input features. The second
approach, E(n)-EPMP, uses the E(n) invariant layer encoder
from EGNN (Satorras et al. 2021) instead of graph convolu-
tional networks. This approach considers only the distances
between residues, making it invariant to translations, rota-
tions, and reflections on the residue positions in each mole-
cule. We visually represent this pipeline in Fig. 2a and b.

5.2 O-GEP

Our O-GEP model operates on the protein’s surface and
includes a geometric module that uses the surface’s geometry
to spread information across it. This process generates fea-
tures that are then combined and shared between the anti-
body and antigen through fully connected layers
(segmentation module), resulting in an interaction probability
for each point on the surface, as shown in Fig. 3a. The O-
GEP model is an extension of the architectural foundation
established in Pinet, where models store a set of features at
each point on the protein surface and generate a binding
probability for each point. The input features are computed
as explained in and transferred to the surface representation,
allowing close comparison with the two geometric represen-
tations. We note that the labels of the CDRs are not used as
input for the O-GEP methods.

In Pinet, the process begins by individually processing both
the antigen and antibody’s surface as a point cloud. This pro-
cess is iteratively applied to generate two representations: a
local representation after one iteration and a global represen-
tation after multiple iterations, where local features of each
point are pooled into a single vector. Once both proteins
have undergone this treatment that we refer as the geometric
module in Fig 3b, the local surface features of each protein
and their global protein features are combined and subjected
to further segmentation through a set of 1D convolution neu-
ral network. Importantly, the trainable weights for canonical
transformations, local feature extraction, and global feature
extraction are shared between the two proteins, as in Dai and
Bailey-Kellogg (2021). Finally, the models predict a binding
probability for each point on the point cloud.

In modifying this architecture, we explore two different
models for the geometric module. As a baseline, we use
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Figure 2. Models architecture: The layers or modules are depicted using color-coded blocks, with the text inside indicating the respective layer type. In
parentheses, we provide the dimensions for each layer: GCN, E(n) invariant layer (EGNN), Graph Attention Layer (GAT), and FC. The arrows indicate the
data flow from one module to the next. Additional details about the transformation performed on the input are written. (a) GCN I-GEP. (b) EGNN I-GEP
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Figure 3. Our model architecture is represented with arrows indicating data flow between modules, using colour-coded blocks to represent layers or
modules, with text inside each block specifying the layer type. The model takes antibody-antigen pairs as input, featuring surface point-level features, and
produces binding probabilities for each input point. (a) Overall structure of the O-GEP model. (b) Geometric module: The protein representation is first
passed through an MLP layer before entering the diffusion block as defined in Sharp et al. (2022). The local and global features are computed by applying
the diffusion block a single and n times, respectively. (c) Segmentation module: The output of the geometric module is concatenated into two vectors for
the antigen and the antibody, respectively. These representations are then sent through the segmentation module to output the binding prediction on the
antigen and antibody, respectively. The segmentation module is shared across the two representations and consists of convolutional layers.

PointNet (Qi et al. 2017) to recreate the architecture proposed  transformations for each protein. Subsequently, a multi-layer
in PiNet (Dai and Bailey-Kellogg 2021). In particular, a Spatial perceptron (MLP) extracts local surface characteristics. These
Transformation Network ensures invariance to rigid-body  local surface features are combined into a comprehensive
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Figure 4. Qualitative comparison between experimental and Alpha-Fold 2 predicted complex ‘7e9b’. The continuous binding predictions are represented
as a color gradient in blue and red for the antigen and antibody, respectively. (a) Secondary structure, (b) E(n)-EPMP, (c) PiNet (xyz+hks), (d) DiffNet,.
(xyz), (e) DiffNetesn (hks), (f) secondary structure, (g) E(n)-EPMP, (h) PiNet (xyz+hks), (i) DiffNet, (xyz), and (j) DiffNetesn (hks)

protein feature vector. The second model employs diffusion
layers from DiffNet (Sharp et al. 2022) to propagate features
on the surface. This change is advantageous because DiffNet
can compute features on both point clouds and meshes inde-
pendently. This makes our model robust against surface per-
turbations and suitable for handling meshes and point clouds
with fewer points.

We further examine the impact of using the Heat Kernel
Signature (HKS) as an extra geometric descriptor input. The
HKS (Sun et al. 2009) is a concise point-wise spectral signa-
ture which summarizes local and global information about
the intrinsic geometry of a shape by capturing the properties
of the heat diffusion process on the surface. One of the key
benefits of using HKS is that it remains stable even under mi-
nor surface perturbations, thus enabling it to withstand even
conformational rearrangements of the proteins. To utilize the
HKS descriptor, we concatenate it with the input features at
each point on the surface and then pass the concatenated
data through the geometric module.

To transfer the binding probabilities from the protein’s sur-
face to the residues, we utilized the average of all the points
on the surface that correspond to the same residues. This
method ensures that the binding probabilities are accurately
represented in the residue space, enabling us to make reliable
predictions about epitope and paratope locations.

5.3 Training and evaluation

The networks were trained using the class-weighted binary
cross-entropy loss and the Adam stochastic gradient descent
(SGD) optimizer to handle imbalanced binary classification
tasks. To enhance model robustness, we applied random
rotations to dataset instances. We report training details in
the Supplementary data.

Given the significant disparity in class sizes, we utilize
Matthew’s correlation coefficient (MCC) between the resi-
dues’ classification as our main benchmarking metric for
model evaluation. This aligns with evaluation methods in
similar studies such as (Krawczyk et al. 2014, Cia et al.
2023). We also report the area under the receiver operating
characteristic curve (AUC ROC) and the area under the preci-
sion—-recall curve (AUC PR) as used in (Dai and Bailey-
Kellogg 2021, Del Vecchio et al. 2022). All reported values

are aggregated across five random seeds to ensure the robust-
ness of our findings.

6 Results

In this section, we report the results of our experiments and
demonstrate the contribution of geometric information on
the task of epitope-paratope prediction.

6.1 I-GEP results

We conducted experiments to evaluate the effectiveness of in-
corporating geometric information by comparing our pro-
posed models from section with the EPMP model proposed
in Del Vecchio et al. (2022). The results obtained from the
test set, which includes complexes with a pairwise sequence
identity similarity of at most 70%, are presented in
Supplementary Table 1a. The metrics demonstrate that add-
ing geometric information leads to increased performance.
Specifically, the use of the E(#n) invariant layer (E(n)-EPMP)
resulted in an improvement in the AUR ROC and AUR PR
metrics for both antibody and antigen.

6.2 O-GEP results

To test the performance of O-GEP models, we consider the
methods proposed in Section with different combinations of
input features. In addition to the physicochemical features,
we test different combinations of geometric information: 3d
coordinates (xyz) and HKS. For the DiffNet models, we con-
sider both the point cloud (,) and the mesh (,,) of
the surface.

The results obtained from the test set are summarized in
Supplementary Table 1b. Notably, the HKS emerges as a
valuable feature for both paratope and epitope predictions.
Its incorporation into the PiNet baseline leads to an improve-
ment in performance for both tasks, with an increase of at
least 0.03 in the MCC metric. Of particular interest are the
results obtained from the DiffNet,. (hks) and DiffNet,, (hks)
models in antibody predictions. Here, the addition of HKS
significantly enhances the MCC score by 0.09 and 0.12, re-
spectively, compared to the DiffNet models without this fea-
ture. Conversely, the absence of coordinates as input appears
to diminish the performance of antigen predictions. The ef-
fectiveness of surface features like the HKS in paratope
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prediction can be attributed to the localized and specific
structural characteristics captured, especially within the pro-
tein’s Complementarity Determining Regions (CDRs).

Interestingly, aside from the sole input of HKS, the PiNet
and DiffNet models perform similarly. The DiffNet model
with only 3D coordinates as input [DiffNet (xyz)] outper-
forms its PiNet counterpart [PiNet (xyz)] and performs at
comparable levels to PiNet with the additional HKS feature
[PiNet (xyz+hks)]. However, the combined use of both 3D
coordinates and HKS does not yield the same performance
improvement in epitope prediction for DiffNet as observed in
PiNet. This phenomenon may suggest that the heat diffusion
process modeled by DiffNet sufficiently approximate the in-
formation provided by HKS on the antigen, rendering the ad-
ditional HKS features redundant in the model.

Regarding the choice between mesh representation and
point cloud, it is essential to note that when input features
are consistent, the performance difference between the two
representations is relatively small, typically within a range of
0.4 and usually overlapping in our experiments (see
Supplementary Table 1b). Factors contributing to this slight
difference may include the computation of eigenvectors and
the inherent structure of the representations themselves.
Point cloud representation offers greater flexibility as it does
not impose connectivity constraints on neighboring nodes,
allowing for a more adaptable representation for proteins.

6.3 Qualitative results

We also conducted a qualitative assessment of our methods.
In Fig. 4, we show the predicted binding on the complex
“7e9b” for the best model in Supplementary Table 1b. In the
Supplementary data, we provide more qualitative examples
of all the methods considered.

We observed distinct behavior in epitope and paratope pre-
diction when visualizing binding probability on graph nodes
using color gradients in I-GEP models (Fig. 4g and b).
Paratope prediction focuses on residues closest to the antigen,
while epitope prediction primarily targets sparse regions
of the antigen, often its spiky edges. This is translated in the
I-GEP results in better predictive performance for
the antibody.

In O-GEP models, predictions are visualized on the protein
surface and residues. Predictions are highly localized on the
region nearest to the binding molecule, especially for the epi-
tope(see Fig. 4c and d). However, HKS alone may not be suf-
ficient to propagate information globally across the antigen,
leading to high binding predictions across all geometry of the
antigen (see Fig. 4e and j).

6.4 I-GEP and O-GEP comparison

Our study indicates that diverse geometric representations
hold utility across various tasks. Surface-based models excel
in predicting antigen binding, whereas graph models demon-
strate superior performance in antibody prediction. This di-
vergence can be attributed to the local nature of predicting
the antibody binding region, primarily concentrating on the
CDR, a well-structured and localized area. In contrast, epi-
tope prediction requires a more global perspective, hence fa-
voring a surface-based approach.

As I-GEP and O-GEP yield complementary results across
various tasks, we decided to combine their predictions. In the
Supplementary data, we present our approach, which
involves combining the predictions made by I-GEP and O-

Pegoraro et al.

GEP using simple methods such as taking the mean or prod-
uct of the predictions for each residue. Remarkably, the
results reveal that the performance of these mixed models can
either match or even surpass that of the individual models.
This finding underscores the potential effectiveness of com-
bining different processing methods.

7 Structural variations

Proteins, including antibodies and antigens, are inherently
flexible and dynamic entities. Their shapes can undergo
changes in response to alterations in their environment or
other factors, resulting in various conformations for the same
amino acid sequence. In this section, we analyze how these
variations in shape influence the prediction of epitopes and
paratopes in GEP.

7.1 Unbounded complexes

The structure and geometry of the proteins might change
depending on whether they are bound or not. We compare
the results between bound and unbound structures for the an-
tibody and antigen complexes on the validation set derived
from a subset of the Docking Benchmark v5 (Vreven et al.
2015). This benchmark provides protein complexes both in
unbound and bounded conditions, allowing us to compare
the two settings. We computed the mean root-mean-square
deviation (mRMSD) between corresponding complexes in the
two datasets and find out that the antigens have a mRMSD
3.67 A, while the antibody a mRMSD of 3 A.

Supplementary Table 2a and ¢ shows the results of the I-
GEP and O-GEP models, respectively, on the validation set
used during training. Since the validation set shares a much
higher identity similarity with the training set with respect to
that test set used in Supplementary Table 1, the performances
are much higher. The O-GEP models are able to reach an
MCC of 0.54 and an AUC ROC of 0.91 on the antigene,
while the E(n)-EPMP reaches an MCC of 0.46 and an AUC
ROC of 0.83 on the antibody. As in Supplementary Table 1,
the addition of the HKS features increases the performance of
the PiNet model, while the E(n)-EPMP stays as the best
I-GEP model. When we compare the bounded conformations
(Supplementary Table 2a and ¢) with the unbounded counter-
part (Supplementary Table 2b and d), we can notice a con-
stant reduction in the performance, but the relative
performance trends remain consistent. In the Supplementary
data, we plot qualitative examples of the *2fd6’ both in the
bounded and unbounded setting.

7.1.1 Alpha-Fold predictions

In the case where the experimental structure is not available,
it is possible to use tools such as Alpha-Fold 2 (Jumper et al.
2021) to predict the structure from the protein sequences.

We test our model on Alpha-Fold predictions from Yin
and Pierce (2024) where the geometry of the proteins might
also change slightly due to reconstruction error. In
Supplementary Table 4, we selected the reconstructions that
were measured to have high and medium CAPRI accuracy.
The complexes have a RMSD of 11.25 A for the antigens and
of 1.35A for the antibody. In the Supplementary data, we
also report and discuss the results of acceptable accuracy
reconstruction.

The Alpha-Fold results in Supplementary Table 3 consis-
tently exhibit lower values compared to those from the
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Geometric epitope and paratope prediction

experimental complexes. This can be attributed to the visibly
distinct structure of the reconstructed antibody in Fig. 4g.
Nevertheless, looking at the qualitative results in Fig. 4,
results remain notably promising, with predictions highly lo-
calized on the region nearest to the binding molecule for both
paratope and epitope. In the Supplementary data, we provide
the qualitative examples of all the GEP methods.

7.1.2 Discussion

Both the unbounded and Alpha-Fold datasets introduce
changes or errors in geometry. Generally, the models perform
less effectively on these datasets. However, we assess the ro-
bustness of geometric models relative to the original by exam-
ining the Wasserstein distances (WD) between the
performance with the original data and the geometric altered
data set. We present a table of results for all models in the
Supplementary material. In the O-GEP models, we observe in
both sets, that the HKS is as a valuable feature for epitope,
decreasing the WD leading to more robust model. This obser-
vation aligns with the enhanced performance of models in-
corporating these features shown in Supplementary Table 1.
In the I-GEP models, the inclusion of the equivariant layer
results in a lower WD for the antibody, signifying stronger
robustness to geometric changes compared to the original
models. This aligns with the observation that [-GEP models
excel in predicting the paratope due to their local structure.
Comparing the two sets, the Alpha-Fold complexes exhibit a
higher RMSD for the antigens than the unbound set. This
suggests that the Alfa-Fold structures deviate more geometri-
cally from the original protein than the unbound structures.
The results corroborate this, as the WD on the Alpha-Fold set
is larger than that on the unbounded structures.

8 Conclusions

We investigated the effectiveness of geometric deep learning
techniques in predicting antibody-antigen interactions. Our
results indicate that incorporating geometric information is
crucial for accurately predicting epitope and paratope
regions. Specifically, the use of an invariant representation in
I-GEP models improve previous models, and O-GEP models
with diffusion layers and additional geometric features
achieved state-of-the-art performance. Inspired by the com-
plementary roles of these two approaches, we explored the
combination of their predictions, yielding enhanced perfor-
mance. This combination of methodologies presents an in-
triguing avenue for further investigation in epitope and
paratope predictions, showcasing the potential of leveraging
diverse computational techniques to augment predictive ca-
pabilities. Moreover, our study has shed light on the impact
of geometric variations arising from conformational changes
or reconstruction errors. Despite these challenges, our models
have shown better results compared to previous methods,
underscoring the robustness of our approach. Notably, our
observation that the HKS provides geometric information re-
silient to minor perturbations in protein structures offers
promising avenues for future exploration. For this reason, we
believe future research could explore using spectral shape
analysis to address the more complex problem of conforma-
tional rearrangement in antigen-antibody binding. A limita-
tion of our model is that it cannot solely utilize an antigen or
antibody as input, as it relies on both proteins’ properties to
predict the most suitable interacting region. In our future

research works, we aim to explore the significance of geomet-
ric information in predicting partner-unspecific interfaces.
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