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Abstract
Background and Objectives
Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network
analyses typically require advanced MRI sequences not commonly acquired in clinical practice.
Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection
and morphometric similarity networks in people with MS (pwMS), along with their relationship
with clinical disability.

Methods
In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC)
was retrospectively analyzed. Physical and cognitive disabilities were assessed with the expanded
disability status scale (EDSS) and the symbol digit modalities test (SDMT), respectively. De-
myelinating lesions were automatically segmented, and the corresponding masks were used to
assess pairwise structural disconnection between atlas-defined brain regions based on normative
tractography data. Using the Morphometric Inverse Divergence method, we computed mor-
phometric similarity between cortical regions based on FreeSurfer surface reconstruction. Using
network-based statistics (NBS) and its extension NBS-predict, we tested whether subject-level
connectomes were associated with disease status, progression, clinical disability, and long-term
confirmed disability progression (CDP), independently from global lesion burden and atrophy.

Results
We studied 461 pwMS (age = 37.2 ± 10.6 years, F/M = 324/137), corresponding to 1,235 visits
(mean follow-up time = 1.9 ± 2.0 years, range = 0.1–13.3 years), and 55 HC (age = 42.4 ± 15.7
years; F/M = 25/30). Long-term clinical follow-up was available for 285 pwMS (mean follow-up
time = 12.4 ± 2.8 years), 127 of whom (44.6%) exhibited CDP. At baseline, structural discon-
nection in pwMS was mostly centered around the thalami and cortical sensory and association
hubs, while morphometric similarity was extensively disrupted (pFWE < 0.01). EDSS was related
to frontothalamic disconnection (pFWE < 0.01) and disrupted morphometric similarity around
the left perisylvian cortex (pFWE = 0.02), while SDMT was associated with cortico-subcortical
disconnection in the left hemisphere (pFWE < 0.01). Longitudinally, both structural disconnection
and morphometric similarity disruption significantly progressed (pFWE = 0.04 and pFWE < 0.01),
correlating with EDSS increase (ρ = 0.07, p = 0.02 and ρ = 0.11, p < 0.001), while baseline
disconnection predicted long-term CDP (accuracy = 59% [58–60], p = 0.03).

1Department of Advanced Biomedical Sciences, University “Federico II,” Naples, Italy; 2Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuro-
science, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; 3Department of Human Neurosciences, Sapienza University of Rome, Italy; 4Multiple Sclerosis Unit,
Policlinico Federico II University Hospital, Naples, Italy; 5Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy; 6Centre for Medical
Image Computing, University College London, United Kingdom; 7Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom;
8Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; 9Department of
Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples “Federico II,” Italy; 10Department of Anatomy and Neurosciences, MS Center Amsterdam,
Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and 11Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy.

The Article Processing Charge was funded by UCL.

This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
e213349(1)

mailto:g.pontillo@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/


Discussion
Structural disconnection and morphometric similarity networks, as assessed through conventional MRI, are sensitive to MS-
related brain damage and its progression. They explain disease-related clinical disability and predict its long-term evolution
independently from global lesion burden and atrophy, potentially adding to established MRI measures as network-based
biomarkers of disease severity and progression.

Introduction
Multiple sclerosis (MS) is a chronic neuroinflammatory and
neurodegenerative disease of the CNS, commonly associated
with physical disability and cognitive impairment, and carry-
ing an important personal and socioeconomic burden.1 Al-
though the assessment of focal lesions and brain atrophy using
conventional MRI are crucial in the clinical management, they
only partially explain the clinical heterogeneity observed in
people with MS (pwMS).2

From the field of network neuroscience, conceptualizing
the brain as a complex system of gray matter (GM)
regions—nodes—linked by structural and functional
connections—edges, MS can be modeled as a network
disorder.3,4 Demyelinating lesions disrupt white matter (WM)
pathways,5 while atrophy subverts the ordered patterns of
morphometric similarity between GM areas.6 Throughout MS,
the accumulation of structural damage affects the brain’s
functional organization, leading to physical disability and cog-
nitive impairment.4 Shifting the emphasis from characterizing
damage in specific regions to understanding network-level
alterations has yielded unprecedented insights into the patho-
physiologic mechanisms that underlie MS-related brain dam-
age and associated clinical manifestations.3 However, brain
network analyses are typically dependent on advanced MRI
sequences, hampering their implementation in clinical settings.
This has led to considerable efforts in developing network
analyses using anatomical images to enable the (re)analysis of
conventional MRI datasets.7

Structural disconnection can be estimated from subject-level
lesion masks, easily derived from anatomical images, and
population-averaged tractography atlases, without requiring
individual diffusion imaging.8 Such atlas-based approaches
have demonstrated substantial agreement with individual
tractography-based disconnectomes,9 offering an alternative
perspective for evaluating the effect of MS lesions.

Disconnection metrics correlate with physical disability and
systemic biomarkers of axonal damage,10 and disruption of
specific brain subnetworks is linked to MS symptoms such as
reduced information processing speed11 or depression.12

Similarly, single-subject GM networks can be built from ana-
tomical MRI by estimating a set of morphological properties
(e.g., volume, thickness, and curvature) within each cortical
region and computing pairwise similarities.13 Different meth-
ods using this framework have demonstrated a restructuring of
morphological similarity networks toward more disorganized
configurations in pwMS, starting early in the disease,14 corre-
lating with physical disability and cognitive impairment,15 and
explaining disability worsening.16 However, these approaches
have limitations, including how regions of interest are defined,
the reliance on single metrics, or the reduction of complex data
to simplistic summary statistics for each feature per region,
making the link between GM networks and their neurobio-
logical substrate somehow obscure.17 Recently, the Morpho-
metric Inverse Divergence (MIND) method has been
proposed that addresses these limitations by estimating within-
subject similarity between cortical areas based on the di-
vergence between their multivariate distributions of multiple
MRI features, with the advantages of higher technical reliability
and biological validity.18

Most studies have assessed structural disconnection and
morphometric similarity in isolation, using small sample sizes
or short follow-up periods. Consequently, their potential as
biomarkers of MS severity and progression remains largely
unexplored. Here, leveraging a large monocentric cohort of
pwMS, we jointly mapped structural disconnection and
morphometric similarity both cross-sectionally and longitu-
dinally. We aimed to demonstrate whether the corresponding
networks (1) are sensitive to MS-related brain damage and its
progression over time; (2) can explain MS-related physical
disability and cognitive dysfunction; and (3) can predict long-
term clinical worsening.

Glossary
BPF = brain parenchymal fraction; CDP = confirmed disability progression; CONT = control network; CV = cross-validation;
DAN = dorsal attention network; DD = disease duration; DMN = default mode network; EDSS = Expanded Disability Status
Scale; FLAIR = fluid-attenuated inversion recovery; FWE = family-wise error;GM = gray matter;HC = healthy control;MIND =
morphometric inverse divergence;MPRAGE = magnetization-prepared rapid acquisition gradient echo sequence;MS = multiple
sclerosis;NBS = network-based statistics; pwMS = people with MS; SDMT = Symbol Digit Modalities Test; SM = somatomotor
network; T1w = T1-weighted; T2w = T2-weighted; TE = echo time; TI = inversion time; TLV = total lesion volume; TR =
repetition time; VAN = ventral attention network; VIS = visual; WM = white matter.
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Methods
Participants
In this longitudinal study, we retrospectively selected patients
with a diagnosis of MS according to the 2010-McDonald
criteria19 from the radiologic and clinical databases of the MS
Center of the University of Naples “Federico II.”We included
all pwMS who had undergone at least 1 structural brain MRI
scan, comprising the same 3D-T1-weighted (T1w) sequence,
between October 2006 and October 2020. In addition, we
selected individuals who had participated as healthy controls
(HC) in research studies during the same period and un-
dergone the same MRI protocol. Exclusion criteria were
age <18 or >75 years, and the presence of other neurologic,
psychiatric, or systemic conditions.

Clinical Evaluation
Clinico-demographic data of selected participants were re-
trieved from clinical and research records. For pwMS, physical
disability and information processing speed were assessed
within 1 week from the MRI using the Expanded Disability
Status Scale (EDSS) and the Symbol Digit Modalities Test
(SDMT), respectively. SDMT values were converted into
age-, sex-, and education-adjusted z-scores based on norma-
tive values in the healthy population.20 For consistency with
interpreting EDSS associations, SDMT z-scores were inver-
ted before entering statistical analyses such that higher values
reflected poorer cognitive performance. For patients who
were followed up for more than 5 years, the latest available
EDSS score was retrieved and confirmed disability pro-
gression (CDP) from the baseline examination was defined as
an EDSS increase ≥1 (for baseline EDSS ≤5.5) or ≥0.5 (for
baseline EDSS >5.5).21

MRI Acquisition
All MRI scans were acquired on the same 3T scanner
(Magnetom Trio; Siemens Healthineers, Erlangen, Ger-
many), equipped with an 8-channel head coil. The acquisition
protocol included a 3D T1w magnetization prepared rapid
acquisition gradient echo sequence (repetition time [TR] =
1,900 milliseconds, echo time [TE] = 3.4 milliseconds, in-
version time [TI] = 900 milliseconds, flip angle = 9°, voxel
size = 1 × 1 × 1 mm3, 160 axial slices) for morphometric
analyses and, for pwMS, a T2-weighted fluid-attenuated in-
version recovery (T2w-FLAIR) sequence (3D: TR = 6,000
milliseconds, TE = 396 milliseconds, TI = 2,200 milliseconds,
flip angle = 120°, voxel size = 1 × 1 × 1mm3, 160 sagittal slices;
or 2D: TR = 9,620 milliseconds, TE = 138 milliseconds, TI =
2,500 milliseconds, flip angle = 150°, voxel size = 1 × 1 ×
3 mm3, 48 axial slices) for the assessment of demyelinating
lesions.

Lesion Segmentation and Structural
Disconnection Networks
For all pwMS, demyelinating lesions were automatically seg-
mented on T2w-FLAIR and T1w scans using the cross-
sectional SAMSEG method in FreeSurfer v7.3.2.22 The

obtained lesion masks were used to compute total lesion
volume (TLV) and to fill lesions in T1w images for sub-
sequent morphometric analyses through FSL’s lesion-filling
procedure.23 Individual lesion masks were registered to the
MNI space by applying the nonlinear transformation obtained
by normalizing T1w volumes to the template using ANTs
v2.4.3.24 Spatially normalized lesion masks were used to ob-
tain structural disconnection matrices based on a regional GM
parcellation including 100 cortical regions from the Schaefer
atlas25 and 14 subcortical regions FreeSurfer’s segmenta-
tion.26 Using the Lesion Quantification Toolkit,8 which relies
on the HCP-842 tractography atlas, the pairwise disconnec-
tion between structurally connected GM regions was com-
puted as the proportion of streamlines intersecting lesions
and used to fill subject-level 114 × 114 structural disconnec-
tion matrices. We generated group-level lesion and discon-
nection probability maps, expressing the probabilities of each
voxel containing a lesion or at least 1 streamline intersecting
a lesion, respectively.8 Nodes were assigned to 7 canonical
functional system labels including visual (VIS), somatomotor
(SM), dorsal attention (DAN), ventral attention (VAN),
limbic, control (CONT), and default mode (DMN) net-
works,27 plus a network of subcortical regions. In addition,
edges were aggregated into region-level features by summing
all values attached to each node.

Structural MRI Processing and Morphometric
Similarity Networks
Lesion-filled T1w volumes were processed with FreeSurfer
v6.0.1 using the recon-all cross-sectional pipeline imple-
mented in the corresponding BIDS app.26 As for lesion seg-
mentation, different MRI visits were considered as separate
instances to apply identical image processing to all timepoints.
Brain parenchymal fraction (BPF), considered a measure of
global brain atrophy, was computed from FreeSurfer output
as the ratio of brain volume to intracranial volume and
expressed as z-scores adjusted for the effects of age and sex in
healthy population. Based on FreeSurfer cortical surface re-
construction, vertex-level morphometric features (i.e., cortical
thickness, GM volume, surface area, mean curvature, and
sulcal depth) were extracted for 100 regions of interest de-
fined by the Schaefer atlas25 and used to compute the pairwise
morphometric similarity between cortical regions using the
MIND approach.18 Briefly, MRI features were standardized
across all vertices and aggregated to form regional multivariate
distributions. The pairwise similarity between regional mul-
tivariate distributions was computed based on the symme-
trized Kullback-Leibler divergence metric and bounded
between 0 and 1, with higher values representing greater
similarity. The obtained values were used to fill subject-level
100 × 100 cortical morphometric similarity matrices. As for
structural disconnection matrices, aggregated network-level
and region-level representations were also generated.

Statistical Analysis
Unless otherwise specified, statistical analyses were per-
formed using R (version 4.1.2). The effect of group (pwMS vs
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HC, only for morphometric similarity networks), EDSS, and
SDMT scores on baseline structural disconnection and
morphometric similarity networks were tested with the
network-based statistics (NBS) approach, as implemented in
the NBR package.28 NBS is a nonparametric method for
performing statistical analysis on networks, that adjusts for
multiple comparisons by clustering within the topological
(rather than physical) space. Briefly, (1) the hypothesis of
interest is tested edge-wise using the general linear model; (2)
connections are filtered according to a test statistic threshold;
(3) connected graph components are identified among
suprathreshold connections; and (4) a family-wise error
(FWE)–corrected p-value is computed for each component
based on the sum of test statistic values using permutation
testing.28 Similarly, longitudinal changes of structural dis-
connection and morphometric similarity networks were
assessed using the implementation of linear mixed-effects
models for NBS provided by the NBR package, with time
points nested within participants and random intercept and
slope of follow-up time per subject. Similar mixed-effects
models were used to assess the longitudinal evolutions of
EDSS, TLV (log(x + 1)-transformed to account for the pos-
itively skewed distribution), and z-scored BPF. For all NBS
analyses, baseline age, age2 (to account for the nonlinear effect
of age), and sex were included in the model as nuisance var-
iables, with a primary statistical threshold of p < 0.01, 5,000
permutations, and a statistical significance level set at pFWE <
0.05. As we were interested in subnetwork-specific effects
rather than the influence of global lesion burden or atrophy,
models assessing the correlations with clinical variables were
additionally adjusted for log(x + 1)-transformed TLV (for
structural disconnection matrices) and BPF z-scores (for
morphometric similarity matrices).To confirm that we were
effectively filtering out global effects driven by overall lesion
burden and atrophy, we also repeated these analyses without
adjustments. When subnetworks exhibiting significant change
over time emerged, these were summarized for further anal-
yses by z-scoring each edge using the healthy population as
a reference and calculating the average of their modules to
obtain global synthetic measures of longitudinal structural
disconnection and morphometric similarity alteration. We
used absolute z-score values because we were interested in
quantifying overall deviation from the healthy norm, pre-
cluding effects of opposite sign from canceling each other out.
We used Spearman rank correlation to test the associations of
the identified subnetworks with annualized EDSS change. In
addition, the associations between altered subnetworks and
disability worsening were reassessed while accounting for
changes in log(x + 1)-transformed TLV and BPF z-scores,
respectively, using partial correlations.

To evaluate the prognostic value of structural disconnection
and morphometric similarity, we tested whether baseline
networks could predict long-termCDP using theNBS-predict
approach, a prediction-based extension of NBS combining
machine learning models with connected components in
a cross-validation (CV) structure, as implemented in the

corresponding MATLAB (MathWorks, 2017) toolbox.29 We
ran NBS-predict with 5-fold nested CV (primary threshold
p < 0.01) and hyperparameter optimization using Bayesian
optimization with 100 iterations. For a complete list of
hyperparameters and explored ranges, we refer the reader to
the NBS-predict manual.30 The CV structure was repeated
10 times to reduce the variation in the model performance
estimation. We scaled data and regressed out baseline age,
age2, sex, and log-transformed TLV (for structural discon-
nection matrices) and BPF z-scores (for morphometric sim-
ilarity matrices), using a cross-validated deconfounding
technique to prevent data leakage.29 Different machine
learning algorithms (logistic regression, linear support vector
classification, and linear discriminant analysis) were evaluated,
with classification accuracy as the performance metric and 500
permutations to assess the significance of the models’
predictions.29

Finally, we investigated the coupling between structural dis-
connection and morphometric similarity in pwMS at baseline
at different scales using Spearman rank correlation. At the
global network level, we determined the group-level correla-
tion between mean structural disconnection and mean mor-
phometric similarity across participants. At the edge level, we
averaged structural disconnection and morphometric simi-
larity networks across participants and correlated the 2 vec-
torized matrices. At the node level, regional connectivity
profiles were extracted row-wise from structural disconnec-
tion and morphometric similarity matrices and correlated
with each other to obtain coupling values for each of the 100
cortical parcels. To investigate the possible effect of disease
phase, we split the patients based on the median disease du-
ration (DD) and assessed network coupling separately in
pwMS with shorter vs longer DD.

Standard Protocol Approvals, Registrations,
and Patient Consents
The study was conducted in compliance with the Declaration
of Helsinki and approved by the Ethics Committee “Carlo
Romano” of the Host Institution. Written informed consent
was obtained from all participants.

Data Availability
Derived data that support the findings of this study are
available from the corresponding author on reasonable re-
quest. Raw data are not available because of reasons of
sensitivity.

Results
Participants
We analyzed 461 pwMS (F/M = 324/137, mean age at
baseline = 37.2 ± 10.6 years, mean DD at baseline = 9.1 ±
7.9 years, clinical phenotype at baseline = 387 relapsing-
remitting, 51 secondary-progressive, 23 primary-progressive)
corresponding to 1,235 visits (median number of visits per
patient = 4, range = 1–8; mean follow-up time = 1.9 ±
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2.0 years, range = 0.1–13.3 years), and 55HCs (F/M = 25/30,
mean age = 42.4 ± 15.7 years).

Baseline EDSS (median = 2.5, interquartile range = 2.0–4.0) and
SDMT (mean z-score = −1.1 ± 1.1) were available for 459 and
247 pwMS, respectively. Long-term clinical follow-up was
available for 285 pwMS (mean follow-up time = 12.4 ± 2.8 years,
range = 5.1–17.2 years) (eFigure 1), 127 of whom (44.6%)
exhibited CDP. Demographic, clinical, and MRI characteristics
of the studied population are reported in the Table.

Structural Disconnection and Morphometric
Similarity Networks in Patients With MS
Compared With HC
At baseline, pwMS displayed the highest lesion probability in
the periventricular WM (Figure 1A), with the highest dis-
connection probability at the level of the occipital WM,
splenial commissural fibers, and long-range frontal and tem-
poral association tracts (Figure 1B). On average, structural
disconnection was mainly observed between the VIS and the
SM and nonsensorimotor networks, as well as within and
between cortical associative networks and around subcortical
structures (Figure 1C). At the regional level, the most struc-
turally disconnected nodes were the thalami and temporal and
posterior cortical regions (Figure 1D).

Compared with HC (Figure 2A), pwMS showed a distributed
subnetwork of predominantly disruptedmorphometric similarity
(431 edges, pFWE < 0.01, Figure 2, B and C), with the prominent
involvement of occipital, pericentral, perisylvian, and prefrontal
cortices (Figure 2D). Global structural disconnection and mor-
phometric similarity disruption significantly correlated with TLV
(Spearman ρ = 0.94, p < 0.001, eFigure 1A) and BPF (Spearman
ρ = −0.40, p < 0.001, eFigure 1B), respectively.

Baseline Associations of Structural
Disconnection and Morphometric Similarity
Networks With Physical and
Cognitive Disability
At baseline, we found a subnetwork of significant association
between EDSS and structural disconnection (225 edges,
pFWE < 0.01), mainly involving cortico-subcortical tracts,
within-transmodal connections of the DMN, the DAN, the
VAN and the CONT, and links between these and sensori-
motor networks. The regions participating the most in this
subnetwork were the thalami, the amygdalae, and the pre-
frontal cortex (Figure 3, A–C). EDSS was also significantly
associated with a smaller subnetwork of predominantly dis-
rupted morphometric similarity between the DMN and the
other networks, with the prominent participation of the insula
and the perisylvian cortex of the left hemisphere (86 edges,
pFWE = 0.02) (Figure 3, D–F). Similarly, SDMT was associ-
ated with a relatively small subnetwork of predominantly
cortico-subcortical structural disconnection mostly involving
the left hemisphere (88 edges, pFWE < 0.01), with the par-
ticipation of the thalamus and prefrontal, temporal, and oc-
cipital cortical regions (Figure 3, G–I). No significant
subnetworks emerged when assessing the relationship be-
tween morphometric similarity and SDMT. When repeating
the analyses without adjusting for global lesion burden and
brain atrophy, we observed more distributed, less circuit-
specific, effects (eAppendix 1 and eFigure 2).

Longitudinal Changes of Structural
Disconnection and Morphometric Similarity
and Association With Disability Worsening
Longitudinally, we found a smaller subnetwork of progressive
structural disconnection (82 edges, pFWE = 0.04) involving
mainly fronto-thalamic tracts (Figure 4, A–C). Moreover, we

Table Baseline Demographic and Clinical Characteristics of the Studied Population

Healthy controls
(N = 55)

Patients with multiple
sclerosis (N = 461) p Value

Age, y 42.4 (15.7) 37.2 (10.6) 0.02

Sex, F/M 25/30 324/137 <0.001

Disease duration, y — 9.1 (7.9) n.a.

Clinical phenotype, relapsing-remitting/secondary-
progressive/primary-progressive

— 387/51/23 (84/11/5) n.a.

Disease-modifying therapy, first-line/second-line/no therapy — 257/110/94 (56/24/20) n.a.

Expanded Disability Status Scale — 2.5 (2.0–4.0)a n.a.

Symbol Digit Modalities Test, z-score — −1.1 (1.1)b n.a.

Total lesion volume, mm3 — 7,997.9 (8,832.8) n.a.

Brain parenchymal fraction, z-score 0.0 (1.0) −2.1 (2.7) <0.001

Data are expressed asmean (SD), except for Expanded Disability Status Scale which is expressed asmedian (interquartile range). Between-group differences
were tested with either Welch t test (age and brain parenchymal fraction) or χ2 (sex) tests.
a N = 459.
b N = 247.
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observed a larger and anatomically distributed subnetwork of
progressive morphometric similarity alterations (509 edges,
pFWE < 0.01), comprising pairs of regions exhibiting both in-
creased and decreased similarity over time (Figure 4, D–F).
Longitudinal models also showed significant EDSS worsening
(B = 0.084, SE B = 0.015, p < 0.01), and whole-brain volume
loss (B = −0.095, SE B = 0.022, p < 0.01) over time, while the
increase in global lesion burden was not significant (B = 0.003,
SE B = 0.004, p = 0.50). Annualized structural disconnection
significantly correlated with annualized changes in EDSS scores
(Spearman ρ = 0.07, p = 0.02), with this correlation remaining
significant after adjusting for longitudinal TLV change
(Spearman ρ = 0.08, p = 0.004). Similarly, individualized
morphometric similarity change per year correlated with an-
nualized EDSS change (Spearman ρ = 0.11, p < 0.001), with
this correlation remaining significant also after accounting for
annualized BPF change (Spearman ρ = 0.09, p = 0.002).

Baseline Structural Disconnection and
Morphometric Similarity Networks and
Long-term Disability Progression
Using NBS-predict with the baseline structural disconnection
matrices as input, a linear support vector machine classifier
significantly predicted long-term CDP (710 edges, accuracy =
0.59, 95% CI = 0.58–0.60, p = 0.03), with modest sensitivity
(0.49) but good specificity (0.67). The identified subnetwork
mainly involved cortico-subcortical tracts, within-transmodal
connections of the DMN, the DAN, the VAN, and the
CONT, and links between these and sensorimotor networks.
The regions participating the most in this subnetwork were
preferentially located in the left hemisphere and included the
thalamus and the parieto-occipital, pericentral, and prefrontal
cortices (Figure 5). Models relying on baseline morphometric
similarity matrices did not achieve above chance-level accu-
racy for the prediction of CDP.

Figure 1 Structural Disconnection in pwMS

Group-level lesion (A) and disconnection (B) probability maps in pwMS, expressing the probabilities of each voxel containing a lesion or at least 1 streamline
intersecting a lesion, respectively. Network-level (C) and region-level (D) representations of average structural disconnection in pwMS. CONT = control
network; DAN = dorsal attention network; DMN = default mode network; L = limbic network; pwMS = patients with multiple sclerosis; SM = somatomotor
network; SUBC = subcortical network; VAN = ventral attention network; VIS = visual network.
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Coupling Between Structural Disconnection
and Morphometric Similarity
At the global network level, higher mean structural dis-
connection in pwMS was associated with lower mean
morphometric similarity (Spearman ρ = −0.18, p < 0.001)
(Figure 6A). Conversely, at a more granular level, edges
with a greater probability of structural disconnection were
generally associated with higher morphometric similarity
(Spearman ρ = 0.18, p < 0.001), with the distribution of
values suggesting a nonlinear, multiphasic, relationship
between the 2 (Figure 6B and eFigure 3). Similarly, at the
node level, there was a positive association between regional
structural disconnection and morphometric similarity pro-
files (average Spearman ρ = 0.16, p < 0.001) with the
strongest coupling observed at the level of sensorimotor
areas and fronto-parietal association hubs (Figure 6C). As

these associations were seemingly driven by non-
disconnected regions (showing, on average, lower morpho-
metric similarity), we reassessed regional coupling after
excluding links with no disconnection. This post hoc analysis
revealed a slight negative edge-level coupling (Spearman
ρ = −0.084, p < 0.01), with associations in both directions at
the node level (eFigure 4). When investigating the possible
effect of disease phase, at the global level, a negative re-
lationship between mean structural disconnection and mor-
phometric similarity only emerged in pwMS with longer DD
(Spearman ρ = −0.36, p < 0.001), likely driven by the greater
lesion load and whole-brain atrophy, with no significant as-
sociation in the shorter DD group (Spearman ρ = 0.076, p =
0.25). Conversely, at the regional levels, the direction and
magnitude of the coupling were very similar across groups
(eAppendix 1 and eFigure 5).

Figure 2 Morphometric Similarity Disruption in pwMS

Averagemorphometric similarity network in theHCgroup (A).Network-level (B), edge-level (C), and region-level (D) representationsof the subnetworkof significant
between-groupdifferences inmorphometric similarity (pwMS>HC).CONT= control network; DAN=dorsal attentionnetwork;DMN=defaultmodenetwork;HC=
healthy controls; L = limbic network; pwMS = patients with multiple sclerosis; SM = somatomotor network; VAN = ventral attention network; VIS = visual network.
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Discussion
Using network analysis methods and conventional MRI
sequences, we identified patterns of structural disconnection
and morphometric similarity disruption in the brains of
pwMS. These measures proved to be sensitive to disease
progression, explained clinical disability, and predicted its
long-term evolution, independently from global lesion burden
and atrophy.

In line with well-established evidence,31 the highest T2 lesion
occurrence in our cohort was observed in the periventricular
WM, probably reflecting the preferential perivenular distri-
bution of MS-related inflammatory demyelination. As the
anatomical configurations of long-range and cortico-
subcortical tracts make them more likely to traverse lesional
areas, structural disconnection was mainly centered around
the thalami and cortical sensorimotor (occipital and peri-
central cortices) and associative (temporal cortex) hubs. The

Figure 3 Structural Disconnection and Morphometric Similarity Disruption Explain Physical and Cognitive Disability

Network-level (A), edge-level (B), and region-level (C) representations of the subnetwork of significant association between EDSS and structural
disconnection. Network-level (D), edge-level (E), and region-level (F) representations of the subnetwork of significant association between EDSS
and morphometric similarity. Network-level (G), edge-level (H), and region-level (I) representations of the subnetwork of significant association
between SDMT and structural disconnection. CONT = control network; DAN = dorsal attention network; DMN = default mode network; EDSS =
expanded disability status scale; L = limbic network; SDMT =Symbol Digit Modalities Test; SM = somatomotor network; SUBC = subcortical network;
VAN = ventral attention network; VIS = visual network.
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thalamus, in particular, with its multiple reciprocal con-
nections, is sensitive to lesions occurring in multiple regions,
thus acting as a “barometer” for diffuse parenchymal dam-
age.32 Similarly, the visual and sensorimotor cortices, as well
as the temporal cortex, are served by long-range tracts sus-
taining their function as primary sensory areas and integration
hubs, respectively, thus being particularly prone to structural
disconnection.33

While TLV and average structural disconnection are linked by
a logarithmic relationship enforced by the brain’s geometry,
not all lesion locations bear equal clinical relevance, differ-
entially affecting physical disability,34 cognition,35 and long-
term clinical outcomes.36 The examination of network-level
effects, using structural disconnectomes, adds information on
the effect of MS lesions, potentially resulting in more robust
neurobiological and clinical associations compared with the
assessment of isolated regions/connections.37 Indeed, we
found that, independent of the global lesion burden, physical
disability and cognition were explained by disconnection
within specific subnetworks. In particular, higher EDSS was

associated with greater structural disconnection centered
around the thalami and frontal cortices, confirming previously
reported relations between physical disability and disruption
of fronto-thalamic and frontal commissural pathways.34,38,39

Similarly, worse performances at the SDMT were mainly
explained by structural disconnection involving fronto-
thalamic and frontal commissural tracts, but also long-range
occipito-frontal and temporo-frontal association tracts,
mostly in the left hemisphere. The relevance of thalamo-
cortical, commissural, and long-range association tracts for
cognitive functioning has been highlighted with various
approaches looking at lesion location or WM microstructural
properties.33,35 Our results confirm that atlas-based lesion
disconnectomics is sensitive to these effects, providing addi-
tional information compared with lesions and regional
properties’ assessments.11,40

Morphometric similarity networks were also sensitive to MS-
related brain damage, with an anatomically distributed sub-
network of similarity disruption in pwMS at baseline. The
brain’s intrinsic structural organizing principles result in

Figure 4 Structural Disconnection and Morphometric Similarity Changes Over Time

Network-level (A), edge-level (B), and region-level (C) representations of the subnetwork of significant structural disconnection over time in pwMS. Network-
level (D), edge-level (E), and region-level (F) representations of the subnetwork of significant morphometric similarity change over time in pwMS. CONT =
control network; DAN = dorsal attention network; DMN = default mode network; L = limbic network; pwMS = patients with multiple sclerosis; SM = soma-
tomotor network; SUBC = subcortical network; VAN = ventral attention network; VIS = visual network.
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Figure 5 Baseline Structural Disconnection Predicts Long-Term Disability Progression

Network-level (A), edge-level (B), and region-level (C) representations of the structural disconnection subnetwork predicting long-term CDP. CDP = confirmed
disability progression. CONT = control network; DAN = dorsal attention network; DMN = default mode network; L = limbic network; SM = somatomotor
network; SUBC = subcortical network; VAN = ventral attention network; VIS = visual network.

Figure 6 Coupling Between Structural Disconnection and Morphometric Similarity

Network-level (A), edge-level (B), and region-level (C) associations between structural disconnection andmorphometric similarity. (A) Group-level correlation
between mean structural disconnection and mean morphometric similarity across participants. (B) Edge-level correlation between average structural
disconnection and morphometric similarity networks. (C) For each of the 100 cortical parcels, correlation between regional structural disconnection and
morphometric similarity profiles.
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remote regions sharing macroscale morphological traits,
thereby establishing a network of morphological similarity
that can be imaged using structural MRI.13 Using the MIND
approach, we showed that a relatively disordered phenomenon
such asMS-related neurodegeneration can disrupt this genetically
determined organization, resulting in an overall reduction of
morphological similarity. These results confirm previous evidence
of a more random organization of single-subject GM networks in
pwMS,14,15 with the advantage of a method that measures mul-
tiple morphological properties simultaneously with vertex-level
details and natively aligns with macroscale brain parcellations,
therefore being more neurobiologically grounded. Morphometric
similarity disruption centered around the left perisylvian cortex
explained physical disability beyond whole-brain atrophy, which
might speculatively be interpreted considering the reported
complex and clinically relevant anatomo-functional alterations of
attentional and default networks in MS.4,41

Longitudinally, we identified a subnetwork of progressive
structural disconnection comprising fronto-thalamic tracts,
explaining disability worsening independently from lesion
accrual. These results further highlight the role of cortico-
thalamic connections in MS,39 confirming that assessing
network-level structural disconnection yields clinically relevant
information beyond mere lesion burden. Similarly, morpho-
metric similarity networks were sensitive to longitudinal changes
in the brain’s structure. Along with edges of longitudinally de-
creasing morphological similarity, we found pairs of regions
whose morphological traits tended to match over time, sub-
stantially aligning with previously described atrophy patterns
encompassing the middle temporal gyrus and sensorimotor
cortices,42 as well as insular and prefrontal cortices and the oc-
cipital pole.43 Indeed, despite being a relatively disordered phe-
nomenon, MS-related neurodegeneration is not completely
random, with different spatial patterns of atrophy described in
association with MS.42,43 This disease-related structural co-
variance, likely constrained by network-based mechanisms and
shared vulnerability,44 may explain the observed increase in
morphometric similarity. Of interest, the longitudinal changes in
morphometric similarity paralleled disability worsening in-
dependently fromwhole-brain volume loss, confirming its ability
to capture additional information.

We also evaluated the prognostic value of the assessed net-
works. Previous attempts have been made to predict
individual-level prognosis using lesion location,36 or regional
network measures.11,16 Using NBS-predict, we demonstrated
that baseline individual structural disconnectomes can be used
to significantly predict long-term disability progression in-
dependently from global lesion burden. Although the model’s
predictive performance did not meet clinical acceptability
standards, it was shown that the disconnection of distinct
subnetworks may serve as a specific marker of clinical pro-
gression. Conversely, the observed low sensitivity may be
attributed to the correction for global lesion burden (filtering
only subnetwork-specific effects) and the protracted follow-
up period, during which numerous unaccounted-for

superadded factors (including disconnection) might have
emerged. Structural disconnections of the thalamus and the
paracentral lobule were the most important predictors of
disability worsening, with a slight predilection for the left
hemisphere. While this confirms the major role of thalamic
disconnection in sustaining physical disability,38 the association
between long-term disability progression and structural discon-
nection of the paracentral lobule, including the primary senso-
rimotor areas of the lower limbs, may be related to the known
heavy dependence of EDSS on motor function and walking
ability.45 On the other hand, long-term disability progressionwas
not predictable from baseline morphometric similarity networks,
possibly because they did not account for deep GM damage,
which is known to bear great prognostic relevance.46

Finally, we investigated the relationship between the 2 explored
network domains. At the global level, where mean structural
disconnection and morphometric similarity primarily reflect the
overall severity of brain damage, greater structural disconnection
was associatedwithmore disruptedmorphometric similarity. This
relationship only emerged inmore advanced phases of the disease,
likely driven by the more severe global lesion burden and brain
atrophy. Conversely, at more granular levels, structural discon-
nection and morphometric similarity exhibited a complex re-
lationship. While nondisconnected regions were, on average, less
morphologically similar than other node pairs, progressive struc-
tural disconnection appeared to be associated with a slight de-
crease in morphometric similarity. These results may indicate
a nonmonophasic relationship between the 2 domains. Initially,
disconnected nodes may exhibit similar morphological changes,
with structural disconnection potentially shaping patterns of
concerted neurodegeneration across GM regions through lesion-
related transneuronal degeneration inducing similar atrophic
changes at both ends of the disrupted WM tract.44 Subsequently,
more pronounced disconnection may disrupt this morphological
covariance and result in diminished morphometric similarity.
Nevertheless, it is important to note that at least a portion of the
nondisconnected node pairs may not be anatomically connected
(i.e., they may have no connecting fibers to be potentially dis-
rupted), and therefore intrinsically less morphologically similar.

Our study has some limitations. While the atlas-based as-
sessment of structural disconnection has been validated and
has the advantage of greater accessibility, diffusionMRI-based
tractography remains the gold standard and would have fur-
ther strengthened our results. In addition, the MIND ap-
proach in its standard formulation does not allow the
inclusion of subcortical GM, which is known to be highly
relevant in MS, prompting the development of methodolog-
ical advances to meaningfully incorporate deep GM structures
in morphological similarity analyses. Assessing structural
disconnection and morphometric similarity changes in re-
lation to finer clinical outcomes would help identify domain-
specific network alterations, potentially informing treatment
targeting. Moreover, additional research relying on advanced
statistical methods and prospective designs is needed to es-
tablish any causal relationships between the reported changes
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and to model their patterns of progression throughout the
disease course. Finally, given the lack of longitudinal data for
the HC, we cannot fully exclude that the observed longitu-
dinal changes in pwMS were, at least partially, due to physi-
ologic processes (i.e., aging). However, it has been shown that
while the adolescent brain undergoes relevant longitudinal
changes,47 there seem to be less substantial morphometric
similarity changes in the adult brain, especially in the age
range of our sample, with only minor deviations even in
psychiatric populations.48 While this evidence cannot be fully
generalized to our sample, it seems reasonable to speculate
that the observed longitudinal changes were mostly driven by
disease-related processes. Nonetheless, further studies are
needed to disentangle age-related from disease-specific mor-
phometric similarity longitudinal changes.

In conclusion, our results show that networks of structural
disconnection and morphometric similarity obtained from
conventional MRI are sensitive to MS-related brain damage
and its progression over time, potentially providing comple-
mentary information to other established MRI-derived bio-
markers of disease severity and progression. Extracting
network measures from conventional MRI scans holds the
potential for bridging the gap between connectomics and
clinical practice, driving advanced network analyses toward
real-world applicability.
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47. Dorfschmidt L, Váša F, White SR, et al. Human adolescent brain similarity de-
velopment is different for paralimbic versus neocortical zones. Proc Natl Acad Sci USA.
2024;121(33):e2314074121. doi:10.1073/pnas.2314074121

48. Zhukovsky P, Savulich G, Morgan S, Dalley JW, Williams GB, Ersche KD. Morphometric
similarity deviations in stimulant use disorder point towards abnormal brain ageing. Brain
Commun. 2022;4(3):fcac079. doi:10.1093/braincomms/fcac079

Neurology.org/N Neurology | Volume 104, Number 4 | February 25, 2025
e213349(13)

https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000213349
https://github.com/eminSerin/NBS-Predict/blob/master/docs/MANUAL.pdf
http://neurology.org/n

