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ABSTRACT

We investigate the impact of spatial survey non-uniformity on the galaxy redshift distributions for forthcoming data releases
of the Rubin Observatory Legacy Survey of Space and Time (LSST). Specifically, we construct a mock photometry data set
degraded by the Rubin OpSim observing conditions, and estimate photometric redshifts of the sample using a template-fitting
photo-z estimator, BPZ, and a machine learning method, FlexZBoost. We select the Gold sample, defined as i < 25.3 for 10 yr
LSST data, with an adjusted magnitude cut for each year and divide it into five tomographic redshift bins for the weak lensing
lens and source samples. We quantify the change in the number of objects, mean redshift, and width of each tomographic bin
as a function of the coadd i-band depth for 1-yr (Y1), 3-yr (Y3), and 5-yr (Y5) data. In particular, Y3 and Y5 have large
non-uniformity due to the rolling cadence of LSST, hence provide a worst-case scenario of the impact from non-uniformity.
We find that these quantities typically increase with depth, and the variation can be 10—-40 per cent at extreme depth values.
Using Y3 as an example, we propagate the variable depth effect to the weak lensing 3 x 2 pt analysis, and assess the impact
on cosmological parameters via a Fisher forecast. We find that galaxy clustering is most susceptible to variable depth, and
non-uniformity needs to be mitigated below 3 per cent to recover unbiased cosmological constraints. There is little impact on
galaxy—shear and shear—shear power spectra, given the expected LSST Y3 noise.

Key words: techniques: photometric —large-scale structure of Universe —cosmology: observations.

1 INTRODUCTION Sg = 0.76010031 (Ss = 0.77610.033) using the shear power spectra

(two-point correlation function) by the Hyper Suprime-Cam (HSC-
Observational cosmology enters the era of high-precision measure- Y3; Dalal et al. 2023; Li et al. 2023). The constraints are comparable
ments. For example, weak gravitational lensing, which probes the to that measured by Planck Collaboration VI (2020) from the primary
small distortion of distant galaxy shapes due to the gravity of cosmic microwave background (CMB), Sg = 0.830 +0.013, and
foreground large-scale structures, is particularly sensitive to the clus- the recent result from CMB lensing (Madhavacheril et al. 2024),
tering parameter Sg = 0g+/£2m/0.3. Current weak lensing surveys Sg = 0.840 4 0.028, but are interestingly lower by 2 — 30. The
have measured this parameter to be Ss = 0-759t8:8§? by the Kilo- uncertainties of these measurements are already dominated by
Degree Survey (KiDS-1000; Asgari et al. 2021), Sg = 0.759*053 systematic errors — without a careful treatment of various systematic

by the Dark Energy Survey (DES-Y3; Amon et al. 2022), and effects, the cosmological results can be biased up to a few sigma (e.g.
Rodriguez-Monroy et al. 2022). The forthcoming Stage IV surveys
such as the Rubin Observatory Legacy Survey of Space and Time

* E-mail: e.hang @ucl.ac.uk (LSST) will achieve a combined figure of merit ten times as much
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as the Stage III experiments as mentioned above (The LSST Dark
Energy Science Collaboration 2021). While the high statistical power
enables pinning down the nature of such tensions, systematic error
needs to be controlled down to sub- per cent level to ensure that our
results are not biased.

One major systematic uncertainties come from survey non-
uniformity. Galaxy samples detected at different survey depth, for
example, will have different flux errors and number of faint objects
near the detection limit. This could propagate down to systematic
errors in redshift distribution and number density fluctuation. The
majority of the LSST footprint will follow the wide-fast-deep (WFD)
observing strategy, which means that a large survey region will
be covered before building up the survey depth. At early stages
of the survey, fluctuations in observing conditions, such as sky
brightness, seeing, and airmass, are expected to be significant across
the footprint. These can change the per-visit 5o limiting magnitude,
ms, leading to depth non-uniformity in the early LSST data (Ivezié
etal. 2019). The survey strategy later on could also affect uniformity.
LSST will adopt a ‘rolling cadence’, which means that during a fixed
period, more frequent revisits will be assigned to a particular area of
the sky, whereas the rest of the regions are deprioritized by up to 25
per cent of the baseline observing time. The high- and low-priority
regions continue to swap, such that the full footprint is covered
with the same exposure time after 10 yr. This can result in different
limiting magnitudes across the sky at intermediate stages of rolling.
This strategy greatly advances LSST’s potential for time domain
science for example, denser sampling in light curves. However, it
also poses challenges to the analysis of large-scale structure (LSS)
probes, which normally prefers a uniform coverage.

Changes in ms can change the detected sample of galaxies and
its photometric redshifts in two ways. First, a larger ms means that
fainter, higher redshift galaxies will pass the detection limit. This
increases the sample size, and could shift the ensemble mean redshift
higher. These faint galaxies also contain large photometric noise,
resulting in larger scatter with respect to the true redshift, hence
broadening the redshift distribution. Secondly, at fixed magnitude,
the signal-to-noise is larger given a larger ms. This means that,
contrary to the previous effect, the scatter in spec-z versus photo-
z will be reduced due to the reduced noise. These effect has been
studied previously in a similar context. The density fluctuation is
quantified in Awan et al. (2016) via 1+ 6, = (1 + §)(1 + Sos),
where §, is the observed density contrast, §; is the true density,
and §ops is the fluctuation in the observing condition. The effects
on photo-z have been investigated in Graham et al. (2018) in the
context of LSST. They showed that the photo-z quality can change
significantly with respect to different observing conditions, although
they did not consider tomographic binning. Heydenreich et al. (2020)
and Joachimi et al. (2021) also quantified the effects for KiDS-1000
data, where the depth varies significantly between different pointings.
They showed that by varying the r-band limiting magnitude, a
significant amount of high redshift objects can be included in the
sample, such that the mean number density can double between
the deepest and shallowest pointings, and the average redshift for a
tomographic bin can shift by as much as A(z) ~ 0.2. Understanding
these effects are important, because weak lensing is particularly
sensitive to the mean redshift of the lens and source galaxies.
Heydenreich et al. (2020) demonstrated that this effect is similar to
a spatially varying multiplicative bias, and for cosmic shear analysis
in configuration space, constraints in the 2, — g plane can shift up
to ~ 1o for a KiDS-like survey with the same area as LSST. Baleato
Lizancos & White (2023) also derived an analytic expression for
anisotropic redshift distributions for galaxy and lensing two-point
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statistics in Fourier space. They showed that, assuming a spatial
variation of scale £, the effects are at per cent and sub-per cent level
for the current and forthcoming galaxy surveys, and converge to the
uniform case at £ > ..

In this paper, we investigate how survey non-uniformity can affect
the redshift distribution of tomographic bins for LSST 1, 3, and 5-yr
observation (hereafter Y1, Y3, and Y5, respectively). The LSST Dark
Energy Science Collaboration (DESC) Science Requirements Docu-
ment (The LSST Dark Energy Science Collaboration 2021, hereafter
DESC SRD) states that the photometric redshifts needs to achieve a
precision of (Az) = 0.002(1 + z) (0.001(1 + z)) for Y1 (Y 10) weak
lensing analysis, and (Az) = 0.005(1 + z) (0.003(1 + z)) for Y1
(Y10) large-scale structure analysis. Here, using these numbers as a
bench mark, we quantify changes in the mean redshift ((z)) and width
(o) of tomographic bins, as depth varies.! We use the up-to-date
LSST observing strategy and the simulated 10-yr observing condi-
tions for Rubin Observatory (OpSim, Delgado & Reuter 2016; Reuter
et al. 2016) to quantify the survey non-uniformity, and generate a
mock catalogue of true galaxy magnitude in ugrizy, redshift, and
ellipticity based on the Roman-Rubin (DiffSky) simulations (Troxel
et al. 2023). The degradation of photometry and photo-z estimation
relies on the public software, Redshift Assessment Infrastructure
Layers® (RAIL; LSST-DESC PZ WG, in preparation), which will
also be used in the LSST analysis pipeline. Finally, we propagate
these effects to the clustering and weak lensing two-point statistics.

This paper is organized as follows. We describe our simulation data
sets in Section 2 and introduce our methods in Section 3. The results
are presented in Section 4. We show the variation of the angular
power spectra with varying depth effects in Section 5. Finally, we
conclude in Section 6.

2 SIMULATIONS

This section provides an overview of the simulations used in this
work, namely, the Rubin Operation Simulator (OpSim; Section 2.1),
which simulates the observing strategy and related properties for Ru-
bin LSST, and the Roman—Rubin simulation (DiffSky; Section 2.2),
which provides a truth catalogue complete up to z = 3 with realistic
galaxy colours.

2.1 Rubin operations simulator (OpSim)

The Operations Simulator® (OpSim) of the Rubin Observatory is an
application that simulates the telescope movements and a complete
set of observing conditions across the LSST survey footprint over
the 10-yr observation period, providing predictions for the LSST
performance with respect to various survey strategies. OpSim uses
a historical weather log from Cerro-Tololo Inter-American Observa-
tory (CTIO), Chile from the 10-yr period 1996 to 2005, to simulate
weather conditions. An observation is conducted when the weather
log is no more than 42 percent cloudy. This gives about the same
amount of total weather downtime as Gemini South and Southern
Astrophysical Research (SOAR) telescope. Realistic seeing values

!Notice that the DESC SRD also provides requirements on the photometric
redshift scatter of the full, unbinned sample, oa;. For weak lensing, this is
oa; = 0.006(1 + z) (0.003(1 + z)) for Y1 (Y10); for large-scale structure
analysis, thisis oa; = 0.1(1 4+ z) (0.03(1 + z)) for Y1 (Y10). Because we do
not try to optimize the photometric redshift estimation in this paper, we do
not compare our results with the DESC SRD o, values.
Zhttps://github.com/LSSTDESC/RAIL

3https://rubin-sim.Isst.io/
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for each observation are generated using historical seeing logs from
Cerror Pachén, Chile. We utilize OpSim baseline v3.3, the most
recent observing strategy. This strategy involves a rolling cadence
that starts after the first year of observation. In subsequent years,
parts of the sky will receive more visits than others, enabling higher
resolution sampling for time domain science. At the end of the
fiducial survey, uniformity will be recovered at the expected 10-yr
LSST depth. The output of OpSim is evaluated by the metrics analysis
framework (MAF), a software tool that computes summary statistics
(e.g. mean and median of a particular observing condition over a
given period) and derived metrics (e.g. coadd 5o depth) that can be
used to assess the performance of the observing strategy, in terms
of survey efficiency and various science drivers. The £ie1dRA and
fieldDec positions used in the MAF include the dithering that has
been applied. The sky is first tessellated by the telescope field of view
(a few degrees in diameter), and the orientation is then randomized
at the start of each night. Visits are done in pairs to allow detection
of moving solar system objects, so that within a night there is no
dithering. The MAF loops over the HEALPIX pixel centres, and for
each one finds the observations that overlap with that point, including
rejecting observations where the point falls on a chip gap.

For the purpose of this study, we obtain survey condition maps in
HEALPIX (Go6rski et al. 2005) format using the MAF HEALPIX slicer
with Ngg. = 128 (corresponding to a pixel size of 755 arcmin?), using
the (RA, Dec) coordinates. We do not choose a higher resolution for
the map because we expect that survey conditions vary smoothly on
large scales, and this choice of Nq. is enough to capture the variation
with the rolling pattern. For our purposes, we mainly consider
the following quantities in each of the ugrizy filters: extinction-
corrected coadd 5o point source depth (ExgalM5, hereafter m$*) and
the effective full-width half-maximum seeing (seeingFwhmEf £,
hereafter 6gff,,\,) in unit of arcsecond. The m%* is different from
the coadd depth, ms, by the fact that it includes the lost of depth
near galactic plane. The effective seeing, 6L, has a wavelength
dependence, with a poorer seeing at bluer filters from Kolmogorov
turbulence. The MAF also takes into account for increase in point
spread function (PSF) size with airmass, X, due to seeing, i.e.
OL v o XO6. However, the MAF does not include the increase
in PSF size along the zenith direction with zenith angle, due to
differential chromatic refraction. This quantity is used here to convert
point-source depth to that for extended objects. We obtain maps of
these quantities over the LSST footprint at the end of each full year
of observation (e.g. Y3 for nights < 1095). The coadded depth in
each band is computed by assessing the 5o -depth (in magnitudes) of
each visit within each HEALPIX pixel, then computing the ‘stacked’
depth. The coadded depth calculation includes the airmass, seeing,
and sky brightness of each visit. It is approximated that the whole
field of view has values similar to the centre, so that vignetting or
sky brightness gradients are not included. For the most part these
gradients should be small and average out over many visits. Maps
of 6L .\ contain the median over all visits in a particular HEALPIX
pixel.

Throughout the paper, we will use Y1, Y3, and Y5 as examples to
showcase the impact of spatial variability on photometric redshifts.
Notice that the choice of Y3 and Y5 are a pessimistic one, because
the survey strategy is close to uniformity in Y4 and Y7 where
cosmological analysis are expected to be conducted. Hence, this
paper provides a worst-case scenario of the severity of the impact
from spatial variability. Also, the Rubin observing strategy is still
being decided, and the rolling cadence may move to different times
during the survey. There are ongoing efforts on recommendations
about the observing strategy, and hence the results shown here
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Figure 1. The simulated i-band coadd 50 depth accounting for Galactic
extinction, mS*, from the Rubin observatory OpSim baseline v3.3 over the
LSST wide-fast-deep (WFD) footprint, for 1-yr (upper), 3-yr (middle), and 5-
yr (lower) observations. Notice the stripy patterns visible from the 3 and 5-yr
observations are the result of rolling cadence. i-band is shown here because
it is the detection band for LSST.

should be interpreted in light of this particular strategy and years
chosen. We will focus on the WFD survey programme footprint,
and exclude areas with high galactic extinction E(B — V) > 0.2 for
cosmological studies. Notice that, in practice, additional sky cuts
could also be applied (e.g. a depth cut that removes very shallow
regions). Specifically, we will focus on the variation with respect to
i-band, the detection band of LSST. Fig. 1 shows the spatial variation
of the extinction-corrected coadd i-band depth for OpSim baseline
v3.3in Y1, Y3, and YS5. The stripes visible across the footprint in Y3
and Y5 are the characteristics of the rolling cadence. The distribution
of all OpSim variables are shown in Fig. 2 for each of the six filters
and for selected years of observation. One can see that the coadd
depths build up in each band over the years, whereas the distributions
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Figure 2. Distribution of the extinction-corrected coadd depth (m£*) and the median effective seeing (QﬁstHM) for the six LSST bands from the OpSim baseline
v3.3. The different colours and line styles indicate 1, 3, and 5-yr observations, as shown by the legend.

of the median effective seeing per visit are relatively unchanged. One
can also see a strong skewness in these distributions.

2.2 Roman-Rubin simulation (DiffSky)

In order to investigate the impact of varying survey conditions on
photo-z for LSST, we need a simulated truth catalogue that is
complete to beyond the LSST 10-yr depth and realistic in colour-
redshift space. For this purpose, we use the joint Roman—Rubin
simulation v1.1.3. This simulation is an extension of the effort in
Troxel et al. (2023), but with many improvements, including self-
consistent, flexible galaxy modelling. The simulation is based on
its precursor, CosmoDC2 (Korytov et al. 2019), a synthetic sky
catalogue out to z = 3 built from the ‘Outer Rim’ N-body cosmo-
logical simulation (Heitmann et al. 2019). The N-body simulation
contains a trillion particles with a box size of (4.225 Gpc)>. The
galaxies are simulated with Diffsky,* based on two differentiable
galaxy models: Diffstar (Alarcon et al. 2023) and differentiable stellar
population synthesis (DSPS; Hearin et al. 2023). Using Diffstar,
one can build a parametric model that links galaxy star formation
history with physical parameters in halo mass assembly. Then, with
DSPS, one can calculate the SED and photometry of a galaxy
as a function of its star formation history, metallicity, dust, and
other properties. The advantage of this galaxy model is that the
distribution in colour-redshift is smooth and more realistic compared
to that in CosmoDC2. This is thanks to the separate modelling
for different galaxy components, i.e. bulge, disc, and star-forming
regions. The spectral energy distributions (SEDs) built from these
different components with different stellar populations makes the
colours more realistic for photo-z estimation. The calibration of the
Roman—Rubin simulation galaxy colours as a function of redshift
matches that of the COSMOS2020 sample (Weaver et al. 2022),
although some evidence of a low amount of variance in the near-
infrared (NIR) colours at z > 1 is obvious. For more details of the
Roman—Rubin DiffSky simulation, see the DESC Note by Troxel
et al. (in preparation).

We randomly subsample the full simulated catalogue to N = 10°
objects complete toi < 26.5 as our truth sample. For each object, we
obtain its magnitude in the six LSST bands, true redshift, bulge size
sp, disc sizes s,4, bulge-to-total ratio f;, and ellipticity e. We obtain

“https://github.com/LSSTDESC/Isstdesc-diffsky

the galaxy semimajor and semiminor axes, a, b via a = s/,/q and
b = s./q, where s is the weighted size of the galaxy, s = s, f5 +
sq(1 — f»), and ¢ is the ratio between the major and minor axes,
related to ellipticity viag = (1 —e)/(1 + e).

One caveat of the current sample is that, at z > 1.5, there is an
exaggerated bimodal distribution in the g — r colour and redshifts,
which is not found in real galaxy data. As a result, the bluest objects
in the sample are almost always found at high redshifts. This could be
due to the high-redshift SPS models being less well constrained. One
direct consequence of this is that, when training a machine learning
algorithm to estimate the photo-z, the high-redshift performance may
be too optimistic due to this colour-space clustering.

3 METHODS

This section describes our methodology for generating a mock LSST
photometry catalogue for Y1, Y3, and Y5, applying photometric
redshift estimation algorithms, and defining metrics to assess the
impact of variable depth. Specifically, we describe the degradation
process using the LSST error model in Section 3.1, the two photo-z
estimators, BPZ and FlexZBoost, in Section 3.2, the tomographic
binning strategy in Section 3.3, and the relevant metrics Section 3.4.

3.1 Degradation of the truth sample

Given a galaxy with true magnitudes m, = {ugrizy} falling in a
HEALPIX pixel within the footprint, we ‘degrade’ its magnitude with
observing conditions associated with that pixel, and assign a set of
‘observed’ magnitudes m, and the associated magnitude error o, o,
using the following procedure: (1). Apply galactic extinction. (2).
Compute the point-source magnitude error for each object in each
filter, using the LSST error model detailed in Ivezi¢ et al. (2019). (3).
Compute the correction to obtain the extended-source magnitude
errors. (4). Sample from the error and add it to the true magnitudes.
Steps (2)—(4) are carried out using the python package photerr’
(Crenshaw et al. 2024). We detail each step below.

First, we apply the galactic extinction to each band with the E(B —
V') dust map (Green 2018) via:

A;

Mot = 1F {m

} EGB_ V). )

Shttps://github.com/jfcrenshaw/photerr/tree/main
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where for each of the six LSST filters we adopt [A,/E(B — V)] =
{4.81, 3.64,2.70, 2.06, 1.58, 1.31}.

Then, we utilize the LSST error model (Ivezi¢ et al. 2019) to
compute the expected magnitude error, o,,, per band. The magnitude
error is related to the noise-to-signal, nsr, via:

om = 2.5log,,(1 + nsr). )
The total nsr consists of two components:

22 2
NSI™ = NSTyyg + N8I s 3)

where nsrgy is the systematic error from the instrument read-out
and nsty,ng s the random error arising from observing conditions on
the sky, for extended objects. Notice that in the high signal-to-noise
limit where nsr < 1, g, ~ nsr, and equation (3) recovers the form
in Ivezi¢ et al. (2019). Throughout the paper, we set nsryy, X o4y =
0.005, which corresponds to the maximum value allowed from the
LSST requirement. For point sources, the random component of nsr
is given by

NS17pg = (0.04 — y)x + yx?, ()

where y is a parameter that depends on the system through-
put. We adopt the default values from Ivezi¢ et al. (2019), y =
{0.038, 0.039, 0.039, 0.039, 0.039, 0.039} for ugrizy. x is a pa-
rameter that depends on the magnitudes of the object, m, and the
corresponding coadd 5o depth, ms, in that band:

log,px = 0.4(m —ms). (®)]

For extended sources, we adopt the expression in Kuijken et al.
(2019); van den Busch et al. (2020), where the nsr receives an
additional factor related to the ratio between the angular size of
the object and that of the PSF:

NSTrand,ext = NSTrand,pt 4/ Aap/Apsf- (6)

Here,

Apt =00, Opt = Oy /2355, ©)

where 0T\, is the effective FWHM seeing (it is linked to the seeing

by GE{I,HM = Orwm X%, where X is the airmass) for a given LSST
band. The AP angular size of the object is given by

Agp = Taapbyp,

Ay = ,/apzsf + (2.5a)2,
by = Q/O.pzsf + (2.5b)?, ®)

where a, b are the galaxy semimajor and minor axis. We make one
modification to equation (6), where we replace the denominator by
the mean PSF area, ,/(Ay), averaged over pixels in the i-band
quantiles which we will elaborate shortly. In the approximation that
DSTpang,pe O X, the point-source noise is then proportional to QFS&,HM
[see equation (A1)], and so for the extended-source noise, %\,
cancels and equation (6) effectively changes the dependence of ms
on PSF size to that on the extended aperture size. However, in this
work, we utilize the median seeing, for which the cancellation may
not be exact. Naively taking equation (6) could lead to unrealistic
cases, where, at fixed depth, nsr,nqg ex¢ inCreases with a better seeing.
We have tested both scenarios, i.e. using individual Ay or the
mean (Ap) in equation (6), and find negligible difference for our
main conclusion in the i-band quantiles. However, it does make a
significant difference if one were to bin the samples by quantiles of
seeing, as investigated in Appendix D.
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Table 1. The mean and standard deviation of the i-band extinction-corrected
coadd depth, m¢*, split in 10 quantiles, from the Rubin OpSim baseline v3.3
map with Ngige = 128, for year 1, 3, and 5, respectively.

qtl (i-band m<* Y1 Y3 Y5

0 24.95+0.10 25.46+0.12 25.75+0.10
1 25.10+£0.03 25.64 +0.03 25.89 +0.02
2 25.17 £0.02 25.72£0.02 25.96 £0.02
3 25.22 +0.01 25.78 £0.02 26.01 £0.01
4 25.27+0.01 25.83+0.02 26.06 +0.01
5 25.31+£0.01 25.88 +0.01 26.10 +£0.01
6 25.354+0.01 25.93+0.01 26.14 £ 0.01
7 25.39 +£0.01 25.99 +0.02 26.18 £0.01
8 25.44+0.02 26.06 +0.03 26.23+0.02
9 25.53+0.05 26.18 +0.05 26.33+0.04

To obtain the observed magnitudes m,, we degrade in flux space,
fo, by adding a random noise component A f drawn from a normal
error distribution, A f ~ N(0, nsr), to the reddened flux fy, of the
object. Here, nsr is computed by setting m = mgy in equation (5).
The flux and magnitude are converted back and forth via

my = —2.5log fk, k = {dust, o}. O]

Negative fluxes are set as ‘non-detection’ in that band. The corre-
sponding magnitude error o, , is computed using equation (2) and
setting m = m, in equation (5), such that the error de-correlates with
the observed magnitude.

To focus on the trend in the depth variation in the detection band,
we subdivide pixels in the survey footprint into 10 quantiles in i-
band m<*, where the first quantile (qtl = 0) contains the shallowest
pixels, and the last quantile (qtl = 9) contains the deepest. Table 1
shows the mean and standard deviation of each i-band depth quantile.
We also show in Table D1 the mean and standard deviation of all
other survey condition maps used in the analysis in each of the
i-band depth quantiles. Within each quantile, we randomly assign
each galaxy to a HEALPIX pixel in that quantile, with its associated
observing conditions { E(B — V), m&, 6L} on that pixel for each
LSST band, from the OpSim MAF maps. Then, we carry out the
above degradation process to our truth sample. On average, each
pixel within each quantile is assigned 121 galaxies. Notice that there
are many other parameters that could affect the photometric errors,
e.g. sky background, exposure time, and atmospheric extinction. Fol-
lowing Ivezi¢ et al. (2019), because these quantities only contribute
towards ms, we do not include them otherwise in the degradation, and
assume that m$* completely captures their variation. Additionally,
we explore the relation between ms and these extended quantities
using OpSim in Appendix A, and we explore the galaxy redshift
distribution dependence with other survey properties in Appendix D.

Finally, we apply an i-band magnitude cut corresponding to
the LSST Gold sample selection on the degraded catalogue. For
the full 10-yr sample this is defined as i < 25.3. For data with
an observation period of Ny, yr, we adjust the gold cut to ij, =
25.3 + 2.51og((1/Ny:/10). Thus for Y1, Y3, and Y35, we adopt the
following gold cuts respectively: iy, = 24.0, 24.6, 24.9. Notice that
this is slightly shallower than the definition in the DESC SRD, where
the Gold cut is defined as one magnitude shallower than the median
coadd ms. This is due to the fact that OpSim baseline v3.3 has a
slightly deeper i-band depth in early years compared to previous
expectations. For Y1, the median i-band mS* is ~ 25.2, giving a
DESC SRD Gold cut to be 0.2 mag deeper than what we adopt here.
Additionally, for our fiducial sample, we also apply a signal-to-noise
cut in i-band: SNR = 1/nsr > 10, although we also look at the case
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with the full sample. This cut is motivated by the selection of the
source sample, where shape measurements typically require a high
SNR detection in i-band. In this work, we apply this cut to both the
weak lensing and clustering samples.

3.2 Photo-z estimators

Methods for photometric redshift estimation can be broadly divided
into two main categories: template-fitting and machine learning.
Template fitting methods assume a set of SED templates for various
types of galaxies, and use these to fit the observed magnitudes
of the targets. Machine learning methods, on the other hand, use
machine learning algorithms trained on a reference sample, to infer
the unknown target redshifts. See Schmidt et al. (2020) for a review
and comparison of the performance of various photo-z estimators
in the context of Rubin LSST. In this work, we adopt two algo-
rithms with reasonable performance, a template-fitting method, BPZ
(Bayesian photometric redshifts), and a machine learning method,
FlexZBoost. In this work, before applying these redshift estimators,
all observed magnitudes are de-reddened, by applying the inverse of
equation (1).

3.2.1 BPZ (Bayesian photometric redshifts)

BPZ (Benitez 2000; Coe et al. 2006) is a template-based photometric
estimation code. Given a set of input templates t, BPZ computes
the joint likelihood P(z, t) for each galaxy with redshift z. A prior
P(z, tim) is included based on the observed magnitude of the galaxy
m. For example, the prior restricts bright, elliptical galaxies to lower
redshifts. For each galaxy, alikelihood P(z, t|c, m) given the galaxy’s
colour ¢ and magnitude is computed, and by marginalizing over the
templates, one obtains the per-object redshift probability P(z).

We use the RAIL interface of the BPZ algorithm, with the list
of SED templates adopted in Coe et al. (2006): the CWW-+SB4 set
introduced by Benitez (2000), the El, Sbc, Scd & Im from Coleman,
Wu & Weedman (1980), the SB2 & SB3 from Kinney et al. (1996),
and the 25 & 15 Myr ‘SSP’ from Bruzual & Charlot (2003). We set
the primary observing band set to i -band, and adopt the prior from the
original BPZ paper (Benitez 2000), which was used to fit data from
the Hubble Deep Field North (HDF-N; Williams et al. 1996). Notice
that these set of SEDs may be different from that in the Roman—
Rubin simulation, and the prior distributions may not match exactly.
The prior mismatch would only affect samples with low signal-to-
noise ratio and hence those posteriors are prior-dominated. For the
gold sample considered in this paper, the impact of the prior on the
mean difference and scatter of the true and photometric redshifts
is expected to be small, although galaxies with broad or bimodal
posteriors may end up having a different point estimate (e.g. mode),
hence the outlier rate could be slightly higher. We do not include
extra SED templates here. The SED template colours are able to
cover the range of colours in the Roman—Rubin simulation, as shown
in Appendix B.

Additionally we compute the odds parameter, defined as

Zmode +AZ
odds = / P(z)dz, (10)
Zmode —AZ
where Zmode 1S the mode of P(z), and Az = €(1 + Zmoge) defines an
interval around the mode to integrate P(z). The maximum value of
odds is 1, which means that the probably density is entirely enclosed
within the integration range around the mode, whereas a small odds
means that the probability density is diffuse given the range. Hence,
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odds denotes the confidence of the BPZ redshift estimation, and
the choice of € essentially sets the criteria. The (1 4 zpoge) factor
accounts for the fact that larger redshift errors are expected at higher
redshifts. We choose € = 0.06 as a nominal photo-z scatter, and we
use odds as a BPZ ‘quality control’, where a subsample is selected
with odds > 0.9, as comparison to the baseline sample.

3.2.2 FlexZBoost

FlexZBoost (Dalmasso et al. 2020; hereafter FZBoost) is a machine-
learning photo-z estimator based on FlexCode (Izbicki & Lee 2017),
a conditional density estimator (CDE) that estimates the conditional
probability density p(y|x) for the response or parameters, y, given
the features x. The algorithm uses basis expansion of univariate y
to turn CDE to a series of univariate regression problems. Given a
set of orthonormal basis functions {¢;(y)};, the unknown probability
density can be written as an expansion:

PO = Bi(0)B;(y). (11
J

The coefficients §;(x) can be estimated by a training set (x, y) using
regression. The advantage of FlexCode is the flexibility to apply
any regression method towards the CDE. The main hyperparameters
involved in training is the number of expansion coefficients and
those associated with the regression. Schmidt et al. (2020) found that
FZBoost was among the strongest performing photo-z estimators
according to the established performance metrics.

In this paper, we utilize the RAIL interface of the FZBoost
algorithm with its default training parameters. We construct the
training sample by randomly drawing 10 percent of the degraded
objects from each of the deciles, and train each year separately. Notice
that this training sample is fully representative of the test data, which
is not true in practice. Spectroscopic calibration samples typically
have a magnitude distribution that is skewed towards the brighter
end, and the selection in colour space can be non-trivial depending
on the specific data set used. Although there are methods to mitigate
impacts from this incompleteness, such as re-weighting in redshift
or colours (Lima et al. 2008), and, more recently, using training data
augmentation from simulations (Moskowitz et al. 2024), the photo-
z performance is not comparable to having a fully representative
sample, and one would expect some level of bias and increased
scatter depending on the mitigation method adopted. Here, we
are interested in whether our results on the non-uniformity impact
changes significantly with an alternative photo-z algorithm. We thus
leave the more realistic and sophisticated case with training sample
imperfection to future work.

3.2.3 Performance

For both photo-z estimators, we use the mode of the per-object
redshift probability, P(z), as the point estimate, Zppo. Fig. 3 shows
the scatter in spec-z and photo-z for Y1, Y3, and Y5 with BPZ and
FZBoost redshifts, for the shallowest (qtl = 0) and the deepest (qtl =
9) quantiles in the i-band mS* respectively. The scatter is always larger
for the shallower sample in the full sample case (faint dots). This is
expected following equations (2) and (4), given that the coadd depths
in each band are strongly correlated. At fixed magnitude, the larger
the ms, the smaller the photometric error, hence also the smaller
the scatter in photo-z. The signal-to-noise cut at SNR > 10 removes
some extreme scatter as well as objects from the highest redshifts.
This is more obvious for the shallowest sample compared to the
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Figure 3. Photo-z versus true redshifts for the sample degraded with Rubin OpSim baseline v3.3 observing conditions using BPZ (left two columns) and
FZBoost (right two columns) mode as the photo-z point estimator. For each photo-z method, we show sample degraded with pixels containing the shallowest
10 per cent i-band Coadded depth with galactic extinction (qtl = 0), and that from the deepest 10 per cent (qtl = 9). This is repeated for the cases of Y1, Y3,
and Y5 observing conditions with respective gold cut in i-band applied. The faint dots show all the samples included within the gold cut, whereas the solid
contour shows the samples (90 per cent contour) with SNR > 10 (fiducial). In the BPZ case, the dashed lines show the 90 per cent contour for the sample with
an additional selection of odds > 0.9. In the FZBoost case, the model is trained on a perfectly representative sample for each observation year.

deepest, due to the better signal-to-noise ratio for the deepest sample
at high redshifts.

There is a significant group of outliers in the BPZ case that
are at low redshifts but are estimated to be at z > 2, highlighted
by the blue contours. By examining individual BPZ posteriors for
this group, we find that these objects tend to have very broad or
bimodal redshift distributions. This could be a result of confusion
between the Lyman break and the 4000 A Balmer break, and notice
that the fraction of this population as well as its location can be
influenced by the choice of the BPZ priors. Another possible cause
is the spurious bimodal distribution in the colour-redshift space
in the Roman—Rubin simulation, as mentioned in Section 2.2. We
see that after applying a strict cut with odds > 0.9, shown by
the purple dashed lines enclosing 90 percent of the sample, the
outlier populations are significantly reduced, as expected. This cut
retains 20.4 percent (27.7 percent), 25.7 percent (44.4 per cent),
29.5 per cent (44.0 per cent) of the SNR > 10 sample in qtl = 0 (9)
for Y1, Y3, and Y5, respectively. We see that this cut further reduces
the scatter at zppot ~ 1.5. FZBoost in general shows a much better
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performance, given that the training data is fully representative of
the test data. Table C1 summarizes these findings for each sample
via a few statistics of the distribution of the difference between
photo-z and true redshifts: Az = (Zpnot — Zirue)/(1 + Zirue). Namely,
the median bias Median(Az), the standard deviation, the normalized
median absolute deviation (NMAD) onyvap = 1.48 Median(|Az|),
and the outlier fraction with outliers defined as |Az| > 0.15.

Notice that the odds cut could introduce bias to the galaxy
distribution. Given that the relation between photometry and the
redshift PDF shape that influences odds is highly complex and non-
linear, the odds can be correlated with both galaxy type and redshift.
For cosmological analysis, the imposed selection in galaxy type is
not a great concern as long as the n(z) is accurately determined,
and the galaxy sample is uniformly distributed spatially. A potential
worry is that a spatial variation in the galaxy bias is introduced, or
that the bias evolution is changed, due to the odds cut. This would
have to be tested out in a large cosmological simulation that includes
both realistic photometry and clustering information, which we leave
to future work.
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Figure 4. True redshift distribution for tomographic bins as defined in the DESC SRD for lens (left column) and source galaxies (right column) in Y3. The
tomographic bins are determined using the mode of BPZ redshifts (first two rows) and FZBoost (last row). In all cases, the sample has been applied a gold cut
i < 24.6 and SNR > 10. The middle row shows the sample selected with an additional cut with odds > 0.9. The dashed lines show samples degraded using the
shallowest 10 per cent pixels in i-band coadd depth (qtl = 0), and the solid lines show those from the deepest 10 per cent (qtl = 9).

3.3 Tomographic bins

In weak lensing analysis, the full galaxy catalogue is sub-divided
into a ‘lens’ sample and a ‘source’ sample. The lens sample is often
limited at lower redshifts, acting as a tracer of the foreground dark
matter field which ‘lenses’ the background galaxies. The source
sample contains the background galaxies extending to much higher
redshifts, whose shapes are measured precisely to construct the
shear catalogue. The two samples together allow measurement of
the so-called ‘3x2pt statistics’, including galaxy clustering from
the lens sample, galaxy—galaxy lensing from the lens galaxies and
source shapes, and cosmic shear from the source shapes alone.
Additionally, both the lens and source samples are divided into
several tomographic bins, i.e. subsamples separated with sufficient
distinction in redshifts. This further includes evolution information
that improves cosmological constraints.

We adopt the Y1 tomographic bin definitions in the DESC SRD
for all of our samples. The lens sample has five bins equally spaced
in 0.2 < z < 1.2, with bin width Az = 0.2, and bin edges defined
using Zpnot. For source samples, the DESC SRD requires five bins
with equal number of galaxies. To do so, we first combine the 10
depth quantiles, and then split the sample into five zpn quantiles.

Notice that in practice, tomographic binning can be determined in
different ways, often with the aim of maximizing the signal-to-noise
of the two-point measurements. In some cases, clustering algorithm,
e.g. random forest, rather than a photo-z estimator, is used to separate
samples into broad redshift bins. We refer the interested readers to
Zuntz et al. (2021) for explorations of optimal tomographic binning
strategies for LSST. Notice also that, following the DESC SRD, we
do not apply additional magnitude cuts for the lens sample. This is
done, for example, for the DES Y3 MagLim lens sample, where a
selection of i > 17.5 and i < 4zphe + 18 is applied (Porredon et al.
2022). These cuts are applied to reduce faint, low-redshift galaxies in
the lens sample, such that the photometric redshift calibration is more
robust. Notice that if the lens samples are selected with a brighter
cut, one would expect a different and likely reduced depth variation.
We explore this particular case in Appendix E.

Fig. 4 shows the normalized true redshift distribution, p(z), of
the lens and source tomographic bins for Y3 as an example, split
by the BPZ redshifts (with or without odds selection) and the
FZBoost redshifts. The dashed lines show the p(z) measured from

the shallowest samples, whereas the solid lines show that from the
deepest samples. The BPZ case shows more extended tails in each
tomographic bin compared to the FZBoost case, and for the source
galaxies, a noticeable outlier population at low redshifts in the highest
tomographic bin. We see that in most cases, there is a clear difference
in p(z) between the shallow and the deep samples: the deep samples
seem to shrink the tails, making p(z) more peaky towards the mean
redshift (although this is not the case for the odds > 0.9 sample), and
their p(z) seems to shift towards higher redshift at the same time. To
quantify these changes, we define metrics for the impact of variable
depth below.

3.4 Metrics for impact of variable depth

The first metric is the variation in the number of objects in each
sample, Ny, as a function of the coadd i-band depth. This is the
most direct impact of varying depth: deeper depth leads to more
detection of objects within the selection cut. The result is that the
galaxy density contrast, §,(0) = [N(0) — N1/N, where N(0) is the
per-pixel number count at pixel #, and N is the mean count over the
whole footprint, fluctuates according to the depth variation, leading
to a spurious clustering signal in the two-point statistics. To quantify
the relative changes, we measure the average number of objects per
tomographic bin across all 10 depth quantiles, Noy = >_; Neai,; i,
wherei = 1, .., 10 denotes the depth bin, and w; ~ 0.1 is the weight
proportional to the number of pixels in that quantile. We quote the
change of object number in terms of Ny / Nga|.

The second metric quantifies the mean redshift of the tomographic
bin as a function of depth:

(z) = /zp(z)dz, (12)

where p(z) is the true redshift distribution of the galaxy sample in
the tomographic bin with normalization [ p(z)dz = 1. Weak lensing
is particularly sensitive to the mean distance to the source sample:
the lensing kernel thus differs on patches with different depth. Here,
we look at the difference between the mean redshift (z); of depth
quantile i and that of the full sample, (Z)o, 1.6. A(z) = (2); — (2ot
More specifically, we look at the quantity A(z)/(1 + (z)t), Where
the weighting accounts for the increase in photo-z error towards
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higher redshifts. This format also allows us to compare with the
DESC SRD requirements.

The third metric quantifies the width of the tomographic bin. This
is not a well-defined quantity because the p(z) in many cases deviate
strongly from a Gaussian distribution. One could use the variance,
or the second moment of the redshift distribution:

0'2 = /(Z - (Z>)2 P(Z)dz. (13)

However, this quantity is very sensitive to the tails of the distribution:
larger tails of p(z) increases o, even if the bulk of the distribution
does not change much. In our case, the width of the tomographic bin
is most relevant for galaxy clustering measurements: the smaller the
bin width, the larger the clustering signal. Specifically, in the Limber
approximation, the galaxy autocorrelation angular power spectrum
is given by

d H 2 241/2
Ci* = / XZE(Z) [ C(-Z)P(Z)} Py, <k= X/ ,Z>, 14)

where £ is the degree of the spherical harmonics, x is the comoving
distance, H(z) is the expansion rate at redshift z, ¢ is the speed
of light, k is the 3D wave vector, and Py, is the 3D galaxy power
spectrum. Assuming that within the tomographic bin, the redshift
evolution of galaxy bias is small, and all other functions can be
approximated at the mean value at the centre of the bin, the clustering
signal is proportional to the integral of the square of the galaxy
redshift distribution, p(z). This assumption breaks down if the
tomographic bin width is broad, for instances, the combination of
all five lens bins. Hence, we define the following quantity:

W, = / pA(2)dz (15)

as the LSS diagnostic metric, which corresponds to changes of the
two-point angular power spectrum kernel with respect to changes
in p(z). This is a useful complement to the second moment, o,
because o, can be sensitive to the tails of the p(z) distribution caused
by a small population of outliers in photo-z; however, the impact
of this population could be small for galaxy clustering, which is
characterized by W, . For both of these quantities, we look at the ratio
with the overall sample combining all depth quantiles. We show all
the mean metric quantities in each tomographic bin and each quantile
for Y1, Y3, and Y5 in Table C2 for BPZ and Table C3 for FZBoost.

Notice that for the p(z)-related quantities, we have used the true
redshifts, but in practice, these are not accessible. Rather, unless one
uses a Bayesian hierarchical model such as CHIPPR (Malz & Hogg
2022), one only has access to the calibrated redshift distribution
pc(z) against some calibration samples via, e.g. a self-organizing
map (SOM), which is itself associated with bias and uncertainties
that can be impacted by varying depth. The case we present here thus
is idealized, where the calibration produces the perfect true p(z). This
allows us to propagate the actual impact of varying depth on p(z) to
the 3 x 2 pt data vector, but does not allow us to assess the bias at the
level of modelling due to using an ‘incorrect’ p.(z) that is affected
also by the varying depth. We leave this more sophisticated case to
future work.

4 RESULTS

This section presents our results on the impact of variable depth via
three metrics: the number of objects (Section 4.1), mean redshift of
the tomographic bin (Section 4.2), and the width of the tomographic
bin (Section 4.3).
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4.1 Number of objects

Fig. 5 shows the change in the number of objects, N, as a function
of the i-band extinction-corrected coadd depth, mS*, compared to the
overall mean, for lens and source tomographic bins in Y1, Y3, and
Y5. In general, we find an approximately linear increase of number
of objects as the i-band depth increases, with the higher two redshift
bins showing the most extreme variation. For the lower redshift bins,
the variation can be ~ 10 per cent compared to the mean value,
whereas for bin 5, the variation can be as large as ~ 40 per cent. The
trend does not seem to change much at different observing years.
This is the result of the i-band gold cut and the high SNR selection.
The scatter in magnitudes is larger for the shallower sample, hence
given a magnitude cut, the shallower sample will have fewer objects.
At fixed magnitude, the deeper objects have larger SNR, resulting in
more faint galaxies surviving the SNR cut. Given that the gold cut and
SNR at given magnitude evolve with depth in the observation year,
we expect the trend to be similar across Y1 to Y5. It is interesting
to see also that per tomographic bin, the trends for baseline BPZ
and FZBoost are similar, despite having quite different features in
the photo-z versus spec-z plane. The variation between bins 1-4 is
slightly larger in the BPZ case. For the BPZ redshifts, the inclusion of
the odds selection increases the variation in object number, especially
in the highest redshift bin. The steeper slope might be due to the
fact that, objects with larger photometric error from the shallower
regions are likely to result in a poorer fit, leading to a smaller odds
value. Hence, the odds > 0.9 selection removes more objects from
the shallower compared to the baseline case.

4.2 Mean redshift

Fig. 6 shows the variation in the mean redshift of the tomographic
bin, (z), as a function of the i-band extinction-corrected coadd depth,
m<~, for lens and source samples in Y1, Y3, and Y5. In general, (z)
increases with the i-band coadd depth. This is expected as more
faint, high redshift galaxies that are scattered within the magnitude
cut are included in the deeper sample, resulting in an increased
high redshift population. In general, the slope of this relation is
similar across tomographic bins for both lens and source samples,
with a variation of |Az/(1 4 (z))| ~ 0.005 — 0.01. This is not true
for bin 5 in the source sample, where the variation with depth is
noticeably larger. This could be explained by this bin containing
objects with the highest zpho, Which are also most susceptible to
scatter in the faint end and outliers in the photo-z estimators. This
trend becomes more extreme from Y1 to Y5. By reducing outliers
with the BPZ odds cut, the variation in source bin 5 is slightly
reduced, although still higher than the nominal level. There are some
difference between the BPZ and FZBoost cases: the slope slightly
grows from Y1 to Y5 in the BPZ case, whereas it stays consistent
in the FZBoost case, but the two cases converge in Y5. On the
same figure, we mark the DESC SRD requirements for photo-z as a
dark grey band at Az/(1 + (z)) = £0.002 and a light grey band at
Az/(1 + (z)) = £0.005. The shifts in mean redshift reach the limit
of the requirements for Y1, and exceeds the requirement for Y10.

4.3 Width of the tomographic bin

Fig. 7 shows the change in the tomographic bin width parameters, o,
and W,, as defined in Section 3.4 for the lens galaxies as a function
of the i-band extinction-corrected coadd depth, m¢*, in Y1, Y3, and
Y5. The width of the tomographic bin can change with depth due to
the scatter in the photo-z versus spec-z plane. For example, a deeper
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Figure 5. The number of galaxies in tomographic bins as a function of the i-band extinction-corrected coadd depth, mS*, for Y1, Y3, and Y5. The number is
normalized by the average number of objects combing all quantiles for each tomographic bin, Ngal. The tomographic bins are determined using the mode of
BPZ redshifts (left two columns) and FZBoost (right two columns). For each redshift estimator, both lens and source galaxy samples are shown, with the gold
cut and SNR > 10. In the BPZ case, we also show the sample with odds > 0.9 in squares with dashed lines. The vertical solid and dashed lines marks the 1o

and 2o regions of the depth distribution.

sample may have a smaller scatter for the bulk of the sample, but
include fainter objects that could result as outliers, resulting a more
peaked distribution at the centre with pronounced long tails.

The left two columns of Fig. 7 show the changes in the second
moment, o,, for both the BPZ (first column) and FZBoost case
(second column). For BPZ, there is little change in this parameter
for Y1 at different depth, but for Y3 and Y5, o, increases with
depth. Including odds selection reduces the trend, and in some cases
reverses it. For FZBoost, the trend is similar to BPZ, but bin 1 shows
a particularly large variation by as much as ~ 30 per cent. This is
because o, is sensitive to the entire distribution, not just the peak,
and outliers at high redshift can significantly impact this parameter.
Fig. C1 shows same p(z) distributions for Y3 in logarithmic scale,
where the high redshift outliers are visible. Indeed, one can see an
enhanced high-redshift population for bin 1 in the FZBoost case.
The odds cut removes most of the outliers, so that o, is reflecting
the change of the peak width with depth, hence giving the reversed
trend.

The right two columns of Fig. 7 show the changes in W,. Given
a tomographic bin, a larger W, means a more peaked redshift
distribution, hence a larger clustering signal. One can see that W,

is more sensitive to the bulk of the p(z) distribution, as it increases
with depth in most bins. We see that the variation in W, is within
10 per cent from the mean, with the largest variation coming from
bins 2, 3, and 4. The highest and lowest tomographic bins, on the other
hand, does not change much, despite their o, varying significantly
with depth. For the BPZ case, adding the additional cut in the odds
parameter reduces such trends in general, and the trend in the highest
tomographic bin is reversed.

5 IMPACT ON THE WEAK LENSING 3 x2PT
MEASUREMENTS

We use the Y3 FZBoost photo-z as an example to showcase the
varying depth effects, by propagating the number density and p(z)
variation from the previous section into the weak lensing 3 x 2 pt
data vector. In Section 5.1, we describe how the mock large-scale
structure and weak lensing shear maps are constructed with the
inclusion of non-uniformity. In Section 5.2, we show case the
measured 3 x 2 pt data vector in both uniform and variable depth
case.
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Figure 6. The change in mean redshift in each tomographic bin as a function of the i-band extinction-corrected coadd depth, mg*, for Y1, Y3, and YS5. The
difference in mean redshift, Az, between a given quantile and the combined sample (z), is normalized by 1/(1 4 (z)) to account for expected larger uncertainties
at higher redshifts. The fainter and darker grey bands marks +0.005 and £0.002, corresponding to the DESC SRD requirements for Y1 large-scale structure
and weak lensing science. The tomographic bins are determined using the mode of BPZ redshifts (left two columns) and FZBoost (right two columns). For each
redshift estimator, both lens and source galaxy samples are shown, with the gold cut and SNR > 10. In the BPZ case, we also show the sample with odds > 0.9
in squares with dashed lines. The vertical solid and dashed lines marks the 1o and 2o regions of the depth distribution.

5.1 Mock maps with varying depth

To construct the mock LSST catalogue, we use one of the publicly
available Gower street simulations (Jeffrey et al. 2024). This is a suite
of 800 N-body cosmological simulations created using PKDGRAV3
(Potter, Stadel & Teyssier 2017) with various wCDM cosmological
parameters. The simulation outputs are saved as 101 light cones in
HEALPIX format with Nq. = 2048 between 0 < z < 49. To fill the
full sky, the boxes are repeated 8000 times in a 20 x 20 x 20 array.
For shells z < 1.5, though, only three replications are required. We
use the particular simulation with ACDM cosmology: w = —1,h =
0.70, 2, = 0.279, @, = 0.046, oy = 0.82, and n; = 0.97. The dark
matter density contrast map, ,,, is computed using particle counts at
Ngige = 512 (corresponding to a pixel size of 47.2 arcmin?), and the
corresponding lensing convergence map, «, is produced with Born
approximation using BornRayTrace® (Jeffrey, Alsing & Lanusse
2020). Finally, the shear map, ()1, y») in spherical harmonic space is

Ohttps://github.com/NiallJeffrey/BornRaytrace

MNRAS 535, 2970-2997 (2024)

produced via

KE tm

Ve S DT =D (1o
and we transform yg g, as a spin-2 field, yun = YE.om + 1VB.tm»
assuming zero B-mode. For more details see Jeffrey et al. (2024).

We construct the lens and source shear maps as follows. In the
noise-less case, given a lens (source) redshift distribution, p;(z), for
atomographic bin i, we construct the lens density (source shear) map
by M; = ; M;pi(z;)Az;, where j denotes the light-cone shells in
the Gower street simulation, M denotes the map in this particular
shell, and Az; denotes the shell width. The noisy maps are generated
in the following way. Lens galaxy counts in tomographic bin i on
each pixel @ are drawn from a Poisson distribution. For a shell j,
the Poisson mean is () = ngq j[1 + b3, ;()], where b is the
linear galaxy bias and ngy ; = ngupi(z;)Az;, with ngy being the
average count per pixel in this tomographic bin. Here, we set b = 1
to avoid negative counts in extremely underdens pixels. However,
notice that in a magnitude-limited survey, the galaxy bias is typically
b > 1 and evolves with redshift, not to mention the scale-dependence
of bias on non-linear scales. One approach to sample b > 1 is to
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Figure 7. The relative change in the width of the lens tomographic bin as a function of the i-band extinction-corrected coadd depth, m<*, for Y1, Y3, and
YS5. The left two columns show the second moment of the normalized redshift distribution, o, in each quantile normalized by that of all quantiles combined,
a}®, for each tomographic bin. The right two columns show the LSS diagnostic parameter, W_, as defined in equation (15), for each quantile normalized by
all quantiles combined W!'. The left and right panels for each width parameter show results with BPZ and FZBoost, respectively. In the case of BPZ, the
subsample with selection odds > 0.9 is shown in squares with dashed lines. The vertical solid and dashed lines marks the 1o and 20 regions of the depth

distribution.

simply set negative counts to zero. However, this may introduce
spurious behaviour in the two-point function of the field. Given
the main purpose here is to propagate the systematic effects due to
depth only, we justify our choice by prioritizing the precision of the
measured two-point statistics compared to theory inputs. We assume
the ensemble-averaged per-component shape dispersion to be o, =

<\/(e% + e%)/2> = 0.35, chosen to roughly match that measured in
the Stage III lensing surveys (e.g. Gatti et al. 2021; Joachimi et al.
2021; Li et al. 2022). For a tomographic bin 7, we first assign source
counts in the same way as above, resulting in 7isouce (@) galaxies in
pixel . We then randomly assign shapes drawn from a Gaussian
distribution, N" ~ (0, o,), for each component Agyce(#) times, and
we compute the mean shape noise in each pixel. We end up with a
shape noise map, which we then add to the true shear map for each
tomographic bin.

To imprint the varying depth effects, we divide the footprintinto 10
sub-regions containing the pixels in each of the i-band m<* deciles,
and repeat the above procedure with distinct number density and
p(2) for both the lens and source galaxies, according to the findings

in previous sections. We do not assign depth-varying shape noise,
following the finding in Joachimi et al. (2021) that the shape noise is
only a weak function of depth. We also produce the noise-less cases
for varying depth. For density contrast, we produce two versions: one
with varying p(z) only, and one with additional amplitude modulation
Sm + AS,where AS§ + 1 = Ngal/Ngal, as shown in Fig. 5. The former
is to used isolate the effect of varying p(z) only.

We adopt the cumulative number density of the photometric
sample as a function of the i-band limiting magnitude given by
the DESC SRD:

N(< itim) = 42.9(1 — finag)10%330m =29 aremin =2, 17

where fiask accounts for the reduction factor for masks due to image
defects and bright stars, and fi,asc = 0.12 corresponds to a similar
level of reduction in HSC Y1 (The LSST Dark Energy Science
Collaboration 2021). Hence, substituting i}, = 24.6 for LSST Y3,
the expected total number density is N(< 24.6) = 27.1 arcmin~2.
This is slightly larger but comparable to the HSC Y3 raw number

density of N = 22.9 arcmin—2 (Li et al. 2022) at a similar magnitude
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Figure 8. The lens galaxy density angular power spectrum, C fg, measured from the mock LSST Y3 data with uniform (red points) and varying depth (purple
points). Each panel shows the autocorrelation, (i, i), in each tomographic bin i. The lower panels show the ratio between the measurements and the theory (black
solid lines), Czh. The grey area indicates excluded data points from the scale cut corresponding to k = 0.3 h-Mpc™!. The x?2 per degree of freedom, Xfof, is
shown for the uniform and variable depth cases in the lower left corner, computed using a Gaussian covariance assuming spatial uniformity. The varying depth

case deviates from the theory significantly on large scales.

cut of iy, < 24.5 in the cModel magnitude. We estimate the total
lens galaxy number density for our sample by Ny, = N(< 24.5) fis,
where fis = 0.90 is the ratio between the total number of lens
and source samples (averaged over depth bins) from our degraded
Roman—Rubin simulation catalogue, hence N,y = 24.4 arcmin 2.
For each lens tomographic bin, we obtain the following mean number
density: 3.93, 6.08, 5.66, 5.71, 3.03 arcmin~2. We also explore the
case using a MagLim-like lens sample with a much sparser density
in Appendix E. For source sample, it is the effective number density
net, rather than the raw number density, that determines the shear
signal-to-noise. neg accounts for the down-weighting of low signal-
to-noise shape measurements, as defined in e.g. Heymans et al.
(2012) and Chang et al. (2013). For LSST, n.s is estimated for
Y1 and Y10 with different scenarios in table F1 in the DESC SRD.
In the case adopted for forecasting, where the shapes are measured
in i +r and accounting for blending effect, n.s is ~ 60 per cent
of the raw number density for both Y1 and Y10. We follow this
estimation for Y3, hence adopting n.g = 16.3 arcmin~2 for the full
source sample, and 3.26 arcmin~2 for each tomographic bin. This is
comparable, but slightly more sparse compared to HSC Y3, where
et = 19.9 arcmin™2 (Li et al. 2022).

Meanwhile, we also generate a uniform sample for comparison, in
which the number density and p(z) are given by the mean of the depth
quantiles. We assign uniform weights to lens and source galaxies.

5.2 Weak lensing 3 x 2 pt data vector

We use NaMaster (Alonso, Sanchez & Slosar 2019) to measure the
3 x 2pt data vector in Fourier space: C£¥, C¥', and C}7 for the
lens and source tomographic bins. NaMaster computes the mixing
matrix to account for the masking effects, and produces decoupled
band powers. The HEALPIX pixel window function correction is also
applied when comparing the data with input theory. We adopt 14 ¢-
bins in range [20,1000] with log spacing. Notice that the maximum
¢ is a conservative choice for C}” compared to the DESC SRD,
where €,,x = 3000 is adopted, based on the assumption of improved
modelling of non-linearity and baryonic feedback when the LSST
data becomes available. Nevertheless, this is sufficient for our pur-
pose to demonstrate the impact of variable depth on relatively large
scales. For galaxy clustering and galaxy—galaxy lensing, we apply an
additional scale cut at £;,,x = kmax X ((z)) — 0.5 following the DESC
SRD, where k. = 0.3 hMpc_1 ,and y ({z)) is the comoving distance
at the mean redshift (z) of the lens tomographic bin. We generate
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theory angular power spectra assuming spatial uniformity with the
core cosmology library’ (CCL; Chisari et al. 2019). CCL uses
HALOFIT (Smith et al. 2003; Takahashi et al. 2012) non-linear power
spectrum and Limber approximation when computing the angular
power spectra. We compute the Gaussian covariance matrix using
NaMaster with theoretical data vectors. The covariance includes
mask effects, shot-noise, and shape noise power spectra. It should be
noted that this is done assuming uniformity. In the varying depth
case, the true covariance contains extra variance, due to spatial
correlation in the noise with the number count. Also, the assumption
of a purely Gaussian covariance is not completely true. On very large
scales, non-Gaussian mode coupling at scales larger than the survey
footprint results in a term called supersample covariance (Li, Hu &
Takada 2014). Here we expect it to be relatively small because of the
large sky coverage of LSST. On small scales, non-linear structure
formation also introduces non-Gaussian terms (e.g. Cooray & Hu
2001). With the scale cuts adopted in C§¥ and C§” we expect that
such non-Gaussian contribution to be small.

The galaxy clustering angular power spectra measurements, C5*,
are shown in Fig. 8. The tomographic bin number is indicated in
the upper right corner as (i, i) for bin i. The measurements for the
uniform case are shown as red dots, and that for the varying depth
case are shown in purple. The data points are shot-noise-subtracted.
We see a clear difference between the uniform and the varying
depth cases at £ < 100, and it becomes more significant at higher
redshifts. The impact at large scales is expected, as the i-band coadd
depth varies relatively smoothly and the rolling pattern is imposed
at relatively large scales. The trend with redshifts is also expected,
due to two main reasons. First, the slope d(Ng.1/ Ngal) /dms increases
slightly with redshift, and is significantly larger for bin 5, as shown
in the right middle panel of Fig. 5. This means that non-uniformity
is most severe in these bins. Secondly, the clustering amplitude
increases towards lower redshifts due to structure growth, hence
the non-uniformity imprinted in §, is less obvious in lower redshift
bins. In practice, the number density fluctuations are mitigated
via the inclusion of the selection weights, w(@), such that the
corrected density field is defined as Sg(0) = N(#)/w(8)N,, where
Ny, =Y N(0)/ > w() (see e.g. Nicola et al. 2020). In addition,
these weights will be used to compute the mode coupling matrix and
shot noise, such that the varying number density is taken into account
in the likelihood analysis. A more subtle effect is the difference

"https://github.com/LSSTDESC/CCL
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Figure 9. The ratio between noise-less angular power spectra for the varying depth case and the uniform case. The left, middle, and right panels show the
ratio for C f’g, ny, Cly ¥ respectively. The solid lines indicate the case where both density non-uniformity and varying p(z) are applied to the overdensity map,
whereas the dashed lines refer to the case where only varying p(z) is implemented. For C Zgy and Clyy, we only show the diagonal terms, i.e. the combination
(i, i) for tomographic bin i for the tracers, for visual clarity. The off-diagonal terms vary within a similar range. In case of C’f”/, the grey region marks £ < 50

where measurements are unstable.

in redshift distribution at different depth. To isolate its impact, we
compare the clustering power spectra from the noise-less sample
varying p(z) only with that from the noise-less uniform case. The
ratio of the measurements are shown as dashed lines in the first panel
of Fig. 9. We find that once the non-uniformity in number density is
removed, the variation in p(z) does not significantly bias the power
spectra, and we recover the uniform case at better than 0.5 per cent.

The galaxy—shear and shear—shear power spectra, C5” and C}7,
are shown in Figs 10 and 11, respectively. The source-lens and
source—source combinations are indicated on the upper right as (i, j).
In both cases, we only show the non-zero E-modes, and we check
that the B-modes are consistent with zero. For the galaxy—shear case,
measurements from combinations i < j are not shown, because we
do not include effects such as magnification or intrinsic alignment,
hence these measurements are low signal-to-noise or consistent with
zero. We see that, overall, the impact of variable depth is much
smaller compared to galaxy clustering. In the galaxy—galaxy shear
measurements, only combination (5,5) shows a significant x 2 in the
variable depth case, and the main deviations is at £ < 100. This
could be a joint effect where non-uniformity is largest in the highest
redshift bin for both lens and source. There is negligible difference in
the shear—shear measurements for all other combinations given the
measurement error. To look at this further, we take the noise-less case
and compute the ratio between measurements from the varying depth
sample and the uniform sample. We show some examples along the
diagonal, i.e. the (i, i) combinations, in the middle and right panels of
Fig. 9. The off-diagonal measurements lie mostly within the variation
range of the ones shown here. In case of Cf”, we see that deviations
are large at low £ when both density and p(z) is non-uniform (shown
as solid line); when the density non-uniformity is removed (shown
in dashed line), the results are more consistent within 5 per cent. For
C!V, we see that the largest impact is from the highest tomographic
bin reaching up to 0.5 per cent.

These results are consistent with the analytical approach in Baleato
Lizancos & White (2023), where, in general, the varying depth effect
in the redshift distributions is sub-percent and the weak lensing
probes are less susceptible to these variations. Our results are quite
different from Heydenreich et al. (2020) (hereafter H20) for KiDS
cosmic shear analysis in several aspects. H20 found that the largest
impact comes from the sub-pointing, small scales, and for a KiDS-
like set-up, the difference between the uniform and variable depth
cases is 3 per cent—5 per cent at an angular scale of & = 10 arcmin.
Furthermore, the variable depth effect is stronger in lower redshift

bins than higher redshift bins. Several differences in the analysis
may contribute to these different results. First, the non-uniformity in
KiDS is rather different from that considered here: the KiDS footprint
consists of many 1 deg? pointings, each having distinctive observing
conditions due to that each field only received a single visit. This
means that survey properties such as depth are weakly correlated at
different pointings. One can write down a scale-dependent function,
E(0), to specify the probability of a pair of galaxies falling in the
same pointing at each 6, and this essentially gives rise to the scale
dependence of the variable depth effect in H20. For LSST, the above
assumptions are not true, and E(6) (if one can write it down) would
take a very different form compared with that in KiDS. Secondly, due
to the single visit, there is a much larger variation in depth, number
density, and Az in KiDS compared to this work (tomographic bin
centre can shift up to Az ~ 0.2 in redshift, as shown in fig. 2 of H20).
This means that the variable depth effects in KiDS as explored by
H20 is significantly larger compared to this work. This also explains
their redshift dependence, because for KiDS, the average redshift
between pointings varies the most in the lowest redshift bins. Lastly,
although our £,,,,x here corresponds to 6 ~ 10 arcmin. the results are
not directly comparable, as H20 conducted the analysis in real space,
ie. £.(0).

To sum up, the largest impact of varying depth comes from galaxy
clustering, whereas the impact on weak lensing probes is much
smaller. Higher redshift bins are more susceptible due to a higher
sensitivity in number density and redshifts with depth. Given the
mock LSST Y3 uncertainty, one can clearly detect bias in the power
spectrum in galaxy clustering and the galaxy—galaxy shear bin (4,4),
while all other combinations do not seem to have detectable impacts.
Furthermore, once the density non-uniformity is removed, the impact
of varying depth is further reduced. There are several ways to mitigate
number density variation, such as mode projection (e.g. Rybicki &
Press 1992; Elsner, Leistedt & Peiris 2016), template subtraction
(e.g. Ross et al. 2011; Ho et al. 2012), iterative regression (e.g.
Elvin-Poole et al. 2018; Weaverdyck & Huterer 2021), and machine
learning methods using neural networks (Rezaie et al. 2020) and a
SOM (Johnston et al. 2021). See Weaverdyck & Huterer (2021) for
a thorough review. Notice that, despite these methods, it is difficult
to guarantee a complete removal non-uniformity, and in some cases,
clustering signal can also be reduced as a result. Additional sky cuts
to exclude problematic regions can also effectively reduce density
variation, at the cost of losing sky coverage. Finally, for the lens
sample, a brighter magnitude cuts can also greatly reduce the variable
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Figure 10. The E-mode of the galaxy—shear angular power spectrum, ny, measured from the mock LSST Y3 data with uniform (red points) and varying
depth (purple points). Each panel shows the combination, (i, j), for source bin i and lens bin j. The lower panels show the ratio between the measurements
and the theory (black solid lines), Céh‘ The grey area indicates excluded data points from the scale cut corresponding to k = 0.3 A-Mpc ™! in the lens bin. The
x? per degree of freedom, xfof, is shown for the uniform and variable depth cases in the lower left corner, computed using a Gaussian covariance assuming
spatial uniformity. The uniform and varying depth case do not differ much except for the first few data points in (5,5), where the varying depth case deviates

significantly from the theory line.

depth effect (see Appendix E for a MagLim-like lens selection), at
the cost of sample sparsity. Nevertheless, non-uniformity in p(z) only
seems to be safely averaged out in the 2-point statics measurements.

5.2.1 Impact on spectroscopic calibration

Here, we consider another potential source of systematics arising
from small spectroscopic calibration fields. Redshift calibration for
photometric surveys such as LSST are usually done using small but
deep spectroscopic surveys, e.g. C3R2 survey (Masters et al. 2019).
Each field in these surveys has a coverage of a few deg”. Suppose
that a calibration field overlaps with a particularly shallow or deep
region, the calibration (e.g. a trained SOM) could cause bias to the
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overall redshift distribution when it is generalized to the whole field.
For example, a SOM trained in a shallow region will contain larger
noise, which may increase the scatter for the overall sample. The
lack of high redshift, fainter objects in the shallow region could also
cause bias when the SOM is applied to objects in deeper regions.
The specific impact will depend on the calibration method and de-
tails of the calibration, which is beyond the scope of this paper. Here,
we qualitatively assess the impact via the difference in the 3 x 2 pt
theory vectors computed using the p(z) from a particular quantile and
those computed using the mean p(z), as shown in Fig. 12. The solid
lines show cases from the shallowest quantile, qtl = 0, and the dashed
lines show cases from the deepest quantile, where qtl = 9, highlight-
ing the worst case scenarios. For C§” and C}”, only cases where
the tracers are in the same bin are shown, but the other lens—source
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(purple points). Each panel shows the source—source combination, (i, j), tomographic bins i and j. The lower panels show the ratio between the measurements
and the theory (black solid lines), C". The x? per degree of freedom, 2., is shown for the uniform and variable depth cases in the lower left corner, computed
using a Gaussian covariance assuming spatial uniformity.

1.154
1.101

9 .
IC lumfarm

=0

C;Jt/

0.904
0.85

— (1,1) — (2,2)

— (3.3)

— (4,4)

1.051
1.00+
0.954

lunifarm

%9c

qtl =
Cl

uniform

%9c

qtl
Cl

103

102
!

103
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Table 2. The fiducial value and the Gaussian standard deviation of the prior
assumed in the Fisher information matrix for the cosmological and intrinsic
alignment parameters as defined in Krause & Eifler (2017).

Parameter Fiducial value Prior o
Cosmological

Qn 0.279 0.15
o3 0.82 0.2
wo —1 0.8
Wy 0 1.3

h 0.7 0.125
ng 0.97 0.2
Qp 0.046 0.003
Intrinsic alignment

Ap 5.92 2.5

0 —0.47 1.5
N 0.0 0.5

B 1.1 1.0
Galaxy bias

b; 1.0 0.9

combinations have a comparable variation. We see that naively taking
the p(z) from a quantile and assume it as the p(z) for the full sample
can give rise to as much as 10 per cent bias compared to the uniform
case.

This effect is reduced by having multiple calibration fields across
the LSST footprint. Currently, many of the calibration fields overlaps
with the LSST Deept Drilling Field (DDF), which will be much
deeper compared to the WFD. Impact of variable depth can then be
mitigated via a two-tiered SOM calibration, mapping from the deep
to the wide field (Myles et al. 2021), and synthetic source injection
(Everett et al. 2022), mimicking the degradation of the deep field
objects across the LSST footprint, as done in the DES Y3 analysis.

5.3 Impact on cosmological parameters

We further predict the impact of survey non-uniformity on the
cosmological analysis by conducting Fisher forecasting. The Fisher
forecast estimates the constraints on cosmological parameters by
assuming a Gaussian-likelihood function, a fiducial cosmology, and
a covariance matrix on the data vector (Wasserman 2004; Coe 2009;
Bhandari et al. 2021). In the Bayesian statistics framework, we can
write the Fisher Information matrix as
T

Ij= o Vo 4
Y 0y da; ol

where d is the data vector, & is the model parameter vector, and V
is the inverse of the covariance matrix. o, is the standard deviation
of the Gaussian prior on parameter «;, and §;; is the Kronecker
delta. We use the Fisher forecast code developed in Zhang et al. (in
preparation). The covariance matrix is computed by NaMaster using
the theoretical angular power spectra generated by CCL, assuming
Gaussianity.

We use CCL to compute the fiducial data vector of the LSST Y3
3 x 2 pt. We use the non-linear intrinsic alignment (NLA) model as
in Krause & Eifler (2017), adopted in the DESC SRD, to describe the
contribution of intrinsic alignments to the data vectors. There are four
NLA parameters, namely, the overall intrinsic alignment amplitude,
Ay, the power-law luminosity scaling, 8, the redshift scaling, 7;, and
the additional high-redshift scaling 7,. The fiducial value and prior
of the cosmological and astrophysical parameters are taken from the
DESC SRD, as shown in Table 2. The fiducial galaxy bias, b;, of
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the lens catalogue in each tomographic bin i, is set to 1.0, with a
Gaussian standard deviation of 0.9 and a cut at b; < 0. The contours
shown in this section include the statistical uncertainty of the data
vector and the marginalized uncertainty over other cosmological and
astrophysical parameters described above. The contour can be over-
confident since it does not marginalize over observational systematic
uncertainties, which can include photometric redshift uncertainty,
PSF uncertainty, and multiplicative shear uncertainty. Additionally,
the non-Gaussian contributions to the covariance matrix is not taken
into account. Non-linear galaxy bias is also not modelled.

Fisher forecasts can be used to predict bias in the parameters given
a shift in the data vector. We take the difference between the biased
and fiducial 3 x 2 pt power spectra, d®**® and d, respectively, from
Section 5.2, and use it to calculate the bias in cosmological param-
eters that the survey non-uniformity induces, under the assumption
of small, linear changes in d (Huterer et al. 2006; Rau et al. 2017):

-1 dd biased
fr=1"1. (da V (d d)), (19)
where d is the fiducial 3 x 2pt data vector. The Fisher information
matrix used in equation (19) is the full 16 x 16 matrix which includes
11 cosmological and intrinsic alignment parameters, as well as five
galaxy bias parameters, as shown in Table 2.

The forecasted impact of non-uniformity on LSST Y3 3 x 2pt
cosmological analysis is shown in Fig. 13. When neither non-
uniform Ng, nor n(z) are modelled in the data vector, the forecasted
bias on 2, —og and wy — w, are both on the order of ~ 200,
making the analysis completely unfeasible. Notice that in this case,
strictly speaking, the small difference assumption in equation (19)
breaks down, and so one should take these numbers with caution.
Assuming the non-uniformity residual can be reduced to a level
of 10 percent (orange) and 5 percent (green), the bias on the
cosmological parameters reduces to about 30 and 1.50, respectively.
We observe that the main contributor to the cosmological bias in this
case is the galaxy clustering, C5*. When the bias in clustering is set
to zero, the overall bias in cosmology is contained within 1o, shown
in brick red. The cosmological bias when only non-uniformity of
n(z) is mis-modelled is negligible, as shown in the purple vector.

As a result of the Fisher forecast, we recommend the Ngy non-
uniformity of the LSST 3 x 2pt lens sample should be modelled
with less than 3 per cent residual, to ensure an accurate cosmological
analysis with bias within 1o. Otherwise, large-scale modes or high-
redshift bins of the galaxy clustering signal must be removed from
the data vector to avoid the parts where non-uniformity makes the
most significant impact, as also shown in Fig. 8.

6 CONCLUSIONS

In this paper, we investigated and quantified the impact of spatial non-
uniformity due to survey conditions on redshift distributions in the
context of early LSST data. We used the Roman—Rubin simulation
as the truth catalogue, and degraded the photometry using the LSST
error model implemented in the RAIL package. The degradation
utilizes the survey condition maps from the OpSim baseline v3.3 for
the 1, 3, and 5-yr LSST data. We run BPZ and FZBoost photometric
redshift estimators on the degraded sample and use the photo-z mode
to separate the samples into five lens and five source tomographic
bins. Finally, we apply the LSST gold selection and a signal-to-noise
cut. Taking the extinction-corrected 5o coadd depth of the detection
band, i-band, as the primary source of non-uniformity, we quantify
the impact in terms of three measures: the number of objects, the
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Figure 13. The black ellipse shows the Fisher forecasted 1o and 20 contour of Qp — og and wo — w,, marginalized over 16 parameters as described in
Section 5.3. The parameter biases induced by survey non-uniformity are given by the vectors in the plot. The blue, orange, and green vectors show the biases
corresponding to 100 percent, 10 percent, and 5 percent of both Nga and n(z) non-uniformity. The brick red vector shows the bias corresponding to the
100 per cent case but without the clustering bias. The purple vector shows the bias corresponding to only n(z) non-uniformity.

mean redshift of the tomographic bin, and the tomographic bin width.
We find that:

(i) The number of objects increases with the i-band depth in
general, and at extreme depth values, the number of objects can
vary by a factor of two. The trend is relatively consistent between
cases using BPZ and FZBoost, although selecting odds > 0.9 for
BPZ amplifies the trend. The largest correlation comes from the
highest tomographic bin.

(ii) The mean redshift in each bin increases with the i-band depth,
with a variation of |Az/(1 + (z))| ~ 0.005 — 0.01. The lens samples
show a relatively consistent trend across different tomographic bins,
whereas for the source sample, the highest tomographic bin shows
the largest variation. This reaches the limit of the requirements of
0.005 for Y1 as listed in the DESC SRD, and exceeds the requirement
of 0.003 for Y10. At extreme depth variations, however, deviation in
(z) could exceed Y1 requirements.

(iii) The width of the lens tomographic bin is measured in terms
of 0., which is sensitive to the entire redshift distribution, p(z), and
W., which is sensitive to the peak of p(z), both varying at the level of
10 per cent and slightly increases with year. We find that in general,
o, increases with the i-band depth due to fainter objects included in
the deeper sample. W, also increases with the i-band depth, due to a
more peaked bulk p(z) as a result of higher SNR in deeper samples,
although the trend can be reversed in some cases.

As emphasized before, results derived for Y3 and Y5 are with par-
ticularly large rolling non-uniformity. Hence, the variations shown
should be interpreted as an upper limit for the early Rubin LSST static
science. As shown in Appendix E, if the final LSST lens selection is
similar to the DES Y3 MagLim sample with a bright magnitude cut,
then the expected variable depth impact will be milder than shown
in our baseline cases.

We took the Y3 FZBoost photo-z as an example to propagate the
impact of varying depth to the weak lensing 3 x 2pt measurements.
To do this, we used one realization of the Gower Street N-body
simulation, and generated lens galaxy maps and source shear maps

with spatially varying number density and p(z). We measure the data
vector in harmonic space using NaMaster, and also compare them
with the theory expectation generated from the CCL. We find that the
largest impact is on C$ with the higher redshift bin measurements
significantly biased. C5” is less sensitive to varying depth effects,
although in the source-lens combination (4,4), there is a visible
difference at low £. C]” shows no significant impact in all source—
source combinations from varying depth, given the uncertainties in
LSST Y3. Finally, we also investigate cases where we do not include
noise in the lens and source maps. The difference between uniform
and varying depth cases can be up to a few percent for C:”, and
less than 0.5 per cent for C}”. Furthermore, by removing the density
non-uniformity, and varying p(z) only with depth, one can reduce
the bias in C5* and C}” to sub-per cent level. We use a Fisher forecast
to assess the impact of non-uniformity on cosmological parameter
inference for the 3 x 2 pt data vector. We conclude that the mitigation
in number density variation is crucial, and for our baseline setup for
LSST Y3, this should be controlled below 3 per cent. Therefore, for
early LSST analysis, it is crucial to account for the galaxy density
variation, but the impact of varying p(z) seems to be negligible.
We leave the investigation of an accurate mitigation strategy of the
number density variation to future work.

Our current approach has some caveats. First, the fidelity of the
colour-redshift relation in the Roman—Rubin simulation at z > 1.5
is questionable. As already mentioned, the strong bifurcation of the
blue objects at this high redshift may lead to worse (in the case
of BPZ) or overly optimisic (in the case of FZBoost) performance
when estimating the photo-z. Secondly, we have adopted an analytic
model to obtain the observed magnitudes in each band based on
survey conditions. However, in reality, the observed magnitudes and
colours also depend on the way they are measured. For example, for
extended objects, cModel (Strauss et al. 2002) and GAaP (Kuijken
et al. 2015) methods are often applied. Although the photometry will
be calibrated, the magnitude error may not be the same for different
methods. This could introduce extra scatter in photo-z. Thirdly,
we have only tested on two major photo-z estimators, observing
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some level of differences in the results. For example, compared to
BPZ, the FZBoost samples show more consistency between different
tomographic bins regarding to the trend with i-band depth. Therefore,
one should take the result as an order of magnitude estimate of the
impact, but the specific trends are likely to differ for different photo-z
methods. Moreover, when propagating the effects to the data vector,
we have made some simplifications. We considered a galaxy bias of
b =1, and did not include systematics such as magnification bias or
intrinsic alignments. This choice is to isolate the effect of varying
depth on the pure lensing and clustering contribution, but it would be
more realistic to include these effects. Finally, we have not folded in
the effects of blending, i.e. spatially nearby galaxies are detected as
one object. This occurs when the surface density is high and the image
is crowded, and could be significant for deep photometric surveys
such as LSST. The level of blending depends on both seeing and depth
of the survey, hence, it could correlate with the variable depth effects
discussed here. The impact of blending on photo-z is the inclusion
of a small fraction of ill-defined redshifts in the sample, increasing
the photo-z scatter. Clustering redshift calibration, which measures
galaxy clustering on small scales, can also be affected as these scales
are most susceptible to blending. Moreover, blending can affect shear
measurements via e.g. lensing weights, hence introduce impact on
galaxy—galaxy lensing and cosmic shear. As such, Nourbakhsh et al.
(2022) showed that approximately 12 per cent of the galaxy sample
in LSST is unrecognized blends, and can bias Sg measurement from
cosmic shear by 20

Furthermore, so far our results are based on the p(z) of the true
redshifts of the sample. In reality, we do not have access to this, and
our theory curve will be based on the calibrated redshift distribution
pc(z), which itself can be impacted by non-uniformity based the
calibration method. For example, in many weak lensing surveys,
a SOM is used to calibrate redshifts by training on a photometric
subsample with spectroscopic counterparts (Wright et al. 2020;
Myles et al. 2021). By taking subsamples from a small calibration
field (typically of a few square degrees) located in a particularly
shallow region could result in a trained SOM that captures different
magnitudes, redshifts, and SNR than that from a deep region, as
quanlitatively shown in Section 5.2.1. One remedy may come from
calibration using clustering redshifts, which takes advantage of
galaxy clustering of the target sample with a spectroscopic sample,
spliced in thin redshift bins (den Busch et al. 2020; Gatti et al. 2022;
Rau et al. 2023). The non-physical variation with depth will drop out
in this method, giving unbiased estimate of p(z).

We have only explored the impact of variable depth on two-point
statistics here, but there could be potential impact on statistics beyond
two-point. For example, for weak lensing shear, a similar effect
in manifestation is source clustering, where the number density of
source galaxies n(, 7) is correlated with the measured shear )/(é)
for a given direction § on the sky, because source galaxies are
themselves clustered. Impact of source clustering is negligible in
two-point statistics for Stage III surveys, but is detected significantly
in several higher order statistics in the DES Y3 data (Gatti et al.
2024). Given that the variable depth effect also modulates n@, z)
(hence imprinting a fake ‘source clustering’), there may be non-
negligible impact on higher order statistics with LSST. We leave
these explorations to future work.
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examples/survey_nonuniformity

Gz0z Aieniga4 g uo Jasn uopuoT ebs|j0D Alsiaaiun Aq G5£688//0/262/¥/SES/e1oNIB/SBIUW/WOD dNooIWwspeoe//:sdiy Wwol) papeojumoq


https://github.com/LSSTDESC/rail_pipelines/tree/main/src/rail/pipelines/examples/survey_nonuniformity

REFERENCES

Alarcon A., Hearin A. P., Becker M. R., Chaves-Montero J., 2023, MNRAS,
518, 562

Alonso D., Sanchez J., Slosar A., 2019, MNRAS, 484, 4127

Amon A. et al., 2022, Phys. Rev. D, 105, 023514

Asgari M. et al., 2021, A&A, 645, A104

Awan H. et al., 2016, ApJ, 829, 50

Baleato Lizancos A., White M., 2023, J. Cosmol. Astropart. Phys., 2023,
044

Benitez N., 2000, ApJ, 536, 571

Bhandari N., Leonard C. D., Rau M. M., Mandelbaum R., 2021, preprint
(arXiv:2101.00298)

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Chang C. et al., 2013, MNRAS, 434, 2121

Chisari N. E. et al., 2019, ApJS, 242, 2

Coe D., 2009, preprint (arXiv:0906.4123)

Coe D., Benitez N., Sanchez S. F., Jee M., Bouwens R., Ford H., 2006, AJ,
132, 926

Coleman G. D., Wu C. C., Weedman D. W., 1980, ApJS, 43, 393

Cooray A., Hu W., 2001, ApJ, 554, 56

Crenshaw J. F., Kalmbach J. B., Gagliano A., Yan Z., Connolly A. J., Malz
A. 1L, Schmidt S. J., T. L. D. E. S. Collaboration, 2024, AJ, 168, 80

Dalal R. et al., 2023, Phys. Rev. D, 108, 123519

Dalmasso N., Pospisil T., Lee A. B., Izbicki R., Freeman P. E., Malz A. L.,
2020, Astron. Comput., 30, 100362

Delgado F., Reuter M. A., 2016, in Peck A. B., Seaman R. L., Benn C. R.,
eds, Proc. SPIE Conf. Ser. Vol. 9910, Observatory Operations: Strategies,
Processes, and Systems VI. SPIE, Bellingham, p. 991013

Elsner F., Leistedt B., Peiris H. V., 2016, MNRAS, 456, 2095

Elvin-Poole J. et al., 2018, Phys. Rev. D, 98, 042006

Everett S. et al., 2022, ApJS, 258, 15

Gatti M. et al., 2021, MNRAS, 504, 4312

Gatti M. et al., 2022, MNRAS, 510, 1223

Gatti M. et al., 2024, MNRAS, 527, L115

Gorski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke
M., Bartelmann M., 2005, ApJ, 622, 759

Graham M. L., Connolly A. J., Ivezié Z., Schmidt S. J., Jones R. L., Juri¢ M.,
Daniel S. F.,, Yoachim P, 2018, AJ, 155, 1

Green G., 2018, J. Open Source Softw., 3, 695

Hearin A. P., Chaves-Montero J., Alarcon A., Becker M. R., Benson A., 2023,
MNRAS, 521, 1741

Heitmann K. et al., 2019, ApJS, 245, 16

Heydenreich S. et al., 2020, A&A, 634, A104 (H20)

Heymans C. et al., 2012, MNRAS, 427, 146

Ho S. et al., 2012, ApJ, 761, 14

Huterer D., Takada M., Bernstein G., Jain B., 2006, MNRAS, 366, 101

Ivezi¢ Z. et al., 2019, APJ, 873, 111

Izbicki R., Lee A. B., 2017, preprint (arXiv:1704.08095)

Jeffrey N., Alsing J., Lanusse F., 2020, MNRAS, 501, 954

Jeftrey N. et al., 2024, preprint (arXiv:2403.02314)

Joachimi B. et al., 2021, A&A, 646, A129

Johnston H. et al., 2021, A&A, 648, A98

Kinney A. L., Calzetti D., Bohlin R. C., McQuade K., Storchi-Bergmann T.,
Schmitt H. R., 1996, ApJ, 467, 38

Korytov D. et al., 2019, ApJS, 245, 26

Krause E., Eifler T., 2017, MNRAS, 470, 2100

Kuijken K. et al., 2015, MNRAS, 454, 3500

Kuijken K. et al., 2019, A&A, 625, A2

LSST Dark Energy Science Collaboration (LSST DESC), 2021, APJS, 253,
31

Li Y., Hu W., Takada M., 2014, Phys. Rev. D, 89, 083519

Li X. et al., 2022, PASJ, 74, 421

Li X. et al., 2023, Phys. Rev. D, 108, 123518

Lima M., Cunha C. E., Oyaizu H., Frieman J., Lin H., Sheldon E. S., 2008,
MNRAS, 390, 118

Madhavacheril M. S. et al., 2024, ApJ, 962, 113

Malz A. 1., Hogg D. W., 2022, ApJ, 928, 127

Impact of spatial variability for LSST 2989

Masters D. C. et al., 2019, ApJ, 877, 81

Moskowitz 1., Gawiser E., Crenshaw J. F., Andrews B. H., Schmidt S., The
LSST Dark Energy Science Collaboration, 2024, ApJ, 967, L6

Myles J. et al., 2021, MNRAS, 505, 4249

Nicola A. et al., 2020, J. Cosmol. Astropart. Phys., 2020, 044

Nourbakhsh E., Tyson J. A., Schmidt S. J., Armstrong B., Burchat P., Sdnchez
J., 2022, MNRAS, 514, 5905

Planck Collaboration VI, 2020, A&A, 641, A6

Porredon A. et al., 2022, Phys. Rev. D, 106, 103530

Potter D., Stadel J., Teyssier R., 2017, Comput. Astrophys, 4, 2

Rau M. M., Hoyle B., Paech K., Seitz S., 2017, MNRAS, 466, 2927

Rau M. M. et al., 2023, MNRAS, 524, 5109

Reuter M. A., Cook K. H., Delgado F., Petry C. E., Ridgway S. T., 2016, in
Angeli G. Z., Dierickx P., eds, Proc. SPIE Conf. Ser. Vol. 9911, Modeling,
Systems Engineering, and Project Management for Astronomy VI. SPIE,
Bellingham, p. 991125

Rezaie M., Seo H.-J., Ross A. J., Bunescu R. C., 2020, MNRAS, 495, 1613

Rodriguez-Monroy M. et al., 2022, MNRAS, 511, 2665

Ross A. J. et al., 2011, MNRAS, 417, 1350

Rybicki G. B., Press W. H., 1992, ApJ, 398, 169

Schmidt S. J. et al., 2020, MNRAS, 499, 1587

Smith R. E. et al., 2003, MNRAS, 341, 1311

Strauss M. A. et al., 2002, AJ, 124, 1810

Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ, 761,
152

The LSST Dark Energy Science Collaboration, 2021, preprint (arXiv:1809.0
1669)

Troxel M. A. et al., 2023, MNRAS, 522, 2801

van den Busch J. L. et al., 2020, A&A, 642, A200

Wasserman L., 2004, All of Statistics. Springer, New York

Weaver J. R. et al., 2022, ApJS, 258, 11

Weaverdyck N., Huterer D., 2021, MNRAS, 503, 5061

Williams R. E. et al., 1996, AJ, 112, 1335

Wright A. H., Hildebrandt H., van den Busch J. L., Heymans C., 2020, A&A,
637, A100

Zuntz J. et al., 2021, Open J. Astrophys., 4 13

APPENDIX A: COMPARISON OF LSST ERROR
MODEL ON DC2

The 5o depth per visit, ms, depends on a set of observing conditions
in the following way (Ivezi¢ et al. 2019):

ms = Cp + 0.50(mgy — 21) + 2.510g,4(0.7/6ctr)
+1.2510g,0(tyis/30) — k(X — 1), (A1)

where C,, is a constant that depend on the overall throughput of
the system, mgy is the sky brightness in AB mag arcsec ™2, e
is the seeing in arcsec, ty;s is the exposure time in seconds, k is
the atmospheric extinction coefficient, and X is the airmass. The
default values of the parameters in the above equation per band are
given in table 2 in Ivezi¢ et al. (2019). The magnitude error for N-
years observation is computed by o/ Nn,;s, where the mean number
of visits per year n;s can be derived from table 2 in Ivezi¢ et al.
(2019).

In this Appendix, we compare the LSST error model with the
Rubin OpSim output as well as the Data Challenge 2 [DC2; LSST
Dark Energy Science Collaboration (LSST DESC) et al. 2021]
dr6 magnitude error. We perform our tests on the specific OpSim
version minion_1016, and we use the 5-yr observing conditions
including: coadd 5o point source depth (CoaddM5), single-visit So
point source depth (EiveSigmaDepth), sky brightness (filt-
SkyBrightness), and number of visits (Nvisits).

We begin by checking equation (A1) using OpSim MAF maps
over the DC2 footprint. The various survey conditions mgy, Oefr, and
X are taken as the median values over the 5-yr period, and other
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Figure A1. Comparison of the 50 PSF limiting magnitude computed from equation (A1) with the OpSim output: the median m5 over 5 yr (bright pink) and the
coadded 5o depth converted to the equivalent of per visit (red). The ms computed from equation (A1) utlizes the median sky brightness (mxy), median airmass
(X), and median seeing (Oefr), and other parameters are set to the default value in Ivezié et al. (2019).
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Figure A2. The relation between ms and other survey conditions using the LSST error model. We show the comparison between the data points from OpSim
for each of the six LSST bands, and the relation from the LSST error model using the default parameters as black dashed lines, with a fitted constant C. We see
that the LSST error model captures the correlation between ms and the underlying survey conditions well. The different colours correspond to different LSST

filters, as indicated in the texts next to the data points in the same colour.

parameters C,,, ts, and k,, are taken as the default values from
Ivezié et al. (2019). The results from equation (A1) are the S0 PSF
magnitude limit in each band per visit, and we compare it with two
quantities: the median 5o depth map, and the equivalent per-visit
depth from the coadded map: ms = m$**% — 2.5log(y/Nyis), where
N,is is the number of visits at each pixel. The results are shown in
Fig. Al. We see that in general, ms predicted by equation (A1) tends
to be brighter than that from OpSim, and the difference is larger
considering the coadd depth than the median depth. It seems that
except for i-band which has a slightly different slope from unity, the
difference in all other bands can be fixed by introducing a correction
to C,,. For example, for the median ms case, the shifts needed are
8C,, = {—0.053,0.032, —0.063, 0.070, 0.057, 0.027} for ugrizy,
respectively.
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We also explicitly check whether the dependence of the airmass,
seeing, and sky brightness are as expected in equation (A1) with the
default parameters. This is shown in Fig. A2. In all these exercises,
we test whether the dependencies of the particular survey condition
with ms on the ensemble pixels, fixing all other dependence to a
constant C which we fit to the ensemble. We see that the airmass and
seeing are well captured by equation (A1), although the dependence
of ms on airmass is weak. The sky brightness relation is less well
captured by equation (A1) especially for « and g. In general, however,
we conclude that in absence of a depth map, one can estimate the
unbiased ms for Rubin observation conditions using equation (A1)
with a modification of the C,, parameters for each band.

We then check equations (3) and (4) with the DC2 DM catalogue,
where the magnitude errors are obtained through the detection

G20z Aieniga4 g uo Jasn uopuoT 8bs)j0) Alsiaaiun Aq G5£688//0/262/1/SES/010NIB/SBIUW/WOD dNo™oIWapeoe//:sdny Wolj papeojumoq



Impact of spatial variability for LSST 2991

* DC2 (psf) LSST error model (psf) * DC2 (cModel) LSST error model (extended)
0.3 e
u, DC2 +* -+4 u, err. model g, DC2 g, err. model r, DC2 r, err. model
E 0.2 -
ml
[=)]
£ 0.1
0.8
i, err. model z, err. model y, err. model
E0.2
@
UII
£ 0.1
00 T T T T T
20 20 25 20 25 20 25
mag mag mag mag mag

Figure A3. Comparison of the magnitude error as a function of magnitude in each of the six LSST bands between the DC2 dr6 catalogue and the LSST error
model. The red and pink points show the PSF magnitude errors, whereas the dark and light blue points show that of the extended errors compared with the DC2
cModel magnitudes. The coadd 5o depth from OpSim is used to compute the magnitude errors.

pipeline, thus supposed to be more realistic. In this case, we directly
adopt the coadded depth as ms. We also compute in the low SNR limit
(equation 2) which allows us to check the fainter magnitudes. For the
extended magnitude errors, we compare with the CModel magnitudes
in DC2. This is shown in Fig. A3. We see that there is reasonable
agreement for the PSF magnitude errors in most bands, except for the
u-band, where the LSST error model predicts larger error compared
to that measured in DC2. However, it is also noticeable that the
DC2 error seems to be underestimated when comparing the observed
magnitude to the truth. It is also noticeable that the LSST error model
also predicts consistently larger error at the bright end. When we add
the extended error from the size of the galaxy (equation 6), we find
that the scatter of the magnitude error at fixed magnitude is quite a
bit larger than that measured by the cModel in DC2. Both the PSF
magnitude error and the scatter for the extended error in DC2 can
be matched by the LSST error model by simple scaling of the PSF
magnitude error by a constant for each band, as well as scaling the
galaxy size agq, by We emphasize that due to the known issues

in the DC2 catalogue, we do not calibrate the LSST error model to
DC2 in our analysis. However, it is worth bearing in mind what the
differences are, and that one needs to calibrate the model with the
real data.

APPENDIX B: COMPARISON OF
ROMAN-RUBIN GALAXY COLOUR WITH BPZ
TEMPLATES

We show the coverage of BPZ templates adopted in this paper for
the Roman—Rubin (DiffSky) simulation galaxy colours. We obtain
template magnitudes in the LSST six-band filters by integrating each
SED templates with the corresponding filter curves, with the template
shifted in redshift range 0 < z < 3. We then compare the five colour
distributions of the resultant templates with that of the Roman—Rubin
galaxies (i < 24.9, corresponding to the Y5 Gold cut). The results
are shown in Fig. B1. We see that the colour ranges of the simulated
galaxies are captured by the BPZ templates used.
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Figure B1. Colours in the LSST filters, for the Roman—Rubin (DiffSky) galaxies with i < 24.9 (left), and that derived from the SED templates used in BPZ in

the redshift range 0 < z < 3 (right).

APPENDIX C: LENS AND SOURCE
TOMOGRAPHIC BIN DETAILS

This section includes some supplementary information for the lens
and source tomographic bins for the mock photometry sample, as
discussed in Section 3.3.

Fig. C1 shows a similar plot as Fig. 4, but with the y-axis
in logarithmic scale, and extended to z = 3. Only tomographic
bins 1, 3, and 5 are shown for visual clarity. This scaling en-
hances the small, high-redshift population for both lens and source
galaxies.
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Table C1 shows the summary statistics on photo-z performance
for BPZ and FZBoost at the 10 percent shallowest i-band coadd
depth (qtl = 0) and deepest depth (qtl = 9) for the 1, 3, and 5-yr
mock LSST data. The summary statistics are: median bias, standard
deviation (STD), normalized Median Absolute Deviation (NMAD),
and outlier fraction. Tables C2 and C3 show the mean values of
the various metrics over the depth quantiles, given the gold cut
adjusted for each year. The metrics include mean galaxy number
Nga and mean redshift of the tomographic bin (z) for both lens and
source samples, and additionally the width metrics o, and W, for
lens samples. In the BPZ case, we include an additional case where
we select objects with odds > 0.9.
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Figure C1. Tomographic redshift distribution of the Y3 sample for qtl = O (solid lines) and qtl = 9 (dashed lines) in log scale. Only tomographic bins 1, 3,
and 5 are shown for visual clarity. The log scale highlights the tails towards high redshifts in each bin, which significantly impact the second moment of the
distribution, o for each case.

Table C1. The summary statistics on photo-z performance for BPZ and FZBoost at the 10 per cent shallowest i-band coadd depth (qtl = 0) and deepest depth
(qtl = 9) for the 1, 3, and 5-yr mock LSST data, as shown in Fig. 3. Defining Az = (Zphot — Ztrue)/(1 + Zurue), the summary statistics are: median bias, defined
as the median of Az, STD, defined as the standard deviation of Az, the normalized MAD, defined as onmvap = 1.48Median(|Az]), and outlier fraction, defined
as the fraction of sample with |Az| > 0.15. Both cases for full sample without cuts and for the high signal-to-noise sample with SNR > 10 are shown. For BPZ,
we also show the selection with odds > 0.9.

Sample qtl =0 qi =9
Median bias STD ONMAD Outlier fraction Median bias STD ONMAD Outlier fraction
Y1 BPZ Full —0.011 0.411 0.0772 20.1 per cent —0.011 0.404 0.0634 15.5 per cent
SNR > 10 —0.005 0.444 0.0632 14.2 per cent —0.009 0.409 0.0585 12.6 per cent
odds > 0.9 —0.001 0.446 0.0431 5.8 per cent —0.006 0.388 0.0401 4.5 per cent
Y1 FZBoost Full 0.008 0.122 0.0479 7.2 per cent —0.006 0.082 0.0371 4.2 per cent
SNR > 10 0.008 0.072 0.0410 3.1 per cent —0.004 0.065 0.0351 2.4 per cent
Y3 BPZ Full —0.013 0.380 0.0770 20.9 per cent —0.011 0.369 0.0613 14.3 per cent
SNR > 10 —0.009 0.399 0.0612 13.9 per cent —0.010 0.368 0.0586 12.1 per cent
odds > 0.9 —0.005 0.388 0.0407 4.7 per cent —0.008 0.337 0.0421 4.2 per cent
Y3 FZBoost Full 0.005 0.145 0.0408 8.3 per cent —0.004 0.079 0.0257 4.2 per cent
SNR > 10 0.005 0.089 0.0326 3.1 per cent —0.003 0.065 0.0247 2.7 per cent
Y5 BPZ Full —0.013 0.371 0.0774 21.3 per cent —0.011 0.353 0.0666 15.9 per cent
SNR > 10 —0.009 0.384 0.0620 14.2 per cent —0.009 0.350 0.0633 13.5 per cent
odds > 0.9 —0.006 0.372 0.0403 4.8 per cent —0.007 0.330 0.0442 4.4 per cent
Y5 FZBoost Full 0.004 0.137 0.038 8.3 per cent —0.003 0.08 0.0256 4.7 per cent
SNR > 10 0.004 0.086 0.0305 3.4 per cent —0.003 0.068 0.0244 3.2 per cent
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Table C2. The mean values of the metrics across all depth quantiles for samples with BPZ redshifts. The metrics per tomographic bin include number of
galaxies Ny and mean redshift (z). For lens galaxies, we compute two additional metrics regarding to the width of the tomographic bin: the second moment
o, and the LSS diagnostic W, defined in equation (15). Gold cut in the respective year and SNR > 10 are applied to all samples, and a case with odds > 0.9

is also included for comparison.

Sample Metric SNR > 10 SNR > 10, odds > 0.9
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5
Y1 lens I\_Igul 28796.5 32021.9 35387.0 24288.8 8463.0 7635.1 6158.4 10002.0 6221.3 1875.5
(2) 0.362 0.537 0.714 0.882 1.050 0.337 0.549 0.716 0.890 1.056
o 0.098 0.123 0.110 0.145 0.172 0.068 0.098 0.087 0.089 0.083
W, 3.216 2.797 2.785 2.535 1.945 3.453 3.453 3.311 2919 3.062
Y1 source Ngal 30534.5 30534.5 30534.5 30534.6 30534.7 7042.0 7042.0 7042.0 7042.0 7042.0
(2) 0.350 0.482 0.661 0.813 0.883 0.310 0.508 0.678 0.817 0.845
Y3 lens Ngal 38988.1 39330.9 50523.5 44645.0 21978.0 13904.9 12239.9 22208.5 14705.3 5822.9
(2) 0.373 0.541 0.728 0.912 1.067 0.345 0.550 0.721 0.895 1.064
o, 0.123 0.135 0.127 0.166 0.185 0.069 0.093 0.084 0.098 0.103
W, 3.208 3.123 2.872 2.514 2.147 3.602 3.517 3.361 2.977 2.952
Y3 source Ngal 48205.8 48205.8 48205.8 48205.5 48203.5 15578.9 15579.0 15579.0 15579.0 15579.0
(2) 0.384 0.557 0.755 0.954 1.033 0.332 0.577 0.726 0.866 0.973
Y5 lens Nga1 44162.9 43177.3 58004.0 54826.6 31379.0 17002.9 15398.3 28564.3 19690.5 8850.2
(2) 0.383 0.545 0.736 0.931 1.085 0.348 0.549 0.723 0.898 1.064
o 0.156 0.151 0.160 0.198 0.208 0.071 0.090 0.083 0.102 0.111
w, 3.136 3.267 2.894 2.394 2.087 3.920 3.683 3.423 2.945 2.982
Y5 source I\_Igul 59745.5 59747.1 59746.1 59745.0 59725.6 20746.7 20746.8 20746.7 20746.8 20744.1
(2) 0.417 0.594 0.804 1.028 1.150 0.345 0.599 0.751 0.904 1.019
Table C3. Same as Table C2, but for FZBoost redshifts. All samples have SNR > 10.
Sample Metric Bin 1 Bin 2 Bin 3 Bin 4 Bin 5
Y1 lens Ngal 31054.7 38964.9 33717.0 29871.8 9104.6
(z) 0.327 0.515 0.706 0.865 1.083
o, 0.119 0.103 0.114 0.118 0.108
W, 4.236 3.098 3.202 3.242 3.719
Y1 source Ngal 30534.6 30534.5 30534.5 30534.5 30534.7
(z) 0.291 0.466 0.623 0.779 1.030
Y3 lens Ngal 34498.5 52662.6 51564.7 52858.0 27561.2
(z) 0.320 0.500 0.702 0.894 1.093
o, 0.183 0.116 0.118 0.135 0.144
W, 4.220 3.263 3.385 3.061 3.053
Y3 source Ngm 48205.9 48205.8 48205.8 48205.9 48203.1
(z) 0.328 0.531 0.718 0.893 1.213
Y5 lens Ngal 37286.1 57641.9 59009.5 63214.3 39344.7
(z) 0.339 0.510 0.709 0.905 1.104
o 0.194 0.136 0.122 0.146 0.142
W, 4.150 3.332 3.428 3.037 2.908
Y5 source Ngal 59747.0 59747.1 59747.0 59747.2 59721.0
(z) 0.350 0.567 0.764 0.971 1.342

APPENDIX D: VARIATION WITH OTHER
SURVEY PROPERTIES

In the main analysis, we investigated the trend of galaxy number
and redshift distribution as a function of the i-band coadd depth. We
considered the i-band depth to be most impactful because it is the
detection band, and fluxes in all other bands are measured with forced
photometry based on the i-band detection. However, other survey
properties can also be important. For example, u-band is important
for the quality of photo-z estimation, so extreme variation in the u-
band depth could cause additional scatter. The effective seeing could
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be another important factor, which directly impact the noise-to-signal
for extended objects. We investigate the variation of galaxy number
density and photo-z properties with these other survey properties in
this section.

Table D1 summarizes the mean and standard deviation of the coadd
depth in the other five LSST bands and the median effective seeing
for Y3 survey properties from Rubin OpSim baseline v3.3. The other
years show a similar trend, although Y1 has a larger scatter. We see
that there is a strong correlation between the i-band depth and these
other survey properties. On average, a deeper i-band quantile also
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Table D1. The mean and standard deviation of all other survey condition maps used for degradation in this work in 10 quantiles of i-band depth, as shown in Table 1. This particular example shows the case for

year 3, but year 1 and year 5 follow a similar trend. There is a strong correlation between these survey conditions and the i-band depth.

i-band mS* quantiles

band

Prop.

2491 +£0.14
26.49 £0.13

24.76 £0.15
26.31 £0.14
26.49 £0.08
25.35£0.07
24.40 £0.09

24.68 £0.15
26.22 £0.12
26.41 £0.07
25.27 £0.07
24.32 £0.10
1.10£0.12
0.96 £0.12
0.90 £ 0.06
0.87 +£0.06
0.91 £0.07
0.92 £0.06

24.63 £0.16
26.18 £0.12
26.36 £0.07
25.22 £0.07
24.28 £0.09

24.57£0.18
26.13£0.13
26.31 £0.07
25.18 £0.07
24.25 £0.09
1.12£0.13
0.97 £0.13
0.91 £0.07
0.90 £0.07
0.93 £0.07
0.93 £0.06

24.49 £0.19

24.40£0.20
2599 £0.15
26.20 £0.08
25.08 £0.08
24.16 £0.11
1.15£0.12

24.30 £0.19
2591+£0.16
26.13 +£0.09
25.02 £ 0.09
24.10£0.11

24.19 +£0.20
25.82£0.16
26.05 £ 0.09
24.95 £ 0.09

24.03 £0.11

24.00 +£0.24
25.66 £ 0.18
25.88 £0.13
24.80 £0.13
23.89 £0.15

u
8
r
Zz
y

ex

26.06 £0.15
26.26 £0.08
25.13 £0.08
24.21 £0.10

26.62 £ 0.07
25.47 £0.07
24.50 £ 0.08
1.05+£0.10
0.89 +0.09
0.85 £0.05
0.83 £0.04
0.86 £ 0.05
0.88 £0.04

1.12+£0.13
0.96 £ 0.11
0.89 £ 0.06
0.87 £0.06
0.91 £0.07
0.91 £0.05

1.10£0.12
0.96 £0.12
0.90 £ 0.07
0.88 +0.06
0.92 £0.07
0.93 £0.06

1.13£0.12
0.99+0.13
0.92 £0.08
0.91 £0.07
0.94 £0.07
0.94 £0.06

1.17 £0.12

1.20£0.12
1.02£0.13
0.98 £+ 0.09
0.95 £0.07
0.97 £0.07
0.97 £ 0.06

1.25+£0.11

u
8
r
i
Zz
y

FWHM

0 eff

1.00 £0.14
0.94 £ 0.09
0.93£0.08
0.95 £0.07
0.95 £0.06

1.00 £0.14
0.96 £+ 0.09
0.94 £ 0.08
0.96 £+ 0.07
0.96 £+ 0.06

1.07 £0.12
1.04 £0.09
1.01 £0.08
1.00 £ 0.07
1.02 £0.07

Impact of spatial variability for LSST ~ 2995

contains deeper coadd depth in all other five bands, as well as a
smaller median effective seeing, with more scatter in the latter.

To check the dependences of other survey properties, we subdivide
each of the i-band deciles into five subquantiles of another survey
property (such as depth in another band), and check the variation
of the metrics, i.e. number of objects Ny, mean redshift (z), and
width of the redshift bin o,, with these properties. As a reference,
we also compute and compare the variation with subquantiles of
the i-band depth itself. In this section, we show two representative
examples for source tomographic bins determined by FZboost photo-
z: the subquantiles in coadd u#-band depth and the i-band seeing, for
the fainest, median, and deepest i-band deciles: qtl = 0, 5, 9. In the
results presented here, we overplot the variation from the i-band
depth subquantiles (as faint, dashed lines) on top of that from the
other survey properties (as solid lines), for visual comparison. That
is, one can read off the level of fluctuation from the deepest and
shallowest u-band depth sub-bin, for example, and compare it with
that from the deepest and shallowest i-band depth sub-bin. It should
be noted, however, that these reference i-band split cases have a
different actual x-axis values from those shown in the plots.

The results are shown in Figs D1 and D2, respectively. We see
that in general, these trends are consistent with the i-band depth
fluctuation for all three metrics: the deeper (smaller) the depth
(seeing), the more objects included in the sample, the higher the mean
redshift of the tomographic bin, and the larger o,. Also, qtl = 0 has
a significantly larger variation compared to qtl = 9 in most cases.
Compared to the trends in the i-band depth sub-bins, we see that
the N,y variations are always less strong for other properties. This
is understood as selections are primarily taken in i-band. The (z)
variations for the u-band tightly follows the i-band, although the
first bin can have slightly larger fluctuations. For seeing, on the other
hand, the trend is quite different for qtl = 0, where the smallest
seeing does not always correspond to a higher mean redshift. This
could happen because the seeing is not as well correlated with depth
— there are more scatter in the coadd depth and seeing at the faint
end. Finally, the variation in o, seems to be relatively minor in most
cases.

From these exercises, we see that within each i-band decile, the
number of objects and p(z) properties can still change significantly
with other survey properties such as u-band depth and i-band
seeing. Meanwhile, given that these quantities are also quite tightly
correlated, we expect that a lot of these variations are also due to the
covariation of the i -band depth. Hence, our main analysis, by splitting
into the i-band quantiles, should capture the level of variations of the
metrics. However, if one wishes to apply this method in e.g. forward
modelling, then covariation of all bands need to be taken into account.
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Figure D1. The variation of the number of objects, Ng.1, the mean redshift, (z), and the standard deviation, o, of the Y3 source tomographic bins, as a function
of the extinction-corrected u-band coadd depth, mS*. The u-band depth bins are determined by 5 quantiles subdividing each of the i-band quantiles used in the
main analysis. Examples shown here are for the i-band quantiles O (dark blue), 5 (purple), and 9 (pink). The tomographic bins are split by FZBoost photo-z.
The horizontal lines indicate the combined values as shown in Figs 5-7. The faint, dashed lines indicate a reference case where the subdivision is done for 5
quantiles in the i-band depth. Notice that the i-band split case is only overplotted here to provide a visual comparison of the level of fluctuations, but its actual
x-axis values do not align with those on the figure, which are for the u-band depth.
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Figure D2. Same as Fig. D1, but for subdivision in the i-band median effective seeing, Oy - Notice here that the reference i-band depth subquantiles, as
indicated by the faint dashed lines, are flipped, i.e. the first quantile in i-band depth is overplotted on top of the last quantile in the i-band seeing. This is because,
on average, a deeper coadd depth corresponds to a smaller seeing angle.

MNRAS 535, 2970-2997 (2024)

Gz0z Aieniga4 g uo Jasn uopuoT ebs|j0D Alsiaaiun Aq G5£688//0/262/¥/SES/e1oNIB/SBIUW/WOD dNooIWwspeoe//:sdiy Wwol) papeojumoq



APPENDIX E: MAGLIM-LIKE LENS SAMPLE

In this section, we explore the impact of variable depth on a lens
sample selected with the DES Y3 MagLim cuts (Porredon et al.
2022). Because this sample has a brighter cut, we relax the i-band
signal-to-noise limit to SNR > 5. The sample is selected with
17 <i < 4zppoe + 18, (ED)
where we use the FZBoost mode redshift as zpho. This cut reduces the
number of lens sample significantly compared to our fiducial case,

Y3 lens

FZBoost, SNR =5, MagLim - qtl=0

— qtl=9

Figure E1. True redshift distribution of the LSST Y3 MagLim lens sample,
split in tomographic bins as defined in the DESC SRD. The MagLim cuts and
the tomographic edhes are determined using the mode of FZBoost redshifts.
The sample has also been applied a cut with SNR > 5. The dashed lines
show samples degraded using the shallowest 10 percent pixels in i-band
coadd depth (qtl = 0), and the solid lines show those from the deepest 10
percent (qtl = 9).

Impact of spatial variability for LSST 2997

resulting in a total sample size of 3.67 per cent of the baseline (Gold
cut) lens sample. The true redshift distribution of each tomographic
bin is shown in Fig. E1, where the dashed lines show those from the
shallowest quantile, and the solid lines show those from the deepest.
Notice that the distribution is less smooth due to the sparsity of the
sample. Overall, thanks to the bright cut, the redshift distribution for
each bin has a smaller tail compared to the baseline case, especially
for the highest redshift bin.

Fig. E2 shows the metrics for the variable depth, namely, the
galaxy number, mean redshift, and width of the tomographic bin, as
a function of the i-band depth. The panels (a)—(d) has the same style
as, and should be compared to Figs 5-7. Again, we see a significantly
milder, but visible, trend of these metrics with depth, owing to the
bright magnitude cut. This shows that the variable depth effect can be
greatly reduced, but not completed removed, by introducing a bright
cut at the cost of sample size.

Fig. E3 shows the effect propagated to the galaxy clustering
two-point data vector, C5¢. We followed the same procedure as
in Section 5.2, and set the number density in each bin to be
0.135,0.117,0.156,0.219, 0.267 arcmin~2 to account for the re-
duction in the overall number density compared to the fiducial case.
The impact of variable depth on C§* is also significantly reduced,
especially for (4,4) and (5,5). However, the impact is not negligible
still at £ < 100.
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(@) Ngy1 vs depth. (b) Mean redshifts vs depth.

(c) Width o vs depth. (d) LSS-relevant width W vs depth.

Figure E2. Metrics for impact of variable depth for the LSST Y3 MagLim lens sample, split in five tomographic bins. (a). The fractional change in number of
galaxies, Ngai/ Ngal in tomographic bins as a function of the i-band extinction-corrected coadd depth, mS*; (b). The scaled shifts in mean redshift, A(z)/(1 + (z))

as a function of mg*; (c). The fractional change in second moment of the redshift distribution, o, /o

1!, as a function of m*; (d). The fractional change in the

LSS-related kernel, W, /W', as a function of m¢*. The MagLim cuts and the tomographic bins edges are determined using the mode of FZBoost redshifts, and
the sample has an i-band SNR > 5. The vertical solid and dashed lines marks the 1o and 20 regions of the depth distribution.
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Figure E3. Similar to Fig. 8, but for the LSST Y3 MagLim lens sample.
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