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A B S T R A C T 

We investigate the impact of spatial survey non-uniformity on the galaxy redshift distributions for forthcoming data releases 
of the Rubin Observatory Le gac y Surv e y of Space and Time (LSST). Specifically, we construct a mock photometry data set 
degraded by the Rubin OpSim observing conditions, and estimate photometric redshifts of the sample using a template-fitting 

photo- z estimator, BPZ, and a machine learning method, FlexZBoost. We select the Gold sample, defined as i < 25 . 3 for 10 yr 
LSST data, with an adjusted magnitude cut for each year and divide it into five tomographic redshift bins for the weak lensing 

lens and source samples. We quantify the change in the number of objects, mean redshift, and width of each tomographic bin 

as a function of the coadd i-band depth for 1-yr (Y1), 3-yr (Y3), and 5-yr (Y5) data. In particular, Y3 and Y5 have large 
non-uniformity due to the rolling cadence of LSST, hence provide a worst-case scenario of the impact from non-uniformity. 
We find that these quantities typically increase with depth, and the variation can be 10 –40 per cent at extreme depth values. 
Using Y3 as an example, we propagate the variable depth effect to the weak lensing 3 × 2 pt analysis, and assess the impact 
on cosmological parameters via a Fisher forecast. We find that galaxy clustering is most susceptible to variable depth, and 

non-uniformity needs to be mitigated below 3 per cent to reco v er unbiased cosmological constraints. There is little impact on 

galaxy–shear and shear–shear power spectra, given the expected LSST Y3 noise. 

Key words: techniques: photometric – large-scale structure of Universe – cosmology: observations. 
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 I N T RO D U C T I O N  

bservational cosmology enters the era of high-precision measure-
ents. F or e xample, weak gravitational lensing, which probes the

mall distortion of distant galaxy shapes due to the gravity of
oreground large-scale structures, is particularly sensitive to the clus-
ering parameter S 8 = σ8 

√ 

�m 

/ 0 . 3 . Current weak lensing surv e ys
ave measured this parameter to be S 8 = 0 . 759 + 0 . 024 

−0 . 021 by the Kilo-
e gree Surv e y (KiDS-1000; Asgari et al. 2021 ), S 8 = 0 . 759 + 0 . 025 

−0 . 023 

y the Dark Energy Surv e y (DES-Y3; Amon et al. 2022 ), and
 E-mail: e.hang@ucl.ac.uk 

e  

R  

s  

(  
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
 8 = 0 . 760 + 0 . 031 
−0 . 034 ( S 8 = 0 . 776 + 0 . 032 

−0 . 033 ) using the shear power spectra
two-point correlation function) by the Hyper Suprime-Cam (HSC-
3; Dalal et al. 2023 ; Li et al. 2023 ). The constraints are comparable

o that measured by Planck Collaboration VI ( 2020 ) from the primary
osmic microwave background (CMB), S 8 = 0 . 830 ± 0 . 013, and
he recent result from CMB lensing (Madhavacheril et al. 2024 ),
 8 = 0 . 840 ± 0 . 028, but are interestingly lower by 2 − 3 σ . The
ncertainties of these measurements are already dominated by
ystematic errors – without a careful treatment of various systematic
ffects, the cosmological results can be biased up to a few sigma (e.g.
odr ́ıguez-Monroy et al. 2022 ). The forthcoming Stage IV surv e ys

uch as the Rubin Observatory Le gac y Surv e y of Space and Time
LSST) will achieve a combined figure of merit ten times as much
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 Notice that the DESC SRD also provides requirements on the photometric 
redshift scatter of the full, unbinned sample, σ�z . For weak lensing, this is 
σ�z = 0 . 006(1 + z) (0 . 003(1 + z)) for Y1 (Y10); for large-scale structure 
analysis, this is σ�z = 0 . 1(1 + z) (0 . 03(1 + z)) for Y1 (Y10). Because we do 
not try to optimize the photometric redshift estimation in this paper, we do 
not compare our results with the DESC SRD σ�z values. 
2 https:// github.com/ LSSTDESC/ RAIL 

3 https:// rubin-sim.lsst.io/ 
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s the Stage III experiments as mentioned abo v e (The LSST Dark
nergy Science Collaboration 2021 ). While the high statistical power 
nables pinning down the nature of such tensions, systematic error 
eeds to be controlled down to sub- per cent level to ensure that our
esults are not biased. 

One major systematic uncertainties come from surv e y non- 
niformity. Galaxy samples detected at different surv e y depth, for
 xample, will hav e different flux errors and number of faint objects
ear the detection limit. This could propagate down to systematic 
rrors in redshift distribution and number density fluctuation. The 
ajority of the LSST footprint will follow the wide-fast-deep (WFD) 

bserving strategy, which means that a large survey region will 
e co v ered before building up the surv e y depth. At early stages
f the surv e y, fluctuations in observing conditions, such as sky
rightness, seeing, and airmass, are expected to be significant across 
he footprint. These can change the per-visit 5 σ limiting magnitude, 
 5 , leading to depth non-uniformity in the early LSST data (Ivezi ́c

t al. 2019 ). The surv e y strate gy later on could also affect uniformity.
SST will adopt a ‘rolling cadence’, which means that during a fixed
eriod, more frequent revisits will be assigned to a particular area of
he sky, whereas the rest of the regions are deprioritized by up to 25
er cent of the baseline observing time. The high- and low-priority 
egions continue to swap, such that the full footprint is co v ered
ith the same exposure time after 10 yr. This can result in different

imiting magnitudes across the sky at intermediate stages of rolling. 
his strategy greatly advances LSST’s potential for time domain 
cience for example, denser sampling in light curves. Ho we ver, it
lso poses challenges to the analysis of large-scale structure (LSS) 
robes, which normally prefers a uniform co v erage. 
Changes in m 5 can change the detected sample of galaxies and 

ts photometric redshifts in two ways. First, a larger m 5 means that
ainter, higher redshift galaxies will pass the detection limit. This 
ncreases the sample size, and could shift the ensemble mean redshift
igher. These faint galaxies also contain large photometric noise, 
esulting in larger scatter with respect to the true redshift, hence 
roadening the redshift distribution. Secondly, at fixed magnitude, 
he signal-to-noise is larger given a larger m 5 . This means that,
ontrary to the previous effect, the scatter in spec-z versus photo- 
 will be reduced due to the reduced noise. These effect has been
tudied previously in a similar context. The density fluctuation is 
uantified in Awan et al. ( 2016 ) via 1 + δo = (1 + δt )(1 + δOS ),
here δo is the observed density contrast, δt is the true density, 

nd δOS is the fluctuation in the observing condition. The effects 
n photo- z have been investigated in Graham et al. ( 2018 ) in the
ontext of LSST. They showed that the photo- z quality can change
ignificantly with respect to different observing conditions, although 
hey did not consider tomographic binning. Heydenreich et al. ( 2020 )
nd Joachimi et al. ( 2021 ) also quantified the effects for KiDS-1000
ata, where the depth varies significantly between different pointings. 
hey showed that by varying the r-band limiting magnitude, a 
ignificant amount of high redshift objects can be included in the 
ample, such that the mean number density can double between 
he deepest and shallowest pointings, and the average redshift for a 
omographic bin can shift by as much as � 〈 z〉 ∼ 0 . 2. Understanding
hese effects are important, because weak lensing is particularly 
ensitive to the mean redshift of the lens and source galaxies. 
eydenreich et al. ( 2020 ) demonstrated that this effect is similar to
 spatially v arying multiplicati ve bias, and for cosmic shear analysis
n configuration space, constraints in the �m 

− σ8 plane can shift up 
o ∼ 1 σ for a KiDS-like surv e y with the same area as LSST. Baleato
izancos & White ( 2023 ) also derived an analytic expression for
nisotropic redshift distributions for galaxy and lensing two-point 
tatistics in Fourier space. They showed that, assuming a spatial 
ariation of scale � z , the effects are at per cent and sub-per cent level
or the current and forthcoming galaxy surv e ys, and conv erge to the
niform case at � � � z . 
In this paper , we in vestigate how survey non-uniformity can affect

he redshift distribution of tomographic bins for LSST 1, 3, and 5-yr
bservation (hereafter Y1, Y3, and Y5, respectively). The LSST Dark 
nergy Science Collaboration (DESC) Science Requirements Docu- 
ent (The LSST Dark Energy Science Collaboration 2021 , hereafter 
ESC SRD) states that the photometric redshifts needs to achieve a
recision of 〈 �z〉 = 0 . 002(1 + z) (0 . 001(1 + z)) for Y1 (Y10) weak
ensing analysis, and 〈 �z〉 = 0 . 005(1 + z) (0 . 003(1 + z)) for Y1
Y10) large-scale structure analysis. Here, using these numbers as a 
ench mark, we quantify changes in the mean redshift ( 〈 z〉 ) and width
 σz ) of tomographic bins, as depth varies. 1 We use the up-to-date
SST observing strategy and the simulated 10-yr observing condi- 

ions for Rubin Observatory (OpSim, Delgado & Reuter 2016 ; Reuter 
t al. 2016 ) to quantify the surv e y non-uniformity, and generate a
ock catalogue of true galaxy magnitude in ugri zy , redshift, and

llipticity based on the Roman-Rubin (DiffSky) simulations (Troxel 
t al. 2023 ). The degradation of photometry and photo- z estimation
elies on the public software, Redshift Assessment Infrastructure 
ayers 2 (RAIL; LSST-DESC PZ WG, in preparation), which will 
lso be used in the LSST analysis pipeline. Finally, we propagate
hese effects to the clustering and weak lensing two-point statistics. 

This paper is organized as follows. We describe our simulation data 
ets in Section 2 and introduce our methods in Section 3 . The results
re presented in Section 4 . We show the variation of the angular
ower spectra with varying depth effects in Section 5 . Finally, we
onclude in Section 6 . 

 SI MULATI ONS  

his section provides an o v erview of the simulations used in this
ork, namely, the Rubin Operation Simulator (OpSim; Section 2.1 ), 
hich simulates the observing strategy and related properties for Ru- 
in LSST, and the Roman–Rubin simulation (DiffSky; Section 2.2 ), 
hich provides a truth catalogue complete up to z = 3 with realistic
alaxy colours. 

.1 Rubin operations simulator (OpSim) 

he Operations Simulator 3 (OpSim) of the Rubin Observatory is an 
pplication that simulates the telescope mo v ements and a complete
et of observing conditions across the LSST surv e y footprint o v er
he 10-yr observation period, providing predictions for the LSST 

erformance with respect to various surv e y strate gies. OpSim uses
 historical weather log from Cerro-Tololo Inter-American Observa- 
ory (CTIO), Chile from the 10-yr period 1996 to 2005, to simulate
eather conditions. An observation is conducted when the weather 

og is no more than 42 per cent cloudy. This gives about the same
mount of total weather downtime as Gemini South and Southern 
strophysical Research (SOAR) telescope. Realistic seeing values 
MNRAS 535, 2970–2997 (2024) 
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Figure 1. The simulated i-band coadd 5 σ depth accounting for Galactic 
extinction, m 

ex 
5 , from the Rubin observatory OpSim baseline v3.3 o v er the 

LSST wide-fast-deep (WFD) footprint, for 1-yr (upper), 3-yr (middle), and 5- 
yr (lower) observations. Notice the stripy patterns visible from the 3 and 5-yr 
observations are the result of rolling cadence. i-band is shown here because 
it is the detection band for LSST. 
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or each observation are generated using historical seeing logs from
error Pach ́on, Chile. We utilize OpSim baseline v3.3, the most

ecent observing strategy. This strategy involves a rolling cadence
hat starts after the first year of observation. In subsequent years,
arts of the sky will receive more visits than others, enabling higher
esolution sampling for time domain science. At the end of the
ducial surv e y, uniformity will be reco v ered at the expected 10-yr
SST depth. The output of OpSim is e v aluated by the metrics analysis

ramework (MAF), a software tool that computes summary statistics
e.g. mean and median of a particular observing condition o v er a
iven period) and derived metrics (e.g. coadd 5 σ depth) that can be
sed to assess the performance of the observing strategy, in terms
f surv e y efficienc y and v arious science dri vers. The fieldRA and
ieldDec positions used in the MAF include the dithering that has
een applied. The sky is first tessellated by the telescope field of view
a few degrees in diameter), and the orientation is then randomized
t the start of each night. Visits are done in pairs to allow detection
f moving solar system objects, so that within a night there is no
ithering. The MAF loops o v er the HEALPIX pixel centres, and for
ach one finds the observations that o v erlap with that point, including
ejecting observations where the point falls on a chip gap. 

For the purpose of this study, we obtain surv e y condition maps in
EALPIX (G ́orski et al. 2005 ) format using the MAF HEALPIX slicer
ith N side = 128 (corresponding to a pixel size of 755 arcmin 2 ), using

he (RA, Dec) coordinates. We do not choose a higher resolution for
he map because we expect that survey conditions vary smoothly on
arge scales, and this choice of N side is enough to capture the variation
ith the rolling pattern. For our purposes, we mainly consider

he following quantities in each of the ugrizy filters: extinction-
orrected coadd 5 σ point source depth ( ExgalM5 , hereafter m 

ex 
5 ) and

he ef fecti ve full-width half-maximum seeing ( seeingFwhmEff ,
ereafter θ eff 

FWHM 

) in unit of arcsecond. The m 

ex 
5 is different from

he coadd depth, m 5 , by the fact that it includes the lost of depth
ear galactic plane. The ef fecti ve seeing, θ eff 

FWHM 

, has a wavelength
ependence, with a poorer seeing at bluer filters from Kolmogorov
urbulence. The MAF also takes into account for increase in point
pread function (PSF) size with airmass, X, due to seeing, i.e.
eff 
FWHM 

∝ X 

0 . 6 . Ho we ver, the MAF does not include the increase
n PSF size along the zenith direction with zenith angle, due to
ifferential chromatic refraction. This quantity is used here to convert
oint-source depth to that for extended objects. We obtain maps of
hese quantities o v er the LSST footprint at the end of each full year
f observation (e.g. Y3 for nights < 1095). The coadded depth in
ach band is computed by assessing the 5 σ -depth (in magnitudes) of
ach visit within each HEALPIX pixel, then computing the ‘stacked’
epth. The coadded depth calculation includes the airmass, seeing,
nd sky brightness of each visit. It is approximated that the whole
eld of view has values similar to the centre, so that vignetting or
ky brightness gradients are not included. For the most part these
radients should be small and average out over many visits. Maps
f θ eff 

FWHM 

contain the median o v er all visits in a particular HEALPIX

ixel. 
Throughout the paper, we will use Y1, Y3, and Y5 as examples to

howcase the impact of spatial variability on photometric redshifts.
otice that the choice of Y3 and Y5 are a pessimistic one, because

he surv e y strate gy is close to uniformity in Y4 and Y7 where
osmological analysis are expected to be conducted. Hence, this
aper provides a worst-case scenario of the severity of the impact
rom spatial variability. Also, the Rubin observing strategy is still
eing decided, and the rolling cadence may mo v e to different times
uring the surv e y. There are ongoing efforts on recommendations
bout the observing strategy, and hence the results shown here
NRAS 535, 2970–2997 (2024) 
hould be interpreted in light of this particular strategy and years
hosen. We will focus on the WFD surv e y programme footprint,
nd exclude areas with high galactic extinction E( B − V ) > 0 . 2 for
osmological studies. Notice that, in practice, additional sky cuts
ould also be applied (e.g. a depth cut that remo v es v ery shallow
egions). Specifically, we will focus on the variation with respect to
-band, the detection band of LSST. Fig. 1 shows the spatial variation
f the extinction-corrected coadd i-band depth for OpSim baseline
3.3 in Y1, Y3, and Y5. The stripes visible across the footprint in Y3
nd Y5 are the characteristics of the rolling cadence. The distribution
f all OpSim variables are shown in Fig. 2 for each of the six filters
nd for selected years of observation. One can see that the coadd
epths build up in each band o v er the years, whereas the distributions
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Figure 2. Distribution of the extinction-corrected coadd depth ( m 

ex 
5 ) and the median ef fecti ve seeing ( θ eff 

FWHM 

) for the six LSST bands from the OpSim baseline 
v3.3. The different colours and line styles indicate 1, 3, and 5-yr observations, as shown by the legend. 
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f the median ef fecti ve seeing per visit are relatively unchanged. One
an also see a strong skewness in these distributions. 

.2 Roman–Rubin simulation (DiffSky) 

n order to investigate the impact of varying surv e y conditions on
hoto- z for LSST, we need a simulated truth catalogue that is
omplete to beyond the LSST 10-yr depth and realistic in colour- 
edshift space. For this purpose, we use the joint Roman–Rubin 
imulation v1.1.3. This simulation is an extension of the effort in 
roxel et al. ( 2023 ), but with many improvements, including self-
onsistent, flexible galaxy modelling. The simulation is based on 
ts precursor, CosmoDC2 (Korytov et al. 2019 ), a synthetic sky
atalogue out to z = 3 built from the ‘Outer Rim’ N -body cosmo-
ogical simulation (Heitmann et al. 2019 ). The N -body simulation 
ontains a trillion particles with a box size of (4 . 225 Gpc ) 2 . The
alaxies are simulated with Diffsky, 4 based on two differentiable 
alaxy models: Diffstar (Alarcon et al. 2023 ) and differentiable stellar 
opulation synthesis (DSPS; Hearin et al. 2023 ). Using Diffstar, 
ne can build a parametric model that links galaxy star formation 
istory with physical parameters in halo mass assembly. Then, with 
SPS, one can calculate the SED and photometry of a galaxy 

s a function of its star formation history , metallicity , dust, and
ther properties. The advantage of this galaxy model is that the 
istrib ution in colour -redshift is smooth and more realistic compared 
o that in CosmoDC2. This is thanks to the separate modelling 
or different galaxy components, i.e. bulge, disc, and star-forming 
egions. The spectral energy distributions (SEDs) built from these 
ifferent components with different stellar populations makes the 
olours more realistic for photo- z estimation. The calibration of the 
oman–Rubin simulation galaxy colours as a function of redshift 
atches that of the COSMOS2020 sample (Weaver et al. 2022 ), 

lthough some evidence of a low amount of variance in the near-
nfrared (NIR) colours at z > 1 is ob vious. F or more details of the
oman–Rubin DiffSky simulation, see the DESC Note by Troxel 
t al. (in preparation). 

We randomly subsample the full simulated catalogue to N = 10 6 

bjects complete to i < 26 . 5 as our truth sample. For each object, we
btain its magnitude in the six LSST bands, true redshift, bulge size
 b , disc sizes s d , bulge-to-total ratio f b , and ellipticity e. We obtain
 https:// github.com/ LSSTDESC/ lsstdesc-diffsky 5
he galaxy semimajor and semiminor axes, a, b via a = s/ 
√ 

q and
 = s 

√ 

q , where s is the weighted size of the galaxy, s = s b f b +
 d (1 − f b ), and q is the ratio between the major and minor axes,
elated to ellipticity via q = (1 − e) / (1 + e). 

One caveat of the current sample is that, at z > 1 . 5, there is an
xaggerated bimodal distribution in the g − r colour and redshifts, 
hich is not found in real galaxy data. As a result, the bluest objects

n the sample are almost al w ays found at high redshifts. This could be
ue to the high-redshift SPS models being less well constrained. One
irect consequence of this is that, when training a machine learning
lgorithm to estimate the photo- z, the high-redshift performance may 
e too optimistic due to this colour-space clustering. 

 M E T H O D S  

his section describes our methodology for generating a mock LSST 

hotometry catalogue for Y1, Y3, and Y5, applying photometric 
edshift estimation algorithms, and defining metrics to assess the 
mpact of variable depth. Specifically, we describe the degradation 
rocess using the LSST error model in Section 3.1 , the two photo- z
stimators, BPZ and FlexZBoost, in Section 3.2 , the tomographic 
inning strategy in Section 3.3 , and the rele v ant metrics Section 3.4 .

.1 Degradation of the truth sample 

iven a galaxy with true magnitudes m t = { ugri zy } falling in a
EALPIX pixel within the footprint, we ‘degrade’ its magnitude with 
bserving conditions associated with that pixel, and assign a set of
observed’ magnitudes m o and the associated magnitude error σm, o , 
sing the following procedure: (1). Apply galactic extinction. (2). 
ompute the point-source magnitude error for each object in each 
lter, using the LSST error model detailed in Ivezi ́c et al. ( 2019 ). (3).
ompute the correction to obtain the extended-source magnitude 
rrors. (4). Sample from the error and add it to the true magnitudes.
teps (2)–(4) are carried out using the python package photerr 5 

Crenshaw et al. 2024 ). We detail each step below. 
First, we apply the galactic extinction to each band with the E( B −

 ) dust map (Green 2018 ) via: 

 dust = m + 

[
A λ

E( B − V ) 

]
E( B − V ) , (1) 
MNRAS 535, 2970–2997 (2024) 

 https:// github.com/ jfcrenshaw/ photerr/ tree/ main 

https://github.com/LSSTDESC/lsstdesc-diffsky
https://github.com/jfcrenshaw/photerr/tree/main
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Table 1. The mean and standard deviation of the i-band extinction-corrected 
coadd depth, m 

ex 
5 , split in 10 quantiles, from the Rubin OpSim baseline v3.3 

map with N side = 128, for year 1, 3, and 5, respectively. 

qtl ( i-band m 

ex 
5 ) Y1 Y3 Y5 

0 24 . 95 ± 0 . 10 25 . 46 ± 0 . 12 25 . 75 ± 0 . 10 
1 25 . 10 ± 0 . 03 25 . 64 ± 0 . 03 25 . 89 ± 0 . 02 
2 25 . 17 ± 0 . 02 25 . 72 ± 0 . 02 25 . 96 ± 0 . 02 
3 25 . 22 ± 0 . 01 25 . 78 ± 0 . 02 26 . 01 ± 0 . 01 
4 25 . 27 ± 0 . 01 25 . 83 ± 0 . 02 26 . 06 ± 0 . 01 
5 25 . 31 ± 0 . 01 25 . 88 ± 0 . 01 26 . 10 ± 0 . 01 
6 25 . 35 ± 0 . 01 25 . 93 ± 0 . 01 26 . 14 ± 0 . 01 
7 25 . 39 ± 0 . 01 25 . 99 ± 0 . 02 26 . 18 ± 0 . 01 
8 25 . 44 ± 0 . 02 26 . 06 ± 0 . 03 26 . 23 ± 0 . 02 
9 25 . 53 ± 0 . 05 26 . 18 ± 0 . 05 26 . 33 ± 0 . 04 
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here for each of the six LSST filters we adopt [ A λ/E( B − V )] =
 4 . 81 , 3 . 64 , 2 . 70 , 2 . 06 , 1 . 58 , 1 . 31 } . 

Then, we utilize the LSST error model (Ivezi ́c et al. 2019 ) to
ompute the expected magnitude error, σm 

, per band. The magnitude
rror is related to the noise-to-signal, nsr, via: 

m 

= 2 . 5 log 10 (1 + nsr ) . (2) 

he total nsr consists of two components: 

sr 2 = nsr 2 sys + nsr 2 rand , ext , (3) 

here nsr sys is the systematic error from the instrument read-out
nd nsr rand is the random error arising from observing conditions on
he sk y, for e xtended objects. Notice that in the high signal-to-noise
imit where nsr � 1, σm 

∼ nsr , and equation ( 3 ) reco v ers the form
n Ivezi ́c et al. ( 2019 ). Throughout the paper, we set nsr sys ≈ σsys =
 . 005, which corresponds to the maximum value allowed from the
SST requirement. For point sources, the random component of nsr

s given by 

sr 2 rand , pt = (0 . 04 − γ ) x + γ x 2 , (4) 

here γ is a parameter that depends on the system through-
ut. We adopt the default values from Ivezi ́c et al. ( 2019 ), γ =
 0 . 038 , 0 . 039 , 0 . 039 , 0 . 039 , 0 . 039 , 0 . 039 } for ugri zy . x is a pa-
ameter that depends on the magnitudes of the object, m , and the
orresponding coadd 5 σ depth, m 5 , in that band: 

log 10 x ≡ 0 . 4 ( m − m 5 ) . (5) 

 or e xtended sources, we adopt the e xpression in K uijken et al.
 2019 ); van den Busch et al. ( 2020 ), where the nsr receives an
dditional factor related to the ratio between the angular size of
he object and that of the PSF: 

sr rand , ext = nsr rand , pt 

√ 

A ap / A psf . (6) 

ere, 

 psf = πσ 2 
psf , σpsf = θ eff 

FWHM 

/ 2 . 355 , (7) 

here θ eff 
FWHM 

is the ef fecti ve FWHM seeing (it is linked to the seeing
y θ eff 

FWHM 

= θFWHM 

X 

0 . 6 , where X is the airmass) for a given LSST
and. The AP angular size of the object is given by 

 ap = πa ap b ap , 

a ap = 

√ 

σ 2 
psf + (2 . 5 a) 2 , 

b ap = 

√ 

σ 2 
psf + (2 . 5 b) 2 , (8) 

here a, b are the galaxy semimajor and minor axis. We make one
odification to equation ( 6 ), where we replace the denominator by

he mean PSF area, 
√ 〈 A psf 〉 , av eraged o v er pix els in the i-band

uantiles which we will elaborate shortly. In the approximation that
sr rand , pt ∝ x, the point-source noise is then proportional to θ eff 

FWHM 

see equation ( A1 )], and so for the extended-source noise, θ eff 
FWHM 

ancels and equation ( 6 ) ef fecti vely changes the dependence of m 5 

n PSF size to that on the extended aperture size. Ho we ver, in this
ork, we utilize the median seeing, for which the cancellation may
ot be e xact. Naiv ely taking equation ( 6 ) could lead to unrealistic
ases, where, at fixed depth, nsr rand , ext increases with a better seeing.
e have tested both scenarios, i.e. using individual A psf or the
ean 〈 A psf 〉 in equation ( 6 ), and find negligible difference for our
ain conclusion in the i-band quantiles. Ho we ver, it does make a

ignificant difference if one were to bin the samples by quantiles of
eeing, as investigated in Appendix D . 
NRAS 535, 2970–2997 (2024) 
To obtain the observed magnitudes m o , we degrade in flux space,
 o , by adding a random noise component �f drawn from a normal
rror distribution, �f ∼ N (0 , nsr ), to the reddened flux f dust of the
bject. Here, nsr is computed by setting m = m dust in equation ( 5 ).
he flux and magnitude are converted back and forth via 

 k = −2 . 5 log 10 f k , k = { dust, o } . (9) 

e gativ e flux es are set as ‘non-detection’ in that band. The corre-
ponding magnitude error σm, o is computed using equation ( 2 ) and
etting m = m o in equation ( 5 ), such that the error de-correlates with
he observed magnitude. 

To focus on the trend in the depth variation in the detection band,
e subdivide pixels in the surv e y footprint into 10 quantiles in i-
and m 

ex 
5 , where the first quantile ( qtl = 0) contains the shallowest

ixels, and the last quantile ( qtl = 9) contains the deepest. Table 1
hows the mean and standard deviation of each i-band depth quantile.
e also show in Table D1 the mean and standard deviation of all

ther surv e y condition maps used in the analysis in each of the
-band depth quantiles. Within each quantile, we randomly assign
ach galaxy to a HEALPIX pixel in that quantile, with its associated
bserving conditions { E( B − V ) , m 

ex 
5 , θ

eff 
FWHM 

} on that pixel for each
SST band, from the OpSim MAF maps. Then, we carry out the
bo v e de gradation process to our truth sample. On average, each
ixel within each quantile is assigned 121 galaxies. Notice that there
re many other parameters that could affect the photometric errors,
.g. sk y background, e xposure time, and atmospheric e xtinction. F ol-
owing Ivezi ́c et al. ( 2019 ), because these quantities only contribute
owards m 5 , we do not include them otherwise in the degradation, and
ssume that m 

ex 
5 completely captures their variation. Additionally,

e explore the relation between m 5 and these extended quantities
sing OpSim in Appendix A , and we explore the galaxy redshift
istribution dependence with other surv e y properties in Appendix D .
Finally, we apply an i-band magnitude cut corresponding to

he LSST Gold sample selection on the degraded catalogue. For
he full 10-yr sample this is defined as i < 25 . 3. For data with
n observation period of N yr yr, we adjust the gold cut to i lim 

=
5 . 3 + 2 . 5 log 10 ( 

√ 

N yr / 10 ). Thus for Y1, Y3, and Y5, we adopt the
ollowing gold cuts respectively: i lim 

= 24 . 0 , 24 . 6 , 24 . 9. Notice that
his is slightly shallower than the definition in the DESC SRD, where
he Gold cut is defined as one magnitude shallower than the median
oadd m 5 . This is due to the fact that OpSim baseline v3.3 has a
lightly deeper i-band depth in early years compared to previous
 xpectations. F or Y1, the median i-band m 

ex 
5 is ∼ 25 . 2, giving a

ESC SRD Gold cut to be 0.2 mag deeper than what we adopt here.
dditionally, for our fiducial sample, we also apply a signal-to-noise

ut in i-band: SNR = 1 / nsr ≥ 10, although we also look at the case
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ith the full sample. This cut is moti v ated by the selection of the
ource sample, where shape measurements typically require a high 
NR detection in i-band. In this work, we apply this cut to both the
eak lensing and clustering samples. 

.2 Photo- z estimators 

ethods for photometric redshift estimation can be broadly divided 
nto two main categories: template-fitting and machine learning. 
emplate fitting methods assume a set of SED templates for various 

ypes of galaxies, and use these to fit the observed magnitudes 
f the targets. Machine learning methods, on the other hand, use 
achine learning algorithms trained on a reference sample, to infer 

he unknown target redshifts. See Schmidt et al. ( 2020 ) for a re vie w
nd comparison of the performance of various photo- z estimators 
n the context of Rubin LSST. In this work, we adopt two algo-
ithms with reasonable performance, a template-fitting method, BPZ 

Bayesian photometric redshifts), and a machine learning method, 
lexZBoost. In this work, before applying these redshift estimators, 
ll observed magnitudes are de-reddened, by applying the inverse of 
quation ( 1 ). 

.2.1 BPZ (Bayesian photometric redshifts) 

PZ (Ben ́ıtez 2000 ; Coe et al. 2006 ) is a template-based photometric
stimation code. Given a set of input templates t , BPZ computes
he joint likelihood P ( z, t ) for each galaxy with redshift z. A prior
 ( z, t | m ) is included based on the observed magnitude of the galaxy
 . F or e xample, the prior restricts bright, elliptical galaxies to lower

edshifts. For each galaxy, a likelihood P ( z, t | c, m ) given the galaxy’s
olour c and magnitude is computed, and by marginalizing o v er the
emplates, one obtains the per-object redshift probability P ( z). 

We use the RAIL interface of the BPZ algorithm, with the list
f SED templates adopted in Coe et al. ( 2006 ): the CWW + SB4 set
ntroduced by Ben ́ıtez ( 2000 ), the El, Sbc, Scd & Im from Coleman,

u & Weedman ( 1980 ), the SB2 & SB3 from Kinney et al. ( 1996 ),
nd the 25 & 15 Myr ‘SSP’ from Bruzual & Charlot ( 2003 ). We set
he primary observing band set to i-band, and adopt the prior from the
riginal BPZ paper (Ben ́ıtez 2000 ), which was used to fit data from
he Hubble Deep Field North (HDF-N; Williams et al. 1996 ). Notice
hat these set of SEDs may be different from that in the Roman–
ubin simulation, and the prior distributions may not match exactly. 
he prior mismatch would only affect samples with low signal-to- 
oise ratio and hence those posteriors are prior-dominated. For the 
old sample considered in this paper, the impact of the prior on the
ean difference and scatter of the true and photometric redshifts 

s expected to be small, although galaxies with broad or bimodal 
osteriors may end up having a different point estimate (e.g. mode), 
ence the outlier rate could be slightly higher. We do not include
xtra SED templates here. The SED template colours are able to 
o v er the range of colours in the Roman–Rubin simulation, as shown
n Appendix B . 

Additionally we compute the odds parameter, defined as 

dds = 

∫ z mode + �z 

z mode −�z 

P ( z ) d z , (10) 

here z mode is the mode of P ( z), and �z = ε(1 + z mode ) defines an
nterval around the mode to integrate P ( z). The maximum value of
dds is 1, which means that the probably density is entirely enclosed
ithin the integration range around the mode, whereas a small odds
eans that the probability density is dif fuse gi ven the range. Hence,
dds denotes the confidence of the BPZ redshift estimation, and 
he choice of ε essentially sets the criteria. The (1 + z mode ) factor
ccounts for the fact that larger redshift errors are expected at higher
edshifts. We choose ε = 0 . 06 as a nominal photo- z scatter, and we
se odds as a BPZ ‘quality control’, where a subsample is selected
ith odds ≥ 0 . 9, as comparison to the baseline sample. 

.2.2 FlexZBoost 

lexZBoost (Dalmasso et al. 2020 ; hereafter FZBoost) is a machine-
earning photo- z estimator based on FlexCode (Izbicki & Lee 2017 ),
 conditional density estimator (CDE) that estimates the conditional 
robability density p( y| x ) for the response or parameters, y, given
he features x . The algorithm uses basis expansion of uni v ariate y 
o turn CDE to a series of uni v ariate regression problems. Given a
et of orthonormal basis functions { φi ( y) } i , the unknown probability
ensity can be written as an expansion: 

( y| x ) = 

∑ 

j 

βj ( x ) φj ( y) . (11) 

he coefficients βj ( x ) can be estimated by a training set ( x , y) using
egression. The advantage of FlexCode is the flexibility to apply 
n y re gression method towards the CDE. The main hyperparameters
nvolved in training is the number of expansion coefficients and 
hose associated with the regression. Schmidt et al. ( 2020 ) found that
ZBoost was among the strongest performing photo- z estimators 
ccording to the established performance metrics. 

In this paper, we utilize the RAIL interface of the FZBoost
lgorithm with its default training parameters. We construct the 
raining sample by randomly drawing 10 per cent of the degraded
bjects from each of the deciles, and train each year separately. Notice
hat this training sample is fully representative of the test data, which
s not true in practice. Spectroscopic calibration samples typically 
ave a magnitude distribution that is skewed towards the brighter 
nd, and the selection in colour space can be non-trivial depending
n the specific data set used. Although there are methods to mitigate
mpacts from this incompleteness, such as re-weighting in redshift 
r colours (Lima et al. 2008 ), and, more recently, using training data
ugmentation from simulations (Moskowitz et al. 2024 ), the photo- 
 performance is not comparable to having a fully representative 
ample, and one would expect some level of bias and increased
catter depending on the mitigation method adopted. Here, we 
re interested in whether our results on the non-uniformity impact 
hanges significantly with an alternative photo- z algorithm. We thus 
eave the more realistic and sophisticated case with training sample 
mperfection to future work. 

.2.3 Performance 

or both photo- z estimators, we use the mode of the per-object
edshift probability, P ( z), as the point estimate, z phot . Fig. 3 shows
he scatter in spec- z and photo- z for Y1, Y3, and Y5 with BPZ and
ZBoost redshifts, for the shallowest ( qtl = 0) and the deepest ( qtl =
) quantiles in the i-band m 

ex 
5 respectively. The scatter is al w ays larger

or the shallower sample in the full sample case (faint dots). This is
xpected following equations ( 2 ) and ( 4 ), given that the coadd depths
n each band are strongly correlated. At fixed magnitude, the larger
he m 5 , the smaller the photometric error, hence also the smaller
he scatter in photo- z. The signal-to-noise cut at SNR ≥ 10 remo v es
ome extreme scatter as well as objects from the highest redshifts.
his is more obvious for the shallowest sample compared to the
MNRAS 535, 2970–2997 (2024) 
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M

Figure 3. Photo- z versus true redshifts for the sample degraded with Rubin OpSim baseline v3.3 observing conditions using BPZ (left two columns) and 
FZBoost (right two columns) mode as the photo- z point estimator. For each photo- z method, we show sample degraded with pixels containing the shallowest 
10 per cent i-band Coadded depth with galactic extinction ( qtl = 0), and that from the deepest 10 per cent ( qtl = 9). This is repeated for the cases of Y1, Y3, 
and Y5 observing conditions with respective gold cut in i-band applied. The faint dots show all the samples included within the gold cut, whereas the solid 
contour shows the samples (90 per cent contour) with SNR ≥ 10 (fiducial). In the BPZ case, the dashed lines show the 90 per cent contour for the sample with 
an additional selection of odds ≥ 0 . 9. In the FZBoost case, the model is trained on a perfectly representative sample for each observation year. 
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eepest, due to the better signal-to-noise ratio for the deepest sample
t high redshifts. 

There is a significant group of outliers in the BPZ case that
re at low redshifts but are estimated to be at z > 2, highlighted
y the blue contours. By examining individual BPZ posteriors for
his group, we find that these objects tend to have very broad or
imodal redshift distributions. This could be a result of confusion
etween the Lyman break and the 4000 Å Balmer break, and notice
hat the fraction of this population as well as its location can be
nfluenced by the choice of the BPZ priors. Another possible cause
s the spurious bimodal distribution in the colour-redshift space
n the Roman–Rubin simulation, as mentioned in Section 2.2 . We
ee that after applying a strict cut with odds ≥ 0 . 9, shown by
he purple dashed lines enclosing 90 per cent of the sample, the
utlier populations are significantly reduced, as expected. This cut
etains 20.4 per cent (27.7 per cent), 25.7 per cent (44.4 per cent),
9.5 per cent (44.0 per cent) of the SNR ≥ 10 sample in qtl = 0 (9)
or Y1, Y3, and Y5, respectively. We see that this cut further reduces
he scatter at z phot ∼ 1 . 5. FZBoost in general shows a much better
NRAS 535, 2970–2997 (2024) 
erformance, given that the training data is fully representative of
he test data. Table C1 summarizes these findings for each sample
ia a few statistics of the distribution of the difference between
hoto- z and true redshifts: �z = ( z phot − z true ) / (1 + z true ). Namely,
he median bias Median ( �z), the standard deviation, the normalized
edian absolute deviation (NMAD) σNMAD = 1 . 48 Median ( | �z| ),

nd the outlier fraction with outliers defined as | �z| > 0 . 15. 
Notice that the odds cut could introduce bias to the galaxy

istribution. Given that the relation between photometry and the
edshift PDF shape that influences odds is highly complex and non-
inear, the odds can be correlated with both galaxy type and redshift.
or cosmological analysis, the imposed selection in galaxy type is
ot a great concern as long as the n ( z) is accurately determined,
nd the galaxy sample is uniformly distributed spatially. A potential
orry is that a spatial variation in the galaxy bias is introduced, or

hat the bias evolution is changed, due to the odds cut. This would
ave to be tested out in a large cosmological simulation that includes
oth realistic photometry and clustering information, which we leave
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Figure 4. True redshift distribution for tomographic bins as defined in the DESC SRD for lens (left column) and source galaxies (right column) in Y3. The 
tomographic bins are determined using the mode of BPZ redshifts (first two rows) and FZBoost (last row). In all cases, the sample has been applied a gold cut 
i < 24 . 6 and SNR ≥ 10. The middle ro w sho ws the sample selected with an additional cut with odds ≥ 0 . 9. The dashed lines show samples degraded using the 
shallowest 10 per cent pixels in i-band coadd depth ( qtl = 0), and the solid lines show those from the deepest 10 per cent ( qtl = 9). 
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.3 Tomographic bins 

n weak lensing analysis, the full galaxy catalogue is sub-divided 
nto a ‘lens’ sample and a ‘source’ sample. The lens sample is often
imited at lower redshifts, acting as a tracer of the foreground dark

atter field which ‘lenses’ the background galaxies. The source 
ample contains the background galaxies extending to much higher 
edshifts, whose shapes are measured precisely to construct the 
hear catalogue. The two samples together allow measurement of 
he so-called ‘3 ×2 pt statistics’, including galaxy clustering from 

he lens sample, g alaxy–g alaxy lensing from the lens galaxies and
ource shapes, and cosmic shear from the source shapes alone. 
dditionally, both the lens and source samples are divided into 

everal tomographic bins, i.e. subsamples separated with sufficient 
istinction in redshifts. This further includes evolution information 
hat impro v es cosmological constraints. 

We adopt the Y1 tomographic bin definitions in the DESC SRD
or all of our samples. The lens sample has five bins equally spaced
n 0 . 2 < z < 1 . 2, with bin width �z = 0 . 2, and bin edges defined
sing z phot . For source samples, the DESC SRD requires five bins
ith equal number of galaxies. To do so, we first combine the 10
epth quantiles, and then split the sample into five z phot quantiles. 
Notice that in practice, tomographic binning can be determined in 

ifferent ways, often with the aim of maximizing the signal-to-noise 
f the two-point measurements. In some cases, clustering algorithm, 
.g. random forest, rather than a photo- z estimator, is used to separate
amples into broad redshift bins. We refer the interested readers to 
untz et al. ( 2021 ) for explorations of optimal tomographic binning
trategies for LSST. Notice also that, following the DESC SRD, we 
o not apply additional magnitude cuts for the lens sample. This is
one, for example, for the DES Y3 MagLim lens sample, where a
election of i > 17 . 5 and i < 4 z phot + 18 is applied (Porredon et al.
022 ). These cuts are applied to reduce faint, low-redshift galaxies in
he lens sample, such that the photometric redshift calibration is more 
obust. Notice that if the lens samples are selected with a brighter
ut, one would expect a different and likely reduced depth variation. 
e explore this particular case in Appendix E . 
Fig. 4 shows the normalized true redshift distribution, p( z), of

he lens and source tomographic bins for Y3 as an example, split
y the BPZ redshifts (with or without odds selection) and the 
ZBoost redshifts. The dashed lines show the p( z) measured from
he shallowest samples, whereas the solid lines show that from the
eepest samples. The BPZ case shows more extended tails in each
omographic bin compared to the FZBoost case, and for the source
alaxies, a noticeable outlier population at low redshifts in the highest 
omographic bin. We see that in most cases, there is a clear difference
n p( z) between the shallow and the deep samples: the deep samples
eem to shrink the tails, making p( z) more peaky towards the mean
edshift (although this is not the case for the odds ≥ 0 . 9 sample), and
heir p( z) seems to shift towards higher redshift at the same time. To
uantify these changes, we define metrics for the impact of variable
epth below. 

.4 Metrics for impact of variable depth 

he first metric is the variation in the number of objects in each
ample, N gal , as a function of the coadd i-band depth. This is the
ost direct impact of varying depth: deeper depth leads to more

etection of objects within the selection cut. The result is that the
alaxy density contrast, δg ( θ ) = [ N ( θ) − N̄ ] / N̄ , where N ( θ ) is the
er-pixel number count at pixel θ , and N̄ is the mean count o v er the
hole footprint, fluctuates according to the depth variation, leading 

o a spurious clustering signal in the two-point statistics. To quantify
he relative changes, we measure the average number of objects per
omographic bin across all 10 depth quantiles, N̄ gal = 

∑ 

i N gal ,i w i ,
here i = 1 , .., 10 denotes the depth bin, and w i ∼ 0 . 1 is the weight
roportional to the number of pixels in that quantile. We quote the
hange of object number in terms of N gal / N̄ gal . 

The second metric quantifies the mean redshift of the tomographic 
in as a function of depth: 

 z〉 = 

∫ 

z p( z) d z, (12) 

here p( z) is the true redshift distribution of the galaxy sample in
he tomographic bin with normalization 

∫ 
p( z) d z = 1. Weak lensing

s particularly sensitive to the mean distance to the source sample:
he lensing kernel thus differs on patches with different depth. Here,
e look at the difference between the mean redshift 〈 z〉 i of depth
uantile i and that of the full sample, 〈 z 〉 tot , i.e. � 〈 z 〉 ≡ 〈 z 〉 i − 〈 z 〉 tot .
ore specifically, we look at the quantity � 〈 z〉 / (1 + 〈 z〉 tot ), where

he weighting accounts for the increase in photo- z error towards
MNRAS 535, 2970–2997 (2024) 
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igher redshifts. This format also allows us to compare with the
ESC SRD requirements. 
The third metric quantifies the width of the tomographic bin. This

s not a well-defined quantity because the p( z) in many cases deviate
trongly from a Gaussian distribution. One could use the variance,
r the second moment of the redshift distribution: 

2 
z = 

∫ 

( z − 〈 z 〉 ) 2 p( z ) d z . (13) 

o we ver, this quantity is very sensitive to the tails of the distribution:
arger tails of p( z) increases σz , even if the bulk of the distribution
oes not change much. In our case, the width of the tomographic bin
s most rele v ant for galaxy clustering measurements: the smaller the
in width, the larger the clustering signal. Specifically, in the Limber
pproximation, the galaxy autocorrelation angular power spectrum
s given by 

 

gg 
� = 

∫ 

d χ

χ2 ( z) 

[
H ( z) 

c 
p( z) 

]2 

P gg 

(
k = 

� + 1 / 2 

χ
, z 

)
, (14) 

here � is the degree of the spherical harmonics, χ is the comoving
istance, H ( z) is the expansion rate at redshift z, c is the speed
f light, k is the 3D wav e v ector, and P gg is the 3D galaxy power
pectrum. Assuming that within the tomographic bin, the redshift
volution of galaxy bias is small, and all other functions can be
pproximated at the mean value at the centre of the bin, the clustering
ignal is proportional to the integral of the square of the galaxy
edshift distribution, p( z). This assumption breaks down if the
omographic bin width is broad, for instances, the combination of
ll five lens bins. Hence, we define the following quantity: 

 z : = 

∫ 

p 

2 ( z ) d z (15) 

s the LSS diagnostic metric, which corresponds to changes of the
wo-point angular power spectrum kernel with respect to changes
n p( z). This is a useful complement to the second moment, σz ,
ecause σz can be sensitive to the tails of the p( z) distribution caused
y a small population of outliers in photo- z; ho we ver, the impact
f this population could be small for galaxy clustering, which is
haracterized by W z . For both of these quantities, we look at the ratio
ith the o v erall sample combining all depth quantiles. We show all

he mean metric quantities in each tomographic bin and each quantile
or Y1, Y3, and Y5 in T able C2 for BPZ and T able C3 for FZBoost.

Notice that for the p( z)-related quantities, we have used the true
edshifts, but in practice, these are not accessible. Rather, unless one
ses a Bayesian hierarchical model such as CHIPPR (Malz & Hogg
022 ), one only has access to the calibrated redshift distribution
 c ( z) against some calibration samples via, e.g. a self-organizing
ap (SOM), which is itself associated with bias and uncertainties

hat can be impacted by varying depth. The case we present here thus
s idealized, where the calibration produces the perfect true p( z). This
llows us to propagate the actual impact of varying depth on p( z) to
he 3 × 2 pt data vector, but does not allow us to assess the bias at the
evel of modelling due to using an ‘incorrect’ p c ( z) that is affected
lso by the varying depth. We leave this more sophisticated case to
uture work. 

 RESU LTS  

his section presents our results on the impact of variable depth via
hree metrics: the number of objects (Section 4.1 ), mean redshift of
he tomographic bin (Section 4.2 ), and the width of the tomographic
in (Section 4.3 ). 
NRAS 535, 2970–2997 (2024) 
.1 Number of objects 

ig. 5 shows the change in the number of objects, N gal , as a function
f the i-band extinction-corrected coadd depth, m 

ex 
5 , compared to the

 v erall mean, for lens and source tomographic bins in Y1, Y3, and
5. In general, we find an approximately linear increase of number
f objects as the i-band depth increases, with the higher two redshift
ins showing the most e xtreme variation. F or the lower redshift bins,
he variation can be ∼ 10 per cent compared to the mean value,
hereas for bin 5, the variation can be as large as ∼ 40 per cent . The

rend does not seem to change much at different observing years.
his is the result of the i-band gold cut and the high SNR selection.
he scatter in magnitudes is larger for the shallower sample, hence
iven a magnitude cut, the shallower sample will have fewer objects.
t fixed magnitude, the deeper objects have larger SNR, resulting in
ore faint galaxies surviving the SNR cut. Given that the gold cut and
NR at given magnitude evolve with depth in the observation year,
e expect the trend to be similar across Y1 to Y5. It is interesting

o see also that per tomographic bin, the trends for baseline BPZ
nd FZBoost are similar, despite having quite different features in
he photo- z versus spec- z plane. The variation between bins 1–4 is
lightly larger in the BPZ case. For the BPZ redshifts, the inclusion of
he odds selection increases the variation in object number, especially
n the highest redshift bin. The steeper slope might be due to the
act that, objects with larger photometric error from the shallower
egions are likely to result in a poorer fit, leading to a smaller odds
alue. Hence, the odds ≥ 0 . 9 selection remo v es more objects from
he shallower compared to the baseline case. 

.2 Mean redshift 

ig. 6 shows the variation in the mean redshift of the tomographic
in, 〈 z〉 , as a function of the i-band extinction-corrected coadd depth,
 

ex 
5 , for lens and source samples in Y1, Y3, and Y5. In general, 〈 z〉

ncreases with the i-band coadd depth. This is expected as more
aint, high redshift galaxies that are scattered within the magnitude
ut are included in the deeper sample, resulting in an increased
igh redshift population. In general, the slope of this relation is
imilar across tomographic bins for both lens and source samples,
ith a variation of | �z/ (1 + 〈 z〉 ) | ∼ 0 . 005 − 0 . 01. This is not true

or bin 5 in the source sample, where the variation with depth is
oticeably larger. This could be explained by this bin containing
bjects with the highest z phot , which are also most susceptible to
catter in the faint end and outliers in the photo- z estimators. This
rend becomes more extreme from Y1 to Y5. By reducing outliers
ith the BPZ odds cut, the variation in source bin 5 is slightly

educed, although still higher than the nominal level. There are some
ifference between the BPZ and FZBoost cases: the slope slightly
rows from Y1 to Y5 in the BPZ case, whereas it stays consistent
n the FZBoost case, but the two cases converge in Y5. On the
ame figure, we mark the DESC SRD requirements for photo- z as a
ark grey band at �z/ (1 + 〈 z〉 ) = ±0 . 002 and a light grey band at
z/ (1 + 〈 z〉 ) = ±0 . 005. The shifts in mean redshift reach the limit

f the requirements for Y1, and exceeds the requirement for Y10. 

.3 Width of the tomographic bin 

ig. 7 shows the change in the tomographic bin width parameters, σz 

nd W z , as defined in Section 3.4 for the lens galaxies as a function
f the i-band extinction-corrected coadd depth, m 

ex 
5 , in Y1, Y3, and

5. The width of the tomographic bin can change with depth due to
he scatter in the photo- z versus spec- z plane. For example, a deeper
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Figure 5. The number of galaxies in tomographic bins as a function of the i-band extinction-corrected coadd depth, m 

ex 
5 , for Y1, Y3, and Y5. The number is 

normalized by the average number of objects combing all quantiles for each tomographic bin, N̄ gal . The tomographic bins are determined using the mode of 
BPZ redshifts (left two columns) and FZBoost (right two columns). For each redshift estimator, both lens and source galaxy samples are shown, with the gold 
cut and SNR ≥ 10. In the BPZ case, we also show the sample with odds ≥ 0 . 9 in squares with dashed lines. The vertical solid and dashed lines marks the 1 σ
and 2 σ regions of the depth distribution. 
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ample may have a smaller scatter for the bulk of the sample, but
nclude fainter objects that could result as outliers, resulting a more 
eaked distribution at the centre with pronounced long tails. 

The left two columns of Fig. 7 show the changes in the second
oment, σz , for both the BPZ (first column) and FZBoost case 

second column). For BPZ, there is little change in this parameter 
or Y1 at different depth, but for Y3 and Y5, σz increases with
epth. Including odds selection reduces the trend, and in some cases 
ev erses it. F or FZBoost, the trend is similar to BPZ, but bin 1 shows
 particularly large variation by as much as ∼ 30 per cent . This is
ecause σz is sensitive to the entire distribution, not just the peak, 
nd outliers at high redshift can significantly impact this parameter. 
ig. C1 shows same p( z) distributions for Y3 in logarithmic scale,
here the high redshift outliers are visible. Indeed, one can see an

nhanced high-redshift population for bin 1 in the FZBoost case. 
he odds cut remo v es most of the outliers, so that σz is reflecting

he change of the peak width with depth, hence giving the reversed
rend. 

The right two columns of Fig. 7 show the changes in W z . Given
 tomographic bin, a larger W z means a more peaked redshift
istribution, hence a larger clustering signal. One can see that W z 
s more sensitive to the bulk of the p( z) distribution, as it increases
ith depth in most bins. We see that the variation in W z is within
0 per cent from the mean, with the largest variation coming from
ins 2, 3, and 4. The highest and lowest tomographic bins, on the other
and, does not change much, despite their σz varying significantly 
ith depth. For the BPZ case, adding the additional cut in the odds
arameter reduces such trends in general, and the trend in the highest
omographic bin is reversed. 

 I M PAC T  O N  T H E  W E A K  LENSI NG  3 × 2 PT  

EASUREMENTS  

e use the Y3 FZBoost photo- z as an example to showcase the
 arying depth ef fects, by propagating the number density and p( z)
ariation from the previous section into the weak lensing 3 × 2 pt
ata vector. In Section 5.1 , we describe how the mock large-scale
tructure and weak lensing shear maps are constructed with the 
nclusion of non-uniformity. In Section 5.2 , we show case the
easured 3 × 2 pt data vector in both uniform and variable depth

ase. 
MNRAS 535, 2970–2997 (2024) 
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Figure 6. The change in mean redshift in each tomographic bin as a function of the i-band extinction-corrected coadd depth, m 

ex 
5 , for Y1, Y3, and Y5. The 

difference in mean redshift, �z, between a given quantile and the combined sample 〈 z〉 , is normalized by 1 / (1 + 〈 z〉 ) to account for expected larger uncertainties 
at higher redshifts. The fainter and darker grey bands marks ±0 . 005 and ±0 . 002, corresponding to the DESC SRD requirements for Y1 large-scale structure 
and weak lensing science. The tomographic bins are determined using the mode of BPZ redshifts (left two columns) and FZBoost (right two columns). For each 
redshift estimator, both lens and source galaxy samples are shown, with the gold cut and SNR ≥ 10. In the BPZ case, we also show the sample with odds ≥ 0 . 9 
in squares with dashed lines. The vertical solid and dashed lines marks the 1 σ and 2 σ regions of the depth distribution. 
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.1 Mock maps with varying depth 

o construct the mock LSST catalogue, we use one of the publicly
v ailable Go wer street simulations (Jeffrey et al. 2024 ). This is a suite
f 800 N -body cosmological simulations created using PKDGRAV3
Potter, Stadel & Teyssier 2017 ) with various wCDM cosmological
arameters. The simulation outputs are saved as 101 light cones in
EALPIX format with N side = 2048 between 0 < z < 49. To fill the
ull sky, the boxes are repeated 8000 times in a 20 × 20 × 20 array.
or shells z < 1 . 5, though, only three replications are required. We
se the particular simulation with � CDM cosmology: w = −1, h =
 . 70, �m 

= 0 . 279, �b = 0 . 046, σ8 = 0 . 82, and n s = 0 . 97. The dark
atter density contrast map, δm 

, is computed using particle counts at
 side = 512 (corresponding to a pixel size of 47 . 2 arcmin 2 ), and the

orresponding lensing convergence map, κ , is produced with Born
pproximation using BornRayTrace 6 (Jeffrey, Alsing & Lanusse
020 ). Finally, the shear map, ( γ1 , γ2 ) in spherical harmonic space is
NRAS 535, 2970–2997 (2024) 

 https:// github.com/ NiallJeffrey/ BornRaytrace 

t  

n  

b  

o  
roduced via 

E,�m 

= 

κE,�m 

� ( � + 1) 
√ 

( � + 2)( � − 1) 
, (16) 

nd we transform γE,�m 

as a spin-2 field, γ�m 

= γE,�m 

+ iγB,�m 

,
ssuming zero B-mode. For more details see Jeffrey et al. ( 2024 ). 

We construct the lens and source shear maps as follows. In the
oise-less case, given a lens (source) redshift distribution, p i ( z), for
 tomographic bin i, we construct the lens density (source shear) map
y M i = 

∑ 

j M j p i ( z j ) �z j , where j denotes the light-cone shells in
he Gower street simulation, M j denotes the map in this particular
hell, and �z j denotes the shell width. The noisy maps are generated
n the following way. Lens galaxy counts in tomographic bin i on
ach pix el θ are dra wn from a Poisson distribution. F or a shell j ,
he Poisson mean is μj ( θ) = n gal ,j [1 + bδm,j ( θ)], where b is the
inear galaxy bias and n gal ,j = n gal p i ( z j ) �z j , with n gal being the
verage count per pixel in this tomographic bin. Here, we set b = 1
o a v oid ne gativ e counts in e xtremely underdens pix els. Ho we ver,
otice that in a magnitude-limited surv e y, the galaxy bias is typically
 > 1 and evolves with redshift, not to mention the scale-dependence
f bias on non-linear scales. One approach to sample b > 1 is to

https://github.com/NiallJeffrey/BornRaytrace
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Figure 7. The relative change in the width of the lens tomographic bin as a function of the i-band extinction-corrected coadd depth, m 

ex 
5 , for Y1, Y3, and 

Y5. The left two columns show the second moment of the normalized redshift distribution, σz , in each quantile normalized by that of all quantiles combined, 
σ tot 

z , for each tomographic bin. The right two columns show the LSS diagnostic parameter, W z , as defined in equation ( 15 ), for each quantile normalized by 
all quantiles combined W 

tot 
z . The left and right panels for each width parameter show results with BPZ and FZBoost, respectively. In the case of BPZ, the 

subsample with selection odds ≥ 0 . 9 is shown in squares with dashed lines. The vertical solid and dashed lines marks the 1 σ and 2 σ regions of the depth 
distribution. 
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imply set ne gativ e counts to zero. However, this may introduce
purious behaviour in the two-point function of the field. Given 
he main purpose here is to propagate the systematic effects due to
epth only, we justify our choice by prioritizing the precision of the
easured two-point statistics compared to theory inputs. We assume 

he ensemble-averaged per-component shape dispersion to be σe = 

 √ 

( e 2 1 + e 2 2 ) / 2 
〉 

= 0 . 35, chosen to roughly match that measured in 

he Stage III lensing surv e ys (e.g. Gatti et al. 2021 ; Joachimi et al.
021 ; Li et al. 2022 ). For a tomographic bin i, we first assign source
ounts in the same way as abo v e, resulting in ˆ n source ( θ) galaxies in
ixel θ . We then randomly assign shapes drawn from a Gaussian 
istribution, N ∼ (0 , σe ), for each component ˆ n source ( θ) times, and
e compute the mean shape noise in each pixel. We end up with a

hape noise map, which we then add to the true shear map for each
omographic bin. 

To imprint the varying depth effects, we divide the footprint into 10
ub-regions containing the pixels in each of the i-band m 

ex 
5 deciles, 

nd repeat the abo v e procedure with distinct number density and
( z) for both the lens and source galaxies, according to the findings
n previous sections. We do not assign depth-varying shape noise, 
ollowing the finding in Joachimi et al. ( 2021 ) that the shape noise is
nly a weak function of depth. We also produce the noise-less cases
or varying depth. For density contrast, we produce two versions: one
ith varying p( z) only, and one with additional amplitude modulation

m 

+ �δ, where �δ + 1 = N gal / N̄ gal , as shown in Fig. 5 . The former
s to used isolate the effect of varying p( z) only. 

We adopt the cumulative number density of the photometric 
ample as a function of the i-band limiting magnitude given by
he DESC SRD: 

( < i lim 

) = 42 . 9(1 − f mask )10 0 . 359( i lim −25) arcmin −2 , (17) 

here f mask accounts for the reduction factor for masks due to image
efects and bright stars, and f mask = 0 . 12 corresponds to a similar
evel of reduction in HSC Y1 (The LSST Dark Energy Science
ollaboration 2021 ). Hence, substituting i lim 

= 24 . 6 for LSST Y3,
he expected total number density is N ( < 24 . 6) = 27 . 1 arcmin −2 .
his is slightly larger but comparable to the HSC Y3 raw number
ensity of N = 22 . 9 arcmin −2 (Li et al. 2022 ) at a similar magnitude
MNRAS 535, 2970–2997 (2024) 
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Figure 8. The lens galaxy density angular power spectrum, C 

gg 
� , measured from the mock LSST Y3 data with uniform (red points) and varying depth (purple 

points). Each panel shows the autocorrelation, ( i , i ), in each tomographic bin i. The lower panels show the ratio between the measurements and the theory (black 
solid lines), C 

th 
� . The grey area indicates excluded data points from the scale cut corresponding to k = 0 . 3 h Mpc −1 . The χ2 per degree of freedom, χ2 

dof , is 
shown for the uniform and variable depth cases in the lower left corner, computed using a Gaussian covariance assuming spatial uniformity. The varying depth 
case deviates from the theory significantly on large scales. 
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ut of i lim 

< 24 . 5 in the cModel magnitude. We estimate the total
ens galaxy number density for our sample by N lens = N ( < 24 . 5) f LS ,
here f LS = 0 . 90 is the ratio between the total number of lens

nd source samples (averaged over depth bins) from our degraded
oman–Rubin simulation catalogue, hence N lens = 24 . 4 arcmin −2 .
or each lens tomographic bin, we obtain the following mean number
ensity: 3 . 93 , 6 . 08 , 5 . 66 , 5 . 71 , 3 . 03 arcmin −2 . We also explore the
ase using a MagLim-like lens sample with a much sparser density
n Appendix E . For source sample, it is the ef fecti ve number density
 eff , rather than the raw number density, that determines the shear
ignal-to-noise. n eff accounts for the down-weighting of low signal-
o-noise shape measurements, as defined in e.g. Heymans et al.
 2012 ) and Chang et al. ( 2013 ). For LSST, n eff is estimated for
1 and Y10 with different scenarios in table F1 in the DESC SRD.

n the case adopted for forecasting, where the shapes are measured
n i + r and accounting for blending effect, n eff is ∼ 60 per cent
f the raw number density for both Y1 and Y10. We follow this
stimation for Y3, hence adopting n eff = 16 . 3 arcmin −2 for the full
ource sample, and 3 . 26 arcmin −2 for each tomographic bin. This is
omparable, but slightly more sparse compared to HSC Y3, where
 eff = 19 . 9 arcmin −2 (Li et al. 2022 ). 
Meanwhile, we also generate a uniform sample for comparison, in

hich the number density and p( z) are given by the mean of the depth
uantiles. We assign uniform weights to lens and source galaxies. 

.2 Weak lensing 3 × 2 pt data vector 

e use NaMaster (Alonso, Sanchez & Slosar 2019 ) to measure the
 × 2 pt data vector in Fourier space: C 

gg 
� , C 

g γ
� , and C 

γ γ

� for the
ens and source tomographic bins. NaMaster computes the mixing

atrix to account for the masking effects, and produces decoupled
and powers. The HEALPIX pixel window function correction is also
pplied when comparing the data with input theory. We adopt 14 � -
ins in range [20,1000] with log spacing. Notice that the maximum
 is a conserv ati ve choice for C 

γ γ

� compared to the DESC SRD,
here � max = 3000 is adopted, based on the assumption of impro v ed
odelling of non-linearity and baryonic feedback when the LSST

ata becomes av ailable. Ne vertheless, this is sufficient for our pur-
ose to demonstrate the impact of variable depth on relatively large
cales. For galaxy clustering and galaxy–galaxy lensing, we apply an
dditional scale cut at � max = k max χ ( 〈 z〉 ) − 0 . 5 following the DESC
RD, where k max = 0 . 3 h Mpc −1 , and χ ( 〈 z〉 ) is the comoving distance
t the mean redshift 〈 z〉 of the lens tomographic bin. We generate
NRAS 535, 2970–2997 (2024) 
heory angular power spectra assuming spatial uniformity with the
ore cosmology library 7 (CCL; Chisari et al. 2019 ). CCL uses
ALOFIT (Smith et al. 2003 ; Takahashi et al. 2012 ) non-linear power
pectrum and Limber approximation when computing the angular
ower spectra. We compute the Gaussian covariance matrix using
aMaster with theoretical data v ectors. The co variance includes
ask effects, shot-noise, and shape noise power spectra. It should be

oted that this is done assuming uniformity. In the varying depth
ase, the true covariance contains extra variance, due to spatial
orrelation in the noise with the number count. Also, the assumption
f a purely Gaussian covariance is not completely true. On very large
cales, non-Gaussian mode coupling at scales larger than the surv e y
ootprint results in a term called supersample covariance (Li, Hu &
akada 2014 ). Here we expect it to be relatively small because of the

arge sk y co v erage of LSST. On small scales, non-linear structure
ormation also introduces non-Gaussian terms (e.g. Cooray & Hu
001 ). With the scale cuts adopted in C 

gg 

� and C 

gγ

� we expect that
uch non-Gaussian contribution to be small. 

The galaxy clustering angular power spectra measurements, C 

gg 
� ,

re shown in Fig. 8 . The tomographic bin number is indicated in
he upper right corner as ( i , i ) for bin i. The measurements for the
niform case are shown as red dots, and that for the varying depth
ase are shown in purple. The data points are shot-noise-subtracted.
e see a clear difference between the uniform and the varying

epth cases at � < 100, and it becomes more significant at higher
edshifts. The impact at large scales is expected, as the i-band coadd
epth varies relatively smoothly and the rolling pattern is imposed
t relatively large scales. The trend with redshifts is also expected,
ue to two main reasons. First, the slope d( N gal / N̄ gal ) / d m 5 increases
lightly with redshift, and is significantly larger for bin 5, as shown
n the right middle panel of Fig. 5 . This means that non-uniformity
s most severe in these bins. Secondly, the clustering amplitude
ncreases towards lower redshifts due to structure growth, hence
he non-uniformity imprinted in δg is less obvious in lower redshift
ins. In practice, the number density fluctuations are mitigated
ia the inclusion of the selection weights, w( θ), such that the
orrected density field is defined as ˜ δg ( θ ) = N ( θ ) /w( θ ) N̄ w , where
¯
 w = 

∑ 

N ( θ ) / 
∑ 

w( θ ) (see e.g. Nicola et al. 2020 ). In addition,
hese weights will be used to compute the mode coupling matrix and
hot noise, such that the varying number density is taken into account
n the likelihood analysis. A more subtle effect is the difference

https://github.com/LSSTDESC/CCL
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Figure 9. The ratio between noise-less angular power spectra for the varying depth case and the uniform case. The left, middle, and right panels show the 
ratio for C 

gg 
� , C 

g γ
� , C 

γ γ

� , respectively. The solid lines indicate the case where both density non-uniformity and varying p( z) are applied to the o v erdensity map, 
whereas the dashed lines refer to the case where only varying p( z) is implemented. For C 

g γ
� and C 

γ γ

� , we only show the diagonal terms, i.e. the combination 
( i , i ) for tomographic bin i for the tracers, for visual clarity. The off-diagonal terms vary within a similar range. In case of C 

gγ

� , the grey region marks � < 50 
where measurements are unstable. 
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n redshift distribution at different depth. To isolate its impact, we 
ompare the clustering power spectra from the noise-less sample 
arying p( z) only with that from the noise-less uniform case. The
atio of the measurements are shown as dashed lines in the first panel
f Fig. 9 . We find that once the non-uniformity in number density is
emo v ed, the variation in p( z) does not significantly bias the power
pectra, and we reco v er the uniform case at better than 0.5 per cent. 

The galaxy–shear and shear–shear power spectra, C 

g γ
� and C 

γ γ

� , 
re shown in Figs 10 and 11 , respectively. The source–lens and
ource–source combinations are indicated on the upper right as ( i, j ).
n both cases, we only show the non-zero E-modes, and we check
hat the B-modes are consistent with zero. For the galaxy–shear case, 

easurements from combinations i < j are not shown, because we 
o not include effects such as magnification or intrinsic alignment, 
ence these measurements are low signal-to-noise or consistent with 
ero. We see that, o v erall, the impact of variable depth is much
maller compared to galaxy clustering. In the galaxy–galaxy shear 
easurements, only combination (5,5) shows a significant χ2 in the 

ariable depth case, and the main deviations is at � < 100. This
ould be a joint effect where non-uniformity is largest in the highest
edshift bin for both lens and source. There is negligible difference in
he shear–shear measurements for all other combinations given the 

easurement error. To look at this further, we take the noise-less case
nd compute the ratio between measurements from the varying depth 
ample and the uniform sample. We show some examples along the 
iagonal, i.e. the ( i , i ) combinations, in the middle and right panels of
ig. 9 . The off-diagonal measurements lie mostly within the variation 
ange of the ones shown here. In case of C 

g γ
� , we see that deviations

re large at low � when both density and p( z) is non-uniform (shown
s solid line); when the density non-uniformity is remo v ed (shown
n dashed line), the results are more consistent within 5 per cent. For
 

γ γ

� , we see that the largest impact is from the highest tomographic
in reaching up to 0.5 per cent. 
These results are consistent with the analytical approach in Baleato 

izancos & White ( 2023 ), where, in general, the varying depth effect
n the redshift distributions is sub-per cent and the weak lensing 
robes are less susceptible to these variations. Our results are quite 
ifferent from Heydenreich et al. ( 2020 ) (hereafter H20 ) for KiDS
osmic shear analysis in several aspects. H20 found that the largest 
mpact comes from the sub-pointing, small scales, and for a KiDS- 
ike set-up, the difference between the uniform and variable depth 
ases is 3 per cent–5 per cent at an angular scale of θ = 10 arcmin .
urthermore, the variable depth effect is stronger in lower redshift 
ins than higher redshift bins. Several differences in the analysis 
ay contribute to these different results. First, the non-uniformity in 
iDS is rather different from that considered here: the KiDS footprint 

onsists of many 1 deg 2 pointings, each having distinctive observing 
onditions due to that each field only received a single visit. This
eans that surv e y properties such as depth are weakly correlated at

ifferent pointings. One can write down a scale-dependent function, 
( θ ), to specify the probability of a pair of galaxies falling in the

ame pointing at each θ , and this essentially gives rise to the scale
ependence of the variable depth effect in H20 . For LSST, the abo v e
ssumptions are not true, and E( θ ) (if one can write it down) would
ake a very different form compared with that in KiDS. Secondly, due
o the single visit, there is a much larger variation in depth, number
ensity, and �z in KiDS compared to this work (tomographic bin
entre can shift up to �z ∼ 0 . 2 in redshift, as shown in fig. 2 of H20 ).
his means that the variable depth effects in KiDS as explored by
20 is significantly larger compared to this work. This also explains

heir redshift dependence, because for KiDS, the average redshift 
etween pointings varies the most in the lowest redshift bins. Lastly,
lthough our � max here corresponds to θ ∼ 10 arcmin . the results are
ot directly comparable, as H20 conducted the analysis in real space,
.e. ξ±( θ ). 

To sum up, the largest impact of varying depth comes from galaxy
lustering, whereas the impact on weak lensing probes is much 
maller. Higher redshift bins are more susceptible due to a higher
ensitivity in number density and redshifts with depth. Given the 
ock LSST Y3 uncertainty, one can clearly detect bias in the power

pectrum in galaxy clustering and the g alaxy–g alaxy shear bin (4,4),
hile all other combinations do not seem to have detectable impacts.
urthermore, once the density non-uniformity is remo v ed, the impact
f varying depth is further reduced. There are several ways to mitigate 
umber density variation, such as mode projection (e.g. Rybicki & 

ress 1992 ; Elsner, Leistedt & Peiris 2016 ), template subtraction
e.g. Ross et al. 2011 ; Ho et al. 2012 ), iterative regression (e.g.
lvin-Poole et al. 2018 ; Weaverdyck & Huterer 2021 ), and machine

earning methods using neural networks (Rezaie et al. 2020 ) and a
OM (Johnston et al. 2021 ). See Weaverdyck & Huterer ( 2021 ) for
 thorough re vie w. Notice that, despite these methods, it is difficult
o guarantee a complete removal non-uniformity, and in some cases, 
lustering signal can also be reduced as a result. Additional sky cuts
o exclude problematic regions can also ef fecti vely reduce density
ariation, at the cost of losing sk y co v erage. Finally, for the lens
ample, a brighter magnitude cuts can also greatly reduce the variable
MNRAS 535, 2970–2997 (2024) 
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Figure 10. The E-mode of the galaxy–shear angular power spectrum, C 

g γ
� , measured from the mock LSST Y3 data with uniform (red points) and varying 

depth (purple points). Each panel shows the combination, ( i, j ), for source bin i and lens bin j . The lower panels show the ratio between the measurements 
and the theory (black solid lines), C 

th 
� . The grey area indicates excluded data points from the scale cut corresponding to k = 0 . 3 h Mpc −1 in the lens bin. The 

χ2 per degree of freedom, χ2 
dof , is shown for the uniform and variable depth cases in the lower left corner, computed using a Gaussian covariance assuming 

spatial uniformity. The uniform and varying depth case do not differ much except for the first few data points in (5,5), where the varying depth case deviates 
significantly from the theory line. 
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epth effect (see Appendix E for a MagLim-like lens selection), at
he cost of sample sparsity. Nevertheless, non-uniformity in p( z) only
eems to be safely averaged out in the 2-point statics measurements.

.2.1 Impact on spectroscopic calibration 

ere, we consider another potential source of systematics arising
rom small spectroscopic calibration fields. Redshift calibration for
hotometric surv e ys such as LSST are usually done using small but
eep spectroscopic surv e ys, e.g. C3R2 surv e y (Masters et al. 2019 ).
ach field in these surv e ys has a co v erage of a few deg 2 . Suppose

hat a calibration field o v erlaps with a particularly shallow or deep
egion, the calibration (e.g. a trained SOM) could cause bias to the
NRAS 535, 2970–2997 (2024) 
 v erall redshift distribution when it is generalized to the whole field.
 or e xample, a SOM trained in a shallow re gion will contain larger
oise, which may increase the scatter for the o v erall sample. The
ack of high redshift, fainter objects in the shallow region could also
ause bias when the SOM is applied to objects in deeper regions. 

The specific impact will depend on the calibration method and de-
ails of the calibration, which is beyond the scope of this paper. Here,
e qualitatively assess the impact via the difference in the 3 × 2 pt

heory vectors computed using the p( z) from a particular quantile and
hose computed using the mean p( z), as shown in Fig. 12 . The solid
ines show cases from the shallowest quantile, qtl = 0, and the dashed
ines show cases from the deepest quantile, where qtl = 9, highlight-
ng the worst case scenarios. For C 

gγ

� and C 

γ γ

� , only cases where
he tracers are in the same bin are shown, but the other lens–source
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Figure 11. The EE mode of the shear–shear angular power spectrum, C 

γ γ

� , measured from the mock LSST Y3 data uniform (red points) and varying depth 
(purple points). Each panel shows the source–source combination, ( i, j ), tomographic bins i and j . The lower panels show the ratio between the measurements 
and the theory (black solid lines), C 

th 
� . The χ2 per degree of freedom, χ2 

dof , is shown for the uniform and variable depth cases in the lower left corner, computed 
using a Gaussian covariance assuming spatial uniformity. 

Figure 12. The ratio between the 3 × 2 pt theory vectors computed using the p( z) from depth quantiles 0 (shallo west, sho wn as solid lines) and 9 (deepest, shown 
as dashed lines), and those computed using the mean p( z). Different colours show different tracer tomographic bin combinations, as indicated in the le gend. F or 
C 

gγ

� and C 

γ γ

� , only cases where the tracers are in the same bin are shown for visual clarity, but the other tracer combinations have a comparable variation. 
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Table 2. The fiducial value and the Gaussian standard deviation of the prior 
assumed in the Fisher information matrix for the cosmological and intrinsic 
alignment parameters as defined in Krause & Eifler ( 2017 ). 

Parameter Fiducial value Prior σ

Cosmological 
�m 0.279 0 .15 
σ8 0.82 0 .2 
w 0 −1 0 .8 
w a 0 1 .3 
h 0.7 0 .125 
n s 0.97 0 .2 
�b 0.046 0 .003 
Intrinsic alignment 
A 0 5.92 2 .5 
ηl −0.47 1 .5 
ηh 0.0 0 .5 
β 1.1 1 .0 
Galaxy bias 
b i 1.0 0 .9 
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ombinations have a comparable variation. We see that naively taking
he p( z) from a quantile and assume it as the p( z) for the full sample
an give rise to as much as 10 per cent bias compared to the uniform
ase. 

This effect is reduced by having multiple calibration fields across
he LSST footprint. Currently, many of the calibration fields overlaps
ith the LSST Deept Drilling Field (DDF), which will be much
eeper compared to the WFD. Impact of variable depth can then be
itigated via a two-tiered SOM calibration, mapping from the deep

o the wide field (Myles et al. 2021 ), and synthetic source injection
Everett et al. 2022 ), mimicking the degradation of the deep field
bjects across the LSST footprint, as done in the DES Y3 analysis. 

.3 Impact on cosmological parameters 

e further predict the impact of surv e y non-uniformity on the
osmological analysis by conducting Fisher forecasting. The Fisher
orecast estimates the constraints on cosmological parameters by
ssuming a Gaussian-likelihood function, a fiducial cosmology, and
 covariance matrix on the data vector (Wasserman 2004 ; Coe 2009 ;
handari et al. 2021 ). In the Bayesian statistics framework, we can
rite the Fisher Information matrix as 

 ij = 

∂ d T 

∂ αi 

V 

∂ d 
∂ αj 

+ 

1 

σ 2 
αi 

δij , (18) 

here d is the data vector, α is the model parameter vector, and V
s the inverse of the covariance matrix. σαi 

is the standard deviation
f the Gaussian prior on parameter αi , and δij is the Kronecker
elta. We use the Fisher forecast code developed in Zhang et al. (in
reparation) . The covariance matrix is computed by NaMaster using
he theoretical angular power spectra generated by CCL, assuming
aussianity. 
We use CCL to compute the fiducial data vector of the LSST Y3

 × 2 pt. We use the non-linear intrinsic alignment (NLA) model as
n Krause & Eifler ( 2017 ), adopted in the DESC SRD, to describe the
ontribution of intrinsic alignments to the data vectors. There are four
LA parameters, namely, the o v erall intrinsic alignment amplitude,
 0 , the power-law luminosity scaling, β, the redshift scaling, ηl , and

he additional high-redshift scaling ηh . The fiducial value and prior
f the cosmological and astrophysical parameters are taken from the
ESC SRD, as shown in Table 2 . The fiducial galaxy bias, b i , of
NRAS 535, 2970–2997 (2024) 
he lens catalogue in each tomographic bin i, is set to 1.0, with a
aussian standard deviation of 0.9 and a cut at b i < 0. The contours

hown in this section include the statistical uncertainty of the data
ector and the marginalized uncertainty o v er other cosmological and
strophysical parameters described abo v e. The contour can be o v er-
onfident since it does not marginalize o v er observational systematic
ncertainties, which can include photometric redshift uncertainty,
SF uncertainty, and multiplicative shear uncertainty. Additionally,

he non-Gaussian contributions to the covariance matrix is not taken
nto account. Non-linear galaxy bias is also not modelled. 

Fisher forecasts can be used to predict bias in the parameters given
 shift in the data vector. We take the difference between the biased
nd fiducial 3 × 2 pt power spectra, d biased and d , respectively, from
ection 5.2 , and use it to calculate the bias in cosmological param-
ters that the surv e y non-uniformity induces, under the assumption
f small, linear changes in d (Huterer et al. 2006 ; Rau et al. 2017 ): 

 b = I −1 ·
(

d d 
d α

V 

(
d biased − d 

))
, (19) 

here d is the fiducial 3 × 2pt data vector. The Fisher information
atrix used in equation ( 19 ) is the full 16 × 16 matrix which includes

1 cosmological and intrinsic alignment parameters, as well as five
alaxy bias parameters, as shown in Table 2 . 

The forecasted impact of non-uniformity on LSST Y3 3 × 2 pt
osmological analysis is shown in Fig. 13 . When neither non-
niform N gal nor n ( z) are modelled in the data vector, the forecasted
ias on �m 

− σ8 and w 0 − w a are both on the order of ∼ 20 σ ,
aking the analysis completely unfeasible. Notice that in this case,

trictly speaking, the small difference assumption in equation ( 19 )
reaks down, and so one should take these numbers with caution.
ssuming the non-uniformity residual can be reduced to a level
f 10 per cent (orange) and 5 per cent (green), the bias on the
osmological parameters reduces to about 3 σ and 1 . 5 σ , respectively.
e observe that the main contributor to the cosmological bias in this

ase is the galaxy clustering, C 

gg 
� . When the bias in clustering is set

o zero, the o v erall bias in cosmology is contained within 1 σ , shown
n brick red. The cosmological bias when only non-uniformity of
 ( z) is mis-modelled is negligible, as shown in the purple vector. 
As a result of the Fisher forecast, we recommend the N gal non-

niformity of the LSST 3 × 2 pt lens sample should be modelled
ith less than 3 per cent residual, to ensure an accurate cosmological

nalysis with bias within 1 σ . Otherwise, large-scale modes or high-
edshift bins of the galaxy clustering signal must be remo v ed from
he data vector to a v oid the parts where non-uniformity makes the

ost significant impact, as also shown in Fig. 8 . 

 C O N C L U S I O N S  

n this paper, we investigated and quantified the impact of spatial non-
niformity due to surv e y conditions on redshift distributions in the
ontext of early LSST data. We used the Roman–Rubin simulation
s the truth catalogue, and degraded the photometry using the LSST
rror model implemented in the RAIL package. The degradation
tilizes the surv e y condition maps from the OpSim baseline v3.3 for
he 1, 3, and 5-yr LSST data. We run BPZ and FZBoost photometric
edshift estimators on the degraded sample and use the photo- z mode
o separate the samples into five lens and five source tomographic
ins. Finally, we apply the LSST gold selection and a signal-to-noise
ut. Taking the extinction-corrected 5 σ coadd depth of the detection
and, i-band, as the primary source of non-uniformity, we quantify
he impact in terms of three measures: the number of objects, the
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Figure 13. The black ellipse shows the Fisher forecasted 1 σ and 2 σ contour of �m 

− σ8 and w 0 − w a , marginalized o v er 16 parameters as described in 
Section 5.3 . The parameter biases induced by surv e y non-uniformity are given by the vectors in the plot. The blue, orange, and green vectors show the biases 
corresponding to 100 per cent, 10 per cent, and 5 per cent of both N gal and n ( z) non-uniformity. The brick red vector shows the bias corresponding to the 
100 per cent case but without the clustering bias. The purple vector shows the bias corresponding to only n ( z) non-uniformity. 

m
W

g
v  

c  

B
h

w  

s
w
t  

0  

o  

〈
 

o  

W  

1  

σ

t  

m  

a

 

t
s  

s  

s  

t
i

 

i
T  

s

w  

v
w  

l  

s
a
d
s  

L  

n  

a  

l  

n  

t  

t
i  

i  

L  

e  

v  

W  

n
 

c  

i
b  

o  

w  

m  

s  

c  

e  

e  

b  

m
w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/535/4/2970/7885355 by U
niversity C

ollege London user on 05 February 2025
ean redshift of the tomographic bin, and the tomographic bin width. 
e find that: 

(i) The number of objects increases with the i-band depth in 
eneral, and at extreme depth values, the number of objects can 
ary by a factor of two. The trend is relatively consistent between
ases using BPZ and FZBoost, although selecting odds ≥ 0 . 9 for
PZ amplifies the trend. The largest correlation comes from the 
ighest tomographic bin. 
(ii) The mean redshift in each bin increases with the i-band depth, 

ith a variation of | �z/ (1 + 〈 z〉 ) | ∼ 0 . 005 − 0 . 01. The lens samples
how a relatively consistent trend across different tomographic bins, 
hereas for the source sample, the highest tomographic bin shows 

he largest variation. This reaches the limit of the requirements of
.005 for Y1 as listed in the DESC SRD, and exceeds the requirement
f 0.003 for Y10. At extreme depth v ariations, ho we ver, de viation in
 z〉 could exceed Y1 requirements. 

(iii) The width of the lens tomographic bin is measured in terms
f σz , which is sensitive to the entire redshift distribution, p( z), and
 z , which is sensitive to the peak of p( z), both varying at the level of

0 per cent and slightly increases with year. We find that in general,
z increases with the i-band depth due to fainter objects included in 

he deeper sample. W z also increases with the i-band depth, due to a
ore peaked bulk p( z) as a result of higher SNR in deeper samples,

lthough the trend can be reversed in some cases. 

As emphasized before, results derived for Y3 and Y5 are with par-
icularly large rolling non-uniformity. Hence, the variations shown 
hould be interpreted as an upper limit for the early Rubin LSST static
cience. As shown in Appendix E , if the final LSST lens selection is
imilar to the DES Y3 MagLim sample with a bright magnitude cut,
hen the expected variable depth impact will be milder than shown 
n our baseline cases. 

We took the Y3 FZBoost photo- z as an example to propagate the
mpact of varying depth to the weak lensing 3 × 2pt measurements. 
o do this, we used one realization of the Gower Street N -body
imulation, and generated lens galaxy maps and source shear maps 
ith spatially varying number density and p( z). We measure the data
ector in harmonic space using NaMaster, and also compare them 

ith the theory expectation generated from the CCL. We find that the
argest impact is on C 

gg 
� with the higher redshift bin measurements

ignificantly biased. C 

g γ
� is less sensitive to varying depth effects, 

lthough in the source–lens combination (4,4), there is a visible 
if ference at lo w � . C 

γ γ

� sho ws no significant impact in all source–
ource combinations from v arying depth, gi ven the uncertainties in
SST Y3. Finally, we also investigate cases where we do not include
oise in the lens and source maps. The difference between uniform
nd varying depth cases can be up to a few per cent for C 

g γ
� , and

ess than 0.5 per cent for C 

γ γ

� . Furthermore, by removing the density
on-uniformity, and varying p( z) only with depth, one can reduce
he bias in C 

gg 
� and C 

g γ
� to sub-per cent level. We use a Fisher forecast

o assess the impact of non-uniformity on cosmological parameter 
nference for the 3 × 2 pt data vector. We conclude that the mitigation
n number density variation is crucial, and for our baseline setup for
SST Y3, this should be controlled below 3 per cent. Therefore, for
arly LSST analysis, it is crucial to account for the galaxy density
ariation, but the impact of varying p( z) seems to be negligible.
e leave the investigation of an accurate mitigation strategy of the

umber density variation to future work. 
Our current approach has some caveats. First, the fidelity of the

olour-redshift relation in the Roman–Rubin simulation at z > 1 . 5
s questionable. As already mentioned, the strong bifurcation of the 
lue objects at this high redshift may lead to worse (in the case
f BPZ) or o v erly optimisic (in the case of FZBoost) performance
hen estimating the photo- z. Secondly, we have adopted an analytic
odel to obtain the observed magnitudes in each band based on

urv e y conditions. Ho we v er, in reality, the observ ed magnitudes and
olours also depend on the way they are measured. For example, for
xtended objects, cModel (Strauss et al. 2002 ) and GAaP (Kuijken
t al. 2015 ) methods are often applied. Although the photometry will
e calibrated, the magnitude error may not be the same for different
ethods. This could introduce extra scatter in photo- z. Thirdly, 
e have only tested on two major photo- z estimators, observing
MNRAS 535, 2970–2997 (2024) 
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ome level of differences in the results. For example, compared to
PZ, the FZBoost samples show more consistency between different

omographic bins regarding to the trend with i-band depth. Therefore,
ne should take the result as an order of magnitude estimate of the
mpact, but the specific trends are likely to differ for different photo- z

ethods. Moreo v er, when propagating the effects to the data vector,
e have made some simplifications. We considered a galaxy bias of
 = 1, and did not include systematics such as magnification bias or
ntrinsic alignments. This choice is to isolate the effect of varying
epth on the pure lensing and clustering contrib ution, b ut it would be
ore realistic to include these effects. Finally, we have not folded in

he effects of blending, i.e. spatially nearby galaxies are detected as
ne object. This occurs when the surface density is high and the image
s crowded, and could be significant for deep photometric surv e ys
uch as LSST. The level of blending depends on both seeing and depth
f the surv e y, hence, it could correlate with the variable depth effects
iscussed here. The impact of blending on photo- z is the inclusion
f a small fraction of ill-defined redshifts in the sample, increasing
he photo- z scatter. Clustering redshift calibration, which measures
alaxy clustering on small scales, can also be affected as these scales
re most susceptible to blending. Moreo v er, blending can affect shear
easurements via e.g. lensing weights, hence introduce impact on
 alaxy–g alaxy lensing and cosmic shear. As such, Nourbakhsh et al.
 2022 ) showed that approximately 12 per cent of the galaxy sample
n LSST is unrecognized blends, and can bias S 8 measurement from
osmic shear by 2 σ . 

Furthermore, so far our results are based on the p( z) of the true
edshifts of the sample. In reality, we do not have access to this, and
ur theory curve will be based on the calibrated redshift distribution
 c ( z), which itself can be impacted by non-uniformity based the
alibration method. For example, in many weak lensing surveys,
 SOM is used to calibrate redshifts by training on a photometric
ubsample with spectroscopic counterparts (Wright et al. 2020 ;

yles et al. 2021 ). By taking subsamples from a small calibration
eld (typically of a few square degrees) located in a particularly
hallow region could result in a trained SOM that captures different
agnitudes, redshifts, and SNR than that from a deep region, as

uanlitati vely sho wn in Section 5.2.1 . One remedy may come from
alibration using clustering redshifts, which takes advantage of
alaxy clustering of the target sample with a spectroscopic sample,
pliced in thin redshift bins (den Busch et al. 2020 ; Gatti et al. 2022 ;
au et al. 2023 ). The non-physical variation with depth will drop out

n this method, giving unbiased estimate of p( z). 
We have only explored the impact of variable depth on two-point

tatistics here, but there could be potential impact on statistics beyond
wo-point. F or e xample, for weak lensing shear, a similar effect
n manifestation is source clustering, where the number density of
ource galaxies n ( ̂  θ, z) is correlated with the measured shear γ ( ̂  θ )
or a given direction ˆ θ on the sky, because source galaxies are
hemselves clustered. Impact of source clustering is negligible in
wo-point statistics for Stage III surv e ys, but is detected significantly
n several higher order statistics in the DES Y3 data (Gatti et al.
024 ). Given that the variable depth effect also modulates n ( ̂  θ, z)
hence imprinting a f ak e ‘source clustering’), there may be non-
egligible impact on higher order statistics with LSST. We leave
hese explorations to future work. 
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PPENDI X  A :  C O M PA R I S O N  O F  LSST  E R RO R  

O D E L  O N  D C 2  

he 5 σ depth per visit, m 5 , depends on a set of observing conditions
n the following way (Ivezi ́c et al. 2019 ): 

 5 = C m 

+ 0 . 50( m sky − 21) + 2 . 5 log 10 (0 . 7 /θeff ) 

+ 1 . 25 log 10 ( t vis / 30) − k m 

( X − 1) , (A1) 

here C m 

is a constant that depend on the o v erall throughput of
he system, m sky is the sky brightness in AB mag arcsec −2 , θeff 

s the seeing in arcsec, t vis is the exposure time in seconds, k is
he atmospheric extinction coefficient, and X is the airmass. The 
efault values of the parameters in the abo v e equation per band are
iven in table 2 in Ivezi ́c et al. ( 2019 ). The magnitude error for N -
ears observation is computed by σ/Nn vis , where the mean number
f visits per year n vis can be derived from table 2 in Ivezi ́c et al.
 2019 ). 

In this Appendix, we compare the LSST error model with the
ubin OpSim output as well as the Data Challenge 2 [DC2; LSST
ark Energy Science Collaboration (LSST DESC) et al. 2021 ] 
r6 magnitude error. We perform our tests on the specific OpSim
ersion minion 1016 , and we use the 5-yr observing conditions
ncluding: coadd 5 σ point source depth ( CoaddM5 ), single-visit 5 σ
oint source depth ( fiveSigmaDepth ), sky brightness ( filt-
kyBrightness ), and number of visits ( Nvisits ). 
We begin by checking equation ( A1 ) using OpSim MAF maps

 v er the DC2 footprint. The various surv e y conditions m sky , θeff , and
 are taken as the median values o v er the 5-yr period, and other
MNRAS 535, 2970–2997 (2024) 
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Figure A1. Comparison of the 5 σ PSF limiting magnitude computed from equation ( A1 ) with the OpSim output: the median m 5 o v er 5 yr (bright pink) and the 
coadded 5 σ depth converted to the equi v alent of per visit (red). The m 5 computed from equation ( A1 ) utlizes the median sky brightness ( m sky ), median airmass 
( X), and median seeing ( θeff ), and other parameters are set to the default value in Ivezi ́c et al. ( 2019 ). 

Figure A2. The relation between m 5 and other surv e y conditions using the LSST error model. We show the comparison between the data points from OpSim 

for each of the six LSST bands, and the relation from the LSST error model using the default parameters as black dashed lines, with a fitted constant C. We see 
that the LSST error model captures the correlation between m 5 and the underlying surv e y conditions well. The different colours correspond to different LSST 

filters, as indicated in the texts next to the data points in the same colour. 
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arameters C m 

, t vis , and k m 

are tak en as the def ault values from
vezi ́c et al. ( 2019 ). The results from equation ( A1 ) are the 5 σ PSF
agnitude limit in each band per visit, and we compare it with two

uantities: the median 5 σ depth map, and the equi v alent per-visit
epth from the coadded map: m 5 = m 

coadd 
5 − 2 . 5 log ( 

√ 

N vis ), where
 vis is the number of visits at each pixel. The results are shown in
ig. A1 . We see that in general, m 5 predicted by equation ( A1 ) tends

o be brighter than that from OpSim, and the difference is larger
onsidering the coadd depth than the median depth. It seems that
xcept for i-band which has a slightly different slope from unity, the
ifference in all other bands can be fixed by introducing a correction
o C m 

. For example, for the median m 5 case, the shifts needed are
C m 

= {−0 . 053 , 0 . 032 , −0 . 063 , 0 . 070 , 0 . 057 , 0 . 027 } for ugri zy ,
espectively. 
NRAS 535, 2970–2997 (2024) 
We also explicitly check whether the dependence of the airmass,
eeing, and sky brightness are as expected in equation ( A1 ) with the
efault parameters. This is shown in Fig. A2 . In all these e x ercises,
e test whether the dependencies of the particular surv e y condition
ith m 5 on the ensemble pixels, fixing all other dependence to a

onstant C which we fit to the ensemble. We see that the airmass and
eeing are well captured by equation ( A1 ), although the dependence
f m 5 on airmass is weak. The sky brightness relation is less well
aptured by equation ( A1 ) especially for u and g. In general, ho we ver,
e conclude that in absence of a depth map, one can estimate the
nbiased m 5 for Rubin observation conditions using equation ( A1 )
ith a modification of the C m 

parameters for each band. 
We then check equations ( 3 ) and ( 4 ) with the DC2 DM catalogue,

here the magnitude errors are obtained through the detection
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Figure A3. Comparison of the magnitude error as a function of magnitude in each of the six LSST bands between the DC2 dr6 catalogue and the LSST error 
model. The red and pink points show the PSF magnitude errors, whereas the dark and light blue points show that of the extended errors compared with the DC2 
cModel magnitudes. The coadd 5 σ depth from OpSim is used to compute the magnitude errors. 
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ipeline, thus supposed to be more realistic. In this case, we directly
dopt the coadded depth as m 5 . We also compute in the low SNR limit
equation 2 ) which allows us to check the fainter magnitudes. For the
xtended magnitude errors, we compare with the CModel magnitudes 
n DC2. This is shown in Fig. A3 . We see that there is reasonable
greement for the PSF magnitude errors in most bands, except for the
 -band, where the LSST error model predicts larger error compared 

o that measured in DC2. Ho we ver, it is also noticeable that the
C2 error seems to be underestimated when comparing the observed 
agnitude to the truth. It is also noticeable that the LSST error model

lso predicts consistently larger error at the bright end. When we add
he extended error from the size of the galaxy (equation 6 ), we find
hat the scatter of the magnitude error at fixed magnitude is quite a
it larger than that measured by the cModel in DC2. Both the PSF
agnitude error and the scatter for the extended error in DC2 can

e matched by the LSST error model by simple scaling of the PSF
agnitude error by a constant for each band, as well as scaling the

alaxy size a gal , b gal . We emphasize that due to the known issues
n the DC2 catalogue, we do not calibrate the LSST error model to
C2 in our analysis. Ho we ver, it is worth bearing in mind what the
ifferences are, and that one needs to calibrate the model with the
eal data. 

PPENDI X  B:  C O M PA R I S O N  O F  

 O M A N – R  UBI N  G A L A X Y  C O L O U R  WI TH  BPZ  

EMPLATES  

e show the co v erage of BPZ templates adopted in this paper for
he Roman–Rubin (DiffSky) simulation galaxy colours. We obtain 
emplate magnitudes in the LSST six-band filters by integrating each 
ED templates with the corresponding filter curves, with the template 
hifted in redshift range 0 < z < 3. We then compare the five colour
istributions of the resultant templates with that of the Roman–Rubin 
alaxies ( i < 24 . 9, corresponding to the Y5 Gold cut). The results
re shown in Fig. B1 . We see that the colour ranges of the simulated
alaxies are captured by the BPZ templates used. 
MNRAS 535, 2970–2997 (2024) 
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Figure B1. Colours in the LSST filters, for the Roman–Rubin (DiffSky) galaxies with i < 24 . 9 (left), and that derived from the SED templates used in BPZ in 
the redshift range 0 < z < 3 (right). 
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PPENDIX  C :  LENS  A N D  S O U R C E  

O M O G R A P H I C  BIN  DETA ILS  

his section includes some supplementary information for the lens
nd source tomographic bins for the mock photometry sample, as
iscussed in Section 3.3 . 
Fig. C1 shows a similar plot as Fig. 4 , but with the y-axis

n logarithmic scale, and extended to z = 3. Only tomographic
ins 1, 3, and 5 are shown for visual clarity. This scaling en-
ances the small, high-redshift population for both lens and source
alaxies. 
NRAS 535, 2970–2997 (2024) 
Table C1 shows the summary statistics on photo- z performance
or BPZ and FZBoost at the 10 per cent shallowest i-band coadd
epth ( qtl = 0) and deepest depth ( qtl = 9) for the 1, 3, and 5-yr
ock LSST data. The summary statistics are: median bias, standard

eviation (STD), normalized Median Absolute Deviation (NMAD),
nd outlier fraction. Tables C2 and C3 show the mean values of
he various metrics o v er the depth quantiles, giv en the gold cut
djusted for each year. The metrics include mean galaxy number
¯
 gal and mean redshift of the tomographic bin 〈 z〉 for both lens and

ource samples, and additionally the width metrics σz and W z for
ens samples. In the BPZ case, we include an additional case where
e select objects with odds ≥ 0 . 9. 
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Figure C1. Tomographic redshift distribution of the Y3 sample for qtl = 0 (solid lines) and qtl = 9 (dashed lines) in log scale. Only tomographic bins 1, 3, 
and 5 are shown for visual clarity. The log scale highlights the tails towards high redshifts in each bin, which significantly impact the second moment of the 
distribution, σz for each case. 

Table C1. The summary statistics on photo- z performance for BPZ and FZBoost at the 10 per cent shallowest i-band coadd depth ( qtl = 0) and deepest depth 
( qtl = 9) for the 1, 3, and 5-yr mock LSST data, as shown in Fig. 3 . Defining �z = ( z phot − z true ) / (1 + z true ), the summary statistics are: median bias, defined 
as the median of �z, STD, defined as the standard deviation of �z, the normalized MAD, defined as σNMAD = 1 . 48 Median ( | �z| ), and outlier fraction, defined 
as the fraction of sample with | �z| > 0 . 15. Both cases for full sample without cuts and for the high signal-to-noise sample with SNR ≥ 10 are shown. For BPZ, 
we also show the selection with odds ≥ 0 . 9. 

Sample qtl = 0 qtl = 9 
Median bias STD σNMAD Outlier fraction Median bias STD σNMAD Outlier fraction 

Y1 BPZ Full −0 . 011 0.411 0.0772 20.1 per cent −0 . 011 0.404 0.0634 15.5 per cent 
SNR ≥ 10 −0 . 005 0.444 0.0632 14.2 per cent −0 . 009 0.409 0.0585 12.6 per cent 
odds ≥ 0 . 9 −0 . 001 0.446 0.0431 5.8 per cent −0 . 006 0.388 0.0401 4.5 per cent 

Y1 FZBoost Full 0.008 0.122 0.0479 7.2 per cent −0 . 006 0.082 0.0371 4.2 per cent 
SNR ≥ 10 0.008 0.072 0.0410 3.1 per cent −0 . 004 0.065 0.0351 2.4 per cent 

Y3 BPZ Full −0 . 013 0.380 0.0770 20.9 per cent −0 . 011 0.369 0.0613 14.3 per cent 
SNR ≥ 10 −0 . 009 0.399 0.0612 13.9 per cent −0 . 010 0.368 0.0586 12.1 per cent 
odds ≥ 0 . 9 −0 . 005 0.388 0.0407 4.7 per cent −0 . 008 0.337 0.0421 4.2 per cent 

Y3 FZBoost Full 0.005 0.145 0.0408 8.3 per cent −0 . 004 0.079 0.0257 4.2 per cent 
SNR ≥ 10 0.005 0.089 0.0326 3.1 per cent −0 . 003 0.065 0.0247 2.7 per cent 

Y5 BPZ Full −0 . 013 0.371 0.0774 21.3 per cent −0 . 011 0.353 0.0666 15.9 per cent 
SNR ≥ 10 −0 . 009 0.384 0.0620 14.2 per cent −0 . 009 0.350 0.0633 13.5 per cent 
odds ≥ 0 . 9 −0 . 006 0.372 0.0403 4.8 per cent −0 . 007 0.330 0.0442 4.4 per cent 

Y5 FZBoost Full 0.004 0.137 0.038 8.3 per cent −0 . 003 0.08 0.0256 4.7 per cent 
SNR ≥ 10 0.004 0.086 0.0305 3.4 per cent −0 . 003 0.068 0.0244 3.2 per cent 
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Table C2. The mean values of the metrics across all depth quantiles for samples with BPZ redshifts. The metrics per tomographic bin include number of 
galaxies N̄ gal and mean redshift 〈 z〉 . For lens galaxies, we compute two additional metrics regarding to the width of the tomographic bin: the second moment 
σz and the LSS diagnostic W z defined in equation ( 15 ). Gold cut in the respective year and SNR ≥ 10 are applied to all samples, and a case with odds ≥ 0 . 9 
is also included for comparison. 

Sample Metric SNR ≥ 10 SNR ≥ 10 , odds ≥ 0 . 9 
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Y1 lens N̄ gal 28796.5 32021.9 35387.0 24288.8 8463.0 7635.1 6158.4 10002.0 6221.3 1875.5 
〈 z〉 0.362 0.537 0.714 0.882 1.050 0.337 0.549 0.716 0.890 1.056 
σz 0.098 0.123 0.110 0.145 0.172 0.068 0.098 0.087 0.089 0.083 
W z 3.216 2.797 2.785 2.535 1.945 3.453 3.453 3.311 2.919 3.062 

Y1 source N̄ gal 30534.5 30534.5 30534.5 30534.6 30534.7 7042.0 7042.0 7042.0 7042.0 7042.0 
〈 z〉 0.350 0.482 0.661 0.813 0.883 0.310 0.508 0.678 0.817 0.845 

Y3 lens N̄ gal 38988.1 39330.9 50523.5 44645.0 21978.0 13904.9 12239.9 22208.5 14705.3 5822.9 
〈 z〉 0.373 0.541 0.728 0.912 1.067 0.345 0.550 0.721 0.895 1.064 
σz 0.123 0.135 0.127 0.166 0.185 0.069 0.093 0.084 0.098 0.103 
W z 3.208 3.123 2.872 2.514 2.147 3.602 3.517 3.361 2.977 2.952 

Y3 source N̄ gal 48205.8 48205.8 48205.8 48205.5 48203.5 15578.9 15579.0 15579.0 15579.0 15579.0 
〈 z〉 0.384 0.557 0.755 0.954 1.033 0.332 0.577 0.726 0.866 0.973 

Y5 lens N̄ gal 44162.9 43177.3 58004.0 54826.6 31379.0 17002.9 15398.3 28564.3 19690.5 8850.2 
〈 z〉 0.383 0.545 0.736 0.931 1.085 0.348 0.549 0.723 0.898 1.064 
σz 0.156 0.151 0.160 0.198 0.208 0.071 0.090 0.083 0.102 0.111 
W z 3.136 3.267 2.894 2.394 2.087 3.920 3.683 3.423 2.945 2.982 

Y5 source N̄ gal 59745.5 59747.1 59746.1 59745.0 59725.6 20746.7 20746.8 20746.7 20746.8 20744.1 
〈 z〉 0.417 0.594 0.804 1.028 1.150 0.345 0.599 0.751 0.904 1.019 

Table C3. Same as Table C2 , but for FZBoost redshifts. All samples have SNR ≥ 10. 

Sample Metric Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Y1 lens N̄ gal 31054.7 38964.9 33717.0 29871.8 9104.6 
〈 z〉 0.327 0.515 0.706 0.865 1.083 
σz 0.119 0.103 0.114 0.118 0.108 
W z 4.236 3.098 3.202 3.242 3.719 

Y1 source N̄ gal 30534.6 30534.5 30534.5 30534.5 30534.7 
〈 z〉 0.291 0.466 0.623 0.779 1.030 

Y3 lens N̄ gal 34498.5 52662.6 51564.7 52858.0 27561.2 
〈 z〉 0.320 0.500 0.702 0.894 1.093 
σz 0.183 0.116 0.118 0.135 0.144 
W z 4.220 3.263 3.385 3.061 3.053 

Y3 source N̄ gal 48205.9 48205.8 48205.8 48205.9 48203.1 
〈 z〉 0.328 0.531 0.718 0.893 1.213 

Y5 lens N̄ gal 37286.1 57641.9 59009.5 63214.3 39344.7 
〈 z〉 0.339 0.510 0.709 0.905 1.104 
σz 0.194 0.136 0.122 0.146 0.142 
W z 4.150 3.332 3.428 3.037 2.908 

Y5 source N̄ gal 59747.0 59747.1 59747.0 59747.2 59721.0 
〈 z〉 0.350 0.567 0.764 0.971 1.342 
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PPENDIX  D :  VA R I AT I O N  WITH  OTH ER  

URV EY  PROPERTIES  

n the main analysis, we investigated the trend of galaxy number
nd redshift distribution as a function of the i-band coadd depth. We
onsidered the i-band depth to be most impactful because it is the
etection band, and fluxes in all other bands are measured with forced
hotometry based on the i-band detection. Ho we v er, other surv e y
roperties can also be important. F or e xample, u -band is important
or the quality of photo- z estimation, so extreme variation in the u -
and depth could cause additional scatter. The ef fecti ve seeing could
NRAS 535, 2970–2997 (2024) 
e another important factor, which directly impact the noise-to-signal
or extended objects. We investigate the variation of galaxy number
ensity and photo- z properties with these other surv e y properties in
his section. 

Table D1 summarizes the mean and standard deviation of the coadd
epth in the other five LSST bands and the median ef fecti ve seeing
or Y3 surv e y properties from Rubin OpSim baseline v3.3. The other
ears show a similar trend, although Y1 has a larger scatter. We see
hat there is a strong correlation between the i-band depth and these
ther surv e y properties. On av erage, a deeper i-band quantile also
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ontains deeper coadd depth in all other five bands, as well as a
maller median ef fecti ve seeing, with more scatter in the latter. 

To check the dependences of other surv e y properties, we subdivide
ach of the i-band deciles into five subquantiles of another surv e y
roperty (such as depth in another band), and check the variation
f the metrics, i.e. number of objects N gal , mean redshift 〈 z〉 , and
idth of the redshift bin σz , with these properties. As a reference,
e also compute and compare the variation with subquantiles of 

he i-band depth itself. In this section, we show two representative
xamples for source tomographic bins determined by FZboost photo- 
: the subquantiles in coadd u -band depth and the i-band seeing, for
he fainest, median, and deepest i-band deciles: qtl = 0 , 5 , 9. In the
esults presented here, we o v erplot the variation from the i-band
epth subquantiles (as faint, dashed lines) on top of that from the
ther surv e y properties (as solid lines), for visual comparison. That
s, one can read off the level of fluctuation from the deepest and
hallowest u -band depth sub-bin, for example, and compare it with
hat from the deepest and shallowest i-band depth sub-bin. It should
e noted, ho we ver, that these reference i-band split cases have a
ifferent actual x-axis values from those shown in the plots. 
The results are shown in Figs D1 and D2 , respectively. We see

hat in general, these trends are consistent with the i-band depth
uctuation for all three metrics: the deeper (smaller) the depth 
seeing), the more objects included in the sample, the higher the mean
edshift of the tomographic bin, and the larger σz . Also, qtl = 0 has
 significantly larger variation compared to qtl = 9 in most cases.
ompared to the trends in the i-band depth sub-bins, we see that

he N gal variations are al w ays less strong for other properties. This
s understood as selections are primarily taken in i-band. The 〈 z〉
ariations for the u -band tightly follows the i-band, although the
rst bin can have slightly larger fluctuations. For seeing, on the other
and, the trend is quite different for qtl = 0, where the smallest
eeing does not al w ays correspond to a higher mean redshift. This
ould happen because the seeing is not as well correlated with depth
there are more scatter in the coadd depth and seeing at the faint

nd. Finally, the variation in σz seems to be relatively minor in most
ases. 

From these e x ercises, we see that within each i-band decile, the
umber of objects and p( z) properties can still change significantly
ith other surv e y properties such as u -band depth and i-band

eeing. Meanwhile, given that these quantities are also quite tightly 
orrelated, we expect that a lot of these variations are also due to the
ovariation of the i-band depth. Hence, our main analysis, by splitting
nto the i-band quantiles, should capture the level of variations of the

etrics. Ho we ver, if one wishes to apply this method in e.g. forward
odelling, then covariation of all bands need to be taken into account. 
MNRAS 535, 2970–2997 (2024) 
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Figure D1. The variation of the number of objects, N gal , the mean redshift, 〈 z〉 , and the standard deviation, σz , of the Y3 source tomographic bins, as a function 
of the extinction-corrected u -band coadd depth, m 

ex 
5 . The u -band depth bins are determined by 5 quantiles subdividing each of the i-band quantiles used in the 

main analysis. Examples shown here are for the i-band quantiles 0 (dark blue), 5 (purple), and 9 (pink). The tomographic bins are split by FZBoost photo- z. 
The horizontal lines indicate the combined values as shown in Figs 5 –7 . The faint, dashed lines indicate a reference case where the subdivision is done for 5 
quantiles in the i-band depth. Notice that the i-band split case is only o v erplotted here to provide a visual comparison of the level of fluctuations, but its actual 
x-axis values do not align with those on the figure, which are for the u -band depth. 

Figure D2. Same as Fig. D1 , but for subdivision in the i-band median ef fecti ve seeing, θ eff 
FWHM 

. Notice here that the reference i-band depth subquantiles, as 
indicated by the faint dashed lines, are flipped, i.e. the first quantile in i-band depth is o v erplotted on top of the last quantile in the i-band seeing. This is because, 
on average, a deeper coadd depth corresponds to a smaller seeing angle. 
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PPEN D IX  E:  MAGLIM-LIKE  LENS  SAMPLE  

n this section, we explore the impact of variable depth on a lens
ample selected with the DES Y3 MagLim cuts (Porredon et al. 
022 ). Because this sample has a brighter cut, we relax the i-band
ignal-to-noise limit to SNR ≥ 5 . The sample is selected with 

7 < i < 4 z phot + 18 , (E1) 

here we use the FZBoost mode redshift as z phot . This cut reduces the
umber of lens sample significantly compared to our fiducial case, 

igure E1. True redshift distribution of the LSST Y3 MagLim lens sample,
plit in tomographic bins as defined in the DESC SRD. The MagLim cuts and
he tomographic edhes are determined using the mode of FZBoost redshifts. 
he sample has also been applied a cut with SNR ≥ 5. The dashed lines
how samples degraded using the shallowest 10 per cent pixels in i-band
oadd depth ( qtl = 0), and the solid lines show those from the deepest 10
er cent ( qtl = 9). 
igure E2. Metrics for impact of variable depth for the LSST Y3 MagLim lens sa
alaxies, N gal / ̄N gal in tomographic bins as a function of the i-band extinction-correc
s a function of m 

ex 
5 ; (c). The fractional change in second moment of the redshift 

SS-related kernel, W z /W 

tot 
z , as a function of m 

ex 
5 . The MagLim cuts and the tomo

he sample has an i-band SNR ≥ 5. The vertical solid and dashed lines marks the 1

Figure E3. Similar to Fig. 8 , but for the

his paper has been typeset from a T E 
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ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
esulting in a total sample size of 3.67 per cent of the baseline (Gold
ut) lens sample. The true redshift distribution of each tomographic 
in is shown in Fig. E1 , where the dashed lines show those from the
hallowest quantile, and the solid lines show those from the deepest.
otice that the distribution is less smooth due to the sparsity of the

ample. Overall, thanks to the bright cut, the redshift distribution for
ach bin has a smaller tail compared to the baseline case, especially
or the highest redshift bin. 

Fig. E2 shows the metrics for the variable depth, namely, the
alaxy number, mean redshift, and width of the tomographic bin, as
 function of the i-band depth. The panels (a)–(d) has the same style
s, and should be compared to Figs 5 –7 . Again, we see a significantly
ilder, but visible, trend of these metrics with depth, owing to the

right magnitude cut. This shows that the variable depth effect can be
reatly reduced, but not completed remo v ed, by introducing a bright
ut at the cost of sample size. 

Fig. E3 shows the effect propagated to the galaxy clustering 
wo-point data vector, C 

gg 

� . We followed the same procedure as
n Section 5.2 , and set the number density in each bin to be
 . 135 , 0 . 117 , 0 . 156 , 0 . 219 , 0 . 267 arcmin −2 to account for the re-
uction in the o v erall number density compared to the fiducial case.
he impact of variable depth on C 

gg 

� is also significantly reduced,
specially for (4,4) and (5,5). Ho we ver, the impact is not negligible
till at � < 100. 
MNRAS 535, 2970–2997 (2024) 

mple, split in five tomographic bins. (a). The fractional change in number of 
ted coadd depth, m 

ex 
5 ; (b). The scaled shifts in mean redshift, � 〈 z〉 / (1 + 〈 z〉 ) 

distribution, σz /σ
tot 
z , as a function of m 

ex 
5 ; (d). The fractional change in the 

graphic bins edges are determined using the mode of FZBoost redshifts, and 
 σ and 2 σ regions of the depth distribution. 

 LSST Y3 MagLim lens sample. 
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