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Abstract
Motivation: Identifying the binding sites of antibodies is essential for developing vaccines and synthetic antibodies. In this article, we 
investigate the optimal representation for predicting the binding sites in the two molecules and emphasize the importance of geometric 
information.
Results: Specifically, we compare different geometric deep learning methods applied to proteins’ inner (I-GEP) and outer (O-GEP) structures. 
We incorporate 3D coordinates and spectral geometric descriptors as input features to fully leverage the geometric information. Our research 
suggests that different geometrical representation information is useful for different tasks. Surface-based models are more efficient in predict
ing the binding of the epitope, while graph models are better in paratope prediction, both achieving significant performance improvements. 
Moreover, we analyze the impact of structural changes in antibodies and antigens resulting from conformational rearrangements or reconstruc
tion errors. Through this investigation, we showcase the robustness of geometric deep learning methods and spectral geometric descriptors to 
such perturbations.
Availability and Implementation: The python code for the models, together with the data and the processing pipeline, is open-source and 
available at https://github.com/Marco-Peg/GEP.

1 Introduction
Identifying the binding sites of antibodies is essential for de
veloping vaccines and synthetic antibodies. These binding 
sites, called paratopes, can bind to antigens, wherein the cor
responding binding site is known as the epitope, thus neutral
izing harmful foreign molecules in the body. Experimental 
methods for determining the residues that belong to the para
tope and epitope are time-consuming and expensive, 
highlighting the need for computational tools to facilitate the 
rapid development of therapeutics. The recent COVID-19 ep
idemic highlighted this need further, as mutations in the anti
gen were shown to impact the binding mechanism, 
potentially reducing the efficacy of existing treatments 
(Thomson et al. 2021). Predicting the binding sites of an 
antibody-antigen interaction requires considering the entire 
antigen for epitope prediction and a localized region of the 
antibody, known as the complementarity-determining region 
(CDR), for paratope prediction.

The shape and structure of molecules play a crucial role 
in determining their interactions with other molecules, as 
complementary geometric shapes are required for success
ful binding (Fischer 1894). The use of geometrical informa
tion is further justified by the emergence of technology 
predicting the single-protein structure, such as Alpha-Fold 

2 (Jumper et al. 2021), which has comparable accuracy to 
experimental methods. The integration of geometric and 
structural information in protein-to-protein interaction 
studies has led to significant progress (St€ark et al. 2022, 
Dai and Bailey-Kellogg 2021). While several methods have 
concentrated on the 3D graph representation, few methods 
(Dai and Bailey-Kellogg 2021, Zhang et al. 2023) have in
vestigated the 3D surface representation. We aim to assess 
the impact of utilizing the geometric representation of the 
antigen and antibody in the task of epitope-paratope pre
diction. Our approach, GEP (geometric epitope–paratope) 
prediction, proposes different geometric representations of 
the molecules to create accurate predictors for predicting 
antibody-antigen binding sites (Fig. 1). In particular, we 
recognize the importance of the outer surface of a molecule 
in molecular interactions.

Our article introduces several contributions, including the 
analysis of the importance of geometric information within 
graph learning using equivariant layers for improved predic
tions. Moreover, we fully leverage molecular geometric infor
mation by representing molecules as surfaces and employing 
spectral geometry techniques, leading to state-of-the-art per
formance. Additionally, we will provide a novel dataset and a 
processing pipeline for PDB molecules, offering molecular 
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representations in both graph and surface formats, facilitat
ing comprehensive cross-method comparisons. The code for 
the models and the processing pipeline is open-source and 
available at https://github.com/Marco-Peg/GEP

2 Related work
The structure of proteins provides crucial information about 
the location and orientation of the binding sites. Various 
approaches have been taken in the literature to address the 
task of epitope and paratope prediction, including sequential 
(Liberis et al. 2018, Deac et al. 2019) and structural 
(Krawczyk et al. 2014, Del Vecchio et al. 2022) methods. 
Furthermore, geometric deep learning has emerged as a pow
erful tool for predicting protein-protein interactions (Isert 
et al. 2023), with graph-based representations being one of 
the most common approaches (Tubiana et al. 2022, St€ark 
et al. 2022). These methods leverage the geometric informa
tion of the molecules to learn complex relationships between 
epitopes and paratopes. For instance, some approaches (Del 
Vecchio et al. 2022, da Silva et al. 2022) use the graph struc
ture to compute features based on neighboring residues, 
which are then aggregated to highlight the most probable re
gion of interaction.

An alternative approach is to represent proteins as surfaces. 
MaSIF (Gainza et al. 2020) focuses on the more general prob
lem of protein interaction region prediction and uses a surface 
representation learned through convolutions defined on the 
surface. PiNet (Dai and Bailey-Kellogg 2021) represents the 
protein surface as a point cloud and employs PointNet (Qi 
et al. 2017) to classify points as interacting or not. On the 
contrary, Zhang et al. (2023) model the surface of a molecule 
as a graph and apply an equivariant graph neural network 
[EGNN, (Satorras et al. 2021)] for binding site prediction.

Integrating structural and geometric information has 
proven to be a promising approach for improving protein in
teraction prediction. Still, few studies have focused on the 
specific case of epitope and paratope prediction (Cia et al. 

2023). Our work supports this view by showing that consid
ering the problem as a geometric one can effectively improve 
performance.

3 Motivation
The interactions between molecules are significantly influ
enced by the configuration and arrangement of their struc
tures, as successful binding relies on the compatibility of 
geometric shapes, as noted by Fischer in 1894 (Fischer 1894). 
To accurately predict molecular interactions, it is essential to 
incorporate geometric information such as 3D coordinates 
and spectral descriptors. Our approach to predicting molecu
lar interactions integrates this geometric information into the 
representation of proteins as graph residues, resulting in a 
more enhanced and accurate representation. Furthermore, we 
recognize the importance of the outer surface of a molecule in 
molecular interactions. To address this, we focus on compu
tations performed on the outer surface of the molecule and 
then map these predictions to the corresponding residues. By 
considering the surface of the molecule, we gain valuable 
insights into the molecular interactions occurring on the sur
face and enable the use of geometric deep-learning models to 
analyze these interactions. This approach can potentially pro
vide significant benefits over traditional methods, ultimately 
leading to more accurate and efficient predictions of molecu
lar interactions.

4 Data
We collected a novel dataset of 235 antibody–antigen com
plexes, with 186 for training and 49 for testing. The training 
set is taken from the Epipred dataset (Krawczyk et al. 2014), 
while the test set has been selected from the SabDab database 
(Dunbar et al. 2014), ensuring that no more than 70% pair
wise sequence identity similarity existed with the train set. 
We opted for this threshold based on analogous studies 
(Krawczyk et al. 2014, Pittala and Bailey-Kellogg 2020, da 

GEP

Antibody (CDR)

Antigene

Prediction Antibody (CDR) Ground Truth Antibody (CDR)

Ground Truth Bounded Pair

Prediction Antigene Ground Truth Antigene 

Figure 1. The GEP model processes an unbound antibody–antigen pair as input, predicting the probability of each residue binding with the counterpart 
molecule. Predicted binding residues are visually emphasized by colored circles (blue for antibody CDR and red for the antigen), with the filled circles 
indicating the predicted residues. The corresponding bound pair is illustrated on the right.
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Silva et al. 2022, Yin and Pierce 2024) in antibody and anti
gen, where a minimum similarity cutoff of 70% on the anti
gen was commonly employed. Notably, our similarity 
assessment encompassed both the antibody’s chains and anti
gen, thereby imposing a stringent criterion. This criterion on 
the sequence similarity was chosen to assess the model’s gen
eralization capability effectively.

Additionally, we utilized a separate validation set consist
ing of 25 antibody–antigen complexes derived from a subset 
of the Docking Benchmark v5 (Vreven et al. 2015), as in 
Pittala and Bailey-Kellogg (2020). The selected set has at 
most 91% pairwise sequence identity similarity with the 
training set.

We further test our models on sequences obtained from the 
SabDab database and generated by Alpha-Fold (Yin and 
Pierce 2024). In particular, we constructed two subsets of 
Protein Data Bank (PDB) complexes based on their accuracy 
according to Critical Assessment of Predicted Interactions 
(CAPRI) (Lensink et al. 2020) criteria: one subset containing 
48 complexes with acceptable accuracy and at most 75% 
pairwise sequence identity similarity with the training set, 
and another subset comprising 42 complexes with medium 
and high accuracy and at most 80% pairwise sequence iden
tity similarity.

4.1 Data representation
Comparing methods across different molecular representa
tions is crucial for advancing research in molecular modeling. 
We developed a reusable pipeline that generates a dataset to 
evaluate methods using inner and outer structure representa
tions. For each protein, we construct a residue graph 
(Fig. 4b), representing residues as nodes and establishing 
edges between the 15 nearest neighboring residues within a 
10 Å radius. Each residue is characterized by a 28-dimen
sional physicochemical feature vector. This vector encom
passes a one-hot encoding of the amino acid, encompassing 
20 possible types along with one for an unclassified type. 
Additionally, seven other features are included that portray 
the physical, chemical, and structural attributes of the amino 
acid type (see Supplementary data). These supplementary fea
tures can be viewed as a consistent embedding, as outlined in 
Meiler et al. (2001).

For each protein, we generated a surface mesh (Fig. 4d) us
ing the PyMOL API with a 1.4 Å water probe radius. We as
sociated each point on the protein’s surface with a residue by 
finding the closest atom to that point. This association was 
then used to transfer the feature of each residue to the points 
on the surface.

5 Method
In our experiments, we considered two scenarios: a protein 
represented through its inner structure (I-GEP) and outer 
structure (O-GEP). In both cases, we leverage the geometric 
information to improve the performance of epitope and para
tope prediction methods. Details on the methods, including 
the detailed model architectures, are reported in the 
Supplementary data.

5.1 I-GEP
Our I-GEP model is a method for predicting epitopes and 
paratopes using a graph-based approach that captures the in
ner structure of a protein. The I-GEP model has two main 

components: a structural module that computes an embed
ding for each residue using the graph structure and a graph 
attention layer (GAT) that combines information from both 
the antigen and antibody residues. It’s crucial to note that our 
model processes these protein pairs without any prior knowl
edge of their interactions.

Specifically, the representation of the antibody and antigen 
is passed through a structural module summarizing the fea
tures of each molecule. We implement this module using a 
graph convolution layer (GCN), see Fig. 2a. After passing 
through batch normalization, ReLU activation, and a drop
out layer, the distinct features from both the antibody and 
antigen are fused through a two-layer GAT. Finally, the out
puts of the GCN and the two graph attention layers are 
concatenated to generate two separate predictions, one for 
the antigen and another for the antibody using a fully con
nected layer (FC), as shown in Fig. 2.

To improve the accuracy of our predictions, we integrate 
geometric information into the I-GEP model using two differ
ent approaches. In the first approach, EPMPxyz, we use graph 
convolutional network layers in the structural module as in 
EPMP (Del Vecchio et al. 2022), but we include the centered 
3D coordinates of residues in the input features. The second 
approach, E(n)-EPMP, uses the E(n) invariant layer encoder 
from EGNN (Satorras et al. 2021) instead of graph convolu
tional networks. This approach considers only the distances 
between residues, making it invariant to translations, rota
tions, and reflections on the residue positions in each mole
cule. We visually represent this pipeline in Fig. 2a and b.

5.2 O-GEP
Our O-GEP model operates on the protein’s surface and 
includes a geometric module that uses the surface’s geometry 
to spread information across it. This process generates fea
tures that are then combined and shared between the anti
body and antigen through fully connected layers 
(segmentation module), resulting in an interaction probability 
for each point on the surface, as shown in Fig. 3a. The O- 
GEP model is an extension of the architectural foundation 
established in Pinet, where models store a set of features at 
each point on the protein surface and generate a binding 
probability for each point. The input features are computed 
as explained in and transferred to the surface representation, 
allowing close comparison with the two geometric represen
tations. We note that the labels of the CDRs are not used as 
input for the O-GEP methods.

In Pinet, the process begins by individually processing both 
the antigen and antibody’s surface as a point cloud. This pro
cess is iteratively applied to generate two representations: a 
local representation after one iteration and a global represen
tation after multiple iterations, where local features of each 
point are pooled into a single vector. Once both proteins 
have undergone this treatment that we refer as the geometric 
module in Fig 3b, the local surface features of each protein 
and their global protein features are combined and subjected 
to further segmentation through a set of 1D convolution neu
ral network. Importantly, the trainable weights for canonical 
transformations, local feature extraction, and global feature 
extraction are shared between the two proteins, as in Dai and 
Bailey-Kellogg (2021). Finally, the models predict a binding 
probability for each point on the point cloud.

In modifying this architecture, we explore two different 
models for the geometric module. As a baseline, we use 
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PointNet (Qi et al. 2017) to recreate the architecture proposed 
in PiNet (Dai and Bailey-Kellogg 2021). In particular, a Spatial 
Transformation Network ensures invariance to rigid-body 

transformations for each protein. Subsequently, a multi-layer 
perceptron (MLP) extracts local surface characteristics. These 
local surface features are combined into a comprehensive 
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Figure 2. Models architecture: The layers or modules are depicted using color-coded blocks, with the text inside indicating the respective layer type. In 
parentheses, we provide the dimensions for each layer: GCN, E(n) invariant layer (EGNN), Graph Attention Layer (GAT), and FC. The arrows indicate the 
data flow from one module to the next. Additional details about the transformation performed on the input are written. (a) GCN I-GEP. (b) EGNN I-GEP
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Figure 3. Our model architecture is represented with arrows indicating data flow between modules, using colour-coded blocks to represent layers or 
modules, with text inside each block specifying the layer type. The model takes antibody-antigen pairs as input, featuring surface point-level features, and 
produces binding probabilities for each input point. (a) Overall structure of the O-GEP model. (b) Geometric module: The protein representation is first 
passed through an MLP layer before entering the diffusion block as defined in Sharp et al. (2022). The local and global features are computed by applying 
the diffusion block a single and n times, respectively. (c) Segmentation module: The output of the geometric module is concatenated into two vectors for 
the antigen and the antibody, respectively. These representations are then sent through the segmentation module to output the binding prediction on the 
antigen and antibody, respectively. The segmentation module is shared across the two representations and consists of convolutional layers.
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protein feature vector. The second model employs diffusion 
layers from DiffNet (Sharp et al. 2022) to propagate features 
on the surface. This change is advantageous because DiffNet 
can compute features on both point clouds and meshes inde
pendently. This makes our model robust against surface per
turbations and suitable for handling meshes and point clouds 
with fewer points.

We further examine the impact of using the Heat Kernel 
Signature (HKS) as an extra geometric descriptor input. The 
HKS (Sun et al. 2009) is a concise point-wise spectral signa
ture which summarizes local and global information about 
the intrinsic geometry of a shape by capturing the properties 
of the heat diffusion process on the surface. One of the key 
benefits of using HKS is that it remains stable even under mi
nor surface perturbations, thus enabling it to withstand even 
conformational rearrangements of the proteins. To utilize the 
HKS descriptor, we concatenate it with the input features at 
each point on the surface and then pass the concatenated 
data through the geometric module.

To transfer the binding probabilities from the protein’s sur
face to the residues, we utilized the average of all the points 
on the surface that correspond to the same residues. This 
method ensures that the binding probabilities are accurately 
represented in the residue space, enabling us to make reliable 
predictions about epitope and paratope locations.

5.3 Training and evaluation
The networks were trained using the class-weighted binary 
cross-entropy loss and the Adam stochastic gradient descent 
(SGD) optimizer to handle imbalanced binary classification 
tasks. To enhance model robustness, we applied random 
rotations to dataset instances. We report training details in 
the Supplementary data.

Given the significant disparity in class sizes, we utilize 
Matthew’s correlation coefficient (MCC) between the resi
dues’ classification as our main benchmarking metric for 
model evaluation. This aligns with evaluation methods in 
similar studies such as (Krawczyk et al. 2014, Cia et al. 
2023). We also report the area under the receiver operating 
characteristic curve (AUC ROC) and the area under the preci
sion–recall curve (AUC PR) as used in (Dai and Bailey- 
Kellogg 2021, Del Vecchio et al. 2022). All reported values 

are aggregated across five random seeds to ensure the robust
ness of our findings.

6 Results
In this section, we report the results of our experiments and 
demonstrate the contribution of geometric information on 
the task of epitope-paratope prediction.

6.1 I-GEP results
We conducted experiments to evaluate the effectiveness of in
corporating geometric information by comparing our pro
posed models from section with the EPMP model proposed 
in Del Vecchio et al. (2022). The results obtained from the 
test set, which includes complexes with a pairwise sequence 
identity similarity of at most 70%, are presented in 
Supplementary Table 1a. The metrics demonstrate that add
ing geometric information leads to increased performance. 
Specifically, the use of the E(n) invariant layer (E(n)-EPMP) 
resulted in an improvement in the AUR ROC and AUR PR 
metrics for both antibody and antigen.

6.2 O-GEP results
To test the performance of O-GEP models, we consider the 
methods proposed in Section with different combinations of 
input features. In addition to the physicochemical features, 
we test different combinations of geometric information: 3d 
coordinates (XYZ) and HKS. For the DiffNet models, we con
sider both the point cloud (pc) and the mesh (m) of 
the surface.

The results obtained from the test set are summarized in 
Supplementary Table 1b. Notably, the HKS emerges as a 
valuable feature for both paratope and epitope predictions. 
Its incorporation into the PiNet baseline leads to an improve
ment in performance for both tasks, with an increase of at 
least 0.03 in the MCC metric. Of particular interest are the 
results obtained from the DiffNetpc (hks) and DiffNetm (hks) 
models in antibody predictions. Here, the addition of HKS 
significantly enhances the MCC score by 0.09 and 0.12, re
spectively, compared to the DiffNet models without this fea
ture. Conversely, the absence of coordinates as input appears 
to diminish the performance of antigen predictions. The ef
fectiveness of surface features like the HKS in paratope 

Figure 4. Qualitative comparison between experimental and Alpha-Fold 2 predicted complex ‘7e9b’. The continuous binding predictions are represented 
as a color gradient in blue and red for the antigen and antibody, respectively. (a) Secondary structure, (b) E(n)-EPMP, (c) PiNet (xyzþhks), (d) DiffNetpc 

(xyz), (e) DiffNetmesh (hks), (f) secondary structure, (g) E(n)-EPMP, (h) PiNet (xyzþhks), (i) DiffNetpc (xyz), and (j) DiffNetmesh (hks)
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prediction can be attributed to the localized and specific 
structural characteristics captured, especially within the pro
tein’s Complementarity Determining Regions (CDRs).

Interestingly, aside from the sole input of HKS, the PiNet 
and DiffNet models perform similarly. The DiffNet model 
with only 3D coordinates as input [DiffNet (xyz)] outper
forms its PiNet counterpart [PiNet (xyz)] and performs at 
comparable levels to PiNet with the additional HKS feature 
[PiNet (xyzþhks)]. However, the combined use of both 3D 
coordinates and HKS does not yield the same performance 
improvement in epitope prediction for DiffNet as observed in 
PiNet. This phenomenon may suggest that the heat diffusion 
process modeled by DiffNet sufficiently approximate the in
formation provided by HKS on the antigen, rendering the ad
ditional HKS features redundant in the model.

Regarding the choice between mesh representation and 
point cloud, it is essential to note that when input features 
are consistent, the performance difference between the two 
representations is relatively small, typically within a range of 
0.4 and usually overlapping in our experiments (see 
Supplementary Table 1b). Factors contributing to this slight 
difference may include the computation of eigenvectors and 
the inherent structure of the representations themselves. 
Point cloud representation offers greater flexibility as it does 
not impose connectivity constraints on neighboring nodes, 
allowing for a more adaptable representation for proteins.

6.3 Qualitative results
We also conducted a qualitative assessment of our methods. 
In Fig. 4, we show the predicted binding on the complex 
“7e9b” for the best model in Supplementary Table 1b. In the 
Supplementary data, we provide more qualitative examples 
of all the methods considered.

We observed distinct behavior in epitope and paratope pre
diction when visualizing binding probability on graph nodes 
using color gradients in I-GEP models (Fig. 4g and b). 
Paratope prediction focuses on residues closest to the antigen, 
while epitope prediction primarily targets sparse regions 
of the antigen, often its spiky edges. This is translated in the 
I-GEP results in better predictive performance for 
the antibody.

In O-GEP models, predictions are visualized on the protein 
surface and residues. Predictions are highly localized on the 
region nearest to the binding molecule, especially for the epi
tope(see Fig. 4c and d). However, HKS alone may not be suf
ficient to propagate information globally across the antigen, 
leading to high binding predictions across all geometry of the 
antigen (see Fig. 4e and j).

6.4 I-GEP and O-GEP comparison
Our study indicates that diverse geometric representations 
hold utility across various tasks. Surface-based models excel 
in predicting antigen binding, whereas graph models demon
strate superior performance in antibody prediction. This di
vergence can be attributed to the local nature of predicting 
the antibody binding region, primarily concentrating on the 
CDR, a well-structured and localized area. In contrast, epi
tope prediction requires a more global perspective, hence fa
voring a surface-based approach.

As I-GEP and O-GEP yield complementary results across 
various tasks, we decided to combine their predictions. In the 
Supplementary data, we present our approach, which 
involves combining the predictions made by I-GEP and O- 

GEP using simple methods such as taking the mean or prod
uct of the predictions for each residue. Remarkably, the 
results reveal that the performance of these mixed models can 
either match or even surpass that of the individual models. 
This finding underscores the potential effectiveness of com
bining different processing methods.

7 Structural variations
Proteins, including antibodies and antigens, are inherently 
flexible and dynamic entities. Their shapes can undergo 
changes in response to alterations in their environment or 
other factors, resulting in various conformations for the same 
amino acid sequence. In this section, we analyze how these 
variations in shape influence the prediction of epitopes and 
paratopes in GEP.

7.1 Unbounded complexes
The structure and geometry of the proteins might change 
depending on whether they are bound or not. We compare 
the results between bound and unbound structures for the an
tibody and antigen complexes on the validation set derived 
from a subset of the Docking Benchmark v5 (Vreven et al. 
2015). This benchmark provides protein complexes both in 
unbound and bounded conditions, allowing us to compare 
the two settings. We computed the mean root-mean-square 
deviation (mRMSD) between corresponding complexes in the 
two datasets and find out that the antigens have a mRMSD 
3.67 Å, while the antibody a mRMSD of 3 Å.

Supplementary Table 2a and c shows the results of the I- 
GEP and O-GEP models, respectively, on the validation set 
used during training. Since the validation set shares a much 
higher identity similarity with the training set with respect to 
that test set used in Supplementary Table 1, the performances 
are much higher. The O-GEP models are able to reach an 
MCC of 0.54 and an AUC ROC of 0.91 on the antigene, 
while the E(n)-EPMP reaches an MCC of 0.46 and an AUC 
ROC of 0.83 on the antibody. As in Supplementary Table 1, 
the addition of the HKS features increases the performance of 
the PiNet model, while the E(n)-EPMP stays as the best 
I-GEP model. When we compare the bounded conformations 
(Supplementary Table 2a and c) with the unbounded counter
part (Supplementary Table 2b and d), we can notice a con
stant reduction in the performance, but the relative 
performance trends remain consistent. In the Supplementary 
data, we plot qualitative examples of the ’2fd6’ both in the 
bounded and unbounded setting.

7.1.1 Alpha-Fold predictions
In the case where the experimental structure is not available, 
it is possible to use tools such as Alpha-Fold 2 (Jumper et al. 
2021) to predict the structure from the protein sequences.

We test our model on Alpha-Fold predictions from Yin 
and Pierce (2024) where the geometry of the proteins might 
also change slightly due to reconstruction error. In 
Supplementary Table 4, we selected the reconstructions that 
were measured to have high and medium CAPRI accuracy. 
The complexes have a RMSD of 11.25 Å for the antigens and 
of 1.35 Å for the antibody. In the Supplementary data, we 
also report and discuss the results of acceptable accuracy 
reconstruction.

The Alpha-Fold results in Supplementary Table 3 consis
tently exhibit lower values compared to those from the 
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experimental complexes. This can be attributed to the visibly 
distinct structure of the reconstructed antibody in Fig. 4g. 
Nevertheless, looking at the qualitative results in Fig. 4, 
results remain notably promising, with predictions highly lo
calized on the region nearest to the binding molecule for both 
paratope and epitope. In the Supplementary data, we provide 
the qualitative examples of all the GEP methods.

7.1.2 Discussion
Both the unbounded and Alpha-Fold datasets introduce 
changes or errors in geometry. Generally, the models perform 
less effectively on these datasets. However, we assess the ro
bustness of geometric models relative to the original by exam
ining the Wasserstein distances (WD) between the 
performance with the original data and the geometric altered 
data set. We present a table of results for all models in the 
Supplementary material. In the O-GEP models, we observe in 
both sets, that the HKS is as a valuable feature for epitope, 
decreasing the WD leading to more robust model. This obser
vation aligns with the enhanced performance of models in
corporating these features shown in Supplementary Table 1. 
In the I-GEP models, the inclusion of the equivariant layer 
results in a lower WD for the antibody, signifying stronger 
robustness to geometric changes compared to the original 
models. This aligns with the observation that I-GEP models 
excel in predicting the paratope due to their local structure. 
Comparing the two sets, the Alpha-Fold complexes exhibit a 
higher RMSD for the antigens than the unbound set. This 
suggests that the Alfa-Fold structures deviate more geometri
cally from the original protein than the unbound structures. 
The results corroborate this, as the WD on the Alpha-Fold set 
is larger than that on the unbounded structures.

8 Conclusions
We investigated the effectiveness of geometric deep learning 
techniques in predicting antibody-antigen interactions. Our 
results indicate that incorporating geometric information is 
crucial for accurately predicting epitope and paratope 
regions. Specifically, the use of an invariant representation in 
I-GEP models improve previous models, and O-GEP models 
with diffusion layers and additional geometric features 
achieved state-of-the-art performance. Inspired by the com
plementary roles of these two approaches, we explored the 
combination of their predictions, yielding enhanced perfor
mance. This combination of methodologies presents an in
triguing avenue for further investigation in epitope and 
paratope predictions, showcasing the potential of leveraging 
diverse computational techniques to augment predictive ca
pabilities. Moreover, our study has shed light on the impact 
of geometric variations arising from conformational changes 
or reconstruction errors. Despite these challenges, our models 
have shown better results compared to previous methods, 
underscoring the robustness of our approach. Notably, our 
observation that the HKS provides geometric information re
silient to minor perturbations in protein structures offers 
promising avenues for future exploration. For this reason, we 
believe future research could explore using spectral shape 
analysis to address the more complex problem of conforma
tional rearrangement in antigen-antibody binding. A limita
tion of our model is that it cannot solely utilize an antigen or 
antibody as input, as it relies on both proteins’ properties to 
predict the most suitable interacting region. In our future 

research works, we aim to explore the significance of geomet
ric information in predicting partner-unspecific interfaces.
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